kernel/user_namespace.c: fix typos
[platform/kernel/linux-starfive.git] / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common SMP CPU bringup/teardown functions
4  */
5 #include <linux/cpu.h>
6 #include <linux/err.h>
7 #include <linux/smp.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/list.h>
11 #include <linux/slab.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task.h>
14 #include <linux/export.h>
15 #include <linux/percpu.h>
16 #include <linux/kthread.h>
17 #include <linux/smpboot.h>
18
19 #include "smpboot.h"
20
21 #ifdef CONFIG_SMP
22
23 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
24 /*
25  * For the hotplug case we keep the task structs around and reuse
26  * them.
27  */
28 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
29
30 struct task_struct *idle_thread_get(unsigned int cpu)
31 {
32         struct task_struct *tsk = per_cpu(idle_threads, cpu);
33
34         if (!tsk)
35                 return ERR_PTR(-ENOMEM);
36         init_idle(tsk, cpu);
37         return tsk;
38 }
39
40 void __init idle_thread_set_boot_cpu(void)
41 {
42         per_cpu(idle_threads, smp_processor_id()) = current;
43 }
44
45 /**
46  * idle_init - Initialize the idle thread for a cpu
47  * @cpu:        The cpu for which the idle thread should be initialized
48  *
49  * Creates the thread if it does not exist.
50  */
51 static inline void idle_init(unsigned int cpu)
52 {
53         struct task_struct *tsk = per_cpu(idle_threads, cpu);
54
55         if (!tsk) {
56                 tsk = fork_idle(cpu);
57                 if (IS_ERR(tsk))
58                         pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
59                 else
60                         per_cpu(idle_threads, cpu) = tsk;
61         }
62 }
63
64 /**
65  * idle_threads_init - Initialize idle threads for all cpus
66  */
67 void __init idle_threads_init(void)
68 {
69         unsigned int cpu, boot_cpu;
70
71         boot_cpu = smp_processor_id();
72
73         for_each_possible_cpu(cpu) {
74                 if (cpu != boot_cpu)
75                         idle_init(cpu);
76         }
77 }
78 #endif
79
80 #endif /* #ifdef CONFIG_SMP */
81
82 static LIST_HEAD(hotplug_threads);
83 static DEFINE_MUTEX(smpboot_threads_lock);
84
85 struct smpboot_thread_data {
86         unsigned int                    cpu;
87         unsigned int                    status;
88         struct smp_hotplug_thread       *ht;
89 };
90
91 enum {
92         HP_THREAD_NONE = 0,
93         HP_THREAD_ACTIVE,
94         HP_THREAD_PARKED,
95 };
96
97 /**
98  * smpboot_thread_fn - percpu hotplug thread loop function
99  * @data:       thread data pointer
100  *
101  * Checks for thread stop and park conditions. Calls the necessary
102  * setup, cleanup, park and unpark functions for the registered
103  * thread.
104  *
105  * Returns 1 when the thread should exit, 0 otherwise.
106  */
107 static int smpboot_thread_fn(void *data)
108 {
109         struct smpboot_thread_data *td = data;
110         struct smp_hotplug_thread *ht = td->ht;
111
112         while (1) {
113                 set_current_state(TASK_INTERRUPTIBLE);
114                 preempt_disable();
115                 if (kthread_should_stop()) {
116                         __set_current_state(TASK_RUNNING);
117                         preempt_enable();
118                         /* cleanup must mirror setup */
119                         if (ht->cleanup && td->status != HP_THREAD_NONE)
120                                 ht->cleanup(td->cpu, cpu_online(td->cpu));
121                         kfree(td);
122                         return 0;
123                 }
124
125                 if (kthread_should_park()) {
126                         __set_current_state(TASK_RUNNING);
127                         preempt_enable();
128                         if (ht->park && td->status == HP_THREAD_ACTIVE) {
129                                 BUG_ON(td->cpu != smp_processor_id());
130                                 ht->park(td->cpu);
131                                 td->status = HP_THREAD_PARKED;
132                         }
133                         kthread_parkme();
134                         /* We might have been woken for stop */
135                         continue;
136                 }
137
138                 BUG_ON(td->cpu != smp_processor_id());
139
140                 /* Check for state change setup */
141                 switch (td->status) {
142                 case HP_THREAD_NONE:
143                         __set_current_state(TASK_RUNNING);
144                         preempt_enable();
145                         if (ht->setup)
146                                 ht->setup(td->cpu);
147                         td->status = HP_THREAD_ACTIVE;
148                         continue;
149
150                 case HP_THREAD_PARKED:
151                         __set_current_state(TASK_RUNNING);
152                         preempt_enable();
153                         if (ht->unpark)
154                                 ht->unpark(td->cpu);
155                         td->status = HP_THREAD_ACTIVE;
156                         continue;
157                 }
158
159                 if (!ht->thread_should_run(td->cpu)) {
160                         preempt_enable_no_resched();
161                         schedule();
162                 } else {
163                         __set_current_state(TASK_RUNNING);
164                         preempt_enable();
165                         ht->thread_fn(td->cpu);
166                 }
167         }
168 }
169
170 static int
171 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
172 {
173         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
174         struct smpboot_thread_data *td;
175
176         if (tsk)
177                 return 0;
178
179         td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
180         if (!td)
181                 return -ENOMEM;
182         td->cpu = cpu;
183         td->ht = ht;
184
185         tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
186                                     ht->thread_comm);
187         if (IS_ERR(tsk)) {
188                 kfree(td);
189                 return PTR_ERR(tsk);
190         }
191         kthread_set_per_cpu(tsk, cpu);
192         /*
193          * Park the thread so that it could start right on the CPU
194          * when it is available.
195          */
196         kthread_park(tsk);
197         get_task_struct(tsk);
198         *per_cpu_ptr(ht->store, cpu) = tsk;
199         if (ht->create) {
200                 /*
201                  * Make sure that the task has actually scheduled out
202                  * into park position, before calling the create
203                  * callback. At least the migration thread callback
204                  * requires that the task is off the runqueue.
205                  */
206                 if (!wait_task_inactive(tsk, TASK_PARKED))
207                         WARN_ON(1);
208                 else
209                         ht->create(cpu);
210         }
211         return 0;
212 }
213
214 int smpboot_create_threads(unsigned int cpu)
215 {
216         struct smp_hotplug_thread *cur;
217         int ret = 0;
218
219         mutex_lock(&smpboot_threads_lock);
220         list_for_each_entry(cur, &hotplug_threads, list) {
221                 ret = __smpboot_create_thread(cur, cpu);
222                 if (ret)
223                         break;
224         }
225         mutex_unlock(&smpboot_threads_lock);
226         return ret;
227 }
228
229 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
230 {
231         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
232
233         if (!ht->selfparking)
234                 kthread_unpark(tsk);
235 }
236
237 int smpboot_unpark_threads(unsigned int cpu)
238 {
239         struct smp_hotplug_thread *cur;
240
241         mutex_lock(&smpboot_threads_lock);
242         list_for_each_entry(cur, &hotplug_threads, list)
243                 smpboot_unpark_thread(cur, cpu);
244         mutex_unlock(&smpboot_threads_lock);
245         return 0;
246 }
247
248 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
249 {
250         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
251
252         if (tsk && !ht->selfparking)
253                 kthread_park(tsk);
254 }
255
256 int smpboot_park_threads(unsigned int cpu)
257 {
258         struct smp_hotplug_thread *cur;
259
260         mutex_lock(&smpboot_threads_lock);
261         list_for_each_entry_reverse(cur, &hotplug_threads, list)
262                 smpboot_park_thread(cur, cpu);
263         mutex_unlock(&smpboot_threads_lock);
264         return 0;
265 }
266
267 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
268 {
269         unsigned int cpu;
270
271         /* We need to destroy also the parked threads of offline cpus */
272         for_each_possible_cpu(cpu) {
273                 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
274
275                 if (tsk) {
276                         kthread_stop(tsk);
277                         put_task_struct(tsk);
278                         *per_cpu_ptr(ht->store, cpu) = NULL;
279                 }
280         }
281 }
282
283 /**
284  * smpboot_register_percpu_thread - Register a per_cpu thread related
285  *                                          to hotplug
286  * @plug_thread:        Hotplug thread descriptor
287  *
288  * Creates and starts the threads on all online cpus.
289  */
290 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
291 {
292         unsigned int cpu;
293         int ret = 0;
294
295         get_online_cpus();
296         mutex_lock(&smpboot_threads_lock);
297         for_each_online_cpu(cpu) {
298                 ret = __smpboot_create_thread(plug_thread, cpu);
299                 if (ret) {
300                         smpboot_destroy_threads(plug_thread);
301                         goto out;
302                 }
303                 smpboot_unpark_thread(plug_thread, cpu);
304         }
305         list_add(&plug_thread->list, &hotplug_threads);
306 out:
307         mutex_unlock(&smpboot_threads_lock);
308         put_online_cpus();
309         return ret;
310 }
311 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
312
313 /**
314  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
315  * @plug_thread:        Hotplug thread descriptor
316  *
317  * Stops all threads on all possible cpus.
318  */
319 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
320 {
321         get_online_cpus();
322         mutex_lock(&smpboot_threads_lock);
323         list_del(&plug_thread->list);
324         smpboot_destroy_threads(plug_thread);
325         mutex_unlock(&smpboot_threads_lock);
326         put_online_cpus();
327 }
328 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
329
330 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
331
332 /*
333  * Called to poll specified CPU's state, for example, when waiting for
334  * a CPU to come online.
335  */
336 int cpu_report_state(int cpu)
337 {
338         return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
339 }
340
341 /*
342  * If CPU has died properly, set its state to CPU_UP_PREPARE and
343  * return success.  Otherwise, return -EBUSY if the CPU died after
344  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
345  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
346  * to dying.  In the latter two cases, the CPU might not be set up
347  * properly, but it is up to the arch-specific code to decide.
348  * Finally, -EIO indicates an unanticipated problem.
349  *
350  * Note that it is permissible to omit this call entirely, as is
351  * done in architectures that do no CPU-hotplug error checking.
352  */
353 int cpu_check_up_prepare(int cpu)
354 {
355         if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
356                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
357                 return 0;
358         }
359
360         switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
361
362         case CPU_POST_DEAD:
363
364                 /* The CPU died properly, so just start it up again. */
365                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
366                 return 0;
367
368         case CPU_DEAD_FROZEN:
369
370                 /*
371                  * Timeout during CPU death, so let caller know.
372                  * The outgoing CPU completed its processing, but after
373                  * cpu_wait_death() timed out and reported the error. The
374                  * caller is free to proceed, in which case the state
375                  * will be reset properly by cpu_set_state_online().
376                  * Proceeding despite this -EBUSY return makes sense
377                  * for systems where the outgoing CPUs take themselves
378                  * offline, with no post-death manipulation required from
379                  * a surviving CPU.
380                  */
381                 return -EBUSY;
382
383         case CPU_BROKEN:
384
385                 /*
386                  * The most likely reason we got here is that there was
387                  * a timeout during CPU death, and the outgoing CPU never
388                  * did complete its processing.  This could happen on
389                  * a virtualized system if the outgoing VCPU gets preempted
390                  * for more than five seconds, and the user attempts to
391                  * immediately online that same CPU.  Trying again later
392                  * might return -EBUSY above, hence -EAGAIN.
393                  */
394                 return -EAGAIN;
395
396         default:
397
398                 /* Should not happen.  Famous last words. */
399                 return -EIO;
400         }
401 }
402
403 /*
404  * Mark the specified CPU online.
405  *
406  * Note that it is permissible to omit this call entirely, as is
407  * done in architectures that do no CPU-hotplug error checking.
408  */
409 void cpu_set_state_online(int cpu)
410 {
411         (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
412 }
413
414 #ifdef CONFIG_HOTPLUG_CPU
415
416 /*
417  * Wait for the specified CPU to exit the idle loop and die.
418  */
419 bool cpu_wait_death(unsigned int cpu, int seconds)
420 {
421         int jf_left = seconds * HZ;
422         int oldstate;
423         bool ret = true;
424         int sleep_jf = 1;
425
426         might_sleep();
427
428         /* The outgoing CPU will normally get done quite quickly. */
429         if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
430                 goto update_state;
431         udelay(5);
432
433         /* But if the outgoing CPU dawdles, wait increasingly long times. */
434         while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
435                 schedule_timeout_uninterruptible(sleep_jf);
436                 jf_left -= sleep_jf;
437                 if (jf_left <= 0)
438                         break;
439                 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
440         }
441 update_state:
442         oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
443         if (oldstate == CPU_DEAD) {
444                 /* Outgoing CPU died normally, update state. */
445                 smp_mb(); /* atomic_read() before update. */
446                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
447         } else {
448                 /* Outgoing CPU still hasn't died, set state accordingly. */
449                 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
450                                    oldstate, CPU_BROKEN) != oldstate)
451                         goto update_state;
452                 ret = false;
453         }
454         return ret;
455 }
456
457 /*
458  * Called by the outgoing CPU to report its successful death.  Return
459  * false if this report follows the surviving CPU's timing out.
460  *
461  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
462  * timed out.  This approach allows architectures to omit calls to
463  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
464  * the next cpu_wait_death()'s polling loop.
465  */
466 bool cpu_report_death(void)
467 {
468         int oldstate;
469         int newstate;
470         int cpu = smp_processor_id();
471
472         do {
473                 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
474                 if (oldstate != CPU_BROKEN)
475                         newstate = CPU_DEAD;
476                 else
477                         newstate = CPU_DEAD_FROZEN;
478         } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
479                                 oldstate, newstate) != oldstate);
480         return newstate == CPU_DEAD;
481 }
482
483 #endif /* #ifdef CONFIG_HOTPLUG_CPU */