1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h> /* for syscall_get_* */
60 * SLAB caches for signal bits.
63 static struct kmem_cache *sigqueue_cachep;
65 int print_fatal_signals __read_mostly;
67 static void __user *sig_handler(struct task_struct *t, int sig)
69 return t->sighand->action[sig - 1].sa.sa_handler;
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
83 handler = sig_handler(t, sig);
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
98 return sig_handler_ignored(handler, sig);
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
116 if (t->ptrace && sig != SIGKILL)
119 return sig_task_ignored(t, sig, force);
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
131 switch (_NSIG_WORDS) {
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
154 static bool recalc_sigpending_tsk(struct task_struct *t)
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
176 void recalc_sigpending_and_wake(struct task_struct *t)
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
182 void recalc_sigpending(void)
184 if (!recalc_sigpending_tsk(current) && !freezing(current))
185 clear_thread_flag(TIF_SIGPENDING);
188 EXPORT_SYMBOL(recalc_sigpending);
190 void calculate_sigpending(void)
192 /* Have any signals or users of TIF_SIGPENDING been delayed
195 spin_lock_irq(¤t->sighand->siglock);
196 set_tsk_thread_flag(current, TIF_SIGPENDING);
198 spin_unlock_irq(¤t->sighand->siglock);
201 /* Given the mask, find the first available signal that should be serviced. */
203 #define SYNCHRONOUS_MASK \
204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207 int next_signal(struct sigpending *pending, sigset_t *mask)
209 unsigned long i, *s, *m, x;
212 s = pending->signal.sig;
216 * Handle the first word specially: it contains the
217 * synchronous signals that need to be dequeued first.
221 if (x & SYNCHRONOUS_MASK)
222 x &= SYNCHRONOUS_MASK;
227 switch (_NSIG_WORDS) {
229 for (i = 1; i < _NSIG_WORDS; ++i) {
233 sig = ffz(~x) + i*_NSIG_BPW + 1;
242 sig = ffz(~x) + _NSIG_BPW + 1;
253 static inline void print_dropped_signal(int sig)
255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257 if (!print_fatal_signals)
260 if (!__ratelimit(&ratelimit_state))
263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 current->comm, current->pid, sig);
268 * task_set_jobctl_pending - set jobctl pending bits
270 * @mask: pending bits to set
272 * Clear @mask from @task->jobctl. @mask must be subset of
273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
275 * cleared. If @task is already being killed or exiting, this function
279 * Must be called with @task->sighand->siglock held.
282 * %true if @mask is set, %false if made noop because @task was dying.
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
293 if (mask & JOBCTL_STOP_SIGMASK)
294 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296 task->jobctl |= mask;
301 * task_clear_jobctl_trapping - clear jobctl trapping bit
304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305 * Clear it and wake up the ptracer. Note that we don't need any further
306 * locking. @task->siglock guarantees that @task->parent points to the
310 * Must be called with @task->sighand->siglock held.
312 void task_clear_jobctl_trapping(struct task_struct *task)
314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 task->jobctl &= ~JOBCTL_TRAPPING;
316 smp_mb(); /* advised by wake_up_bit() */
317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
322 * task_clear_jobctl_pending - clear jobctl pending bits
324 * @mask: pending bits to clear
326 * Clear @mask from @task->jobctl. @mask must be subset of
327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
328 * STOP bits are cleared together.
330 * If clearing of @mask leaves no stop or trap pending, this function calls
331 * task_clear_jobctl_trapping().
334 * Must be called with @task->sighand->siglock held.
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340 if (mask & JOBCTL_STOP_PENDING)
341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343 task->jobctl &= ~mask;
345 if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 task_clear_jobctl_trapping(task);
350 * task_participate_group_stop - participate in a group stop
351 * @task: task participating in a group stop
353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354 * Group stop states are cleared and the group stop count is consumed if
355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
356 * stop, the appropriate `SIGNAL_*` flags are set.
359 * Must be called with @task->sighand->siglock held.
362 * %true if group stop completion should be notified to the parent, %false
365 static bool task_participate_group_stop(struct task_struct *task)
367 struct signal_struct *sig = task->signal;
368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
377 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 sig->group_stop_count--;
381 * Tell the caller to notify completion iff we are entering into a
382 * fresh group stop. Read comment in do_signal_stop() for details.
384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
391 void task_join_group_stop(struct task_struct *task)
393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 struct signal_struct *sig = current->signal;
396 if (sig->group_stop_count) {
397 sig->group_stop_count++;
398 mask |= JOBCTL_STOP_CONSUME;
399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
402 /* Have the new thread join an on-going signal group stop */
403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 int override_rlimit, const unsigned int sigqueue_flags)
415 struct sigqueue *q = NULL;
416 struct ucounts *ucounts = NULL;
420 * Protect access to @t credentials. This can go away when all
421 * callers hold rcu read lock.
423 * NOTE! A pending signal will hold on to the user refcount,
424 * and we get/put the refcount only when the sigpending count
425 * changes from/to zero.
428 ucounts = task_ucounts(t);
429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
437 print_dropped_signal(sig);
440 if (unlikely(q == NULL)) {
441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
443 INIT_LIST_HEAD(&q->list);
444 q->flags = sigqueue_flags;
445 q->ucounts = ucounts;
450 static void __sigqueue_free(struct sigqueue *q)
452 if (q->flags & SIGQUEUE_PREALLOC)
455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
458 kmem_cache_free(sigqueue_cachep, q);
461 void flush_sigqueue(struct sigpending *queue)
465 sigemptyset(&queue->signal);
466 while (!list_empty(&queue->list)) {
467 q = list_entry(queue->list.next, struct sigqueue , list);
468 list_del_init(&q->list);
474 * Flush all pending signals for this kthread.
476 void flush_signals(struct task_struct *t)
480 spin_lock_irqsave(&t->sighand->siglock, flags);
481 clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 flush_sigqueue(&t->pending);
483 flush_sigqueue(&t->signal->shared_pending);
484 spin_unlock_irqrestore(&t->sighand->siglock, flags);
486 EXPORT_SYMBOL(flush_signals);
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
491 sigset_t signal, retain;
492 struct sigqueue *q, *n;
494 signal = pending->signal;
495 sigemptyset(&retain);
497 list_for_each_entry_safe(q, n, &pending->list, list) {
498 int sig = q->info.si_signo;
500 if (likely(q->info.si_code != SI_TIMER)) {
501 sigaddset(&retain, sig);
503 sigdelset(&signal, sig);
504 list_del_init(&q->list);
509 sigorsets(&pending->signal, &signal, &retain);
512 void flush_itimer_signals(void)
514 struct task_struct *tsk = current;
517 spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 __flush_itimer_signals(&tsk->pending);
519 __flush_itimer_signals(&tsk->signal->shared_pending);
520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
524 void ignore_signals(struct task_struct *t)
528 for (i = 0; i < _NSIG; ++i)
529 t->sighand->action[i].sa.sa_handler = SIG_IGN;
535 * Flush all handlers for a task.
539 flush_signal_handlers(struct task_struct *t, int force_default)
542 struct k_sigaction *ka = &t->sighand->action[0];
543 for (i = _NSIG ; i != 0 ; i--) {
544 if (force_default || ka->sa.sa_handler != SIG_IGN)
545 ka->sa.sa_handler = SIG_DFL;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 ka->sa.sa_restorer = NULL;
550 sigemptyset(&ka->sa.sa_mask);
555 bool unhandled_signal(struct task_struct *tsk, int sig)
557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 if (is_global_init(tsk))
561 if (handler != SIG_IGN && handler != SIG_DFL)
564 /* if ptraced, let the tracer determine */
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
571 struct sigqueue *q, *first = NULL;
574 * Collect the siginfo appropriate to this signal. Check if
575 * there is another siginfo for the same signal.
577 list_for_each_entry(q, &list->list, list) {
578 if (q->info.si_signo == sig) {
585 sigdelset(&list->signal, sig);
589 list_del_init(&first->list);
590 copy_siginfo(info, &first->info);
593 (first->flags & SIGQUEUE_PREALLOC) &&
594 (info->si_code == SI_TIMER) &&
595 (info->si_sys_private);
597 __sigqueue_free(first);
600 * Ok, it wasn't in the queue. This must be
601 * a fast-pathed signal or we must have been
602 * out of queue space. So zero out the info.
605 info->si_signo = sig;
607 info->si_code = SI_USER;
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 kernel_siginfo_t *info, bool *resched_timer)
616 int sig = next_signal(pending, mask);
619 collect_signal(sig, pending, info, resched_timer);
624 * Dequeue a signal and return the element to the caller, which is
625 * expected to free it.
627 * All callers have to hold the siglock.
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
630 kernel_siginfo_t *info, enum pid_type *type)
632 bool resched_timer = false;
635 /* We only dequeue private signals from ourselves, we don't let
636 * signalfd steal them
639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
641 *type = PIDTYPE_TGID;
642 signr = __dequeue_signal(&tsk->signal->shared_pending,
643 mask, info, &resched_timer);
644 #ifdef CONFIG_POSIX_TIMERS
648 * itimers are process shared and we restart periodic
649 * itimers in the signal delivery path to prevent DoS
650 * attacks in the high resolution timer case. This is
651 * compliant with the old way of self-restarting
652 * itimers, as the SIGALRM is a legacy signal and only
653 * queued once. Changing the restart behaviour to
654 * restart the timer in the signal dequeue path is
655 * reducing the timer noise on heavy loaded !highres
658 if (unlikely(signr == SIGALRM)) {
659 struct hrtimer *tmr = &tsk->signal->real_timer;
661 if (!hrtimer_is_queued(tmr) &&
662 tsk->signal->it_real_incr != 0) {
663 hrtimer_forward(tmr, tmr->base->get_time(),
664 tsk->signal->it_real_incr);
665 hrtimer_restart(tmr);
675 if (unlikely(sig_kernel_stop(signr))) {
677 * Set a marker that we have dequeued a stop signal. Our
678 * caller might release the siglock and then the pending
679 * stop signal it is about to process is no longer in the
680 * pending bitmasks, but must still be cleared by a SIGCONT
681 * (and overruled by a SIGKILL). So those cases clear this
682 * shared flag after we've set it. Note that this flag may
683 * remain set after the signal we return is ignored or
684 * handled. That doesn't matter because its only purpose
685 * is to alert stop-signal processing code when another
686 * processor has come along and cleared the flag.
688 current->jobctl |= JOBCTL_STOP_DEQUEUED;
690 #ifdef CONFIG_POSIX_TIMERS
693 * Release the siglock to ensure proper locking order
694 * of timer locks outside of siglocks. Note, we leave
695 * irqs disabled here, since the posix-timers code is
696 * about to disable them again anyway.
698 spin_unlock(&tsk->sighand->siglock);
699 posixtimer_rearm(info);
700 spin_lock(&tsk->sighand->siglock);
702 /* Don't expose the si_sys_private value to userspace */
703 info->si_sys_private = 0;
708 EXPORT_SYMBOL_GPL(dequeue_signal);
710 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
712 struct task_struct *tsk = current;
713 struct sigpending *pending = &tsk->pending;
714 struct sigqueue *q, *sync = NULL;
717 * Might a synchronous signal be in the queue?
719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
723 * Return the first synchronous signal in the queue.
725 list_for_each_entry(q, &pending->list, list) {
726 /* Synchronous signals have a positive si_code */
727 if ((q->info.si_code > SI_USER) &&
728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
736 * Check if there is another siginfo for the same signal.
738 list_for_each_entry_continue(q, &pending->list, list) {
739 if (q->info.si_signo == sync->info.si_signo)
743 sigdelset(&pending->signal, sync->info.si_signo);
746 list_del_init(&sync->list);
747 copy_siginfo(info, &sync->info);
748 __sigqueue_free(sync);
749 return info->si_signo;
753 * Tell a process that it has a new active signal..
755 * NOTE! we rely on the previous spin_lock to
756 * lock interrupts for us! We can only be called with
757 * "siglock" held, and the local interrupt must
758 * have been disabled when that got acquired!
760 * No need to set need_resched since signal event passing
761 * goes through ->blocked
763 void signal_wake_up_state(struct task_struct *t, unsigned int state)
765 set_tsk_thread_flag(t, TIF_SIGPENDING);
767 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
768 * case. We don't check t->state here because there is a race with it
769 * executing another processor and just now entering stopped state.
770 * By using wake_up_state, we ensure the process will wake up and
771 * handle its death signal.
773 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
778 * Remove signals in mask from the pending set and queue.
779 * Returns 1 if any signals were found.
781 * All callers must be holding the siglock.
783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
785 struct sigqueue *q, *n;
788 sigandsets(&m, mask, &s->signal);
789 if (sigisemptyset(&m))
792 sigandnsets(&s->signal, &s->signal, mask);
793 list_for_each_entry_safe(q, n, &s->list, list) {
794 if (sigismember(mask, q->info.si_signo)) {
795 list_del_init(&q->list);
801 static inline int is_si_special(const struct kernel_siginfo *info)
803 return info <= SEND_SIG_PRIV;
806 static inline bool si_fromuser(const struct kernel_siginfo *info)
808 return info == SEND_SIG_NOINFO ||
809 (!is_si_special(info) && SI_FROMUSER(info));
813 * called with RCU read lock from check_kill_permission()
815 static bool kill_ok_by_cred(struct task_struct *t)
817 const struct cred *cred = current_cred();
818 const struct cred *tcred = __task_cred(t);
820 return uid_eq(cred->euid, tcred->suid) ||
821 uid_eq(cred->euid, tcred->uid) ||
822 uid_eq(cred->uid, tcred->suid) ||
823 uid_eq(cred->uid, tcred->uid) ||
824 ns_capable(tcred->user_ns, CAP_KILL);
828 * Bad permissions for sending the signal
829 * - the caller must hold the RCU read lock
831 static int check_kill_permission(int sig, struct kernel_siginfo *info,
832 struct task_struct *t)
837 if (!valid_signal(sig))
840 if (!si_fromuser(info))
843 error = audit_signal_info(sig, t); /* Let audit system see the signal */
847 if (!same_thread_group(current, t) &&
848 !kill_ok_by_cred(t)) {
851 sid = task_session(t);
853 * We don't return the error if sid == NULL. The
854 * task was unhashed, the caller must notice this.
856 if (!sid || sid == task_session(current))
864 return security_task_kill(t, info, sig, NULL);
868 * ptrace_trap_notify - schedule trap to notify ptracer
869 * @t: tracee wanting to notify tracer
871 * This function schedules sticky ptrace trap which is cleared on the next
872 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
875 * If @t is running, STOP trap will be taken. If trapped for STOP and
876 * ptracer is listening for events, tracee is woken up so that it can
877 * re-trap for the new event. If trapped otherwise, STOP trap will be
878 * eventually taken without returning to userland after the existing traps
879 * are finished by PTRACE_CONT.
882 * Must be called with @task->sighand->siglock held.
884 static void ptrace_trap_notify(struct task_struct *t)
886 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
887 assert_spin_locked(&t->sighand->siglock);
889 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
890 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
894 * Handle magic process-wide effects of stop/continue signals. Unlike
895 * the signal actions, these happen immediately at signal-generation
896 * time regardless of blocking, ignoring, or handling. This does the
897 * actual continuing for SIGCONT, but not the actual stopping for stop
898 * signals. The process stop is done as a signal action for SIG_DFL.
900 * Returns true if the signal should be actually delivered, otherwise
901 * it should be dropped.
903 static bool prepare_signal(int sig, struct task_struct *p, bool force)
905 struct signal_struct *signal = p->signal;
906 struct task_struct *t;
909 if (signal->flags & SIGNAL_GROUP_EXIT) {
910 if (signal->core_state)
911 return sig == SIGKILL;
913 * The process is in the middle of dying, nothing to do.
915 } else if (sig_kernel_stop(sig)) {
917 * This is a stop signal. Remove SIGCONT from all queues.
919 siginitset(&flush, sigmask(SIGCONT));
920 flush_sigqueue_mask(&flush, &signal->shared_pending);
921 for_each_thread(p, t)
922 flush_sigqueue_mask(&flush, &t->pending);
923 } else if (sig == SIGCONT) {
926 * Remove all stop signals from all queues, wake all threads.
928 siginitset(&flush, SIG_KERNEL_STOP_MASK);
929 flush_sigqueue_mask(&flush, &signal->shared_pending);
930 for_each_thread(p, t) {
931 flush_sigqueue_mask(&flush, &t->pending);
932 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
933 if (likely(!(t->ptrace & PT_SEIZED)))
934 wake_up_state(t, __TASK_STOPPED);
936 ptrace_trap_notify(t);
940 * Notify the parent with CLD_CONTINUED if we were stopped.
942 * If we were in the middle of a group stop, we pretend it
943 * was already finished, and then continued. Since SIGCHLD
944 * doesn't queue we report only CLD_STOPPED, as if the next
945 * CLD_CONTINUED was dropped.
948 if (signal->flags & SIGNAL_STOP_STOPPED)
949 why |= SIGNAL_CLD_CONTINUED;
950 else if (signal->group_stop_count)
951 why |= SIGNAL_CLD_STOPPED;
955 * The first thread which returns from do_signal_stop()
956 * will take ->siglock, notice SIGNAL_CLD_MASK, and
957 * notify its parent. See get_signal().
959 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
960 signal->group_stop_count = 0;
961 signal->group_exit_code = 0;
965 return !sig_ignored(p, sig, force);
969 * Test if P wants to take SIG. After we've checked all threads with this,
970 * it's equivalent to finding no threads not blocking SIG. Any threads not
971 * blocking SIG were ruled out because they are not running and already
972 * have pending signals. Such threads will dequeue from the shared queue
973 * as soon as they're available, so putting the signal on the shared queue
974 * will be equivalent to sending it to one such thread.
976 static inline bool wants_signal(int sig, struct task_struct *p)
978 if (sigismember(&p->blocked, sig))
981 if (p->flags & PF_EXITING)
987 if (task_is_stopped_or_traced(p))
990 return task_curr(p) || !task_sigpending(p);
993 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
995 struct signal_struct *signal = p->signal;
996 struct task_struct *t;
999 * Now find a thread we can wake up to take the signal off the queue.
1001 * If the main thread wants the signal, it gets first crack.
1002 * Probably the least surprising to the average bear.
1004 if (wants_signal(sig, p))
1006 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1008 * There is just one thread and it does not need to be woken.
1009 * It will dequeue unblocked signals before it runs again.
1014 * Otherwise try to find a suitable thread.
1016 t = signal->curr_target;
1017 while (!wants_signal(sig, t)) {
1019 if (t == signal->curr_target)
1021 * No thread needs to be woken.
1022 * Any eligible threads will see
1023 * the signal in the queue soon.
1027 signal->curr_target = t;
1031 * Found a killable thread. If the signal will be fatal,
1032 * then start taking the whole group down immediately.
1034 if (sig_fatal(p, sig) &&
1035 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1036 !sigismember(&t->real_blocked, sig) &&
1037 (sig == SIGKILL || !p->ptrace)) {
1039 * This signal will be fatal to the whole group.
1041 if (!sig_kernel_coredump(sig)) {
1043 * Start a group exit and wake everybody up.
1044 * This way we don't have other threads
1045 * running and doing things after a slower
1046 * thread has the fatal signal pending.
1048 signal->flags = SIGNAL_GROUP_EXIT;
1049 signal->group_exit_code = sig;
1050 signal->group_stop_count = 0;
1053 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054 sigaddset(&t->pending.signal, SIGKILL);
1055 signal_wake_up(t, 1);
1056 } while_each_thread(p, t);
1062 * The signal is already in the shared-pending queue.
1063 * Tell the chosen thread to wake up and dequeue it.
1065 signal_wake_up(t, sig == SIGKILL);
1069 static inline bool legacy_queue(struct sigpending *signals, int sig)
1071 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1074 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1075 enum pid_type type, bool force)
1077 struct sigpending *pending;
1079 int override_rlimit;
1080 int ret = 0, result;
1082 assert_spin_locked(&t->sighand->siglock);
1084 result = TRACE_SIGNAL_IGNORED;
1085 if (!prepare_signal(sig, t, force))
1088 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1090 * Short-circuit ignored signals and support queuing
1091 * exactly one non-rt signal, so that we can get more
1092 * detailed information about the cause of the signal.
1094 result = TRACE_SIGNAL_ALREADY_PENDING;
1095 if (legacy_queue(pending, sig))
1098 result = TRACE_SIGNAL_DELIVERED;
1100 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1102 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1106 * Real-time signals must be queued if sent by sigqueue, or
1107 * some other real-time mechanism. It is implementation
1108 * defined whether kill() does so. We attempt to do so, on
1109 * the principle of least surprise, but since kill is not
1110 * allowed to fail with EAGAIN when low on memory we just
1111 * make sure at least one signal gets delivered and don't
1112 * pass on the info struct.
1115 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1117 override_rlimit = 0;
1119 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1122 list_add_tail(&q->list, &pending->list);
1123 switch ((unsigned long) info) {
1124 case (unsigned long) SEND_SIG_NOINFO:
1125 clear_siginfo(&q->info);
1126 q->info.si_signo = sig;
1127 q->info.si_errno = 0;
1128 q->info.si_code = SI_USER;
1129 q->info.si_pid = task_tgid_nr_ns(current,
1130 task_active_pid_ns(t));
1133 from_kuid_munged(task_cred_xxx(t, user_ns),
1137 case (unsigned long) SEND_SIG_PRIV:
1138 clear_siginfo(&q->info);
1139 q->info.si_signo = sig;
1140 q->info.si_errno = 0;
1141 q->info.si_code = SI_KERNEL;
1146 copy_siginfo(&q->info, info);
1149 } else if (!is_si_special(info) &&
1150 sig >= SIGRTMIN && info->si_code != SI_USER) {
1152 * Queue overflow, abort. We may abort if the
1153 * signal was rt and sent by user using something
1154 * other than kill().
1156 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1161 * This is a silent loss of information. We still
1162 * send the signal, but the *info bits are lost.
1164 result = TRACE_SIGNAL_LOSE_INFO;
1168 signalfd_notify(t, sig);
1169 sigaddset(&pending->signal, sig);
1171 /* Let multiprocess signals appear after on-going forks */
1172 if (type > PIDTYPE_TGID) {
1173 struct multiprocess_signals *delayed;
1174 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175 sigset_t *signal = &delayed->signal;
1176 /* Can't queue both a stop and a continue signal */
1178 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179 else if (sig_kernel_stop(sig))
1180 sigdelset(signal, SIGCONT);
1181 sigaddset(signal, sig);
1185 complete_signal(sig, t, type);
1187 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1194 switch (siginfo_layout(info->si_signo, info->si_code)) {
1203 case SIL_FAULT_TRAPNO:
1204 case SIL_FAULT_MCEERR:
1205 case SIL_FAULT_BNDERR:
1206 case SIL_FAULT_PKUERR:
1207 case SIL_FAULT_PERF_EVENT:
1215 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1218 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1221 if (info == SEND_SIG_NOINFO) {
1222 /* Force if sent from an ancestor pid namespace */
1223 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224 } else if (info == SEND_SIG_PRIV) {
1225 /* Don't ignore kernel generated signals */
1227 } else if (has_si_pid_and_uid(info)) {
1228 /* SIGKILL and SIGSTOP is special or has ids */
1229 struct user_namespace *t_user_ns;
1232 t_user_ns = task_cred_xxx(t, user_ns);
1233 if (current_user_ns() != t_user_ns) {
1234 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235 info->si_uid = from_kuid_munged(t_user_ns, uid);
1239 /* A kernel generated signal? */
1240 force = (info->si_code == SI_KERNEL);
1242 /* From an ancestor pid namespace? */
1243 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1248 return __send_signal(sig, info, t, type, force);
1251 static void print_fatal_signal(int signr)
1253 struct pt_regs *regs = signal_pt_regs();
1254 pr_info("potentially unexpected fatal signal %d.\n", signr);
1256 #if defined(__i386__) && !defined(__arch_um__)
1257 pr_info("code at %08lx: ", regs->ip);
1260 for (i = 0; i < 16; i++) {
1263 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1265 pr_cont("%02x ", insn);
1275 static int __init setup_print_fatal_signals(char *str)
1277 get_option (&str, &print_fatal_signals);
1282 __setup("print-fatal-signals=", setup_print_fatal_signals);
1285 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1287 return send_signal(sig, info, p, PIDTYPE_TGID);
1290 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1293 unsigned long flags;
1296 if (lock_task_sighand(p, &flags)) {
1297 ret = send_signal(sig, info, p, type);
1298 unlock_task_sighand(p, &flags);
1305 HANDLER_CURRENT, /* If reachable use the current handler */
1306 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1307 HANDLER_EXIT, /* Only visible as the process exit code */
1311 * Force a signal that the process can't ignore: if necessary
1312 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1314 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1315 * since we do not want to have a signal handler that was blocked
1316 * be invoked when user space had explicitly blocked it.
1318 * We don't want to have recursive SIGSEGV's etc, for example,
1319 * that is why we also clear SIGNAL_UNKILLABLE.
1322 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1323 enum sig_handler handler)
1325 unsigned long int flags;
1326 int ret, blocked, ignored;
1327 struct k_sigaction *action;
1328 int sig = info->si_signo;
1330 spin_lock_irqsave(&t->sighand->siglock, flags);
1331 action = &t->sighand->action[sig-1];
1332 ignored = action->sa.sa_handler == SIG_IGN;
1333 blocked = sigismember(&t->blocked, sig);
1334 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1335 action->sa.sa_handler = SIG_DFL;
1336 if (handler == HANDLER_EXIT)
1337 action->sa.sa_flags |= SA_IMMUTABLE;
1339 sigdelset(&t->blocked, sig);
1340 recalc_sigpending_and_wake(t);
1344 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1345 * debugging to leave init killable.
1347 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1348 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349 ret = send_signal(sig, info, t, PIDTYPE_PID);
1350 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1355 int force_sig_info(struct kernel_siginfo *info)
1357 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1361 * Nuke all other threads in the group.
1363 int zap_other_threads(struct task_struct *p)
1365 struct task_struct *t = p;
1368 p->signal->group_stop_count = 0;
1370 while_each_thread(p, t) {
1371 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1374 /* Don't bother with already dead threads */
1377 sigaddset(&t->pending.signal, SIGKILL);
1378 signal_wake_up(t, 1);
1384 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385 unsigned long *flags)
1387 struct sighand_struct *sighand;
1391 sighand = rcu_dereference(tsk->sighand);
1392 if (unlikely(sighand == NULL))
1396 * This sighand can be already freed and even reused, but
1397 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398 * initializes ->siglock: this slab can't go away, it has
1399 * the same object type, ->siglock can't be reinitialized.
1401 * We need to ensure that tsk->sighand is still the same
1402 * after we take the lock, we can race with de_thread() or
1403 * __exit_signal(). In the latter case the next iteration
1404 * must see ->sighand == NULL.
1406 spin_lock_irqsave(&sighand->siglock, *flags);
1407 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1409 spin_unlock_irqrestore(&sighand->siglock, *flags);
1416 #ifdef CONFIG_LOCKDEP
1417 void lockdep_assert_task_sighand_held(struct task_struct *task)
1419 struct sighand_struct *sighand;
1422 sighand = rcu_dereference(task->sighand);
1424 lockdep_assert_held(&sighand->siglock);
1432 * send signal info to all the members of a group
1434 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1435 struct task_struct *p, enum pid_type type)
1440 ret = check_kill_permission(sig, info, p);
1444 ret = do_send_sig_info(sig, info, p, type);
1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1451 * control characters do (^C, ^Z etc)
1452 * - the caller must hold at least a readlock on tasklist_lock
1454 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1456 struct task_struct *p = NULL;
1457 int retval, success;
1461 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1462 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1465 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1466 return success ? 0 : retval;
1469 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1472 struct task_struct *p;
1476 p = pid_task(pid, PIDTYPE_PID);
1478 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1480 if (likely(!p || error != -ESRCH))
1484 * The task was unhashed in between, try again. If it
1485 * is dead, pid_task() will return NULL, if we race with
1486 * de_thread() it will find the new leader.
1491 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1495 error = kill_pid_info(sig, info, find_vpid(pid));
1500 static inline bool kill_as_cred_perm(const struct cred *cred,
1501 struct task_struct *target)
1503 const struct cred *pcred = __task_cred(target);
1505 return uid_eq(cred->euid, pcred->suid) ||
1506 uid_eq(cred->euid, pcred->uid) ||
1507 uid_eq(cred->uid, pcred->suid) ||
1508 uid_eq(cred->uid, pcred->uid);
1512 * The usb asyncio usage of siginfo is wrong. The glibc support
1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1514 * AKA after the generic fields:
1515 * kernel_pid_t si_pid;
1516 * kernel_uid32_t si_uid;
1517 * sigval_t si_value;
1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1520 * after the generic fields is:
1521 * void __user *si_addr;
1523 * This is a practical problem when there is a 64bit big endian kernel
1524 * and a 32bit userspace. As the 32bit address will encoded in the low
1525 * 32bits of the pointer. Those low 32bits will be stored at higher
1526 * address than appear in a 32 bit pointer. So userspace will not
1527 * see the address it was expecting for it's completions.
1529 * There is nothing in the encoding that can allow
1530 * copy_siginfo_to_user32 to detect this confusion of formats, so
1531 * handle this by requiring the caller of kill_pid_usb_asyncio to
1532 * notice when this situration takes place and to store the 32bit
1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1536 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1537 struct pid *pid, const struct cred *cred)
1539 struct kernel_siginfo info;
1540 struct task_struct *p;
1541 unsigned long flags;
1544 if (!valid_signal(sig))
1547 clear_siginfo(&info);
1548 info.si_signo = sig;
1549 info.si_errno = errno;
1550 info.si_code = SI_ASYNCIO;
1551 *((sigval_t *)&info.si_pid) = addr;
1554 p = pid_task(pid, PIDTYPE_PID);
1559 if (!kill_as_cred_perm(cred, p)) {
1563 ret = security_task_kill(p, &info, sig, cred);
1568 if (lock_task_sighand(p, &flags)) {
1569 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1570 unlock_task_sighand(p, &flags);
1578 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1581 * kill_something_info() interprets pid in interesting ways just like kill(2).
1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1584 * is probably wrong. Should make it like BSD or SYSV.
1587 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1592 return kill_proc_info(sig, info, pid);
1594 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1598 read_lock(&tasklist_lock);
1600 ret = __kill_pgrp_info(sig, info,
1601 pid ? find_vpid(-pid) : task_pgrp(current));
1603 int retval = 0, count = 0;
1604 struct task_struct * p;
1606 for_each_process(p) {
1607 if (task_pid_vnr(p) > 1 &&
1608 !same_thread_group(p, current)) {
1609 int err = group_send_sig_info(sig, info, p,
1616 ret = count ? retval : -ESRCH;
1618 read_unlock(&tasklist_lock);
1624 * These are for backward compatibility with the rest of the kernel source.
1627 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1630 * Make sure legacy kernel users don't send in bad values
1631 * (normal paths check this in check_kill_permission).
1633 if (!valid_signal(sig))
1636 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1638 EXPORT_SYMBOL(send_sig_info);
1640 #define __si_special(priv) \
1641 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1644 send_sig(int sig, struct task_struct *p, int priv)
1646 return send_sig_info(sig, __si_special(priv), p);
1648 EXPORT_SYMBOL(send_sig);
1650 void force_sig(int sig)
1652 struct kernel_siginfo info;
1654 clear_siginfo(&info);
1655 info.si_signo = sig;
1657 info.si_code = SI_KERNEL;
1660 force_sig_info(&info);
1662 EXPORT_SYMBOL(force_sig);
1664 void force_fatal_sig(int sig)
1666 struct kernel_siginfo info;
1668 clear_siginfo(&info);
1669 info.si_signo = sig;
1671 info.si_code = SI_KERNEL;
1674 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1677 void force_exit_sig(int sig)
1679 struct kernel_siginfo info;
1681 clear_siginfo(&info);
1682 info.si_signo = sig;
1684 info.si_code = SI_KERNEL;
1687 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1691 * When things go south during signal handling, we
1692 * will force a SIGSEGV. And if the signal that caused
1693 * the problem was already a SIGSEGV, we'll want to
1694 * make sure we don't even try to deliver the signal..
1696 void force_sigsegv(int sig)
1699 force_fatal_sig(SIGSEGV);
1704 int force_sig_fault_to_task(int sig, int code, void __user *addr
1705 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1706 , struct task_struct *t)
1708 struct kernel_siginfo info;
1710 clear_siginfo(&info);
1711 info.si_signo = sig;
1713 info.si_code = code;
1714 info.si_addr = addr;
1717 info.si_flags = flags;
1720 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1723 int force_sig_fault(int sig, int code, void __user *addr
1724 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1726 return force_sig_fault_to_task(sig, code, addr
1727 ___ARCH_SI_IA64(imm, flags, isr), current);
1730 int send_sig_fault(int sig, int code, void __user *addr
1731 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1732 , struct task_struct *t)
1734 struct kernel_siginfo info;
1736 clear_siginfo(&info);
1737 info.si_signo = sig;
1739 info.si_code = code;
1740 info.si_addr = addr;
1743 info.si_flags = flags;
1746 return send_sig_info(info.si_signo, &info, t);
1749 int force_sig_mceerr(int code, void __user *addr, short lsb)
1751 struct kernel_siginfo info;
1753 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1754 clear_siginfo(&info);
1755 info.si_signo = SIGBUS;
1757 info.si_code = code;
1758 info.si_addr = addr;
1759 info.si_addr_lsb = lsb;
1760 return force_sig_info(&info);
1763 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1765 struct kernel_siginfo info;
1767 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1768 clear_siginfo(&info);
1769 info.si_signo = SIGBUS;
1771 info.si_code = code;
1772 info.si_addr = addr;
1773 info.si_addr_lsb = lsb;
1774 return send_sig_info(info.si_signo, &info, t);
1776 EXPORT_SYMBOL(send_sig_mceerr);
1778 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1780 struct kernel_siginfo info;
1782 clear_siginfo(&info);
1783 info.si_signo = SIGSEGV;
1785 info.si_code = SEGV_BNDERR;
1786 info.si_addr = addr;
1787 info.si_lower = lower;
1788 info.si_upper = upper;
1789 return force_sig_info(&info);
1793 int force_sig_pkuerr(void __user *addr, u32 pkey)
1795 struct kernel_siginfo info;
1797 clear_siginfo(&info);
1798 info.si_signo = SIGSEGV;
1800 info.si_code = SEGV_PKUERR;
1801 info.si_addr = addr;
1802 info.si_pkey = pkey;
1803 return force_sig_info(&info);
1807 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1809 struct kernel_siginfo info;
1811 clear_siginfo(&info);
1812 info.si_signo = SIGTRAP;
1814 info.si_code = TRAP_PERF;
1815 info.si_addr = addr;
1816 info.si_perf_data = sig_data;
1817 info.si_perf_type = type;
1819 return force_sig_info(&info);
1823 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1824 * @syscall: syscall number to send to userland
1825 * @reason: filter-supplied reason code to send to userland (via si_errno)
1826 * @force_coredump: true to trigger a coredump
1828 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1830 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1832 struct kernel_siginfo info;
1834 clear_siginfo(&info);
1835 info.si_signo = SIGSYS;
1836 info.si_code = SYS_SECCOMP;
1837 info.si_call_addr = (void __user *)KSTK_EIP(current);
1838 info.si_errno = reason;
1839 info.si_arch = syscall_get_arch(current);
1840 info.si_syscall = syscall;
1841 return force_sig_info_to_task(&info, current,
1842 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1845 /* For the crazy architectures that include trap information in
1846 * the errno field, instead of an actual errno value.
1848 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1850 struct kernel_siginfo info;
1852 clear_siginfo(&info);
1853 info.si_signo = SIGTRAP;
1854 info.si_errno = errno;
1855 info.si_code = TRAP_HWBKPT;
1856 info.si_addr = addr;
1857 return force_sig_info(&info);
1860 /* For the rare architectures that include trap information using
1863 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1865 struct kernel_siginfo info;
1867 clear_siginfo(&info);
1868 info.si_signo = sig;
1870 info.si_code = code;
1871 info.si_addr = addr;
1872 info.si_trapno = trapno;
1873 return force_sig_info(&info);
1876 /* For the rare architectures that include trap information using
1879 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1880 struct task_struct *t)
1882 struct kernel_siginfo info;
1884 clear_siginfo(&info);
1885 info.si_signo = sig;
1887 info.si_code = code;
1888 info.si_addr = addr;
1889 info.si_trapno = trapno;
1890 return send_sig_info(info.si_signo, &info, t);
1893 int kill_pgrp(struct pid *pid, int sig, int priv)
1897 read_lock(&tasklist_lock);
1898 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1899 read_unlock(&tasklist_lock);
1903 EXPORT_SYMBOL(kill_pgrp);
1905 int kill_pid(struct pid *pid, int sig, int priv)
1907 return kill_pid_info(sig, __si_special(priv), pid);
1909 EXPORT_SYMBOL(kill_pid);
1912 * These functions support sending signals using preallocated sigqueue
1913 * structures. This is needed "because realtime applications cannot
1914 * afford to lose notifications of asynchronous events, like timer
1915 * expirations or I/O completions". In the case of POSIX Timers
1916 * we allocate the sigqueue structure from the timer_create. If this
1917 * allocation fails we are able to report the failure to the application
1918 * with an EAGAIN error.
1920 struct sigqueue *sigqueue_alloc(void)
1922 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1925 void sigqueue_free(struct sigqueue *q)
1927 unsigned long flags;
1928 spinlock_t *lock = ¤t->sighand->siglock;
1930 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1932 * We must hold ->siglock while testing q->list
1933 * to serialize with collect_signal() or with
1934 * __exit_signal()->flush_sigqueue().
1936 spin_lock_irqsave(lock, flags);
1937 q->flags &= ~SIGQUEUE_PREALLOC;
1939 * If it is queued it will be freed when dequeued,
1940 * like the "regular" sigqueue.
1942 if (!list_empty(&q->list))
1944 spin_unlock_irqrestore(lock, flags);
1950 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1952 int sig = q->info.si_signo;
1953 struct sigpending *pending;
1954 struct task_struct *t;
1955 unsigned long flags;
1958 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1962 t = pid_task(pid, type);
1963 if (!t || !likely(lock_task_sighand(t, &flags)))
1966 ret = 1; /* the signal is ignored */
1967 result = TRACE_SIGNAL_IGNORED;
1968 if (!prepare_signal(sig, t, false))
1972 if (unlikely(!list_empty(&q->list))) {
1974 * If an SI_TIMER entry is already queue just increment
1975 * the overrun count.
1977 BUG_ON(q->info.si_code != SI_TIMER);
1978 q->info.si_overrun++;
1979 result = TRACE_SIGNAL_ALREADY_PENDING;
1982 q->info.si_overrun = 0;
1984 signalfd_notify(t, sig);
1985 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1986 list_add_tail(&q->list, &pending->list);
1987 sigaddset(&pending->signal, sig);
1988 complete_signal(sig, t, type);
1989 result = TRACE_SIGNAL_DELIVERED;
1991 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1992 unlock_task_sighand(t, &flags);
1998 static void do_notify_pidfd(struct task_struct *task)
2002 WARN_ON(task->exit_state == 0);
2003 pid = task_pid(task);
2004 wake_up_all(&pid->wait_pidfd);
2008 * Let a parent know about the death of a child.
2009 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2011 * Returns true if our parent ignored us and so we've switched to
2014 bool do_notify_parent(struct task_struct *tsk, int sig)
2016 struct kernel_siginfo info;
2017 unsigned long flags;
2018 struct sighand_struct *psig;
2019 bool autoreap = false;
2024 /* do_notify_parent_cldstop should have been called instead. */
2025 BUG_ON(task_is_stopped_or_traced(tsk));
2027 BUG_ON(!tsk->ptrace &&
2028 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2030 /* Wake up all pidfd waiters */
2031 do_notify_pidfd(tsk);
2033 if (sig != SIGCHLD) {
2035 * This is only possible if parent == real_parent.
2036 * Check if it has changed security domain.
2038 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2042 clear_siginfo(&info);
2043 info.si_signo = sig;
2046 * We are under tasklist_lock here so our parent is tied to
2047 * us and cannot change.
2049 * task_active_pid_ns will always return the same pid namespace
2050 * until a task passes through release_task.
2052 * write_lock() currently calls preempt_disable() which is the
2053 * same as rcu_read_lock(), but according to Oleg, this is not
2054 * correct to rely on this
2057 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2058 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2062 task_cputime(tsk, &utime, &stime);
2063 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2064 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2066 info.si_status = tsk->exit_code & 0x7f;
2067 if (tsk->exit_code & 0x80)
2068 info.si_code = CLD_DUMPED;
2069 else if (tsk->exit_code & 0x7f)
2070 info.si_code = CLD_KILLED;
2072 info.si_code = CLD_EXITED;
2073 info.si_status = tsk->exit_code >> 8;
2076 psig = tsk->parent->sighand;
2077 spin_lock_irqsave(&psig->siglock, flags);
2078 if (!tsk->ptrace && sig == SIGCHLD &&
2079 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2080 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2082 * We are exiting and our parent doesn't care. POSIX.1
2083 * defines special semantics for setting SIGCHLD to SIG_IGN
2084 * or setting the SA_NOCLDWAIT flag: we should be reaped
2085 * automatically and not left for our parent's wait4 call.
2086 * Rather than having the parent do it as a magic kind of
2087 * signal handler, we just set this to tell do_exit that we
2088 * can be cleaned up without becoming a zombie. Note that
2089 * we still call __wake_up_parent in this case, because a
2090 * blocked sys_wait4 might now return -ECHILD.
2092 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2093 * is implementation-defined: we do (if you don't want
2094 * it, just use SIG_IGN instead).
2097 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2101 * Send with __send_signal as si_pid and si_uid are in the
2102 * parent's namespaces.
2104 if (valid_signal(sig) && sig)
2105 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2106 __wake_up_parent(tsk, tsk->parent);
2107 spin_unlock_irqrestore(&psig->siglock, flags);
2113 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2114 * @tsk: task reporting the state change
2115 * @for_ptracer: the notification is for ptracer
2116 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2118 * Notify @tsk's parent that the stopped/continued state has changed. If
2119 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2120 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2123 * Must be called with tasklist_lock at least read locked.
2125 static void do_notify_parent_cldstop(struct task_struct *tsk,
2126 bool for_ptracer, int why)
2128 struct kernel_siginfo info;
2129 unsigned long flags;
2130 struct task_struct *parent;
2131 struct sighand_struct *sighand;
2135 parent = tsk->parent;
2137 tsk = tsk->group_leader;
2138 parent = tsk->real_parent;
2141 clear_siginfo(&info);
2142 info.si_signo = SIGCHLD;
2145 * see comment in do_notify_parent() about the following 4 lines
2148 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2149 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2152 task_cputime(tsk, &utime, &stime);
2153 info.si_utime = nsec_to_clock_t(utime);
2154 info.si_stime = nsec_to_clock_t(stime);
2159 info.si_status = SIGCONT;
2162 info.si_status = tsk->signal->group_exit_code & 0x7f;
2165 info.si_status = tsk->exit_code & 0x7f;
2171 sighand = parent->sighand;
2172 spin_lock_irqsave(&sighand->siglock, flags);
2173 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2174 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2175 __group_send_sig_info(SIGCHLD, &info, parent);
2177 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2179 __wake_up_parent(tsk, parent);
2180 spin_unlock_irqrestore(&sighand->siglock, flags);
2184 * This must be called with current->sighand->siglock held.
2186 * This should be the path for all ptrace stops.
2187 * We always set current->last_siginfo while stopped here.
2188 * That makes it a way to test a stopped process for
2189 * being ptrace-stopped vs being job-control-stopped.
2191 * If we actually decide not to stop at all because the tracer
2192 * is gone, we keep current->exit_code unless clear_code.
2194 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2195 __releases(¤t->sighand->siglock)
2196 __acquires(¤t->sighand->siglock)
2198 bool gstop_done = false;
2200 if (arch_ptrace_stop_needed()) {
2202 * The arch code has something special to do before a
2203 * ptrace stop. This is allowed to block, e.g. for faults
2204 * on user stack pages. We can't keep the siglock while
2205 * calling arch_ptrace_stop, so we must release it now.
2206 * To preserve proper semantics, we must do this before
2207 * any signal bookkeeping like checking group_stop_count.
2209 spin_unlock_irq(¤t->sighand->siglock);
2211 spin_lock_irq(¤t->sighand->siglock);
2215 * schedule() will not sleep if there is a pending signal that
2216 * can awaken the task.
2218 set_special_state(TASK_TRACED);
2221 * We're committing to trapping. TRACED should be visible before
2222 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2223 * Also, transition to TRACED and updates to ->jobctl should be
2224 * atomic with respect to siglock and should be done after the arch
2225 * hook as siglock is released and regrabbed across it.
2230 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2232 * set_current_state() smp_wmb();
2234 * wait_task_stopped()
2235 * task_stopped_code()
2236 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2240 current->last_siginfo = info;
2241 current->exit_code = exit_code;
2244 * If @why is CLD_STOPPED, we're trapping to participate in a group
2245 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2246 * across siglock relocks since INTERRUPT was scheduled, PENDING
2247 * could be clear now. We act as if SIGCONT is received after
2248 * TASK_TRACED is entered - ignore it.
2250 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2251 gstop_done = task_participate_group_stop(current);
2253 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2254 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2255 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2256 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2258 /* entering a trap, clear TRAPPING */
2259 task_clear_jobctl_trapping(current);
2261 spin_unlock_irq(¤t->sighand->siglock);
2262 read_lock(&tasklist_lock);
2263 if (likely(current->ptrace)) {
2265 * Notify parents of the stop.
2267 * While ptraced, there are two parents - the ptracer and
2268 * the real_parent of the group_leader. The ptracer should
2269 * know about every stop while the real parent is only
2270 * interested in the completion of group stop. The states
2271 * for the two don't interact with each other. Notify
2272 * separately unless they're gonna be duplicates.
2274 do_notify_parent_cldstop(current, true, why);
2275 if (gstop_done && ptrace_reparented(current))
2276 do_notify_parent_cldstop(current, false, why);
2279 * Don't want to allow preemption here, because
2280 * sys_ptrace() needs this task to be inactive.
2282 * XXX: implement read_unlock_no_resched().
2285 read_unlock(&tasklist_lock);
2286 cgroup_enter_frozen();
2287 preempt_enable_no_resched();
2288 freezable_schedule();
2289 cgroup_leave_frozen(true);
2292 * By the time we got the lock, our tracer went away.
2293 * Don't drop the lock yet, another tracer may come.
2295 * If @gstop_done, the ptracer went away between group stop
2296 * completion and here. During detach, it would have set
2297 * JOBCTL_STOP_PENDING on us and we'll re-enter
2298 * TASK_STOPPED in do_signal_stop() on return, so notifying
2299 * the real parent of the group stop completion is enough.
2302 do_notify_parent_cldstop(current, false, why);
2304 /* tasklist protects us from ptrace_freeze_traced() */
2305 __set_current_state(TASK_RUNNING);
2307 current->exit_code = 0;
2308 read_unlock(&tasklist_lock);
2312 * We are back. Now reacquire the siglock before touching
2313 * last_siginfo, so that we are sure to have synchronized with
2314 * any signal-sending on another CPU that wants to examine it.
2316 spin_lock_irq(¤t->sighand->siglock);
2317 current->last_siginfo = NULL;
2319 /* LISTENING can be set only during STOP traps, clear it */
2320 current->jobctl &= ~JOBCTL_LISTENING;
2323 * Queued signals ignored us while we were stopped for tracing.
2324 * So check for any that we should take before resuming user mode.
2325 * This sets TIF_SIGPENDING, but never clears it.
2327 recalc_sigpending_tsk(current);
2330 static void ptrace_do_notify(int signr, int exit_code, int why)
2332 kernel_siginfo_t info;
2334 clear_siginfo(&info);
2335 info.si_signo = signr;
2336 info.si_code = exit_code;
2337 info.si_pid = task_pid_vnr(current);
2338 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2340 /* Let the debugger run. */
2341 ptrace_stop(exit_code, why, 1, &info);
2344 void ptrace_notify(int exit_code)
2346 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2347 if (unlikely(current->task_works))
2350 spin_lock_irq(¤t->sighand->siglock);
2351 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2352 spin_unlock_irq(¤t->sighand->siglock);
2356 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2357 * @signr: signr causing group stop if initiating
2359 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2360 * and participate in it. If already set, participate in the existing
2361 * group stop. If participated in a group stop (and thus slept), %true is
2362 * returned with siglock released.
2364 * If ptraced, this function doesn't handle stop itself. Instead,
2365 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2366 * untouched. The caller must ensure that INTERRUPT trap handling takes
2367 * places afterwards.
2370 * Must be called with @current->sighand->siglock held, which is released
2374 * %false if group stop is already cancelled or ptrace trap is scheduled.
2375 * %true if participated in group stop.
2377 static bool do_signal_stop(int signr)
2378 __releases(¤t->sighand->siglock)
2380 struct signal_struct *sig = current->signal;
2382 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2383 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2384 struct task_struct *t;
2386 /* signr will be recorded in task->jobctl for retries */
2387 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2389 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2390 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2391 unlikely(sig->group_exec_task))
2394 * There is no group stop already in progress. We must
2397 * While ptraced, a task may be resumed while group stop is
2398 * still in effect and then receive a stop signal and
2399 * initiate another group stop. This deviates from the
2400 * usual behavior as two consecutive stop signals can't
2401 * cause two group stops when !ptraced. That is why we
2402 * also check !task_is_stopped(t) below.
2404 * The condition can be distinguished by testing whether
2405 * SIGNAL_STOP_STOPPED is already set. Don't generate
2406 * group_exit_code in such case.
2408 * This is not necessary for SIGNAL_STOP_CONTINUED because
2409 * an intervening stop signal is required to cause two
2410 * continued events regardless of ptrace.
2412 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2413 sig->group_exit_code = signr;
2415 sig->group_stop_count = 0;
2417 if (task_set_jobctl_pending(current, signr | gstop))
2418 sig->group_stop_count++;
2421 while_each_thread(current, t) {
2423 * Setting state to TASK_STOPPED for a group
2424 * stop is always done with the siglock held,
2425 * so this check has no races.
2427 if (!task_is_stopped(t) &&
2428 task_set_jobctl_pending(t, signr | gstop)) {
2429 sig->group_stop_count++;
2430 if (likely(!(t->ptrace & PT_SEIZED)))
2431 signal_wake_up(t, 0);
2433 ptrace_trap_notify(t);
2438 if (likely(!current->ptrace)) {
2442 * If there are no other threads in the group, or if there
2443 * is a group stop in progress and we are the last to stop,
2444 * report to the parent.
2446 if (task_participate_group_stop(current))
2447 notify = CLD_STOPPED;
2449 set_special_state(TASK_STOPPED);
2450 spin_unlock_irq(¤t->sighand->siglock);
2453 * Notify the parent of the group stop completion. Because
2454 * we're not holding either the siglock or tasklist_lock
2455 * here, ptracer may attach inbetween; however, this is for
2456 * group stop and should always be delivered to the real
2457 * parent of the group leader. The new ptracer will get
2458 * its notification when this task transitions into
2462 read_lock(&tasklist_lock);
2463 do_notify_parent_cldstop(current, false, notify);
2464 read_unlock(&tasklist_lock);
2467 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2468 cgroup_enter_frozen();
2469 freezable_schedule();
2473 * While ptraced, group stop is handled by STOP trap.
2474 * Schedule it and let the caller deal with it.
2476 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2482 * do_jobctl_trap - take care of ptrace jobctl traps
2484 * When PT_SEIZED, it's used for both group stop and explicit
2485 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2486 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2487 * the stop signal; otherwise, %SIGTRAP.
2489 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2490 * number as exit_code and no siginfo.
2493 * Must be called with @current->sighand->siglock held, which may be
2494 * released and re-acquired before returning with intervening sleep.
2496 static void do_jobctl_trap(void)
2498 struct signal_struct *signal = current->signal;
2499 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2501 if (current->ptrace & PT_SEIZED) {
2502 if (!signal->group_stop_count &&
2503 !(signal->flags & SIGNAL_STOP_STOPPED))
2505 WARN_ON_ONCE(!signr);
2506 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2509 WARN_ON_ONCE(!signr);
2510 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2511 current->exit_code = 0;
2516 * do_freezer_trap - handle the freezer jobctl trap
2518 * Puts the task into frozen state, if only the task is not about to quit.
2519 * In this case it drops JOBCTL_TRAP_FREEZE.
2522 * Must be called with @current->sighand->siglock held,
2523 * which is always released before returning.
2525 static void do_freezer_trap(void)
2526 __releases(¤t->sighand->siglock)
2529 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2530 * let's make another loop to give it a chance to be handled.
2531 * In any case, we'll return back.
2533 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2534 JOBCTL_TRAP_FREEZE) {
2535 spin_unlock_irq(¤t->sighand->siglock);
2540 * Now we're sure that there is no pending fatal signal and no
2541 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2542 * immediately (if there is a non-fatal signal pending), and
2543 * put the task into sleep.
2545 __set_current_state(TASK_INTERRUPTIBLE);
2546 clear_thread_flag(TIF_SIGPENDING);
2547 spin_unlock_irq(¤t->sighand->siglock);
2548 cgroup_enter_frozen();
2549 freezable_schedule();
2552 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2555 * We do not check sig_kernel_stop(signr) but set this marker
2556 * unconditionally because we do not know whether debugger will
2557 * change signr. This flag has no meaning unless we are going
2558 * to stop after return from ptrace_stop(). In this case it will
2559 * be checked in do_signal_stop(), we should only stop if it was
2560 * not cleared by SIGCONT while we were sleeping. See also the
2561 * comment in dequeue_signal().
2563 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2564 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2566 /* We're back. Did the debugger cancel the sig? */
2567 signr = current->exit_code;
2571 current->exit_code = 0;
2574 * Update the siginfo structure if the signal has
2575 * changed. If the debugger wanted something
2576 * specific in the siginfo structure then it should
2577 * have updated *info via PTRACE_SETSIGINFO.
2579 if (signr != info->si_signo) {
2580 clear_siginfo(info);
2581 info->si_signo = signr;
2583 info->si_code = SI_USER;
2585 info->si_pid = task_pid_vnr(current->parent);
2586 info->si_uid = from_kuid_munged(current_user_ns(),
2587 task_uid(current->parent));
2591 /* If the (new) signal is now blocked, requeue it. */
2592 if (sigismember(¤t->blocked, signr) ||
2593 fatal_signal_pending(current)) {
2594 send_signal(signr, info, current, type);
2601 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2603 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2605 case SIL_FAULT_TRAPNO:
2606 case SIL_FAULT_MCEERR:
2607 case SIL_FAULT_BNDERR:
2608 case SIL_FAULT_PKUERR:
2609 case SIL_FAULT_PERF_EVENT:
2610 ksig->info.si_addr = arch_untagged_si_addr(
2611 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2623 bool get_signal(struct ksignal *ksig)
2625 struct sighand_struct *sighand = current->sighand;
2626 struct signal_struct *signal = current->signal;
2629 if (unlikely(current->task_works))
2633 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2634 * that the arch handlers don't all have to do it. If we get here
2635 * without TIF_SIGPENDING, just exit after running signal work.
2637 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2638 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2639 tracehook_notify_signal();
2640 if (!task_sigpending(current))
2644 if (unlikely(uprobe_deny_signal()))
2648 * Do this once, we can't return to user-mode if freezing() == T.
2649 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2650 * thus do not need another check after return.
2655 spin_lock_irq(&sighand->siglock);
2658 * Every stopped thread goes here after wakeup. Check to see if
2659 * we should notify the parent, prepare_signal(SIGCONT) encodes
2660 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2662 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2665 if (signal->flags & SIGNAL_CLD_CONTINUED)
2666 why = CLD_CONTINUED;
2670 signal->flags &= ~SIGNAL_CLD_MASK;
2672 spin_unlock_irq(&sighand->siglock);
2675 * Notify the parent that we're continuing. This event is
2676 * always per-process and doesn't make whole lot of sense
2677 * for ptracers, who shouldn't consume the state via
2678 * wait(2) either, but, for backward compatibility, notify
2679 * the ptracer of the group leader too unless it's gonna be
2682 read_lock(&tasklist_lock);
2683 do_notify_parent_cldstop(current, false, why);
2685 if (ptrace_reparented(current->group_leader))
2686 do_notify_parent_cldstop(current->group_leader,
2688 read_unlock(&tasklist_lock);
2694 struct k_sigaction *ka;
2697 /* Has this task already been marked for death? */
2698 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2699 signal->group_exec_task) {
2700 ksig->info.si_signo = signr = SIGKILL;
2701 sigdelset(¤t->pending.signal, SIGKILL);
2702 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2703 &sighand->action[SIGKILL - 1]);
2704 recalc_sigpending();
2708 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2712 if (unlikely(current->jobctl &
2713 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2714 if (current->jobctl & JOBCTL_TRAP_MASK) {
2716 spin_unlock_irq(&sighand->siglock);
2717 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2724 * If the task is leaving the frozen state, let's update
2725 * cgroup counters and reset the frozen bit.
2727 if (unlikely(cgroup_task_frozen(current))) {
2728 spin_unlock_irq(&sighand->siglock);
2729 cgroup_leave_frozen(false);
2734 * Signals generated by the execution of an instruction
2735 * need to be delivered before any other pending signals
2736 * so that the instruction pointer in the signal stack
2737 * frame points to the faulting instruction.
2740 signr = dequeue_synchronous_signal(&ksig->info);
2742 signr = dequeue_signal(current, ¤t->blocked,
2743 &ksig->info, &type);
2746 break; /* will return 0 */
2748 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2749 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2750 signr = ptrace_signal(signr, &ksig->info, type);
2755 ka = &sighand->action[signr-1];
2757 /* Trace actually delivered signals. */
2758 trace_signal_deliver(signr, &ksig->info, ka);
2760 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2762 if (ka->sa.sa_handler != SIG_DFL) {
2763 /* Run the handler. */
2766 if (ka->sa.sa_flags & SA_ONESHOT)
2767 ka->sa.sa_handler = SIG_DFL;
2769 break; /* will return non-zero "signr" value */
2773 * Now we are doing the default action for this signal.
2775 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2779 * Global init gets no signals it doesn't want.
2780 * Container-init gets no signals it doesn't want from same
2783 * Note that if global/container-init sees a sig_kernel_only()
2784 * signal here, the signal must have been generated internally
2785 * or must have come from an ancestor namespace. In either
2786 * case, the signal cannot be dropped.
2788 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2789 !sig_kernel_only(signr))
2792 if (sig_kernel_stop(signr)) {
2794 * The default action is to stop all threads in
2795 * the thread group. The job control signals
2796 * do nothing in an orphaned pgrp, but SIGSTOP
2797 * always works. Note that siglock needs to be
2798 * dropped during the call to is_orphaned_pgrp()
2799 * because of lock ordering with tasklist_lock.
2800 * This allows an intervening SIGCONT to be posted.
2801 * We need to check for that and bail out if necessary.
2803 if (signr != SIGSTOP) {
2804 spin_unlock_irq(&sighand->siglock);
2806 /* signals can be posted during this window */
2808 if (is_current_pgrp_orphaned())
2811 spin_lock_irq(&sighand->siglock);
2814 if (likely(do_signal_stop(ksig->info.si_signo))) {
2815 /* It released the siglock. */
2820 * We didn't actually stop, due to a race
2821 * with SIGCONT or something like that.
2827 spin_unlock_irq(&sighand->siglock);
2828 if (unlikely(cgroup_task_frozen(current)))
2829 cgroup_leave_frozen(true);
2832 * Anything else is fatal, maybe with a core dump.
2834 current->flags |= PF_SIGNALED;
2836 if (sig_kernel_coredump(signr)) {
2837 if (print_fatal_signals)
2838 print_fatal_signal(ksig->info.si_signo);
2839 proc_coredump_connector(current);
2841 * If it was able to dump core, this kills all
2842 * other threads in the group and synchronizes with
2843 * their demise. If we lost the race with another
2844 * thread getting here, it set group_exit_code
2845 * first and our do_group_exit call below will use
2846 * that value and ignore the one we pass it.
2848 do_coredump(&ksig->info);
2852 * PF_IO_WORKER threads will catch and exit on fatal signals
2853 * themselves. They have cleanup that must be performed, so
2854 * we cannot call do_exit() on their behalf.
2856 if (current->flags & PF_IO_WORKER)
2860 * Death signals, no core dump.
2862 do_group_exit(ksig->info.si_signo);
2865 spin_unlock_irq(&sighand->siglock);
2869 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2870 hide_si_addr_tag_bits(ksig);
2872 return ksig->sig > 0;
2876 * signal_delivered - called after signal delivery to update blocked signals
2877 * @ksig: kernel signal struct
2878 * @stepping: nonzero if debugger single-step or block-step in use
2880 * This function should be called when a signal has successfully been
2881 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2882 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2883 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2885 static void signal_delivered(struct ksignal *ksig, int stepping)
2889 /* A signal was successfully delivered, and the
2890 saved sigmask was stored on the signal frame,
2891 and will be restored by sigreturn. So we can
2892 simply clear the restore sigmask flag. */
2893 clear_restore_sigmask();
2895 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2896 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2897 sigaddset(&blocked, ksig->sig);
2898 set_current_blocked(&blocked);
2899 if (current->sas_ss_flags & SS_AUTODISARM)
2900 sas_ss_reset(current);
2901 tracehook_signal_handler(stepping);
2904 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2907 force_sigsegv(ksig->sig);
2909 signal_delivered(ksig, stepping);
2913 * It could be that complete_signal() picked us to notify about the
2914 * group-wide signal. Other threads should be notified now to take
2915 * the shared signals in @which since we will not.
2917 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2920 struct task_struct *t;
2922 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2923 if (sigisemptyset(&retarget))
2927 while_each_thread(tsk, t) {
2928 if (t->flags & PF_EXITING)
2931 if (!has_pending_signals(&retarget, &t->blocked))
2933 /* Remove the signals this thread can handle. */
2934 sigandsets(&retarget, &retarget, &t->blocked);
2936 if (!task_sigpending(t))
2937 signal_wake_up(t, 0);
2939 if (sigisemptyset(&retarget))
2944 void exit_signals(struct task_struct *tsk)
2950 * @tsk is about to have PF_EXITING set - lock out users which
2951 * expect stable threadgroup.
2953 cgroup_threadgroup_change_begin(tsk);
2955 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2956 tsk->flags |= PF_EXITING;
2957 cgroup_threadgroup_change_end(tsk);
2961 spin_lock_irq(&tsk->sighand->siglock);
2963 * From now this task is not visible for group-wide signals,
2964 * see wants_signal(), do_signal_stop().
2966 tsk->flags |= PF_EXITING;
2968 cgroup_threadgroup_change_end(tsk);
2970 if (!task_sigpending(tsk))
2973 unblocked = tsk->blocked;
2974 signotset(&unblocked);
2975 retarget_shared_pending(tsk, &unblocked);
2977 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2978 task_participate_group_stop(tsk))
2979 group_stop = CLD_STOPPED;
2981 spin_unlock_irq(&tsk->sighand->siglock);
2984 * If group stop has completed, deliver the notification. This
2985 * should always go to the real parent of the group leader.
2987 if (unlikely(group_stop)) {
2988 read_lock(&tasklist_lock);
2989 do_notify_parent_cldstop(tsk, false, group_stop);
2990 read_unlock(&tasklist_lock);
2995 * System call entry points.
2999 * sys_restart_syscall - restart a system call
3001 SYSCALL_DEFINE0(restart_syscall)
3003 struct restart_block *restart = ¤t->restart_block;
3004 return restart->fn(restart);
3007 long do_no_restart_syscall(struct restart_block *param)
3012 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3014 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3015 sigset_t newblocked;
3016 /* A set of now blocked but previously unblocked signals. */
3017 sigandnsets(&newblocked, newset, ¤t->blocked);
3018 retarget_shared_pending(tsk, &newblocked);
3020 tsk->blocked = *newset;
3021 recalc_sigpending();
3025 * set_current_blocked - change current->blocked mask
3028 * It is wrong to change ->blocked directly, this helper should be used
3029 * to ensure the process can't miss a shared signal we are going to block.
3031 void set_current_blocked(sigset_t *newset)
3033 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3034 __set_current_blocked(newset);
3037 void __set_current_blocked(const sigset_t *newset)
3039 struct task_struct *tsk = current;
3042 * In case the signal mask hasn't changed, there is nothing we need
3043 * to do. The current->blocked shouldn't be modified by other task.
3045 if (sigequalsets(&tsk->blocked, newset))
3048 spin_lock_irq(&tsk->sighand->siglock);
3049 __set_task_blocked(tsk, newset);
3050 spin_unlock_irq(&tsk->sighand->siglock);
3054 * This is also useful for kernel threads that want to temporarily
3055 * (or permanently) block certain signals.
3057 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3058 * interface happily blocks "unblockable" signals like SIGKILL
3061 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3063 struct task_struct *tsk = current;
3066 /* Lockless, only current can change ->blocked, never from irq */
3068 *oldset = tsk->blocked;
3072 sigorsets(&newset, &tsk->blocked, set);
3075 sigandnsets(&newset, &tsk->blocked, set);
3084 __set_current_blocked(&newset);
3087 EXPORT_SYMBOL(sigprocmask);
3090 * The api helps set app-provided sigmasks.
3092 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3093 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3095 * Note that it does set_restore_sigmask() in advance, so it must be always
3096 * paired with restore_saved_sigmask_unless() before return from syscall.
3098 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3104 if (sigsetsize != sizeof(sigset_t))
3106 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3109 set_restore_sigmask();
3110 current->saved_sigmask = current->blocked;
3111 set_current_blocked(&kmask);
3116 #ifdef CONFIG_COMPAT
3117 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3124 if (sigsetsize != sizeof(compat_sigset_t))
3126 if (get_compat_sigset(&kmask, umask))
3129 set_restore_sigmask();
3130 current->saved_sigmask = current->blocked;
3131 set_current_blocked(&kmask);
3138 * sys_rt_sigprocmask - change the list of currently blocked signals
3139 * @how: whether to add, remove, or set signals
3140 * @nset: stores pending signals
3141 * @oset: previous value of signal mask if non-null
3142 * @sigsetsize: size of sigset_t type
3144 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3145 sigset_t __user *, oset, size_t, sigsetsize)
3147 sigset_t old_set, new_set;
3150 /* XXX: Don't preclude handling different sized sigset_t's. */
3151 if (sigsetsize != sizeof(sigset_t))
3154 old_set = current->blocked;
3157 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3159 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3161 error = sigprocmask(how, &new_set, NULL);
3167 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3174 #ifdef CONFIG_COMPAT
3175 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3176 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3178 sigset_t old_set = current->blocked;
3180 /* XXX: Don't preclude handling different sized sigset_t's. */
3181 if (sigsetsize != sizeof(sigset_t))
3187 if (get_compat_sigset(&new_set, nset))
3189 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3191 error = sigprocmask(how, &new_set, NULL);
3195 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3199 static void do_sigpending(sigset_t *set)
3201 spin_lock_irq(¤t->sighand->siglock);
3202 sigorsets(set, ¤t->pending.signal,
3203 ¤t->signal->shared_pending.signal);
3204 spin_unlock_irq(¤t->sighand->siglock);
3206 /* Outside the lock because only this thread touches it. */
3207 sigandsets(set, ¤t->blocked, set);
3211 * sys_rt_sigpending - examine a pending signal that has been raised
3213 * @uset: stores pending signals
3214 * @sigsetsize: size of sigset_t type or larger
3216 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3220 if (sigsetsize > sizeof(*uset))
3223 do_sigpending(&set);
3225 if (copy_to_user(uset, &set, sigsetsize))
3231 #ifdef CONFIG_COMPAT
3232 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3233 compat_size_t, sigsetsize)
3237 if (sigsetsize > sizeof(*uset))
3240 do_sigpending(&set);
3242 return put_compat_sigset(uset, &set, sigsetsize);
3246 static const struct {
3247 unsigned char limit, layout;
3249 [SIGILL] = { NSIGILL, SIL_FAULT },
3250 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3251 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3252 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3253 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3255 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3257 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3258 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3259 [SIGSYS] = { NSIGSYS, SIL_SYS },
3262 static bool known_siginfo_layout(unsigned sig, int si_code)
3264 if (si_code == SI_KERNEL)
3266 else if ((si_code > SI_USER)) {
3267 if (sig_specific_sicodes(sig)) {
3268 if (si_code <= sig_sicodes[sig].limit)
3271 else if (si_code <= NSIGPOLL)
3274 else if (si_code >= SI_DETHREAD)
3276 else if (si_code == SI_ASYNCNL)
3281 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3283 enum siginfo_layout layout = SIL_KILL;
3284 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3285 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3286 (si_code <= sig_sicodes[sig].limit)) {
3287 layout = sig_sicodes[sig].layout;
3288 /* Handle the exceptions */
3289 if ((sig == SIGBUS) &&
3290 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3291 layout = SIL_FAULT_MCEERR;
3292 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3293 layout = SIL_FAULT_BNDERR;
3295 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3296 layout = SIL_FAULT_PKUERR;
3298 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3299 layout = SIL_FAULT_PERF_EVENT;
3300 else if (IS_ENABLED(CONFIG_SPARC) &&
3301 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3302 layout = SIL_FAULT_TRAPNO;
3303 else if (IS_ENABLED(CONFIG_ALPHA) &&
3305 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3306 layout = SIL_FAULT_TRAPNO;
3308 else if (si_code <= NSIGPOLL)
3311 if (si_code == SI_TIMER)
3313 else if (si_code == SI_SIGIO)
3315 else if (si_code < 0)
3321 static inline char __user *si_expansion(const siginfo_t __user *info)
3323 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3326 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3328 char __user *expansion = si_expansion(to);
3329 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3331 if (clear_user(expansion, SI_EXPANSION_SIZE))
3336 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3337 const siginfo_t __user *from)
3339 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3340 char __user *expansion = si_expansion(from);
3341 char buf[SI_EXPANSION_SIZE];
3344 * An unknown si_code might need more than
3345 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3346 * extra bytes are 0. This guarantees copy_siginfo_to_user
3347 * will return this data to userspace exactly.
3349 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3351 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3359 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3360 const siginfo_t __user *from)
3362 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3364 to->si_signo = signo;
3365 return post_copy_siginfo_from_user(to, from);
3368 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3370 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3372 return post_copy_siginfo_from_user(to, from);
3375 #ifdef CONFIG_COMPAT
3377 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3378 * @to: compat siginfo destination
3379 * @from: kernel siginfo source
3381 * Note: This function does not work properly for the SIGCHLD on x32, but
3382 * fortunately it doesn't have to. The only valid callers for this function are
3383 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3384 * The latter does not care because SIGCHLD will never cause a coredump.
3386 void copy_siginfo_to_external32(struct compat_siginfo *to,
3387 const struct kernel_siginfo *from)
3389 memset(to, 0, sizeof(*to));
3391 to->si_signo = from->si_signo;
3392 to->si_errno = from->si_errno;
3393 to->si_code = from->si_code;
3394 switch(siginfo_layout(from->si_signo, from->si_code)) {
3396 to->si_pid = from->si_pid;
3397 to->si_uid = from->si_uid;
3400 to->si_tid = from->si_tid;
3401 to->si_overrun = from->si_overrun;
3402 to->si_int = from->si_int;
3405 to->si_band = from->si_band;
3406 to->si_fd = from->si_fd;
3409 to->si_addr = ptr_to_compat(from->si_addr);
3411 case SIL_FAULT_TRAPNO:
3412 to->si_addr = ptr_to_compat(from->si_addr);
3413 to->si_trapno = from->si_trapno;
3415 case SIL_FAULT_MCEERR:
3416 to->si_addr = ptr_to_compat(from->si_addr);
3417 to->si_addr_lsb = from->si_addr_lsb;
3419 case SIL_FAULT_BNDERR:
3420 to->si_addr = ptr_to_compat(from->si_addr);
3421 to->si_lower = ptr_to_compat(from->si_lower);
3422 to->si_upper = ptr_to_compat(from->si_upper);
3424 case SIL_FAULT_PKUERR:
3425 to->si_addr = ptr_to_compat(from->si_addr);
3426 to->si_pkey = from->si_pkey;
3428 case SIL_FAULT_PERF_EVENT:
3429 to->si_addr = ptr_to_compat(from->si_addr);
3430 to->si_perf_data = from->si_perf_data;
3431 to->si_perf_type = from->si_perf_type;
3434 to->si_pid = from->si_pid;
3435 to->si_uid = from->si_uid;
3436 to->si_status = from->si_status;
3437 to->si_utime = from->si_utime;
3438 to->si_stime = from->si_stime;
3441 to->si_pid = from->si_pid;
3442 to->si_uid = from->si_uid;
3443 to->si_int = from->si_int;
3446 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3447 to->si_syscall = from->si_syscall;
3448 to->si_arch = from->si_arch;
3453 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3454 const struct kernel_siginfo *from)
3456 struct compat_siginfo new;
3458 copy_siginfo_to_external32(&new, from);
3459 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3464 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3465 const struct compat_siginfo *from)
3468 to->si_signo = from->si_signo;
3469 to->si_errno = from->si_errno;
3470 to->si_code = from->si_code;
3471 switch(siginfo_layout(from->si_signo, from->si_code)) {
3473 to->si_pid = from->si_pid;
3474 to->si_uid = from->si_uid;
3477 to->si_tid = from->si_tid;
3478 to->si_overrun = from->si_overrun;
3479 to->si_int = from->si_int;
3482 to->si_band = from->si_band;
3483 to->si_fd = from->si_fd;
3486 to->si_addr = compat_ptr(from->si_addr);
3488 case SIL_FAULT_TRAPNO:
3489 to->si_addr = compat_ptr(from->si_addr);
3490 to->si_trapno = from->si_trapno;
3492 case SIL_FAULT_MCEERR:
3493 to->si_addr = compat_ptr(from->si_addr);
3494 to->si_addr_lsb = from->si_addr_lsb;
3496 case SIL_FAULT_BNDERR:
3497 to->si_addr = compat_ptr(from->si_addr);
3498 to->si_lower = compat_ptr(from->si_lower);
3499 to->si_upper = compat_ptr(from->si_upper);
3501 case SIL_FAULT_PKUERR:
3502 to->si_addr = compat_ptr(from->si_addr);
3503 to->si_pkey = from->si_pkey;
3505 case SIL_FAULT_PERF_EVENT:
3506 to->si_addr = compat_ptr(from->si_addr);
3507 to->si_perf_data = from->si_perf_data;
3508 to->si_perf_type = from->si_perf_type;
3511 to->si_pid = from->si_pid;
3512 to->si_uid = from->si_uid;
3513 to->si_status = from->si_status;
3514 #ifdef CONFIG_X86_X32_ABI
3515 if (in_x32_syscall()) {
3516 to->si_utime = from->_sifields._sigchld_x32._utime;
3517 to->si_stime = from->_sifields._sigchld_x32._stime;
3521 to->si_utime = from->si_utime;
3522 to->si_stime = from->si_stime;
3526 to->si_pid = from->si_pid;
3527 to->si_uid = from->si_uid;
3528 to->si_int = from->si_int;
3531 to->si_call_addr = compat_ptr(from->si_call_addr);
3532 to->si_syscall = from->si_syscall;
3533 to->si_arch = from->si_arch;
3539 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3540 const struct compat_siginfo __user *ufrom)
3542 struct compat_siginfo from;
3544 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3547 from.si_signo = signo;
3548 return post_copy_siginfo_from_user32(to, &from);
3551 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3552 const struct compat_siginfo __user *ufrom)
3554 struct compat_siginfo from;
3556 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3559 return post_copy_siginfo_from_user32(to, &from);
3561 #endif /* CONFIG_COMPAT */
3564 * do_sigtimedwait - wait for queued signals specified in @which
3565 * @which: queued signals to wait for
3566 * @info: if non-null, the signal's siginfo is returned here
3567 * @ts: upper bound on process time suspension
3569 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3570 const struct timespec64 *ts)
3572 ktime_t *to = NULL, timeout = KTIME_MAX;
3573 struct task_struct *tsk = current;
3574 sigset_t mask = *which;
3579 if (!timespec64_valid(ts))
3581 timeout = timespec64_to_ktime(*ts);
3586 * Invert the set of allowed signals to get those we want to block.
3588 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3591 spin_lock_irq(&tsk->sighand->siglock);
3592 sig = dequeue_signal(tsk, &mask, info, &type);
3593 if (!sig && timeout) {
3595 * None ready, temporarily unblock those we're interested
3596 * while we are sleeping in so that we'll be awakened when
3597 * they arrive. Unblocking is always fine, we can avoid
3598 * set_current_blocked().
3600 tsk->real_blocked = tsk->blocked;
3601 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3602 recalc_sigpending();
3603 spin_unlock_irq(&tsk->sighand->siglock);
3605 __set_current_state(TASK_INTERRUPTIBLE);
3606 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3608 spin_lock_irq(&tsk->sighand->siglock);
3609 __set_task_blocked(tsk, &tsk->real_blocked);
3610 sigemptyset(&tsk->real_blocked);
3611 sig = dequeue_signal(tsk, &mask, info, &type);
3613 spin_unlock_irq(&tsk->sighand->siglock);
3617 return ret ? -EINTR : -EAGAIN;
3621 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3623 * @uthese: queued signals to wait for
3624 * @uinfo: if non-null, the signal's siginfo is returned here
3625 * @uts: upper bound on process time suspension
3626 * @sigsetsize: size of sigset_t type
3628 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3629 siginfo_t __user *, uinfo,
3630 const struct __kernel_timespec __user *, uts,
3634 struct timespec64 ts;
3635 kernel_siginfo_t info;
3638 /* XXX: Don't preclude handling different sized sigset_t's. */
3639 if (sigsetsize != sizeof(sigset_t))
3642 if (copy_from_user(&these, uthese, sizeof(these)))
3646 if (get_timespec64(&ts, uts))
3650 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3652 if (ret > 0 && uinfo) {
3653 if (copy_siginfo_to_user(uinfo, &info))
3660 #ifdef CONFIG_COMPAT_32BIT_TIME
3661 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3662 siginfo_t __user *, uinfo,
3663 const struct old_timespec32 __user *, uts,
3667 struct timespec64 ts;
3668 kernel_siginfo_t info;
3671 if (sigsetsize != sizeof(sigset_t))
3674 if (copy_from_user(&these, uthese, sizeof(these)))
3678 if (get_old_timespec32(&ts, uts))
3682 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3684 if (ret > 0 && uinfo) {
3685 if (copy_siginfo_to_user(uinfo, &info))
3693 #ifdef CONFIG_COMPAT
3694 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3695 struct compat_siginfo __user *, uinfo,
3696 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3699 struct timespec64 t;
3700 kernel_siginfo_t info;
3703 if (sigsetsize != sizeof(sigset_t))
3706 if (get_compat_sigset(&s, uthese))
3710 if (get_timespec64(&t, uts))
3714 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3716 if (ret > 0 && uinfo) {
3717 if (copy_siginfo_to_user32(uinfo, &info))
3724 #ifdef CONFIG_COMPAT_32BIT_TIME
3725 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3726 struct compat_siginfo __user *, uinfo,
3727 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3730 struct timespec64 t;
3731 kernel_siginfo_t info;
3734 if (sigsetsize != sizeof(sigset_t))
3737 if (get_compat_sigset(&s, uthese))
3741 if (get_old_timespec32(&t, uts))
3745 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3747 if (ret > 0 && uinfo) {
3748 if (copy_siginfo_to_user32(uinfo, &info))
3757 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3759 clear_siginfo(info);
3760 info->si_signo = sig;
3762 info->si_code = SI_USER;
3763 info->si_pid = task_tgid_vnr(current);
3764 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3768 * sys_kill - send a signal to a process
3769 * @pid: the PID of the process
3770 * @sig: signal to be sent
3772 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3774 struct kernel_siginfo info;
3776 prepare_kill_siginfo(sig, &info);
3778 return kill_something_info(sig, &info, pid);
3782 * Verify that the signaler and signalee either are in the same pid namespace
3783 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3786 static bool access_pidfd_pidns(struct pid *pid)
3788 struct pid_namespace *active = task_active_pid_ns(current);
3789 struct pid_namespace *p = ns_of_pid(pid);
3802 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3803 siginfo_t __user *info)
3805 #ifdef CONFIG_COMPAT
3807 * Avoid hooking up compat syscalls and instead handle necessary
3808 * conversions here. Note, this is a stop-gap measure and should not be
3809 * considered a generic solution.
3811 if (in_compat_syscall())
3812 return copy_siginfo_from_user32(
3813 kinfo, (struct compat_siginfo __user *)info);
3815 return copy_siginfo_from_user(kinfo, info);
3818 static struct pid *pidfd_to_pid(const struct file *file)
3822 pid = pidfd_pid(file);
3826 return tgid_pidfd_to_pid(file);
3830 * sys_pidfd_send_signal - Signal a process through a pidfd
3831 * @pidfd: file descriptor of the process
3832 * @sig: signal to send
3833 * @info: signal info
3834 * @flags: future flags
3836 * The syscall currently only signals via PIDTYPE_PID which covers
3837 * kill(<positive-pid>, <signal>. It does not signal threads or process
3839 * In order to extend the syscall to threads and process groups the @flags
3840 * argument should be used. In essence, the @flags argument will determine
3841 * what is signaled and not the file descriptor itself. Put in other words,
3842 * grouping is a property of the flags argument not a property of the file
3845 * Return: 0 on success, negative errno on failure
3847 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3848 siginfo_t __user *, info, unsigned int, flags)
3853 kernel_siginfo_t kinfo;
3855 /* Enforce flags be set to 0 until we add an extension. */
3863 /* Is this a pidfd? */
3864 pid = pidfd_to_pid(f.file);
3871 if (!access_pidfd_pidns(pid))
3875 ret = copy_siginfo_from_user_any(&kinfo, info);
3880 if (unlikely(sig != kinfo.si_signo))
3883 /* Only allow sending arbitrary signals to yourself. */
3885 if ((task_pid(current) != pid) &&
3886 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3889 prepare_kill_siginfo(sig, &kinfo);
3892 ret = kill_pid_info(sig, &kinfo, pid);
3900 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3902 struct task_struct *p;
3906 p = find_task_by_vpid(pid);
3907 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3908 error = check_kill_permission(sig, info, p);
3910 * The null signal is a permissions and process existence
3911 * probe. No signal is actually delivered.
3913 if (!error && sig) {
3914 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3916 * If lock_task_sighand() failed we pretend the task
3917 * dies after receiving the signal. The window is tiny,
3918 * and the signal is private anyway.
3920 if (unlikely(error == -ESRCH))
3929 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3931 struct kernel_siginfo info;
3933 clear_siginfo(&info);
3934 info.si_signo = sig;
3936 info.si_code = SI_TKILL;
3937 info.si_pid = task_tgid_vnr(current);
3938 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3940 return do_send_specific(tgid, pid, sig, &info);
3944 * sys_tgkill - send signal to one specific thread
3945 * @tgid: the thread group ID of the thread
3946 * @pid: the PID of the thread
3947 * @sig: signal to be sent
3949 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3950 * exists but it's not belonging to the target process anymore. This
3951 * method solves the problem of threads exiting and PIDs getting reused.
3953 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3955 /* This is only valid for single tasks */
3956 if (pid <= 0 || tgid <= 0)
3959 return do_tkill(tgid, pid, sig);
3963 * sys_tkill - send signal to one specific task
3964 * @pid: the PID of the task
3965 * @sig: signal to be sent
3967 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3969 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3971 /* This is only valid for single tasks */
3975 return do_tkill(0, pid, sig);
3978 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3980 /* Not even root can pretend to send signals from the kernel.
3981 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3983 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3984 (task_pid_vnr(current) != pid))
3987 /* POSIX.1b doesn't mention process groups. */
3988 return kill_proc_info(sig, info, pid);
3992 * sys_rt_sigqueueinfo - send signal information to a signal
3993 * @pid: the PID of the thread
3994 * @sig: signal to be sent
3995 * @uinfo: signal info to be sent
3997 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3998 siginfo_t __user *, uinfo)
4000 kernel_siginfo_t info;
4001 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4004 return do_rt_sigqueueinfo(pid, sig, &info);
4007 #ifdef CONFIG_COMPAT
4008 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4011 struct compat_siginfo __user *, uinfo)
4013 kernel_siginfo_t info;
4014 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4017 return do_rt_sigqueueinfo(pid, sig, &info);
4021 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4023 /* This is only valid for single tasks */
4024 if (pid <= 0 || tgid <= 0)
4027 /* Not even root can pretend to send signals from the kernel.
4028 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4030 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4031 (task_pid_vnr(current) != pid))
4034 return do_send_specific(tgid, pid, sig, info);
4037 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4038 siginfo_t __user *, uinfo)
4040 kernel_siginfo_t info;
4041 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4044 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4047 #ifdef CONFIG_COMPAT
4048 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4052 struct compat_siginfo __user *, uinfo)
4054 kernel_siginfo_t info;
4055 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4058 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4063 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4065 void kernel_sigaction(int sig, __sighandler_t action)
4067 spin_lock_irq(¤t->sighand->siglock);
4068 current->sighand->action[sig - 1].sa.sa_handler = action;
4069 if (action == SIG_IGN) {
4073 sigaddset(&mask, sig);
4075 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4076 flush_sigqueue_mask(&mask, ¤t->pending);
4077 recalc_sigpending();
4079 spin_unlock_irq(¤t->sighand->siglock);
4081 EXPORT_SYMBOL(kernel_sigaction);
4083 void __weak sigaction_compat_abi(struct k_sigaction *act,
4084 struct k_sigaction *oact)
4088 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4090 struct task_struct *p = current, *t;
4091 struct k_sigaction *k;
4094 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4097 k = &p->sighand->action[sig-1];
4099 spin_lock_irq(&p->sighand->siglock);
4100 if (k->sa.sa_flags & SA_IMMUTABLE) {
4101 spin_unlock_irq(&p->sighand->siglock);
4108 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4109 * e.g. by having an architecture use the bit in their uapi.
4111 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4114 * Clear unknown flag bits in order to allow userspace to detect missing
4115 * support for flag bits and to allow the kernel to use non-uapi bits
4119 act->sa.sa_flags &= UAPI_SA_FLAGS;
4121 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4123 sigaction_compat_abi(act, oact);
4126 sigdelsetmask(&act->sa.sa_mask,
4127 sigmask(SIGKILL) | sigmask(SIGSTOP));
4131 * "Setting a signal action to SIG_IGN for a signal that is
4132 * pending shall cause the pending signal to be discarded,
4133 * whether or not it is blocked."
4135 * "Setting a signal action to SIG_DFL for a signal that is
4136 * pending and whose default action is to ignore the signal
4137 * (for example, SIGCHLD), shall cause the pending signal to
4138 * be discarded, whether or not it is blocked"
4140 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4142 sigaddset(&mask, sig);
4143 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4144 for_each_thread(p, t)
4145 flush_sigqueue_mask(&mask, &t->pending);
4149 spin_unlock_irq(&p->sighand->siglock);
4153 #ifdef CONFIG_DYNAMIC_SIGFRAME
4154 static inline void sigaltstack_lock(void)
4155 __acquires(¤t->sighand->siglock)
4157 spin_lock_irq(¤t->sighand->siglock);
4160 static inline void sigaltstack_unlock(void)
4161 __releases(¤t->sighand->siglock)
4163 spin_unlock_irq(¤t->sighand->siglock);
4166 static inline void sigaltstack_lock(void) { }
4167 static inline void sigaltstack_unlock(void) { }
4171 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4174 struct task_struct *t = current;
4178 memset(oss, 0, sizeof(stack_t));
4179 oss->ss_sp = (void __user *) t->sas_ss_sp;
4180 oss->ss_size = t->sas_ss_size;
4181 oss->ss_flags = sas_ss_flags(sp) |
4182 (current->sas_ss_flags & SS_FLAG_BITS);
4186 void __user *ss_sp = ss->ss_sp;
4187 size_t ss_size = ss->ss_size;
4188 unsigned ss_flags = ss->ss_flags;
4191 if (unlikely(on_sig_stack(sp)))
4194 ss_mode = ss_flags & ~SS_FLAG_BITS;
4195 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4200 * Return before taking any locks if no actual
4201 * sigaltstack changes were requested.
4203 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4204 t->sas_ss_size == ss_size &&
4205 t->sas_ss_flags == ss_flags)
4209 if (ss_mode == SS_DISABLE) {
4213 if (unlikely(ss_size < min_ss_size))
4215 if (!sigaltstack_size_valid(ss_size))
4219 t->sas_ss_sp = (unsigned long) ss_sp;
4220 t->sas_ss_size = ss_size;
4221 t->sas_ss_flags = ss_flags;
4223 sigaltstack_unlock();
4228 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4232 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4234 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4235 current_user_stack_pointer(),
4237 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4242 int restore_altstack(const stack_t __user *uss)
4245 if (copy_from_user(&new, uss, sizeof(stack_t)))
4247 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4249 /* squash all but EFAULT for now */
4253 int __save_altstack(stack_t __user *uss, unsigned long sp)
4255 struct task_struct *t = current;
4256 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4257 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4258 __put_user(t->sas_ss_size, &uss->ss_size);
4262 #ifdef CONFIG_COMPAT
4263 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4264 compat_stack_t __user *uoss_ptr)
4270 compat_stack_t uss32;
4271 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4273 uss.ss_sp = compat_ptr(uss32.ss_sp);
4274 uss.ss_flags = uss32.ss_flags;
4275 uss.ss_size = uss32.ss_size;
4277 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4278 compat_user_stack_pointer(),
4279 COMPAT_MINSIGSTKSZ);
4280 if (ret >= 0 && uoss_ptr) {
4282 memset(&old, 0, sizeof(old));
4283 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4284 old.ss_flags = uoss.ss_flags;
4285 old.ss_size = uoss.ss_size;
4286 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4292 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4293 const compat_stack_t __user *, uss_ptr,
4294 compat_stack_t __user *, uoss_ptr)
4296 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4299 int compat_restore_altstack(const compat_stack_t __user *uss)
4301 int err = do_compat_sigaltstack(uss, NULL);
4302 /* squash all but -EFAULT for now */
4303 return err == -EFAULT ? err : 0;
4306 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4309 struct task_struct *t = current;
4310 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4312 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4313 __put_user(t->sas_ss_size, &uss->ss_size);
4318 #ifdef __ARCH_WANT_SYS_SIGPENDING
4321 * sys_sigpending - examine pending signals
4322 * @uset: where mask of pending signal is returned
4324 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4328 if (sizeof(old_sigset_t) > sizeof(*uset))
4331 do_sigpending(&set);
4333 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4339 #ifdef CONFIG_COMPAT
4340 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4344 do_sigpending(&set);
4346 return put_user(set.sig[0], set32);
4352 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4354 * sys_sigprocmask - examine and change blocked signals
4355 * @how: whether to add, remove, or set signals
4356 * @nset: signals to add or remove (if non-null)
4357 * @oset: previous value of signal mask if non-null
4359 * Some platforms have their own version with special arguments;
4360 * others support only sys_rt_sigprocmask.
4363 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4364 old_sigset_t __user *, oset)
4366 old_sigset_t old_set, new_set;
4367 sigset_t new_blocked;
4369 old_set = current->blocked.sig[0];
4372 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4375 new_blocked = current->blocked;
4379 sigaddsetmask(&new_blocked, new_set);
4382 sigdelsetmask(&new_blocked, new_set);
4385 new_blocked.sig[0] = new_set;
4391 set_current_blocked(&new_blocked);
4395 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4401 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4403 #ifndef CONFIG_ODD_RT_SIGACTION
4405 * sys_rt_sigaction - alter an action taken by a process
4406 * @sig: signal to be sent
4407 * @act: new sigaction
4408 * @oact: used to save the previous sigaction
4409 * @sigsetsize: size of sigset_t type
4411 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4412 const struct sigaction __user *, act,
4413 struct sigaction __user *, oact,
4416 struct k_sigaction new_sa, old_sa;
4419 /* XXX: Don't preclude handling different sized sigset_t's. */
4420 if (sigsetsize != sizeof(sigset_t))
4423 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4426 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4430 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4435 #ifdef CONFIG_COMPAT
4436 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4437 const struct compat_sigaction __user *, act,
4438 struct compat_sigaction __user *, oact,
4439 compat_size_t, sigsetsize)
4441 struct k_sigaction new_ka, old_ka;
4442 #ifdef __ARCH_HAS_SA_RESTORER
4443 compat_uptr_t restorer;
4447 /* XXX: Don't preclude handling different sized sigset_t's. */
4448 if (sigsetsize != sizeof(compat_sigset_t))
4452 compat_uptr_t handler;
4453 ret = get_user(handler, &act->sa_handler);
4454 new_ka.sa.sa_handler = compat_ptr(handler);
4455 #ifdef __ARCH_HAS_SA_RESTORER
4456 ret |= get_user(restorer, &act->sa_restorer);
4457 new_ka.sa.sa_restorer = compat_ptr(restorer);
4459 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4460 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4465 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4467 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4469 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4470 sizeof(oact->sa_mask));
4471 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4472 #ifdef __ARCH_HAS_SA_RESTORER
4473 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4474 &oact->sa_restorer);
4480 #endif /* !CONFIG_ODD_RT_SIGACTION */
4482 #ifdef CONFIG_OLD_SIGACTION
4483 SYSCALL_DEFINE3(sigaction, int, sig,
4484 const struct old_sigaction __user *, act,
4485 struct old_sigaction __user *, oact)
4487 struct k_sigaction new_ka, old_ka;
4492 if (!access_ok(act, sizeof(*act)) ||
4493 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4494 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4495 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4496 __get_user(mask, &act->sa_mask))
4498 #ifdef __ARCH_HAS_KA_RESTORER
4499 new_ka.ka_restorer = NULL;
4501 siginitset(&new_ka.sa.sa_mask, mask);
4504 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4507 if (!access_ok(oact, sizeof(*oact)) ||
4508 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4509 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4510 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4511 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4518 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4519 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4520 const struct compat_old_sigaction __user *, act,
4521 struct compat_old_sigaction __user *, oact)
4523 struct k_sigaction new_ka, old_ka;
4525 compat_old_sigset_t mask;
4526 compat_uptr_t handler, restorer;
4529 if (!access_ok(act, sizeof(*act)) ||
4530 __get_user(handler, &act->sa_handler) ||
4531 __get_user(restorer, &act->sa_restorer) ||
4532 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4533 __get_user(mask, &act->sa_mask))
4536 #ifdef __ARCH_HAS_KA_RESTORER
4537 new_ka.ka_restorer = NULL;
4539 new_ka.sa.sa_handler = compat_ptr(handler);
4540 new_ka.sa.sa_restorer = compat_ptr(restorer);
4541 siginitset(&new_ka.sa.sa_mask, mask);
4544 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4547 if (!access_ok(oact, sizeof(*oact)) ||
4548 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4549 &oact->sa_handler) ||
4550 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4551 &oact->sa_restorer) ||
4552 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4553 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4560 #ifdef CONFIG_SGETMASK_SYSCALL
4563 * For backwards compatibility. Functionality superseded by sigprocmask.
4565 SYSCALL_DEFINE0(sgetmask)
4568 return current->blocked.sig[0];
4571 SYSCALL_DEFINE1(ssetmask, int, newmask)
4573 int old = current->blocked.sig[0];
4576 siginitset(&newset, newmask);
4577 set_current_blocked(&newset);
4581 #endif /* CONFIG_SGETMASK_SYSCALL */
4583 #ifdef __ARCH_WANT_SYS_SIGNAL
4585 * For backwards compatibility. Functionality superseded by sigaction.
4587 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4589 struct k_sigaction new_sa, old_sa;
4592 new_sa.sa.sa_handler = handler;
4593 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4594 sigemptyset(&new_sa.sa.sa_mask);
4596 ret = do_sigaction(sig, &new_sa, &old_sa);
4598 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4600 #endif /* __ARCH_WANT_SYS_SIGNAL */
4602 #ifdef __ARCH_WANT_SYS_PAUSE
4604 SYSCALL_DEFINE0(pause)
4606 while (!signal_pending(current)) {
4607 __set_current_state(TASK_INTERRUPTIBLE);
4610 return -ERESTARTNOHAND;
4615 static int sigsuspend(sigset_t *set)
4617 current->saved_sigmask = current->blocked;
4618 set_current_blocked(set);
4620 while (!signal_pending(current)) {
4621 __set_current_state(TASK_INTERRUPTIBLE);
4624 set_restore_sigmask();
4625 return -ERESTARTNOHAND;
4629 * sys_rt_sigsuspend - replace the signal mask for a value with the
4630 * @unewset value until a signal is received
4631 * @unewset: new signal mask value
4632 * @sigsetsize: size of sigset_t type
4634 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4638 /* XXX: Don't preclude handling different sized sigset_t's. */
4639 if (sigsetsize != sizeof(sigset_t))
4642 if (copy_from_user(&newset, unewset, sizeof(newset)))
4644 return sigsuspend(&newset);
4647 #ifdef CONFIG_COMPAT
4648 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4652 /* XXX: Don't preclude handling different sized sigset_t's. */
4653 if (sigsetsize != sizeof(sigset_t))
4656 if (get_compat_sigset(&newset, unewset))
4658 return sigsuspend(&newset);
4662 #ifdef CONFIG_OLD_SIGSUSPEND
4663 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4666 siginitset(&blocked, mask);
4667 return sigsuspend(&blocked);
4670 #ifdef CONFIG_OLD_SIGSUSPEND3
4671 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4674 siginitset(&blocked, mask);
4675 return sigsuspend(&blocked);
4679 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4684 static inline void siginfo_buildtime_checks(void)
4686 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4688 /* Verify the offsets in the two siginfos match */
4689 #define CHECK_OFFSET(field) \
4690 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4693 CHECK_OFFSET(si_pid);
4694 CHECK_OFFSET(si_uid);
4697 CHECK_OFFSET(si_tid);
4698 CHECK_OFFSET(si_overrun);
4699 CHECK_OFFSET(si_value);
4702 CHECK_OFFSET(si_pid);
4703 CHECK_OFFSET(si_uid);
4704 CHECK_OFFSET(si_value);
4707 CHECK_OFFSET(si_pid);
4708 CHECK_OFFSET(si_uid);
4709 CHECK_OFFSET(si_status);
4710 CHECK_OFFSET(si_utime);
4711 CHECK_OFFSET(si_stime);
4714 CHECK_OFFSET(si_addr);
4715 CHECK_OFFSET(si_trapno);
4716 CHECK_OFFSET(si_addr_lsb);
4717 CHECK_OFFSET(si_lower);
4718 CHECK_OFFSET(si_upper);
4719 CHECK_OFFSET(si_pkey);
4720 CHECK_OFFSET(si_perf_data);
4721 CHECK_OFFSET(si_perf_type);
4724 CHECK_OFFSET(si_band);
4725 CHECK_OFFSET(si_fd);
4728 CHECK_OFFSET(si_call_addr);
4729 CHECK_OFFSET(si_syscall);
4730 CHECK_OFFSET(si_arch);
4734 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4735 offsetof(struct siginfo, si_addr));
4736 if (sizeof(int) == sizeof(void __user *)) {
4737 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4738 sizeof(void __user *));
4740 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4741 sizeof_field(struct siginfo, si_uid)) !=
4742 sizeof(void __user *));
4743 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4744 offsetof(struct siginfo, si_uid));
4746 #ifdef CONFIG_COMPAT
4747 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4748 offsetof(struct compat_siginfo, si_addr));
4749 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4750 sizeof(compat_uptr_t));
4751 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4752 sizeof_field(struct siginfo, si_pid));
4756 void __init signals_init(void)
4758 siginfo_buildtime_checks();
4760 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4763 #ifdef CONFIG_KGDB_KDB
4764 #include <linux/kdb.h>
4766 * kdb_send_sig - Allows kdb to send signals without exposing
4767 * signal internals. This function checks if the required locks are
4768 * available before calling the main signal code, to avoid kdb
4771 void kdb_send_sig(struct task_struct *t, int sig)
4773 static struct task_struct *kdb_prev_t;
4775 if (!spin_trylock(&t->sighand->siglock)) {
4776 kdb_printf("Can't do kill command now.\n"
4777 "The sigmask lock is held somewhere else in "
4778 "kernel, try again later\n");
4781 new_t = kdb_prev_t != t;
4783 if (!task_is_running(t) && new_t) {
4784 spin_unlock(&t->sighand->siglock);
4785 kdb_printf("Process is not RUNNING, sending a signal from "
4786 "kdb risks deadlock\n"
4787 "on the run queue locks. "
4788 "The signal has _not_ been sent.\n"
4789 "Reissue the kill command if you want to risk "
4793 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4794 spin_unlock(&t->sighand->siglock);
4796 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4799 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4801 #endif /* CONFIG_KGDB_KDB */