1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/export.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/kmod.h>
18 #include <linux/perf_event.h>
19 #include <linux/resource.h>
20 #include <linux/kernel.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 #include <linux/syscall_user_dispatch.h>
47 #include <linux/compat.h>
48 #include <linux/syscalls.h>
49 #include <linux/kprobes.h>
50 #include <linux/user_namespace.h>
51 #include <linux/time_namespace.h>
52 #include <linux/binfmts.h>
54 #include <linux/sched.h>
55 #include <linux/sched/autogroup.h>
56 #include <linux/sched/loadavg.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/mm.h>
59 #include <linux/sched/coredump.h>
60 #include <linux/sched/task.h>
61 #include <linux/sched/cputime.h>
62 #include <linux/rcupdate.h>
63 #include <linux/uidgid.h>
64 #include <linux/cred.h>
66 #include <linux/nospec.h>
68 #include <linux/kmsg_dump.h>
69 /* Move somewhere else to avoid recompiling? */
70 #include <generated/utsrelease.h>
72 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
78 #ifndef SET_UNALIGN_CTL
79 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
81 #ifndef GET_UNALIGN_CTL
82 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
85 # define SET_FPEMU_CTL(a, b) (-EINVAL)
88 # define GET_FPEMU_CTL(a, b) (-EINVAL)
91 # define SET_FPEXC_CTL(a, b) (-EINVAL)
94 # define GET_FPEXC_CTL(a, b) (-EINVAL)
97 # define GET_ENDIAN(a, b) (-EINVAL)
100 # define SET_ENDIAN(a, b) (-EINVAL)
103 # define GET_TSC_CTL(a) (-EINVAL)
106 # define SET_TSC_CTL(a) (-EINVAL)
109 # define GET_FP_MODE(a) (-EINVAL)
112 # define SET_FP_MODE(a,b) (-EINVAL)
115 # define SVE_SET_VL(a) (-EINVAL)
118 # define SVE_GET_VL() (-EINVAL)
121 # define SME_SET_VL(a) (-EINVAL)
124 # define SME_GET_VL() (-EINVAL)
126 #ifndef PAC_RESET_KEYS
127 # define PAC_RESET_KEYS(a, b) (-EINVAL)
129 #ifndef PAC_SET_ENABLED_KEYS
130 # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
132 #ifndef PAC_GET_ENABLED_KEYS
133 # define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
135 #ifndef SET_TAGGED_ADDR_CTRL
136 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
138 #ifndef GET_TAGGED_ADDR_CTRL
139 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
143 * this is where the system-wide overflow UID and GID are defined, for
144 * architectures that now have 32-bit UID/GID but didn't in the past
147 int overflowuid = DEFAULT_OVERFLOWUID;
148 int overflowgid = DEFAULT_OVERFLOWGID;
150 EXPORT_SYMBOL(overflowuid);
151 EXPORT_SYMBOL(overflowgid);
154 * the same as above, but for filesystems which can only store a 16-bit
155 * UID and GID. as such, this is needed on all architectures
158 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
159 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
161 EXPORT_SYMBOL(fs_overflowuid);
162 EXPORT_SYMBOL(fs_overflowgid);
165 * Returns true if current's euid is same as p's uid or euid,
166 * or has CAP_SYS_NICE to p's user_ns.
168 * Called with rcu_read_lock, creds are safe
170 static bool set_one_prio_perm(struct task_struct *p)
172 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
174 if (uid_eq(pcred->uid, cred->euid) ||
175 uid_eq(pcred->euid, cred->euid))
177 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
183 * set the priority of a task
184 * - the caller must hold the RCU read lock
186 static int set_one_prio(struct task_struct *p, int niceval, int error)
190 if (!set_one_prio_perm(p)) {
194 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
198 no_nice = security_task_setnice(p, niceval);
205 set_user_nice(p, niceval);
210 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
212 struct task_struct *g, *p;
213 struct user_struct *user;
214 const struct cred *cred = current_cred();
219 if (which > PRIO_USER || which < PRIO_PROCESS)
222 /* normalize: avoid signed division (rounding problems) */
224 if (niceval < MIN_NICE)
226 if (niceval > MAX_NICE)
233 p = find_task_by_vpid(who);
237 error = set_one_prio(p, niceval, error);
241 pgrp = find_vpid(who);
243 pgrp = task_pgrp(current);
244 read_lock(&tasklist_lock);
245 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
246 error = set_one_prio(p, niceval, error);
247 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
248 read_unlock(&tasklist_lock);
251 uid = make_kuid(cred->user_ns, who);
255 else if (!uid_eq(uid, cred->uid)) {
256 user = find_user(uid);
258 goto out_unlock; /* No processes for this user */
260 for_each_process_thread(g, p) {
261 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
262 error = set_one_prio(p, niceval, error);
264 if (!uid_eq(uid, cred->uid))
265 free_uid(user); /* For find_user() */
275 * Ugh. To avoid negative return values, "getpriority()" will
276 * not return the normal nice-value, but a negated value that
277 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
278 * to stay compatible.
280 SYSCALL_DEFINE2(getpriority, int, which, int, who)
282 struct task_struct *g, *p;
283 struct user_struct *user;
284 const struct cred *cred = current_cred();
285 long niceval, retval = -ESRCH;
289 if (which > PRIO_USER || which < PRIO_PROCESS)
296 p = find_task_by_vpid(who);
300 niceval = nice_to_rlimit(task_nice(p));
301 if (niceval > retval)
307 pgrp = find_vpid(who);
309 pgrp = task_pgrp(current);
310 read_lock(&tasklist_lock);
311 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
312 niceval = nice_to_rlimit(task_nice(p));
313 if (niceval > retval)
315 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
316 read_unlock(&tasklist_lock);
319 uid = make_kuid(cred->user_ns, who);
323 else if (!uid_eq(uid, cred->uid)) {
324 user = find_user(uid);
326 goto out_unlock; /* No processes for this user */
328 for_each_process_thread(g, p) {
329 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
330 niceval = nice_to_rlimit(task_nice(p));
331 if (niceval > retval)
335 if (!uid_eq(uid, cred->uid))
336 free_uid(user); /* for find_user() */
346 * Unprivileged users may change the real gid to the effective gid
347 * or vice versa. (BSD-style)
349 * If you set the real gid at all, or set the effective gid to a value not
350 * equal to the real gid, then the saved gid is set to the new effective gid.
352 * This makes it possible for a setgid program to completely drop its
353 * privileges, which is often a useful assertion to make when you are doing
354 * a security audit over a program.
356 * The general idea is that a program which uses just setregid() will be
357 * 100% compatible with BSD. A program which uses just setgid() will be
358 * 100% compatible with POSIX with saved IDs.
360 * SMP: There are not races, the GIDs are checked only by filesystem
361 * operations (as far as semantic preservation is concerned).
363 #ifdef CONFIG_MULTIUSER
364 long __sys_setregid(gid_t rgid, gid_t egid)
366 struct user_namespace *ns = current_user_ns();
367 const struct cred *old;
372 krgid = make_kgid(ns, rgid);
373 kegid = make_kgid(ns, egid);
375 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
377 if ((egid != (gid_t) -1) && !gid_valid(kegid))
380 new = prepare_creds();
383 old = current_cred();
386 if (rgid != (gid_t) -1) {
387 if (gid_eq(old->gid, krgid) ||
388 gid_eq(old->egid, krgid) ||
389 ns_capable_setid(old->user_ns, CAP_SETGID))
394 if (egid != (gid_t) -1) {
395 if (gid_eq(old->gid, kegid) ||
396 gid_eq(old->egid, kegid) ||
397 gid_eq(old->sgid, kegid) ||
398 ns_capable_setid(old->user_ns, CAP_SETGID))
404 if (rgid != (gid_t) -1 ||
405 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
406 new->sgid = new->egid;
407 new->fsgid = new->egid;
409 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
413 return commit_creds(new);
420 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
422 return __sys_setregid(rgid, egid);
426 * setgid() is implemented like SysV w/ SAVED_IDS
428 * SMP: Same implicit races as above.
430 long __sys_setgid(gid_t gid)
432 struct user_namespace *ns = current_user_ns();
433 const struct cred *old;
438 kgid = make_kgid(ns, gid);
439 if (!gid_valid(kgid))
442 new = prepare_creds();
445 old = current_cred();
448 if (ns_capable_setid(old->user_ns, CAP_SETGID))
449 new->gid = new->egid = new->sgid = new->fsgid = kgid;
450 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
451 new->egid = new->fsgid = kgid;
455 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
459 return commit_creds(new);
466 SYSCALL_DEFINE1(setgid, gid_t, gid)
468 return __sys_setgid(gid);
472 * change the user struct in a credentials set to match the new UID
474 static int set_user(struct cred *new)
476 struct user_struct *new_user;
478 new_user = alloc_uid(new->uid);
483 new->user = new_user;
487 static void flag_nproc_exceeded(struct cred *new)
489 if (new->ucounts == current_ucounts())
493 * We don't fail in case of NPROC limit excess here because too many
494 * poorly written programs don't check set*uid() return code, assuming
495 * it never fails if called by root. We may still enforce NPROC limit
496 * for programs doing set*uid()+execve() by harmlessly deferring the
497 * failure to the execve() stage.
499 if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
500 new->user != INIT_USER)
501 current->flags |= PF_NPROC_EXCEEDED;
503 current->flags &= ~PF_NPROC_EXCEEDED;
507 * Unprivileged users may change the real uid to the effective uid
508 * or vice versa. (BSD-style)
510 * If you set the real uid at all, or set the effective uid to a value not
511 * equal to the real uid, then the saved uid is set to the new effective uid.
513 * This makes it possible for a setuid program to completely drop its
514 * privileges, which is often a useful assertion to make when you are doing
515 * a security audit over a program.
517 * The general idea is that a program which uses just setreuid() will be
518 * 100% compatible with BSD. A program which uses just setuid() will be
519 * 100% compatible with POSIX with saved IDs.
521 long __sys_setreuid(uid_t ruid, uid_t euid)
523 struct user_namespace *ns = current_user_ns();
524 const struct cred *old;
529 kruid = make_kuid(ns, ruid);
530 keuid = make_kuid(ns, euid);
532 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
534 if ((euid != (uid_t) -1) && !uid_valid(keuid))
537 new = prepare_creds();
540 old = current_cred();
543 if (ruid != (uid_t) -1) {
545 if (!uid_eq(old->uid, kruid) &&
546 !uid_eq(old->euid, kruid) &&
547 !ns_capable_setid(old->user_ns, CAP_SETUID))
551 if (euid != (uid_t) -1) {
553 if (!uid_eq(old->uid, keuid) &&
554 !uid_eq(old->euid, keuid) &&
555 !uid_eq(old->suid, keuid) &&
556 !ns_capable_setid(old->user_ns, CAP_SETUID))
560 if (!uid_eq(new->uid, old->uid)) {
561 retval = set_user(new);
565 if (ruid != (uid_t) -1 ||
566 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
567 new->suid = new->euid;
568 new->fsuid = new->euid;
570 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
574 retval = set_cred_ucounts(new);
578 flag_nproc_exceeded(new);
579 return commit_creds(new);
586 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
588 return __sys_setreuid(ruid, euid);
592 * setuid() is implemented like SysV with SAVED_IDS
594 * Note that SAVED_ID's is deficient in that a setuid root program
595 * like sendmail, for example, cannot set its uid to be a normal
596 * user and then switch back, because if you're root, setuid() sets
597 * the saved uid too. If you don't like this, blame the bright people
598 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
599 * will allow a root program to temporarily drop privileges and be able to
600 * regain them by swapping the real and effective uid.
602 long __sys_setuid(uid_t uid)
604 struct user_namespace *ns = current_user_ns();
605 const struct cred *old;
610 kuid = make_kuid(ns, uid);
611 if (!uid_valid(kuid))
614 new = prepare_creds();
617 old = current_cred();
620 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
621 new->suid = new->uid = kuid;
622 if (!uid_eq(kuid, old->uid)) {
623 retval = set_user(new);
627 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
631 new->fsuid = new->euid = kuid;
633 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
637 retval = set_cred_ucounts(new);
641 flag_nproc_exceeded(new);
642 return commit_creds(new);
649 SYSCALL_DEFINE1(setuid, uid_t, uid)
651 return __sys_setuid(uid);
656 * This function implements a generic ability to update ruid, euid,
657 * and suid. This allows you to implement the 4.4 compatible seteuid().
659 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
661 struct user_namespace *ns = current_user_ns();
662 const struct cred *old;
665 kuid_t kruid, keuid, ksuid;
667 kruid = make_kuid(ns, ruid);
668 keuid = make_kuid(ns, euid);
669 ksuid = make_kuid(ns, suid);
671 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
674 if ((euid != (uid_t) -1) && !uid_valid(keuid))
677 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
680 new = prepare_creds();
684 old = current_cred();
687 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
688 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
689 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
691 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
692 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
694 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
695 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
699 if (ruid != (uid_t) -1) {
701 if (!uid_eq(kruid, old->uid)) {
702 retval = set_user(new);
707 if (euid != (uid_t) -1)
709 if (suid != (uid_t) -1)
711 new->fsuid = new->euid;
713 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
717 retval = set_cred_ucounts(new);
721 flag_nproc_exceeded(new);
722 return commit_creds(new);
729 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
731 return __sys_setresuid(ruid, euid, suid);
734 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
736 const struct cred *cred = current_cred();
738 uid_t ruid, euid, suid;
740 ruid = from_kuid_munged(cred->user_ns, cred->uid);
741 euid = from_kuid_munged(cred->user_ns, cred->euid);
742 suid = from_kuid_munged(cred->user_ns, cred->suid);
744 retval = put_user(ruid, ruidp);
746 retval = put_user(euid, euidp);
748 return put_user(suid, suidp);
754 * Same as above, but for rgid, egid, sgid.
756 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
758 struct user_namespace *ns = current_user_ns();
759 const struct cred *old;
762 kgid_t krgid, kegid, ksgid;
764 krgid = make_kgid(ns, rgid);
765 kegid = make_kgid(ns, egid);
766 ksgid = make_kgid(ns, sgid);
768 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
770 if ((egid != (gid_t) -1) && !gid_valid(kegid))
772 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
775 new = prepare_creds();
778 old = current_cred();
781 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
782 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
783 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
785 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
786 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
788 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
789 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
793 if (rgid != (gid_t) -1)
795 if (egid != (gid_t) -1)
797 if (sgid != (gid_t) -1)
799 new->fsgid = new->egid;
801 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
805 return commit_creds(new);
812 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
814 return __sys_setresgid(rgid, egid, sgid);
817 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
819 const struct cred *cred = current_cred();
821 gid_t rgid, egid, sgid;
823 rgid = from_kgid_munged(cred->user_ns, cred->gid);
824 egid = from_kgid_munged(cred->user_ns, cred->egid);
825 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
827 retval = put_user(rgid, rgidp);
829 retval = put_user(egid, egidp);
831 retval = put_user(sgid, sgidp);
839 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
840 * is used for "access()" and for the NFS daemon (letting nfsd stay at
841 * whatever uid it wants to). It normally shadows "euid", except when
842 * explicitly set by setfsuid() or for access..
844 long __sys_setfsuid(uid_t uid)
846 const struct cred *old;
851 old = current_cred();
852 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
854 kuid = make_kuid(old->user_ns, uid);
855 if (!uid_valid(kuid))
858 new = prepare_creds();
862 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
863 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
864 ns_capable_setid(old->user_ns, CAP_SETUID)) {
865 if (!uid_eq(kuid, old->fsuid)) {
867 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
880 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
882 return __sys_setfsuid(uid);
886 * Samma på svenska..
888 long __sys_setfsgid(gid_t gid)
890 const struct cred *old;
895 old = current_cred();
896 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
898 kgid = make_kgid(old->user_ns, gid);
899 if (!gid_valid(kgid))
902 new = prepare_creds();
906 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
907 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
908 ns_capable_setid(old->user_ns, CAP_SETGID)) {
909 if (!gid_eq(kgid, old->fsgid)) {
911 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
924 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
926 return __sys_setfsgid(gid);
928 #endif /* CONFIG_MULTIUSER */
931 * sys_getpid - return the thread group id of the current process
933 * Note, despite the name, this returns the tgid not the pid. The tgid and
934 * the pid are identical unless CLONE_THREAD was specified on clone() in
935 * which case the tgid is the same in all threads of the same group.
937 * This is SMP safe as current->tgid does not change.
939 SYSCALL_DEFINE0(getpid)
941 return task_tgid_vnr(current);
944 /* Thread ID - the internal kernel "pid" */
945 SYSCALL_DEFINE0(gettid)
947 return task_pid_vnr(current);
951 * Accessing ->real_parent is not SMP-safe, it could
952 * change from under us. However, we can use a stale
953 * value of ->real_parent under rcu_read_lock(), see
954 * release_task()->call_rcu(delayed_put_task_struct).
956 SYSCALL_DEFINE0(getppid)
961 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
967 SYSCALL_DEFINE0(getuid)
969 /* Only we change this so SMP safe */
970 return from_kuid_munged(current_user_ns(), current_uid());
973 SYSCALL_DEFINE0(geteuid)
975 /* Only we change this so SMP safe */
976 return from_kuid_munged(current_user_ns(), current_euid());
979 SYSCALL_DEFINE0(getgid)
981 /* Only we change this so SMP safe */
982 return from_kgid_munged(current_user_ns(), current_gid());
985 SYSCALL_DEFINE0(getegid)
987 /* Only we change this so SMP safe */
988 return from_kgid_munged(current_user_ns(), current_egid());
991 static void do_sys_times(struct tms *tms)
993 u64 tgutime, tgstime, cutime, cstime;
995 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
996 cutime = current->signal->cutime;
997 cstime = current->signal->cstime;
998 tms->tms_utime = nsec_to_clock_t(tgutime);
999 tms->tms_stime = nsec_to_clock_t(tgstime);
1000 tms->tms_cutime = nsec_to_clock_t(cutime);
1001 tms->tms_cstime = nsec_to_clock_t(cstime);
1004 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1010 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1013 force_successful_syscall_return();
1014 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1017 #ifdef CONFIG_COMPAT
1018 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1020 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1023 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1027 struct compat_tms tmp;
1030 /* Convert our struct tms to the compat version. */
1031 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1032 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1033 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1034 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1035 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1038 force_successful_syscall_return();
1039 return compat_jiffies_to_clock_t(jiffies);
1044 * This needs some heavy checking ...
1045 * I just haven't the stomach for it. I also don't fully
1046 * understand sessions/pgrp etc. Let somebody who does explain it.
1048 * OK, I think I have the protection semantics right.... this is really
1049 * only important on a multi-user system anyway, to make sure one user
1050 * can't send a signal to a process owned by another. -TYT, 12/12/91
1052 * !PF_FORKNOEXEC check to conform completely to POSIX.
1054 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1056 struct task_struct *p;
1057 struct task_struct *group_leader = current->group_leader;
1062 pid = task_pid_vnr(group_leader);
1069 /* From this point forward we keep holding onto the tasklist lock
1070 * so that our parent does not change from under us. -DaveM
1072 write_lock_irq(&tasklist_lock);
1075 p = find_task_by_vpid(pid);
1080 if (!thread_group_leader(p))
1083 if (same_thread_group(p->real_parent, group_leader)) {
1085 if (task_session(p) != task_session(group_leader))
1088 if (!(p->flags & PF_FORKNOEXEC))
1092 if (p != group_leader)
1097 if (p->signal->leader)
1102 struct task_struct *g;
1104 pgrp = find_vpid(pgid);
1105 g = pid_task(pgrp, PIDTYPE_PGID);
1106 if (!g || task_session(g) != task_session(group_leader))
1110 err = security_task_setpgid(p, pgid);
1114 if (task_pgrp(p) != pgrp)
1115 change_pid(p, PIDTYPE_PGID, pgrp);
1119 /* All paths lead to here, thus we are safe. -DaveM */
1120 write_unlock_irq(&tasklist_lock);
1125 static int do_getpgid(pid_t pid)
1127 struct task_struct *p;
1133 grp = task_pgrp(current);
1136 p = find_task_by_vpid(pid);
1143 retval = security_task_getpgid(p);
1147 retval = pid_vnr(grp);
1153 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1155 return do_getpgid(pid);
1158 #ifdef __ARCH_WANT_SYS_GETPGRP
1160 SYSCALL_DEFINE0(getpgrp)
1162 return do_getpgid(0);
1167 SYSCALL_DEFINE1(getsid, pid_t, pid)
1169 struct task_struct *p;
1175 sid = task_session(current);
1178 p = find_task_by_vpid(pid);
1181 sid = task_session(p);
1185 retval = security_task_getsid(p);
1189 retval = pid_vnr(sid);
1195 static void set_special_pids(struct pid *pid)
1197 struct task_struct *curr = current->group_leader;
1199 if (task_session(curr) != pid)
1200 change_pid(curr, PIDTYPE_SID, pid);
1202 if (task_pgrp(curr) != pid)
1203 change_pid(curr, PIDTYPE_PGID, pid);
1206 int ksys_setsid(void)
1208 struct task_struct *group_leader = current->group_leader;
1209 struct pid *sid = task_pid(group_leader);
1210 pid_t session = pid_vnr(sid);
1213 write_lock_irq(&tasklist_lock);
1214 /* Fail if I am already a session leader */
1215 if (group_leader->signal->leader)
1218 /* Fail if a process group id already exists that equals the
1219 * proposed session id.
1221 if (pid_task(sid, PIDTYPE_PGID))
1224 group_leader->signal->leader = 1;
1225 set_special_pids(sid);
1227 proc_clear_tty(group_leader);
1231 write_unlock_irq(&tasklist_lock);
1233 proc_sid_connector(group_leader);
1234 sched_autogroup_create_attach(group_leader);
1239 SYSCALL_DEFINE0(setsid)
1241 return ksys_setsid();
1244 DECLARE_RWSEM(uts_sem);
1246 #ifdef COMPAT_UTS_MACHINE
1247 #define override_architecture(name) \
1248 (personality(current->personality) == PER_LINUX32 && \
1249 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1250 sizeof(COMPAT_UTS_MACHINE)))
1252 #define override_architecture(name) 0
1256 * Work around broken programs that cannot handle "Linux 3.0".
1257 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1258 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1261 static int override_release(char __user *release, size_t len)
1265 if (current->personality & UNAME26) {
1266 const char *rest = UTS_RELEASE;
1267 char buf[65] = { 0 };
1273 if (*rest == '.' && ++ndots >= 3)
1275 if (!isdigit(*rest) && *rest != '.')
1279 v = LINUX_VERSION_PATCHLEVEL + 60;
1280 copy = clamp_t(size_t, len, 1, sizeof(buf));
1281 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1282 ret = copy_to_user(release, buf, copy + 1);
1287 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1289 struct new_utsname tmp;
1291 down_read(&uts_sem);
1292 memcpy(&tmp, utsname(), sizeof(tmp));
1294 if (copy_to_user(name, &tmp, sizeof(tmp)))
1297 if (override_release(name->release, sizeof(name->release)))
1299 if (override_architecture(name))
1304 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1308 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1310 struct old_utsname tmp;
1315 down_read(&uts_sem);
1316 memcpy(&tmp, utsname(), sizeof(tmp));
1318 if (copy_to_user(name, &tmp, sizeof(tmp)))
1321 if (override_release(name->release, sizeof(name->release)))
1323 if (override_architecture(name))
1328 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1330 struct oldold_utsname tmp;
1335 memset(&tmp, 0, sizeof(tmp));
1337 down_read(&uts_sem);
1338 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1339 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1340 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1341 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1342 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1344 if (copy_to_user(name, &tmp, sizeof(tmp)))
1347 if (override_architecture(name))
1349 if (override_release(name->release, sizeof(name->release)))
1355 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1358 char tmp[__NEW_UTS_LEN];
1360 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1363 if (len < 0 || len > __NEW_UTS_LEN)
1366 if (!copy_from_user(tmp, name, len)) {
1367 struct new_utsname *u;
1369 down_write(&uts_sem);
1371 memcpy(u->nodename, tmp, len);
1372 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1374 uts_proc_notify(UTS_PROC_HOSTNAME);
1380 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1382 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1385 struct new_utsname *u;
1386 char tmp[__NEW_UTS_LEN + 1];
1390 down_read(&uts_sem);
1392 i = 1 + strlen(u->nodename);
1395 memcpy(tmp, u->nodename, i);
1397 if (copy_to_user(name, tmp, i))
1405 * Only setdomainname; getdomainname can be implemented by calling
1408 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1411 char tmp[__NEW_UTS_LEN];
1413 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1415 if (len < 0 || len > __NEW_UTS_LEN)
1419 if (!copy_from_user(tmp, name, len)) {
1420 struct new_utsname *u;
1422 down_write(&uts_sem);
1424 memcpy(u->domainname, tmp, len);
1425 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1427 uts_proc_notify(UTS_PROC_DOMAINNAME);
1433 /* make sure you are allowed to change @tsk limits before calling this */
1434 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1435 struct rlimit *new_rlim, struct rlimit *old_rlim)
1437 struct rlimit *rlim;
1440 if (resource >= RLIM_NLIMITS)
1443 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1445 if (resource == RLIMIT_NOFILE &&
1446 new_rlim->rlim_max > sysctl_nr_open)
1450 /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1451 rlim = tsk->signal->rlim + resource;
1452 task_lock(tsk->group_leader);
1455 * Keep the capable check against init_user_ns until cgroups can
1456 * contain all limits.
1458 if (new_rlim->rlim_max > rlim->rlim_max &&
1459 !capable(CAP_SYS_RESOURCE))
1462 retval = security_task_setrlimit(tsk, resource, new_rlim);
1470 task_unlock(tsk->group_leader);
1473 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1474 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1475 * ignores the rlimit.
1477 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1478 new_rlim->rlim_cur != RLIM_INFINITY &&
1479 IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1481 * update_rlimit_cpu can fail if the task is exiting, but there
1482 * may be other tasks in the thread group that are not exiting,
1483 * and they need their cpu timers adjusted.
1485 * The group_leader is the last task to be released, so if we
1486 * cannot update_rlimit_cpu on it, then the entire process is
1487 * exiting and we do not need to update at all.
1489 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1495 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1497 struct rlimit value;
1500 ret = do_prlimit(current, resource, NULL, &value);
1502 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1507 #ifdef CONFIG_COMPAT
1509 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1510 struct compat_rlimit __user *, rlim)
1513 struct compat_rlimit r32;
1515 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1518 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1519 r.rlim_cur = RLIM_INFINITY;
1521 r.rlim_cur = r32.rlim_cur;
1522 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1523 r.rlim_max = RLIM_INFINITY;
1525 r.rlim_max = r32.rlim_max;
1526 return do_prlimit(current, resource, &r, NULL);
1529 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1530 struct compat_rlimit __user *, rlim)
1535 ret = do_prlimit(current, resource, NULL, &r);
1537 struct compat_rlimit r32;
1538 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1539 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1541 r32.rlim_cur = r.rlim_cur;
1542 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1543 r32.rlim_max = COMPAT_RLIM_INFINITY;
1545 r32.rlim_max = r.rlim_max;
1547 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1555 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1558 * Back compatibility for getrlimit. Needed for some apps.
1560 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1561 struct rlimit __user *, rlim)
1564 if (resource >= RLIM_NLIMITS)
1567 resource = array_index_nospec(resource, RLIM_NLIMITS);
1568 task_lock(current->group_leader);
1569 x = current->signal->rlim[resource];
1570 task_unlock(current->group_leader);
1571 if (x.rlim_cur > 0x7FFFFFFF)
1572 x.rlim_cur = 0x7FFFFFFF;
1573 if (x.rlim_max > 0x7FFFFFFF)
1574 x.rlim_max = 0x7FFFFFFF;
1575 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1578 #ifdef CONFIG_COMPAT
1579 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1580 struct compat_rlimit __user *, rlim)
1584 if (resource >= RLIM_NLIMITS)
1587 resource = array_index_nospec(resource, RLIM_NLIMITS);
1588 task_lock(current->group_leader);
1589 r = current->signal->rlim[resource];
1590 task_unlock(current->group_leader);
1591 if (r.rlim_cur > 0x7FFFFFFF)
1592 r.rlim_cur = 0x7FFFFFFF;
1593 if (r.rlim_max > 0x7FFFFFFF)
1594 r.rlim_max = 0x7FFFFFFF;
1596 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1597 put_user(r.rlim_max, &rlim->rlim_max))
1605 static inline bool rlim64_is_infinity(__u64 rlim64)
1607 #if BITS_PER_LONG < 64
1608 return rlim64 >= ULONG_MAX;
1610 return rlim64 == RLIM64_INFINITY;
1614 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1616 if (rlim->rlim_cur == RLIM_INFINITY)
1617 rlim64->rlim_cur = RLIM64_INFINITY;
1619 rlim64->rlim_cur = rlim->rlim_cur;
1620 if (rlim->rlim_max == RLIM_INFINITY)
1621 rlim64->rlim_max = RLIM64_INFINITY;
1623 rlim64->rlim_max = rlim->rlim_max;
1626 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1628 if (rlim64_is_infinity(rlim64->rlim_cur))
1629 rlim->rlim_cur = RLIM_INFINITY;
1631 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1632 if (rlim64_is_infinity(rlim64->rlim_max))
1633 rlim->rlim_max = RLIM_INFINITY;
1635 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1638 /* rcu lock must be held */
1639 static int check_prlimit_permission(struct task_struct *task,
1642 const struct cred *cred = current_cred(), *tcred;
1645 if (current == task)
1648 tcred = __task_cred(task);
1649 id_match = (uid_eq(cred->uid, tcred->euid) &&
1650 uid_eq(cred->uid, tcred->suid) &&
1651 uid_eq(cred->uid, tcred->uid) &&
1652 gid_eq(cred->gid, tcred->egid) &&
1653 gid_eq(cred->gid, tcred->sgid) &&
1654 gid_eq(cred->gid, tcred->gid));
1655 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1658 return security_task_prlimit(cred, tcred, flags);
1661 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1662 const struct rlimit64 __user *, new_rlim,
1663 struct rlimit64 __user *, old_rlim)
1665 struct rlimit64 old64, new64;
1666 struct rlimit old, new;
1667 struct task_struct *tsk;
1668 unsigned int checkflags = 0;
1672 checkflags |= LSM_PRLIMIT_READ;
1675 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1677 rlim64_to_rlim(&new64, &new);
1678 checkflags |= LSM_PRLIMIT_WRITE;
1682 tsk = pid ? find_task_by_vpid(pid) : current;
1687 ret = check_prlimit_permission(tsk, checkflags);
1692 get_task_struct(tsk);
1695 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1696 old_rlim ? &old : NULL);
1698 if (!ret && old_rlim) {
1699 rlim_to_rlim64(&old, &old64);
1700 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1704 put_task_struct(tsk);
1708 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1710 struct rlimit new_rlim;
1712 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1714 return do_prlimit(current, resource, &new_rlim, NULL);
1718 * It would make sense to put struct rusage in the task_struct,
1719 * except that would make the task_struct be *really big*. After
1720 * task_struct gets moved into malloc'ed memory, it would
1721 * make sense to do this. It will make moving the rest of the information
1722 * a lot simpler! (Which we're not doing right now because we're not
1723 * measuring them yet).
1725 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1726 * races with threads incrementing their own counters. But since word
1727 * reads are atomic, we either get new values or old values and we don't
1728 * care which for the sums. We always take the siglock to protect reading
1729 * the c* fields from p->signal from races with exit.c updating those
1730 * fields when reaping, so a sample either gets all the additions of a
1731 * given child after it's reaped, or none so this sample is before reaping.
1734 * We need to take the siglock for CHILDEREN, SELF and BOTH
1735 * for the cases current multithreaded, non-current single threaded
1736 * non-current multithreaded. Thread traversal is now safe with
1738 * Strictly speaking, we donot need to take the siglock if we are current and
1739 * single threaded, as no one else can take our signal_struct away, no one
1740 * else can reap the children to update signal->c* counters, and no one else
1741 * can race with the signal-> fields. If we do not take any lock, the
1742 * signal-> fields could be read out of order while another thread was just
1743 * exiting. So we should place a read memory barrier when we avoid the lock.
1744 * On the writer side, write memory barrier is implied in __exit_signal
1745 * as __exit_signal releases the siglock spinlock after updating the signal->
1746 * fields. But we don't do this yet to keep things simple.
1750 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1752 r->ru_nvcsw += t->nvcsw;
1753 r->ru_nivcsw += t->nivcsw;
1754 r->ru_minflt += t->min_flt;
1755 r->ru_majflt += t->maj_flt;
1756 r->ru_inblock += task_io_get_inblock(t);
1757 r->ru_oublock += task_io_get_oublock(t);
1760 void getrusage(struct task_struct *p, int who, struct rusage *r)
1762 struct task_struct *t;
1763 unsigned long flags;
1764 u64 tgutime, tgstime, utime, stime;
1765 unsigned long maxrss = 0;
1767 memset((char *)r, 0, sizeof (*r));
1770 if (who == RUSAGE_THREAD) {
1771 task_cputime_adjusted(current, &utime, &stime);
1772 accumulate_thread_rusage(p, r);
1773 maxrss = p->signal->maxrss;
1777 if (!lock_task_sighand(p, &flags))
1782 case RUSAGE_CHILDREN:
1783 utime = p->signal->cutime;
1784 stime = p->signal->cstime;
1785 r->ru_nvcsw = p->signal->cnvcsw;
1786 r->ru_nivcsw = p->signal->cnivcsw;
1787 r->ru_minflt = p->signal->cmin_flt;
1788 r->ru_majflt = p->signal->cmaj_flt;
1789 r->ru_inblock = p->signal->cinblock;
1790 r->ru_oublock = p->signal->coublock;
1791 maxrss = p->signal->cmaxrss;
1793 if (who == RUSAGE_CHILDREN)
1798 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1801 r->ru_nvcsw += p->signal->nvcsw;
1802 r->ru_nivcsw += p->signal->nivcsw;
1803 r->ru_minflt += p->signal->min_flt;
1804 r->ru_majflt += p->signal->maj_flt;
1805 r->ru_inblock += p->signal->inblock;
1806 r->ru_oublock += p->signal->oublock;
1807 if (maxrss < p->signal->maxrss)
1808 maxrss = p->signal->maxrss;
1811 accumulate_thread_rusage(t, r);
1812 } while_each_thread(p, t);
1818 unlock_task_sighand(p, &flags);
1821 r->ru_utime = ns_to_kernel_old_timeval(utime);
1822 r->ru_stime = ns_to_kernel_old_timeval(stime);
1824 if (who != RUSAGE_CHILDREN) {
1825 struct mm_struct *mm = get_task_mm(p);
1828 setmax_mm_hiwater_rss(&maxrss, mm);
1832 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1835 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1839 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1840 who != RUSAGE_THREAD)
1843 getrusage(current, who, &r);
1844 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1847 #ifdef CONFIG_COMPAT
1848 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1852 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1853 who != RUSAGE_THREAD)
1856 getrusage(current, who, &r);
1857 return put_compat_rusage(&r, ru);
1861 SYSCALL_DEFINE1(umask, int, mask)
1863 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1867 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1870 struct inode *inode;
1877 inode = file_inode(exe.file);
1880 * Because the original mm->exe_file points to executable file, make
1881 * sure that this one is executable as well, to avoid breaking an
1885 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1888 err = file_permission(exe.file, MAY_EXEC);
1892 err = replace_mm_exe_file(mm, exe.file);
1899 * Check arithmetic relations of passed addresses.
1901 * WARNING: we don't require any capability here so be very careful
1902 * in what is allowed for modification from userspace.
1904 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1906 unsigned long mmap_max_addr = TASK_SIZE;
1907 int error = -EINVAL, i;
1909 static const unsigned char offsets[] = {
1910 offsetof(struct prctl_mm_map, start_code),
1911 offsetof(struct prctl_mm_map, end_code),
1912 offsetof(struct prctl_mm_map, start_data),
1913 offsetof(struct prctl_mm_map, end_data),
1914 offsetof(struct prctl_mm_map, start_brk),
1915 offsetof(struct prctl_mm_map, brk),
1916 offsetof(struct prctl_mm_map, start_stack),
1917 offsetof(struct prctl_mm_map, arg_start),
1918 offsetof(struct prctl_mm_map, arg_end),
1919 offsetof(struct prctl_mm_map, env_start),
1920 offsetof(struct prctl_mm_map, env_end),
1924 * Make sure the members are not somewhere outside
1925 * of allowed address space.
1927 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1928 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1930 if ((unsigned long)val >= mmap_max_addr ||
1931 (unsigned long)val < mmap_min_addr)
1936 * Make sure the pairs are ordered.
1938 #define __prctl_check_order(__m1, __op, __m2) \
1939 ((unsigned long)prctl_map->__m1 __op \
1940 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1941 error = __prctl_check_order(start_code, <, end_code);
1942 error |= __prctl_check_order(start_data,<=, end_data);
1943 error |= __prctl_check_order(start_brk, <=, brk);
1944 error |= __prctl_check_order(arg_start, <=, arg_end);
1945 error |= __prctl_check_order(env_start, <=, env_end);
1948 #undef __prctl_check_order
1953 * Neither we should allow to override limits if they set.
1955 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1956 prctl_map->start_brk, prctl_map->end_data,
1957 prctl_map->start_data))
1965 #ifdef CONFIG_CHECKPOINT_RESTORE
1966 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1968 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1969 unsigned long user_auxv[AT_VECTOR_SIZE];
1970 struct mm_struct *mm = current->mm;
1973 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1974 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1976 if (opt == PR_SET_MM_MAP_SIZE)
1977 return put_user((unsigned int)sizeof(prctl_map),
1978 (unsigned int __user *)addr);
1980 if (data_size != sizeof(prctl_map))
1983 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1986 error = validate_prctl_map_addr(&prctl_map);
1990 if (prctl_map.auxv_size) {
1992 * Someone is trying to cheat the auxv vector.
1994 if (!prctl_map.auxv ||
1995 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1998 memset(user_auxv, 0, sizeof(user_auxv));
1999 if (copy_from_user(user_auxv,
2000 (const void __user *)prctl_map.auxv,
2001 prctl_map.auxv_size))
2004 /* Last entry must be AT_NULL as specification requires */
2005 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2006 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2009 if (prctl_map.exe_fd != (u32)-1) {
2011 * Check if the current user is checkpoint/restore capable.
2012 * At the time of this writing, it checks for CAP_SYS_ADMIN
2013 * or CAP_CHECKPOINT_RESTORE.
2014 * Note that a user with access to ptrace can masquerade an
2015 * arbitrary program as any executable, even setuid ones.
2016 * This may have implications in the tomoyo subsystem.
2018 if (!checkpoint_restore_ns_capable(current_user_ns()))
2021 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2027 * arg_lock protects concurrent updates but we still need mmap_lock for
2028 * read to exclude races with sys_brk.
2033 * We don't validate if these members are pointing to
2034 * real present VMAs because application may have correspond
2035 * VMAs already unmapped and kernel uses these members for statistics
2036 * output in procfs mostly, except
2038 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2039 * for VMAs when updating these members so anything wrong written
2040 * here cause kernel to swear at userspace program but won't lead
2041 * to any problem in kernel itself
2044 spin_lock(&mm->arg_lock);
2045 mm->start_code = prctl_map.start_code;
2046 mm->end_code = prctl_map.end_code;
2047 mm->start_data = prctl_map.start_data;
2048 mm->end_data = prctl_map.end_data;
2049 mm->start_brk = prctl_map.start_brk;
2050 mm->brk = prctl_map.brk;
2051 mm->start_stack = prctl_map.start_stack;
2052 mm->arg_start = prctl_map.arg_start;
2053 mm->arg_end = prctl_map.arg_end;
2054 mm->env_start = prctl_map.env_start;
2055 mm->env_end = prctl_map.env_end;
2056 spin_unlock(&mm->arg_lock);
2059 * Note this update of @saved_auxv is lockless thus
2060 * if someone reads this member in procfs while we're
2061 * updating -- it may get partly updated results. It's
2062 * known and acceptable trade off: we leave it as is to
2063 * not introduce additional locks here making the kernel
2066 if (prctl_map.auxv_size)
2067 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2069 mmap_read_unlock(mm);
2072 #endif /* CONFIG_CHECKPOINT_RESTORE */
2074 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2078 * This doesn't move the auxiliary vector itself since it's pinned to
2079 * mm_struct, but it permits filling the vector with new values. It's
2080 * up to the caller to provide sane values here, otherwise userspace
2081 * tools which use this vector might be unhappy.
2083 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2085 if (len > sizeof(user_auxv))
2088 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2091 /* Make sure the last entry is always AT_NULL */
2092 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2093 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2095 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2098 memcpy(mm->saved_auxv, user_auxv, len);
2099 task_unlock(current);
2104 static int prctl_set_mm(int opt, unsigned long addr,
2105 unsigned long arg4, unsigned long arg5)
2107 struct mm_struct *mm = current->mm;
2108 struct prctl_mm_map prctl_map = {
2113 struct vm_area_struct *vma;
2116 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2117 opt != PR_SET_MM_MAP &&
2118 opt != PR_SET_MM_MAP_SIZE)))
2121 #ifdef CONFIG_CHECKPOINT_RESTORE
2122 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2123 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2126 if (!capable(CAP_SYS_RESOURCE))
2129 if (opt == PR_SET_MM_EXE_FILE)
2130 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2132 if (opt == PR_SET_MM_AUXV)
2133 return prctl_set_auxv(mm, addr, arg4);
2135 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2141 * arg_lock protects concurrent updates of arg boundaries, we need
2142 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2146 vma = find_vma(mm, addr);
2148 spin_lock(&mm->arg_lock);
2149 prctl_map.start_code = mm->start_code;
2150 prctl_map.end_code = mm->end_code;
2151 prctl_map.start_data = mm->start_data;
2152 prctl_map.end_data = mm->end_data;
2153 prctl_map.start_brk = mm->start_brk;
2154 prctl_map.brk = mm->brk;
2155 prctl_map.start_stack = mm->start_stack;
2156 prctl_map.arg_start = mm->arg_start;
2157 prctl_map.arg_end = mm->arg_end;
2158 prctl_map.env_start = mm->env_start;
2159 prctl_map.env_end = mm->env_end;
2162 case PR_SET_MM_START_CODE:
2163 prctl_map.start_code = addr;
2165 case PR_SET_MM_END_CODE:
2166 prctl_map.end_code = addr;
2168 case PR_SET_MM_START_DATA:
2169 prctl_map.start_data = addr;
2171 case PR_SET_MM_END_DATA:
2172 prctl_map.end_data = addr;
2174 case PR_SET_MM_START_STACK:
2175 prctl_map.start_stack = addr;
2177 case PR_SET_MM_START_BRK:
2178 prctl_map.start_brk = addr;
2181 prctl_map.brk = addr;
2183 case PR_SET_MM_ARG_START:
2184 prctl_map.arg_start = addr;
2186 case PR_SET_MM_ARG_END:
2187 prctl_map.arg_end = addr;
2189 case PR_SET_MM_ENV_START:
2190 prctl_map.env_start = addr;
2192 case PR_SET_MM_ENV_END:
2193 prctl_map.env_end = addr;
2199 error = validate_prctl_map_addr(&prctl_map);
2205 * If command line arguments and environment
2206 * are placed somewhere else on stack, we can
2207 * set them up here, ARG_START/END to setup
2208 * command line arguments and ENV_START/END
2211 case PR_SET_MM_START_STACK:
2212 case PR_SET_MM_ARG_START:
2213 case PR_SET_MM_ARG_END:
2214 case PR_SET_MM_ENV_START:
2215 case PR_SET_MM_ENV_END:
2222 mm->start_code = prctl_map.start_code;
2223 mm->end_code = prctl_map.end_code;
2224 mm->start_data = prctl_map.start_data;
2225 mm->end_data = prctl_map.end_data;
2226 mm->start_brk = prctl_map.start_brk;
2227 mm->brk = prctl_map.brk;
2228 mm->start_stack = prctl_map.start_stack;
2229 mm->arg_start = prctl_map.arg_start;
2230 mm->arg_end = prctl_map.arg_end;
2231 mm->env_start = prctl_map.env_start;
2232 mm->env_end = prctl_map.env_end;
2236 spin_unlock(&mm->arg_lock);
2237 mmap_read_unlock(mm);
2241 #ifdef CONFIG_CHECKPOINT_RESTORE
2242 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2244 return put_user(me->clear_child_tid, tid_addr);
2247 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2253 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2256 * If task has has_child_subreaper - all its descendants
2257 * already have these flag too and new descendants will
2258 * inherit it on fork, skip them.
2260 * If we've found child_reaper - skip descendants in
2261 * it's subtree as they will never get out pidns.
2263 if (p->signal->has_child_subreaper ||
2264 is_child_reaper(task_pid(p)))
2267 p->signal->has_child_subreaper = 1;
2271 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2276 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2282 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2284 #ifdef CONFIG_ANON_VMA_NAME
2286 #define ANON_VMA_NAME_MAX_LEN 80
2287 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2289 static inline bool is_valid_name_char(char ch)
2291 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2292 return ch > 0x1f && ch < 0x7f &&
2293 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2296 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2297 unsigned long size, unsigned long arg)
2299 struct mm_struct *mm = current->mm;
2300 const char __user *uname;
2301 struct anon_vma_name *anon_name = NULL;
2305 case PR_SET_VMA_ANON_NAME:
2306 uname = (const char __user *)arg;
2310 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2312 return PTR_ERR(name);
2314 for (pch = name; *pch != '\0'; pch++) {
2315 if (!is_valid_name_char(*pch)) {
2320 /* anon_vma has its own copy */
2321 anon_name = anon_vma_name_alloc(name);
2328 mmap_write_lock(mm);
2329 error = madvise_set_anon_name(mm, addr, size, anon_name);
2330 mmap_write_unlock(mm);
2331 anon_vma_name_put(anon_name);
2340 #else /* CONFIG_ANON_VMA_NAME */
2341 static int prctl_set_vma(unsigned long opt, unsigned long start,
2342 unsigned long size, unsigned long arg)
2346 #endif /* CONFIG_ANON_VMA_NAME */
2348 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2349 unsigned long, arg4, unsigned long, arg5)
2351 struct task_struct *me = current;
2352 unsigned char comm[sizeof(me->comm)];
2355 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2356 if (error != -ENOSYS)
2361 case PR_SET_PDEATHSIG:
2362 if (!valid_signal(arg2)) {
2366 me->pdeath_signal = arg2;
2368 case PR_GET_PDEATHSIG:
2369 error = put_user(me->pdeath_signal, (int __user *)arg2);
2371 case PR_GET_DUMPABLE:
2372 error = get_dumpable(me->mm);
2374 case PR_SET_DUMPABLE:
2375 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2379 set_dumpable(me->mm, arg2);
2382 case PR_SET_UNALIGN:
2383 error = SET_UNALIGN_CTL(me, arg2);
2385 case PR_GET_UNALIGN:
2386 error = GET_UNALIGN_CTL(me, arg2);
2389 error = SET_FPEMU_CTL(me, arg2);
2392 error = GET_FPEMU_CTL(me, arg2);
2395 error = SET_FPEXC_CTL(me, arg2);
2398 error = GET_FPEXC_CTL(me, arg2);
2401 error = PR_TIMING_STATISTICAL;
2404 if (arg2 != PR_TIMING_STATISTICAL)
2408 comm[sizeof(me->comm) - 1] = 0;
2409 if (strncpy_from_user(comm, (char __user *)arg2,
2410 sizeof(me->comm) - 1) < 0)
2412 set_task_comm(me, comm);
2413 proc_comm_connector(me);
2416 get_task_comm(comm, me);
2417 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2421 error = GET_ENDIAN(me, arg2);
2424 error = SET_ENDIAN(me, arg2);
2426 case PR_GET_SECCOMP:
2427 error = prctl_get_seccomp();
2429 case PR_SET_SECCOMP:
2430 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2433 error = GET_TSC_CTL(arg2);
2436 error = SET_TSC_CTL(arg2);
2438 case PR_TASK_PERF_EVENTS_DISABLE:
2439 error = perf_event_task_disable();
2441 case PR_TASK_PERF_EVENTS_ENABLE:
2442 error = perf_event_task_enable();
2444 case PR_GET_TIMERSLACK:
2445 if (current->timer_slack_ns > ULONG_MAX)
2448 error = current->timer_slack_ns;
2450 case PR_SET_TIMERSLACK:
2452 current->timer_slack_ns =
2453 current->default_timer_slack_ns;
2455 current->timer_slack_ns = arg2;
2461 case PR_MCE_KILL_CLEAR:
2464 current->flags &= ~PF_MCE_PROCESS;
2466 case PR_MCE_KILL_SET:
2467 current->flags |= PF_MCE_PROCESS;
2468 if (arg3 == PR_MCE_KILL_EARLY)
2469 current->flags |= PF_MCE_EARLY;
2470 else if (arg3 == PR_MCE_KILL_LATE)
2471 current->flags &= ~PF_MCE_EARLY;
2472 else if (arg3 == PR_MCE_KILL_DEFAULT)
2474 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2482 case PR_MCE_KILL_GET:
2483 if (arg2 | arg3 | arg4 | arg5)
2485 if (current->flags & PF_MCE_PROCESS)
2486 error = (current->flags & PF_MCE_EARLY) ?
2487 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2489 error = PR_MCE_KILL_DEFAULT;
2492 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2494 case PR_GET_TID_ADDRESS:
2495 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2497 case PR_SET_CHILD_SUBREAPER:
2498 me->signal->is_child_subreaper = !!arg2;
2502 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2504 case PR_GET_CHILD_SUBREAPER:
2505 error = put_user(me->signal->is_child_subreaper,
2506 (int __user *)arg2);
2508 case PR_SET_NO_NEW_PRIVS:
2509 if (arg2 != 1 || arg3 || arg4 || arg5)
2512 task_set_no_new_privs(current);
2514 case PR_GET_NO_NEW_PRIVS:
2515 if (arg2 || arg3 || arg4 || arg5)
2517 return task_no_new_privs(current) ? 1 : 0;
2518 case PR_GET_THP_DISABLE:
2519 if (arg2 || arg3 || arg4 || arg5)
2521 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2523 case PR_SET_THP_DISABLE:
2524 if (arg3 || arg4 || arg5)
2526 if (mmap_write_lock_killable(me->mm))
2529 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2531 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2532 mmap_write_unlock(me->mm);
2534 case PR_MPX_ENABLE_MANAGEMENT:
2535 case PR_MPX_DISABLE_MANAGEMENT:
2536 /* No longer implemented: */
2538 case PR_SET_FP_MODE:
2539 error = SET_FP_MODE(me, arg2);
2541 case PR_GET_FP_MODE:
2542 error = GET_FP_MODE(me);
2545 error = SVE_SET_VL(arg2);
2548 error = SVE_GET_VL();
2551 error = SME_SET_VL(arg2);
2554 error = SME_GET_VL();
2556 case PR_GET_SPECULATION_CTRL:
2557 if (arg3 || arg4 || arg5)
2559 error = arch_prctl_spec_ctrl_get(me, arg2);
2561 case PR_SET_SPECULATION_CTRL:
2564 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2566 case PR_PAC_RESET_KEYS:
2567 if (arg3 || arg4 || arg5)
2569 error = PAC_RESET_KEYS(me, arg2);
2571 case PR_PAC_SET_ENABLED_KEYS:
2574 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2576 case PR_PAC_GET_ENABLED_KEYS:
2577 if (arg2 || arg3 || arg4 || arg5)
2579 error = PAC_GET_ENABLED_KEYS(me);
2581 case PR_SET_TAGGED_ADDR_CTRL:
2582 if (arg3 || arg4 || arg5)
2584 error = SET_TAGGED_ADDR_CTRL(arg2);
2586 case PR_GET_TAGGED_ADDR_CTRL:
2587 if (arg2 || arg3 || arg4 || arg5)
2589 error = GET_TAGGED_ADDR_CTRL();
2591 case PR_SET_IO_FLUSHER:
2592 if (!capable(CAP_SYS_RESOURCE))
2595 if (arg3 || arg4 || arg5)
2599 current->flags |= PR_IO_FLUSHER;
2601 current->flags &= ~PR_IO_FLUSHER;
2605 case PR_GET_IO_FLUSHER:
2606 if (!capable(CAP_SYS_RESOURCE))
2609 if (arg2 || arg3 || arg4 || arg5)
2612 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2614 case PR_SET_SYSCALL_USER_DISPATCH:
2615 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2616 (char __user *) arg5);
2618 #ifdef CONFIG_SCHED_CORE
2620 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2624 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2633 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2634 struct getcpu_cache __user *, unused)
2637 int cpu = raw_smp_processor_id();
2640 err |= put_user(cpu, cpup);
2642 err |= put_user(cpu_to_node(cpu), nodep);
2643 return err ? -EFAULT : 0;
2647 * do_sysinfo - fill in sysinfo struct
2648 * @info: pointer to buffer to fill
2650 static int do_sysinfo(struct sysinfo *info)
2652 unsigned long mem_total, sav_total;
2653 unsigned int mem_unit, bitcount;
2654 struct timespec64 tp;
2656 memset(info, 0, sizeof(struct sysinfo));
2658 ktime_get_boottime_ts64(&tp);
2659 timens_add_boottime(&tp);
2660 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2662 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2664 info->procs = nr_threads;
2670 * If the sum of all the available memory (i.e. ram + swap)
2671 * is less than can be stored in a 32 bit unsigned long then
2672 * we can be binary compatible with 2.2.x kernels. If not,
2673 * well, in that case 2.2.x was broken anyways...
2675 * -Erik Andersen <andersee@debian.org>
2678 mem_total = info->totalram + info->totalswap;
2679 if (mem_total < info->totalram || mem_total < info->totalswap)
2682 mem_unit = info->mem_unit;
2683 while (mem_unit > 1) {
2686 sav_total = mem_total;
2688 if (mem_total < sav_total)
2693 * If mem_total did not overflow, multiply all memory values by
2694 * info->mem_unit and set it to 1. This leaves things compatible
2695 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2700 info->totalram <<= bitcount;
2701 info->freeram <<= bitcount;
2702 info->sharedram <<= bitcount;
2703 info->bufferram <<= bitcount;
2704 info->totalswap <<= bitcount;
2705 info->freeswap <<= bitcount;
2706 info->totalhigh <<= bitcount;
2707 info->freehigh <<= bitcount;
2713 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2719 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2725 #ifdef CONFIG_COMPAT
2726 struct compat_sysinfo {
2740 char _f[20-2*sizeof(u32)-sizeof(int)];
2743 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2746 struct compat_sysinfo s_32;
2750 /* Check to see if any memory value is too large for 32-bit and scale
2753 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2756 while (s.mem_unit < PAGE_SIZE) {
2761 s.totalram >>= bitcount;
2762 s.freeram >>= bitcount;
2763 s.sharedram >>= bitcount;
2764 s.bufferram >>= bitcount;
2765 s.totalswap >>= bitcount;
2766 s.freeswap >>= bitcount;
2767 s.totalhigh >>= bitcount;
2768 s.freehigh >>= bitcount;
2771 memset(&s_32, 0, sizeof(s_32));
2772 s_32.uptime = s.uptime;
2773 s_32.loads[0] = s.loads[0];
2774 s_32.loads[1] = s.loads[1];
2775 s_32.loads[2] = s.loads[2];
2776 s_32.totalram = s.totalram;
2777 s_32.freeram = s.freeram;
2778 s_32.sharedram = s.sharedram;
2779 s_32.bufferram = s.bufferram;
2780 s_32.totalswap = s.totalswap;
2781 s_32.freeswap = s.freeswap;
2782 s_32.procs = s.procs;
2783 s_32.totalhigh = s.totalhigh;
2784 s_32.freehigh = s.freehigh;
2785 s_32.mem_unit = s.mem_unit;
2786 if (copy_to_user(info, &s_32, sizeof(s_32)))
2790 #endif /* CONFIG_COMPAT */