1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/export.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/kmod.h>
18 #include <linux/ksm.h>
19 #include <linux/perf_event.h>
20 #include <linux/resource.h>
21 #include <linux/kernel.h>
22 #include <linux/workqueue.h>
23 #include <linux/capability.h>
24 #include <linux/device.h>
25 #include <linux/key.h>
26 #include <linux/times.h>
27 #include <linux/posix-timers.h>
28 #include <linux/security.h>
29 #include <linux/random.h>
30 #include <linux/suspend.h>
31 #include <linux/tty.h>
32 #include <linux/signal.h>
33 #include <linux/cn_proc.h>
34 #include <linux/getcpu.h>
35 #include <linux/task_io_accounting_ops.h>
36 #include <linux/seccomp.h>
37 #include <linux/cpu.h>
38 #include <linux/personality.h>
39 #include <linux/ptrace.h>
40 #include <linux/fs_struct.h>
41 #include <linux/file.h>
42 #include <linux/mount.h>
43 #include <linux/gfp.h>
44 #include <linux/syscore_ops.h>
45 #include <linux/version.h>
46 #include <linux/ctype.h>
47 #include <linux/syscall_user_dispatch.h>
49 #include <linux/compat.h>
50 #include <linux/syscalls.h>
51 #include <linux/kprobes.h>
52 #include <linux/user_namespace.h>
53 #include <linux/time_namespace.h>
54 #include <linux/binfmts.h>
56 #include <linux/sched.h>
57 #include <linux/sched/autogroup.h>
58 #include <linux/sched/loadavg.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/mm.h>
61 #include <linux/sched/coredump.h>
62 #include <linux/sched/task.h>
63 #include <linux/sched/cputime.h>
64 #include <linux/rcupdate.h>
65 #include <linux/uidgid.h>
66 #include <linux/cred.h>
68 #include <linux/nospec.h>
70 #include <linux/kmsg_dump.h>
71 /* Move somewhere else to avoid recompiling? */
72 #include <generated/utsrelease.h>
74 #include <linux/uaccess.h>
76 #include <asm/unistd.h>
80 #ifndef SET_UNALIGN_CTL
81 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
83 #ifndef GET_UNALIGN_CTL
84 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
87 # define SET_FPEMU_CTL(a, b) (-EINVAL)
90 # define GET_FPEMU_CTL(a, b) (-EINVAL)
93 # define SET_FPEXC_CTL(a, b) (-EINVAL)
96 # define GET_FPEXC_CTL(a, b) (-EINVAL)
99 # define GET_ENDIAN(a, b) (-EINVAL)
102 # define SET_ENDIAN(a, b) (-EINVAL)
105 # define GET_TSC_CTL(a) (-EINVAL)
108 # define SET_TSC_CTL(a) (-EINVAL)
111 # define GET_FP_MODE(a) (-EINVAL)
114 # define SET_FP_MODE(a,b) (-EINVAL)
117 # define SVE_SET_VL(a) (-EINVAL)
120 # define SVE_GET_VL() (-EINVAL)
123 # define SME_SET_VL(a) (-EINVAL)
126 # define SME_GET_VL() (-EINVAL)
128 #ifndef PAC_RESET_KEYS
129 # define PAC_RESET_KEYS(a, b) (-EINVAL)
131 #ifndef PAC_SET_ENABLED_KEYS
132 # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
134 #ifndef PAC_GET_ENABLED_KEYS
135 # define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
137 #ifndef SET_TAGGED_ADDR_CTRL
138 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
140 #ifndef GET_TAGGED_ADDR_CTRL
141 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
143 #ifndef RISCV_V_SET_CONTROL
144 # define RISCV_V_SET_CONTROL(a) (-EINVAL)
146 #ifndef RISCV_V_GET_CONTROL
147 # define RISCV_V_GET_CONTROL() (-EINVAL)
151 * this is where the system-wide overflow UID and GID are defined, for
152 * architectures that now have 32-bit UID/GID but didn't in the past
155 int overflowuid = DEFAULT_OVERFLOWUID;
156 int overflowgid = DEFAULT_OVERFLOWGID;
158 EXPORT_SYMBOL(overflowuid);
159 EXPORT_SYMBOL(overflowgid);
162 * the same as above, but for filesystems which can only store a 16-bit
163 * UID and GID. as such, this is needed on all architectures
166 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
167 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
169 EXPORT_SYMBOL(fs_overflowuid);
170 EXPORT_SYMBOL(fs_overflowgid);
173 * Returns true if current's euid is same as p's uid or euid,
174 * or has CAP_SYS_NICE to p's user_ns.
176 * Called with rcu_read_lock, creds are safe
178 static bool set_one_prio_perm(struct task_struct *p)
180 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
182 if (uid_eq(pcred->uid, cred->euid) ||
183 uid_eq(pcred->euid, cred->euid))
185 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
191 * set the priority of a task
192 * - the caller must hold the RCU read lock
194 static int set_one_prio(struct task_struct *p, int niceval, int error)
198 if (!set_one_prio_perm(p)) {
202 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
206 no_nice = security_task_setnice(p, niceval);
213 set_user_nice(p, niceval);
218 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
220 struct task_struct *g, *p;
221 struct user_struct *user;
222 const struct cred *cred = current_cred();
227 if (which > PRIO_USER || which < PRIO_PROCESS)
230 /* normalize: avoid signed division (rounding problems) */
232 if (niceval < MIN_NICE)
234 if (niceval > MAX_NICE)
241 p = find_task_by_vpid(who);
245 error = set_one_prio(p, niceval, error);
249 pgrp = find_vpid(who);
251 pgrp = task_pgrp(current);
252 read_lock(&tasklist_lock);
253 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
254 error = set_one_prio(p, niceval, error);
255 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
256 read_unlock(&tasklist_lock);
259 uid = make_kuid(cred->user_ns, who);
263 else if (!uid_eq(uid, cred->uid)) {
264 user = find_user(uid);
266 goto out_unlock; /* No processes for this user */
268 for_each_process_thread(g, p) {
269 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
270 error = set_one_prio(p, niceval, error);
272 if (!uid_eq(uid, cred->uid))
273 free_uid(user); /* For find_user() */
283 * Ugh. To avoid negative return values, "getpriority()" will
284 * not return the normal nice-value, but a negated value that
285 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
286 * to stay compatible.
288 SYSCALL_DEFINE2(getpriority, int, which, int, who)
290 struct task_struct *g, *p;
291 struct user_struct *user;
292 const struct cred *cred = current_cred();
293 long niceval, retval = -ESRCH;
297 if (which > PRIO_USER || which < PRIO_PROCESS)
304 p = find_task_by_vpid(who);
308 niceval = nice_to_rlimit(task_nice(p));
309 if (niceval > retval)
315 pgrp = find_vpid(who);
317 pgrp = task_pgrp(current);
318 read_lock(&tasklist_lock);
319 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
320 niceval = nice_to_rlimit(task_nice(p));
321 if (niceval > retval)
323 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
324 read_unlock(&tasklist_lock);
327 uid = make_kuid(cred->user_ns, who);
331 else if (!uid_eq(uid, cred->uid)) {
332 user = find_user(uid);
334 goto out_unlock; /* No processes for this user */
336 for_each_process_thread(g, p) {
337 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
338 niceval = nice_to_rlimit(task_nice(p));
339 if (niceval > retval)
343 if (!uid_eq(uid, cred->uid))
344 free_uid(user); /* for find_user() */
354 * Unprivileged users may change the real gid to the effective gid
355 * or vice versa. (BSD-style)
357 * If you set the real gid at all, or set the effective gid to a value not
358 * equal to the real gid, then the saved gid is set to the new effective gid.
360 * This makes it possible for a setgid program to completely drop its
361 * privileges, which is often a useful assertion to make when you are doing
362 * a security audit over a program.
364 * The general idea is that a program which uses just setregid() will be
365 * 100% compatible with BSD. A program which uses just setgid() will be
366 * 100% compatible with POSIX with saved IDs.
368 * SMP: There are not races, the GIDs are checked only by filesystem
369 * operations (as far as semantic preservation is concerned).
371 #ifdef CONFIG_MULTIUSER
372 long __sys_setregid(gid_t rgid, gid_t egid)
374 struct user_namespace *ns = current_user_ns();
375 const struct cred *old;
380 krgid = make_kgid(ns, rgid);
381 kegid = make_kgid(ns, egid);
383 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
385 if ((egid != (gid_t) -1) && !gid_valid(kegid))
388 new = prepare_creds();
391 old = current_cred();
394 if (rgid != (gid_t) -1) {
395 if (gid_eq(old->gid, krgid) ||
396 gid_eq(old->egid, krgid) ||
397 ns_capable_setid(old->user_ns, CAP_SETGID))
402 if (egid != (gid_t) -1) {
403 if (gid_eq(old->gid, kegid) ||
404 gid_eq(old->egid, kegid) ||
405 gid_eq(old->sgid, kegid) ||
406 ns_capable_setid(old->user_ns, CAP_SETGID))
412 if (rgid != (gid_t) -1 ||
413 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
414 new->sgid = new->egid;
415 new->fsgid = new->egid;
417 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
421 return commit_creds(new);
428 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
430 return __sys_setregid(rgid, egid);
434 * setgid() is implemented like SysV w/ SAVED_IDS
436 * SMP: Same implicit races as above.
438 long __sys_setgid(gid_t gid)
440 struct user_namespace *ns = current_user_ns();
441 const struct cred *old;
446 kgid = make_kgid(ns, gid);
447 if (!gid_valid(kgid))
450 new = prepare_creds();
453 old = current_cred();
456 if (ns_capable_setid(old->user_ns, CAP_SETGID))
457 new->gid = new->egid = new->sgid = new->fsgid = kgid;
458 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
459 new->egid = new->fsgid = kgid;
463 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
467 return commit_creds(new);
474 SYSCALL_DEFINE1(setgid, gid_t, gid)
476 return __sys_setgid(gid);
480 * change the user struct in a credentials set to match the new UID
482 static int set_user(struct cred *new)
484 struct user_struct *new_user;
486 new_user = alloc_uid(new->uid);
491 new->user = new_user;
495 static void flag_nproc_exceeded(struct cred *new)
497 if (new->ucounts == current_ucounts())
501 * We don't fail in case of NPROC limit excess here because too many
502 * poorly written programs don't check set*uid() return code, assuming
503 * it never fails if called by root. We may still enforce NPROC limit
504 * for programs doing set*uid()+execve() by harmlessly deferring the
505 * failure to the execve() stage.
507 if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
508 new->user != INIT_USER)
509 current->flags |= PF_NPROC_EXCEEDED;
511 current->flags &= ~PF_NPROC_EXCEEDED;
515 * Unprivileged users may change the real uid to the effective uid
516 * or vice versa. (BSD-style)
518 * If you set the real uid at all, or set the effective uid to a value not
519 * equal to the real uid, then the saved uid is set to the new effective uid.
521 * This makes it possible for a setuid program to completely drop its
522 * privileges, which is often a useful assertion to make when you are doing
523 * a security audit over a program.
525 * The general idea is that a program which uses just setreuid() will be
526 * 100% compatible with BSD. A program which uses just setuid() will be
527 * 100% compatible with POSIX with saved IDs.
529 long __sys_setreuid(uid_t ruid, uid_t euid)
531 struct user_namespace *ns = current_user_ns();
532 const struct cred *old;
537 kruid = make_kuid(ns, ruid);
538 keuid = make_kuid(ns, euid);
540 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
542 if ((euid != (uid_t) -1) && !uid_valid(keuid))
545 new = prepare_creds();
548 old = current_cred();
551 if (ruid != (uid_t) -1) {
553 if (!uid_eq(old->uid, kruid) &&
554 !uid_eq(old->euid, kruid) &&
555 !ns_capable_setid(old->user_ns, CAP_SETUID))
559 if (euid != (uid_t) -1) {
561 if (!uid_eq(old->uid, keuid) &&
562 !uid_eq(old->euid, keuid) &&
563 !uid_eq(old->suid, keuid) &&
564 !ns_capable_setid(old->user_ns, CAP_SETUID))
568 if (!uid_eq(new->uid, old->uid)) {
569 retval = set_user(new);
573 if (ruid != (uid_t) -1 ||
574 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
575 new->suid = new->euid;
576 new->fsuid = new->euid;
578 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
582 retval = set_cred_ucounts(new);
586 flag_nproc_exceeded(new);
587 return commit_creds(new);
594 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
596 return __sys_setreuid(ruid, euid);
600 * setuid() is implemented like SysV with SAVED_IDS
602 * Note that SAVED_ID's is deficient in that a setuid root program
603 * like sendmail, for example, cannot set its uid to be a normal
604 * user and then switch back, because if you're root, setuid() sets
605 * the saved uid too. If you don't like this, blame the bright people
606 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
607 * will allow a root program to temporarily drop privileges and be able to
608 * regain them by swapping the real and effective uid.
610 long __sys_setuid(uid_t uid)
612 struct user_namespace *ns = current_user_ns();
613 const struct cred *old;
618 kuid = make_kuid(ns, uid);
619 if (!uid_valid(kuid))
622 new = prepare_creds();
625 old = current_cred();
628 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
629 new->suid = new->uid = kuid;
630 if (!uid_eq(kuid, old->uid)) {
631 retval = set_user(new);
635 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
639 new->fsuid = new->euid = kuid;
641 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
645 retval = set_cred_ucounts(new);
649 flag_nproc_exceeded(new);
650 return commit_creds(new);
657 SYSCALL_DEFINE1(setuid, uid_t, uid)
659 return __sys_setuid(uid);
664 * This function implements a generic ability to update ruid, euid,
665 * and suid. This allows you to implement the 4.4 compatible seteuid().
667 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
669 struct user_namespace *ns = current_user_ns();
670 const struct cred *old;
673 kuid_t kruid, keuid, ksuid;
674 bool ruid_new, euid_new, suid_new;
676 kruid = make_kuid(ns, ruid);
677 keuid = make_kuid(ns, euid);
678 ksuid = make_kuid(ns, suid);
680 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
683 if ((euid != (uid_t) -1) && !uid_valid(keuid))
686 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
689 old = current_cred();
691 /* check for no-op */
692 if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
693 (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
694 uid_eq(keuid, old->fsuid))) &&
695 (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
698 ruid_new = ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
699 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
700 euid_new = euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
701 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
702 suid_new = suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
703 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
704 if ((ruid_new || euid_new || suid_new) &&
705 !ns_capable_setid(old->user_ns, CAP_SETUID))
708 new = prepare_creds();
712 if (ruid != (uid_t) -1) {
714 if (!uid_eq(kruid, old->uid)) {
715 retval = set_user(new);
720 if (euid != (uid_t) -1)
722 if (suid != (uid_t) -1)
724 new->fsuid = new->euid;
726 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
730 retval = set_cred_ucounts(new);
734 flag_nproc_exceeded(new);
735 return commit_creds(new);
742 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
744 return __sys_setresuid(ruid, euid, suid);
747 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
749 const struct cred *cred = current_cred();
751 uid_t ruid, euid, suid;
753 ruid = from_kuid_munged(cred->user_ns, cred->uid);
754 euid = from_kuid_munged(cred->user_ns, cred->euid);
755 suid = from_kuid_munged(cred->user_ns, cred->suid);
757 retval = put_user(ruid, ruidp);
759 retval = put_user(euid, euidp);
761 return put_user(suid, suidp);
767 * Same as above, but for rgid, egid, sgid.
769 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
771 struct user_namespace *ns = current_user_ns();
772 const struct cred *old;
775 kgid_t krgid, kegid, ksgid;
776 bool rgid_new, egid_new, sgid_new;
778 krgid = make_kgid(ns, rgid);
779 kegid = make_kgid(ns, egid);
780 ksgid = make_kgid(ns, sgid);
782 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
784 if ((egid != (gid_t) -1) && !gid_valid(kegid))
786 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
789 old = current_cred();
791 /* check for no-op */
792 if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
793 (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
794 gid_eq(kegid, old->fsgid))) &&
795 (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
798 rgid_new = rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
799 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
800 egid_new = egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
801 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
802 sgid_new = sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
803 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
804 if ((rgid_new || egid_new || sgid_new) &&
805 !ns_capable_setid(old->user_ns, CAP_SETGID))
808 new = prepare_creds();
812 if (rgid != (gid_t) -1)
814 if (egid != (gid_t) -1)
816 if (sgid != (gid_t) -1)
818 new->fsgid = new->egid;
820 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
824 return commit_creds(new);
831 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
833 return __sys_setresgid(rgid, egid, sgid);
836 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
838 const struct cred *cred = current_cred();
840 gid_t rgid, egid, sgid;
842 rgid = from_kgid_munged(cred->user_ns, cred->gid);
843 egid = from_kgid_munged(cred->user_ns, cred->egid);
844 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
846 retval = put_user(rgid, rgidp);
848 retval = put_user(egid, egidp);
850 retval = put_user(sgid, sgidp);
858 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
859 * is used for "access()" and for the NFS daemon (letting nfsd stay at
860 * whatever uid it wants to). It normally shadows "euid", except when
861 * explicitly set by setfsuid() or for access..
863 long __sys_setfsuid(uid_t uid)
865 const struct cred *old;
870 old = current_cred();
871 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
873 kuid = make_kuid(old->user_ns, uid);
874 if (!uid_valid(kuid))
877 new = prepare_creds();
881 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
882 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
883 ns_capable_setid(old->user_ns, CAP_SETUID)) {
884 if (!uid_eq(kuid, old->fsuid)) {
886 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
899 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
901 return __sys_setfsuid(uid);
905 * Samma på svenska..
907 long __sys_setfsgid(gid_t gid)
909 const struct cred *old;
914 old = current_cred();
915 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
917 kgid = make_kgid(old->user_ns, gid);
918 if (!gid_valid(kgid))
921 new = prepare_creds();
925 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
926 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
927 ns_capable_setid(old->user_ns, CAP_SETGID)) {
928 if (!gid_eq(kgid, old->fsgid)) {
930 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
943 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
945 return __sys_setfsgid(gid);
947 #endif /* CONFIG_MULTIUSER */
950 * sys_getpid - return the thread group id of the current process
952 * Note, despite the name, this returns the tgid not the pid. The tgid and
953 * the pid are identical unless CLONE_THREAD was specified on clone() in
954 * which case the tgid is the same in all threads of the same group.
956 * This is SMP safe as current->tgid does not change.
958 SYSCALL_DEFINE0(getpid)
960 return task_tgid_vnr(current);
963 /* Thread ID - the internal kernel "pid" */
964 SYSCALL_DEFINE0(gettid)
966 return task_pid_vnr(current);
970 * Accessing ->real_parent is not SMP-safe, it could
971 * change from under us. However, we can use a stale
972 * value of ->real_parent under rcu_read_lock(), see
973 * release_task()->call_rcu(delayed_put_task_struct).
975 SYSCALL_DEFINE0(getppid)
980 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
986 SYSCALL_DEFINE0(getuid)
988 /* Only we change this so SMP safe */
989 return from_kuid_munged(current_user_ns(), current_uid());
992 SYSCALL_DEFINE0(geteuid)
994 /* Only we change this so SMP safe */
995 return from_kuid_munged(current_user_ns(), current_euid());
998 SYSCALL_DEFINE0(getgid)
1000 /* Only we change this so SMP safe */
1001 return from_kgid_munged(current_user_ns(), current_gid());
1004 SYSCALL_DEFINE0(getegid)
1006 /* Only we change this so SMP safe */
1007 return from_kgid_munged(current_user_ns(), current_egid());
1010 static void do_sys_times(struct tms *tms)
1012 u64 tgutime, tgstime, cutime, cstime;
1014 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1015 cutime = current->signal->cutime;
1016 cstime = current->signal->cstime;
1017 tms->tms_utime = nsec_to_clock_t(tgutime);
1018 tms->tms_stime = nsec_to_clock_t(tgstime);
1019 tms->tms_cutime = nsec_to_clock_t(cutime);
1020 tms->tms_cstime = nsec_to_clock_t(cstime);
1023 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1029 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1032 force_successful_syscall_return();
1033 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1036 #ifdef CONFIG_COMPAT
1037 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1039 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1042 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1046 struct compat_tms tmp;
1049 /* Convert our struct tms to the compat version. */
1050 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1051 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1052 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1053 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1054 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1057 force_successful_syscall_return();
1058 return compat_jiffies_to_clock_t(jiffies);
1063 * This needs some heavy checking ...
1064 * I just haven't the stomach for it. I also don't fully
1065 * understand sessions/pgrp etc. Let somebody who does explain it.
1067 * OK, I think I have the protection semantics right.... this is really
1068 * only important on a multi-user system anyway, to make sure one user
1069 * can't send a signal to a process owned by another. -TYT, 12/12/91
1071 * !PF_FORKNOEXEC check to conform completely to POSIX.
1073 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1075 struct task_struct *p;
1076 struct task_struct *group_leader = current->group_leader;
1081 pid = task_pid_vnr(group_leader);
1088 /* From this point forward we keep holding onto the tasklist lock
1089 * so that our parent does not change from under us. -DaveM
1091 write_lock_irq(&tasklist_lock);
1094 p = find_task_by_vpid(pid);
1099 if (!thread_group_leader(p))
1102 if (same_thread_group(p->real_parent, group_leader)) {
1104 if (task_session(p) != task_session(group_leader))
1107 if (!(p->flags & PF_FORKNOEXEC))
1111 if (p != group_leader)
1116 if (p->signal->leader)
1121 struct task_struct *g;
1123 pgrp = find_vpid(pgid);
1124 g = pid_task(pgrp, PIDTYPE_PGID);
1125 if (!g || task_session(g) != task_session(group_leader))
1129 err = security_task_setpgid(p, pgid);
1133 if (task_pgrp(p) != pgrp)
1134 change_pid(p, PIDTYPE_PGID, pgrp);
1138 /* All paths lead to here, thus we are safe. -DaveM */
1139 write_unlock_irq(&tasklist_lock);
1144 static int do_getpgid(pid_t pid)
1146 struct task_struct *p;
1152 grp = task_pgrp(current);
1155 p = find_task_by_vpid(pid);
1162 retval = security_task_getpgid(p);
1166 retval = pid_vnr(grp);
1172 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1174 return do_getpgid(pid);
1177 #ifdef __ARCH_WANT_SYS_GETPGRP
1179 SYSCALL_DEFINE0(getpgrp)
1181 return do_getpgid(0);
1186 SYSCALL_DEFINE1(getsid, pid_t, pid)
1188 struct task_struct *p;
1194 sid = task_session(current);
1197 p = find_task_by_vpid(pid);
1200 sid = task_session(p);
1204 retval = security_task_getsid(p);
1208 retval = pid_vnr(sid);
1214 static void set_special_pids(struct pid *pid)
1216 struct task_struct *curr = current->group_leader;
1218 if (task_session(curr) != pid)
1219 change_pid(curr, PIDTYPE_SID, pid);
1221 if (task_pgrp(curr) != pid)
1222 change_pid(curr, PIDTYPE_PGID, pid);
1225 int ksys_setsid(void)
1227 struct task_struct *group_leader = current->group_leader;
1228 struct pid *sid = task_pid(group_leader);
1229 pid_t session = pid_vnr(sid);
1232 write_lock_irq(&tasklist_lock);
1233 /* Fail if I am already a session leader */
1234 if (group_leader->signal->leader)
1237 /* Fail if a process group id already exists that equals the
1238 * proposed session id.
1240 if (pid_task(sid, PIDTYPE_PGID))
1243 group_leader->signal->leader = 1;
1244 set_special_pids(sid);
1246 proc_clear_tty(group_leader);
1250 write_unlock_irq(&tasklist_lock);
1252 proc_sid_connector(group_leader);
1253 sched_autogroup_create_attach(group_leader);
1258 SYSCALL_DEFINE0(setsid)
1260 return ksys_setsid();
1263 DECLARE_RWSEM(uts_sem);
1265 #ifdef COMPAT_UTS_MACHINE
1266 #define override_architecture(name) \
1267 (personality(current->personality) == PER_LINUX32 && \
1268 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1269 sizeof(COMPAT_UTS_MACHINE)))
1271 #define override_architecture(name) 0
1275 * Work around broken programs that cannot handle "Linux 3.0".
1276 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1277 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1280 static int override_release(char __user *release, size_t len)
1284 if (current->personality & UNAME26) {
1285 const char *rest = UTS_RELEASE;
1286 char buf[65] = { 0 };
1292 if (*rest == '.' && ++ndots >= 3)
1294 if (!isdigit(*rest) && *rest != '.')
1298 v = LINUX_VERSION_PATCHLEVEL + 60;
1299 copy = clamp_t(size_t, len, 1, sizeof(buf));
1300 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1301 ret = copy_to_user(release, buf, copy + 1);
1306 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1308 struct new_utsname tmp;
1310 down_read(&uts_sem);
1311 memcpy(&tmp, utsname(), sizeof(tmp));
1313 if (copy_to_user(name, &tmp, sizeof(tmp)))
1316 if (override_release(name->release, sizeof(name->release)))
1318 if (override_architecture(name))
1323 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1327 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1329 struct old_utsname tmp;
1334 down_read(&uts_sem);
1335 memcpy(&tmp, utsname(), sizeof(tmp));
1337 if (copy_to_user(name, &tmp, sizeof(tmp)))
1340 if (override_release(name->release, sizeof(name->release)))
1342 if (override_architecture(name))
1347 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1349 struct oldold_utsname tmp;
1354 memset(&tmp, 0, sizeof(tmp));
1356 down_read(&uts_sem);
1357 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1358 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1359 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1360 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1361 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1363 if (copy_to_user(name, &tmp, sizeof(tmp)))
1366 if (override_architecture(name))
1368 if (override_release(name->release, sizeof(name->release)))
1374 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1377 char tmp[__NEW_UTS_LEN];
1379 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1382 if (len < 0 || len > __NEW_UTS_LEN)
1385 if (!copy_from_user(tmp, name, len)) {
1386 struct new_utsname *u;
1388 add_device_randomness(tmp, len);
1389 down_write(&uts_sem);
1391 memcpy(u->nodename, tmp, len);
1392 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1394 uts_proc_notify(UTS_PROC_HOSTNAME);
1400 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1402 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1405 struct new_utsname *u;
1406 char tmp[__NEW_UTS_LEN + 1];
1410 down_read(&uts_sem);
1412 i = 1 + strlen(u->nodename);
1415 memcpy(tmp, u->nodename, i);
1417 if (copy_to_user(name, tmp, i))
1425 * Only setdomainname; getdomainname can be implemented by calling
1428 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1431 char tmp[__NEW_UTS_LEN];
1433 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1435 if (len < 0 || len > __NEW_UTS_LEN)
1439 if (!copy_from_user(tmp, name, len)) {
1440 struct new_utsname *u;
1442 add_device_randomness(tmp, len);
1443 down_write(&uts_sem);
1445 memcpy(u->domainname, tmp, len);
1446 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1448 uts_proc_notify(UTS_PROC_DOMAINNAME);
1454 /* make sure you are allowed to change @tsk limits before calling this */
1455 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1456 struct rlimit *new_rlim, struct rlimit *old_rlim)
1458 struct rlimit *rlim;
1461 if (resource >= RLIM_NLIMITS)
1463 resource = array_index_nospec(resource, RLIM_NLIMITS);
1466 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1468 if (resource == RLIMIT_NOFILE &&
1469 new_rlim->rlim_max > sysctl_nr_open)
1473 /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1474 rlim = tsk->signal->rlim + resource;
1475 task_lock(tsk->group_leader);
1478 * Keep the capable check against init_user_ns until cgroups can
1479 * contain all limits.
1481 if (new_rlim->rlim_max > rlim->rlim_max &&
1482 !capable(CAP_SYS_RESOURCE))
1485 retval = security_task_setrlimit(tsk, resource, new_rlim);
1493 task_unlock(tsk->group_leader);
1496 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1497 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1498 * ignores the rlimit.
1500 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1501 new_rlim->rlim_cur != RLIM_INFINITY &&
1502 IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1504 * update_rlimit_cpu can fail if the task is exiting, but there
1505 * may be other tasks in the thread group that are not exiting,
1506 * and they need their cpu timers adjusted.
1508 * The group_leader is the last task to be released, so if we
1509 * cannot update_rlimit_cpu on it, then the entire process is
1510 * exiting and we do not need to update at all.
1512 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1518 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1520 struct rlimit value;
1523 ret = do_prlimit(current, resource, NULL, &value);
1525 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1530 #ifdef CONFIG_COMPAT
1532 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1533 struct compat_rlimit __user *, rlim)
1536 struct compat_rlimit r32;
1538 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1541 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1542 r.rlim_cur = RLIM_INFINITY;
1544 r.rlim_cur = r32.rlim_cur;
1545 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1546 r.rlim_max = RLIM_INFINITY;
1548 r.rlim_max = r32.rlim_max;
1549 return do_prlimit(current, resource, &r, NULL);
1552 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1553 struct compat_rlimit __user *, rlim)
1558 ret = do_prlimit(current, resource, NULL, &r);
1560 struct compat_rlimit r32;
1561 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1562 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1564 r32.rlim_cur = r.rlim_cur;
1565 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1566 r32.rlim_max = COMPAT_RLIM_INFINITY;
1568 r32.rlim_max = r.rlim_max;
1570 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1578 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1581 * Back compatibility for getrlimit. Needed for some apps.
1583 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1584 struct rlimit __user *, rlim)
1587 if (resource >= RLIM_NLIMITS)
1590 resource = array_index_nospec(resource, RLIM_NLIMITS);
1591 task_lock(current->group_leader);
1592 x = current->signal->rlim[resource];
1593 task_unlock(current->group_leader);
1594 if (x.rlim_cur > 0x7FFFFFFF)
1595 x.rlim_cur = 0x7FFFFFFF;
1596 if (x.rlim_max > 0x7FFFFFFF)
1597 x.rlim_max = 0x7FFFFFFF;
1598 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1601 #ifdef CONFIG_COMPAT
1602 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1603 struct compat_rlimit __user *, rlim)
1607 if (resource >= RLIM_NLIMITS)
1610 resource = array_index_nospec(resource, RLIM_NLIMITS);
1611 task_lock(current->group_leader);
1612 r = current->signal->rlim[resource];
1613 task_unlock(current->group_leader);
1614 if (r.rlim_cur > 0x7FFFFFFF)
1615 r.rlim_cur = 0x7FFFFFFF;
1616 if (r.rlim_max > 0x7FFFFFFF)
1617 r.rlim_max = 0x7FFFFFFF;
1619 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1620 put_user(r.rlim_max, &rlim->rlim_max))
1628 static inline bool rlim64_is_infinity(__u64 rlim64)
1630 #if BITS_PER_LONG < 64
1631 return rlim64 >= ULONG_MAX;
1633 return rlim64 == RLIM64_INFINITY;
1637 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1639 if (rlim->rlim_cur == RLIM_INFINITY)
1640 rlim64->rlim_cur = RLIM64_INFINITY;
1642 rlim64->rlim_cur = rlim->rlim_cur;
1643 if (rlim->rlim_max == RLIM_INFINITY)
1644 rlim64->rlim_max = RLIM64_INFINITY;
1646 rlim64->rlim_max = rlim->rlim_max;
1649 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1651 if (rlim64_is_infinity(rlim64->rlim_cur))
1652 rlim->rlim_cur = RLIM_INFINITY;
1654 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1655 if (rlim64_is_infinity(rlim64->rlim_max))
1656 rlim->rlim_max = RLIM_INFINITY;
1658 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1661 /* rcu lock must be held */
1662 static int check_prlimit_permission(struct task_struct *task,
1665 const struct cred *cred = current_cred(), *tcred;
1668 if (current == task)
1671 tcred = __task_cred(task);
1672 id_match = (uid_eq(cred->uid, tcred->euid) &&
1673 uid_eq(cred->uid, tcred->suid) &&
1674 uid_eq(cred->uid, tcred->uid) &&
1675 gid_eq(cred->gid, tcred->egid) &&
1676 gid_eq(cred->gid, tcred->sgid) &&
1677 gid_eq(cred->gid, tcred->gid));
1678 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1681 return security_task_prlimit(cred, tcred, flags);
1684 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1685 const struct rlimit64 __user *, new_rlim,
1686 struct rlimit64 __user *, old_rlim)
1688 struct rlimit64 old64, new64;
1689 struct rlimit old, new;
1690 struct task_struct *tsk;
1691 unsigned int checkflags = 0;
1695 checkflags |= LSM_PRLIMIT_READ;
1698 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1700 rlim64_to_rlim(&new64, &new);
1701 checkflags |= LSM_PRLIMIT_WRITE;
1705 tsk = pid ? find_task_by_vpid(pid) : current;
1710 ret = check_prlimit_permission(tsk, checkflags);
1715 get_task_struct(tsk);
1718 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1719 old_rlim ? &old : NULL);
1721 if (!ret && old_rlim) {
1722 rlim_to_rlim64(&old, &old64);
1723 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1727 put_task_struct(tsk);
1731 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1733 struct rlimit new_rlim;
1735 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1737 return do_prlimit(current, resource, &new_rlim, NULL);
1741 * It would make sense to put struct rusage in the task_struct,
1742 * except that would make the task_struct be *really big*. After
1743 * task_struct gets moved into malloc'ed memory, it would
1744 * make sense to do this. It will make moving the rest of the information
1745 * a lot simpler! (Which we're not doing right now because we're not
1746 * measuring them yet).
1748 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1749 * races with threads incrementing their own counters. But since word
1750 * reads are atomic, we either get new values or old values and we don't
1751 * care which for the sums. We always take the siglock to protect reading
1752 * the c* fields from p->signal from races with exit.c updating those
1753 * fields when reaping, so a sample either gets all the additions of a
1754 * given child after it's reaped, or none so this sample is before reaping.
1757 * We need to take the siglock for CHILDEREN, SELF and BOTH
1758 * for the cases current multithreaded, non-current single threaded
1759 * non-current multithreaded. Thread traversal is now safe with
1761 * Strictly speaking, we donot need to take the siglock if we are current and
1762 * single threaded, as no one else can take our signal_struct away, no one
1763 * else can reap the children to update signal->c* counters, and no one else
1764 * can race with the signal-> fields. If we do not take any lock, the
1765 * signal-> fields could be read out of order while another thread was just
1766 * exiting. So we should place a read memory barrier when we avoid the lock.
1767 * On the writer side, write memory barrier is implied in __exit_signal
1768 * as __exit_signal releases the siglock spinlock after updating the signal->
1769 * fields. But we don't do this yet to keep things simple.
1773 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1775 r->ru_nvcsw += t->nvcsw;
1776 r->ru_nivcsw += t->nivcsw;
1777 r->ru_minflt += t->min_flt;
1778 r->ru_majflt += t->maj_flt;
1779 r->ru_inblock += task_io_get_inblock(t);
1780 r->ru_oublock += task_io_get_oublock(t);
1783 void getrusage(struct task_struct *p, int who, struct rusage *r)
1785 struct task_struct *t;
1786 unsigned long flags;
1787 u64 tgutime, tgstime, utime, stime;
1788 unsigned long maxrss = 0;
1790 memset((char *)r, 0, sizeof (*r));
1793 if (who == RUSAGE_THREAD) {
1794 task_cputime_adjusted(current, &utime, &stime);
1795 accumulate_thread_rusage(p, r);
1796 maxrss = p->signal->maxrss;
1800 if (!lock_task_sighand(p, &flags))
1805 case RUSAGE_CHILDREN:
1806 utime = p->signal->cutime;
1807 stime = p->signal->cstime;
1808 r->ru_nvcsw = p->signal->cnvcsw;
1809 r->ru_nivcsw = p->signal->cnivcsw;
1810 r->ru_minflt = p->signal->cmin_flt;
1811 r->ru_majflt = p->signal->cmaj_flt;
1812 r->ru_inblock = p->signal->cinblock;
1813 r->ru_oublock = p->signal->coublock;
1814 maxrss = p->signal->cmaxrss;
1816 if (who == RUSAGE_CHILDREN)
1821 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1824 r->ru_nvcsw += p->signal->nvcsw;
1825 r->ru_nivcsw += p->signal->nivcsw;
1826 r->ru_minflt += p->signal->min_flt;
1827 r->ru_majflt += p->signal->maj_flt;
1828 r->ru_inblock += p->signal->inblock;
1829 r->ru_oublock += p->signal->oublock;
1830 if (maxrss < p->signal->maxrss)
1831 maxrss = p->signal->maxrss;
1834 accumulate_thread_rusage(t, r);
1835 } while_each_thread(p, t);
1841 unlock_task_sighand(p, &flags);
1844 r->ru_utime = ns_to_kernel_old_timeval(utime);
1845 r->ru_stime = ns_to_kernel_old_timeval(stime);
1847 if (who != RUSAGE_CHILDREN) {
1848 struct mm_struct *mm = get_task_mm(p);
1851 setmax_mm_hiwater_rss(&maxrss, mm);
1855 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1858 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1862 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1863 who != RUSAGE_THREAD)
1866 getrusage(current, who, &r);
1867 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1870 #ifdef CONFIG_COMPAT
1871 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1875 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1876 who != RUSAGE_THREAD)
1879 getrusage(current, who, &r);
1880 return put_compat_rusage(&r, ru);
1884 SYSCALL_DEFINE1(umask, int, mask)
1886 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1890 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1893 struct inode *inode;
1900 inode = file_inode(exe.file);
1903 * Because the original mm->exe_file points to executable file, make
1904 * sure that this one is executable as well, to avoid breaking an
1908 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1911 err = file_permission(exe.file, MAY_EXEC);
1915 err = replace_mm_exe_file(mm, exe.file);
1922 * Check arithmetic relations of passed addresses.
1924 * WARNING: we don't require any capability here so be very careful
1925 * in what is allowed for modification from userspace.
1927 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1929 unsigned long mmap_max_addr = TASK_SIZE;
1930 int error = -EINVAL, i;
1932 static const unsigned char offsets[] = {
1933 offsetof(struct prctl_mm_map, start_code),
1934 offsetof(struct prctl_mm_map, end_code),
1935 offsetof(struct prctl_mm_map, start_data),
1936 offsetof(struct prctl_mm_map, end_data),
1937 offsetof(struct prctl_mm_map, start_brk),
1938 offsetof(struct prctl_mm_map, brk),
1939 offsetof(struct prctl_mm_map, start_stack),
1940 offsetof(struct prctl_mm_map, arg_start),
1941 offsetof(struct prctl_mm_map, arg_end),
1942 offsetof(struct prctl_mm_map, env_start),
1943 offsetof(struct prctl_mm_map, env_end),
1947 * Make sure the members are not somewhere outside
1948 * of allowed address space.
1950 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1951 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1953 if ((unsigned long)val >= mmap_max_addr ||
1954 (unsigned long)val < mmap_min_addr)
1959 * Make sure the pairs are ordered.
1961 #define __prctl_check_order(__m1, __op, __m2) \
1962 ((unsigned long)prctl_map->__m1 __op \
1963 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1964 error = __prctl_check_order(start_code, <, end_code);
1965 error |= __prctl_check_order(start_data,<=, end_data);
1966 error |= __prctl_check_order(start_brk, <=, brk);
1967 error |= __prctl_check_order(arg_start, <=, arg_end);
1968 error |= __prctl_check_order(env_start, <=, env_end);
1971 #undef __prctl_check_order
1976 * Neither we should allow to override limits if they set.
1978 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1979 prctl_map->start_brk, prctl_map->end_data,
1980 prctl_map->start_data))
1988 #ifdef CONFIG_CHECKPOINT_RESTORE
1989 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1991 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1992 unsigned long user_auxv[AT_VECTOR_SIZE];
1993 struct mm_struct *mm = current->mm;
1996 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1997 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1999 if (opt == PR_SET_MM_MAP_SIZE)
2000 return put_user((unsigned int)sizeof(prctl_map),
2001 (unsigned int __user *)addr);
2003 if (data_size != sizeof(prctl_map))
2006 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2009 error = validate_prctl_map_addr(&prctl_map);
2013 if (prctl_map.auxv_size) {
2015 * Someone is trying to cheat the auxv vector.
2017 if (!prctl_map.auxv ||
2018 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2021 memset(user_auxv, 0, sizeof(user_auxv));
2022 if (copy_from_user(user_auxv,
2023 (const void __user *)prctl_map.auxv,
2024 prctl_map.auxv_size))
2027 /* Last entry must be AT_NULL as specification requires */
2028 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2029 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2032 if (prctl_map.exe_fd != (u32)-1) {
2034 * Check if the current user is checkpoint/restore capable.
2035 * At the time of this writing, it checks for CAP_SYS_ADMIN
2036 * or CAP_CHECKPOINT_RESTORE.
2037 * Note that a user with access to ptrace can masquerade an
2038 * arbitrary program as any executable, even setuid ones.
2039 * This may have implications in the tomoyo subsystem.
2041 if (!checkpoint_restore_ns_capable(current_user_ns()))
2044 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2050 * arg_lock protects concurrent updates but we still need mmap_lock for
2051 * read to exclude races with sys_brk.
2056 * We don't validate if these members are pointing to
2057 * real present VMAs because application may have correspond
2058 * VMAs already unmapped and kernel uses these members for statistics
2059 * output in procfs mostly, except
2061 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2062 * for VMAs when updating these members so anything wrong written
2063 * here cause kernel to swear at userspace program but won't lead
2064 * to any problem in kernel itself
2067 spin_lock(&mm->arg_lock);
2068 mm->start_code = prctl_map.start_code;
2069 mm->end_code = prctl_map.end_code;
2070 mm->start_data = prctl_map.start_data;
2071 mm->end_data = prctl_map.end_data;
2072 mm->start_brk = prctl_map.start_brk;
2073 mm->brk = prctl_map.brk;
2074 mm->start_stack = prctl_map.start_stack;
2075 mm->arg_start = prctl_map.arg_start;
2076 mm->arg_end = prctl_map.arg_end;
2077 mm->env_start = prctl_map.env_start;
2078 mm->env_end = prctl_map.env_end;
2079 spin_unlock(&mm->arg_lock);
2082 * Note this update of @saved_auxv is lockless thus
2083 * if someone reads this member in procfs while we're
2084 * updating -- it may get partly updated results. It's
2085 * known and acceptable trade off: we leave it as is to
2086 * not introduce additional locks here making the kernel
2089 if (prctl_map.auxv_size)
2090 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2092 mmap_read_unlock(mm);
2095 #endif /* CONFIG_CHECKPOINT_RESTORE */
2097 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2101 * This doesn't move the auxiliary vector itself since it's pinned to
2102 * mm_struct, but it permits filling the vector with new values. It's
2103 * up to the caller to provide sane values here, otherwise userspace
2104 * tools which use this vector might be unhappy.
2106 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2108 if (len > sizeof(user_auxv))
2111 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2114 /* Make sure the last entry is always AT_NULL */
2115 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2116 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2118 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2121 memcpy(mm->saved_auxv, user_auxv, len);
2122 task_unlock(current);
2127 static int prctl_set_mm(int opt, unsigned long addr,
2128 unsigned long arg4, unsigned long arg5)
2130 struct mm_struct *mm = current->mm;
2131 struct prctl_mm_map prctl_map = {
2136 struct vm_area_struct *vma;
2139 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2140 opt != PR_SET_MM_MAP &&
2141 opt != PR_SET_MM_MAP_SIZE)))
2144 #ifdef CONFIG_CHECKPOINT_RESTORE
2145 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2146 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2149 if (!capable(CAP_SYS_RESOURCE))
2152 if (opt == PR_SET_MM_EXE_FILE)
2153 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2155 if (opt == PR_SET_MM_AUXV)
2156 return prctl_set_auxv(mm, addr, arg4);
2158 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2164 * arg_lock protects concurrent updates of arg boundaries, we need
2165 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2169 vma = find_vma(mm, addr);
2171 spin_lock(&mm->arg_lock);
2172 prctl_map.start_code = mm->start_code;
2173 prctl_map.end_code = mm->end_code;
2174 prctl_map.start_data = mm->start_data;
2175 prctl_map.end_data = mm->end_data;
2176 prctl_map.start_brk = mm->start_brk;
2177 prctl_map.brk = mm->brk;
2178 prctl_map.start_stack = mm->start_stack;
2179 prctl_map.arg_start = mm->arg_start;
2180 prctl_map.arg_end = mm->arg_end;
2181 prctl_map.env_start = mm->env_start;
2182 prctl_map.env_end = mm->env_end;
2185 case PR_SET_MM_START_CODE:
2186 prctl_map.start_code = addr;
2188 case PR_SET_MM_END_CODE:
2189 prctl_map.end_code = addr;
2191 case PR_SET_MM_START_DATA:
2192 prctl_map.start_data = addr;
2194 case PR_SET_MM_END_DATA:
2195 prctl_map.end_data = addr;
2197 case PR_SET_MM_START_STACK:
2198 prctl_map.start_stack = addr;
2200 case PR_SET_MM_START_BRK:
2201 prctl_map.start_brk = addr;
2204 prctl_map.brk = addr;
2206 case PR_SET_MM_ARG_START:
2207 prctl_map.arg_start = addr;
2209 case PR_SET_MM_ARG_END:
2210 prctl_map.arg_end = addr;
2212 case PR_SET_MM_ENV_START:
2213 prctl_map.env_start = addr;
2215 case PR_SET_MM_ENV_END:
2216 prctl_map.env_end = addr;
2222 error = validate_prctl_map_addr(&prctl_map);
2228 * If command line arguments and environment
2229 * are placed somewhere else on stack, we can
2230 * set them up here, ARG_START/END to setup
2231 * command line arguments and ENV_START/END
2234 case PR_SET_MM_START_STACK:
2235 case PR_SET_MM_ARG_START:
2236 case PR_SET_MM_ARG_END:
2237 case PR_SET_MM_ENV_START:
2238 case PR_SET_MM_ENV_END:
2245 mm->start_code = prctl_map.start_code;
2246 mm->end_code = prctl_map.end_code;
2247 mm->start_data = prctl_map.start_data;
2248 mm->end_data = prctl_map.end_data;
2249 mm->start_brk = prctl_map.start_brk;
2250 mm->brk = prctl_map.brk;
2251 mm->start_stack = prctl_map.start_stack;
2252 mm->arg_start = prctl_map.arg_start;
2253 mm->arg_end = prctl_map.arg_end;
2254 mm->env_start = prctl_map.env_start;
2255 mm->env_end = prctl_map.env_end;
2259 spin_unlock(&mm->arg_lock);
2260 mmap_read_unlock(mm);
2264 #ifdef CONFIG_CHECKPOINT_RESTORE
2265 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2267 return put_user(me->clear_child_tid, tid_addr);
2270 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2276 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2279 * If task has has_child_subreaper - all its descendants
2280 * already have these flag too and new descendants will
2281 * inherit it on fork, skip them.
2283 * If we've found child_reaper - skip descendants in
2284 * it's subtree as they will never get out pidns.
2286 if (p->signal->has_child_subreaper ||
2287 is_child_reaper(task_pid(p)))
2290 p->signal->has_child_subreaper = 1;
2294 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2299 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2305 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2307 #ifdef CONFIG_ANON_VMA_NAME
2309 #define ANON_VMA_NAME_MAX_LEN 80
2310 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2312 static inline bool is_valid_name_char(char ch)
2314 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2315 return ch > 0x1f && ch < 0x7f &&
2316 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2319 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2320 unsigned long size, unsigned long arg)
2322 struct mm_struct *mm = current->mm;
2323 const char __user *uname;
2324 struct anon_vma_name *anon_name = NULL;
2328 case PR_SET_VMA_ANON_NAME:
2329 uname = (const char __user *)arg;
2333 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2335 return PTR_ERR(name);
2337 for (pch = name; *pch != '\0'; pch++) {
2338 if (!is_valid_name_char(*pch)) {
2343 /* anon_vma has its own copy */
2344 anon_name = anon_vma_name_alloc(name);
2351 mmap_write_lock(mm);
2352 error = madvise_set_anon_name(mm, addr, size, anon_name);
2353 mmap_write_unlock(mm);
2354 anon_vma_name_put(anon_name);
2363 #else /* CONFIG_ANON_VMA_NAME */
2364 static int prctl_set_vma(unsigned long opt, unsigned long start,
2365 unsigned long size, unsigned long arg)
2369 #endif /* CONFIG_ANON_VMA_NAME */
2371 static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2372 unsigned long arg4, unsigned long arg5)
2374 if (arg3 || arg4 || arg5)
2377 if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN))
2380 if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2381 set_bit(MMF_HAS_MDWE, ¤t->mm->flags);
2382 else if (test_bit(MMF_HAS_MDWE, ¤t->mm->flags))
2383 return -EPERM; /* Cannot unset the flag */
2388 static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2389 unsigned long arg4, unsigned long arg5)
2391 if (arg2 || arg3 || arg4 || arg5)
2394 return test_bit(MMF_HAS_MDWE, ¤t->mm->flags) ?
2395 PR_MDWE_REFUSE_EXEC_GAIN : 0;
2398 static int prctl_get_auxv(void __user *addr, unsigned long len)
2400 struct mm_struct *mm = current->mm;
2401 unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2403 if (size && copy_to_user(addr, mm->saved_auxv, size))
2405 return sizeof(mm->saved_auxv);
2408 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2409 unsigned long, arg4, unsigned long, arg5)
2411 struct task_struct *me = current;
2412 unsigned char comm[sizeof(me->comm)];
2415 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2416 if (error != -ENOSYS)
2421 case PR_SET_PDEATHSIG:
2422 if (!valid_signal(arg2)) {
2426 me->pdeath_signal = arg2;
2428 case PR_GET_PDEATHSIG:
2429 error = put_user(me->pdeath_signal, (int __user *)arg2);
2431 case PR_GET_DUMPABLE:
2432 error = get_dumpable(me->mm);
2434 case PR_SET_DUMPABLE:
2435 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2439 set_dumpable(me->mm, arg2);
2442 case PR_SET_UNALIGN:
2443 error = SET_UNALIGN_CTL(me, arg2);
2445 case PR_GET_UNALIGN:
2446 error = GET_UNALIGN_CTL(me, arg2);
2449 error = SET_FPEMU_CTL(me, arg2);
2452 error = GET_FPEMU_CTL(me, arg2);
2455 error = SET_FPEXC_CTL(me, arg2);
2458 error = GET_FPEXC_CTL(me, arg2);
2461 error = PR_TIMING_STATISTICAL;
2464 if (arg2 != PR_TIMING_STATISTICAL)
2468 comm[sizeof(me->comm) - 1] = 0;
2469 if (strncpy_from_user(comm, (char __user *)arg2,
2470 sizeof(me->comm) - 1) < 0)
2472 set_task_comm(me, comm);
2473 proc_comm_connector(me);
2476 get_task_comm(comm, me);
2477 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2481 error = GET_ENDIAN(me, arg2);
2484 error = SET_ENDIAN(me, arg2);
2486 case PR_GET_SECCOMP:
2487 error = prctl_get_seccomp();
2489 case PR_SET_SECCOMP:
2490 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2493 error = GET_TSC_CTL(arg2);
2496 error = SET_TSC_CTL(arg2);
2498 case PR_TASK_PERF_EVENTS_DISABLE:
2499 error = perf_event_task_disable();
2501 case PR_TASK_PERF_EVENTS_ENABLE:
2502 error = perf_event_task_enable();
2504 case PR_GET_TIMERSLACK:
2505 if (current->timer_slack_ns > ULONG_MAX)
2508 error = current->timer_slack_ns;
2510 case PR_SET_TIMERSLACK:
2512 current->timer_slack_ns =
2513 current->default_timer_slack_ns;
2515 current->timer_slack_ns = arg2;
2521 case PR_MCE_KILL_CLEAR:
2524 current->flags &= ~PF_MCE_PROCESS;
2526 case PR_MCE_KILL_SET:
2527 current->flags |= PF_MCE_PROCESS;
2528 if (arg3 == PR_MCE_KILL_EARLY)
2529 current->flags |= PF_MCE_EARLY;
2530 else if (arg3 == PR_MCE_KILL_LATE)
2531 current->flags &= ~PF_MCE_EARLY;
2532 else if (arg3 == PR_MCE_KILL_DEFAULT)
2534 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2542 case PR_MCE_KILL_GET:
2543 if (arg2 | arg3 | arg4 | arg5)
2545 if (current->flags & PF_MCE_PROCESS)
2546 error = (current->flags & PF_MCE_EARLY) ?
2547 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2549 error = PR_MCE_KILL_DEFAULT;
2552 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2554 case PR_GET_TID_ADDRESS:
2555 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2557 case PR_SET_CHILD_SUBREAPER:
2558 me->signal->is_child_subreaper = !!arg2;
2562 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2564 case PR_GET_CHILD_SUBREAPER:
2565 error = put_user(me->signal->is_child_subreaper,
2566 (int __user *)arg2);
2568 case PR_SET_NO_NEW_PRIVS:
2569 if (arg2 != 1 || arg3 || arg4 || arg5)
2572 task_set_no_new_privs(current);
2574 case PR_GET_NO_NEW_PRIVS:
2575 if (arg2 || arg3 || arg4 || arg5)
2577 return task_no_new_privs(current) ? 1 : 0;
2578 case PR_GET_THP_DISABLE:
2579 if (arg2 || arg3 || arg4 || arg5)
2581 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2583 case PR_SET_THP_DISABLE:
2584 if (arg3 || arg4 || arg5)
2586 if (mmap_write_lock_killable(me->mm))
2589 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2591 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2592 mmap_write_unlock(me->mm);
2594 case PR_MPX_ENABLE_MANAGEMENT:
2595 case PR_MPX_DISABLE_MANAGEMENT:
2596 /* No longer implemented: */
2598 case PR_SET_FP_MODE:
2599 error = SET_FP_MODE(me, arg2);
2601 case PR_GET_FP_MODE:
2602 error = GET_FP_MODE(me);
2605 error = SVE_SET_VL(arg2);
2608 error = SVE_GET_VL();
2611 error = SME_SET_VL(arg2);
2614 error = SME_GET_VL();
2616 case PR_GET_SPECULATION_CTRL:
2617 if (arg3 || arg4 || arg5)
2619 error = arch_prctl_spec_ctrl_get(me, arg2);
2621 case PR_SET_SPECULATION_CTRL:
2624 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2626 case PR_PAC_RESET_KEYS:
2627 if (arg3 || arg4 || arg5)
2629 error = PAC_RESET_KEYS(me, arg2);
2631 case PR_PAC_SET_ENABLED_KEYS:
2634 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2636 case PR_PAC_GET_ENABLED_KEYS:
2637 if (arg2 || arg3 || arg4 || arg5)
2639 error = PAC_GET_ENABLED_KEYS(me);
2641 case PR_SET_TAGGED_ADDR_CTRL:
2642 if (arg3 || arg4 || arg5)
2644 error = SET_TAGGED_ADDR_CTRL(arg2);
2646 case PR_GET_TAGGED_ADDR_CTRL:
2647 if (arg2 || arg3 || arg4 || arg5)
2649 error = GET_TAGGED_ADDR_CTRL();
2651 case PR_SET_IO_FLUSHER:
2652 if (!capable(CAP_SYS_RESOURCE))
2655 if (arg3 || arg4 || arg5)
2659 current->flags |= PR_IO_FLUSHER;
2661 current->flags &= ~PR_IO_FLUSHER;
2665 case PR_GET_IO_FLUSHER:
2666 if (!capable(CAP_SYS_RESOURCE))
2669 if (arg2 || arg3 || arg4 || arg5)
2672 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2674 case PR_SET_SYSCALL_USER_DISPATCH:
2675 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2676 (char __user *) arg5);
2678 #ifdef CONFIG_SCHED_CORE
2680 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2684 error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2687 error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2690 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2695 error = prctl_get_auxv((void __user *)arg2, arg3);
2698 case PR_SET_MEMORY_MERGE:
2699 if (arg3 || arg4 || arg5)
2701 if (mmap_write_lock_killable(me->mm))
2705 error = ksm_enable_merge_any(me->mm);
2707 error = ksm_disable_merge_any(me->mm);
2708 mmap_write_unlock(me->mm);
2710 case PR_GET_MEMORY_MERGE:
2711 if (arg2 || arg3 || arg4 || arg5)
2714 error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2717 case PR_RISCV_V_SET_CONTROL:
2718 error = RISCV_V_SET_CONTROL(arg2);
2720 case PR_RISCV_V_GET_CONTROL:
2721 error = RISCV_V_GET_CONTROL();
2730 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2731 struct getcpu_cache __user *, unused)
2734 int cpu = raw_smp_processor_id();
2737 err |= put_user(cpu, cpup);
2739 err |= put_user(cpu_to_node(cpu), nodep);
2740 return err ? -EFAULT : 0;
2744 * do_sysinfo - fill in sysinfo struct
2745 * @info: pointer to buffer to fill
2747 static int do_sysinfo(struct sysinfo *info)
2749 unsigned long mem_total, sav_total;
2750 unsigned int mem_unit, bitcount;
2751 struct timespec64 tp;
2753 memset(info, 0, sizeof(struct sysinfo));
2755 ktime_get_boottime_ts64(&tp);
2756 timens_add_boottime(&tp);
2757 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2759 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2761 info->procs = nr_threads;
2767 * If the sum of all the available memory (i.e. ram + swap)
2768 * is less than can be stored in a 32 bit unsigned long then
2769 * we can be binary compatible with 2.2.x kernels. If not,
2770 * well, in that case 2.2.x was broken anyways...
2772 * -Erik Andersen <andersee@debian.org>
2775 mem_total = info->totalram + info->totalswap;
2776 if (mem_total < info->totalram || mem_total < info->totalswap)
2779 mem_unit = info->mem_unit;
2780 while (mem_unit > 1) {
2783 sav_total = mem_total;
2785 if (mem_total < sav_total)
2790 * If mem_total did not overflow, multiply all memory values by
2791 * info->mem_unit and set it to 1. This leaves things compatible
2792 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2797 info->totalram <<= bitcount;
2798 info->freeram <<= bitcount;
2799 info->sharedram <<= bitcount;
2800 info->bufferram <<= bitcount;
2801 info->totalswap <<= bitcount;
2802 info->freeswap <<= bitcount;
2803 info->totalhigh <<= bitcount;
2804 info->freehigh <<= bitcount;
2810 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2816 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2822 #ifdef CONFIG_COMPAT
2823 struct compat_sysinfo {
2837 char _f[20-2*sizeof(u32)-sizeof(int)];
2840 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2843 struct compat_sysinfo s_32;
2847 /* Check to see if any memory value is too large for 32-bit and scale
2850 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2853 while (s.mem_unit < PAGE_SIZE) {
2858 s.totalram >>= bitcount;
2859 s.freeram >>= bitcount;
2860 s.sharedram >>= bitcount;
2861 s.bufferram >>= bitcount;
2862 s.totalswap >>= bitcount;
2863 s.freeswap >>= bitcount;
2864 s.totalhigh >>= bitcount;
2865 s.freehigh >>= bitcount;
2868 memset(&s_32, 0, sizeof(s_32));
2869 s_32.uptime = s.uptime;
2870 s_32.loads[0] = s.loads[0];
2871 s_32.loads[1] = s.loads[1];
2872 s_32.loads[2] = s.loads[2];
2873 s_32.totalram = s.totalram;
2874 s_32.freeram = s.freeram;
2875 s_32.sharedram = s.sharedram;
2876 s_32.bufferram = s.bufferram;
2877 s_32.totalswap = s.totalswap;
2878 s_32.freeswap = s.freeswap;
2879 s_32.procs = s.procs;
2880 s_32.totalhigh = s.totalhigh;
2881 s_32.freehigh = s.freehigh;
2882 s_32.mem_unit = s.mem_unit;
2883 if (copy_to_user(info, &s_32, sizeof(s_32)))
2887 #endif /* CONFIG_COMPAT */