1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/export.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/kmod.h>
18 #include <linux/ksm.h>
19 #include <linux/perf_event.h>
20 #include <linux/resource.h>
21 #include <linux/kernel.h>
22 #include <linux/workqueue.h>
23 #include <linux/capability.h>
24 #include <linux/device.h>
25 #include <linux/key.h>
26 #include <linux/times.h>
27 #include <linux/posix-timers.h>
28 #include <linux/security.h>
29 #include <linux/random.h>
30 #include <linux/suspend.h>
31 #include <linux/tty.h>
32 #include <linux/signal.h>
33 #include <linux/cn_proc.h>
34 #include <linux/getcpu.h>
35 #include <linux/task_io_accounting_ops.h>
36 #include <linux/seccomp.h>
37 #include <linux/cpu.h>
38 #include <linux/personality.h>
39 #include <linux/ptrace.h>
40 #include <linux/fs_struct.h>
41 #include <linux/file.h>
42 #include <linux/mount.h>
43 #include <linux/gfp.h>
44 #include <linux/syscore_ops.h>
45 #include <linux/version.h>
46 #include <linux/ctype.h>
47 #include <linux/syscall_user_dispatch.h>
49 #include <linux/compat.h>
50 #include <linux/syscalls.h>
51 #include <linux/kprobes.h>
52 #include <linux/user_namespace.h>
53 #include <linux/time_namespace.h>
54 #include <linux/binfmts.h>
56 #include <linux/sched.h>
57 #include <linux/sched/autogroup.h>
58 #include <linux/sched/loadavg.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/mm.h>
61 #include <linux/sched/coredump.h>
62 #include <linux/sched/task.h>
63 #include <linux/sched/cputime.h>
64 #include <linux/rcupdate.h>
65 #include <linux/uidgid.h>
66 #include <linux/cred.h>
68 #include <linux/nospec.h>
70 #include <linux/kmsg_dump.h>
71 /* Move somewhere else to avoid recompiling? */
72 #include <generated/utsrelease.h>
74 #include <linux/uaccess.h>
76 #include <asm/unistd.h>
80 #ifndef SET_UNALIGN_CTL
81 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
83 #ifndef GET_UNALIGN_CTL
84 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
87 # define SET_FPEMU_CTL(a, b) (-EINVAL)
90 # define GET_FPEMU_CTL(a, b) (-EINVAL)
93 # define SET_FPEXC_CTL(a, b) (-EINVAL)
96 # define GET_FPEXC_CTL(a, b) (-EINVAL)
99 # define GET_ENDIAN(a, b) (-EINVAL)
102 # define SET_ENDIAN(a, b) (-EINVAL)
105 # define GET_TSC_CTL(a) (-EINVAL)
108 # define SET_TSC_CTL(a) (-EINVAL)
111 # define GET_FP_MODE(a) (-EINVAL)
114 # define SET_FP_MODE(a,b) (-EINVAL)
117 # define SVE_SET_VL(a) (-EINVAL)
120 # define SVE_GET_VL() (-EINVAL)
123 # define SME_SET_VL(a) (-EINVAL)
126 # define SME_GET_VL() (-EINVAL)
128 #ifndef PAC_RESET_KEYS
129 # define PAC_RESET_KEYS(a, b) (-EINVAL)
131 #ifndef PAC_SET_ENABLED_KEYS
132 # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
134 #ifndef PAC_GET_ENABLED_KEYS
135 # define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
137 #ifndef SET_TAGGED_ADDR_CTRL
138 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
140 #ifndef GET_TAGGED_ADDR_CTRL
141 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
145 * this is where the system-wide overflow UID and GID are defined, for
146 * architectures that now have 32-bit UID/GID but didn't in the past
149 int overflowuid = DEFAULT_OVERFLOWUID;
150 int overflowgid = DEFAULT_OVERFLOWGID;
152 EXPORT_SYMBOL(overflowuid);
153 EXPORT_SYMBOL(overflowgid);
156 * the same as above, but for filesystems which can only store a 16-bit
157 * UID and GID. as such, this is needed on all architectures
160 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
161 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
163 EXPORT_SYMBOL(fs_overflowuid);
164 EXPORT_SYMBOL(fs_overflowgid);
167 * Returns true if current's euid is same as p's uid or euid,
168 * or has CAP_SYS_NICE to p's user_ns.
170 * Called with rcu_read_lock, creds are safe
172 static bool set_one_prio_perm(struct task_struct *p)
174 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
176 if (uid_eq(pcred->uid, cred->euid) ||
177 uid_eq(pcred->euid, cred->euid))
179 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
185 * set the priority of a task
186 * - the caller must hold the RCU read lock
188 static int set_one_prio(struct task_struct *p, int niceval, int error)
192 if (!set_one_prio_perm(p)) {
196 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
200 no_nice = security_task_setnice(p, niceval);
207 set_user_nice(p, niceval);
212 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
214 struct task_struct *g, *p;
215 struct user_struct *user;
216 const struct cred *cred = current_cred();
221 if (which > PRIO_USER || which < PRIO_PROCESS)
224 /* normalize: avoid signed division (rounding problems) */
226 if (niceval < MIN_NICE)
228 if (niceval > MAX_NICE)
235 p = find_task_by_vpid(who);
239 error = set_one_prio(p, niceval, error);
243 pgrp = find_vpid(who);
245 pgrp = task_pgrp(current);
246 read_lock(&tasklist_lock);
247 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
248 error = set_one_prio(p, niceval, error);
249 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
250 read_unlock(&tasklist_lock);
253 uid = make_kuid(cred->user_ns, who);
257 else if (!uid_eq(uid, cred->uid)) {
258 user = find_user(uid);
260 goto out_unlock; /* No processes for this user */
262 for_each_process_thread(g, p) {
263 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
264 error = set_one_prio(p, niceval, error);
266 if (!uid_eq(uid, cred->uid))
267 free_uid(user); /* For find_user() */
277 * Ugh. To avoid negative return values, "getpriority()" will
278 * not return the normal nice-value, but a negated value that
279 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
280 * to stay compatible.
282 SYSCALL_DEFINE2(getpriority, int, which, int, who)
284 struct task_struct *g, *p;
285 struct user_struct *user;
286 const struct cred *cred = current_cred();
287 long niceval, retval = -ESRCH;
291 if (which > PRIO_USER || which < PRIO_PROCESS)
298 p = find_task_by_vpid(who);
302 niceval = nice_to_rlimit(task_nice(p));
303 if (niceval > retval)
309 pgrp = find_vpid(who);
311 pgrp = task_pgrp(current);
312 read_lock(&tasklist_lock);
313 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
314 niceval = nice_to_rlimit(task_nice(p));
315 if (niceval > retval)
317 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
318 read_unlock(&tasklist_lock);
321 uid = make_kuid(cred->user_ns, who);
325 else if (!uid_eq(uid, cred->uid)) {
326 user = find_user(uid);
328 goto out_unlock; /* No processes for this user */
330 for_each_process_thread(g, p) {
331 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
332 niceval = nice_to_rlimit(task_nice(p));
333 if (niceval > retval)
337 if (!uid_eq(uid, cred->uid))
338 free_uid(user); /* for find_user() */
348 * Unprivileged users may change the real gid to the effective gid
349 * or vice versa. (BSD-style)
351 * If you set the real gid at all, or set the effective gid to a value not
352 * equal to the real gid, then the saved gid is set to the new effective gid.
354 * This makes it possible for a setgid program to completely drop its
355 * privileges, which is often a useful assertion to make when you are doing
356 * a security audit over a program.
358 * The general idea is that a program which uses just setregid() will be
359 * 100% compatible with BSD. A program which uses just setgid() will be
360 * 100% compatible with POSIX with saved IDs.
362 * SMP: There are not races, the GIDs are checked only by filesystem
363 * operations (as far as semantic preservation is concerned).
365 #ifdef CONFIG_MULTIUSER
366 long __sys_setregid(gid_t rgid, gid_t egid)
368 struct user_namespace *ns = current_user_ns();
369 const struct cred *old;
374 krgid = make_kgid(ns, rgid);
375 kegid = make_kgid(ns, egid);
377 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
379 if ((egid != (gid_t) -1) && !gid_valid(kegid))
382 new = prepare_creds();
385 old = current_cred();
388 if (rgid != (gid_t) -1) {
389 if (gid_eq(old->gid, krgid) ||
390 gid_eq(old->egid, krgid) ||
391 ns_capable_setid(old->user_ns, CAP_SETGID))
396 if (egid != (gid_t) -1) {
397 if (gid_eq(old->gid, kegid) ||
398 gid_eq(old->egid, kegid) ||
399 gid_eq(old->sgid, kegid) ||
400 ns_capable_setid(old->user_ns, CAP_SETGID))
406 if (rgid != (gid_t) -1 ||
407 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
408 new->sgid = new->egid;
409 new->fsgid = new->egid;
411 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
415 return commit_creds(new);
422 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
424 return __sys_setregid(rgid, egid);
428 * setgid() is implemented like SysV w/ SAVED_IDS
430 * SMP: Same implicit races as above.
432 long __sys_setgid(gid_t gid)
434 struct user_namespace *ns = current_user_ns();
435 const struct cred *old;
440 kgid = make_kgid(ns, gid);
441 if (!gid_valid(kgid))
444 new = prepare_creds();
447 old = current_cred();
450 if (ns_capable_setid(old->user_ns, CAP_SETGID))
451 new->gid = new->egid = new->sgid = new->fsgid = kgid;
452 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
453 new->egid = new->fsgid = kgid;
457 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
461 return commit_creds(new);
468 SYSCALL_DEFINE1(setgid, gid_t, gid)
470 return __sys_setgid(gid);
474 * change the user struct in a credentials set to match the new UID
476 static int set_user(struct cred *new)
478 struct user_struct *new_user;
480 new_user = alloc_uid(new->uid);
485 new->user = new_user;
489 static void flag_nproc_exceeded(struct cred *new)
491 if (new->ucounts == current_ucounts())
495 * We don't fail in case of NPROC limit excess here because too many
496 * poorly written programs don't check set*uid() return code, assuming
497 * it never fails if called by root. We may still enforce NPROC limit
498 * for programs doing set*uid()+execve() by harmlessly deferring the
499 * failure to the execve() stage.
501 if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
502 new->user != INIT_USER)
503 current->flags |= PF_NPROC_EXCEEDED;
505 current->flags &= ~PF_NPROC_EXCEEDED;
509 * Unprivileged users may change the real uid to the effective uid
510 * or vice versa. (BSD-style)
512 * If you set the real uid at all, or set the effective uid to a value not
513 * equal to the real uid, then the saved uid is set to the new effective uid.
515 * This makes it possible for a setuid program to completely drop its
516 * privileges, which is often a useful assertion to make when you are doing
517 * a security audit over a program.
519 * The general idea is that a program which uses just setreuid() will be
520 * 100% compatible with BSD. A program which uses just setuid() will be
521 * 100% compatible with POSIX with saved IDs.
523 long __sys_setreuid(uid_t ruid, uid_t euid)
525 struct user_namespace *ns = current_user_ns();
526 const struct cred *old;
531 kruid = make_kuid(ns, ruid);
532 keuid = make_kuid(ns, euid);
534 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
536 if ((euid != (uid_t) -1) && !uid_valid(keuid))
539 new = prepare_creds();
542 old = current_cred();
545 if (ruid != (uid_t) -1) {
547 if (!uid_eq(old->uid, kruid) &&
548 !uid_eq(old->euid, kruid) &&
549 !ns_capable_setid(old->user_ns, CAP_SETUID))
553 if (euid != (uid_t) -1) {
555 if (!uid_eq(old->uid, keuid) &&
556 !uid_eq(old->euid, keuid) &&
557 !uid_eq(old->suid, keuid) &&
558 !ns_capable_setid(old->user_ns, CAP_SETUID))
562 if (!uid_eq(new->uid, old->uid)) {
563 retval = set_user(new);
567 if (ruid != (uid_t) -1 ||
568 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
569 new->suid = new->euid;
570 new->fsuid = new->euid;
572 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
576 retval = set_cred_ucounts(new);
580 flag_nproc_exceeded(new);
581 return commit_creds(new);
588 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
590 return __sys_setreuid(ruid, euid);
594 * setuid() is implemented like SysV with SAVED_IDS
596 * Note that SAVED_ID's is deficient in that a setuid root program
597 * like sendmail, for example, cannot set its uid to be a normal
598 * user and then switch back, because if you're root, setuid() sets
599 * the saved uid too. If you don't like this, blame the bright people
600 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
601 * will allow a root program to temporarily drop privileges and be able to
602 * regain them by swapping the real and effective uid.
604 long __sys_setuid(uid_t uid)
606 struct user_namespace *ns = current_user_ns();
607 const struct cred *old;
612 kuid = make_kuid(ns, uid);
613 if (!uid_valid(kuid))
616 new = prepare_creds();
619 old = current_cred();
622 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
623 new->suid = new->uid = kuid;
624 if (!uid_eq(kuid, old->uid)) {
625 retval = set_user(new);
629 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
633 new->fsuid = new->euid = kuid;
635 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
639 retval = set_cred_ucounts(new);
643 flag_nproc_exceeded(new);
644 return commit_creds(new);
651 SYSCALL_DEFINE1(setuid, uid_t, uid)
653 return __sys_setuid(uid);
658 * This function implements a generic ability to update ruid, euid,
659 * and suid. This allows you to implement the 4.4 compatible seteuid().
661 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
663 struct user_namespace *ns = current_user_ns();
664 const struct cred *old;
667 kuid_t kruid, keuid, ksuid;
668 bool ruid_new, euid_new, suid_new;
670 kruid = make_kuid(ns, ruid);
671 keuid = make_kuid(ns, euid);
672 ksuid = make_kuid(ns, suid);
674 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
677 if ((euid != (uid_t) -1) && !uid_valid(keuid))
680 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
683 old = current_cred();
685 /* check for no-op */
686 if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
687 (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
688 uid_eq(keuid, old->fsuid))) &&
689 (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
692 ruid_new = ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
693 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
694 euid_new = euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
695 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
696 suid_new = suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
697 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
698 if ((ruid_new || euid_new || suid_new) &&
699 !ns_capable_setid(old->user_ns, CAP_SETUID))
702 new = prepare_creds();
706 if (ruid != (uid_t) -1) {
708 if (!uid_eq(kruid, old->uid)) {
709 retval = set_user(new);
714 if (euid != (uid_t) -1)
716 if (suid != (uid_t) -1)
718 new->fsuid = new->euid;
720 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
724 retval = set_cred_ucounts(new);
728 flag_nproc_exceeded(new);
729 return commit_creds(new);
736 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
738 return __sys_setresuid(ruid, euid, suid);
741 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
743 const struct cred *cred = current_cred();
745 uid_t ruid, euid, suid;
747 ruid = from_kuid_munged(cred->user_ns, cred->uid);
748 euid = from_kuid_munged(cred->user_ns, cred->euid);
749 suid = from_kuid_munged(cred->user_ns, cred->suid);
751 retval = put_user(ruid, ruidp);
753 retval = put_user(euid, euidp);
755 return put_user(suid, suidp);
761 * Same as above, but for rgid, egid, sgid.
763 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
765 struct user_namespace *ns = current_user_ns();
766 const struct cred *old;
769 kgid_t krgid, kegid, ksgid;
770 bool rgid_new, egid_new, sgid_new;
772 krgid = make_kgid(ns, rgid);
773 kegid = make_kgid(ns, egid);
774 ksgid = make_kgid(ns, sgid);
776 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
778 if ((egid != (gid_t) -1) && !gid_valid(kegid))
780 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
783 old = current_cred();
785 /* check for no-op */
786 if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
787 (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
788 gid_eq(kegid, old->fsgid))) &&
789 (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
792 rgid_new = rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
793 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
794 egid_new = egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
795 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
796 sgid_new = sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
797 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
798 if ((rgid_new || egid_new || sgid_new) &&
799 !ns_capable_setid(old->user_ns, CAP_SETGID))
802 new = prepare_creds();
806 if (rgid != (gid_t) -1)
808 if (egid != (gid_t) -1)
810 if (sgid != (gid_t) -1)
812 new->fsgid = new->egid;
814 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
818 return commit_creds(new);
825 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
827 return __sys_setresgid(rgid, egid, sgid);
830 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
832 const struct cred *cred = current_cred();
834 gid_t rgid, egid, sgid;
836 rgid = from_kgid_munged(cred->user_ns, cred->gid);
837 egid = from_kgid_munged(cred->user_ns, cred->egid);
838 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
840 retval = put_user(rgid, rgidp);
842 retval = put_user(egid, egidp);
844 retval = put_user(sgid, sgidp);
852 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
853 * is used for "access()" and for the NFS daemon (letting nfsd stay at
854 * whatever uid it wants to). It normally shadows "euid", except when
855 * explicitly set by setfsuid() or for access..
857 long __sys_setfsuid(uid_t uid)
859 const struct cred *old;
864 old = current_cred();
865 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
867 kuid = make_kuid(old->user_ns, uid);
868 if (!uid_valid(kuid))
871 new = prepare_creds();
875 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
876 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
877 ns_capable_setid(old->user_ns, CAP_SETUID)) {
878 if (!uid_eq(kuid, old->fsuid)) {
880 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
893 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
895 return __sys_setfsuid(uid);
899 * Samma på svenska..
901 long __sys_setfsgid(gid_t gid)
903 const struct cred *old;
908 old = current_cred();
909 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
911 kgid = make_kgid(old->user_ns, gid);
912 if (!gid_valid(kgid))
915 new = prepare_creds();
919 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
920 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
921 ns_capable_setid(old->user_ns, CAP_SETGID)) {
922 if (!gid_eq(kgid, old->fsgid)) {
924 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
937 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
939 return __sys_setfsgid(gid);
941 #endif /* CONFIG_MULTIUSER */
944 * sys_getpid - return the thread group id of the current process
946 * Note, despite the name, this returns the tgid not the pid. The tgid and
947 * the pid are identical unless CLONE_THREAD was specified on clone() in
948 * which case the tgid is the same in all threads of the same group.
950 * This is SMP safe as current->tgid does not change.
952 SYSCALL_DEFINE0(getpid)
954 return task_tgid_vnr(current);
957 /* Thread ID - the internal kernel "pid" */
958 SYSCALL_DEFINE0(gettid)
960 return task_pid_vnr(current);
964 * Accessing ->real_parent is not SMP-safe, it could
965 * change from under us. However, we can use a stale
966 * value of ->real_parent under rcu_read_lock(), see
967 * release_task()->call_rcu(delayed_put_task_struct).
969 SYSCALL_DEFINE0(getppid)
974 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
980 SYSCALL_DEFINE0(getuid)
982 /* Only we change this so SMP safe */
983 return from_kuid_munged(current_user_ns(), current_uid());
986 SYSCALL_DEFINE0(geteuid)
988 /* Only we change this so SMP safe */
989 return from_kuid_munged(current_user_ns(), current_euid());
992 SYSCALL_DEFINE0(getgid)
994 /* Only we change this so SMP safe */
995 return from_kgid_munged(current_user_ns(), current_gid());
998 SYSCALL_DEFINE0(getegid)
1000 /* Only we change this so SMP safe */
1001 return from_kgid_munged(current_user_ns(), current_egid());
1004 static void do_sys_times(struct tms *tms)
1006 u64 tgutime, tgstime, cutime, cstime;
1008 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1009 cutime = current->signal->cutime;
1010 cstime = current->signal->cstime;
1011 tms->tms_utime = nsec_to_clock_t(tgutime);
1012 tms->tms_stime = nsec_to_clock_t(tgstime);
1013 tms->tms_cutime = nsec_to_clock_t(cutime);
1014 tms->tms_cstime = nsec_to_clock_t(cstime);
1017 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1023 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1026 force_successful_syscall_return();
1027 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1030 #ifdef CONFIG_COMPAT
1031 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1033 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1036 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1040 struct compat_tms tmp;
1043 /* Convert our struct tms to the compat version. */
1044 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1045 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1046 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1047 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1048 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1051 force_successful_syscall_return();
1052 return compat_jiffies_to_clock_t(jiffies);
1057 * This needs some heavy checking ...
1058 * I just haven't the stomach for it. I also don't fully
1059 * understand sessions/pgrp etc. Let somebody who does explain it.
1061 * OK, I think I have the protection semantics right.... this is really
1062 * only important on a multi-user system anyway, to make sure one user
1063 * can't send a signal to a process owned by another. -TYT, 12/12/91
1065 * !PF_FORKNOEXEC check to conform completely to POSIX.
1067 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1069 struct task_struct *p;
1070 struct task_struct *group_leader = current->group_leader;
1075 pid = task_pid_vnr(group_leader);
1082 /* From this point forward we keep holding onto the tasklist lock
1083 * so that our parent does not change from under us. -DaveM
1085 write_lock_irq(&tasklist_lock);
1088 p = find_task_by_vpid(pid);
1093 if (!thread_group_leader(p))
1096 if (same_thread_group(p->real_parent, group_leader)) {
1098 if (task_session(p) != task_session(group_leader))
1101 if (!(p->flags & PF_FORKNOEXEC))
1105 if (p != group_leader)
1110 if (p->signal->leader)
1115 struct task_struct *g;
1117 pgrp = find_vpid(pgid);
1118 g = pid_task(pgrp, PIDTYPE_PGID);
1119 if (!g || task_session(g) != task_session(group_leader))
1123 err = security_task_setpgid(p, pgid);
1127 if (task_pgrp(p) != pgrp)
1128 change_pid(p, PIDTYPE_PGID, pgrp);
1132 /* All paths lead to here, thus we are safe. -DaveM */
1133 write_unlock_irq(&tasklist_lock);
1138 static int do_getpgid(pid_t pid)
1140 struct task_struct *p;
1146 grp = task_pgrp(current);
1149 p = find_task_by_vpid(pid);
1156 retval = security_task_getpgid(p);
1160 retval = pid_vnr(grp);
1166 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1168 return do_getpgid(pid);
1171 #ifdef __ARCH_WANT_SYS_GETPGRP
1173 SYSCALL_DEFINE0(getpgrp)
1175 return do_getpgid(0);
1180 SYSCALL_DEFINE1(getsid, pid_t, pid)
1182 struct task_struct *p;
1188 sid = task_session(current);
1191 p = find_task_by_vpid(pid);
1194 sid = task_session(p);
1198 retval = security_task_getsid(p);
1202 retval = pid_vnr(sid);
1208 static void set_special_pids(struct pid *pid)
1210 struct task_struct *curr = current->group_leader;
1212 if (task_session(curr) != pid)
1213 change_pid(curr, PIDTYPE_SID, pid);
1215 if (task_pgrp(curr) != pid)
1216 change_pid(curr, PIDTYPE_PGID, pid);
1219 int ksys_setsid(void)
1221 struct task_struct *group_leader = current->group_leader;
1222 struct pid *sid = task_pid(group_leader);
1223 pid_t session = pid_vnr(sid);
1226 write_lock_irq(&tasklist_lock);
1227 /* Fail if I am already a session leader */
1228 if (group_leader->signal->leader)
1231 /* Fail if a process group id already exists that equals the
1232 * proposed session id.
1234 if (pid_task(sid, PIDTYPE_PGID))
1237 group_leader->signal->leader = 1;
1238 set_special_pids(sid);
1240 proc_clear_tty(group_leader);
1244 write_unlock_irq(&tasklist_lock);
1246 proc_sid_connector(group_leader);
1247 sched_autogroup_create_attach(group_leader);
1252 SYSCALL_DEFINE0(setsid)
1254 return ksys_setsid();
1257 DECLARE_RWSEM(uts_sem);
1259 #ifdef COMPAT_UTS_MACHINE
1260 #define override_architecture(name) \
1261 (personality(current->personality) == PER_LINUX32 && \
1262 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1263 sizeof(COMPAT_UTS_MACHINE)))
1265 #define override_architecture(name) 0
1269 * Work around broken programs that cannot handle "Linux 3.0".
1270 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1271 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1274 static int override_release(char __user *release, size_t len)
1278 if (current->personality & UNAME26) {
1279 const char *rest = UTS_RELEASE;
1280 char buf[65] = { 0 };
1286 if (*rest == '.' && ++ndots >= 3)
1288 if (!isdigit(*rest) && *rest != '.')
1292 v = LINUX_VERSION_PATCHLEVEL + 60;
1293 copy = clamp_t(size_t, len, 1, sizeof(buf));
1294 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1295 ret = copy_to_user(release, buf, copy + 1);
1300 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1302 struct new_utsname tmp;
1304 down_read(&uts_sem);
1305 memcpy(&tmp, utsname(), sizeof(tmp));
1307 if (copy_to_user(name, &tmp, sizeof(tmp)))
1310 if (override_release(name->release, sizeof(name->release)))
1312 if (override_architecture(name))
1317 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1321 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1323 struct old_utsname tmp;
1328 down_read(&uts_sem);
1329 memcpy(&tmp, utsname(), sizeof(tmp));
1331 if (copy_to_user(name, &tmp, sizeof(tmp)))
1334 if (override_release(name->release, sizeof(name->release)))
1336 if (override_architecture(name))
1341 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1343 struct oldold_utsname tmp;
1348 memset(&tmp, 0, sizeof(tmp));
1350 down_read(&uts_sem);
1351 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1352 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1353 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1354 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1355 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1357 if (copy_to_user(name, &tmp, sizeof(tmp)))
1360 if (override_architecture(name))
1362 if (override_release(name->release, sizeof(name->release)))
1368 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1371 char tmp[__NEW_UTS_LEN];
1373 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1376 if (len < 0 || len > __NEW_UTS_LEN)
1379 if (!copy_from_user(tmp, name, len)) {
1380 struct new_utsname *u;
1382 add_device_randomness(tmp, len);
1383 down_write(&uts_sem);
1385 memcpy(u->nodename, tmp, len);
1386 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1388 uts_proc_notify(UTS_PROC_HOSTNAME);
1394 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1396 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1399 struct new_utsname *u;
1400 char tmp[__NEW_UTS_LEN + 1];
1404 down_read(&uts_sem);
1406 i = 1 + strlen(u->nodename);
1409 memcpy(tmp, u->nodename, i);
1411 if (copy_to_user(name, tmp, i))
1419 * Only setdomainname; getdomainname can be implemented by calling
1422 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1425 char tmp[__NEW_UTS_LEN];
1427 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1429 if (len < 0 || len > __NEW_UTS_LEN)
1433 if (!copy_from_user(tmp, name, len)) {
1434 struct new_utsname *u;
1436 add_device_randomness(tmp, len);
1437 down_write(&uts_sem);
1439 memcpy(u->domainname, tmp, len);
1440 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1442 uts_proc_notify(UTS_PROC_DOMAINNAME);
1448 /* make sure you are allowed to change @tsk limits before calling this */
1449 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1450 struct rlimit *new_rlim, struct rlimit *old_rlim)
1452 struct rlimit *rlim;
1455 if (resource >= RLIM_NLIMITS)
1457 resource = array_index_nospec(resource, RLIM_NLIMITS);
1460 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1462 if (resource == RLIMIT_NOFILE &&
1463 new_rlim->rlim_max > sysctl_nr_open)
1467 /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1468 rlim = tsk->signal->rlim + resource;
1469 task_lock(tsk->group_leader);
1472 * Keep the capable check against init_user_ns until cgroups can
1473 * contain all limits.
1475 if (new_rlim->rlim_max > rlim->rlim_max &&
1476 !capable(CAP_SYS_RESOURCE))
1479 retval = security_task_setrlimit(tsk, resource, new_rlim);
1487 task_unlock(tsk->group_leader);
1490 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1491 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1492 * ignores the rlimit.
1494 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1495 new_rlim->rlim_cur != RLIM_INFINITY &&
1496 IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1498 * update_rlimit_cpu can fail if the task is exiting, but there
1499 * may be other tasks in the thread group that are not exiting,
1500 * and they need their cpu timers adjusted.
1502 * The group_leader is the last task to be released, so if we
1503 * cannot update_rlimit_cpu on it, then the entire process is
1504 * exiting and we do not need to update at all.
1506 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1512 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1514 struct rlimit value;
1517 ret = do_prlimit(current, resource, NULL, &value);
1519 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1524 #ifdef CONFIG_COMPAT
1526 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1527 struct compat_rlimit __user *, rlim)
1530 struct compat_rlimit r32;
1532 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1535 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1536 r.rlim_cur = RLIM_INFINITY;
1538 r.rlim_cur = r32.rlim_cur;
1539 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1540 r.rlim_max = RLIM_INFINITY;
1542 r.rlim_max = r32.rlim_max;
1543 return do_prlimit(current, resource, &r, NULL);
1546 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1547 struct compat_rlimit __user *, rlim)
1552 ret = do_prlimit(current, resource, NULL, &r);
1554 struct compat_rlimit r32;
1555 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1556 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1558 r32.rlim_cur = r.rlim_cur;
1559 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1560 r32.rlim_max = COMPAT_RLIM_INFINITY;
1562 r32.rlim_max = r.rlim_max;
1564 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1572 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1575 * Back compatibility for getrlimit. Needed for some apps.
1577 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1578 struct rlimit __user *, rlim)
1581 if (resource >= RLIM_NLIMITS)
1584 resource = array_index_nospec(resource, RLIM_NLIMITS);
1585 task_lock(current->group_leader);
1586 x = current->signal->rlim[resource];
1587 task_unlock(current->group_leader);
1588 if (x.rlim_cur > 0x7FFFFFFF)
1589 x.rlim_cur = 0x7FFFFFFF;
1590 if (x.rlim_max > 0x7FFFFFFF)
1591 x.rlim_max = 0x7FFFFFFF;
1592 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1595 #ifdef CONFIG_COMPAT
1596 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1597 struct compat_rlimit __user *, rlim)
1601 if (resource >= RLIM_NLIMITS)
1604 resource = array_index_nospec(resource, RLIM_NLIMITS);
1605 task_lock(current->group_leader);
1606 r = current->signal->rlim[resource];
1607 task_unlock(current->group_leader);
1608 if (r.rlim_cur > 0x7FFFFFFF)
1609 r.rlim_cur = 0x7FFFFFFF;
1610 if (r.rlim_max > 0x7FFFFFFF)
1611 r.rlim_max = 0x7FFFFFFF;
1613 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1614 put_user(r.rlim_max, &rlim->rlim_max))
1622 static inline bool rlim64_is_infinity(__u64 rlim64)
1624 #if BITS_PER_LONG < 64
1625 return rlim64 >= ULONG_MAX;
1627 return rlim64 == RLIM64_INFINITY;
1631 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1633 if (rlim->rlim_cur == RLIM_INFINITY)
1634 rlim64->rlim_cur = RLIM64_INFINITY;
1636 rlim64->rlim_cur = rlim->rlim_cur;
1637 if (rlim->rlim_max == RLIM_INFINITY)
1638 rlim64->rlim_max = RLIM64_INFINITY;
1640 rlim64->rlim_max = rlim->rlim_max;
1643 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1645 if (rlim64_is_infinity(rlim64->rlim_cur))
1646 rlim->rlim_cur = RLIM_INFINITY;
1648 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1649 if (rlim64_is_infinity(rlim64->rlim_max))
1650 rlim->rlim_max = RLIM_INFINITY;
1652 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1655 /* rcu lock must be held */
1656 static int check_prlimit_permission(struct task_struct *task,
1659 const struct cred *cred = current_cred(), *tcred;
1662 if (current == task)
1665 tcred = __task_cred(task);
1666 id_match = (uid_eq(cred->uid, tcred->euid) &&
1667 uid_eq(cred->uid, tcred->suid) &&
1668 uid_eq(cred->uid, tcred->uid) &&
1669 gid_eq(cred->gid, tcred->egid) &&
1670 gid_eq(cred->gid, tcred->sgid) &&
1671 gid_eq(cred->gid, tcred->gid));
1672 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1675 return security_task_prlimit(cred, tcred, flags);
1678 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1679 const struct rlimit64 __user *, new_rlim,
1680 struct rlimit64 __user *, old_rlim)
1682 struct rlimit64 old64, new64;
1683 struct rlimit old, new;
1684 struct task_struct *tsk;
1685 unsigned int checkflags = 0;
1689 checkflags |= LSM_PRLIMIT_READ;
1692 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1694 rlim64_to_rlim(&new64, &new);
1695 checkflags |= LSM_PRLIMIT_WRITE;
1699 tsk = pid ? find_task_by_vpid(pid) : current;
1704 ret = check_prlimit_permission(tsk, checkflags);
1709 get_task_struct(tsk);
1712 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1713 old_rlim ? &old : NULL);
1715 if (!ret && old_rlim) {
1716 rlim_to_rlim64(&old, &old64);
1717 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1721 put_task_struct(tsk);
1725 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1727 struct rlimit new_rlim;
1729 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1731 return do_prlimit(current, resource, &new_rlim, NULL);
1735 * It would make sense to put struct rusage in the task_struct,
1736 * except that would make the task_struct be *really big*. After
1737 * task_struct gets moved into malloc'ed memory, it would
1738 * make sense to do this. It will make moving the rest of the information
1739 * a lot simpler! (Which we're not doing right now because we're not
1740 * measuring them yet).
1742 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1743 * races with threads incrementing their own counters. But since word
1744 * reads are atomic, we either get new values or old values and we don't
1745 * care which for the sums. We always take the siglock to protect reading
1746 * the c* fields from p->signal from races with exit.c updating those
1747 * fields when reaping, so a sample either gets all the additions of a
1748 * given child after it's reaped, or none so this sample is before reaping.
1751 * We need to take the siglock for CHILDEREN, SELF and BOTH
1752 * for the cases current multithreaded, non-current single threaded
1753 * non-current multithreaded. Thread traversal is now safe with
1755 * Strictly speaking, we donot need to take the siglock if we are current and
1756 * single threaded, as no one else can take our signal_struct away, no one
1757 * else can reap the children to update signal->c* counters, and no one else
1758 * can race with the signal-> fields. If we do not take any lock, the
1759 * signal-> fields could be read out of order while another thread was just
1760 * exiting. So we should place a read memory barrier when we avoid the lock.
1761 * On the writer side, write memory barrier is implied in __exit_signal
1762 * as __exit_signal releases the siglock spinlock after updating the signal->
1763 * fields. But we don't do this yet to keep things simple.
1767 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1769 r->ru_nvcsw += t->nvcsw;
1770 r->ru_nivcsw += t->nivcsw;
1771 r->ru_minflt += t->min_flt;
1772 r->ru_majflt += t->maj_flt;
1773 r->ru_inblock += task_io_get_inblock(t);
1774 r->ru_oublock += task_io_get_oublock(t);
1777 void getrusage(struct task_struct *p, int who, struct rusage *r)
1779 struct task_struct *t;
1780 unsigned long flags;
1781 u64 tgutime, tgstime, utime, stime;
1782 unsigned long maxrss = 0;
1784 memset((char *)r, 0, sizeof (*r));
1787 if (who == RUSAGE_THREAD) {
1788 task_cputime_adjusted(current, &utime, &stime);
1789 accumulate_thread_rusage(p, r);
1790 maxrss = p->signal->maxrss;
1794 if (!lock_task_sighand(p, &flags))
1799 case RUSAGE_CHILDREN:
1800 utime = p->signal->cutime;
1801 stime = p->signal->cstime;
1802 r->ru_nvcsw = p->signal->cnvcsw;
1803 r->ru_nivcsw = p->signal->cnivcsw;
1804 r->ru_minflt = p->signal->cmin_flt;
1805 r->ru_majflt = p->signal->cmaj_flt;
1806 r->ru_inblock = p->signal->cinblock;
1807 r->ru_oublock = p->signal->coublock;
1808 maxrss = p->signal->cmaxrss;
1810 if (who == RUSAGE_CHILDREN)
1815 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1818 r->ru_nvcsw += p->signal->nvcsw;
1819 r->ru_nivcsw += p->signal->nivcsw;
1820 r->ru_minflt += p->signal->min_flt;
1821 r->ru_majflt += p->signal->maj_flt;
1822 r->ru_inblock += p->signal->inblock;
1823 r->ru_oublock += p->signal->oublock;
1824 if (maxrss < p->signal->maxrss)
1825 maxrss = p->signal->maxrss;
1828 accumulate_thread_rusage(t, r);
1829 } while_each_thread(p, t);
1835 unlock_task_sighand(p, &flags);
1838 r->ru_utime = ns_to_kernel_old_timeval(utime);
1839 r->ru_stime = ns_to_kernel_old_timeval(stime);
1841 if (who != RUSAGE_CHILDREN) {
1842 struct mm_struct *mm = get_task_mm(p);
1845 setmax_mm_hiwater_rss(&maxrss, mm);
1849 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1852 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1856 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1857 who != RUSAGE_THREAD)
1860 getrusage(current, who, &r);
1861 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1864 #ifdef CONFIG_COMPAT
1865 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1869 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1870 who != RUSAGE_THREAD)
1873 getrusage(current, who, &r);
1874 return put_compat_rusage(&r, ru);
1878 SYSCALL_DEFINE1(umask, int, mask)
1880 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1884 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1887 struct inode *inode;
1894 inode = file_inode(exe.file);
1897 * Because the original mm->exe_file points to executable file, make
1898 * sure that this one is executable as well, to avoid breaking an
1902 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1905 err = file_permission(exe.file, MAY_EXEC);
1909 err = replace_mm_exe_file(mm, exe.file);
1916 * Check arithmetic relations of passed addresses.
1918 * WARNING: we don't require any capability here so be very careful
1919 * in what is allowed for modification from userspace.
1921 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1923 unsigned long mmap_max_addr = TASK_SIZE;
1924 int error = -EINVAL, i;
1926 static const unsigned char offsets[] = {
1927 offsetof(struct prctl_mm_map, start_code),
1928 offsetof(struct prctl_mm_map, end_code),
1929 offsetof(struct prctl_mm_map, start_data),
1930 offsetof(struct prctl_mm_map, end_data),
1931 offsetof(struct prctl_mm_map, start_brk),
1932 offsetof(struct prctl_mm_map, brk),
1933 offsetof(struct prctl_mm_map, start_stack),
1934 offsetof(struct prctl_mm_map, arg_start),
1935 offsetof(struct prctl_mm_map, arg_end),
1936 offsetof(struct prctl_mm_map, env_start),
1937 offsetof(struct prctl_mm_map, env_end),
1941 * Make sure the members are not somewhere outside
1942 * of allowed address space.
1944 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1945 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1947 if ((unsigned long)val >= mmap_max_addr ||
1948 (unsigned long)val < mmap_min_addr)
1953 * Make sure the pairs are ordered.
1955 #define __prctl_check_order(__m1, __op, __m2) \
1956 ((unsigned long)prctl_map->__m1 __op \
1957 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1958 error = __prctl_check_order(start_code, <, end_code);
1959 error |= __prctl_check_order(start_data,<=, end_data);
1960 error |= __prctl_check_order(start_brk, <=, brk);
1961 error |= __prctl_check_order(arg_start, <=, arg_end);
1962 error |= __prctl_check_order(env_start, <=, env_end);
1965 #undef __prctl_check_order
1970 * Neither we should allow to override limits if they set.
1972 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1973 prctl_map->start_brk, prctl_map->end_data,
1974 prctl_map->start_data))
1982 #ifdef CONFIG_CHECKPOINT_RESTORE
1983 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1985 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1986 unsigned long user_auxv[AT_VECTOR_SIZE];
1987 struct mm_struct *mm = current->mm;
1990 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1991 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1993 if (opt == PR_SET_MM_MAP_SIZE)
1994 return put_user((unsigned int)sizeof(prctl_map),
1995 (unsigned int __user *)addr);
1997 if (data_size != sizeof(prctl_map))
2000 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2003 error = validate_prctl_map_addr(&prctl_map);
2007 if (prctl_map.auxv_size) {
2009 * Someone is trying to cheat the auxv vector.
2011 if (!prctl_map.auxv ||
2012 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2015 memset(user_auxv, 0, sizeof(user_auxv));
2016 if (copy_from_user(user_auxv,
2017 (const void __user *)prctl_map.auxv,
2018 prctl_map.auxv_size))
2021 /* Last entry must be AT_NULL as specification requires */
2022 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2023 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2026 if (prctl_map.exe_fd != (u32)-1) {
2028 * Check if the current user is checkpoint/restore capable.
2029 * At the time of this writing, it checks for CAP_SYS_ADMIN
2030 * or CAP_CHECKPOINT_RESTORE.
2031 * Note that a user with access to ptrace can masquerade an
2032 * arbitrary program as any executable, even setuid ones.
2033 * This may have implications in the tomoyo subsystem.
2035 if (!checkpoint_restore_ns_capable(current_user_ns()))
2038 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2044 * arg_lock protects concurrent updates but we still need mmap_lock for
2045 * read to exclude races with sys_brk.
2050 * We don't validate if these members are pointing to
2051 * real present VMAs because application may have correspond
2052 * VMAs already unmapped and kernel uses these members for statistics
2053 * output in procfs mostly, except
2055 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2056 * for VMAs when updating these members so anything wrong written
2057 * here cause kernel to swear at userspace program but won't lead
2058 * to any problem in kernel itself
2061 spin_lock(&mm->arg_lock);
2062 mm->start_code = prctl_map.start_code;
2063 mm->end_code = prctl_map.end_code;
2064 mm->start_data = prctl_map.start_data;
2065 mm->end_data = prctl_map.end_data;
2066 mm->start_brk = prctl_map.start_brk;
2067 mm->brk = prctl_map.brk;
2068 mm->start_stack = prctl_map.start_stack;
2069 mm->arg_start = prctl_map.arg_start;
2070 mm->arg_end = prctl_map.arg_end;
2071 mm->env_start = prctl_map.env_start;
2072 mm->env_end = prctl_map.env_end;
2073 spin_unlock(&mm->arg_lock);
2076 * Note this update of @saved_auxv is lockless thus
2077 * if someone reads this member in procfs while we're
2078 * updating -- it may get partly updated results. It's
2079 * known and acceptable trade off: we leave it as is to
2080 * not introduce additional locks here making the kernel
2083 if (prctl_map.auxv_size)
2084 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2086 mmap_read_unlock(mm);
2089 #endif /* CONFIG_CHECKPOINT_RESTORE */
2091 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2095 * This doesn't move the auxiliary vector itself since it's pinned to
2096 * mm_struct, but it permits filling the vector with new values. It's
2097 * up to the caller to provide sane values here, otherwise userspace
2098 * tools which use this vector might be unhappy.
2100 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2102 if (len > sizeof(user_auxv))
2105 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2108 /* Make sure the last entry is always AT_NULL */
2109 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2110 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2112 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2115 memcpy(mm->saved_auxv, user_auxv, len);
2116 task_unlock(current);
2121 static int prctl_set_mm(int opt, unsigned long addr,
2122 unsigned long arg4, unsigned long arg5)
2124 struct mm_struct *mm = current->mm;
2125 struct prctl_mm_map prctl_map = {
2130 struct vm_area_struct *vma;
2133 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2134 opt != PR_SET_MM_MAP &&
2135 opt != PR_SET_MM_MAP_SIZE)))
2138 #ifdef CONFIG_CHECKPOINT_RESTORE
2139 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2140 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2143 if (!capable(CAP_SYS_RESOURCE))
2146 if (opt == PR_SET_MM_EXE_FILE)
2147 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2149 if (opt == PR_SET_MM_AUXV)
2150 return prctl_set_auxv(mm, addr, arg4);
2152 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2158 * arg_lock protects concurrent updates of arg boundaries, we need
2159 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2163 vma = find_vma(mm, addr);
2165 spin_lock(&mm->arg_lock);
2166 prctl_map.start_code = mm->start_code;
2167 prctl_map.end_code = mm->end_code;
2168 prctl_map.start_data = mm->start_data;
2169 prctl_map.end_data = mm->end_data;
2170 prctl_map.start_brk = mm->start_brk;
2171 prctl_map.brk = mm->brk;
2172 prctl_map.start_stack = mm->start_stack;
2173 prctl_map.arg_start = mm->arg_start;
2174 prctl_map.arg_end = mm->arg_end;
2175 prctl_map.env_start = mm->env_start;
2176 prctl_map.env_end = mm->env_end;
2179 case PR_SET_MM_START_CODE:
2180 prctl_map.start_code = addr;
2182 case PR_SET_MM_END_CODE:
2183 prctl_map.end_code = addr;
2185 case PR_SET_MM_START_DATA:
2186 prctl_map.start_data = addr;
2188 case PR_SET_MM_END_DATA:
2189 prctl_map.end_data = addr;
2191 case PR_SET_MM_START_STACK:
2192 prctl_map.start_stack = addr;
2194 case PR_SET_MM_START_BRK:
2195 prctl_map.start_brk = addr;
2198 prctl_map.brk = addr;
2200 case PR_SET_MM_ARG_START:
2201 prctl_map.arg_start = addr;
2203 case PR_SET_MM_ARG_END:
2204 prctl_map.arg_end = addr;
2206 case PR_SET_MM_ENV_START:
2207 prctl_map.env_start = addr;
2209 case PR_SET_MM_ENV_END:
2210 prctl_map.env_end = addr;
2216 error = validate_prctl_map_addr(&prctl_map);
2222 * If command line arguments and environment
2223 * are placed somewhere else on stack, we can
2224 * set them up here, ARG_START/END to setup
2225 * command line arguments and ENV_START/END
2228 case PR_SET_MM_START_STACK:
2229 case PR_SET_MM_ARG_START:
2230 case PR_SET_MM_ARG_END:
2231 case PR_SET_MM_ENV_START:
2232 case PR_SET_MM_ENV_END:
2239 mm->start_code = prctl_map.start_code;
2240 mm->end_code = prctl_map.end_code;
2241 mm->start_data = prctl_map.start_data;
2242 mm->end_data = prctl_map.end_data;
2243 mm->start_brk = prctl_map.start_brk;
2244 mm->brk = prctl_map.brk;
2245 mm->start_stack = prctl_map.start_stack;
2246 mm->arg_start = prctl_map.arg_start;
2247 mm->arg_end = prctl_map.arg_end;
2248 mm->env_start = prctl_map.env_start;
2249 mm->env_end = prctl_map.env_end;
2253 spin_unlock(&mm->arg_lock);
2254 mmap_read_unlock(mm);
2258 #ifdef CONFIG_CHECKPOINT_RESTORE
2259 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2261 return put_user(me->clear_child_tid, tid_addr);
2264 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2270 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2273 * If task has has_child_subreaper - all its descendants
2274 * already have these flag too and new descendants will
2275 * inherit it on fork, skip them.
2277 * If we've found child_reaper - skip descendants in
2278 * it's subtree as they will never get out pidns.
2280 if (p->signal->has_child_subreaper ||
2281 is_child_reaper(task_pid(p)))
2284 p->signal->has_child_subreaper = 1;
2288 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2293 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2299 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2301 #ifdef CONFIG_ANON_VMA_NAME
2303 #define ANON_VMA_NAME_MAX_LEN 80
2304 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2306 static inline bool is_valid_name_char(char ch)
2308 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2309 return ch > 0x1f && ch < 0x7f &&
2310 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2313 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2314 unsigned long size, unsigned long arg)
2316 struct mm_struct *mm = current->mm;
2317 const char __user *uname;
2318 struct anon_vma_name *anon_name = NULL;
2322 case PR_SET_VMA_ANON_NAME:
2323 uname = (const char __user *)arg;
2327 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2329 return PTR_ERR(name);
2331 for (pch = name; *pch != '\0'; pch++) {
2332 if (!is_valid_name_char(*pch)) {
2337 /* anon_vma has its own copy */
2338 anon_name = anon_vma_name_alloc(name);
2345 mmap_write_lock(mm);
2346 error = madvise_set_anon_name(mm, addr, size, anon_name);
2347 mmap_write_unlock(mm);
2348 anon_vma_name_put(anon_name);
2357 #else /* CONFIG_ANON_VMA_NAME */
2358 static int prctl_set_vma(unsigned long opt, unsigned long start,
2359 unsigned long size, unsigned long arg)
2363 #endif /* CONFIG_ANON_VMA_NAME */
2365 static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2366 unsigned long arg4, unsigned long arg5)
2368 if (arg3 || arg4 || arg5)
2371 if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN))
2374 if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2375 set_bit(MMF_HAS_MDWE, ¤t->mm->flags);
2376 else if (test_bit(MMF_HAS_MDWE, ¤t->mm->flags))
2377 return -EPERM; /* Cannot unset the flag */
2382 static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2383 unsigned long arg4, unsigned long arg5)
2385 if (arg2 || arg3 || arg4 || arg5)
2388 return test_bit(MMF_HAS_MDWE, ¤t->mm->flags) ?
2389 PR_MDWE_REFUSE_EXEC_GAIN : 0;
2392 static int prctl_get_auxv(void __user *addr, unsigned long len)
2394 struct mm_struct *mm = current->mm;
2395 unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2397 if (size && copy_to_user(addr, mm->saved_auxv, size))
2399 return sizeof(mm->saved_auxv);
2402 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2403 unsigned long, arg4, unsigned long, arg5)
2405 struct task_struct *me = current;
2406 unsigned char comm[sizeof(me->comm)];
2409 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2410 if (error != -ENOSYS)
2415 case PR_SET_PDEATHSIG:
2416 if (!valid_signal(arg2)) {
2420 me->pdeath_signal = arg2;
2422 case PR_GET_PDEATHSIG:
2423 error = put_user(me->pdeath_signal, (int __user *)arg2);
2425 case PR_GET_DUMPABLE:
2426 error = get_dumpable(me->mm);
2428 case PR_SET_DUMPABLE:
2429 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2433 set_dumpable(me->mm, arg2);
2436 case PR_SET_UNALIGN:
2437 error = SET_UNALIGN_CTL(me, arg2);
2439 case PR_GET_UNALIGN:
2440 error = GET_UNALIGN_CTL(me, arg2);
2443 error = SET_FPEMU_CTL(me, arg2);
2446 error = GET_FPEMU_CTL(me, arg2);
2449 error = SET_FPEXC_CTL(me, arg2);
2452 error = GET_FPEXC_CTL(me, arg2);
2455 error = PR_TIMING_STATISTICAL;
2458 if (arg2 != PR_TIMING_STATISTICAL)
2462 comm[sizeof(me->comm) - 1] = 0;
2463 if (strncpy_from_user(comm, (char __user *)arg2,
2464 sizeof(me->comm) - 1) < 0)
2466 set_task_comm(me, comm);
2467 proc_comm_connector(me);
2470 get_task_comm(comm, me);
2471 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2475 error = GET_ENDIAN(me, arg2);
2478 error = SET_ENDIAN(me, arg2);
2480 case PR_GET_SECCOMP:
2481 error = prctl_get_seccomp();
2483 case PR_SET_SECCOMP:
2484 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2487 error = GET_TSC_CTL(arg2);
2490 error = SET_TSC_CTL(arg2);
2492 case PR_TASK_PERF_EVENTS_DISABLE:
2493 error = perf_event_task_disable();
2495 case PR_TASK_PERF_EVENTS_ENABLE:
2496 error = perf_event_task_enable();
2498 case PR_GET_TIMERSLACK:
2499 if (current->timer_slack_ns > ULONG_MAX)
2502 error = current->timer_slack_ns;
2504 case PR_SET_TIMERSLACK:
2506 current->timer_slack_ns =
2507 current->default_timer_slack_ns;
2509 current->timer_slack_ns = arg2;
2515 case PR_MCE_KILL_CLEAR:
2518 current->flags &= ~PF_MCE_PROCESS;
2520 case PR_MCE_KILL_SET:
2521 current->flags |= PF_MCE_PROCESS;
2522 if (arg3 == PR_MCE_KILL_EARLY)
2523 current->flags |= PF_MCE_EARLY;
2524 else if (arg3 == PR_MCE_KILL_LATE)
2525 current->flags &= ~PF_MCE_EARLY;
2526 else if (arg3 == PR_MCE_KILL_DEFAULT)
2528 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2535 error = prctl_get_auxv((void __user *)arg2, arg3);
2541 case PR_MCE_KILL_GET:
2542 if (arg2 | arg3 | arg4 | arg5)
2544 if (current->flags & PF_MCE_PROCESS)
2545 error = (current->flags & PF_MCE_EARLY) ?
2546 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2548 error = PR_MCE_KILL_DEFAULT;
2551 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2553 case PR_GET_TID_ADDRESS:
2554 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2556 case PR_SET_CHILD_SUBREAPER:
2557 me->signal->is_child_subreaper = !!arg2;
2561 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2563 case PR_GET_CHILD_SUBREAPER:
2564 error = put_user(me->signal->is_child_subreaper,
2565 (int __user *)arg2);
2567 case PR_SET_NO_NEW_PRIVS:
2568 if (arg2 != 1 || arg3 || arg4 || arg5)
2571 task_set_no_new_privs(current);
2573 case PR_GET_NO_NEW_PRIVS:
2574 if (arg2 || arg3 || arg4 || arg5)
2576 return task_no_new_privs(current) ? 1 : 0;
2577 case PR_GET_THP_DISABLE:
2578 if (arg2 || arg3 || arg4 || arg5)
2580 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2582 case PR_SET_THP_DISABLE:
2583 if (arg3 || arg4 || arg5)
2585 if (mmap_write_lock_killable(me->mm))
2588 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2590 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2591 mmap_write_unlock(me->mm);
2593 case PR_MPX_ENABLE_MANAGEMENT:
2594 case PR_MPX_DISABLE_MANAGEMENT:
2595 /* No longer implemented: */
2597 case PR_SET_FP_MODE:
2598 error = SET_FP_MODE(me, arg2);
2600 case PR_GET_FP_MODE:
2601 error = GET_FP_MODE(me);
2604 error = SVE_SET_VL(arg2);
2607 error = SVE_GET_VL();
2610 error = SME_SET_VL(arg2);
2613 error = SME_GET_VL();
2615 case PR_GET_SPECULATION_CTRL:
2616 if (arg3 || arg4 || arg5)
2618 error = arch_prctl_spec_ctrl_get(me, arg2);
2620 case PR_SET_SPECULATION_CTRL:
2623 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2625 case PR_PAC_RESET_KEYS:
2626 if (arg3 || arg4 || arg5)
2628 error = PAC_RESET_KEYS(me, arg2);
2630 case PR_PAC_SET_ENABLED_KEYS:
2633 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2635 case PR_PAC_GET_ENABLED_KEYS:
2636 if (arg2 || arg3 || arg4 || arg5)
2638 error = PAC_GET_ENABLED_KEYS(me);
2640 case PR_SET_TAGGED_ADDR_CTRL:
2641 if (arg3 || arg4 || arg5)
2643 error = SET_TAGGED_ADDR_CTRL(arg2);
2645 case PR_GET_TAGGED_ADDR_CTRL:
2646 if (arg2 || arg3 || arg4 || arg5)
2648 error = GET_TAGGED_ADDR_CTRL();
2650 case PR_SET_IO_FLUSHER:
2651 if (!capable(CAP_SYS_RESOURCE))
2654 if (arg3 || arg4 || arg5)
2658 current->flags |= PR_IO_FLUSHER;
2660 current->flags &= ~PR_IO_FLUSHER;
2664 case PR_GET_IO_FLUSHER:
2665 if (!capable(CAP_SYS_RESOURCE))
2668 if (arg2 || arg3 || arg4 || arg5)
2671 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2673 case PR_SET_SYSCALL_USER_DISPATCH:
2674 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2675 (char __user *) arg5);
2677 #ifdef CONFIG_SCHED_CORE
2679 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2683 error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2686 error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2689 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2692 case PR_SET_MEMORY_MERGE:
2693 if (arg3 || arg4 || arg5)
2695 if (mmap_write_lock_killable(me->mm))
2699 error = ksm_enable_merge_any(me->mm);
2702 * TODO: we might want disable KSM on all VMAs and
2703 * trigger unsharing to completely disable KSM.
2705 clear_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2708 mmap_write_unlock(me->mm);
2710 case PR_GET_MEMORY_MERGE:
2711 if (arg2 || arg3 || arg4 || arg5)
2714 error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2724 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2725 struct getcpu_cache __user *, unused)
2728 int cpu = raw_smp_processor_id();
2731 err |= put_user(cpu, cpup);
2733 err |= put_user(cpu_to_node(cpu), nodep);
2734 return err ? -EFAULT : 0;
2738 * do_sysinfo - fill in sysinfo struct
2739 * @info: pointer to buffer to fill
2741 static int do_sysinfo(struct sysinfo *info)
2743 unsigned long mem_total, sav_total;
2744 unsigned int mem_unit, bitcount;
2745 struct timespec64 tp;
2747 memset(info, 0, sizeof(struct sysinfo));
2749 ktime_get_boottime_ts64(&tp);
2750 timens_add_boottime(&tp);
2751 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2753 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2755 info->procs = nr_threads;
2761 * If the sum of all the available memory (i.e. ram + swap)
2762 * is less than can be stored in a 32 bit unsigned long then
2763 * we can be binary compatible with 2.2.x kernels. If not,
2764 * well, in that case 2.2.x was broken anyways...
2766 * -Erik Andersen <andersee@debian.org>
2769 mem_total = info->totalram + info->totalswap;
2770 if (mem_total < info->totalram || mem_total < info->totalswap)
2773 mem_unit = info->mem_unit;
2774 while (mem_unit > 1) {
2777 sav_total = mem_total;
2779 if (mem_total < sav_total)
2784 * If mem_total did not overflow, multiply all memory values by
2785 * info->mem_unit and set it to 1. This leaves things compatible
2786 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2791 info->totalram <<= bitcount;
2792 info->freeram <<= bitcount;
2793 info->sharedram <<= bitcount;
2794 info->bufferram <<= bitcount;
2795 info->totalswap <<= bitcount;
2796 info->freeswap <<= bitcount;
2797 info->totalhigh <<= bitcount;
2798 info->freehigh <<= bitcount;
2804 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2810 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2816 #ifdef CONFIG_COMPAT
2817 struct compat_sysinfo {
2831 char _f[20-2*sizeof(u32)-sizeof(int)];
2834 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2837 struct compat_sysinfo s_32;
2841 /* Check to see if any memory value is too large for 32-bit and scale
2844 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2847 while (s.mem_unit < PAGE_SIZE) {
2852 s.totalram >>= bitcount;
2853 s.freeram >>= bitcount;
2854 s.sharedram >>= bitcount;
2855 s.bufferram >>= bitcount;
2856 s.totalswap >>= bitcount;
2857 s.freeswap >>= bitcount;
2858 s.totalhigh >>= bitcount;
2859 s.freehigh >>= bitcount;
2862 memset(&s_32, 0, sizeof(s_32));
2863 s_32.uptime = s.uptime;
2864 s_32.loads[0] = s.loads[0];
2865 s_32.loads[1] = s.loads[1];
2866 s_32.loads[2] = s.loads[2];
2867 s_32.totalram = s.totalram;
2868 s_32.freeram = s.freeram;
2869 s_32.sharedram = s.sharedram;
2870 s_32.bufferram = s.bufferram;
2871 s_32.totalswap = s.totalswap;
2872 s_32.freeswap = s.freeswap;
2873 s_32.procs = s.procs;
2874 s_32.totalhigh = s.totalhigh;
2875 s_32.freehigh = s.freehigh;
2876 s_32.mem_unit = s.mem_unit;
2877 if (copy_to_user(info, &s_32, sizeof(s_32)))
2881 #endif /* CONFIG_COMPAT */