4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/export.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
52 #include <linux/sched.h>
53 #include <linux/rcupdate.h>
54 #include <linux/uidgid.h>
55 #include <linux/cred.h>
57 #include <linux/kmsg_dump.h>
58 /* Move somewhere else to avoid recompiling? */
59 #include <generated/utsrelease.h>
61 #include <asm/uaccess.h>
63 #include <asm/unistd.h>
65 #ifndef SET_UNALIGN_CTL
66 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
68 #ifndef GET_UNALIGN_CTL
69 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
72 # define SET_FPEMU_CTL(a,b) (-EINVAL)
75 # define GET_FPEMU_CTL(a,b) (-EINVAL)
78 # define SET_FPEXC_CTL(a,b) (-EINVAL)
81 # define GET_FPEXC_CTL(a,b) (-EINVAL)
84 # define GET_ENDIAN(a,b) (-EINVAL)
87 # define SET_ENDIAN(a,b) (-EINVAL)
90 # define GET_TSC_CTL(a) (-EINVAL)
93 # define SET_TSC_CTL(a) (-EINVAL)
97 * this is where the system-wide overflow UID and GID are defined, for
98 * architectures that now have 32-bit UID/GID but didn't in the past
101 int overflowuid = DEFAULT_OVERFLOWUID;
102 int overflowgid = DEFAULT_OVERFLOWGID;
104 EXPORT_SYMBOL(overflowuid);
105 EXPORT_SYMBOL(overflowgid);
108 * the same as above, but for filesystems which can only store a 16-bit
109 * UID and GID. as such, this is needed on all architectures
112 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
113 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
115 EXPORT_SYMBOL(fs_overflowuid);
116 EXPORT_SYMBOL(fs_overflowgid);
119 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
124 EXPORT_SYMBOL(cad_pid);
127 * If set, this is used for preparing the system to power off.
130 void (*pm_power_off_prepare)(void);
133 * Returns true if current's euid is same as p's uid or euid,
134 * or has CAP_SYS_NICE to p's user_ns.
136 * Called with rcu_read_lock, creds are safe
138 static bool set_one_prio_perm(struct task_struct *p)
140 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
142 if (uid_eq(pcred->uid, cred->euid) ||
143 uid_eq(pcred->euid, cred->euid))
145 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
151 * set the priority of a task
152 * - the caller must hold the RCU read lock
154 static int set_one_prio(struct task_struct *p, int niceval, int error)
158 if (!set_one_prio_perm(p)) {
162 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
166 no_nice = security_task_setnice(p, niceval);
173 set_user_nice(p, niceval);
178 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
180 struct task_struct *g, *p;
181 struct user_struct *user;
182 const struct cred *cred = current_cred();
187 if (which > PRIO_USER || which < PRIO_PROCESS)
190 /* normalize: avoid signed division (rounding problems) */
198 read_lock(&tasklist_lock);
202 p = find_task_by_vpid(who);
206 error = set_one_prio(p, niceval, error);
210 pgrp = find_vpid(who);
212 pgrp = task_pgrp(current);
213 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
214 error = set_one_prio(p, niceval, error);
215 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
218 uid = make_kuid(cred->user_ns, who);
222 else if (!uid_eq(uid, cred->uid) &&
223 !(user = find_user(uid)))
224 goto out_unlock; /* No processes for this user */
226 do_each_thread(g, p) {
227 if (uid_eq(task_uid(p), uid))
228 error = set_one_prio(p, niceval, error);
229 } while_each_thread(g, p);
230 if (!uid_eq(uid, cred->uid))
231 free_uid(user); /* For find_user() */
235 read_unlock(&tasklist_lock);
242 * Ugh. To avoid negative return values, "getpriority()" will
243 * not return the normal nice-value, but a negated value that
244 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
245 * to stay compatible.
247 SYSCALL_DEFINE2(getpriority, int, which, int, who)
249 struct task_struct *g, *p;
250 struct user_struct *user;
251 const struct cred *cred = current_cred();
252 long niceval, retval = -ESRCH;
256 if (which > PRIO_USER || which < PRIO_PROCESS)
260 read_lock(&tasklist_lock);
264 p = find_task_by_vpid(who);
268 niceval = 20 - task_nice(p);
269 if (niceval > retval)
275 pgrp = find_vpid(who);
277 pgrp = task_pgrp(current);
278 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
279 niceval = 20 - task_nice(p);
280 if (niceval > retval)
282 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
285 uid = make_kuid(cred->user_ns, who);
289 else if (!uid_eq(uid, cred->uid) &&
290 !(user = find_user(uid)))
291 goto out_unlock; /* No processes for this user */
293 do_each_thread(g, p) {
294 if (uid_eq(task_uid(p), uid)) {
295 niceval = 20 - task_nice(p);
296 if (niceval > retval)
299 } while_each_thread(g, p);
300 if (!uid_eq(uid, cred->uid))
301 free_uid(user); /* for find_user() */
305 read_unlock(&tasklist_lock);
312 * emergency_restart - reboot the system
314 * Without shutting down any hardware or taking any locks
315 * reboot the system. This is called when we know we are in
316 * trouble so this is our best effort to reboot. This is
317 * safe to call in interrupt context.
319 void emergency_restart(void)
321 kmsg_dump(KMSG_DUMP_EMERG);
322 machine_emergency_restart();
324 EXPORT_SYMBOL_GPL(emergency_restart);
326 void kernel_restart_prepare(char *cmd)
328 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
329 system_state = SYSTEM_RESTART;
330 usermodehelper_disable();
335 * register_reboot_notifier - Register function to be called at reboot time
336 * @nb: Info about notifier function to be called
338 * Registers a function with the list of functions
339 * to be called at reboot time.
341 * Currently always returns zero, as blocking_notifier_chain_register()
342 * always returns zero.
344 int register_reboot_notifier(struct notifier_block *nb)
346 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
348 EXPORT_SYMBOL(register_reboot_notifier);
351 * unregister_reboot_notifier - Unregister previously registered reboot notifier
352 * @nb: Hook to be unregistered
354 * Unregisters a previously registered reboot
357 * Returns zero on success, or %-ENOENT on failure.
359 int unregister_reboot_notifier(struct notifier_block *nb)
361 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
363 EXPORT_SYMBOL(unregister_reboot_notifier);
365 /* Add backwards compatibility for stable trees. */
366 #ifndef PF_NO_SETAFFINITY
367 #define PF_NO_SETAFFINITY PF_THREAD_BOUND
370 static void migrate_to_reboot_cpu(void)
372 /* The boot cpu is always logical cpu 0 */
375 cpu_hotplug_disable();
377 /* Make certain the cpu I'm about to reboot on is online */
378 if (!cpu_online(cpu))
379 cpu = cpumask_first(cpu_online_mask);
381 /* Prevent races with other tasks migrating this task */
382 current->flags |= PF_NO_SETAFFINITY;
384 /* Make certain I only run on the appropriate processor */
385 set_cpus_allowed_ptr(current, cpumask_of(cpu));
389 * kernel_restart - reboot the system
390 * @cmd: pointer to buffer containing command to execute for restart
393 * Shutdown everything and perform a clean reboot.
394 * This is not safe to call in interrupt context.
396 void kernel_restart(char *cmd)
398 kernel_restart_prepare(cmd);
399 migrate_to_reboot_cpu();
402 printk(KERN_EMERG "Restarting system.\n");
404 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
405 kmsg_dump(KMSG_DUMP_RESTART);
406 machine_restart(cmd);
408 EXPORT_SYMBOL_GPL(kernel_restart);
410 static void kernel_shutdown_prepare(enum system_states state)
412 blocking_notifier_call_chain(&reboot_notifier_list,
413 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
414 system_state = state;
415 usermodehelper_disable();
419 * kernel_halt - halt the system
421 * Shutdown everything and perform a clean system halt.
423 void kernel_halt(void)
425 kernel_shutdown_prepare(SYSTEM_HALT);
426 migrate_to_reboot_cpu();
428 printk(KERN_EMERG "System halted.\n");
429 kmsg_dump(KMSG_DUMP_HALT);
433 EXPORT_SYMBOL_GPL(kernel_halt);
436 * kernel_power_off - power_off the system
438 * Shutdown everything and perform a clean system power_off.
440 void kernel_power_off(void)
442 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
443 if (pm_power_off_prepare)
444 pm_power_off_prepare();
445 migrate_to_reboot_cpu();
447 printk(KERN_EMERG "Power down.\n");
448 kmsg_dump(KMSG_DUMP_POWEROFF);
451 EXPORT_SYMBOL_GPL(kernel_power_off);
453 static DEFINE_MUTEX(reboot_mutex);
456 * Reboot system call: for obvious reasons only root may call it,
457 * and even root needs to set up some magic numbers in the registers
458 * so that some mistake won't make this reboot the whole machine.
459 * You can also set the meaning of the ctrl-alt-del-key here.
461 * reboot doesn't sync: do that yourself before calling this.
463 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
466 struct pid_namespace *pid_ns = task_active_pid_ns(current);
470 /* We only trust the superuser with rebooting the system. */
471 if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
474 /* For safety, we require "magic" arguments. */
475 if (magic1 != LINUX_REBOOT_MAGIC1 ||
476 (magic2 != LINUX_REBOOT_MAGIC2 &&
477 magic2 != LINUX_REBOOT_MAGIC2A &&
478 magic2 != LINUX_REBOOT_MAGIC2B &&
479 magic2 != LINUX_REBOOT_MAGIC2C))
483 * If pid namespaces are enabled and the current task is in a child
484 * pid_namespace, the command is handled by reboot_pid_ns() which will
487 ret = reboot_pid_ns(pid_ns, cmd);
491 /* Instead of trying to make the power_off code look like
492 * halt when pm_power_off is not set do it the easy way.
494 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
495 cmd = LINUX_REBOOT_CMD_HALT;
497 mutex_lock(&reboot_mutex);
499 case LINUX_REBOOT_CMD_RESTART:
500 kernel_restart(NULL);
503 case LINUX_REBOOT_CMD_CAD_ON:
507 case LINUX_REBOOT_CMD_CAD_OFF:
511 case LINUX_REBOOT_CMD_HALT:
514 panic("cannot halt");
516 case LINUX_REBOOT_CMD_POWER_OFF:
521 case LINUX_REBOOT_CMD_RESTART2:
522 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
526 buffer[sizeof(buffer) - 1] = '\0';
528 kernel_restart(buffer);
532 case LINUX_REBOOT_CMD_KEXEC:
533 ret = kernel_kexec();
537 #ifdef CONFIG_HIBERNATION
538 case LINUX_REBOOT_CMD_SW_SUSPEND:
547 mutex_unlock(&reboot_mutex);
551 static void deferred_cad(struct work_struct *dummy)
553 kernel_restart(NULL);
557 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
558 * As it's called within an interrupt, it may NOT sync: the only choice
559 * is whether to reboot at once, or just ignore the ctrl-alt-del.
561 void ctrl_alt_del(void)
563 static DECLARE_WORK(cad_work, deferred_cad);
566 schedule_work(&cad_work);
568 kill_cad_pid(SIGINT, 1);
572 * Unprivileged users may change the real gid to the effective gid
573 * or vice versa. (BSD-style)
575 * If you set the real gid at all, or set the effective gid to a value not
576 * equal to the real gid, then the saved gid is set to the new effective gid.
578 * This makes it possible for a setgid program to completely drop its
579 * privileges, which is often a useful assertion to make when you are doing
580 * a security audit over a program.
582 * The general idea is that a program which uses just setregid() will be
583 * 100% compatible with BSD. A program which uses just setgid() will be
584 * 100% compatible with POSIX with saved IDs.
586 * SMP: There are not races, the GIDs are checked only by filesystem
587 * operations (as far as semantic preservation is concerned).
589 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
591 struct user_namespace *ns = current_user_ns();
592 const struct cred *old;
597 krgid = make_kgid(ns, rgid);
598 kegid = make_kgid(ns, egid);
600 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
602 if ((egid != (gid_t) -1) && !gid_valid(kegid))
605 new = prepare_creds();
608 old = current_cred();
611 if (rgid != (gid_t) -1) {
612 if (gid_eq(old->gid, krgid) ||
613 gid_eq(old->egid, krgid) ||
614 nsown_capable(CAP_SETGID))
619 if (egid != (gid_t) -1) {
620 if (gid_eq(old->gid, kegid) ||
621 gid_eq(old->egid, kegid) ||
622 gid_eq(old->sgid, kegid) ||
623 nsown_capable(CAP_SETGID))
629 if (rgid != (gid_t) -1 ||
630 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
631 new->sgid = new->egid;
632 new->fsgid = new->egid;
634 return commit_creds(new);
642 * setgid() is implemented like SysV w/ SAVED_IDS
644 * SMP: Same implicit races as above.
646 SYSCALL_DEFINE1(setgid, gid_t, gid)
648 struct user_namespace *ns = current_user_ns();
649 const struct cred *old;
654 kgid = make_kgid(ns, gid);
655 if (!gid_valid(kgid))
658 new = prepare_creds();
661 old = current_cred();
664 if (nsown_capable(CAP_SETGID))
665 new->gid = new->egid = new->sgid = new->fsgid = kgid;
666 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
667 new->egid = new->fsgid = kgid;
671 return commit_creds(new);
679 * change the user struct in a credentials set to match the new UID
681 static int set_user(struct cred *new)
683 struct user_struct *new_user;
685 new_user = alloc_uid(new->uid);
690 * We don't fail in case of NPROC limit excess here because too many
691 * poorly written programs don't check set*uid() return code, assuming
692 * it never fails if called by root. We may still enforce NPROC limit
693 * for programs doing set*uid()+execve() by harmlessly deferring the
694 * failure to the execve() stage.
696 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
697 new_user != INIT_USER)
698 current->flags |= PF_NPROC_EXCEEDED;
700 current->flags &= ~PF_NPROC_EXCEEDED;
703 new->user = new_user;
708 * Unprivileged users may change the real uid to the effective uid
709 * or vice versa. (BSD-style)
711 * If you set the real uid at all, or set the effective uid to a value not
712 * equal to the real uid, then the saved uid is set to the new effective uid.
714 * This makes it possible for a setuid program to completely drop its
715 * privileges, which is often a useful assertion to make when you are doing
716 * a security audit over a program.
718 * The general idea is that a program which uses just setreuid() will be
719 * 100% compatible with BSD. A program which uses just setuid() will be
720 * 100% compatible with POSIX with saved IDs.
722 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
724 struct user_namespace *ns = current_user_ns();
725 const struct cred *old;
730 kruid = make_kuid(ns, ruid);
731 keuid = make_kuid(ns, euid);
733 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
735 if ((euid != (uid_t) -1) && !uid_valid(keuid))
738 new = prepare_creds();
741 old = current_cred();
744 if (ruid != (uid_t) -1) {
746 if (!uid_eq(old->uid, kruid) &&
747 !uid_eq(old->euid, kruid) &&
748 !nsown_capable(CAP_SETUID))
752 if (euid != (uid_t) -1) {
754 if (!uid_eq(old->uid, keuid) &&
755 !uid_eq(old->euid, keuid) &&
756 !uid_eq(old->suid, keuid) &&
757 !nsown_capable(CAP_SETUID))
761 if (!uid_eq(new->uid, old->uid)) {
762 retval = set_user(new);
766 if (ruid != (uid_t) -1 ||
767 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
768 new->suid = new->euid;
769 new->fsuid = new->euid;
771 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
775 return commit_creds(new);
783 * setuid() is implemented like SysV with SAVED_IDS
785 * Note that SAVED_ID's is deficient in that a setuid root program
786 * like sendmail, for example, cannot set its uid to be a normal
787 * user and then switch back, because if you're root, setuid() sets
788 * the saved uid too. If you don't like this, blame the bright people
789 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
790 * will allow a root program to temporarily drop privileges and be able to
791 * regain them by swapping the real and effective uid.
793 SYSCALL_DEFINE1(setuid, uid_t, uid)
795 struct user_namespace *ns = current_user_ns();
796 const struct cred *old;
801 kuid = make_kuid(ns, uid);
802 if (!uid_valid(kuid))
805 new = prepare_creds();
808 old = current_cred();
811 if (nsown_capable(CAP_SETUID)) {
812 new->suid = new->uid = kuid;
813 if (!uid_eq(kuid, old->uid)) {
814 retval = set_user(new);
818 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
822 new->fsuid = new->euid = kuid;
824 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
828 return commit_creds(new);
837 * This function implements a generic ability to update ruid, euid,
838 * and suid. This allows you to implement the 4.4 compatible seteuid().
840 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
842 struct user_namespace *ns = current_user_ns();
843 const struct cred *old;
846 kuid_t kruid, keuid, ksuid;
848 kruid = make_kuid(ns, ruid);
849 keuid = make_kuid(ns, euid);
850 ksuid = make_kuid(ns, suid);
852 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
855 if ((euid != (uid_t) -1) && !uid_valid(keuid))
858 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
861 new = prepare_creds();
865 old = current_cred();
868 if (!nsown_capable(CAP_SETUID)) {
869 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
870 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
872 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
873 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
875 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
876 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
880 if (ruid != (uid_t) -1) {
882 if (!uid_eq(kruid, old->uid)) {
883 retval = set_user(new);
888 if (euid != (uid_t) -1)
890 if (suid != (uid_t) -1)
892 new->fsuid = new->euid;
894 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
898 return commit_creds(new);
905 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
907 const struct cred *cred = current_cred();
909 uid_t ruid, euid, suid;
911 ruid = from_kuid_munged(cred->user_ns, cred->uid);
912 euid = from_kuid_munged(cred->user_ns, cred->euid);
913 suid = from_kuid_munged(cred->user_ns, cred->suid);
915 if (!(retval = put_user(ruid, ruidp)) &&
916 !(retval = put_user(euid, euidp)))
917 retval = put_user(suid, suidp);
923 * Same as above, but for rgid, egid, sgid.
925 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
927 struct user_namespace *ns = current_user_ns();
928 const struct cred *old;
931 kgid_t krgid, kegid, ksgid;
933 krgid = make_kgid(ns, rgid);
934 kegid = make_kgid(ns, egid);
935 ksgid = make_kgid(ns, sgid);
937 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
939 if ((egid != (gid_t) -1) && !gid_valid(kegid))
941 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
944 new = prepare_creds();
947 old = current_cred();
950 if (!nsown_capable(CAP_SETGID)) {
951 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
952 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
954 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
955 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
957 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
958 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
962 if (rgid != (gid_t) -1)
964 if (egid != (gid_t) -1)
966 if (sgid != (gid_t) -1)
968 new->fsgid = new->egid;
970 return commit_creds(new);
977 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
979 const struct cred *cred = current_cred();
981 gid_t rgid, egid, sgid;
983 rgid = from_kgid_munged(cred->user_ns, cred->gid);
984 egid = from_kgid_munged(cred->user_ns, cred->egid);
985 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
987 if (!(retval = put_user(rgid, rgidp)) &&
988 !(retval = put_user(egid, egidp)))
989 retval = put_user(sgid, sgidp);
996 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
997 * is used for "access()" and for the NFS daemon (letting nfsd stay at
998 * whatever uid it wants to). It normally shadows "euid", except when
999 * explicitly set by setfsuid() or for access..
1001 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1003 const struct cred *old;
1008 old = current_cred();
1009 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
1011 kuid = make_kuid(old->user_ns, uid);
1012 if (!uid_valid(kuid))
1015 new = prepare_creds();
1019 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
1020 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
1021 nsown_capable(CAP_SETUID)) {
1022 if (!uid_eq(kuid, old->fsuid)) {
1024 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
1038 * Samma på svenska..
1040 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1042 const struct cred *old;
1047 old = current_cred();
1048 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1050 kgid = make_kgid(old->user_ns, gid);
1051 if (!gid_valid(kgid))
1054 new = prepare_creds();
1058 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
1059 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
1060 nsown_capable(CAP_SETGID)) {
1061 if (!gid_eq(kgid, old->fsgid)) {
1076 * sys_getpid - return the thread group id of the current process
1078 * Note, despite the name, this returns the tgid not the pid. The tgid and
1079 * the pid are identical unless CLONE_THREAD was specified on clone() in
1080 * which case the tgid is the same in all threads of the same group.
1082 * This is SMP safe as current->tgid does not change.
1084 SYSCALL_DEFINE0(getpid)
1086 return task_tgid_vnr(current);
1089 /* Thread ID - the internal kernel "pid" */
1090 SYSCALL_DEFINE0(gettid)
1092 return task_pid_vnr(current);
1096 * Accessing ->real_parent is not SMP-safe, it could
1097 * change from under us. However, we can use a stale
1098 * value of ->real_parent under rcu_read_lock(), see
1099 * release_task()->call_rcu(delayed_put_task_struct).
1101 SYSCALL_DEFINE0(getppid)
1106 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1112 SYSCALL_DEFINE0(getuid)
1114 /* Only we change this so SMP safe */
1115 return from_kuid_munged(current_user_ns(), current_uid());
1118 SYSCALL_DEFINE0(geteuid)
1120 /* Only we change this so SMP safe */
1121 return from_kuid_munged(current_user_ns(), current_euid());
1124 SYSCALL_DEFINE0(getgid)
1126 /* Only we change this so SMP safe */
1127 return from_kgid_munged(current_user_ns(), current_gid());
1130 SYSCALL_DEFINE0(getegid)
1132 /* Only we change this so SMP safe */
1133 return from_kgid_munged(current_user_ns(), current_egid());
1136 void do_sys_times(struct tms *tms)
1138 cputime_t tgutime, tgstime, cutime, cstime;
1140 spin_lock_irq(¤t->sighand->siglock);
1141 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1142 cutime = current->signal->cutime;
1143 cstime = current->signal->cstime;
1144 spin_unlock_irq(¤t->sighand->siglock);
1145 tms->tms_utime = cputime_to_clock_t(tgutime);
1146 tms->tms_stime = cputime_to_clock_t(tgstime);
1147 tms->tms_cutime = cputime_to_clock_t(cutime);
1148 tms->tms_cstime = cputime_to_clock_t(cstime);
1151 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1157 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1160 force_successful_syscall_return();
1161 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1165 * This needs some heavy checking ...
1166 * I just haven't the stomach for it. I also don't fully
1167 * understand sessions/pgrp etc. Let somebody who does explain it.
1169 * OK, I think I have the protection semantics right.... this is really
1170 * only important on a multi-user system anyway, to make sure one user
1171 * can't send a signal to a process owned by another. -TYT, 12/12/91
1173 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1176 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1178 struct task_struct *p;
1179 struct task_struct *group_leader = current->group_leader;
1184 pid = task_pid_vnr(group_leader);
1191 /* From this point forward we keep holding onto the tasklist lock
1192 * so that our parent does not change from under us. -DaveM
1194 write_lock_irq(&tasklist_lock);
1197 p = find_task_by_vpid(pid);
1202 if (!thread_group_leader(p))
1205 if (same_thread_group(p->real_parent, group_leader)) {
1207 if (task_session(p) != task_session(group_leader))
1214 if (p != group_leader)
1219 if (p->signal->leader)
1224 struct task_struct *g;
1226 pgrp = find_vpid(pgid);
1227 g = pid_task(pgrp, PIDTYPE_PGID);
1228 if (!g || task_session(g) != task_session(group_leader))
1232 err = security_task_setpgid(p, pgid);
1236 if (task_pgrp(p) != pgrp)
1237 change_pid(p, PIDTYPE_PGID, pgrp);
1241 /* All paths lead to here, thus we are safe. -DaveM */
1242 write_unlock_irq(&tasklist_lock);
1247 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1249 struct task_struct *p;
1255 grp = task_pgrp(current);
1258 p = find_task_by_vpid(pid);
1265 retval = security_task_getpgid(p);
1269 retval = pid_vnr(grp);
1275 #ifdef __ARCH_WANT_SYS_GETPGRP
1277 SYSCALL_DEFINE0(getpgrp)
1279 return sys_getpgid(0);
1284 SYSCALL_DEFINE1(getsid, pid_t, pid)
1286 struct task_struct *p;
1292 sid = task_session(current);
1295 p = find_task_by_vpid(pid);
1298 sid = task_session(p);
1302 retval = security_task_getsid(p);
1306 retval = pid_vnr(sid);
1312 SYSCALL_DEFINE0(setsid)
1314 struct task_struct *group_leader = current->group_leader;
1315 struct pid *sid = task_pid(group_leader);
1316 pid_t session = pid_vnr(sid);
1319 write_lock_irq(&tasklist_lock);
1320 /* Fail if I am already a session leader */
1321 if (group_leader->signal->leader)
1324 /* Fail if a process group id already exists that equals the
1325 * proposed session id.
1327 if (pid_task(sid, PIDTYPE_PGID))
1330 group_leader->signal->leader = 1;
1331 __set_special_pids(sid);
1333 proc_clear_tty(group_leader);
1337 write_unlock_irq(&tasklist_lock);
1339 proc_sid_connector(group_leader);
1340 sched_autogroup_create_attach(group_leader);
1345 DECLARE_RWSEM(uts_sem);
1347 #ifdef COMPAT_UTS_MACHINE
1348 #define override_architecture(name) \
1349 (personality(current->personality) == PER_LINUX32 && \
1350 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1351 sizeof(COMPAT_UTS_MACHINE)))
1353 #define override_architecture(name) 0
1357 * Work around broken programs that cannot handle "Linux 3.0".
1358 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1360 static int override_release(char __user *release, size_t len)
1364 if (current->personality & UNAME26) {
1365 const char *rest = UTS_RELEASE;
1366 char buf[65] = { 0 };
1372 if (*rest == '.' && ++ndots >= 3)
1374 if (!isdigit(*rest) && *rest != '.')
1378 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1379 copy = clamp_t(size_t, len, 1, sizeof(buf));
1380 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1381 ret = copy_to_user(release, buf, copy + 1);
1386 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1390 down_read(&uts_sem);
1391 if (copy_to_user(name, utsname(), sizeof *name))
1395 if (!errno && override_release(name->release, sizeof(name->release)))
1397 if (!errno && override_architecture(name))
1402 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1406 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1413 down_read(&uts_sem);
1414 if (copy_to_user(name, utsname(), sizeof(*name)))
1418 if (!error && override_release(name->release, sizeof(name->release)))
1420 if (!error && override_architecture(name))
1425 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1431 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1434 down_read(&uts_sem);
1435 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1437 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1438 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1440 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1441 error |= __copy_to_user(&name->release, &utsname()->release,
1443 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1444 error |= __copy_to_user(&name->version, &utsname()->version,
1446 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1447 error |= __copy_to_user(&name->machine, &utsname()->machine,
1449 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1452 if (!error && override_architecture(name))
1454 if (!error && override_release(name->release, sizeof(name->release)))
1456 return error ? -EFAULT : 0;
1460 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1463 char tmp[__NEW_UTS_LEN];
1465 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1468 if (len < 0 || len > __NEW_UTS_LEN)
1470 down_write(&uts_sem);
1472 if (!copy_from_user(tmp, name, len)) {
1473 struct new_utsname *u = utsname();
1475 memcpy(u->nodename, tmp, len);
1476 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1478 uts_proc_notify(UTS_PROC_HOSTNAME);
1484 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1486 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1489 struct new_utsname *u;
1493 down_read(&uts_sem);
1495 i = 1 + strlen(u->nodename);
1499 if (copy_to_user(name, u->nodename, i))
1508 * Only setdomainname; getdomainname can be implemented by calling
1511 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1514 char tmp[__NEW_UTS_LEN];
1516 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1518 if (len < 0 || len > __NEW_UTS_LEN)
1521 down_write(&uts_sem);
1523 if (!copy_from_user(tmp, name, len)) {
1524 struct new_utsname *u = utsname();
1526 memcpy(u->domainname, tmp, len);
1527 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1529 uts_proc_notify(UTS_PROC_DOMAINNAME);
1535 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1537 struct rlimit value;
1540 ret = do_prlimit(current, resource, NULL, &value);
1542 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1547 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1550 * Back compatibility for getrlimit. Needed for some apps.
1553 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1554 struct rlimit __user *, rlim)
1557 if (resource >= RLIM_NLIMITS)
1560 task_lock(current->group_leader);
1561 x = current->signal->rlim[resource];
1562 task_unlock(current->group_leader);
1563 if (x.rlim_cur > 0x7FFFFFFF)
1564 x.rlim_cur = 0x7FFFFFFF;
1565 if (x.rlim_max > 0x7FFFFFFF)
1566 x.rlim_max = 0x7FFFFFFF;
1567 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1572 static inline bool rlim64_is_infinity(__u64 rlim64)
1574 #if BITS_PER_LONG < 64
1575 return rlim64 >= ULONG_MAX;
1577 return rlim64 == RLIM64_INFINITY;
1581 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1583 if (rlim->rlim_cur == RLIM_INFINITY)
1584 rlim64->rlim_cur = RLIM64_INFINITY;
1586 rlim64->rlim_cur = rlim->rlim_cur;
1587 if (rlim->rlim_max == RLIM_INFINITY)
1588 rlim64->rlim_max = RLIM64_INFINITY;
1590 rlim64->rlim_max = rlim->rlim_max;
1593 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1595 if (rlim64_is_infinity(rlim64->rlim_cur))
1596 rlim->rlim_cur = RLIM_INFINITY;
1598 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1599 if (rlim64_is_infinity(rlim64->rlim_max))
1600 rlim->rlim_max = RLIM_INFINITY;
1602 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1605 /* make sure you are allowed to change @tsk limits before calling this */
1606 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1607 struct rlimit *new_rlim, struct rlimit *old_rlim)
1609 struct rlimit *rlim;
1612 if (resource >= RLIM_NLIMITS)
1615 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1617 if (resource == RLIMIT_NOFILE &&
1618 new_rlim->rlim_max > sysctl_nr_open)
1622 /* protect tsk->signal and tsk->sighand from disappearing */
1623 read_lock(&tasklist_lock);
1624 if (!tsk->sighand) {
1629 rlim = tsk->signal->rlim + resource;
1630 task_lock(tsk->group_leader);
1632 /* Keep the capable check against init_user_ns until
1633 cgroups can contain all limits */
1634 if (new_rlim->rlim_max > rlim->rlim_max &&
1635 !capable(CAP_SYS_RESOURCE))
1638 retval = security_task_setrlimit(tsk->group_leader,
1639 resource, new_rlim);
1640 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1642 * The caller is asking for an immediate RLIMIT_CPU
1643 * expiry. But we use the zero value to mean "it was
1644 * never set". So let's cheat and make it one second
1647 new_rlim->rlim_cur = 1;
1656 task_unlock(tsk->group_leader);
1659 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1660 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1661 * very long-standing error, and fixing it now risks breakage of
1662 * applications, so we live with it
1664 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1665 new_rlim->rlim_cur != RLIM_INFINITY)
1666 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1668 read_unlock(&tasklist_lock);
1672 /* rcu lock must be held */
1673 static int check_prlimit_permission(struct task_struct *task)
1675 const struct cred *cred = current_cred(), *tcred;
1677 if (current == task)
1680 tcred = __task_cred(task);
1681 if (uid_eq(cred->uid, tcred->euid) &&
1682 uid_eq(cred->uid, tcred->suid) &&
1683 uid_eq(cred->uid, tcred->uid) &&
1684 gid_eq(cred->gid, tcred->egid) &&
1685 gid_eq(cred->gid, tcred->sgid) &&
1686 gid_eq(cred->gid, tcred->gid))
1688 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1694 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1695 const struct rlimit64 __user *, new_rlim,
1696 struct rlimit64 __user *, old_rlim)
1698 struct rlimit64 old64, new64;
1699 struct rlimit old, new;
1700 struct task_struct *tsk;
1704 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1706 rlim64_to_rlim(&new64, &new);
1710 tsk = pid ? find_task_by_vpid(pid) : current;
1715 ret = check_prlimit_permission(tsk);
1720 get_task_struct(tsk);
1723 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1724 old_rlim ? &old : NULL);
1726 if (!ret && old_rlim) {
1727 rlim_to_rlim64(&old, &old64);
1728 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1732 put_task_struct(tsk);
1736 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1738 struct rlimit new_rlim;
1740 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1742 return do_prlimit(current, resource, &new_rlim, NULL);
1746 * It would make sense to put struct rusage in the task_struct,
1747 * except that would make the task_struct be *really big*. After
1748 * task_struct gets moved into malloc'ed memory, it would
1749 * make sense to do this. It will make moving the rest of the information
1750 * a lot simpler! (Which we're not doing right now because we're not
1751 * measuring them yet).
1753 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1754 * races with threads incrementing their own counters. But since word
1755 * reads are atomic, we either get new values or old values and we don't
1756 * care which for the sums. We always take the siglock to protect reading
1757 * the c* fields from p->signal from races with exit.c updating those
1758 * fields when reaping, so a sample either gets all the additions of a
1759 * given child after it's reaped, or none so this sample is before reaping.
1762 * We need to take the siglock for CHILDEREN, SELF and BOTH
1763 * for the cases current multithreaded, non-current single threaded
1764 * non-current multithreaded. Thread traversal is now safe with
1766 * Strictly speaking, we donot need to take the siglock if we are current and
1767 * single threaded, as no one else can take our signal_struct away, no one
1768 * else can reap the children to update signal->c* counters, and no one else
1769 * can race with the signal-> fields. If we do not take any lock, the
1770 * signal-> fields could be read out of order while another thread was just
1771 * exiting. So we should place a read memory barrier when we avoid the lock.
1772 * On the writer side, write memory barrier is implied in __exit_signal
1773 * as __exit_signal releases the siglock spinlock after updating the signal->
1774 * fields. But we don't do this yet to keep things simple.
1778 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1780 r->ru_nvcsw += t->nvcsw;
1781 r->ru_nivcsw += t->nivcsw;
1782 r->ru_minflt += t->min_flt;
1783 r->ru_majflt += t->maj_flt;
1784 r->ru_inblock += task_io_get_inblock(t);
1785 r->ru_oublock += task_io_get_oublock(t);
1788 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1790 struct task_struct *t;
1791 unsigned long flags;
1792 cputime_t tgutime, tgstime, utime, stime;
1793 unsigned long maxrss = 0;
1795 memset((char *) r, 0, sizeof *r);
1798 if (who == RUSAGE_THREAD) {
1799 task_cputime_adjusted(current, &utime, &stime);
1800 accumulate_thread_rusage(p, r);
1801 maxrss = p->signal->maxrss;
1805 if (!lock_task_sighand(p, &flags))
1810 case RUSAGE_CHILDREN:
1811 utime = p->signal->cutime;
1812 stime = p->signal->cstime;
1813 r->ru_nvcsw = p->signal->cnvcsw;
1814 r->ru_nivcsw = p->signal->cnivcsw;
1815 r->ru_minflt = p->signal->cmin_flt;
1816 r->ru_majflt = p->signal->cmaj_flt;
1817 r->ru_inblock = p->signal->cinblock;
1818 r->ru_oublock = p->signal->coublock;
1819 maxrss = p->signal->cmaxrss;
1821 if (who == RUSAGE_CHILDREN)
1825 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1828 r->ru_nvcsw += p->signal->nvcsw;
1829 r->ru_nivcsw += p->signal->nivcsw;
1830 r->ru_minflt += p->signal->min_flt;
1831 r->ru_majflt += p->signal->maj_flt;
1832 r->ru_inblock += p->signal->inblock;
1833 r->ru_oublock += p->signal->oublock;
1834 if (maxrss < p->signal->maxrss)
1835 maxrss = p->signal->maxrss;
1838 accumulate_thread_rusage(t, r);
1846 unlock_task_sighand(p, &flags);
1849 cputime_to_timeval(utime, &r->ru_utime);
1850 cputime_to_timeval(stime, &r->ru_stime);
1852 if (who != RUSAGE_CHILDREN) {
1853 struct mm_struct *mm = get_task_mm(p);
1855 setmax_mm_hiwater_rss(&maxrss, mm);
1859 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1862 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1865 k_getrusage(p, who, &r);
1866 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1869 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1871 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1872 who != RUSAGE_THREAD)
1874 return getrusage(current, who, ru);
1877 #ifdef CONFIG_COMPAT
1878 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1882 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1883 who != RUSAGE_THREAD)
1886 k_getrusage(current, who, &r);
1887 return put_compat_rusage(&r, ru);
1891 SYSCALL_DEFINE1(umask, int, mask)
1893 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1897 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1900 struct inode *inode;
1907 inode = file_inode(exe.file);
1910 * Because the original mm->exe_file points to executable file, make
1911 * sure that this one is executable as well, to avoid breaking an
1915 if (!S_ISREG(inode->i_mode) ||
1916 exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1919 err = inode_permission(inode, MAY_EXEC);
1923 down_write(&mm->mmap_sem);
1926 * Forbid mm->exe_file change if old file still mapped.
1930 struct vm_area_struct *vma;
1932 for (vma = mm->mmap; vma; vma = vma->vm_next)
1934 path_equal(&vma->vm_file->f_path,
1935 &mm->exe_file->f_path))
1940 * The symlink can be changed only once, just to disallow arbitrary
1941 * transitions malicious software might bring in. This means one
1942 * could make a snapshot over all processes running and monitor
1943 * /proc/pid/exe changes to notice unusual activity if needed.
1946 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1950 set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
1952 up_write(&mm->mmap_sem);
1959 static int prctl_set_mm(int opt, unsigned long addr,
1960 unsigned long arg4, unsigned long arg5)
1962 unsigned long rlim = rlimit(RLIMIT_DATA);
1963 struct mm_struct *mm = current->mm;
1964 struct vm_area_struct *vma;
1967 if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1970 if (!capable(CAP_SYS_RESOURCE))
1973 if (opt == PR_SET_MM_EXE_FILE)
1974 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1976 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1981 down_read(&mm->mmap_sem);
1982 vma = find_vma(mm, addr);
1985 case PR_SET_MM_START_CODE:
1986 mm->start_code = addr;
1988 case PR_SET_MM_END_CODE:
1989 mm->end_code = addr;
1991 case PR_SET_MM_START_DATA:
1992 mm->start_data = addr;
1994 case PR_SET_MM_END_DATA:
1995 mm->end_data = addr;
1998 case PR_SET_MM_START_BRK:
1999 if (addr <= mm->end_data)
2002 if (rlim < RLIM_INFINITY &&
2004 (mm->end_data - mm->start_data) > rlim)
2007 mm->start_brk = addr;
2011 if (addr <= mm->end_data)
2014 if (rlim < RLIM_INFINITY &&
2015 (addr - mm->start_brk) +
2016 (mm->end_data - mm->start_data) > rlim)
2023 * If command line arguments and environment
2024 * are placed somewhere else on stack, we can
2025 * set them up here, ARG_START/END to setup
2026 * command line argumets and ENV_START/END
2029 case PR_SET_MM_START_STACK:
2030 case PR_SET_MM_ARG_START:
2031 case PR_SET_MM_ARG_END:
2032 case PR_SET_MM_ENV_START:
2033 case PR_SET_MM_ENV_END:
2038 if (opt == PR_SET_MM_START_STACK)
2039 mm->start_stack = addr;
2040 else if (opt == PR_SET_MM_ARG_START)
2041 mm->arg_start = addr;
2042 else if (opt == PR_SET_MM_ARG_END)
2044 else if (opt == PR_SET_MM_ENV_START)
2045 mm->env_start = addr;
2046 else if (opt == PR_SET_MM_ENV_END)
2051 * This doesn't move auxiliary vector itself
2052 * since it's pinned to mm_struct, but allow
2053 * to fill vector with new values. It's up
2054 * to a caller to provide sane values here
2055 * otherwise user space tools which use this
2056 * vector might be unhappy.
2058 case PR_SET_MM_AUXV: {
2059 unsigned long user_auxv[AT_VECTOR_SIZE];
2061 if (arg4 > sizeof(user_auxv))
2063 up_read(&mm->mmap_sem);
2065 if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
2068 /* Make sure the last entry is always AT_NULL */
2069 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2070 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2072 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2075 memcpy(mm->saved_auxv, user_auxv, arg4);
2076 task_unlock(current);
2086 up_read(&mm->mmap_sem);
2090 #ifdef CONFIG_CHECKPOINT_RESTORE
2091 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2093 return put_user(me->clear_child_tid, tid_addr);
2096 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2102 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2103 unsigned long, arg4, unsigned long, arg5)
2105 struct task_struct *me = current;
2106 unsigned char comm[sizeof(me->comm)];
2109 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2110 if (error != -ENOSYS)
2115 case PR_SET_PDEATHSIG:
2116 if (!valid_signal(arg2)) {
2120 me->pdeath_signal = arg2;
2122 case PR_GET_PDEATHSIG:
2123 error = put_user(me->pdeath_signal, (int __user *)arg2);
2125 case PR_GET_DUMPABLE:
2126 error = get_dumpable(me->mm);
2128 case PR_SET_DUMPABLE:
2129 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2133 set_dumpable(me->mm, arg2);
2136 case PR_SET_UNALIGN:
2137 error = SET_UNALIGN_CTL(me, arg2);
2139 case PR_GET_UNALIGN:
2140 error = GET_UNALIGN_CTL(me, arg2);
2143 error = SET_FPEMU_CTL(me, arg2);
2146 error = GET_FPEMU_CTL(me, arg2);
2149 error = SET_FPEXC_CTL(me, arg2);
2152 error = GET_FPEXC_CTL(me, arg2);
2155 error = PR_TIMING_STATISTICAL;
2158 if (arg2 != PR_TIMING_STATISTICAL)
2162 comm[sizeof(me->comm) - 1] = 0;
2163 if (strncpy_from_user(comm, (char __user *)arg2,
2164 sizeof(me->comm) - 1) < 0)
2166 set_task_comm(me, comm);
2167 proc_comm_connector(me);
2170 get_task_comm(comm, me);
2171 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2175 error = GET_ENDIAN(me, arg2);
2178 error = SET_ENDIAN(me, arg2);
2180 case PR_GET_SECCOMP:
2181 error = prctl_get_seccomp();
2183 case PR_SET_SECCOMP:
2184 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2187 error = GET_TSC_CTL(arg2);
2190 error = SET_TSC_CTL(arg2);
2192 case PR_TASK_PERF_EVENTS_DISABLE:
2193 error = perf_event_task_disable();
2195 case PR_TASK_PERF_EVENTS_ENABLE:
2196 error = perf_event_task_enable();
2198 case PR_GET_TIMERSLACK:
2199 error = current->timer_slack_ns;
2201 case PR_SET_TIMERSLACK:
2203 current->timer_slack_ns =
2204 current->default_timer_slack_ns;
2206 current->timer_slack_ns = arg2;
2212 case PR_MCE_KILL_CLEAR:
2215 current->flags &= ~PF_MCE_PROCESS;
2217 case PR_MCE_KILL_SET:
2218 current->flags |= PF_MCE_PROCESS;
2219 if (arg3 == PR_MCE_KILL_EARLY)
2220 current->flags |= PF_MCE_EARLY;
2221 else if (arg3 == PR_MCE_KILL_LATE)
2222 current->flags &= ~PF_MCE_EARLY;
2223 else if (arg3 == PR_MCE_KILL_DEFAULT)
2225 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2233 case PR_MCE_KILL_GET:
2234 if (arg2 | arg3 | arg4 | arg5)
2236 if (current->flags & PF_MCE_PROCESS)
2237 error = (current->flags & PF_MCE_EARLY) ?
2238 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2240 error = PR_MCE_KILL_DEFAULT;
2243 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2245 case PR_GET_TID_ADDRESS:
2246 error = prctl_get_tid_address(me, (int __user **)arg2);
2248 case PR_SET_CHILD_SUBREAPER:
2249 me->signal->is_child_subreaper = !!arg2;
2251 case PR_GET_CHILD_SUBREAPER:
2252 error = put_user(me->signal->is_child_subreaper,
2253 (int __user *)arg2);
2255 case PR_SET_NO_NEW_PRIVS:
2256 if (arg2 != 1 || arg3 || arg4 || arg5)
2259 current->no_new_privs = 1;
2261 case PR_GET_NO_NEW_PRIVS:
2262 if (arg2 || arg3 || arg4 || arg5)
2264 return current->no_new_privs ? 1 : 0;
2272 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2273 struct getcpu_cache __user *, unused)
2276 int cpu = raw_smp_processor_id();
2278 err |= put_user(cpu, cpup);
2280 err |= put_user(cpu_to_node(cpu), nodep);
2281 return err ? -EFAULT : 0;
2284 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2286 static int __orderly_poweroff(bool force)
2289 static char *envp[] = {
2291 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2296 argv = argv_split(GFP_KERNEL, poweroff_cmd, NULL);
2298 ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
2301 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2302 __func__, poweroff_cmd);
2307 printk(KERN_WARNING "Failed to start orderly shutdown: "
2308 "forcing the issue\n");
2310 * I guess this should try to kick off some daemon to sync and
2311 * poweroff asap. Or not even bother syncing if we're doing an
2312 * emergency shutdown?
2321 static bool poweroff_force;
2323 static void poweroff_work_func(struct work_struct *work)
2325 __orderly_poweroff(poweroff_force);
2328 static DECLARE_WORK(poweroff_work, poweroff_work_func);
2331 * orderly_poweroff - Trigger an orderly system poweroff
2332 * @force: force poweroff if command execution fails
2334 * This may be called from any context to trigger a system shutdown.
2335 * If the orderly shutdown fails, it will force an immediate shutdown.
2337 int orderly_poweroff(bool force)
2339 if (force) /* do not override the pending "true" */
2340 poweroff_force = true;
2341 schedule_work(&poweroff_work);
2344 EXPORT_SYMBOL_GPL(orderly_poweroff);
2347 * do_sysinfo - fill in sysinfo struct
2348 * @info: pointer to buffer to fill
2350 static int do_sysinfo(struct sysinfo *info)
2352 unsigned long mem_total, sav_total;
2353 unsigned int mem_unit, bitcount;
2356 memset(info, 0, sizeof(struct sysinfo));
2359 monotonic_to_bootbased(&tp);
2360 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2362 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2364 info->procs = nr_threads;
2370 * If the sum of all the available memory (i.e. ram + swap)
2371 * is less than can be stored in a 32 bit unsigned long then
2372 * we can be binary compatible with 2.2.x kernels. If not,
2373 * well, in that case 2.2.x was broken anyways...
2375 * -Erik Andersen <andersee@debian.org>
2378 mem_total = info->totalram + info->totalswap;
2379 if (mem_total < info->totalram || mem_total < info->totalswap)
2382 mem_unit = info->mem_unit;
2383 while (mem_unit > 1) {
2386 sav_total = mem_total;
2388 if (mem_total < sav_total)
2393 * If mem_total did not overflow, multiply all memory values by
2394 * info->mem_unit and set it to 1. This leaves things compatible
2395 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2400 info->totalram <<= bitcount;
2401 info->freeram <<= bitcount;
2402 info->sharedram <<= bitcount;
2403 info->bufferram <<= bitcount;
2404 info->totalswap <<= bitcount;
2405 info->freeswap <<= bitcount;
2406 info->totalhigh <<= bitcount;
2407 info->freehigh <<= bitcount;
2413 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2419 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2425 #ifdef CONFIG_COMPAT
2426 struct compat_sysinfo {
2440 char _f[20-2*sizeof(u32)-sizeof(int)];
2443 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2449 /* Check to see if any memory value is too large for 32-bit and scale
2452 if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2455 while (s.mem_unit < PAGE_SIZE) {
2460 s.totalram >>= bitcount;
2461 s.freeram >>= bitcount;
2462 s.sharedram >>= bitcount;
2463 s.bufferram >>= bitcount;
2464 s.totalswap >>= bitcount;
2465 s.freeswap >>= bitcount;
2466 s.totalhigh >>= bitcount;
2467 s.freehigh >>= bitcount;
2470 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2471 __put_user(s.uptime, &info->uptime) ||
2472 __put_user(s.loads[0], &info->loads[0]) ||
2473 __put_user(s.loads[1], &info->loads[1]) ||
2474 __put_user(s.loads[2], &info->loads[2]) ||
2475 __put_user(s.totalram, &info->totalram) ||
2476 __put_user(s.freeram, &info->freeram) ||
2477 __put_user(s.sharedram, &info->sharedram) ||
2478 __put_user(s.bufferram, &info->bufferram) ||
2479 __put_user(s.totalswap, &info->totalswap) ||
2480 __put_user(s.freeswap, &info->freeswap) ||
2481 __put_user(s.procs, &info->procs) ||
2482 __put_user(s.totalhigh, &info->totalhigh) ||
2483 __put_user(s.freehigh, &info->freehigh) ||
2484 __put_user(s.mem_unit, &info->mem_unit))
2489 #endif /* CONFIG_COMPAT */