4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/export.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
52 #include <linux/sched.h>
53 #include <linux/rcupdate.h>
54 #include <linux/uidgid.h>
55 #include <linux/cred.h>
57 #include <linux/kmsg_dump.h>
58 /* Move somewhere else to avoid recompiling? */
59 #include <generated/utsrelease.h>
61 #include <asm/uaccess.h>
63 #include <asm/unistd.h>
65 #ifndef SET_UNALIGN_CTL
66 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
68 #ifndef GET_UNALIGN_CTL
69 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
72 # define SET_FPEMU_CTL(a,b) (-EINVAL)
75 # define GET_FPEMU_CTL(a,b) (-EINVAL)
78 # define SET_FPEXC_CTL(a,b) (-EINVAL)
81 # define GET_FPEXC_CTL(a,b) (-EINVAL)
84 # define GET_ENDIAN(a,b) (-EINVAL)
87 # define SET_ENDIAN(a,b) (-EINVAL)
90 # define GET_TSC_CTL(a) (-EINVAL)
93 # define SET_TSC_CTL(a) (-EINVAL)
97 * this is where the system-wide overflow UID and GID are defined, for
98 * architectures that now have 32-bit UID/GID but didn't in the past
101 int overflowuid = DEFAULT_OVERFLOWUID;
102 int overflowgid = DEFAULT_OVERFLOWGID;
104 EXPORT_SYMBOL(overflowuid);
105 EXPORT_SYMBOL(overflowgid);
108 * the same as above, but for filesystems which can only store a 16-bit
109 * UID and GID. as such, this is needed on all architectures
112 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
113 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
115 EXPORT_SYMBOL(fs_overflowuid);
116 EXPORT_SYMBOL(fs_overflowgid);
119 * Returns true if current's euid is same as p's uid or euid,
120 * or has CAP_SYS_NICE to p's user_ns.
122 * Called with rcu_read_lock, creds are safe
124 static bool set_one_prio_perm(struct task_struct *p)
126 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
128 if (uid_eq(pcred->uid, cred->euid) ||
129 uid_eq(pcred->euid, cred->euid))
131 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
137 * set the priority of a task
138 * - the caller must hold the RCU read lock
140 static int set_one_prio(struct task_struct *p, int niceval, int error)
144 if (!set_one_prio_perm(p)) {
148 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
152 no_nice = security_task_setnice(p, niceval);
159 set_user_nice(p, niceval);
164 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
166 struct task_struct *g, *p;
167 struct user_struct *user;
168 const struct cred *cred = current_cred();
173 if (which > PRIO_USER || which < PRIO_PROCESS)
176 /* normalize: avoid signed division (rounding problems) */
184 read_lock(&tasklist_lock);
188 p = find_task_by_vpid(who);
192 error = set_one_prio(p, niceval, error);
196 pgrp = find_vpid(who);
198 pgrp = task_pgrp(current);
199 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
200 error = set_one_prio(p, niceval, error);
201 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
204 uid = make_kuid(cred->user_ns, who);
208 else if (!uid_eq(uid, cred->uid) &&
209 !(user = find_user(uid)))
210 goto out_unlock; /* No processes for this user */
212 do_each_thread(g, p) {
213 if (uid_eq(task_uid(p), uid))
214 error = set_one_prio(p, niceval, error);
215 } while_each_thread(g, p);
216 if (!uid_eq(uid, cred->uid))
217 free_uid(user); /* For find_user() */
221 read_unlock(&tasklist_lock);
228 * Ugh. To avoid negative return values, "getpriority()" will
229 * not return the normal nice-value, but a negated value that
230 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
231 * to stay compatible.
233 SYSCALL_DEFINE2(getpriority, int, which, int, who)
235 struct task_struct *g, *p;
236 struct user_struct *user;
237 const struct cred *cred = current_cred();
238 long niceval, retval = -ESRCH;
242 if (which > PRIO_USER || which < PRIO_PROCESS)
246 read_lock(&tasklist_lock);
250 p = find_task_by_vpid(who);
254 niceval = 20 - task_nice(p);
255 if (niceval > retval)
261 pgrp = find_vpid(who);
263 pgrp = task_pgrp(current);
264 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
265 niceval = 20 - task_nice(p);
266 if (niceval > retval)
268 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
271 uid = make_kuid(cred->user_ns, who);
275 else if (!uid_eq(uid, cred->uid) &&
276 !(user = find_user(uid)))
277 goto out_unlock; /* No processes for this user */
279 do_each_thread(g, p) {
280 if (uid_eq(task_uid(p), uid)) {
281 niceval = 20 - task_nice(p);
282 if (niceval > retval)
285 } while_each_thread(g, p);
286 if (!uid_eq(uid, cred->uid))
287 free_uid(user); /* for find_user() */
291 read_unlock(&tasklist_lock);
298 * Unprivileged users may change the real gid to the effective gid
299 * or vice versa. (BSD-style)
301 * If you set the real gid at all, or set the effective gid to a value not
302 * equal to the real gid, then the saved gid is set to the new effective gid.
304 * This makes it possible for a setgid program to completely drop its
305 * privileges, which is often a useful assertion to make when you are doing
306 * a security audit over a program.
308 * The general idea is that a program which uses just setregid() will be
309 * 100% compatible with BSD. A program which uses just setgid() will be
310 * 100% compatible with POSIX with saved IDs.
312 * SMP: There are not races, the GIDs are checked only by filesystem
313 * operations (as far as semantic preservation is concerned).
315 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
317 struct user_namespace *ns = current_user_ns();
318 const struct cred *old;
323 krgid = make_kgid(ns, rgid);
324 kegid = make_kgid(ns, egid);
326 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
328 if ((egid != (gid_t) -1) && !gid_valid(kegid))
331 new = prepare_creds();
334 old = current_cred();
337 if (rgid != (gid_t) -1) {
338 if (gid_eq(old->gid, krgid) ||
339 gid_eq(old->egid, krgid) ||
340 ns_capable(old->user_ns, CAP_SETGID))
345 if (egid != (gid_t) -1) {
346 if (gid_eq(old->gid, kegid) ||
347 gid_eq(old->egid, kegid) ||
348 gid_eq(old->sgid, kegid) ||
349 ns_capable(old->user_ns, CAP_SETGID))
355 if (rgid != (gid_t) -1 ||
356 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
357 new->sgid = new->egid;
358 new->fsgid = new->egid;
360 return commit_creds(new);
368 * setgid() is implemented like SysV w/ SAVED_IDS
370 * SMP: Same implicit races as above.
372 SYSCALL_DEFINE1(setgid, gid_t, gid)
374 struct user_namespace *ns = current_user_ns();
375 const struct cred *old;
380 kgid = make_kgid(ns, gid);
381 if (!gid_valid(kgid))
384 new = prepare_creds();
387 old = current_cred();
390 if (ns_capable(old->user_ns, CAP_SETGID))
391 new->gid = new->egid = new->sgid = new->fsgid = kgid;
392 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
393 new->egid = new->fsgid = kgid;
397 return commit_creds(new);
405 * change the user struct in a credentials set to match the new UID
407 static int set_user(struct cred *new)
409 struct user_struct *new_user;
411 new_user = alloc_uid(new->uid);
416 * We don't fail in case of NPROC limit excess here because too many
417 * poorly written programs don't check set*uid() return code, assuming
418 * it never fails if called by root. We may still enforce NPROC limit
419 * for programs doing set*uid()+execve() by harmlessly deferring the
420 * failure to the execve() stage.
422 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
423 new_user != INIT_USER)
424 current->flags |= PF_NPROC_EXCEEDED;
426 current->flags &= ~PF_NPROC_EXCEEDED;
429 new->user = new_user;
434 * Unprivileged users may change the real uid to the effective uid
435 * or vice versa. (BSD-style)
437 * If you set the real uid at all, or set the effective uid to a value not
438 * equal to the real uid, then the saved uid is set to the new effective uid.
440 * This makes it possible for a setuid program to completely drop its
441 * privileges, which is often a useful assertion to make when you are doing
442 * a security audit over a program.
444 * The general idea is that a program which uses just setreuid() will be
445 * 100% compatible with BSD. A program which uses just setuid() will be
446 * 100% compatible with POSIX with saved IDs.
448 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
450 struct user_namespace *ns = current_user_ns();
451 const struct cred *old;
456 kruid = make_kuid(ns, ruid);
457 keuid = make_kuid(ns, euid);
459 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
461 if ((euid != (uid_t) -1) && !uid_valid(keuid))
464 new = prepare_creds();
467 old = current_cred();
470 if (ruid != (uid_t) -1) {
472 if (!uid_eq(old->uid, kruid) &&
473 !uid_eq(old->euid, kruid) &&
474 !ns_capable(old->user_ns, CAP_SETUID))
478 if (euid != (uid_t) -1) {
480 if (!uid_eq(old->uid, keuid) &&
481 !uid_eq(old->euid, keuid) &&
482 !uid_eq(old->suid, keuid) &&
483 !ns_capable(old->user_ns, CAP_SETUID))
487 if (!uid_eq(new->uid, old->uid)) {
488 retval = set_user(new);
492 if (ruid != (uid_t) -1 ||
493 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
494 new->suid = new->euid;
495 new->fsuid = new->euid;
497 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
501 return commit_creds(new);
509 * setuid() is implemented like SysV with SAVED_IDS
511 * Note that SAVED_ID's is deficient in that a setuid root program
512 * like sendmail, for example, cannot set its uid to be a normal
513 * user and then switch back, because if you're root, setuid() sets
514 * the saved uid too. If you don't like this, blame the bright people
515 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
516 * will allow a root program to temporarily drop privileges and be able to
517 * regain them by swapping the real and effective uid.
519 SYSCALL_DEFINE1(setuid, uid_t, uid)
521 struct user_namespace *ns = current_user_ns();
522 const struct cred *old;
527 kuid = make_kuid(ns, uid);
528 if (!uid_valid(kuid))
531 new = prepare_creds();
534 old = current_cred();
537 if (ns_capable(old->user_ns, CAP_SETUID)) {
538 new->suid = new->uid = kuid;
539 if (!uid_eq(kuid, old->uid)) {
540 retval = set_user(new);
544 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
548 new->fsuid = new->euid = kuid;
550 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
554 return commit_creds(new);
563 * This function implements a generic ability to update ruid, euid,
564 * and suid. This allows you to implement the 4.4 compatible seteuid().
566 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
568 struct user_namespace *ns = current_user_ns();
569 const struct cred *old;
572 kuid_t kruid, keuid, ksuid;
574 kruid = make_kuid(ns, ruid);
575 keuid = make_kuid(ns, euid);
576 ksuid = make_kuid(ns, suid);
578 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
581 if ((euid != (uid_t) -1) && !uid_valid(keuid))
584 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
587 new = prepare_creds();
591 old = current_cred();
594 if (!ns_capable(old->user_ns, CAP_SETUID)) {
595 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
596 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
598 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
599 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
601 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
602 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
606 if (ruid != (uid_t) -1) {
608 if (!uid_eq(kruid, old->uid)) {
609 retval = set_user(new);
614 if (euid != (uid_t) -1)
616 if (suid != (uid_t) -1)
618 new->fsuid = new->euid;
620 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
624 return commit_creds(new);
631 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
633 const struct cred *cred = current_cred();
635 uid_t ruid, euid, suid;
637 ruid = from_kuid_munged(cred->user_ns, cred->uid);
638 euid = from_kuid_munged(cred->user_ns, cred->euid);
639 suid = from_kuid_munged(cred->user_ns, cred->suid);
641 if (!(retval = put_user(ruid, ruidp)) &&
642 !(retval = put_user(euid, euidp)))
643 retval = put_user(suid, suidp);
649 * Same as above, but for rgid, egid, sgid.
651 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
653 struct user_namespace *ns = current_user_ns();
654 const struct cred *old;
657 kgid_t krgid, kegid, ksgid;
659 krgid = make_kgid(ns, rgid);
660 kegid = make_kgid(ns, egid);
661 ksgid = make_kgid(ns, sgid);
663 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
665 if ((egid != (gid_t) -1) && !gid_valid(kegid))
667 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
670 new = prepare_creds();
673 old = current_cred();
676 if (!ns_capable(old->user_ns, CAP_SETGID)) {
677 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
678 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
680 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
681 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
683 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
684 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
688 if (rgid != (gid_t) -1)
690 if (egid != (gid_t) -1)
692 if (sgid != (gid_t) -1)
694 new->fsgid = new->egid;
696 return commit_creds(new);
703 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
705 const struct cred *cred = current_cred();
707 gid_t rgid, egid, sgid;
709 rgid = from_kgid_munged(cred->user_ns, cred->gid);
710 egid = from_kgid_munged(cred->user_ns, cred->egid);
711 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
713 if (!(retval = put_user(rgid, rgidp)) &&
714 !(retval = put_user(egid, egidp)))
715 retval = put_user(sgid, sgidp);
722 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
723 * is used for "access()" and for the NFS daemon (letting nfsd stay at
724 * whatever uid it wants to). It normally shadows "euid", except when
725 * explicitly set by setfsuid() or for access..
727 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
729 const struct cred *old;
734 old = current_cred();
735 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
737 kuid = make_kuid(old->user_ns, uid);
738 if (!uid_valid(kuid))
741 new = prepare_creds();
745 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
746 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
747 ns_capable(old->user_ns, CAP_SETUID)) {
748 if (!uid_eq(kuid, old->fsuid)) {
750 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
764 * Samma på svenska..
766 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
768 const struct cred *old;
773 old = current_cred();
774 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
776 kgid = make_kgid(old->user_ns, gid);
777 if (!gid_valid(kgid))
780 new = prepare_creds();
784 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
785 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
786 ns_capable(old->user_ns, CAP_SETGID)) {
787 if (!gid_eq(kgid, old->fsgid)) {
802 * sys_getpid - return the thread group id of the current process
804 * Note, despite the name, this returns the tgid not the pid. The tgid and
805 * the pid are identical unless CLONE_THREAD was specified on clone() in
806 * which case the tgid is the same in all threads of the same group.
808 * This is SMP safe as current->tgid does not change.
810 SYSCALL_DEFINE0(getpid)
812 return task_tgid_vnr(current);
815 /* Thread ID - the internal kernel "pid" */
816 SYSCALL_DEFINE0(gettid)
818 return task_pid_vnr(current);
822 * Accessing ->real_parent is not SMP-safe, it could
823 * change from under us. However, we can use a stale
824 * value of ->real_parent under rcu_read_lock(), see
825 * release_task()->call_rcu(delayed_put_task_struct).
827 SYSCALL_DEFINE0(getppid)
832 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
838 SYSCALL_DEFINE0(getuid)
840 /* Only we change this so SMP safe */
841 return from_kuid_munged(current_user_ns(), current_uid());
844 SYSCALL_DEFINE0(geteuid)
846 /* Only we change this so SMP safe */
847 return from_kuid_munged(current_user_ns(), current_euid());
850 SYSCALL_DEFINE0(getgid)
852 /* Only we change this so SMP safe */
853 return from_kgid_munged(current_user_ns(), current_gid());
856 SYSCALL_DEFINE0(getegid)
858 /* Only we change this so SMP safe */
859 return from_kgid_munged(current_user_ns(), current_egid());
862 void do_sys_times(struct tms *tms)
864 cputime_t tgutime, tgstime, cutime, cstime;
866 spin_lock_irq(¤t->sighand->siglock);
867 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
868 cutime = current->signal->cutime;
869 cstime = current->signal->cstime;
870 spin_unlock_irq(¤t->sighand->siglock);
871 tms->tms_utime = cputime_to_clock_t(tgutime);
872 tms->tms_stime = cputime_to_clock_t(tgstime);
873 tms->tms_cutime = cputime_to_clock_t(cutime);
874 tms->tms_cstime = cputime_to_clock_t(cstime);
877 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
883 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
886 force_successful_syscall_return();
887 return (long) jiffies_64_to_clock_t(get_jiffies_64());
891 * This needs some heavy checking ...
892 * I just haven't the stomach for it. I also don't fully
893 * understand sessions/pgrp etc. Let somebody who does explain it.
895 * OK, I think I have the protection semantics right.... this is really
896 * only important on a multi-user system anyway, to make sure one user
897 * can't send a signal to a process owned by another. -TYT, 12/12/91
899 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
902 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
904 struct task_struct *p;
905 struct task_struct *group_leader = current->group_leader;
910 pid = task_pid_vnr(group_leader);
917 /* From this point forward we keep holding onto the tasklist lock
918 * so that our parent does not change from under us. -DaveM
920 write_lock_irq(&tasklist_lock);
923 p = find_task_by_vpid(pid);
928 if (!thread_group_leader(p))
931 if (same_thread_group(p->real_parent, group_leader)) {
933 if (task_session(p) != task_session(group_leader))
940 if (p != group_leader)
945 if (p->signal->leader)
950 struct task_struct *g;
952 pgrp = find_vpid(pgid);
953 g = pid_task(pgrp, PIDTYPE_PGID);
954 if (!g || task_session(g) != task_session(group_leader))
958 err = security_task_setpgid(p, pgid);
962 if (task_pgrp(p) != pgrp)
963 change_pid(p, PIDTYPE_PGID, pgrp);
967 /* All paths lead to here, thus we are safe. -DaveM */
968 write_unlock_irq(&tasklist_lock);
973 SYSCALL_DEFINE1(getpgid, pid_t, pid)
975 struct task_struct *p;
981 grp = task_pgrp(current);
984 p = find_task_by_vpid(pid);
991 retval = security_task_getpgid(p);
995 retval = pid_vnr(grp);
1001 #ifdef __ARCH_WANT_SYS_GETPGRP
1003 SYSCALL_DEFINE0(getpgrp)
1005 return sys_getpgid(0);
1010 SYSCALL_DEFINE1(getsid, pid_t, pid)
1012 struct task_struct *p;
1018 sid = task_session(current);
1021 p = find_task_by_vpid(pid);
1024 sid = task_session(p);
1028 retval = security_task_getsid(p);
1032 retval = pid_vnr(sid);
1038 static void set_special_pids(struct pid *pid)
1040 struct task_struct *curr = current->group_leader;
1042 if (task_session(curr) != pid)
1043 change_pid(curr, PIDTYPE_SID, pid);
1045 if (task_pgrp(curr) != pid)
1046 change_pid(curr, PIDTYPE_PGID, pid);
1049 SYSCALL_DEFINE0(setsid)
1051 struct task_struct *group_leader = current->group_leader;
1052 struct pid *sid = task_pid(group_leader);
1053 pid_t session = pid_vnr(sid);
1056 write_lock_irq(&tasklist_lock);
1057 /* Fail if I am already a session leader */
1058 if (group_leader->signal->leader)
1061 /* Fail if a process group id already exists that equals the
1062 * proposed session id.
1064 if (pid_task(sid, PIDTYPE_PGID))
1067 group_leader->signal->leader = 1;
1068 set_special_pids(sid);
1070 proc_clear_tty(group_leader);
1074 write_unlock_irq(&tasklist_lock);
1076 proc_sid_connector(group_leader);
1077 sched_autogroup_create_attach(group_leader);
1082 DECLARE_RWSEM(uts_sem);
1084 #ifdef COMPAT_UTS_MACHINE
1085 #define override_architecture(name) \
1086 (personality(current->personality) == PER_LINUX32 && \
1087 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1088 sizeof(COMPAT_UTS_MACHINE)))
1090 #define override_architecture(name) 0
1094 * Work around broken programs that cannot handle "Linux 3.0".
1095 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1097 static int override_release(char __user *release, size_t len)
1101 if (current->personality & UNAME26) {
1102 const char *rest = UTS_RELEASE;
1103 char buf[65] = { 0 };
1109 if (*rest == '.' && ++ndots >= 3)
1111 if (!isdigit(*rest) && *rest != '.')
1115 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1116 copy = clamp_t(size_t, len, 1, sizeof(buf));
1117 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1118 ret = copy_to_user(release, buf, copy + 1);
1123 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1127 down_read(&uts_sem);
1128 if (copy_to_user(name, utsname(), sizeof *name))
1132 if (!errno && override_release(name->release, sizeof(name->release)))
1134 if (!errno && override_architecture(name))
1139 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1143 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1150 down_read(&uts_sem);
1151 if (copy_to_user(name, utsname(), sizeof(*name)))
1155 if (!error && override_release(name->release, sizeof(name->release)))
1157 if (!error && override_architecture(name))
1162 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1168 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1171 down_read(&uts_sem);
1172 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1174 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1175 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1177 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1178 error |= __copy_to_user(&name->release, &utsname()->release,
1180 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1181 error |= __copy_to_user(&name->version, &utsname()->version,
1183 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1184 error |= __copy_to_user(&name->machine, &utsname()->machine,
1186 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1189 if (!error && override_architecture(name))
1191 if (!error && override_release(name->release, sizeof(name->release)))
1193 return error ? -EFAULT : 0;
1197 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1200 char tmp[__NEW_UTS_LEN];
1202 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1205 if (len < 0 || len > __NEW_UTS_LEN)
1207 down_write(&uts_sem);
1209 if (!copy_from_user(tmp, name, len)) {
1210 struct new_utsname *u = utsname();
1212 memcpy(u->nodename, tmp, len);
1213 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1215 uts_proc_notify(UTS_PROC_HOSTNAME);
1221 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1223 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1226 struct new_utsname *u;
1230 down_read(&uts_sem);
1232 i = 1 + strlen(u->nodename);
1236 if (copy_to_user(name, u->nodename, i))
1245 * Only setdomainname; getdomainname can be implemented by calling
1248 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1251 char tmp[__NEW_UTS_LEN];
1253 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1255 if (len < 0 || len > __NEW_UTS_LEN)
1258 down_write(&uts_sem);
1260 if (!copy_from_user(tmp, name, len)) {
1261 struct new_utsname *u = utsname();
1263 memcpy(u->domainname, tmp, len);
1264 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1266 uts_proc_notify(UTS_PROC_DOMAINNAME);
1272 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1274 struct rlimit value;
1277 ret = do_prlimit(current, resource, NULL, &value);
1279 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1284 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1287 * Back compatibility for getrlimit. Needed for some apps.
1290 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1291 struct rlimit __user *, rlim)
1294 if (resource >= RLIM_NLIMITS)
1297 task_lock(current->group_leader);
1298 x = current->signal->rlim[resource];
1299 task_unlock(current->group_leader);
1300 if (x.rlim_cur > 0x7FFFFFFF)
1301 x.rlim_cur = 0x7FFFFFFF;
1302 if (x.rlim_max > 0x7FFFFFFF)
1303 x.rlim_max = 0x7FFFFFFF;
1304 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1309 static inline bool rlim64_is_infinity(__u64 rlim64)
1311 #if BITS_PER_LONG < 64
1312 return rlim64 >= ULONG_MAX;
1314 return rlim64 == RLIM64_INFINITY;
1318 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1320 if (rlim->rlim_cur == RLIM_INFINITY)
1321 rlim64->rlim_cur = RLIM64_INFINITY;
1323 rlim64->rlim_cur = rlim->rlim_cur;
1324 if (rlim->rlim_max == RLIM_INFINITY)
1325 rlim64->rlim_max = RLIM64_INFINITY;
1327 rlim64->rlim_max = rlim->rlim_max;
1330 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1332 if (rlim64_is_infinity(rlim64->rlim_cur))
1333 rlim->rlim_cur = RLIM_INFINITY;
1335 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1336 if (rlim64_is_infinity(rlim64->rlim_max))
1337 rlim->rlim_max = RLIM_INFINITY;
1339 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1342 /* make sure you are allowed to change @tsk limits before calling this */
1343 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1344 struct rlimit *new_rlim, struct rlimit *old_rlim)
1346 struct rlimit *rlim;
1349 if (resource >= RLIM_NLIMITS)
1352 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1354 if (resource == RLIMIT_NOFILE &&
1355 new_rlim->rlim_max > sysctl_nr_open)
1359 /* protect tsk->signal and tsk->sighand from disappearing */
1360 read_lock(&tasklist_lock);
1361 if (!tsk->sighand) {
1366 rlim = tsk->signal->rlim + resource;
1367 task_lock(tsk->group_leader);
1369 /* Keep the capable check against init_user_ns until
1370 cgroups can contain all limits */
1371 if (new_rlim->rlim_max > rlim->rlim_max &&
1372 !capable(CAP_SYS_RESOURCE))
1375 retval = security_task_setrlimit(tsk->group_leader,
1376 resource, new_rlim);
1377 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1379 * The caller is asking for an immediate RLIMIT_CPU
1380 * expiry. But we use the zero value to mean "it was
1381 * never set". So let's cheat and make it one second
1384 new_rlim->rlim_cur = 1;
1393 task_unlock(tsk->group_leader);
1396 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1397 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1398 * very long-standing error, and fixing it now risks breakage of
1399 * applications, so we live with it
1401 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1402 new_rlim->rlim_cur != RLIM_INFINITY)
1403 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1405 read_unlock(&tasklist_lock);
1409 /* rcu lock must be held */
1410 static int check_prlimit_permission(struct task_struct *task)
1412 const struct cred *cred = current_cred(), *tcred;
1414 if (current == task)
1417 tcred = __task_cred(task);
1418 if (uid_eq(cred->uid, tcred->euid) &&
1419 uid_eq(cred->uid, tcred->suid) &&
1420 uid_eq(cred->uid, tcred->uid) &&
1421 gid_eq(cred->gid, tcred->egid) &&
1422 gid_eq(cred->gid, tcred->sgid) &&
1423 gid_eq(cred->gid, tcred->gid))
1425 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1431 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1432 const struct rlimit64 __user *, new_rlim,
1433 struct rlimit64 __user *, old_rlim)
1435 struct rlimit64 old64, new64;
1436 struct rlimit old, new;
1437 struct task_struct *tsk;
1441 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1443 rlim64_to_rlim(&new64, &new);
1447 tsk = pid ? find_task_by_vpid(pid) : current;
1452 ret = check_prlimit_permission(tsk);
1457 get_task_struct(tsk);
1460 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1461 old_rlim ? &old : NULL);
1463 if (!ret && old_rlim) {
1464 rlim_to_rlim64(&old, &old64);
1465 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1469 put_task_struct(tsk);
1473 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1475 struct rlimit new_rlim;
1477 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1479 return do_prlimit(current, resource, &new_rlim, NULL);
1483 * It would make sense to put struct rusage in the task_struct,
1484 * except that would make the task_struct be *really big*. After
1485 * task_struct gets moved into malloc'ed memory, it would
1486 * make sense to do this. It will make moving the rest of the information
1487 * a lot simpler! (Which we're not doing right now because we're not
1488 * measuring them yet).
1490 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1491 * races with threads incrementing their own counters. But since word
1492 * reads are atomic, we either get new values or old values and we don't
1493 * care which for the sums. We always take the siglock to protect reading
1494 * the c* fields from p->signal from races with exit.c updating those
1495 * fields when reaping, so a sample either gets all the additions of a
1496 * given child after it's reaped, or none so this sample is before reaping.
1499 * We need to take the siglock for CHILDEREN, SELF and BOTH
1500 * for the cases current multithreaded, non-current single threaded
1501 * non-current multithreaded. Thread traversal is now safe with
1503 * Strictly speaking, we donot need to take the siglock if we are current and
1504 * single threaded, as no one else can take our signal_struct away, no one
1505 * else can reap the children to update signal->c* counters, and no one else
1506 * can race with the signal-> fields. If we do not take any lock, the
1507 * signal-> fields could be read out of order while another thread was just
1508 * exiting. So we should place a read memory barrier when we avoid the lock.
1509 * On the writer side, write memory barrier is implied in __exit_signal
1510 * as __exit_signal releases the siglock spinlock after updating the signal->
1511 * fields. But we don't do this yet to keep things simple.
1515 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1517 r->ru_nvcsw += t->nvcsw;
1518 r->ru_nivcsw += t->nivcsw;
1519 r->ru_minflt += t->min_flt;
1520 r->ru_majflt += t->maj_flt;
1521 r->ru_inblock += task_io_get_inblock(t);
1522 r->ru_oublock += task_io_get_oublock(t);
1525 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1527 struct task_struct *t;
1528 unsigned long flags;
1529 cputime_t tgutime, tgstime, utime, stime;
1530 unsigned long maxrss = 0;
1532 memset((char *) r, 0, sizeof *r);
1535 if (who == RUSAGE_THREAD) {
1536 task_cputime_adjusted(current, &utime, &stime);
1537 accumulate_thread_rusage(p, r);
1538 maxrss = p->signal->maxrss;
1542 if (!lock_task_sighand(p, &flags))
1547 case RUSAGE_CHILDREN:
1548 utime = p->signal->cutime;
1549 stime = p->signal->cstime;
1550 r->ru_nvcsw = p->signal->cnvcsw;
1551 r->ru_nivcsw = p->signal->cnivcsw;
1552 r->ru_minflt = p->signal->cmin_flt;
1553 r->ru_majflt = p->signal->cmaj_flt;
1554 r->ru_inblock = p->signal->cinblock;
1555 r->ru_oublock = p->signal->coublock;
1556 maxrss = p->signal->cmaxrss;
1558 if (who == RUSAGE_CHILDREN)
1562 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1565 r->ru_nvcsw += p->signal->nvcsw;
1566 r->ru_nivcsw += p->signal->nivcsw;
1567 r->ru_minflt += p->signal->min_flt;
1568 r->ru_majflt += p->signal->maj_flt;
1569 r->ru_inblock += p->signal->inblock;
1570 r->ru_oublock += p->signal->oublock;
1571 if (maxrss < p->signal->maxrss)
1572 maxrss = p->signal->maxrss;
1575 accumulate_thread_rusage(t, r);
1583 unlock_task_sighand(p, &flags);
1586 cputime_to_timeval(utime, &r->ru_utime);
1587 cputime_to_timeval(stime, &r->ru_stime);
1589 if (who != RUSAGE_CHILDREN) {
1590 struct mm_struct *mm = get_task_mm(p);
1592 setmax_mm_hiwater_rss(&maxrss, mm);
1596 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1599 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1602 k_getrusage(p, who, &r);
1603 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1606 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1608 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1609 who != RUSAGE_THREAD)
1611 return getrusage(current, who, ru);
1614 #ifdef CONFIG_COMPAT
1615 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1619 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1620 who != RUSAGE_THREAD)
1623 k_getrusage(current, who, &r);
1624 return put_compat_rusage(&r, ru);
1628 SYSCALL_DEFINE1(umask, int, mask)
1630 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1634 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1637 struct inode *inode;
1644 inode = file_inode(exe.file);
1647 * Because the original mm->exe_file points to executable file, make
1648 * sure that this one is executable as well, to avoid breaking an
1652 if (!S_ISREG(inode->i_mode) ||
1653 exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1656 err = inode_permission(inode, MAY_EXEC);
1660 down_write(&mm->mmap_sem);
1663 * Forbid mm->exe_file change if old file still mapped.
1667 struct vm_area_struct *vma;
1669 for (vma = mm->mmap; vma; vma = vma->vm_next)
1671 path_equal(&vma->vm_file->f_path,
1672 &mm->exe_file->f_path))
1677 * The symlink can be changed only once, just to disallow arbitrary
1678 * transitions malicious software might bring in. This means one
1679 * could make a snapshot over all processes running and monitor
1680 * /proc/pid/exe changes to notice unusual activity if needed.
1683 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1687 set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
1689 up_write(&mm->mmap_sem);
1696 static int prctl_set_mm(int opt, unsigned long addr,
1697 unsigned long arg4, unsigned long arg5)
1699 unsigned long rlim = rlimit(RLIMIT_DATA);
1700 struct mm_struct *mm = current->mm;
1701 struct vm_area_struct *vma;
1704 if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1707 if (!capable(CAP_SYS_RESOURCE))
1710 if (opt == PR_SET_MM_EXE_FILE)
1711 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1713 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1718 down_read(&mm->mmap_sem);
1719 vma = find_vma(mm, addr);
1722 case PR_SET_MM_START_CODE:
1723 mm->start_code = addr;
1725 case PR_SET_MM_END_CODE:
1726 mm->end_code = addr;
1728 case PR_SET_MM_START_DATA:
1729 mm->start_data = addr;
1731 case PR_SET_MM_END_DATA:
1732 mm->end_data = addr;
1735 case PR_SET_MM_START_BRK:
1736 if (addr <= mm->end_data)
1739 if (rlim < RLIM_INFINITY &&
1741 (mm->end_data - mm->start_data) > rlim)
1744 mm->start_brk = addr;
1748 if (addr <= mm->end_data)
1751 if (rlim < RLIM_INFINITY &&
1752 (addr - mm->start_brk) +
1753 (mm->end_data - mm->start_data) > rlim)
1760 * If command line arguments and environment
1761 * are placed somewhere else on stack, we can
1762 * set them up here, ARG_START/END to setup
1763 * command line argumets and ENV_START/END
1766 case PR_SET_MM_START_STACK:
1767 case PR_SET_MM_ARG_START:
1768 case PR_SET_MM_ARG_END:
1769 case PR_SET_MM_ENV_START:
1770 case PR_SET_MM_ENV_END:
1775 if (opt == PR_SET_MM_START_STACK)
1776 mm->start_stack = addr;
1777 else if (opt == PR_SET_MM_ARG_START)
1778 mm->arg_start = addr;
1779 else if (opt == PR_SET_MM_ARG_END)
1781 else if (opt == PR_SET_MM_ENV_START)
1782 mm->env_start = addr;
1783 else if (opt == PR_SET_MM_ENV_END)
1788 * This doesn't move auxiliary vector itself
1789 * since it's pinned to mm_struct, but allow
1790 * to fill vector with new values. It's up
1791 * to a caller to provide sane values here
1792 * otherwise user space tools which use this
1793 * vector might be unhappy.
1795 case PR_SET_MM_AUXV: {
1796 unsigned long user_auxv[AT_VECTOR_SIZE];
1798 if (arg4 > sizeof(user_auxv))
1800 up_read(&mm->mmap_sem);
1802 if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1805 /* Make sure the last entry is always AT_NULL */
1806 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1807 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1809 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1812 memcpy(mm->saved_auxv, user_auxv, arg4);
1813 task_unlock(current);
1823 up_read(&mm->mmap_sem);
1827 #ifdef CONFIG_CHECKPOINT_RESTORE
1828 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1830 return put_user(me->clear_child_tid, tid_addr);
1833 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1839 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1840 unsigned long, arg4, unsigned long, arg5)
1842 struct task_struct *me = current;
1843 unsigned char comm[sizeof(me->comm)];
1846 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1847 if (error != -ENOSYS)
1852 case PR_SET_PDEATHSIG:
1853 if (!valid_signal(arg2)) {
1857 me->pdeath_signal = arg2;
1859 case PR_GET_PDEATHSIG:
1860 error = put_user(me->pdeath_signal, (int __user *)arg2);
1862 case PR_GET_DUMPABLE:
1863 error = get_dumpable(me->mm);
1865 case PR_SET_DUMPABLE:
1866 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
1870 set_dumpable(me->mm, arg2);
1873 case PR_SET_UNALIGN:
1874 error = SET_UNALIGN_CTL(me, arg2);
1876 case PR_GET_UNALIGN:
1877 error = GET_UNALIGN_CTL(me, arg2);
1880 error = SET_FPEMU_CTL(me, arg2);
1883 error = GET_FPEMU_CTL(me, arg2);
1886 error = SET_FPEXC_CTL(me, arg2);
1889 error = GET_FPEXC_CTL(me, arg2);
1892 error = PR_TIMING_STATISTICAL;
1895 if (arg2 != PR_TIMING_STATISTICAL)
1899 comm[sizeof(me->comm) - 1] = 0;
1900 if (strncpy_from_user(comm, (char __user *)arg2,
1901 sizeof(me->comm) - 1) < 0)
1903 set_task_comm(me, comm);
1904 proc_comm_connector(me);
1907 get_task_comm(comm, me);
1908 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
1912 error = GET_ENDIAN(me, arg2);
1915 error = SET_ENDIAN(me, arg2);
1917 case PR_GET_SECCOMP:
1918 error = prctl_get_seccomp();
1920 case PR_SET_SECCOMP:
1921 error = prctl_set_seccomp(arg2, (char __user *)arg3);
1924 error = GET_TSC_CTL(arg2);
1927 error = SET_TSC_CTL(arg2);
1929 case PR_TASK_PERF_EVENTS_DISABLE:
1930 error = perf_event_task_disable();
1932 case PR_TASK_PERF_EVENTS_ENABLE:
1933 error = perf_event_task_enable();
1935 case PR_GET_TIMERSLACK:
1936 error = current->timer_slack_ns;
1938 case PR_SET_TIMERSLACK:
1940 current->timer_slack_ns =
1941 current->default_timer_slack_ns;
1943 current->timer_slack_ns = arg2;
1949 case PR_MCE_KILL_CLEAR:
1952 current->flags &= ~PF_MCE_PROCESS;
1954 case PR_MCE_KILL_SET:
1955 current->flags |= PF_MCE_PROCESS;
1956 if (arg3 == PR_MCE_KILL_EARLY)
1957 current->flags |= PF_MCE_EARLY;
1958 else if (arg3 == PR_MCE_KILL_LATE)
1959 current->flags &= ~PF_MCE_EARLY;
1960 else if (arg3 == PR_MCE_KILL_DEFAULT)
1962 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1970 case PR_MCE_KILL_GET:
1971 if (arg2 | arg3 | arg4 | arg5)
1973 if (current->flags & PF_MCE_PROCESS)
1974 error = (current->flags & PF_MCE_EARLY) ?
1975 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1977 error = PR_MCE_KILL_DEFAULT;
1980 error = prctl_set_mm(arg2, arg3, arg4, arg5);
1982 case PR_GET_TID_ADDRESS:
1983 error = prctl_get_tid_address(me, (int __user **)arg2);
1985 case PR_SET_CHILD_SUBREAPER:
1986 me->signal->is_child_subreaper = !!arg2;
1988 case PR_GET_CHILD_SUBREAPER:
1989 error = put_user(me->signal->is_child_subreaper,
1990 (int __user *)arg2);
1992 case PR_SET_NO_NEW_PRIVS:
1993 if (arg2 != 1 || arg3 || arg4 || arg5)
1996 current->no_new_privs = 1;
1998 case PR_GET_NO_NEW_PRIVS:
1999 if (arg2 || arg3 || arg4 || arg5)
2001 return current->no_new_privs ? 1 : 0;
2009 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2010 struct getcpu_cache __user *, unused)
2013 int cpu = raw_smp_processor_id();
2015 err |= put_user(cpu, cpup);
2017 err |= put_user(cpu_to_node(cpu), nodep);
2018 return err ? -EFAULT : 0;
2022 * do_sysinfo - fill in sysinfo struct
2023 * @info: pointer to buffer to fill
2025 static int do_sysinfo(struct sysinfo *info)
2027 unsigned long mem_total, sav_total;
2028 unsigned int mem_unit, bitcount;
2031 memset(info, 0, sizeof(struct sysinfo));
2033 get_monotonic_boottime(&tp);
2034 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2036 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2038 info->procs = nr_threads;
2044 * If the sum of all the available memory (i.e. ram + swap)
2045 * is less than can be stored in a 32 bit unsigned long then
2046 * we can be binary compatible with 2.2.x kernels. If not,
2047 * well, in that case 2.2.x was broken anyways...
2049 * -Erik Andersen <andersee@debian.org>
2052 mem_total = info->totalram + info->totalswap;
2053 if (mem_total < info->totalram || mem_total < info->totalswap)
2056 mem_unit = info->mem_unit;
2057 while (mem_unit > 1) {
2060 sav_total = mem_total;
2062 if (mem_total < sav_total)
2067 * If mem_total did not overflow, multiply all memory values by
2068 * info->mem_unit and set it to 1. This leaves things compatible
2069 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2074 info->totalram <<= bitcount;
2075 info->freeram <<= bitcount;
2076 info->sharedram <<= bitcount;
2077 info->bufferram <<= bitcount;
2078 info->totalswap <<= bitcount;
2079 info->freeswap <<= bitcount;
2080 info->totalhigh <<= bitcount;
2081 info->freehigh <<= bitcount;
2087 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2093 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2099 #ifdef CONFIG_COMPAT
2100 struct compat_sysinfo {
2114 char _f[20-2*sizeof(u32)-sizeof(int)];
2117 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2123 /* Check to see if any memory value is too large for 32-bit and scale
2126 if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2129 while (s.mem_unit < PAGE_SIZE) {
2134 s.totalram >>= bitcount;
2135 s.freeram >>= bitcount;
2136 s.sharedram >>= bitcount;
2137 s.bufferram >>= bitcount;
2138 s.totalswap >>= bitcount;
2139 s.freeswap >>= bitcount;
2140 s.totalhigh >>= bitcount;
2141 s.freehigh >>= bitcount;
2144 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2145 __put_user(s.uptime, &info->uptime) ||
2146 __put_user(s.loads[0], &info->loads[0]) ||
2147 __put_user(s.loads[1], &info->loads[1]) ||
2148 __put_user(s.loads[2], &info->loads[2]) ||
2149 __put_user(s.totalram, &info->totalram) ||
2150 __put_user(s.freeram, &info->freeram) ||
2151 __put_user(s.sharedram, &info->sharedram) ||
2152 __put_user(s.bufferram, &info->bufferram) ||
2153 __put_user(s.totalswap, &info->totalswap) ||
2154 __put_user(s.freeswap, &info->freeswap) ||
2155 __put_user(s.procs, &info->procs) ||
2156 __put_user(s.totalhigh, &info->totalhigh) ||
2157 __put_user(s.freehigh, &info->freehigh) ||
2158 __put_user(s.mem_unit, &info->mem_unit))
2163 #endif /* CONFIG_COMPAT */