1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/export.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/kmod.h>
18 #include <linux/perf_event.h>
19 #include <linux/resource.h>
20 #include <linux/kernel.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/random.h>
29 #include <linux/suspend.h>
30 #include <linux/tty.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
33 #include <linux/getcpu.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/seccomp.h>
36 #include <linux/cpu.h>
37 #include <linux/personality.h>
38 #include <linux/ptrace.h>
39 #include <linux/fs_struct.h>
40 #include <linux/file.h>
41 #include <linux/mount.h>
42 #include <linux/gfp.h>
43 #include <linux/syscore_ops.h>
44 #include <linux/version.h>
45 #include <linux/ctype.h>
46 #include <linux/syscall_user_dispatch.h>
48 #include <linux/compat.h>
49 #include <linux/syscalls.h>
50 #include <linux/kprobes.h>
51 #include <linux/user_namespace.h>
52 #include <linux/time_namespace.h>
53 #include <linux/binfmts.h>
55 #include <linux/sched.h>
56 #include <linux/sched/autogroup.h>
57 #include <linux/sched/loadavg.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/mm.h>
60 #include <linux/sched/coredump.h>
61 #include <linux/sched/task.h>
62 #include <linux/sched/cputime.h>
63 #include <linux/rcupdate.h>
64 #include <linux/uidgid.h>
65 #include <linux/cred.h>
67 #include <linux/nospec.h>
69 #include <linux/kmsg_dump.h>
70 /* Move somewhere else to avoid recompiling? */
71 #include <generated/utsrelease.h>
73 #include <linux/uaccess.h>
75 #include <asm/unistd.h>
79 #ifndef SET_UNALIGN_CTL
80 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
82 #ifndef GET_UNALIGN_CTL
83 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
86 # define SET_FPEMU_CTL(a, b) (-EINVAL)
89 # define GET_FPEMU_CTL(a, b) (-EINVAL)
92 # define SET_FPEXC_CTL(a, b) (-EINVAL)
95 # define GET_FPEXC_CTL(a, b) (-EINVAL)
98 # define GET_ENDIAN(a, b) (-EINVAL)
101 # define SET_ENDIAN(a, b) (-EINVAL)
104 # define GET_TSC_CTL(a) (-EINVAL)
107 # define SET_TSC_CTL(a) (-EINVAL)
110 # define GET_FP_MODE(a) (-EINVAL)
113 # define SET_FP_MODE(a,b) (-EINVAL)
116 # define SVE_SET_VL(a) (-EINVAL)
119 # define SVE_GET_VL() (-EINVAL)
122 # define SME_SET_VL(a) (-EINVAL)
125 # define SME_GET_VL() (-EINVAL)
127 #ifndef PAC_RESET_KEYS
128 # define PAC_RESET_KEYS(a, b) (-EINVAL)
130 #ifndef PAC_SET_ENABLED_KEYS
131 # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
133 #ifndef PAC_GET_ENABLED_KEYS
134 # define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
136 #ifndef SET_TAGGED_ADDR_CTRL
137 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
139 #ifndef GET_TAGGED_ADDR_CTRL
140 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
144 * this is where the system-wide overflow UID and GID are defined, for
145 * architectures that now have 32-bit UID/GID but didn't in the past
148 int overflowuid = DEFAULT_OVERFLOWUID;
149 int overflowgid = DEFAULT_OVERFLOWGID;
151 EXPORT_SYMBOL(overflowuid);
152 EXPORT_SYMBOL(overflowgid);
155 * the same as above, but for filesystems which can only store a 16-bit
156 * UID and GID. as such, this is needed on all architectures
159 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
160 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
162 EXPORT_SYMBOL(fs_overflowuid);
163 EXPORT_SYMBOL(fs_overflowgid);
166 * Returns true if current's euid is same as p's uid or euid,
167 * or has CAP_SYS_NICE to p's user_ns.
169 * Called with rcu_read_lock, creds are safe
171 static bool set_one_prio_perm(struct task_struct *p)
173 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
175 if (uid_eq(pcred->uid, cred->euid) ||
176 uid_eq(pcred->euid, cred->euid))
178 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
184 * set the priority of a task
185 * - the caller must hold the RCU read lock
187 static int set_one_prio(struct task_struct *p, int niceval, int error)
191 if (!set_one_prio_perm(p)) {
195 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
199 no_nice = security_task_setnice(p, niceval);
206 set_user_nice(p, niceval);
211 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
213 struct task_struct *g, *p;
214 struct user_struct *user;
215 const struct cred *cred = current_cred();
220 if (which > PRIO_USER || which < PRIO_PROCESS)
223 /* normalize: avoid signed division (rounding problems) */
225 if (niceval < MIN_NICE)
227 if (niceval > MAX_NICE)
234 p = find_task_by_vpid(who);
238 error = set_one_prio(p, niceval, error);
242 pgrp = find_vpid(who);
244 pgrp = task_pgrp(current);
245 read_lock(&tasklist_lock);
246 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
247 error = set_one_prio(p, niceval, error);
248 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
249 read_unlock(&tasklist_lock);
252 uid = make_kuid(cred->user_ns, who);
256 else if (!uid_eq(uid, cred->uid)) {
257 user = find_user(uid);
259 goto out_unlock; /* No processes for this user */
261 for_each_process_thread(g, p) {
262 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
263 error = set_one_prio(p, niceval, error);
265 if (!uid_eq(uid, cred->uid))
266 free_uid(user); /* For find_user() */
276 * Ugh. To avoid negative return values, "getpriority()" will
277 * not return the normal nice-value, but a negated value that
278 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
279 * to stay compatible.
281 SYSCALL_DEFINE2(getpriority, int, which, int, who)
283 struct task_struct *g, *p;
284 struct user_struct *user;
285 const struct cred *cred = current_cred();
286 long niceval, retval = -ESRCH;
290 if (which > PRIO_USER || which < PRIO_PROCESS)
297 p = find_task_by_vpid(who);
301 niceval = nice_to_rlimit(task_nice(p));
302 if (niceval > retval)
308 pgrp = find_vpid(who);
310 pgrp = task_pgrp(current);
311 read_lock(&tasklist_lock);
312 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
313 niceval = nice_to_rlimit(task_nice(p));
314 if (niceval > retval)
316 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
317 read_unlock(&tasklist_lock);
320 uid = make_kuid(cred->user_ns, who);
324 else if (!uid_eq(uid, cred->uid)) {
325 user = find_user(uid);
327 goto out_unlock; /* No processes for this user */
329 for_each_process_thread(g, p) {
330 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
331 niceval = nice_to_rlimit(task_nice(p));
332 if (niceval > retval)
336 if (!uid_eq(uid, cred->uid))
337 free_uid(user); /* for find_user() */
347 * Unprivileged users may change the real gid to the effective gid
348 * or vice versa. (BSD-style)
350 * If you set the real gid at all, or set the effective gid to a value not
351 * equal to the real gid, then the saved gid is set to the new effective gid.
353 * This makes it possible for a setgid program to completely drop its
354 * privileges, which is often a useful assertion to make when you are doing
355 * a security audit over a program.
357 * The general idea is that a program which uses just setregid() will be
358 * 100% compatible with BSD. A program which uses just setgid() will be
359 * 100% compatible with POSIX with saved IDs.
361 * SMP: There are not races, the GIDs are checked only by filesystem
362 * operations (as far as semantic preservation is concerned).
364 #ifdef CONFIG_MULTIUSER
365 long __sys_setregid(gid_t rgid, gid_t egid)
367 struct user_namespace *ns = current_user_ns();
368 const struct cred *old;
373 krgid = make_kgid(ns, rgid);
374 kegid = make_kgid(ns, egid);
376 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
378 if ((egid != (gid_t) -1) && !gid_valid(kegid))
381 new = prepare_creds();
384 old = current_cred();
387 if (rgid != (gid_t) -1) {
388 if (gid_eq(old->gid, krgid) ||
389 gid_eq(old->egid, krgid) ||
390 ns_capable_setid(old->user_ns, CAP_SETGID))
395 if (egid != (gid_t) -1) {
396 if (gid_eq(old->gid, kegid) ||
397 gid_eq(old->egid, kegid) ||
398 gid_eq(old->sgid, kegid) ||
399 ns_capable_setid(old->user_ns, CAP_SETGID))
405 if (rgid != (gid_t) -1 ||
406 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
407 new->sgid = new->egid;
408 new->fsgid = new->egid;
410 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
414 return commit_creds(new);
421 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
423 return __sys_setregid(rgid, egid);
427 * setgid() is implemented like SysV w/ SAVED_IDS
429 * SMP: Same implicit races as above.
431 long __sys_setgid(gid_t gid)
433 struct user_namespace *ns = current_user_ns();
434 const struct cred *old;
439 kgid = make_kgid(ns, gid);
440 if (!gid_valid(kgid))
443 new = prepare_creds();
446 old = current_cred();
449 if (ns_capable_setid(old->user_ns, CAP_SETGID))
450 new->gid = new->egid = new->sgid = new->fsgid = kgid;
451 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
452 new->egid = new->fsgid = kgid;
456 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
460 return commit_creds(new);
467 SYSCALL_DEFINE1(setgid, gid_t, gid)
469 return __sys_setgid(gid);
473 * change the user struct in a credentials set to match the new UID
475 static int set_user(struct cred *new)
477 struct user_struct *new_user;
479 new_user = alloc_uid(new->uid);
484 new->user = new_user;
488 static void flag_nproc_exceeded(struct cred *new)
490 if (new->ucounts == current_ucounts())
494 * We don't fail in case of NPROC limit excess here because too many
495 * poorly written programs don't check set*uid() return code, assuming
496 * it never fails if called by root. We may still enforce NPROC limit
497 * for programs doing set*uid()+execve() by harmlessly deferring the
498 * failure to the execve() stage.
500 if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
501 new->user != INIT_USER)
502 current->flags |= PF_NPROC_EXCEEDED;
504 current->flags &= ~PF_NPROC_EXCEEDED;
508 * Unprivileged users may change the real uid to the effective uid
509 * or vice versa. (BSD-style)
511 * If you set the real uid at all, or set the effective uid to a value not
512 * equal to the real uid, then the saved uid is set to the new effective uid.
514 * This makes it possible for a setuid program to completely drop its
515 * privileges, which is often a useful assertion to make when you are doing
516 * a security audit over a program.
518 * The general idea is that a program which uses just setreuid() will be
519 * 100% compatible with BSD. A program which uses just setuid() will be
520 * 100% compatible with POSIX with saved IDs.
522 long __sys_setreuid(uid_t ruid, uid_t euid)
524 struct user_namespace *ns = current_user_ns();
525 const struct cred *old;
530 kruid = make_kuid(ns, ruid);
531 keuid = make_kuid(ns, euid);
533 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
535 if ((euid != (uid_t) -1) && !uid_valid(keuid))
538 new = prepare_creds();
541 old = current_cred();
544 if (ruid != (uid_t) -1) {
546 if (!uid_eq(old->uid, kruid) &&
547 !uid_eq(old->euid, kruid) &&
548 !ns_capable_setid(old->user_ns, CAP_SETUID))
552 if (euid != (uid_t) -1) {
554 if (!uid_eq(old->uid, keuid) &&
555 !uid_eq(old->euid, keuid) &&
556 !uid_eq(old->suid, keuid) &&
557 !ns_capable_setid(old->user_ns, CAP_SETUID))
561 if (!uid_eq(new->uid, old->uid)) {
562 retval = set_user(new);
566 if (ruid != (uid_t) -1 ||
567 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
568 new->suid = new->euid;
569 new->fsuid = new->euid;
571 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
575 retval = set_cred_ucounts(new);
579 flag_nproc_exceeded(new);
580 return commit_creds(new);
587 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
589 return __sys_setreuid(ruid, euid);
593 * setuid() is implemented like SysV with SAVED_IDS
595 * Note that SAVED_ID's is deficient in that a setuid root program
596 * like sendmail, for example, cannot set its uid to be a normal
597 * user and then switch back, because if you're root, setuid() sets
598 * the saved uid too. If you don't like this, blame the bright people
599 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
600 * will allow a root program to temporarily drop privileges and be able to
601 * regain them by swapping the real and effective uid.
603 long __sys_setuid(uid_t uid)
605 struct user_namespace *ns = current_user_ns();
606 const struct cred *old;
611 kuid = make_kuid(ns, uid);
612 if (!uid_valid(kuid))
615 new = prepare_creds();
618 old = current_cred();
621 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
622 new->suid = new->uid = kuid;
623 if (!uid_eq(kuid, old->uid)) {
624 retval = set_user(new);
628 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
632 new->fsuid = new->euid = kuid;
634 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
638 retval = set_cred_ucounts(new);
642 flag_nproc_exceeded(new);
643 return commit_creds(new);
650 SYSCALL_DEFINE1(setuid, uid_t, uid)
652 return __sys_setuid(uid);
657 * This function implements a generic ability to update ruid, euid,
658 * and suid. This allows you to implement the 4.4 compatible seteuid().
660 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
662 struct user_namespace *ns = current_user_ns();
663 const struct cred *old;
666 kuid_t kruid, keuid, ksuid;
668 kruid = make_kuid(ns, ruid);
669 keuid = make_kuid(ns, euid);
670 ksuid = make_kuid(ns, suid);
672 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
675 if ((euid != (uid_t) -1) && !uid_valid(keuid))
678 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
681 new = prepare_creds();
685 old = current_cred();
688 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
689 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
690 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
692 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
693 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
695 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
696 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
700 if (ruid != (uid_t) -1) {
702 if (!uid_eq(kruid, old->uid)) {
703 retval = set_user(new);
708 if (euid != (uid_t) -1)
710 if (suid != (uid_t) -1)
712 new->fsuid = new->euid;
714 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
718 retval = set_cred_ucounts(new);
722 flag_nproc_exceeded(new);
723 return commit_creds(new);
730 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
732 return __sys_setresuid(ruid, euid, suid);
735 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
737 const struct cred *cred = current_cred();
739 uid_t ruid, euid, suid;
741 ruid = from_kuid_munged(cred->user_ns, cred->uid);
742 euid = from_kuid_munged(cred->user_ns, cred->euid);
743 suid = from_kuid_munged(cred->user_ns, cred->suid);
745 retval = put_user(ruid, ruidp);
747 retval = put_user(euid, euidp);
749 return put_user(suid, suidp);
755 * Same as above, but for rgid, egid, sgid.
757 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
759 struct user_namespace *ns = current_user_ns();
760 const struct cred *old;
763 kgid_t krgid, kegid, ksgid;
765 krgid = make_kgid(ns, rgid);
766 kegid = make_kgid(ns, egid);
767 ksgid = make_kgid(ns, sgid);
769 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
771 if ((egid != (gid_t) -1) && !gid_valid(kegid))
773 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
776 new = prepare_creds();
779 old = current_cred();
782 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
783 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
784 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
786 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
787 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
789 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
790 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
794 if (rgid != (gid_t) -1)
796 if (egid != (gid_t) -1)
798 if (sgid != (gid_t) -1)
800 new->fsgid = new->egid;
802 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
806 return commit_creds(new);
813 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
815 return __sys_setresgid(rgid, egid, sgid);
818 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
820 const struct cred *cred = current_cred();
822 gid_t rgid, egid, sgid;
824 rgid = from_kgid_munged(cred->user_ns, cred->gid);
825 egid = from_kgid_munged(cred->user_ns, cred->egid);
826 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
828 retval = put_user(rgid, rgidp);
830 retval = put_user(egid, egidp);
832 retval = put_user(sgid, sgidp);
840 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
841 * is used for "access()" and for the NFS daemon (letting nfsd stay at
842 * whatever uid it wants to). It normally shadows "euid", except when
843 * explicitly set by setfsuid() or for access..
845 long __sys_setfsuid(uid_t uid)
847 const struct cred *old;
852 old = current_cred();
853 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
855 kuid = make_kuid(old->user_ns, uid);
856 if (!uid_valid(kuid))
859 new = prepare_creds();
863 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
864 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
865 ns_capable_setid(old->user_ns, CAP_SETUID)) {
866 if (!uid_eq(kuid, old->fsuid)) {
868 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
881 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
883 return __sys_setfsuid(uid);
887 * Samma på svenska..
889 long __sys_setfsgid(gid_t gid)
891 const struct cred *old;
896 old = current_cred();
897 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
899 kgid = make_kgid(old->user_ns, gid);
900 if (!gid_valid(kgid))
903 new = prepare_creds();
907 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
908 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
909 ns_capable_setid(old->user_ns, CAP_SETGID)) {
910 if (!gid_eq(kgid, old->fsgid)) {
912 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
925 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
927 return __sys_setfsgid(gid);
929 #endif /* CONFIG_MULTIUSER */
932 * sys_getpid - return the thread group id of the current process
934 * Note, despite the name, this returns the tgid not the pid. The tgid and
935 * the pid are identical unless CLONE_THREAD was specified on clone() in
936 * which case the tgid is the same in all threads of the same group.
938 * This is SMP safe as current->tgid does not change.
940 SYSCALL_DEFINE0(getpid)
942 return task_tgid_vnr(current);
945 /* Thread ID - the internal kernel "pid" */
946 SYSCALL_DEFINE0(gettid)
948 return task_pid_vnr(current);
952 * Accessing ->real_parent is not SMP-safe, it could
953 * change from under us. However, we can use a stale
954 * value of ->real_parent under rcu_read_lock(), see
955 * release_task()->call_rcu(delayed_put_task_struct).
957 SYSCALL_DEFINE0(getppid)
962 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
968 SYSCALL_DEFINE0(getuid)
970 /* Only we change this so SMP safe */
971 return from_kuid_munged(current_user_ns(), current_uid());
974 SYSCALL_DEFINE0(geteuid)
976 /* Only we change this so SMP safe */
977 return from_kuid_munged(current_user_ns(), current_euid());
980 SYSCALL_DEFINE0(getgid)
982 /* Only we change this so SMP safe */
983 return from_kgid_munged(current_user_ns(), current_gid());
986 SYSCALL_DEFINE0(getegid)
988 /* Only we change this so SMP safe */
989 return from_kgid_munged(current_user_ns(), current_egid());
992 static void do_sys_times(struct tms *tms)
994 u64 tgutime, tgstime, cutime, cstime;
996 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
997 cutime = current->signal->cutime;
998 cstime = current->signal->cstime;
999 tms->tms_utime = nsec_to_clock_t(tgutime);
1000 tms->tms_stime = nsec_to_clock_t(tgstime);
1001 tms->tms_cutime = nsec_to_clock_t(cutime);
1002 tms->tms_cstime = nsec_to_clock_t(cstime);
1005 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1011 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1014 force_successful_syscall_return();
1015 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1018 #ifdef CONFIG_COMPAT
1019 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1021 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1024 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1028 struct compat_tms tmp;
1031 /* Convert our struct tms to the compat version. */
1032 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1033 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1034 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1035 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1036 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1039 force_successful_syscall_return();
1040 return compat_jiffies_to_clock_t(jiffies);
1045 * This needs some heavy checking ...
1046 * I just haven't the stomach for it. I also don't fully
1047 * understand sessions/pgrp etc. Let somebody who does explain it.
1049 * OK, I think I have the protection semantics right.... this is really
1050 * only important on a multi-user system anyway, to make sure one user
1051 * can't send a signal to a process owned by another. -TYT, 12/12/91
1053 * !PF_FORKNOEXEC check to conform completely to POSIX.
1055 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1057 struct task_struct *p;
1058 struct task_struct *group_leader = current->group_leader;
1063 pid = task_pid_vnr(group_leader);
1070 /* From this point forward we keep holding onto the tasklist lock
1071 * so that our parent does not change from under us. -DaveM
1073 write_lock_irq(&tasklist_lock);
1076 p = find_task_by_vpid(pid);
1081 if (!thread_group_leader(p))
1084 if (same_thread_group(p->real_parent, group_leader)) {
1086 if (task_session(p) != task_session(group_leader))
1089 if (!(p->flags & PF_FORKNOEXEC))
1093 if (p != group_leader)
1098 if (p->signal->leader)
1103 struct task_struct *g;
1105 pgrp = find_vpid(pgid);
1106 g = pid_task(pgrp, PIDTYPE_PGID);
1107 if (!g || task_session(g) != task_session(group_leader))
1111 err = security_task_setpgid(p, pgid);
1115 if (task_pgrp(p) != pgrp)
1116 change_pid(p, PIDTYPE_PGID, pgrp);
1120 /* All paths lead to here, thus we are safe. -DaveM */
1121 write_unlock_irq(&tasklist_lock);
1126 static int do_getpgid(pid_t pid)
1128 struct task_struct *p;
1134 grp = task_pgrp(current);
1137 p = find_task_by_vpid(pid);
1144 retval = security_task_getpgid(p);
1148 retval = pid_vnr(grp);
1154 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1156 return do_getpgid(pid);
1159 #ifdef __ARCH_WANT_SYS_GETPGRP
1161 SYSCALL_DEFINE0(getpgrp)
1163 return do_getpgid(0);
1168 SYSCALL_DEFINE1(getsid, pid_t, pid)
1170 struct task_struct *p;
1176 sid = task_session(current);
1179 p = find_task_by_vpid(pid);
1182 sid = task_session(p);
1186 retval = security_task_getsid(p);
1190 retval = pid_vnr(sid);
1196 static void set_special_pids(struct pid *pid)
1198 struct task_struct *curr = current->group_leader;
1200 if (task_session(curr) != pid)
1201 change_pid(curr, PIDTYPE_SID, pid);
1203 if (task_pgrp(curr) != pid)
1204 change_pid(curr, PIDTYPE_PGID, pid);
1207 int ksys_setsid(void)
1209 struct task_struct *group_leader = current->group_leader;
1210 struct pid *sid = task_pid(group_leader);
1211 pid_t session = pid_vnr(sid);
1214 write_lock_irq(&tasklist_lock);
1215 /* Fail if I am already a session leader */
1216 if (group_leader->signal->leader)
1219 /* Fail if a process group id already exists that equals the
1220 * proposed session id.
1222 if (pid_task(sid, PIDTYPE_PGID))
1225 group_leader->signal->leader = 1;
1226 set_special_pids(sid);
1228 proc_clear_tty(group_leader);
1232 write_unlock_irq(&tasklist_lock);
1234 proc_sid_connector(group_leader);
1235 sched_autogroup_create_attach(group_leader);
1240 SYSCALL_DEFINE0(setsid)
1242 return ksys_setsid();
1245 DECLARE_RWSEM(uts_sem);
1247 #ifdef COMPAT_UTS_MACHINE
1248 #define override_architecture(name) \
1249 (personality(current->personality) == PER_LINUX32 && \
1250 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1251 sizeof(COMPAT_UTS_MACHINE)))
1253 #define override_architecture(name) 0
1257 * Work around broken programs that cannot handle "Linux 3.0".
1258 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1259 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1262 static int override_release(char __user *release, size_t len)
1266 if (current->personality & UNAME26) {
1267 const char *rest = UTS_RELEASE;
1268 char buf[65] = { 0 };
1274 if (*rest == '.' && ++ndots >= 3)
1276 if (!isdigit(*rest) && *rest != '.')
1280 v = LINUX_VERSION_PATCHLEVEL + 60;
1281 copy = clamp_t(size_t, len, 1, sizeof(buf));
1282 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1283 ret = copy_to_user(release, buf, copy + 1);
1288 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1290 struct new_utsname tmp;
1292 down_read(&uts_sem);
1293 memcpy(&tmp, utsname(), sizeof(tmp));
1295 if (copy_to_user(name, &tmp, sizeof(tmp)))
1298 if (override_release(name->release, sizeof(name->release)))
1300 if (override_architecture(name))
1305 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1309 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1311 struct old_utsname tmp;
1316 down_read(&uts_sem);
1317 memcpy(&tmp, utsname(), sizeof(tmp));
1319 if (copy_to_user(name, &tmp, sizeof(tmp)))
1322 if (override_release(name->release, sizeof(name->release)))
1324 if (override_architecture(name))
1329 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1331 struct oldold_utsname tmp;
1336 memset(&tmp, 0, sizeof(tmp));
1338 down_read(&uts_sem);
1339 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1340 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1341 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1342 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1343 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1345 if (copy_to_user(name, &tmp, sizeof(tmp)))
1348 if (override_architecture(name))
1350 if (override_release(name->release, sizeof(name->release)))
1356 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1359 char tmp[__NEW_UTS_LEN];
1361 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1364 if (len < 0 || len > __NEW_UTS_LEN)
1367 if (!copy_from_user(tmp, name, len)) {
1368 struct new_utsname *u;
1370 add_device_randomness(tmp, len);
1371 down_write(&uts_sem);
1373 memcpy(u->nodename, tmp, len);
1374 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1376 uts_proc_notify(UTS_PROC_HOSTNAME);
1382 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1384 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1387 struct new_utsname *u;
1388 char tmp[__NEW_UTS_LEN + 1];
1392 down_read(&uts_sem);
1394 i = 1 + strlen(u->nodename);
1397 memcpy(tmp, u->nodename, i);
1399 if (copy_to_user(name, tmp, i))
1407 * Only setdomainname; getdomainname can be implemented by calling
1410 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1413 char tmp[__NEW_UTS_LEN];
1415 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1417 if (len < 0 || len > __NEW_UTS_LEN)
1421 if (!copy_from_user(tmp, name, len)) {
1422 struct new_utsname *u;
1424 add_device_randomness(tmp, len);
1425 down_write(&uts_sem);
1427 memcpy(u->domainname, tmp, len);
1428 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1430 uts_proc_notify(UTS_PROC_DOMAINNAME);
1436 /* make sure you are allowed to change @tsk limits before calling this */
1437 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1438 struct rlimit *new_rlim, struct rlimit *old_rlim)
1440 struct rlimit *rlim;
1443 if (resource >= RLIM_NLIMITS)
1445 resource = array_index_nospec(resource, RLIM_NLIMITS);
1448 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1450 if (resource == RLIMIT_NOFILE &&
1451 new_rlim->rlim_max > sysctl_nr_open)
1455 /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1456 rlim = tsk->signal->rlim + resource;
1457 task_lock(tsk->group_leader);
1460 * Keep the capable check against init_user_ns until cgroups can
1461 * contain all limits.
1463 if (new_rlim->rlim_max > rlim->rlim_max &&
1464 !capable(CAP_SYS_RESOURCE))
1467 retval = security_task_setrlimit(tsk, resource, new_rlim);
1475 task_unlock(tsk->group_leader);
1478 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1479 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1480 * ignores the rlimit.
1482 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1483 new_rlim->rlim_cur != RLIM_INFINITY &&
1484 IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1486 * update_rlimit_cpu can fail if the task is exiting, but there
1487 * may be other tasks in the thread group that are not exiting,
1488 * and they need their cpu timers adjusted.
1490 * The group_leader is the last task to be released, so if we
1491 * cannot update_rlimit_cpu on it, then the entire process is
1492 * exiting and we do not need to update at all.
1494 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1500 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1502 struct rlimit value;
1505 ret = do_prlimit(current, resource, NULL, &value);
1507 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1512 #ifdef CONFIG_COMPAT
1514 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1515 struct compat_rlimit __user *, rlim)
1518 struct compat_rlimit r32;
1520 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1523 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1524 r.rlim_cur = RLIM_INFINITY;
1526 r.rlim_cur = r32.rlim_cur;
1527 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1528 r.rlim_max = RLIM_INFINITY;
1530 r.rlim_max = r32.rlim_max;
1531 return do_prlimit(current, resource, &r, NULL);
1534 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1535 struct compat_rlimit __user *, rlim)
1540 ret = do_prlimit(current, resource, NULL, &r);
1542 struct compat_rlimit r32;
1543 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1544 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1546 r32.rlim_cur = r.rlim_cur;
1547 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1548 r32.rlim_max = COMPAT_RLIM_INFINITY;
1550 r32.rlim_max = r.rlim_max;
1552 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1560 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1563 * Back compatibility for getrlimit. Needed for some apps.
1565 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1566 struct rlimit __user *, rlim)
1569 if (resource >= RLIM_NLIMITS)
1572 resource = array_index_nospec(resource, RLIM_NLIMITS);
1573 task_lock(current->group_leader);
1574 x = current->signal->rlim[resource];
1575 task_unlock(current->group_leader);
1576 if (x.rlim_cur > 0x7FFFFFFF)
1577 x.rlim_cur = 0x7FFFFFFF;
1578 if (x.rlim_max > 0x7FFFFFFF)
1579 x.rlim_max = 0x7FFFFFFF;
1580 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1583 #ifdef CONFIG_COMPAT
1584 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1585 struct compat_rlimit __user *, rlim)
1589 if (resource >= RLIM_NLIMITS)
1592 resource = array_index_nospec(resource, RLIM_NLIMITS);
1593 task_lock(current->group_leader);
1594 r = current->signal->rlim[resource];
1595 task_unlock(current->group_leader);
1596 if (r.rlim_cur > 0x7FFFFFFF)
1597 r.rlim_cur = 0x7FFFFFFF;
1598 if (r.rlim_max > 0x7FFFFFFF)
1599 r.rlim_max = 0x7FFFFFFF;
1601 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1602 put_user(r.rlim_max, &rlim->rlim_max))
1610 static inline bool rlim64_is_infinity(__u64 rlim64)
1612 #if BITS_PER_LONG < 64
1613 return rlim64 >= ULONG_MAX;
1615 return rlim64 == RLIM64_INFINITY;
1619 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1621 if (rlim->rlim_cur == RLIM_INFINITY)
1622 rlim64->rlim_cur = RLIM64_INFINITY;
1624 rlim64->rlim_cur = rlim->rlim_cur;
1625 if (rlim->rlim_max == RLIM_INFINITY)
1626 rlim64->rlim_max = RLIM64_INFINITY;
1628 rlim64->rlim_max = rlim->rlim_max;
1631 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1633 if (rlim64_is_infinity(rlim64->rlim_cur))
1634 rlim->rlim_cur = RLIM_INFINITY;
1636 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1637 if (rlim64_is_infinity(rlim64->rlim_max))
1638 rlim->rlim_max = RLIM_INFINITY;
1640 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1643 /* rcu lock must be held */
1644 static int check_prlimit_permission(struct task_struct *task,
1647 const struct cred *cred = current_cred(), *tcred;
1650 if (current == task)
1653 tcred = __task_cred(task);
1654 id_match = (uid_eq(cred->uid, tcred->euid) &&
1655 uid_eq(cred->uid, tcred->suid) &&
1656 uid_eq(cred->uid, tcred->uid) &&
1657 gid_eq(cred->gid, tcred->egid) &&
1658 gid_eq(cred->gid, tcred->sgid) &&
1659 gid_eq(cred->gid, tcred->gid));
1660 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1663 return security_task_prlimit(cred, tcred, flags);
1666 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1667 const struct rlimit64 __user *, new_rlim,
1668 struct rlimit64 __user *, old_rlim)
1670 struct rlimit64 old64, new64;
1671 struct rlimit old, new;
1672 struct task_struct *tsk;
1673 unsigned int checkflags = 0;
1677 checkflags |= LSM_PRLIMIT_READ;
1680 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1682 rlim64_to_rlim(&new64, &new);
1683 checkflags |= LSM_PRLIMIT_WRITE;
1687 tsk = pid ? find_task_by_vpid(pid) : current;
1692 ret = check_prlimit_permission(tsk, checkflags);
1697 get_task_struct(tsk);
1700 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1701 old_rlim ? &old : NULL);
1703 if (!ret && old_rlim) {
1704 rlim_to_rlim64(&old, &old64);
1705 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1709 put_task_struct(tsk);
1713 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1715 struct rlimit new_rlim;
1717 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1719 return do_prlimit(current, resource, &new_rlim, NULL);
1723 * It would make sense to put struct rusage in the task_struct,
1724 * except that would make the task_struct be *really big*. After
1725 * task_struct gets moved into malloc'ed memory, it would
1726 * make sense to do this. It will make moving the rest of the information
1727 * a lot simpler! (Which we're not doing right now because we're not
1728 * measuring them yet).
1730 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1731 * races with threads incrementing their own counters. But since word
1732 * reads are atomic, we either get new values or old values and we don't
1733 * care which for the sums. We always take the siglock to protect reading
1734 * the c* fields from p->signal from races with exit.c updating those
1735 * fields when reaping, so a sample either gets all the additions of a
1736 * given child after it's reaped, or none so this sample is before reaping.
1739 * We need to take the siglock for CHILDEREN, SELF and BOTH
1740 * for the cases current multithreaded, non-current single threaded
1741 * non-current multithreaded. Thread traversal is now safe with
1743 * Strictly speaking, we donot need to take the siglock if we are current and
1744 * single threaded, as no one else can take our signal_struct away, no one
1745 * else can reap the children to update signal->c* counters, and no one else
1746 * can race with the signal-> fields. If we do not take any lock, the
1747 * signal-> fields could be read out of order while another thread was just
1748 * exiting. So we should place a read memory barrier when we avoid the lock.
1749 * On the writer side, write memory barrier is implied in __exit_signal
1750 * as __exit_signal releases the siglock spinlock after updating the signal->
1751 * fields. But we don't do this yet to keep things simple.
1755 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1757 r->ru_nvcsw += t->nvcsw;
1758 r->ru_nivcsw += t->nivcsw;
1759 r->ru_minflt += t->min_flt;
1760 r->ru_majflt += t->maj_flt;
1761 r->ru_inblock += task_io_get_inblock(t);
1762 r->ru_oublock += task_io_get_oublock(t);
1765 void getrusage(struct task_struct *p, int who, struct rusage *r)
1767 struct task_struct *t;
1768 unsigned long flags;
1769 u64 tgutime, tgstime, utime, stime;
1770 unsigned long maxrss = 0;
1772 memset((char *)r, 0, sizeof (*r));
1775 if (who == RUSAGE_THREAD) {
1776 task_cputime_adjusted(current, &utime, &stime);
1777 accumulate_thread_rusage(p, r);
1778 maxrss = p->signal->maxrss;
1782 if (!lock_task_sighand(p, &flags))
1787 case RUSAGE_CHILDREN:
1788 utime = p->signal->cutime;
1789 stime = p->signal->cstime;
1790 r->ru_nvcsw = p->signal->cnvcsw;
1791 r->ru_nivcsw = p->signal->cnivcsw;
1792 r->ru_minflt = p->signal->cmin_flt;
1793 r->ru_majflt = p->signal->cmaj_flt;
1794 r->ru_inblock = p->signal->cinblock;
1795 r->ru_oublock = p->signal->coublock;
1796 maxrss = p->signal->cmaxrss;
1798 if (who == RUSAGE_CHILDREN)
1803 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1806 r->ru_nvcsw += p->signal->nvcsw;
1807 r->ru_nivcsw += p->signal->nivcsw;
1808 r->ru_minflt += p->signal->min_flt;
1809 r->ru_majflt += p->signal->maj_flt;
1810 r->ru_inblock += p->signal->inblock;
1811 r->ru_oublock += p->signal->oublock;
1812 if (maxrss < p->signal->maxrss)
1813 maxrss = p->signal->maxrss;
1816 accumulate_thread_rusage(t, r);
1817 } while_each_thread(p, t);
1823 unlock_task_sighand(p, &flags);
1826 r->ru_utime = ns_to_kernel_old_timeval(utime);
1827 r->ru_stime = ns_to_kernel_old_timeval(stime);
1829 if (who != RUSAGE_CHILDREN) {
1830 struct mm_struct *mm = get_task_mm(p);
1833 setmax_mm_hiwater_rss(&maxrss, mm);
1837 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1840 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1844 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1845 who != RUSAGE_THREAD)
1848 getrusage(current, who, &r);
1849 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1852 #ifdef CONFIG_COMPAT
1853 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1857 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1858 who != RUSAGE_THREAD)
1861 getrusage(current, who, &r);
1862 return put_compat_rusage(&r, ru);
1866 SYSCALL_DEFINE1(umask, int, mask)
1868 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1872 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1875 struct inode *inode;
1882 inode = file_inode(exe.file);
1885 * Because the original mm->exe_file points to executable file, make
1886 * sure that this one is executable as well, to avoid breaking an
1890 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1893 err = file_permission(exe.file, MAY_EXEC);
1897 err = replace_mm_exe_file(mm, exe.file);
1904 * Check arithmetic relations of passed addresses.
1906 * WARNING: we don't require any capability here so be very careful
1907 * in what is allowed for modification from userspace.
1909 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1911 unsigned long mmap_max_addr = TASK_SIZE;
1912 int error = -EINVAL, i;
1914 static const unsigned char offsets[] = {
1915 offsetof(struct prctl_mm_map, start_code),
1916 offsetof(struct prctl_mm_map, end_code),
1917 offsetof(struct prctl_mm_map, start_data),
1918 offsetof(struct prctl_mm_map, end_data),
1919 offsetof(struct prctl_mm_map, start_brk),
1920 offsetof(struct prctl_mm_map, brk),
1921 offsetof(struct prctl_mm_map, start_stack),
1922 offsetof(struct prctl_mm_map, arg_start),
1923 offsetof(struct prctl_mm_map, arg_end),
1924 offsetof(struct prctl_mm_map, env_start),
1925 offsetof(struct prctl_mm_map, env_end),
1929 * Make sure the members are not somewhere outside
1930 * of allowed address space.
1932 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1933 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1935 if ((unsigned long)val >= mmap_max_addr ||
1936 (unsigned long)val < mmap_min_addr)
1941 * Make sure the pairs are ordered.
1943 #define __prctl_check_order(__m1, __op, __m2) \
1944 ((unsigned long)prctl_map->__m1 __op \
1945 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1946 error = __prctl_check_order(start_code, <, end_code);
1947 error |= __prctl_check_order(start_data,<=, end_data);
1948 error |= __prctl_check_order(start_brk, <=, brk);
1949 error |= __prctl_check_order(arg_start, <=, arg_end);
1950 error |= __prctl_check_order(env_start, <=, env_end);
1953 #undef __prctl_check_order
1958 * Neither we should allow to override limits if they set.
1960 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1961 prctl_map->start_brk, prctl_map->end_data,
1962 prctl_map->start_data))
1970 #ifdef CONFIG_CHECKPOINT_RESTORE
1971 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1973 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1974 unsigned long user_auxv[AT_VECTOR_SIZE];
1975 struct mm_struct *mm = current->mm;
1978 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1979 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1981 if (opt == PR_SET_MM_MAP_SIZE)
1982 return put_user((unsigned int)sizeof(prctl_map),
1983 (unsigned int __user *)addr);
1985 if (data_size != sizeof(prctl_map))
1988 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1991 error = validate_prctl_map_addr(&prctl_map);
1995 if (prctl_map.auxv_size) {
1997 * Someone is trying to cheat the auxv vector.
1999 if (!prctl_map.auxv ||
2000 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2003 memset(user_auxv, 0, sizeof(user_auxv));
2004 if (copy_from_user(user_auxv,
2005 (const void __user *)prctl_map.auxv,
2006 prctl_map.auxv_size))
2009 /* Last entry must be AT_NULL as specification requires */
2010 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2011 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2014 if (prctl_map.exe_fd != (u32)-1) {
2016 * Check if the current user is checkpoint/restore capable.
2017 * At the time of this writing, it checks for CAP_SYS_ADMIN
2018 * or CAP_CHECKPOINT_RESTORE.
2019 * Note that a user with access to ptrace can masquerade an
2020 * arbitrary program as any executable, even setuid ones.
2021 * This may have implications in the tomoyo subsystem.
2023 if (!checkpoint_restore_ns_capable(current_user_ns()))
2026 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2032 * arg_lock protects concurrent updates but we still need mmap_lock for
2033 * read to exclude races with sys_brk.
2038 * We don't validate if these members are pointing to
2039 * real present VMAs because application may have correspond
2040 * VMAs already unmapped and kernel uses these members for statistics
2041 * output in procfs mostly, except
2043 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2044 * for VMAs when updating these members so anything wrong written
2045 * here cause kernel to swear at userspace program but won't lead
2046 * to any problem in kernel itself
2049 spin_lock(&mm->arg_lock);
2050 mm->start_code = prctl_map.start_code;
2051 mm->end_code = prctl_map.end_code;
2052 mm->start_data = prctl_map.start_data;
2053 mm->end_data = prctl_map.end_data;
2054 mm->start_brk = prctl_map.start_brk;
2055 mm->brk = prctl_map.brk;
2056 mm->start_stack = prctl_map.start_stack;
2057 mm->arg_start = prctl_map.arg_start;
2058 mm->arg_end = prctl_map.arg_end;
2059 mm->env_start = prctl_map.env_start;
2060 mm->env_end = prctl_map.env_end;
2061 spin_unlock(&mm->arg_lock);
2064 * Note this update of @saved_auxv is lockless thus
2065 * if someone reads this member in procfs while we're
2066 * updating -- it may get partly updated results. It's
2067 * known and acceptable trade off: we leave it as is to
2068 * not introduce additional locks here making the kernel
2071 if (prctl_map.auxv_size)
2072 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2074 mmap_read_unlock(mm);
2077 #endif /* CONFIG_CHECKPOINT_RESTORE */
2079 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2083 * This doesn't move the auxiliary vector itself since it's pinned to
2084 * mm_struct, but it permits filling the vector with new values. It's
2085 * up to the caller to provide sane values here, otherwise userspace
2086 * tools which use this vector might be unhappy.
2088 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2090 if (len > sizeof(user_auxv))
2093 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2096 /* Make sure the last entry is always AT_NULL */
2097 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2098 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2100 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2103 memcpy(mm->saved_auxv, user_auxv, len);
2104 task_unlock(current);
2109 static int prctl_set_mm(int opt, unsigned long addr,
2110 unsigned long arg4, unsigned long arg5)
2112 struct mm_struct *mm = current->mm;
2113 struct prctl_mm_map prctl_map = {
2118 struct vm_area_struct *vma;
2121 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2122 opt != PR_SET_MM_MAP &&
2123 opt != PR_SET_MM_MAP_SIZE)))
2126 #ifdef CONFIG_CHECKPOINT_RESTORE
2127 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2128 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2131 if (!capable(CAP_SYS_RESOURCE))
2134 if (opt == PR_SET_MM_EXE_FILE)
2135 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2137 if (opt == PR_SET_MM_AUXV)
2138 return prctl_set_auxv(mm, addr, arg4);
2140 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2146 * arg_lock protects concurrent updates of arg boundaries, we need
2147 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2151 vma = find_vma(mm, addr);
2153 spin_lock(&mm->arg_lock);
2154 prctl_map.start_code = mm->start_code;
2155 prctl_map.end_code = mm->end_code;
2156 prctl_map.start_data = mm->start_data;
2157 prctl_map.end_data = mm->end_data;
2158 prctl_map.start_brk = mm->start_brk;
2159 prctl_map.brk = mm->brk;
2160 prctl_map.start_stack = mm->start_stack;
2161 prctl_map.arg_start = mm->arg_start;
2162 prctl_map.arg_end = mm->arg_end;
2163 prctl_map.env_start = mm->env_start;
2164 prctl_map.env_end = mm->env_end;
2167 case PR_SET_MM_START_CODE:
2168 prctl_map.start_code = addr;
2170 case PR_SET_MM_END_CODE:
2171 prctl_map.end_code = addr;
2173 case PR_SET_MM_START_DATA:
2174 prctl_map.start_data = addr;
2176 case PR_SET_MM_END_DATA:
2177 prctl_map.end_data = addr;
2179 case PR_SET_MM_START_STACK:
2180 prctl_map.start_stack = addr;
2182 case PR_SET_MM_START_BRK:
2183 prctl_map.start_brk = addr;
2186 prctl_map.brk = addr;
2188 case PR_SET_MM_ARG_START:
2189 prctl_map.arg_start = addr;
2191 case PR_SET_MM_ARG_END:
2192 prctl_map.arg_end = addr;
2194 case PR_SET_MM_ENV_START:
2195 prctl_map.env_start = addr;
2197 case PR_SET_MM_ENV_END:
2198 prctl_map.env_end = addr;
2204 error = validate_prctl_map_addr(&prctl_map);
2210 * If command line arguments and environment
2211 * are placed somewhere else on stack, we can
2212 * set them up here, ARG_START/END to setup
2213 * command line arguments and ENV_START/END
2216 case PR_SET_MM_START_STACK:
2217 case PR_SET_MM_ARG_START:
2218 case PR_SET_MM_ARG_END:
2219 case PR_SET_MM_ENV_START:
2220 case PR_SET_MM_ENV_END:
2227 mm->start_code = prctl_map.start_code;
2228 mm->end_code = prctl_map.end_code;
2229 mm->start_data = prctl_map.start_data;
2230 mm->end_data = prctl_map.end_data;
2231 mm->start_brk = prctl_map.start_brk;
2232 mm->brk = prctl_map.brk;
2233 mm->start_stack = prctl_map.start_stack;
2234 mm->arg_start = prctl_map.arg_start;
2235 mm->arg_end = prctl_map.arg_end;
2236 mm->env_start = prctl_map.env_start;
2237 mm->env_end = prctl_map.env_end;
2241 spin_unlock(&mm->arg_lock);
2242 mmap_read_unlock(mm);
2246 #ifdef CONFIG_CHECKPOINT_RESTORE
2247 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2249 return put_user(me->clear_child_tid, tid_addr);
2252 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2258 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2261 * If task has has_child_subreaper - all its descendants
2262 * already have these flag too and new descendants will
2263 * inherit it on fork, skip them.
2265 * If we've found child_reaper - skip descendants in
2266 * it's subtree as they will never get out pidns.
2268 if (p->signal->has_child_subreaper ||
2269 is_child_reaper(task_pid(p)))
2272 p->signal->has_child_subreaper = 1;
2276 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2281 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2287 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2289 #ifdef CONFIG_ANON_VMA_NAME
2291 #define ANON_VMA_NAME_MAX_LEN 80
2292 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2294 static inline bool is_valid_name_char(char ch)
2296 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2297 return ch > 0x1f && ch < 0x7f &&
2298 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2301 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2302 unsigned long size, unsigned long arg)
2304 struct mm_struct *mm = current->mm;
2305 const char __user *uname;
2306 struct anon_vma_name *anon_name = NULL;
2310 case PR_SET_VMA_ANON_NAME:
2311 uname = (const char __user *)arg;
2315 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2317 return PTR_ERR(name);
2319 for (pch = name; *pch != '\0'; pch++) {
2320 if (!is_valid_name_char(*pch)) {
2325 /* anon_vma has its own copy */
2326 anon_name = anon_vma_name_alloc(name);
2333 mmap_write_lock(mm);
2334 error = madvise_set_anon_name(mm, addr, size, anon_name);
2335 mmap_write_unlock(mm);
2336 anon_vma_name_put(anon_name);
2345 #else /* CONFIG_ANON_VMA_NAME */
2346 static int prctl_set_vma(unsigned long opt, unsigned long start,
2347 unsigned long size, unsigned long arg)
2351 #endif /* CONFIG_ANON_VMA_NAME */
2353 static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2354 unsigned long arg4, unsigned long arg5)
2356 if (arg3 || arg4 || arg5)
2359 if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN))
2362 if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2363 set_bit(MMF_HAS_MDWE, ¤t->mm->flags);
2364 else if (test_bit(MMF_HAS_MDWE, ¤t->mm->flags))
2365 return -EPERM; /* Cannot unset the flag */
2370 static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2371 unsigned long arg4, unsigned long arg5)
2373 if (arg2 || arg3 || arg4 || arg5)
2376 return test_bit(MMF_HAS_MDWE, ¤t->mm->flags) ?
2377 PR_MDWE_REFUSE_EXEC_GAIN : 0;
2380 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2381 unsigned long, arg4, unsigned long, arg5)
2383 struct task_struct *me = current;
2384 unsigned char comm[sizeof(me->comm)];
2387 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2388 if (error != -ENOSYS)
2393 case PR_SET_PDEATHSIG:
2394 if (!valid_signal(arg2)) {
2398 me->pdeath_signal = arg2;
2400 case PR_GET_PDEATHSIG:
2401 error = put_user(me->pdeath_signal, (int __user *)arg2);
2403 case PR_GET_DUMPABLE:
2404 error = get_dumpable(me->mm);
2406 case PR_SET_DUMPABLE:
2407 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2411 set_dumpable(me->mm, arg2);
2414 case PR_SET_UNALIGN:
2415 error = SET_UNALIGN_CTL(me, arg2);
2417 case PR_GET_UNALIGN:
2418 error = GET_UNALIGN_CTL(me, arg2);
2421 error = SET_FPEMU_CTL(me, arg2);
2424 error = GET_FPEMU_CTL(me, arg2);
2427 error = SET_FPEXC_CTL(me, arg2);
2430 error = GET_FPEXC_CTL(me, arg2);
2433 error = PR_TIMING_STATISTICAL;
2436 if (arg2 != PR_TIMING_STATISTICAL)
2440 comm[sizeof(me->comm) - 1] = 0;
2441 if (strncpy_from_user(comm, (char __user *)arg2,
2442 sizeof(me->comm) - 1) < 0)
2444 set_task_comm(me, comm);
2445 proc_comm_connector(me);
2448 get_task_comm(comm, me);
2449 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2453 error = GET_ENDIAN(me, arg2);
2456 error = SET_ENDIAN(me, arg2);
2458 case PR_GET_SECCOMP:
2459 error = prctl_get_seccomp();
2461 case PR_SET_SECCOMP:
2462 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2465 error = GET_TSC_CTL(arg2);
2468 error = SET_TSC_CTL(arg2);
2470 case PR_TASK_PERF_EVENTS_DISABLE:
2471 error = perf_event_task_disable();
2473 case PR_TASK_PERF_EVENTS_ENABLE:
2474 error = perf_event_task_enable();
2476 case PR_GET_TIMERSLACK:
2477 if (current->timer_slack_ns > ULONG_MAX)
2480 error = current->timer_slack_ns;
2482 case PR_SET_TIMERSLACK:
2484 current->timer_slack_ns =
2485 current->default_timer_slack_ns;
2487 current->timer_slack_ns = arg2;
2493 case PR_MCE_KILL_CLEAR:
2496 current->flags &= ~PF_MCE_PROCESS;
2498 case PR_MCE_KILL_SET:
2499 current->flags |= PF_MCE_PROCESS;
2500 if (arg3 == PR_MCE_KILL_EARLY)
2501 current->flags |= PF_MCE_EARLY;
2502 else if (arg3 == PR_MCE_KILL_LATE)
2503 current->flags &= ~PF_MCE_EARLY;
2504 else if (arg3 == PR_MCE_KILL_DEFAULT)
2506 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2514 case PR_MCE_KILL_GET:
2515 if (arg2 | arg3 | arg4 | arg5)
2517 if (current->flags & PF_MCE_PROCESS)
2518 error = (current->flags & PF_MCE_EARLY) ?
2519 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2521 error = PR_MCE_KILL_DEFAULT;
2524 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2526 case PR_GET_TID_ADDRESS:
2527 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2529 case PR_SET_CHILD_SUBREAPER:
2530 me->signal->is_child_subreaper = !!arg2;
2534 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2536 case PR_GET_CHILD_SUBREAPER:
2537 error = put_user(me->signal->is_child_subreaper,
2538 (int __user *)arg2);
2540 case PR_SET_NO_NEW_PRIVS:
2541 if (arg2 != 1 || arg3 || arg4 || arg5)
2544 task_set_no_new_privs(current);
2546 case PR_GET_NO_NEW_PRIVS:
2547 if (arg2 || arg3 || arg4 || arg5)
2549 return task_no_new_privs(current) ? 1 : 0;
2550 case PR_GET_THP_DISABLE:
2551 if (arg2 || arg3 || arg4 || arg5)
2553 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2555 case PR_SET_THP_DISABLE:
2556 if (arg3 || arg4 || arg5)
2558 if (mmap_write_lock_killable(me->mm))
2561 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2563 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2564 mmap_write_unlock(me->mm);
2566 case PR_MPX_ENABLE_MANAGEMENT:
2567 case PR_MPX_DISABLE_MANAGEMENT:
2568 /* No longer implemented: */
2570 case PR_SET_FP_MODE:
2571 error = SET_FP_MODE(me, arg2);
2573 case PR_GET_FP_MODE:
2574 error = GET_FP_MODE(me);
2577 error = SVE_SET_VL(arg2);
2580 error = SVE_GET_VL();
2583 error = SME_SET_VL(arg2);
2586 error = SME_GET_VL();
2588 case PR_GET_SPECULATION_CTRL:
2589 if (arg3 || arg4 || arg5)
2591 error = arch_prctl_spec_ctrl_get(me, arg2);
2593 case PR_SET_SPECULATION_CTRL:
2596 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2598 case PR_PAC_RESET_KEYS:
2599 if (arg3 || arg4 || arg5)
2601 error = PAC_RESET_KEYS(me, arg2);
2603 case PR_PAC_SET_ENABLED_KEYS:
2606 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2608 case PR_PAC_GET_ENABLED_KEYS:
2609 if (arg2 || arg3 || arg4 || arg5)
2611 error = PAC_GET_ENABLED_KEYS(me);
2613 case PR_SET_TAGGED_ADDR_CTRL:
2614 if (arg3 || arg4 || arg5)
2616 error = SET_TAGGED_ADDR_CTRL(arg2);
2618 case PR_GET_TAGGED_ADDR_CTRL:
2619 if (arg2 || arg3 || arg4 || arg5)
2621 error = GET_TAGGED_ADDR_CTRL();
2623 case PR_SET_IO_FLUSHER:
2624 if (!capable(CAP_SYS_RESOURCE))
2627 if (arg3 || arg4 || arg5)
2631 current->flags |= PR_IO_FLUSHER;
2633 current->flags &= ~PR_IO_FLUSHER;
2637 case PR_GET_IO_FLUSHER:
2638 if (!capable(CAP_SYS_RESOURCE))
2641 if (arg2 || arg3 || arg4 || arg5)
2644 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2646 case PR_SET_SYSCALL_USER_DISPATCH:
2647 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2648 (char __user *) arg5);
2650 #ifdef CONFIG_SCHED_CORE
2652 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2656 error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2659 error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2662 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2671 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2672 struct getcpu_cache __user *, unused)
2675 int cpu = raw_smp_processor_id();
2678 err |= put_user(cpu, cpup);
2680 err |= put_user(cpu_to_node(cpu), nodep);
2681 return err ? -EFAULT : 0;
2685 * do_sysinfo - fill in sysinfo struct
2686 * @info: pointer to buffer to fill
2688 static int do_sysinfo(struct sysinfo *info)
2690 unsigned long mem_total, sav_total;
2691 unsigned int mem_unit, bitcount;
2692 struct timespec64 tp;
2694 memset(info, 0, sizeof(struct sysinfo));
2696 ktime_get_boottime_ts64(&tp);
2697 timens_add_boottime(&tp);
2698 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2700 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2702 info->procs = nr_threads;
2708 * If the sum of all the available memory (i.e. ram + swap)
2709 * is less than can be stored in a 32 bit unsigned long then
2710 * we can be binary compatible with 2.2.x kernels. If not,
2711 * well, in that case 2.2.x was broken anyways...
2713 * -Erik Andersen <andersee@debian.org>
2716 mem_total = info->totalram + info->totalswap;
2717 if (mem_total < info->totalram || mem_total < info->totalswap)
2720 mem_unit = info->mem_unit;
2721 while (mem_unit > 1) {
2724 sav_total = mem_total;
2726 if (mem_total < sav_total)
2731 * If mem_total did not overflow, multiply all memory values by
2732 * info->mem_unit and set it to 1. This leaves things compatible
2733 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2738 info->totalram <<= bitcount;
2739 info->freeram <<= bitcount;
2740 info->sharedram <<= bitcount;
2741 info->bufferram <<= bitcount;
2742 info->totalswap <<= bitcount;
2743 info->freeswap <<= bitcount;
2744 info->totalhigh <<= bitcount;
2745 info->freehigh <<= bitcount;
2751 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2757 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2763 #ifdef CONFIG_COMPAT
2764 struct compat_sysinfo {
2778 char _f[20-2*sizeof(u32)-sizeof(int)];
2781 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2784 struct compat_sysinfo s_32;
2788 /* Check to see if any memory value is too large for 32-bit and scale
2791 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2794 while (s.mem_unit < PAGE_SIZE) {
2799 s.totalram >>= bitcount;
2800 s.freeram >>= bitcount;
2801 s.sharedram >>= bitcount;
2802 s.bufferram >>= bitcount;
2803 s.totalswap >>= bitcount;
2804 s.freeswap >>= bitcount;
2805 s.totalhigh >>= bitcount;
2806 s.freehigh >>= bitcount;
2809 memset(&s_32, 0, sizeof(s_32));
2810 s_32.uptime = s.uptime;
2811 s_32.loads[0] = s.loads[0];
2812 s_32.loads[1] = s.loads[1];
2813 s_32.loads[2] = s.loads[2];
2814 s_32.totalram = s.totalram;
2815 s_32.freeram = s.freeram;
2816 s_32.sharedram = s.sharedram;
2817 s_32.bufferram = s.bufferram;
2818 s_32.totalswap = s.totalswap;
2819 s_32.freeswap = s.freeswap;
2820 s_32.procs = s.procs;
2821 s_32.totalhigh = s.totalhigh;
2822 s_32.freehigh = s.freehigh;
2823 s_32.mem_unit = s.mem_unit;
2824 if (copy_to_user(info, &s_32, sizeof(s_32)))
2828 #endif /* CONFIG_COMPAT */