ipvs: reduce sync rate with time thresholds
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / srcu.c
1 /*
2  * Sleepable Read-Copy Update mechanism for mutual exclusion.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2006
19  *
20  * Author: Paul McKenney <paulmck@us.ibm.com>
21  *
22  * For detailed explanation of Read-Copy Update mechanism see -
23  *              Documentation/RCU/ *.txt
24  *
25  */
26
27 #include <linux/export.h>
28 #include <linux/mutex.h>
29 #include <linux/percpu.h>
30 #include <linux/preempt.h>
31 #include <linux/rcupdate.h>
32 #include <linux/sched.h>
33 #include <linux/smp.h>
34 #include <linux/delay.h>
35 #include <linux/srcu.h>
36
37 static int init_srcu_struct_fields(struct srcu_struct *sp)
38 {
39         sp->completed = 0;
40         mutex_init(&sp->mutex);
41         sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array);
42         return sp->per_cpu_ref ? 0 : -ENOMEM;
43 }
44
45 #ifdef CONFIG_DEBUG_LOCK_ALLOC
46
47 int __init_srcu_struct(struct srcu_struct *sp, const char *name,
48                        struct lock_class_key *key)
49 {
50         /* Don't re-initialize a lock while it is held. */
51         debug_check_no_locks_freed((void *)sp, sizeof(*sp));
52         lockdep_init_map(&sp->dep_map, name, key, 0);
53         return init_srcu_struct_fields(sp);
54 }
55 EXPORT_SYMBOL_GPL(__init_srcu_struct);
56
57 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
58
59 /**
60  * init_srcu_struct - initialize a sleep-RCU structure
61  * @sp: structure to initialize.
62  *
63  * Must invoke this on a given srcu_struct before passing that srcu_struct
64  * to any other function.  Each srcu_struct represents a separate domain
65  * of SRCU protection.
66  */
67 int init_srcu_struct(struct srcu_struct *sp)
68 {
69         return init_srcu_struct_fields(sp);
70 }
71 EXPORT_SYMBOL_GPL(init_srcu_struct);
72
73 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
74
75 /*
76  * srcu_readers_active_idx -- returns approximate number of readers
77  *      active on the specified rank of per-CPU counters.
78  */
79
80 static int srcu_readers_active_idx(struct srcu_struct *sp, int idx)
81 {
82         int cpu;
83         int sum;
84
85         sum = 0;
86         for_each_possible_cpu(cpu)
87                 sum += per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx];
88         return sum;
89 }
90
91 /**
92  * srcu_readers_active - returns approximate number of readers.
93  * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
94  *
95  * Note that this is not an atomic primitive, and can therefore suffer
96  * severe errors when invoked on an active srcu_struct.  That said, it
97  * can be useful as an error check at cleanup time.
98  */
99 static int srcu_readers_active(struct srcu_struct *sp)
100 {
101         return srcu_readers_active_idx(sp, 0) + srcu_readers_active_idx(sp, 1);
102 }
103
104 /**
105  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
106  * @sp: structure to clean up.
107  *
108  * Must invoke this after you are finished using a given srcu_struct that
109  * was initialized via init_srcu_struct(), else you leak memory.
110  */
111 void cleanup_srcu_struct(struct srcu_struct *sp)
112 {
113         int sum;
114
115         sum = srcu_readers_active(sp);
116         WARN_ON(sum);  /* Leakage unless caller handles error. */
117         if (sum != 0)
118                 return;
119         free_percpu(sp->per_cpu_ref);
120         sp->per_cpu_ref = NULL;
121 }
122 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
123
124 /*
125  * Counts the new reader in the appropriate per-CPU element of the
126  * srcu_struct.  Must be called from process context.
127  * Returns an index that must be passed to the matching srcu_read_unlock().
128  */
129 int __srcu_read_lock(struct srcu_struct *sp)
130 {
131         int idx;
132
133         preempt_disable();
134         idx = sp->completed & 0x1;
135         barrier();  /* ensure compiler looks -once- at sp->completed. */
136         per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]++;
137         srcu_barrier();  /* ensure compiler won't misorder critical section. */
138         preempt_enable();
139         return idx;
140 }
141 EXPORT_SYMBOL_GPL(__srcu_read_lock);
142
143 /*
144  * Removes the count for the old reader from the appropriate per-CPU
145  * element of the srcu_struct.  Note that this may well be a different
146  * CPU than that which was incremented by the corresponding srcu_read_lock().
147  * Must be called from process context.
148  */
149 void __srcu_read_unlock(struct srcu_struct *sp, int idx)
150 {
151         preempt_disable();
152         srcu_barrier();  /* ensure compiler won't misorder critical section. */
153         per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]--;
154         preempt_enable();
155 }
156 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
157
158 /*
159  * We use an adaptive strategy for synchronize_srcu() and especially for
160  * synchronize_srcu_expedited().  We spin for a fixed time period
161  * (defined below) to allow SRCU readers to exit their read-side critical
162  * sections.  If there are still some readers after 10 microseconds,
163  * we repeatedly block for 1-millisecond time periods.  This approach
164  * has done well in testing, so there is no need for a config parameter.
165  */
166 #define SYNCHRONIZE_SRCU_READER_DELAY 10
167
168 /*
169  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
170  */
171 static void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void))
172 {
173         int idx;
174
175         rcu_lockdep_assert(!lock_is_held(&sp->dep_map) &&
176                            !lock_is_held(&rcu_bh_lock_map) &&
177                            !lock_is_held(&rcu_lock_map) &&
178                            !lock_is_held(&rcu_sched_lock_map),
179                            "Illegal synchronize_srcu() in same-type SRCU (or RCU) read-side critical section");
180
181         idx = sp->completed;
182         mutex_lock(&sp->mutex);
183
184         /*
185          * Check to see if someone else did the work for us while we were
186          * waiting to acquire the lock.  We need -two- advances of
187          * the counter, not just one.  If there was but one, we might have
188          * shown up -after- our helper's first synchronize_sched(), thus
189          * having failed to prevent CPU-reordering races with concurrent
190          * srcu_read_unlock()s on other CPUs (see comment below).  So we
191          * either (1) wait for two or (2) supply the second ourselves.
192          */
193
194         if ((sp->completed - idx) >= 2) {
195                 mutex_unlock(&sp->mutex);
196                 return;
197         }
198
199         sync_func();  /* Force memory barrier on all CPUs. */
200
201         /*
202          * The preceding synchronize_sched() ensures that any CPU that
203          * sees the new value of sp->completed will also see any preceding
204          * changes to data structures made by this CPU.  This prevents
205          * some other CPU from reordering the accesses in its SRCU
206          * read-side critical section to precede the corresponding
207          * srcu_read_lock() -- ensuring that such references will in
208          * fact be protected.
209          *
210          * So it is now safe to do the flip.
211          */
212
213         idx = sp->completed & 0x1;
214         sp->completed++;
215
216         sync_func();  /* Force memory barrier on all CPUs. */
217
218         /*
219          * At this point, because of the preceding synchronize_sched(),
220          * all srcu_read_lock() calls using the old counters have completed.
221          * Their corresponding critical sections might well be still
222          * executing, but the srcu_read_lock() primitives themselves
223          * will have finished executing.  We initially give readers
224          * an arbitrarily chosen 10 microseconds to get out of their
225          * SRCU read-side critical sections, then loop waiting 1/HZ
226          * seconds per iteration.  The 10-microsecond value has done
227          * very well in testing.
228          */
229
230         if (srcu_readers_active_idx(sp, idx))
231                 udelay(SYNCHRONIZE_SRCU_READER_DELAY);
232         while (srcu_readers_active_idx(sp, idx))
233                 schedule_timeout_interruptible(1);
234
235         sync_func();  /* Force memory barrier on all CPUs. */
236
237         /*
238          * The preceding synchronize_sched() forces all srcu_read_unlock()
239          * primitives that were executing concurrently with the preceding
240          * for_each_possible_cpu() loop to have completed by this point.
241          * More importantly, it also forces the corresponding SRCU read-side
242          * critical sections to have also completed, and the corresponding
243          * references to SRCU-protected data items to be dropped.
244          *
245          * Note:
246          *
247          *      Despite what you might think at first glance, the
248          *      preceding synchronize_sched() -must- be within the
249          *      critical section ended by the following mutex_unlock().
250          *      Otherwise, a task taking the early exit can race
251          *      with a srcu_read_unlock(), which might have executed
252          *      just before the preceding srcu_readers_active() check,
253          *      and whose CPU might have reordered the srcu_read_unlock()
254          *      with the preceding critical section.  In this case, there
255          *      is nothing preventing the synchronize_sched() task that is
256          *      taking the early exit from freeing a data structure that
257          *      is still being referenced (out of order) by the task
258          *      doing the srcu_read_unlock().
259          *
260          *      Alternatively, the comparison with "2" on the early exit
261          *      could be changed to "3", but this increases synchronize_srcu()
262          *      latency for bulk loads.  So the current code is preferred.
263          */
264
265         mutex_unlock(&sp->mutex);
266 }
267
268 /**
269  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
270  * @sp: srcu_struct with which to synchronize.
271  *
272  * Flip the completed counter, and wait for the old count to drain to zero.
273  * As with classic RCU, the updater must use some separate means of
274  * synchronizing concurrent updates.  Can block; must be called from
275  * process context.
276  *
277  * Note that it is illegal to call synchronize_srcu() from the corresponding
278  * SRCU read-side critical section; doing so will result in deadlock.
279  * However, it is perfectly legal to call synchronize_srcu() on one
280  * srcu_struct from some other srcu_struct's read-side critical section.
281  */
282 void synchronize_srcu(struct srcu_struct *sp)
283 {
284         __synchronize_srcu(sp, synchronize_sched);
285 }
286 EXPORT_SYMBOL_GPL(synchronize_srcu);
287
288 /**
289  * synchronize_srcu_expedited - Brute-force SRCU grace period
290  * @sp: srcu_struct with which to synchronize.
291  *
292  * Wait for an SRCU grace period to elapse, but use a "big hammer"
293  * approach to force the grace period to end quickly.  This consumes
294  * significant time on all CPUs and is unfriendly to real-time workloads,
295  * so is thus not recommended for any sort of common-case code.  In fact,
296  * if you are using synchronize_srcu_expedited() in a loop, please
297  * restructure your code to batch your updates, and then use a single
298  * synchronize_srcu() instead.
299  *
300  * Note that it is illegal to call this function while holding any lock
301  * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
302  * to call this function from a CPU-hotplug notifier.  Failing to observe
303  * these restriction will result in deadlock.  It is also illegal to call
304  * synchronize_srcu_expedited() from the corresponding SRCU read-side
305  * critical section; doing so will result in deadlock.  However, it is
306  * perfectly legal to call synchronize_srcu_expedited() on one srcu_struct
307  * from some other srcu_struct's read-side critical section, as long as
308  * the resulting graph of srcu_structs is acyclic.
309  */
310 void synchronize_srcu_expedited(struct srcu_struct *sp)
311 {
312         __synchronize_srcu(sp, synchronize_sched_expedited);
313 }
314 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
315
316 /**
317  * srcu_batches_completed - return batches completed.
318  * @sp: srcu_struct on which to report batch completion.
319  *
320  * Report the number of batches, correlated with, but not necessarily
321  * precisely the same as, the number of grace periods that have elapsed.
322  */
323
324 long srcu_batches_completed(struct srcu_struct *sp)
325 {
326         return sp->completed;
327 }
328 EXPORT_SYMBOL_GPL(srcu_batches_completed);