2 * kernel/stop_machine.c
4 * Copyright (C) 2008, 2005 IBM Corporation.
5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
6 * Copyright (C) 2010 SUSE Linux Products GmbH
7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
9 * This file is released under the GPLv2 and any later version.
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/lglock.h>
26 * Structure to determine completion condition and record errors. May
27 * be shared by works on different cpus.
29 struct cpu_stop_done {
30 atomic_t nr_todo; /* nr left to execute */
31 bool executed; /* actually executed? */
32 int ret; /* collected return value */
33 struct completion completion; /* fired if nr_todo reaches 0 */
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
39 bool enabled; /* is this stopper enabled? */
40 struct list_head works; /* list of pending works */
43 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
44 static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task);
45 static bool stop_machine_initialized = false;
48 * Avoids a race between stop_two_cpus and global stop_cpus, where
49 * the stoppers could get queued up in reverse order, leading to
50 * system deadlock. Using an lglock means stop_two_cpus remains
53 DEFINE_STATIC_LGLOCK(stop_cpus_lock);
55 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
57 memset(done, 0, sizeof(*done));
58 atomic_set(&done->nr_todo, nr_todo);
59 init_completion(&done->completion);
62 /* signal completion unless @done is NULL */
63 static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
67 done->executed = true;
68 if (atomic_dec_and_test(&done->nr_todo))
69 complete(&done->completion);
73 /* queue @work to @stopper. if offline, @work is completed immediately */
74 static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
76 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
77 struct task_struct *p = per_cpu(cpu_stopper_task, cpu);
81 spin_lock_irqsave(&stopper->lock, flags);
83 if (stopper->enabled) {
84 list_add_tail(&work->list, &stopper->works);
87 cpu_stop_signal_done(work->done, false);
89 spin_unlock_irqrestore(&stopper->lock, flags);
93 * stop_one_cpu - stop a cpu
95 * @fn: function to execute
96 * @arg: argument to @fn
98 * Execute @fn(@arg) on @cpu. @fn is run in a process context with
99 * the highest priority preempting any task on the cpu and
100 * monopolizing it. This function returns after the execution is
103 * This function doesn't guarantee @cpu stays online till @fn
104 * completes. If @cpu goes down in the middle, execution may happen
105 * partially or fully on different cpus. @fn should either be ready
106 * for that or the caller should ensure that @cpu stays online until
107 * this function completes.
113 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
114 * otherwise, the return value of @fn.
116 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
118 struct cpu_stop_done done;
119 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
121 cpu_stop_init_done(&done, 1);
122 cpu_stop_queue_work(cpu, &work);
123 wait_for_completion(&done.completion);
124 return done.executed ? done.ret : -ENOENT;
127 /* This controls the threads on each CPU. */
128 enum multi_stop_state {
129 /* Dummy starting state for thread. */
131 /* Awaiting everyone to be scheduled. */
133 /* Disable interrupts. */
134 MULTI_STOP_DISABLE_IRQ,
135 /* Run the function */
141 struct multi_stop_data {
144 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
145 unsigned int num_threads;
146 const struct cpumask *active_cpus;
148 enum multi_stop_state state;
152 static void set_state(struct multi_stop_data *msdata,
153 enum multi_stop_state newstate)
155 /* Reset ack counter. */
156 atomic_set(&msdata->thread_ack, msdata->num_threads);
158 msdata->state = newstate;
161 /* Last one to ack a state moves to the next state. */
162 static void ack_state(struct multi_stop_data *msdata)
164 if (atomic_dec_and_test(&msdata->thread_ack))
165 set_state(msdata, msdata->state + 1);
168 /* This is the cpu_stop function which stops the CPU. */
169 static int multi_cpu_stop(void *data)
171 struct multi_stop_data *msdata = data;
172 enum multi_stop_state curstate = MULTI_STOP_NONE;
173 int cpu = smp_processor_id(), err = 0;
178 * When called from stop_machine_from_inactive_cpu(), irq might
179 * already be disabled. Save the state and restore it on exit.
181 local_save_flags(flags);
183 if (!msdata->active_cpus)
184 is_active = cpu == cpumask_first(cpu_online_mask);
186 is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
188 /* Simple state machine */
190 /* Chill out and ensure we re-read multi_stop_state. */
192 if (msdata->state != curstate) {
193 curstate = msdata->state;
195 case MULTI_STOP_DISABLE_IRQ:
201 err = msdata->fn(msdata->data);
208 } while (curstate != MULTI_STOP_EXIT);
210 local_irq_restore(flags);
214 struct irq_cpu_stop_queue_work_info {
217 struct cpu_stop_work *work1;
218 struct cpu_stop_work *work2;
222 * This function is always run with irqs and preemption disabled.
223 * This guarantees that both work1 and work2 get queued, before
224 * our local migrate thread gets the chance to preempt us.
226 static void irq_cpu_stop_queue_work(void *arg)
228 struct irq_cpu_stop_queue_work_info *info = arg;
229 cpu_stop_queue_work(info->cpu1, info->work1);
230 cpu_stop_queue_work(info->cpu2, info->work2);
234 * stop_two_cpus - stops two cpus
235 * @cpu1: the cpu to stop
236 * @cpu2: the other cpu to stop
237 * @fn: function to execute
238 * @arg: argument to @fn
240 * Stops both the current and specified CPU and runs @fn on one of them.
242 * returns when both are completed.
244 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
246 struct cpu_stop_done done;
247 struct cpu_stop_work work1, work2;
248 struct irq_cpu_stop_queue_work_info call_args;
249 struct multi_stop_data msdata;
252 msdata = (struct multi_stop_data){
256 .active_cpus = cpumask_of(cpu1),
259 work1 = work2 = (struct cpu_stop_work){
260 .fn = multi_cpu_stop,
265 call_args = (struct irq_cpu_stop_queue_work_info){
272 cpu_stop_init_done(&done, 2);
273 set_state(&msdata, MULTI_STOP_PREPARE);
276 * If we observe both CPUs active we know _cpu_down() cannot yet have
277 * queued its stop_machine works and therefore ours will get executed
278 * first. Or its not either one of our CPUs that's getting unplugged,
279 * in which case we don't care.
281 * This relies on the stopper workqueues to be FIFO.
283 if (!cpu_active(cpu1) || !cpu_active(cpu2)) {
288 lg_local_lock(&stop_cpus_lock);
290 * Queuing needs to be done by the lowest numbered CPU, to ensure
291 * that works are always queued in the same order on every CPU.
292 * This prevents deadlocks.
294 smp_call_function_single(min(cpu1, cpu2),
295 &irq_cpu_stop_queue_work,
297 lg_local_unlock(&stop_cpus_lock);
300 wait_for_completion(&done.completion);
302 return done.executed ? done.ret : -ENOENT;
306 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
308 * @fn: function to execute
309 * @arg: argument to @fn
311 * Similar to stop_one_cpu() but doesn't wait for completion. The
312 * caller is responsible for ensuring @work_buf is currently unused
313 * and will remain untouched until stopper starts executing @fn.
318 void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
319 struct cpu_stop_work *work_buf)
321 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
322 cpu_stop_queue_work(cpu, work_buf);
325 /* static data for stop_cpus */
326 static DEFINE_MUTEX(stop_cpus_mutex);
327 static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
329 static void queue_stop_cpus_work(const struct cpumask *cpumask,
330 cpu_stop_fn_t fn, void *arg,
331 struct cpu_stop_done *done)
333 struct cpu_stop_work *work;
336 /* initialize works and done */
337 for_each_cpu(cpu, cpumask) {
338 work = &per_cpu(stop_cpus_work, cpu);
345 * Disable preemption while queueing to avoid getting
346 * preempted by a stopper which might wait for other stoppers
347 * to enter @fn which can lead to deadlock.
349 lg_global_lock(&stop_cpus_lock);
350 for_each_cpu(cpu, cpumask)
351 cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu));
352 lg_global_unlock(&stop_cpus_lock);
355 static int __stop_cpus(const struct cpumask *cpumask,
356 cpu_stop_fn_t fn, void *arg)
358 struct cpu_stop_done done;
360 cpu_stop_init_done(&done, cpumask_weight(cpumask));
361 queue_stop_cpus_work(cpumask, fn, arg, &done);
362 wait_for_completion(&done.completion);
363 return done.executed ? done.ret : -ENOENT;
367 * stop_cpus - stop multiple cpus
368 * @cpumask: cpus to stop
369 * @fn: function to execute
370 * @arg: argument to @fn
372 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
373 * @fn is run in a process context with the highest priority
374 * preempting any task on the cpu and monopolizing it. This function
375 * returns after all executions are complete.
377 * This function doesn't guarantee the cpus in @cpumask stay online
378 * till @fn completes. If some cpus go down in the middle, execution
379 * on the cpu may happen partially or fully on different cpus. @fn
380 * should either be ready for that or the caller should ensure that
381 * the cpus stay online until this function completes.
383 * All stop_cpus() calls are serialized making it safe for @fn to wait
384 * for all cpus to start executing it.
390 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
391 * @cpumask were offline; otherwise, 0 if all executions of @fn
392 * returned 0, any non zero return value if any returned non zero.
394 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
398 /* static works are used, process one request at a time */
399 mutex_lock(&stop_cpus_mutex);
400 ret = __stop_cpus(cpumask, fn, arg);
401 mutex_unlock(&stop_cpus_mutex);
406 * try_stop_cpus - try to stop multiple cpus
407 * @cpumask: cpus to stop
408 * @fn: function to execute
409 * @arg: argument to @fn
411 * Identical to stop_cpus() except that it fails with -EAGAIN if
412 * someone else is already using the facility.
418 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
419 * @fn(@arg) was not executed at all because all cpus in @cpumask were
420 * offline; otherwise, 0 if all executions of @fn returned 0, any non
421 * zero return value if any returned non zero.
423 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
427 /* static works are used, process one request at a time */
428 if (!mutex_trylock(&stop_cpus_mutex))
430 ret = __stop_cpus(cpumask, fn, arg);
431 mutex_unlock(&stop_cpus_mutex);
435 static int cpu_stop_should_run(unsigned int cpu)
437 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
441 spin_lock_irqsave(&stopper->lock, flags);
442 run = !list_empty(&stopper->works);
443 spin_unlock_irqrestore(&stopper->lock, flags);
447 static void cpu_stopper_thread(unsigned int cpu)
449 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
450 struct cpu_stop_work *work;
455 spin_lock_irq(&stopper->lock);
456 if (!list_empty(&stopper->works)) {
457 work = list_first_entry(&stopper->works,
458 struct cpu_stop_work, list);
459 list_del_init(&work->list);
461 spin_unlock_irq(&stopper->lock);
464 cpu_stop_fn_t fn = work->fn;
465 void *arg = work->arg;
466 struct cpu_stop_done *done = work->done;
467 char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
469 /* cpu stop callbacks are not allowed to sleep */
476 /* restore preemption and check it's still balanced */
478 WARN_ONCE(preempt_count(),
479 "cpu_stop: %s(%p) leaked preempt count\n",
480 kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
483 cpu_stop_signal_done(done, true);
488 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
490 static void cpu_stop_create(unsigned int cpu)
492 sched_set_stop_task(cpu, per_cpu(cpu_stopper_task, cpu));
495 static void cpu_stop_park(unsigned int cpu)
497 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
498 struct cpu_stop_work *work;
501 /* drain remaining works */
502 spin_lock_irqsave(&stopper->lock, flags);
503 list_for_each_entry(work, &stopper->works, list)
504 cpu_stop_signal_done(work->done, false);
505 stopper->enabled = false;
506 spin_unlock_irqrestore(&stopper->lock, flags);
509 static void cpu_stop_unpark(unsigned int cpu)
511 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
513 spin_lock_irq(&stopper->lock);
514 stopper->enabled = true;
515 spin_unlock_irq(&stopper->lock);
518 static struct smp_hotplug_thread cpu_stop_threads = {
519 .store = &cpu_stopper_task,
520 .thread_should_run = cpu_stop_should_run,
521 .thread_fn = cpu_stopper_thread,
522 .thread_comm = "migration/%u",
523 .create = cpu_stop_create,
524 .setup = cpu_stop_unpark,
525 .park = cpu_stop_park,
526 .pre_unpark = cpu_stop_unpark,
530 static int __init cpu_stop_init(void)
534 for_each_possible_cpu(cpu) {
535 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
537 spin_lock_init(&stopper->lock);
538 INIT_LIST_HEAD(&stopper->works);
541 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
542 stop_machine_initialized = true;
545 early_initcall(cpu_stop_init);
547 #ifdef CONFIG_STOP_MACHINE
549 int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
551 struct multi_stop_data msdata = {
554 .num_threads = num_online_cpus(),
558 if (!stop_machine_initialized) {
560 * Handle the case where stop_machine() is called
561 * early in boot before stop_machine() has been
567 WARN_ON_ONCE(msdata.num_threads != 1);
569 local_irq_save(flags);
572 local_irq_restore(flags);
577 /* Set the initial state and stop all online cpus. */
578 set_state(&msdata, MULTI_STOP_PREPARE);
579 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
582 int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
586 /* No CPUs can come up or down during this. */
588 ret = __stop_machine(fn, data, cpus);
592 EXPORT_SYMBOL_GPL(stop_machine);
595 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
596 * @fn: the function to run
597 * @data: the data ptr for the @fn()
598 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
600 * This is identical to stop_machine() but can be called from a CPU which
601 * is not active. The local CPU is in the process of hotplug (so no other
602 * CPU hotplug can start) and not marked active and doesn't have enough
605 * This function provides stop_machine() functionality for such state by
606 * using busy-wait for synchronization and executing @fn directly for local
610 * Local CPU is inactive. Temporarily stops all active CPUs.
613 * 0 if all executions of @fn returned 0, any non zero return value if any
616 int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
617 const struct cpumask *cpus)
619 struct multi_stop_data msdata = { .fn = fn, .data = data,
620 .active_cpus = cpus };
621 struct cpu_stop_done done;
624 /* Local CPU must be inactive and CPU hotplug in progress. */
625 BUG_ON(cpu_active(raw_smp_processor_id()));
626 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */
628 /* No proper task established and can't sleep - busy wait for lock. */
629 while (!mutex_trylock(&stop_cpus_mutex))
632 /* Schedule work on other CPUs and execute directly for local CPU */
633 set_state(&msdata, MULTI_STOP_PREPARE);
634 cpu_stop_init_done(&done, num_active_cpus());
635 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
637 ret = multi_cpu_stop(&msdata);
639 /* Busy wait for completion. */
640 while (!completion_done(&done.completion))
643 mutex_unlock(&stop_cpus_mutex);
644 return ret ?: done.ret;
647 #endif /* CONFIG_STOP_MACHINE */