1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h> /* for syscall_get_* */
60 * SLAB caches for signal bits.
63 static struct kmem_cache *sigqueue_cachep;
65 int print_fatal_signals __read_mostly;
67 static void __user *sig_handler(struct task_struct *t, int sig)
69 return t->sighand->action[sig - 1].sa.sa_handler;
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
83 handler = sig_handler(t, sig);
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
98 return sig_handler_ignored(handler, sig);
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
116 if (t->ptrace && sig != SIGKILL)
119 return sig_task_ignored(t, sig, force);
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
131 switch (_NSIG_WORDS) {
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
154 static bool recalc_sigpending_tsk(struct task_struct *t)
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
176 void recalc_sigpending_and_wake(struct task_struct *t)
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
182 void recalc_sigpending(void)
184 if (!recalc_sigpending_tsk(current) && !freezing(current))
185 clear_thread_flag(TIF_SIGPENDING);
188 EXPORT_SYMBOL(recalc_sigpending);
190 void calculate_sigpending(void)
192 /* Have any signals or users of TIF_SIGPENDING been delayed
195 spin_lock_irq(¤t->sighand->siglock);
196 set_tsk_thread_flag(current, TIF_SIGPENDING);
198 spin_unlock_irq(¤t->sighand->siglock);
201 /* Given the mask, find the first available signal that should be serviced. */
203 #define SYNCHRONOUS_MASK \
204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207 int next_signal(struct sigpending *pending, sigset_t *mask)
209 unsigned long i, *s, *m, x;
212 s = pending->signal.sig;
216 * Handle the first word specially: it contains the
217 * synchronous signals that need to be dequeued first.
221 if (x & SYNCHRONOUS_MASK)
222 x &= SYNCHRONOUS_MASK;
227 switch (_NSIG_WORDS) {
229 for (i = 1; i < _NSIG_WORDS; ++i) {
233 sig = ffz(~x) + i*_NSIG_BPW + 1;
242 sig = ffz(~x) + _NSIG_BPW + 1;
253 static inline void print_dropped_signal(int sig)
255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257 if (!print_fatal_signals)
260 if (!__ratelimit(&ratelimit_state))
263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 current->comm, current->pid, sig);
268 * task_set_jobctl_pending - set jobctl pending bits
270 * @mask: pending bits to set
272 * Clear @mask from @task->jobctl. @mask must be subset of
273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
275 * cleared. If @task is already being killed or exiting, this function
279 * Must be called with @task->sighand->siglock held.
282 * %true if @mask is set, %false if made noop because @task was dying.
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
293 if (mask & JOBCTL_STOP_SIGMASK)
294 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296 task->jobctl |= mask;
301 * task_clear_jobctl_trapping - clear jobctl trapping bit
304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305 * Clear it and wake up the ptracer. Note that we don't need any further
306 * locking. @task->siglock guarantees that @task->parent points to the
310 * Must be called with @task->sighand->siglock held.
312 void task_clear_jobctl_trapping(struct task_struct *task)
314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 task->jobctl &= ~JOBCTL_TRAPPING;
316 smp_mb(); /* advised by wake_up_bit() */
317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
322 * task_clear_jobctl_pending - clear jobctl pending bits
324 * @mask: pending bits to clear
326 * Clear @mask from @task->jobctl. @mask must be subset of
327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
328 * STOP bits are cleared together.
330 * If clearing of @mask leaves no stop or trap pending, this function calls
331 * task_clear_jobctl_trapping().
334 * Must be called with @task->sighand->siglock held.
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340 if (mask & JOBCTL_STOP_PENDING)
341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343 task->jobctl &= ~mask;
345 if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 task_clear_jobctl_trapping(task);
350 * task_participate_group_stop - participate in a group stop
351 * @task: task participating in a group stop
353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354 * Group stop states are cleared and the group stop count is consumed if
355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
356 * stop, the appropriate `SIGNAL_*` flags are set.
359 * Must be called with @task->sighand->siglock held.
362 * %true if group stop completion should be notified to the parent, %false
365 static bool task_participate_group_stop(struct task_struct *task)
367 struct signal_struct *sig = task->signal;
368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
377 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 sig->group_stop_count--;
381 * Tell the caller to notify completion iff we are entering into a
382 * fresh group stop. Read comment in do_signal_stop() for details.
384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
391 void task_join_group_stop(struct task_struct *task)
393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 struct signal_struct *sig = current->signal;
396 if (sig->group_stop_count) {
397 sig->group_stop_count++;
398 mask |= JOBCTL_STOP_CONSUME;
399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
402 /* Have the new thread join an on-going signal group stop */
403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 int override_rlimit, const unsigned int sigqueue_flags)
415 struct sigqueue *q = NULL;
416 struct ucounts *ucounts = NULL;
420 * Protect access to @t credentials. This can go away when all
421 * callers hold rcu read lock.
423 * NOTE! A pending signal will hold on to the user refcount,
424 * and we get/put the refcount only when the sigpending count
425 * changes from/to zero.
428 ucounts = task_ucounts(t);
429 sigpending = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1);
430 switch (sigpending) {
432 if (likely(get_ucounts(ucounts)))
437 * we need to decrease the ucount in the userns tree on any
438 * failure to avoid counts leaking.
440 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1);
446 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
447 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
449 print_dropped_signal(sig);
452 if (unlikely(q == NULL)) {
453 if (dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1))
454 put_ucounts(ucounts);
456 INIT_LIST_HEAD(&q->list);
457 q->flags = sigqueue_flags;
458 q->ucounts = ucounts;
463 static void __sigqueue_free(struct sigqueue *q)
465 if (q->flags & SIGQUEUE_PREALLOC)
467 if (q->ucounts && dec_rlimit_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING, 1)) {
468 put_ucounts(q->ucounts);
471 kmem_cache_free(sigqueue_cachep, q);
474 void flush_sigqueue(struct sigpending *queue)
478 sigemptyset(&queue->signal);
479 while (!list_empty(&queue->list)) {
480 q = list_entry(queue->list.next, struct sigqueue , list);
481 list_del_init(&q->list);
487 * Flush all pending signals for this kthread.
489 void flush_signals(struct task_struct *t)
493 spin_lock_irqsave(&t->sighand->siglock, flags);
494 clear_tsk_thread_flag(t, TIF_SIGPENDING);
495 flush_sigqueue(&t->pending);
496 flush_sigqueue(&t->signal->shared_pending);
497 spin_unlock_irqrestore(&t->sighand->siglock, flags);
499 EXPORT_SYMBOL(flush_signals);
501 #ifdef CONFIG_POSIX_TIMERS
502 static void __flush_itimer_signals(struct sigpending *pending)
504 sigset_t signal, retain;
505 struct sigqueue *q, *n;
507 signal = pending->signal;
508 sigemptyset(&retain);
510 list_for_each_entry_safe(q, n, &pending->list, list) {
511 int sig = q->info.si_signo;
513 if (likely(q->info.si_code != SI_TIMER)) {
514 sigaddset(&retain, sig);
516 sigdelset(&signal, sig);
517 list_del_init(&q->list);
522 sigorsets(&pending->signal, &signal, &retain);
525 void flush_itimer_signals(void)
527 struct task_struct *tsk = current;
530 spin_lock_irqsave(&tsk->sighand->siglock, flags);
531 __flush_itimer_signals(&tsk->pending);
532 __flush_itimer_signals(&tsk->signal->shared_pending);
533 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
537 void ignore_signals(struct task_struct *t)
541 for (i = 0; i < _NSIG; ++i)
542 t->sighand->action[i].sa.sa_handler = SIG_IGN;
548 * Flush all handlers for a task.
552 flush_signal_handlers(struct task_struct *t, int force_default)
555 struct k_sigaction *ka = &t->sighand->action[0];
556 for (i = _NSIG ; i != 0 ; i--) {
557 if (force_default || ka->sa.sa_handler != SIG_IGN)
558 ka->sa.sa_handler = SIG_DFL;
560 #ifdef __ARCH_HAS_SA_RESTORER
561 ka->sa.sa_restorer = NULL;
563 sigemptyset(&ka->sa.sa_mask);
568 bool unhandled_signal(struct task_struct *tsk, int sig)
570 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
571 if (is_global_init(tsk))
574 if (handler != SIG_IGN && handler != SIG_DFL)
577 /* if ptraced, let the tracer determine */
581 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
584 struct sigqueue *q, *first = NULL;
587 * Collect the siginfo appropriate to this signal. Check if
588 * there is another siginfo for the same signal.
590 list_for_each_entry(q, &list->list, list) {
591 if (q->info.si_signo == sig) {
598 sigdelset(&list->signal, sig);
602 list_del_init(&first->list);
603 copy_siginfo(info, &first->info);
606 (first->flags & SIGQUEUE_PREALLOC) &&
607 (info->si_code == SI_TIMER) &&
608 (info->si_sys_private);
610 __sigqueue_free(first);
613 * Ok, it wasn't in the queue. This must be
614 * a fast-pathed signal or we must have been
615 * out of queue space. So zero out the info.
618 info->si_signo = sig;
620 info->si_code = SI_USER;
626 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
627 kernel_siginfo_t *info, bool *resched_timer)
629 int sig = next_signal(pending, mask);
632 collect_signal(sig, pending, info, resched_timer);
637 * Dequeue a signal and return the element to the caller, which is
638 * expected to free it.
640 * All callers have to hold the siglock.
642 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
644 bool resched_timer = false;
647 /* We only dequeue private signals from ourselves, we don't let
648 * signalfd steal them
650 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
652 signr = __dequeue_signal(&tsk->signal->shared_pending,
653 mask, info, &resched_timer);
654 #ifdef CONFIG_POSIX_TIMERS
658 * itimers are process shared and we restart periodic
659 * itimers in the signal delivery path to prevent DoS
660 * attacks in the high resolution timer case. This is
661 * compliant with the old way of self-restarting
662 * itimers, as the SIGALRM is a legacy signal and only
663 * queued once. Changing the restart behaviour to
664 * restart the timer in the signal dequeue path is
665 * reducing the timer noise on heavy loaded !highres
668 if (unlikely(signr == SIGALRM)) {
669 struct hrtimer *tmr = &tsk->signal->real_timer;
671 if (!hrtimer_is_queued(tmr) &&
672 tsk->signal->it_real_incr != 0) {
673 hrtimer_forward(tmr, tmr->base->get_time(),
674 tsk->signal->it_real_incr);
675 hrtimer_restart(tmr);
685 if (unlikely(sig_kernel_stop(signr))) {
687 * Set a marker that we have dequeued a stop signal. Our
688 * caller might release the siglock and then the pending
689 * stop signal it is about to process is no longer in the
690 * pending bitmasks, but must still be cleared by a SIGCONT
691 * (and overruled by a SIGKILL). So those cases clear this
692 * shared flag after we've set it. Note that this flag may
693 * remain set after the signal we return is ignored or
694 * handled. That doesn't matter because its only purpose
695 * is to alert stop-signal processing code when another
696 * processor has come along and cleared the flag.
698 current->jobctl |= JOBCTL_STOP_DEQUEUED;
700 #ifdef CONFIG_POSIX_TIMERS
703 * Release the siglock to ensure proper locking order
704 * of timer locks outside of siglocks. Note, we leave
705 * irqs disabled here, since the posix-timers code is
706 * about to disable them again anyway.
708 spin_unlock(&tsk->sighand->siglock);
709 posixtimer_rearm(info);
710 spin_lock(&tsk->sighand->siglock);
712 /* Don't expose the si_sys_private value to userspace */
713 info->si_sys_private = 0;
718 EXPORT_SYMBOL_GPL(dequeue_signal);
720 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
722 struct task_struct *tsk = current;
723 struct sigpending *pending = &tsk->pending;
724 struct sigqueue *q, *sync = NULL;
727 * Might a synchronous signal be in the queue?
729 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
733 * Return the first synchronous signal in the queue.
735 list_for_each_entry(q, &pending->list, list) {
736 /* Synchronous signals have a positive si_code */
737 if ((q->info.si_code > SI_USER) &&
738 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
746 * Check if there is another siginfo for the same signal.
748 list_for_each_entry_continue(q, &pending->list, list) {
749 if (q->info.si_signo == sync->info.si_signo)
753 sigdelset(&pending->signal, sync->info.si_signo);
756 list_del_init(&sync->list);
757 copy_siginfo(info, &sync->info);
758 __sigqueue_free(sync);
759 return info->si_signo;
763 * Tell a process that it has a new active signal..
765 * NOTE! we rely on the previous spin_lock to
766 * lock interrupts for us! We can only be called with
767 * "siglock" held, and the local interrupt must
768 * have been disabled when that got acquired!
770 * No need to set need_resched since signal event passing
771 * goes through ->blocked
773 void signal_wake_up_state(struct task_struct *t, unsigned int state)
775 set_tsk_thread_flag(t, TIF_SIGPENDING);
777 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
778 * case. We don't check t->state here because there is a race with it
779 * executing another processor and just now entering stopped state.
780 * By using wake_up_state, we ensure the process will wake up and
781 * handle its death signal.
783 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
788 * Remove signals in mask from the pending set and queue.
789 * Returns 1 if any signals were found.
791 * All callers must be holding the siglock.
793 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
795 struct sigqueue *q, *n;
798 sigandsets(&m, mask, &s->signal);
799 if (sigisemptyset(&m))
802 sigandnsets(&s->signal, &s->signal, mask);
803 list_for_each_entry_safe(q, n, &s->list, list) {
804 if (sigismember(mask, q->info.si_signo)) {
805 list_del_init(&q->list);
811 static inline int is_si_special(const struct kernel_siginfo *info)
813 return info <= SEND_SIG_PRIV;
816 static inline bool si_fromuser(const struct kernel_siginfo *info)
818 return info == SEND_SIG_NOINFO ||
819 (!is_si_special(info) && SI_FROMUSER(info));
823 * called with RCU read lock from check_kill_permission()
825 static bool kill_ok_by_cred(struct task_struct *t)
827 const struct cred *cred = current_cred();
828 const struct cred *tcred = __task_cred(t);
830 return uid_eq(cred->euid, tcred->suid) ||
831 uid_eq(cred->euid, tcred->uid) ||
832 uid_eq(cred->uid, tcred->suid) ||
833 uid_eq(cred->uid, tcred->uid) ||
834 ns_capable(tcred->user_ns, CAP_KILL);
838 * Bad permissions for sending the signal
839 * - the caller must hold the RCU read lock
841 static int check_kill_permission(int sig, struct kernel_siginfo *info,
842 struct task_struct *t)
847 if (!valid_signal(sig))
850 if (!si_fromuser(info))
853 error = audit_signal_info(sig, t); /* Let audit system see the signal */
857 if (!same_thread_group(current, t) &&
858 !kill_ok_by_cred(t)) {
861 sid = task_session(t);
863 * We don't return the error if sid == NULL. The
864 * task was unhashed, the caller must notice this.
866 if (!sid || sid == task_session(current))
874 return security_task_kill(t, info, sig, NULL);
878 * ptrace_trap_notify - schedule trap to notify ptracer
879 * @t: tracee wanting to notify tracer
881 * This function schedules sticky ptrace trap which is cleared on the next
882 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
885 * If @t is running, STOP trap will be taken. If trapped for STOP and
886 * ptracer is listening for events, tracee is woken up so that it can
887 * re-trap for the new event. If trapped otherwise, STOP trap will be
888 * eventually taken without returning to userland after the existing traps
889 * are finished by PTRACE_CONT.
892 * Must be called with @task->sighand->siglock held.
894 static void ptrace_trap_notify(struct task_struct *t)
896 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
897 assert_spin_locked(&t->sighand->siglock);
899 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
900 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
904 * Handle magic process-wide effects of stop/continue signals. Unlike
905 * the signal actions, these happen immediately at signal-generation
906 * time regardless of blocking, ignoring, or handling. This does the
907 * actual continuing for SIGCONT, but not the actual stopping for stop
908 * signals. The process stop is done as a signal action for SIG_DFL.
910 * Returns true if the signal should be actually delivered, otherwise
911 * it should be dropped.
913 static bool prepare_signal(int sig, struct task_struct *p, bool force)
915 struct signal_struct *signal = p->signal;
916 struct task_struct *t;
919 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
920 if (!(signal->flags & SIGNAL_GROUP_EXIT))
921 return sig == SIGKILL;
923 * The process is in the middle of dying, nothing to do.
925 } else if (sig_kernel_stop(sig)) {
927 * This is a stop signal. Remove SIGCONT from all queues.
929 siginitset(&flush, sigmask(SIGCONT));
930 flush_sigqueue_mask(&flush, &signal->shared_pending);
931 for_each_thread(p, t)
932 flush_sigqueue_mask(&flush, &t->pending);
933 } else if (sig == SIGCONT) {
936 * Remove all stop signals from all queues, wake all threads.
938 siginitset(&flush, SIG_KERNEL_STOP_MASK);
939 flush_sigqueue_mask(&flush, &signal->shared_pending);
940 for_each_thread(p, t) {
941 flush_sigqueue_mask(&flush, &t->pending);
942 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
943 if (likely(!(t->ptrace & PT_SEIZED)))
944 wake_up_state(t, __TASK_STOPPED);
946 ptrace_trap_notify(t);
950 * Notify the parent with CLD_CONTINUED if we were stopped.
952 * If we were in the middle of a group stop, we pretend it
953 * was already finished, and then continued. Since SIGCHLD
954 * doesn't queue we report only CLD_STOPPED, as if the next
955 * CLD_CONTINUED was dropped.
958 if (signal->flags & SIGNAL_STOP_STOPPED)
959 why |= SIGNAL_CLD_CONTINUED;
960 else if (signal->group_stop_count)
961 why |= SIGNAL_CLD_STOPPED;
965 * The first thread which returns from do_signal_stop()
966 * will take ->siglock, notice SIGNAL_CLD_MASK, and
967 * notify its parent. See get_signal().
969 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
970 signal->group_stop_count = 0;
971 signal->group_exit_code = 0;
975 return !sig_ignored(p, sig, force);
979 * Test if P wants to take SIG. After we've checked all threads with this,
980 * it's equivalent to finding no threads not blocking SIG. Any threads not
981 * blocking SIG were ruled out because they are not running and already
982 * have pending signals. Such threads will dequeue from the shared queue
983 * as soon as they're available, so putting the signal on the shared queue
984 * will be equivalent to sending it to one such thread.
986 static inline bool wants_signal(int sig, struct task_struct *p)
988 if (sigismember(&p->blocked, sig))
991 if (p->flags & PF_EXITING)
997 if (task_is_stopped_or_traced(p))
1000 return task_curr(p) || !task_sigpending(p);
1003 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1005 struct signal_struct *signal = p->signal;
1006 struct task_struct *t;
1009 * Now find a thread we can wake up to take the signal off the queue.
1011 * If the main thread wants the signal, it gets first crack.
1012 * Probably the least surprising to the average bear.
1014 if (wants_signal(sig, p))
1016 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1018 * There is just one thread and it does not need to be woken.
1019 * It will dequeue unblocked signals before it runs again.
1024 * Otherwise try to find a suitable thread.
1026 t = signal->curr_target;
1027 while (!wants_signal(sig, t)) {
1029 if (t == signal->curr_target)
1031 * No thread needs to be woken.
1032 * Any eligible threads will see
1033 * the signal in the queue soon.
1037 signal->curr_target = t;
1041 * Found a killable thread. If the signal will be fatal,
1042 * then start taking the whole group down immediately.
1044 if (sig_fatal(p, sig) &&
1045 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1046 !sigismember(&t->real_blocked, sig) &&
1047 (sig == SIGKILL || !p->ptrace)) {
1049 * This signal will be fatal to the whole group.
1051 if (!sig_kernel_coredump(sig)) {
1053 * Start a group exit and wake everybody up.
1054 * This way we don't have other threads
1055 * running and doing things after a slower
1056 * thread has the fatal signal pending.
1058 signal->flags = SIGNAL_GROUP_EXIT;
1059 signal->group_exit_code = sig;
1060 signal->group_stop_count = 0;
1063 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1064 sigaddset(&t->pending.signal, SIGKILL);
1065 signal_wake_up(t, 1);
1066 } while_each_thread(p, t);
1072 * The signal is already in the shared-pending queue.
1073 * Tell the chosen thread to wake up and dequeue it.
1075 signal_wake_up(t, sig == SIGKILL);
1079 static inline bool legacy_queue(struct sigpending *signals, int sig)
1081 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1084 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1085 enum pid_type type, bool force)
1087 struct sigpending *pending;
1089 int override_rlimit;
1090 int ret = 0, result;
1092 assert_spin_locked(&t->sighand->siglock);
1094 result = TRACE_SIGNAL_IGNORED;
1095 if (!prepare_signal(sig, t, force))
1098 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1100 * Short-circuit ignored signals and support queuing
1101 * exactly one non-rt signal, so that we can get more
1102 * detailed information about the cause of the signal.
1104 result = TRACE_SIGNAL_ALREADY_PENDING;
1105 if (legacy_queue(pending, sig))
1108 result = TRACE_SIGNAL_DELIVERED;
1110 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1112 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1116 * Real-time signals must be queued if sent by sigqueue, or
1117 * some other real-time mechanism. It is implementation
1118 * defined whether kill() does so. We attempt to do so, on
1119 * the principle of least surprise, but since kill is not
1120 * allowed to fail with EAGAIN when low on memory we just
1121 * make sure at least one signal gets delivered and don't
1122 * pass on the info struct.
1125 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1127 override_rlimit = 0;
1129 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1132 list_add_tail(&q->list, &pending->list);
1133 switch ((unsigned long) info) {
1134 case (unsigned long) SEND_SIG_NOINFO:
1135 clear_siginfo(&q->info);
1136 q->info.si_signo = sig;
1137 q->info.si_errno = 0;
1138 q->info.si_code = SI_USER;
1139 q->info.si_pid = task_tgid_nr_ns(current,
1140 task_active_pid_ns(t));
1143 from_kuid_munged(task_cred_xxx(t, user_ns),
1147 case (unsigned long) SEND_SIG_PRIV:
1148 clear_siginfo(&q->info);
1149 q->info.si_signo = sig;
1150 q->info.si_errno = 0;
1151 q->info.si_code = SI_KERNEL;
1156 copy_siginfo(&q->info, info);
1159 } else if (!is_si_special(info) &&
1160 sig >= SIGRTMIN && info->si_code != SI_USER) {
1162 * Queue overflow, abort. We may abort if the
1163 * signal was rt and sent by user using something
1164 * other than kill().
1166 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1171 * This is a silent loss of information. We still
1172 * send the signal, but the *info bits are lost.
1174 result = TRACE_SIGNAL_LOSE_INFO;
1178 signalfd_notify(t, sig);
1179 sigaddset(&pending->signal, sig);
1181 /* Let multiprocess signals appear after on-going forks */
1182 if (type > PIDTYPE_TGID) {
1183 struct multiprocess_signals *delayed;
1184 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1185 sigset_t *signal = &delayed->signal;
1186 /* Can't queue both a stop and a continue signal */
1188 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1189 else if (sig_kernel_stop(sig))
1190 sigdelset(signal, SIGCONT);
1191 sigaddset(signal, sig);
1195 complete_signal(sig, t, type);
1197 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1201 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1204 switch (siginfo_layout(info->si_signo, info->si_code)) {
1213 case SIL_FAULT_TRAPNO:
1214 case SIL_FAULT_MCEERR:
1215 case SIL_FAULT_BNDERR:
1216 case SIL_FAULT_PKUERR:
1217 case SIL_FAULT_PERF_EVENT:
1225 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1228 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1231 if (info == SEND_SIG_NOINFO) {
1232 /* Force if sent from an ancestor pid namespace */
1233 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1234 } else if (info == SEND_SIG_PRIV) {
1235 /* Don't ignore kernel generated signals */
1237 } else if (has_si_pid_and_uid(info)) {
1238 /* SIGKILL and SIGSTOP is special or has ids */
1239 struct user_namespace *t_user_ns;
1242 t_user_ns = task_cred_xxx(t, user_ns);
1243 if (current_user_ns() != t_user_ns) {
1244 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1245 info->si_uid = from_kuid_munged(t_user_ns, uid);
1249 /* A kernel generated signal? */
1250 force = (info->si_code == SI_KERNEL);
1252 /* From an ancestor pid namespace? */
1253 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1258 return __send_signal(sig, info, t, type, force);
1261 static void print_fatal_signal(int signr)
1263 struct pt_regs *regs = signal_pt_regs();
1264 pr_info("potentially unexpected fatal signal %d.\n", signr);
1266 #if defined(__i386__) && !defined(__arch_um__)
1267 pr_info("code at %08lx: ", regs->ip);
1270 for (i = 0; i < 16; i++) {
1273 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1275 pr_cont("%02x ", insn);
1285 static int __init setup_print_fatal_signals(char *str)
1287 get_option (&str, &print_fatal_signals);
1292 __setup("print-fatal-signals=", setup_print_fatal_signals);
1295 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1297 return send_signal(sig, info, p, PIDTYPE_TGID);
1300 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1303 unsigned long flags;
1306 if (lock_task_sighand(p, &flags)) {
1307 ret = send_signal(sig, info, p, type);
1308 unlock_task_sighand(p, &flags);
1315 * Force a signal that the process can't ignore: if necessary
1316 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1318 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1319 * since we do not want to have a signal handler that was blocked
1320 * be invoked when user space had explicitly blocked it.
1322 * We don't want to have recursive SIGSEGV's etc, for example,
1323 * that is why we also clear SIGNAL_UNKILLABLE.
1326 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, bool sigdfl)
1328 unsigned long int flags;
1329 int ret, blocked, ignored;
1330 struct k_sigaction *action;
1331 int sig = info->si_signo;
1333 spin_lock_irqsave(&t->sighand->siglock, flags);
1334 action = &t->sighand->action[sig-1];
1335 ignored = action->sa.sa_handler == SIG_IGN;
1336 blocked = sigismember(&t->blocked, sig);
1337 if (blocked || ignored || sigdfl) {
1338 action->sa.sa_handler = SIG_DFL;
1340 sigdelset(&t->blocked, sig);
1341 recalc_sigpending_and_wake(t);
1345 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1346 * debugging to leave init killable.
1348 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1349 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1350 ret = send_signal(sig, info, t, PIDTYPE_PID);
1351 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1356 int force_sig_info(struct kernel_siginfo *info)
1358 return force_sig_info_to_task(info, current, false);
1362 * Nuke all other threads in the group.
1364 int zap_other_threads(struct task_struct *p)
1366 struct task_struct *t = p;
1369 p->signal->group_stop_count = 0;
1371 while_each_thread(p, t) {
1372 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1375 /* Don't bother with already dead threads */
1378 sigaddset(&t->pending.signal, SIGKILL);
1379 signal_wake_up(t, 1);
1385 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1386 unsigned long *flags)
1388 struct sighand_struct *sighand;
1392 sighand = rcu_dereference(tsk->sighand);
1393 if (unlikely(sighand == NULL))
1397 * This sighand can be already freed and even reused, but
1398 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1399 * initializes ->siglock: this slab can't go away, it has
1400 * the same object type, ->siglock can't be reinitialized.
1402 * We need to ensure that tsk->sighand is still the same
1403 * after we take the lock, we can race with de_thread() or
1404 * __exit_signal(). In the latter case the next iteration
1405 * must see ->sighand == NULL.
1407 spin_lock_irqsave(&sighand->siglock, *flags);
1408 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1410 spin_unlock_irqrestore(&sighand->siglock, *flags);
1417 #ifdef CONFIG_LOCKDEP
1418 void lockdep_assert_task_sighand_held(struct task_struct *task)
1420 struct sighand_struct *sighand;
1423 sighand = rcu_dereference(task->sighand);
1425 lockdep_assert_held(&sighand->siglock);
1433 * send signal info to all the members of a group
1435 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1436 struct task_struct *p, enum pid_type type)
1441 ret = check_kill_permission(sig, info, p);
1445 ret = do_send_sig_info(sig, info, p, type);
1451 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1452 * control characters do (^C, ^Z etc)
1453 * - the caller must hold at least a readlock on tasklist_lock
1455 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1457 struct task_struct *p = NULL;
1458 int retval, success;
1462 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1463 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1466 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1467 return success ? 0 : retval;
1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1473 struct task_struct *p;
1477 p = pid_task(pid, PIDTYPE_PID);
1479 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1481 if (likely(!p || error != -ESRCH))
1485 * The task was unhashed in between, try again. If it
1486 * is dead, pid_task() will return NULL, if we race with
1487 * de_thread() it will find the new leader.
1492 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1496 error = kill_pid_info(sig, info, find_vpid(pid));
1501 static inline bool kill_as_cred_perm(const struct cred *cred,
1502 struct task_struct *target)
1504 const struct cred *pcred = __task_cred(target);
1506 return uid_eq(cred->euid, pcred->suid) ||
1507 uid_eq(cred->euid, pcred->uid) ||
1508 uid_eq(cred->uid, pcred->suid) ||
1509 uid_eq(cred->uid, pcred->uid);
1513 * The usb asyncio usage of siginfo is wrong. The glibc support
1514 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1515 * AKA after the generic fields:
1516 * kernel_pid_t si_pid;
1517 * kernel_uid32_t si_uid;
1518 * sigval_t si_value;
1520 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1521 * after the generic fields is:
1522 * void __user *si_addr;
1524 * This is a practical problem when there is a 64bit big endian kernel
1525 * and a 32bit userspace. As the 32bit address will encoded in the low
1526 * 32bits of the pointer. Those low 32bits will be stored at higher
1527 * address than appear in a 32 bit pointer. So userspace will not
1528 * see the address it was expecting for it's completions.
1530 * There is nothing in the encoding that can allow
1531 * copy_siginfo_to_user32 to detect this confusion of formats, so
1532 * handle this by requiring the caller of kill_pid_usb_asyncio to
1533 * notice when this situration takes place and to store the 32bit
1534 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1537 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1538 struct pid *pid, const struct cred *cred)
1540 struct kernel_siginfo info;
1541 struct task_struct *p;
1542 unsigned long flags;
1545 if (!valid_signal(sig))
1548 clear_siginfo(&info);
1549 info.si_signo = sig;
1550 info.si_errno = errno;
1551 info.si_code = SI_ASYNCIO;
1552 *((sigval_t *)&info.si_pid) = addr;
1555 p = pid_task(pid, PIDTYPE_PID);
1560 if (!kill_as_cred_perm(cred, p)) {
1564 ret = security_task_kill(p, &info, sig, cred);
1569 if (lock_task_sighand(p, &flags)) {
1570 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1571 unlock_task_sighand(p, &flags);
1579 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1582 * kill_something_info() interprets pid in interesting ways just like kill(2).
1584 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1585 * is probably wrong. Should make it like BSD or SYSV.
1588 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1593 return kill_proc_info(sig, info, pid);
1595 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1599 read_lock(&tasklist_lock);
1601 ret = __kill_pgrp_info(sig, info,
1602 pid ? find_vpid(-pid) : task_pgrp(current));
1604 int retval = 0, count = 0;
1605 struct task_struct * p;
1607 for_each_process(p) {
1608 if (task_pid_vnr(p) > 1 &&
1609 !same_thread_group(p, current)) {
1610 int err = group_send_sig_info(sig, info, p,
1617 ret = count ? retval : -ESRCH;
1619 read_unlock(&tasklist_lock);
1625 * These are for backward compatibility with the rest of the kernel source.
1628 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1631 * Make sure legacy kernel users don't send in bad values
1632 * (normal paths check this in check_kill_permission).
1634 if (!valid_signal(sig))
1637 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1639 EXPORT_SYMBOL(send_sig_info);
1641 #define __si_special(priv) \
1642 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1645 send_sig(int sig, struct task_struct *p, int priv)
1647 return send_sig_info(sig, __si_special(priv), p);
1649 EXPORT_SYMBOL(send_sig);
1651 void force_sig(int sig)
1653 struct kernel_siginfo info;
1655 clear_siginfo(&info);
1656 info.si_signo = sig;
1658 info.si_code = SI_KERNEL;
1661 force_sig_info(&info);
1663 EXPORT_SYMBOL(force_sig);
1666 * When things go south during signal handling, we
1667 * will force a SIGSEGV. And if the signal that caused
1668 * the problem was already a SIGSEGV, we'll want to
1669 * make sure we don't even try to deliver the signal..
1671 void force_sigsegv(int sig)
1673 struct task_struct *p = current;
1675 if (sig == SIGSEGV) {
1676 unsigned long flags;
1677 spin_lock_irqsave(&p->sighand->siglock, flags);
1678 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1679 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1684 int force_sig_fault_to_task(int sig, int code, void __user *addr
1685 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686 , struct task_struct *t)
1688 struct kernel_siginfo info;
1690 clear_siginfo(&info);
1691 info.si_signo = sig;
1693 info.si_code = code;
1694 info.si_addr = addr;
1697 info.si_flags = flags;
1700 return force_sig_info_to_task(&info, t, false);
1703 int force_sig_fault(int sig, int code, void __user *addr
1704 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1706 return force_sig_fault_to_task(sig, code, addr
1707 ___ARCH_SI_IA64(imm, flags, isr), current);
1710 int send_sig_fault(int sig, int code, void __user *addr
1711 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1712 , struct task_struct *t)
1714 struct kernel_siginfo info;
1716 clear_siginfo(&info);
1717 info.si_signo = sig;
1719 info.si_code = code;
1720 info.si_addr = addr;
1723 info.si_flags = flags;
1726 return send_sig_info(info.si_signo, &info, t);
1729 int force_sig_mceerr(int code, void __user *addr, short lsb)
1731 struct kernel_siginfo info;
1733 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1734 clear_siginfo(&info);
1735 info.si_signo = SIGBUS;
1737 info.si_code = code;
1738 info.si_addr = addr;
1739 info.si_addr_lsb = lsb;
1740 return force_sig_info(&info);
1743 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1745 struct kernel_siginfo info;
1747 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1748 clear_siginfo(&info);
1749 info.si_signo = SIGBUS;
1751 info.si_code = code;
1752 info.si_addr = addr;
1753 info.si_addr_lsb = lsb;
1754 return send_sig_info(info.si_signo, &info, t);
1756 EXPORT_SYMBOL(send_sig_mceerr);
1758 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1760 struct kernel_siginfo info;
1762 clear_siginfo(&info);
1763 info.si_signo = SIGSEGV;
1765 info.si_code = SEGV_BNDERR;
1766 info.si_addr = addr;
1767 info.si_lower = lower;
1768 info.si_upper = upper;
1769 return force_sig_info(&info);
1773 int force_sig_pkuerr(void __user *addr, u32 pkey)
1775 struct kernel_siginfo info;
1777 clear_siginfo(&info);
1778 info.si_signo = SIGSEGV;
1780 info.si_code = SEGV_PKUERR;
1781 info.si_addr = addr;
1782 info.si_pkey = pkey;
1783 return force_sig_info(&info);
1787 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1789 struct kernel_siginfo info;
1791 clear_siginfo(&info);
1792 info.si_signo = SIGTRAP;
1794 info.si_code = TRAP_PERF;
1795 info.si_addr = addr;
1796 info.si_perf_data = sig_data;
1797 info.si_perf_type = type;
1799 return force_sig_info(&info);
1803 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1804 * @syscall: syscall number to send to userland
1805 * @reason: filter-supplied reason code to send to userland (via si_errno)
1807 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1809 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1811 struct kernel_siginfo info;
1813 clear_siginfo(&info);
1814 info.si_signo = SIGSYS;
1815 info.si_code = SYS_SECCOMP;
1816 info.si_call_addr = (void __user *)KSTK_EIP(current);
1817 info.si_errno = reason;
1818 info.si_arch = syscall_get_arch(current);
1819 info.si_syscall = syscall;
1820 return force_sig_info_to_task(&info, current, force_coredump);
1823 /* For the crazy architectures that include trap information in
1824 * the errno field, instead of an actual errno value.
1826 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1828 struct kernel_siginfo info;
1830 clear_siginfo(&info);
1831 info.si_signo = SIGTRAP;
1832 info.si_errno = errno;
1833 info.si_code = TRAP_HWBKPT;
1834 info.si_addr = addr;
1835 return force_sig_info(&info);
1838 /* For the rare architectures that include trap information using
1841 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1843 struct kernel_siginfo info;
1845 clear_siginfo(&info);
1846 info.si_signo = sig;
1848 info.si_code = code;
1849 info.si_addr = addr;
1850 info.si_trapno = trapno;
1851 return force_sig_info(&info);
1854 /* For the rare architectures that include trap information using
1857 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1858 struct task_struct *t)
1860 struct kernel_siginfo info;
1862 clear_siginfo(&info);
1863 info.si_signo = sig;
1865 info.si_code = code;
1866 info.si_addr = addr;
1867 info.si_trapno = trapno;
1868 return send_sig_info(info.si_signo, &info, t);
1871 int kill_pgrp(struct pid *pid, int sig, int priv)
1875 read_lock(&tasklist_lock);
1876 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1877 read_unlock(&tasklist_lock);
1881 EXPORT_SYMBOL(kill_pgrp);
1883 int kill_pid(struct pid *pid, int sig, int priv)
1885 return kill_pid_info(sig, __si_special(priv), pid);
1887 EXPORT_SYMBOL(kill_pid);
1890 * These functions support sending signals using preallocated sigqueue
1891 * structures. This is needed "because realtime applications cannot
1892 * afford to lose notifications of asynchronous events, like timer
1893 * expirations or I/O completions". In the case of POSIX Timers
1894 * we allocate the sigqueue structure from the timer_create. If this
1895 * allocation fails we are able to report the failure to the application
1896 * with an EAGAIN error.
1898 struct sigqueue *sigqueue_alloc(void)
1900 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1903 void sigqueue_free(struct sigqueue *q)
1905 unsigned long flags;
1906 spinlock_t *lock = ¤t->sighand->siglock;
1908 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1910 * We must hold ->siglock while testing q->list
1911 * to serialize with collect_signal() or with
1912 * __exit_signal()->flush_sigqueue().
1914 spin_lock_irqsave(lock, flags);
1915 q->flags &= ~SIGQUEUE_PREALLOC;
1917 * If it is queued it will be freed when dequeued,
1918 * like the "regular" sigqueue.
1920 if (!list_empty(&q->list))
1922 spin_unlock_irqrestore(lock, flags);
1928 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1930 int sig = q->info.si_signo;
1931 struct sigpending *pending;
1932 struct task_struct *t;
1933 unsigned long flags;
1936 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1940 t = pid_task(pid, type);
1941 if (!t || !likely(lock_task_sighand(t, &flags)))
1944 ret = 1; /* the signal is ignored */
1945 result = TRACE_SIGNAL_IGNORED;
1946 if (!prepare_signal(sig, t, false))
1950 if (unlikely(!list_empty(&q->list))) {
1952 * If an SI_TIMER entry is already queue just increment
1953 * the overrun count.
1955 BUG_ON(q->info.si_code != SI_TIMER);
1956 q->info.si_overrun++;
1957 result = TRACE_SIGNAL_ALREADY_PENDING;
1960 q->info.si_overrun = 0;
1962 signalfd_notify(t, sig);
1963 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1964 list_add_tail(&q->list, &pending->list);
1965 sigaddset(&pending->signal, sig);
1966 complete_signal(sig, t, type);
1967 result = TRACE_SIGNAL_DELIVERED;
1969 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1970 unlock_task_sighand(t, &flags);
1976 static void do_notify_pidfd(struct task_struct *task)
1980 WARN_ON(task->exit_state == 0);
1981 pid = task_pid(task);
1982 wake_up_all(&pid->wait_pidfd);
1986 * Let a parent know about the death of a child.
1987 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1989 * Returns true if our parent ignored us and so we've switched to
1992 bool do_notify_parent(struct task_struct *tsk, int sig)
1994 struct kernel_siginfo info;
1995 unsigned long flags;
1996 struct sighand_struct *psig;
1997 bool autoreap = false;
2002 /* do_notify_parent_cldstop should have been called instead. */
2003 BUG_ON(task_is_stopped_or_traced(tsk));
2005 BUG_ON(!tsk->ptrace &&
2006 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2008 /* Wake up all pidfd waiters */
2009 do_notify_pidfd(tsk);
2011 if (sig != SIGCHLD) {
2013 * This is only possible if parent == real_parent.
2014 * Check if it has changed security domain.
2016 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2020 clear_siginfo(&info);
2021 info.si_signo = sig;
2024 * We are under tasklist_lock here so our parent is tied to
2025 * us and cannot change.
2027 * task_active_pid_ns will always return the same pid namespace
2028 * until a task passes through release_task.
2030 * write_lock() currently calls preempt_disable() which is the
2031 * same as rcu_read_lock(), but according to Oleg, this is not
2032 * correct to rely on this
2035 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2036 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2040 task_cputime(tsk, &utime, &stime);
2041 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2042 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2044 info.si_status = tsk->exit_code & 0x7f;
2045 if (tsk->exit_code & 0x80)
2046 info.si_code = CLD_DUMPED;
2047 else if (tsk->exit_code & 0x7f)
2048 info.si_code = CLD_KILLED;
2050 info.si_code = CLD_EXITED;
2051 info.si_status = tsk->exit_code >> 8;
2054 psig = tsk->parent->sighand;
2055 spin_lock_irqsave(&psig->siglock, flags);
2056 if (!tsk->ptrace && sig == SIGCHLD &&
2057 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2058 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2060 * We are exiting and our parent doesn't care. POSIX.1
2061 * defines special semantics for setting SIGCHLD to SIG_IGN
2062 * or setting the SA_NOCLDWAIT flag: we should be reaped
2063 * automatically and not left for our parent's wait4 call.
2064 * Rather than having the parent do it as a magic kind of
2065 * signal handler, we just set this to tell do_exit that we
2066 * can be cleaned up without becoming a zombie. Note that
2067 * we still call __wake_up_parent in this case, because a
2068 * blocked sys_wait4 might now return -ECHILD.
2070 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2071 * is implementation-defined: we do (if you don't want
2072 * it, just use SIG_IGN instead).
2075 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2079 * Send with __send_signal as si_pid and si_uid are in the
2080 * parent's namespaces.
2082 if (valid_signal(sig) && sig)
2083 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2084 __wake_up_parent(tsk, tsk->parent);
2085 spin_unlock_irqrestore(&psig->siglock, flags);
2091 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2092 * @tsk: task reporting the state change
2093 * @for_ptracer: the notification is for ptracer
2094 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2096 * Notify @tsk's parent that the stopped/continued state has changed. If
2097 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2098 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2101 * Must be called with tasklist_lock at least read locked.
2103 static void do_notify_parent_cldstop(struct task_struct *tsk,
2104 bool for_ptracer, int why)
2106 struct kernel_siginfo info;
2107 unsigned long flags;
2108 struct task_struct *parent;
2109 struct sighand_struct *sighand;
2113 parent = tsk->parent;
2115 tsk = tsk->group_leader;
2116 parent = tsk->real_parent;
2119 clear_siginfo(&info);
2120 info.si_signo = SIGCHLD;
2123 * see comment in do_notify_parent() about the following 4 lines
2126 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2127 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2130 task_cputime(tsk, &utime, &stime);
2131 info.si_utime = nsec_to_clock_t(utime);
2132 info.si_stime = nsec_to_clock_t(stime);
2137 info.si_status = SIGCONT;
2140 info.si_status = tsk->signal->group_exit_code & 0x7f;
2143 info.si_status = tsk->exit_code & 0x7f;
2149 sighand = parent->sighand;
2150 spin_lock_irqsave(&sighand->siglock, flags);
2151 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2152 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2153 __group_send_sig_info(SIGCHLD, &info, parent);
2155 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2157 __wake_up_parent(tsk, parent);
2158 spin_unlock_irqrestore(&sighand->siglock, flags);
2161 static inline bool may_ptrace_stop(void)
2163 if (!likely(current->ptrace))
2166 * Are we in the middle of do_coredump?
2167 * If so and our tracer is also part of the coredump stopping
2168 * is a deadlock situation, and pointless because our tracer
2169 * is dead so don't allow us to stop.
2170 * If SIGKILL was already sent before the caller unlocked
2171 * ->siglock we must see ->core_state != NULL. Otherwise it
2172 * is safe to enter schedule().
2174 * This is almost outdated, a task with the pending SIGKILL can't
2175 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2176 * after SIGKILL was already dequeued.
2178 if (unlikely(current->mm->core_state) &&
2179 unlikely(current->mm == current->parent->mm))
2186 * Return non-zero if there is a SIGKILL that should be waking us up.
2187 * Called with the siglock held.
2189 static bool sigkill_pending(struct task_struct *tsk)
2191 return sigismember(&tsk->pending.signal, SIGKILL) ||
2192 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2196 * This must be called with current->sighand->siglock held.
2198 * This should be the path for all ptrace stops.
2199 * We always set current->last_siginfo while stopped here.
2200 * That makes it a way to test a stopped process for
2201 * being ptrace-stopped vs being job-control-stopped.
2203 * If we actually decide not to stop at all because the tracer
2204 * is gone, we keep current->exit_code unless clear_code.
2206 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2207 __releases(¤t->sighand->siglock)
2208 __acquires(¤t->sighand->siglock)
2210 bool gstop_done = false;
2212 if (arch_ptrace_stop_needed(exit_code, info)) {
2214 * The arch code has something special to do before a
2215 * ptrace stop. This is allowed to block, e.g. for faults
2216 * on user stack pages. We can't keep the siglock while
2217 * calling arch_ptrace_stop, so we must release it now.
2218 * To preserve proper semantics, we must do this before
2219 * any signal bookkeeping like checking group_stop_count.
2220 * Meanwhile, a SIGKILL could come in before we retake the
2221 * siglock. That must prevent us from sleeping in TASK_TRACED.
2222 * So after regaining the lock, we must check for SIGKILL.
2224 spin_unlock_irq(¤t->sighand->siglock);
2225 arch_ptrace_stop(exit_code, info);
2226 spin_lock_irq(¤t->sighand->siglock);
2227 if (sigkill_pending(current))
2231 set_special_state(TASK_TRACED);
2234 * We're committing to trapping. TRACED should be visible before
2235 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2236 * Also, transition to TRACED and updates to ->jobctl should be
2237 * atomic with respect to siglock and should be done after the arch
2238 * hook as siglock is released and regrabbed across it.
2243 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2245 * set_current_state() smp_wmb();
2247 * wait_task_stopped()
2248 * task_stopped_code()
2249 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2253 current->last_siginfo = info;
2254 current->exit_code = exit_code;
2257 * If @why is CLD_STOPPED, we're trapping to participate in a group
2258 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2259 * across siglock relocks since INTERRUPT was scheduled, PENDING
2260 * could be clear now. We act as if SIGCONT is received after
2261 * TASK_TRACED is entered - ignore it.
2263 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2264 gstop_done = task_participate_group_stop(current);
2266 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2267 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2268 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2269 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2271 /* entering a trap, clear TRAPPING */
2272 task_clear_jobctl_trapping(current);
2274 spin_unlock_irq(¤t->sighand->siglock);
2275 read_lock(&tasklist_lock);
2276 if (may_ptrace_stop()) {
2278 * Notify parents of the stop.
2280 * While ptraced, there are two parents - the ptracer and
2281 * the real_parent of the group_leader. The ptracer should
2282 * know about every stop while the real parent is only
2283 * interested in the completion of group stop. The states
2284 * for the two don't interact with each other. Notify
2285 * separately unless they're gonna be duplicates.
2287 do_notify_parent_cldstop(current, true, why);
2288 if (gstop_done && ptrace_reparented(current))
2289 do_notify_parent_cldstop(current, false, why);
2292 * Don't want to allow preemption here, because
2293 * sys_ptrace() needs this task to be inactive.
2295 * XXX: implement read_unlock_no_resched().
2298 read_unlock(&tasklist_lock);
2299 cgroup_enter_frozen();
2300 preempt_enable_no_resched();
2301 freezable_schedule();
2302 cgroup_leave_frozen(true);
2305 * By the time we got the lock, our tracer went away.
2306 * Don't drop the lock yet, another tracer may come.
2308 * If @gstop_done, the ptracer went away between group stop
2309 * completion and here. During detach, it would have set
2310 * JOBCTL_STOP_PENDING on us and we'll re-enter
2311 * TASK_STOPPED in do_signal_stop() on return, so notifying
2312 * the real parent of the group stop completion is enough.
2315 do_notify_parent_cldstop(current, false, why);
2317 /* tasklist protects us from ptrace_freeze_traced() */
2318 __set_current_state(TASK_RUNNING);
2320 current->exit_code = 0;
2321 read_unlock(&tasklist_lock);
2325 * We are back. Now reacquire the siglock before touching
2326 * last_siginfo, so that we are sure to have synchronized with
2327 * any signal-sending on another CPU that wants to examine it.
2329 spin_lock_irq(¤t->sighand->siglock);
2330 current->last_siginfo = NULL;
2332 /* LISTENING can be set only during STOP traps, clear it */
2333 current->jobctl &= ~JOBCTL_LISTENING;
2336 * Queued signals ignored us while we were stopped for tracing.
2337 * So check for any that we should take before resuming user mode.
2338 * This sets TIF_SIGPENDING, but never clears it.
2340 recalc_sigpending_tsk(current);
2343 static void ptrace_do_notify(int signr, int exit_code, int why)
2345 kernel_siginfo_t info;
2347 clear_siginfo(&info);
2348 info.si_signo = signr;
2349 info.si_code = exit_code;
2350 info.si_pid = task_pid_vnr(current);
2351 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2353 /* Let the debugger run. */
2354 ptrace_stop(exit_code, why, 1, &info);
2357 void ptrace_notify(int exit_code)
2359 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2360 if (unlikely(current->task_works))
2363 spin_lock_irq(¤t->sighand->siglock);
2364 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2365 spin_unlock_irq(¤t->sighand->siglock);
2369 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2370 * @signr: signr causing group stop if initiating
2372 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2373 * and participate in it. If already set, participate in the existing
2374 * group stop. If participated in a group stop (and thus slept), %true is
2375 * returned with siglock released.
2377 * If ptraced, this function doesn't handle stop itself. Instead,
2378 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2379 * untouched. The caller must ensure that INTERRUPT trap handling takes
2380 * places afterwards.
2383 * Must be called with @current->sighand->siglock held, which is released
2387 * %false if group stop is already cancelled or ptrace trap is scheduled.
2388 * %true if participated in group stop.
2390 static bool do_signal_stop(int signr)
2391 __releases(¤t->sighand->siglock)
2393 struct signal_struct *sig = current->signal;
2395 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2396 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2397 struct task_struct *t;
2399 /* signr will be recorded in task->jobctl for retries */
2400 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2402 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2403 unlikely(signal_group_exit(sig)))
2406 * There is no group stop already in progress. We must
2409 * While ptraced, a task may be resumed while group stop is
2410 * still in effect and then receive a stop signal and
2411 * initiate another group stop. This deviates from the
2412 * usual behavior as two consecutive stop signals can't
2413 * cause two group stops when !ptraced. That is why we
2414 * also check !task_is_stopped(t) below.
2416 * The condition can be distinguished by testing whether
2417 * SIGNAL_STOP_STOPPED is already set. Don't generate
2418 * group_exit_code in such case.
2420 * This is not necessary for SIGNAL_STOP_CONTINUED because
2421 * an intervening stop signal is required to cause two
2422 * continued events regardless of ptrace.
2424 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2425 sig->group_exit_code = signr;
2427 sig->group_stop_count = 0;
2429 if (task_set_jobctl_pending(current, signr | gstop))
2430 sig->group_stop_count++;
2433 while_each_thread(current, t) {
2435 * Setting state to TASK_STOPPED for a group
2436 * stop is always done with the siglock held,
2437 * so this check has no races.
2439 if (!task_is_stopped(t) &&
2440 task_set_jobctl_pending(t, signr | gstop)) {
2441 sig->group_stop_count++;
2442 if (likely(!(t->ptrace & PT_SEIZED)))
2443 signal_wake_up(t, 0);
2445 ptrace_trap_notify(t);
2450 if (likely(!current->ptrace)) {
2454 * If there are no other threads in the group, or if there
2455 * is a group stop in progress and we are the last to stop,
2456 * report to the parent.
2458 if (task_participate_group_stop(current))
2459 notify = CLD_STOPPED;
2461 set_special_state(TASK_STOPPED);
2462 spin_unlock_irq(¤t->sighand->siglock);
2465 * Notify the parent of the group stop completion. Because
2466 * we're not holding either the siglock or tasklist_lock
2467 * here, ptracer may attach inbetween; however, this is for
2468 * group stop and should always be delivered to the real
2469 * parent of the group leader. The new ptracer will get
2470 * its notification when this task transitions into
2474 read_lock(&tasklist_lock);
2475 do_notify_parent_cldstop(current, false, notify);
2476 read_unlock(&tasklist_lock);
2479 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2480 cgroup_enter_frozen();
2481 freezable_schedule();
2485 * While ptraced, group stop is handled by STOP trap.
2486 * Schedule it and let the caller deal with it.
2488 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2494 * do_jobctl_trap - take care of ptrace jobctl traps
2496 * When PT_SEIZED, it's used for both group stop and explicit
2497 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2498 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2499 * the stop signal; otherwise, %SIGTRAP.
2501 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2502 * number as exit_code and no siginfo.
2505 * Must be called with @current->sighand->siglock held, which may be
2506 * released and re-acquired before returning with intervening sleep.
2508 static void do_jobctl_trap(void)
2510 struct signal_struct *signal = current->signal;
2511 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2513 if (current->ptrace & PT_SEIZED) {
2514 if (!signal->group_stop_count &&
2515 !(signal->flags & SIGNAL_STOP_STOPPED))
2517 WARN_ON_ONCE(!signr);
2518 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2521 WARN_ON_ONCE(!signr);
2522 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2523 current->exit_code = 0;
2528 * do_freezer_trap - handle the freezer jobctl trap
2530 * Puts the task into frozen state, if only the task is not about to quit.
2531 * In this case it drops JOBCTL_TRAP_FREEZE.
2534 * Must be called with @current->sighand->siglock held,
2535 * which is always released before returning.
2537 static void do_freezer_trap(void)
2538 __releases(¤t->sighand->siglock)
2541 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2542 * let's make another loop to give it a chance to be handled.
2543 * In any case, we'll return back.
2545 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2546 JOBCTL_TRAP_FREEZE) {
2547 spin_unlock_irq(¤t->sighand->siglock);
2552 * Now we're sure that there is no pending fatal signal and no
2553 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2554 * immediately (if there is a non-fatal signal pending), and
2555 * put the task into sleep.
2557 __set_current_state(TASK_INTERRUPTIBLE);
2558 clear_thread_flag(TIF_SIGPENDING);
2559 spin_unlock_irq(¤t->sighand->siglock);
2560 cgroup_enter_frozen();
2561 freezable_schedule();
2564 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2567 * We do not check sig_kernel_stop(signr) but set this marker
2568 * unconditionally because we do not know whether debugger will
2569 * change signr. This flag has no meaning unless we are going
2570 * to stop after return from ptrace_stop(). In this case it will
2571 * be checked in do_signal_stop(), we should only stop if it was
2572 * not cleared by SIGCONT while we were sleeping. See also the
2573 * comment in dequeue_signal().
2575 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2576 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2578 /* We're back. Did the debugger cancel the sig? */
2579 signr = current->exit_code;
2583 current->exit_code = 0;
2586 * Update the siginfo structure if the signal has
2587 * changed. If the debugger wanted something
2588 * specific in the siginfo structure then it should
2589 * have updated *info via PTRACE_SETSIGINFO.
2591 if (signr != info->si_signo) {
2592 clear_siginfo(info);
2593 info->si_signo = signr;
2595 info->si_code = SI_USER;
2597 info->si_pid = task_pid_vnr(current->parent);
2598 info->si_uid = from_kuid_munged(current_user_ns(),
2599 task_uid(current->parent));
2603 /* If the (new) signal is now blocked, requeue it. */
2604 if (sigismember(¤t->blocked, signr)) {
2605 send_signal(signr, info, current, PIDTYPE_PID);
2612 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2614 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2616 case SIL_FAULT_TRAPNO:
2617 case SIL_FAULT_MCEERR:
2618 case SIL_FAULT_BNDERR:
2619 case SIL_FAULT_PKUERR:
2620 case SIL_FAULT_PERF_EVENT:
2621 ksig->info.si_addr = arch_untagged_si_addr(
2622 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2634 bool get_signal(struct ksignal *ksig)
2636 struct sighand_struct *sighand = current->sighand;
2637 struct signal_struct *signal = current->signal;
2640 if (unlikely(current->task_works))
2644 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2645 * that the arch handlers don't all have to do it. If we get here
2646 * without TIF_SIGPENDING, just exit after running signal work.
2648 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2649 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2650 tracehook_notify_signal();
2651 if (!task_sigpending(current))
2655 if (unlikely(uprobe_deny_signal()))
2659 * Do this once, we can't return to user-mode if freezing() == T.
2660 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2661 * thus do not need another check after return.
2666 spin_lock_irq(&sighand->siglock);
2669 * Every stopped thread goes here after wakeup. Check to see if
2670 * we should notify the parent, prepare_signal(SIGCONT) encodes
2671 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2673 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2676 if (signal->flags & SIGNAL_CLD_CONTINUED)
2677 why = CLD_CONTINUED;
2681 signal->flags &= ~SIGNAL_CLD_MASK;
2683 spin_unlock_irq(&sighand->siglock);
2686 * Notify the parent that we're continuing. This event is
2687 * always per-process and doesn't make whole lot of sense
2688 * for ptracers, who shouldn't consume the state via
2689 * wait(2) either, but, for backward compatibility, notify
2690 * the ptracer of the group leader too unless it's gonna be
2693 read_lock(&tasklist_lock);
2694 do_notify_parent_cldstop(current, false, why);
2696 if (ptrace_reparented(current->group_leader))
2697 do_notify_parent_cldstop(current->group_leader,
2699 read_unlock(&tasklist_lock);
2704 /* Has this task already been marked for death? */
2705 if (signal_group_exit(signal)) {
2706 ksig->info.si_signo = signr = SIGKILL;
2707 sigdelset(¤t->pending.signal, SIGKILL);
2708 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2709 &sighand->action[SIGKILL - 1]);
2710 recalc_sigpending();
2715 struct k_sigaction *ka;
2717 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2721 if (unlikely(current->jobctl &
2722 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2723 if (current->jobctl & JOBCTL_TRAP_MASK) {
2725 spin_unlock_irq(&sighand->siglock);
2726 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2733 * If the task is leaving the frozen state, let's update
2734 * cgroup counters and reset the frozen bit.
2736 if (unlikely(cgroup_task_frozen(current))) {
2737 spin_unlock_irq(&sighand->siglock);
2738 cgroup_leave_frozen(false);
2743 * Signals generated by the execution of an instruction
2744 * need to be delivered before any other pending signals
2745 * so that the instruction pointer in the signal stack
2746 * frame points to the faulting instruction.
2748 signr = dequeue_synchronous_signal(&ksig->info);
2750 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2753 break; /* will return 0 */
2755 if (unlikely(current->ptrace) && signr != SIGKILL) {
2756 signr = ptrace_signal(signr, &ksig->info);
2761 ka = &sighand->action[signr-1];
2763 /* Trace actually delivered signals. */
2764 trace_signal_deliver(signr, &ksig->info, ka);
2766 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2768 if (ka->sa.sa_handler != SIG_DFL) {
2769 /* Run the handler. */
2772 if (ka->sa.sa_flags & SA_ONESHOT)
2773 ka->sa.sa_handler = SIG_DFL;
2775 break; /* will return non-zero "signr" value */
2779 * Now we are doing the default action for this signal.
2781 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2785 * Global init gets no signals it doesn't want.
2786 * Container-init gets no signals it doesn't want from same
2789 * Note that if global/container-init sees a sig_kernel_only()
2790 * signal here, the signal must have been generated internally
2791 * or must have come from an ancestor namespace. In either
2792 * case, the signal cannot be dropped.
2794 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2795 !sig_kernel_only(signr))
2798 if (sig_kernel_stop(signr)) {
2800 * The default action is to stop all threads in
2801 * the thread group. The job control signals
2802 * do nothing in an orphaned pgrp, but SIGSTOP
2803 * always works. Note that siglock needs to be
2804 * dropped during the call to is_orphaned_pgrp()
2805 * because of lock ordering with tasklist_lock.
2806 * This allows an intervening SIGCONT to be posted.
2807 * We need to check for that and bail out if necessary.
2809 if (signr != SIGSTOP) {
2810 spin_unlock_irq(&sighand->siglock);
2812 /* signals can be posted during this window */
2814 if (is_current_pgrp_orphaned())
2817 spin_lock_irq(&sighand->siglock);
2820 if (likely(do_signal_stop(ksig->info.si_signo))) {
2821 /* It released the siglock. */
2826 * We didn't actually stop, due to a race
2827 * with SIGCONT or something like that.
2833 spin_unlock_irq(&sighand->siglock);
2834 if (unlikely(cgroup_task_frozen(current)))
2835 cgroup_leave_frozen(true);
2838 * Anything else is fatal, maybe with a core dump.
2840 current->flags |= PF_SIGNALED;
2842 if (sig_kernel_coredump(signr)) {
2843 if (print_fatal_signals)
2844 print_fatal_signal(ksig->info.si_signo);
2845 proc_coredump_connector(current);
2847 * If it was able to dump core, this kills all
2848 * other threads in the group and synchronizes with
2849 * their demise. If we lost the race with another
2850 * thread getting here, it set group_exit_code
2851 * first and our do_group_exit call below will use
2852 * that value and ignore the one we pass it.
2854 do_coredump(&ksig->info);
2858 * PF_IO_WORKER threads will catch and exit on fatal signals
2859 * themselves. They have cleanup that must be performed, so
2860 * we cannot call do_exit() on their behalf.
2862 if (current->flags & PF_IO_WORKER)
2866 * Death signals, no core dump.
2868 do_group_exit(ksig->info.si_signo);
2871 spin_unlock_irq(&sighand->siglock);
2875 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2876 hide_si_addr_tag_bits(ksig);
2878 return ksig->sig > 0;
2882 * signal_delivered -
2883 * @ksig: kernel signal struct
2884 * @stepping: nonzero if debugger single-step or block-step in use
2886 * This function should be called when a signal has successfully been
2887 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2888 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2889 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2891 static void signal_delivered(struct ksignal *ksig, int stepping)
2895 /* A signal was successfully delivered, and the
2896 saved sigmask was stored on the signal frame,
2897 and will be restored by sigreturn. So we can
2898 simply clear the restore sigmask flag. */
2899 clear_restore_sigmask();
2901 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2902 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2903 sigaddset(&blocked, ksig->sig);
2904 set_current_blocked(&blocked);
2905 if (current->sas_ss_flags & SS_AUTODISARM)
2906 sas_ss_reset(current);
2907 tracehook_signal_handler(stepping);
2910 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2913 force_sigsegv(ksig->sig);
2915 signal_delivered(ksig, stepping);
2919 * It could be that complete_signal() picked us to notify about the
2920 * group-wide signal. Other threads should be notified now to take
2921 * the shared signals in @which since we will not.
2923 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2926 struct task_struct *t;
2928 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2929 if (sigisemptyset(&retarget))
2933 while_each_thread(tsk, t) {
2934 if (t->flags & PF_EXITING)
2937 if (!has_pending_signals(&retarget, &t->blocked))
2939 /* Remove the signals this thread can handle. */
2940 sigandsets(&retarget, &retarget, &t->blocked);
2942 if (!task_sigpending(t))
2943 signal_wake_up(t, 0);
2945 if (sigisemptyset(&retarget))
2950 void exit_signals(struct task_struct *tsk)
2956 * @tsk is about to have PF_EXITING set - lock out users which
2957 * expect stable threadgroup.
2959 cgroup_threadgroup_change_begin(tsk);
2961 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2962 tsk->flags |= PF_EXITING;
2963 cgroup_threadgroup_change_end(tsk);
2967 spin_lock_irq(&tsk->sighand->siglock);
2969 * From now this task is not visible for group-wide signals,
2970 * see wants_signal(), do_signal_stop().
2972 tsk->flags |= PF_EXITING;
2974 cgroup_threadgroup_change_end(tsk);
2976 if (!task_sigpending(tsk))
2979 unblocked = tsk->blocked;
2980 signotset(&unblocked);
2981 retarget_shared_pending(tsk, &unblocked);
2983 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2984 task_participate_group_stop(tsk))
2985 group_stop = CLD_STOPPED;
2987 spin_unlock_irq(&tsk->sighand->siglock);
2990 * If group stop has completed, deliver the notification. This
2991 * should always go to the real parent of the group leader.
2993 if (unlikely(group_stop)) {
2994 read_lock(&tasklist_lock);
2995 do_notify_parent_cldstop(tsk, false, group_stop);
2996 read_unlock(&tasklist_lock);
3001 * System call entry points.
3005 * sys_restart_syscall - restart a system call
3007 SYSCALL_DEFINE0(restart_syscall)
3009 struct restart_block *restart = ¤t->restart_block;
3010 return restart->fn(restart);
3013 long do_no_restart_syscall(struct restart_block *param)
3018 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3020 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3021 sigset_t newblocked;
3022 /* A set of now blocked but previously unblocked signals. */
3023 sigandnsets(&newblocked, newset, ¤t->blocked);
3024 retarget_shared_pending(tsk, &newblocked);
3026 tsk->blocked = *newset;
3027 recalc_sigpending();
3031 * set_current_blocked - change current->blocked mask
3034 * It is wrong to change ->blocked directly, this helper should be used
3035 * to ensure the process can't miss a shared signal we are going to block.
3037 void set_current_blocked(sigset_t *newset)
3039 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3040 __set_current_blocked(newset);
3043 void __set_current_blocked(const sigset_t *newset)
3045 struct task_struct *tsk = current;
3048 * In case the signal mask hasn't changed, there is nothing we need
3049 * to do. The current->blocked shouldn't be modified by other task.
3051 if (sigequalsets(&tsk->blocked, newset))
3054 spin_lock_irq(&tsk->sighand->siglock);
3055 __set_task_blocked(tsk, newset);
3056 spin_unlock_irq(&tsk->sighand->siglock);
3060 * This is also useful for kernel threads that want to temporarily
3061 * (or permanently) block certain signals.
3063 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3064 * interface happily blocks "unblockable" signals like SIGKILL
3067 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3069 struct task_struct *tsk = current;
3072 /* Lockless, only current can change ->blocked, never from irq */
3074 *oldset = tsk->blocked;
3078 sigorsets(&newset, &tsk->blocked, set);
3081 sigandnsets(&newset, &tsk->blocked, set);
3090 __set_current_blocked(&newset);
3093 EXPORT_SYMBOL(sigprocmask);
3096 * The api helps set app-provided sigmasks.
3098 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3099 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3101 * Note that it does set_restore_sigmask() in advance, so it must be always
3102 * paired with restore_saved_sigmask_unless() before return from syscall.
3104 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3110 if (sigsetsize != sizeof(sigset_t))
3112 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3115 set_restore_sigmask();
3116 current->saved_sigmask = current->blocked;
3117 set_current_blocked(&kmask);
3122 #ifdef CONFIG_COMPAT
3123 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3130 if (sigsetsize != sizeof(compat_sigset_t))
3132 if (get_compat_sigset(&kmask, umask))
3135 set_restore_sigmask();
3136 current->saved_sigmask = current->blocked;
3137 set_current_blocked(&kmask);
3144 * sys_rt_sigprocmask - change the list of currently blocked signals
3145 * @how: whether to add, remove, or set signals
3146 * @nset: stores pending signals
3147 * @oset: previous value of signal mask if non-null
3148 * @sigsetsize: size of sigset_t type
3150 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3151 sigset_t __user *, oset, size_t, sigsetsize)
3153 sigset_t old_set, new_set;
3156 /* XXX: Don't preclude handling different sized sigset_t's. */
3157 if (sigsetsize != sizeof(sigset_t))
3160 old_set = current->blocked;
3163 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3165 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3167 error = sigprocmask(how, &new_set, NULL);
3173 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3180 #ifdef CONFIG_COMPAT
3181 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3182 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3184 sigset_t old_set = current->blocked;
3186 /* XXX: Don't preclude handling different sized sigset_t's. */
3187 if (sigsetsize != sizeof(sigset_t))
3193 if (get_compat_sigset(&new_set, nset))
3195 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3197 error = sigprocmask(how, &new_set, NULL);
3201 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3205 static void do_sigpending(sigset_t *set)
3207 spin_lock_irq(¤t->sighand->siglock);
3208 sigorsets(set, ¤t->pending.signal,
3209 ¤t->signal->shared_pending.signal);
3210 spin_unlock_irq(¤t->sighand->siglock);
3212 /* Outside the lock because only this thread touches it. */
3213 sigandsets(set, ¤t->blocked, set);
3217 * sys_rt_sigpending - examine a pending signal that has been raised
3219 * @uset: stores pending signals
3220 * @sigsetsize: size of sigset_t type or larger
3222 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3226 if (sigsetsize > sizeof(*uset))
3229 do_sigpending(&set);
3231 if (copy_to_user(uset, &set, sigsetsize))
3237 #ifdef CONFIG_COMPAT
3238 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3239 compat_size_t, sigsetsize)
3243 if (sigsetsize > sizeof(*uset))
3246 do_sigpending(&set);
3248 return put_compat_sigset(uset, &set, sigsetsize);
3252 static const struct {
3253 unsigned char limit, layout;
3255 [SIGILL] = { NSIGILL, SIL_FAULT },
3256 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3257 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3258 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3259 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3261 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3263 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3264 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3265 [SIGSYS] = { NSIGSYS, SIL_SYS },
3268 static bool known_siginfo_layout(unsigned sig, int si_code)
3270 if (si_code == SI_KERNEL)
3272 else if ((si_code > SI_USER)) {
3273 if (sig_specific_sicodes(sig)) {
3274 if (si_code <= sig_sicodes[sig].limit)
3277 else if (si_code <= NSIGPOLL)
3280 else if (si_code >= SI_DETHREAD)
3282 else if (si_code == SI_ASYNCNL)
3287 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3289 enum siginfo_layout layout = SIL_KILL;
3290 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3291 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3292 (si_code <= sig_sicodes[sig].limit)) {
3293 layout = sig_sicodes[sig].layout;
3294 /* Handle the exceptions */
3295 if ((sig == SIGBUS) &&
3296 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3297 layout = SIL_FAULT_MCEERR;
3298 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3299 layout = SIL_FAULT_BNDERR;
3301 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3302 layout = SIL_FAULT_PKUERR;
3304 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3305 layout = SIL_FAULT_PERF_EVENT;
3306 else if (IS_ENABLED(CONFIG_SPARC) &&
3307 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3308 layout = SIL_FAULT_TRAPNO;
3309 else if (IS_ENABLED(CONFIG_ALPHA) &&
3311 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3312 layout = SIL_FAULT_TRAPNO;
3314 else if (si_code <= NSIGPOLL)
3317 if (si_code == SI_TIMER)
3319 else if (si_code == SI_SIGIO)
3321 else if (si_code < 0)
3327 static inline char __user *si_expansion(const siginfo_t __user *info)
3329 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3332 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3334 char __user *expansion = si_expansion(to);
3335 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3337 if (clear_user(expansion, SI_EXPANSION_SIZE))
3342 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3343 const siginfo_t __user *from)
3345 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3346 char __user *expansion = si_expansion(from);
3347 char buf[SI_EXPANSION_SIZE];
3350 * An unknown si_code might need more than
3351 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3352 * extra bytes are 0. This guarantees copy_siginfo_to_user
3353 * will return this data to userspace exactly.
3355 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3357 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3365 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3366 const siginfo_t __user *from)
3368 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3370 to->si_signo = signo;
3371 return post_copy_siginfo_from_user(to, from);
3374 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3376 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3378 return post_copy_siginfo_from_user(to, from);
3381 #ifdef CONFIG_COMPAT
3383 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3384 * @to: compat siginfo destination
3385 * @from: kernel siginfo source
3387 * Note: This function does not work properly for the SIGCHLD on x32, but
3388 * fortunately it doesn't have to. The only valid callers for this function are
3389 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3390 * The latter does not care because SIGCHLD will never cause a coredump.
3392 void copy_siginfo_to_external32(struct compat_siginfo *to,
3393 const struct kernel_siginfo *from)
3395 memset(to, 0, sizeof(*to));
3397 to->si_signo = from->si_signo;
3398 to->si_errno = from->si_errno;
3399 to->si_code = from->si_code;
3400 switch(siginfo_layout(from->si_signo, from->si_code)) {
3402 to->si_pid = from->si_pid;
3403 to->si_uid = from->si_uid;
3406 to->si_tid = from->si_tid;
3407 to->si_overrun = from->si_overrun;
3408 to->si_int = from->si_int;
3411 to->si_band = from->si_band;
3412 to->si_fd = from->si_fd;
3415 to->si_addr = ptr_to_compat(from->si_addr);
3417 case SIL_FAULT_TRAPNO:
3418 to->si_addr = ptr_to_compat(from->si_addr);
3419 to->si_trapno = from->si_trapno;
3421 case SIL_FAULT_MCEERR:
3422 to->si_addr = ptr_to_compat(from->si_addr);
3423 to->si_addr_lsb = from->si_addr_lsb;
3425 case SIL_FAULT_BNDERR:
3426 to->si_addr = ptr_to_compat(from->si_addr);
3427 to->si_lower = ptr_to_compat(from->si_lower);
3428 to->si_upper = ptr_to_compat(from->si_upper);
3430 case SIL_FAULT_PKUERR:
3431 to->si_addr = ptr_to_compat(from->si_addr);
3432 to->si_pkey = from->si_pkey;
3434 case SIL_FAULT_PERF_EVENT:
3435 to->si_addr = ptr_to_compat(from->si_addr);
3436 to->si_perf_data = from->si_perf_data;
3437 to->si_perf_type = from->si_perf_type;
3440 to->si_pid = from->si_pid;
3441 to->si_uid = from->si_uid;
3442 to->si_status = from->si_status;
3443 to->si_utime = from->si_utime;
3444 to->si_stime = from->si_stime;
3447 to->si_pid = from->si_pid;
3448 to->si_uid = from->si_uid;
3449 to->si_int = from->si_int;
3452 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3453 to->si_syscall = from->si_syscall;
3454 to->si_arch = from->si_arch;
3459 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3460 const struct kernel_siginfo *from)
3462 struct compat_siginfo new;
3464 copy_siginfo_to_external32(&new, from);
3465 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3470 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3471 const struct compat_siginfo *from)
3474 to->si_signo = from->si_signo;
3475 to->si_errno = from->si_errno;
3476 to->si_code = from->si_code;
3477 switch(siginfo_layout(from->si_signo, from->si_code)) {
3479 to->si_pid = from->si_pid;
3480 to->si_uid = from->si_uid;
3483 to->si_tid = from->si_tid;
3484 to->si_overrun = from->si_overrun;
3485 to->si_int = from->si_int;
3488 to->si_band = from->si_band;
3489 to->si_fd = from->si_fd;
3492 to->si_addr = compat_ptr(from->si_addr);
3494 case SIL_FAULT_TRAPNO:
3495 to->si_addr = compat_ptr(from->si_addr);
3496 to->si_trapno = from->si_trapno;
3498 case SIL_FAULT_MCEERR:
3499 to->si_addr = compat_ptr(from->si_addr);
3500 to->si_addr_lsb = from->si_addr_lsb;
3502 case SIL_FAULT_BNDERR:
3503 to->si_addr = compat_ptr(from->si_addr);
3504 to->si_lower = compat_ptr(from->si_lower);
3505 to->si_upper = compat_ptr(from->si_upper);
3507 case SIL_FAULT_PKUERR:
3508 to->si_addr = compat_ptr(from->si_addr);
3509 to->si_pkey = from->si_pkey;
3511 case SIL_FAULT_PERF_EVENT:
3512 to->si_addr = compat_ptr(from->si_addr);
3513 to->si_perf_data = from->si_perf_data;
3514 to->si_perf_type = from->si_perf_type;
3517 to->si_pid = from->si_pid;
3518 to->si_uid = from->si_uid;
3519 to->si_status = from->si_status;
3520 #ifdef CONFIG_X86_X32_ABI
3521 if (in_x32_syscall()) {
3522 to->si_utime = from->_sifields._sigchld_x32._utime;
3523 to->si_stime = from->_sifields._sigchld_x32._stime;
3527 to->si_utime = from->si_utime;
3528 to->si_stime = from->si_stime;
3532 to->si_pid = from->si_pid;
3533 to->si_uid = from->si_uid;
3534 to->si_int = from->si_int;
3537 to->si_call_addr = compat_ptr(from->si_call_addr);
3538 to->si_syscall = from->si_syscall;
3539 to->si_arch = from->si_arch;
3545 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3546 const struct compat_siginfo __user *ufrom)
3548 struct compat_siginfo from;
3550 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3553 from.si_signo = signo;
3554 return post_copy_siginfo_from_user32(to, &from);
3557 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3558 const struct compat_siginfo __user *ufrom)
3560 struct compat_siginfo from;
3562 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3565 return post_copy_siginfo_from_user32(to, &from);
3567 #endif /* CONFIG_COMPAT */
3570 * do_sigtimedwait - wait for queued signals specified in @which
3571 * @which: queued signals to wait for
3572 * @info: if non-null, the signal's siginfo is returned here
3573 * @ts: upper bound on process time suspension
3575 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3576 const struct timespec64 *ts)
3578 ktime_t *to = NULL, timeout = KTIME_MAX;
3579 struct task_struct *tsk = current;
3580 sigset_t mask = *which;
3584 if (!timespec64_valid(ts))
3586 timeout = timespec64_to_ktime(*ts);
3591 * Invert the set of allowed signals to get those we want to block.
3593 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3596 spin_lock_irq(&tsk->sighand->siglock);
3597 sig = dequeue_signal(tsk, &mask, info);
3598 if (!sig && timeout) {
3600 * None ready, temporarily unblock those we're interested
3601 * while we are sleeping in so that we'll be awakened when
3602 * they arrive. Unblocking is always fine, we can avoid
3603 * set_current_blocked().
3605 tsk->real_blocked = tsk->blocked;
3606 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3607 recalc_sigpending();
3608 spin_unlock_irq(&tsk->sighand->siglock);
3610 __set_current_state(TASK_INTERRUPTIBLE);
3611 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3613 spin_lock_irq(&tsk->sighand->siglock);
3614 __set_task_blocked(tsk, &tsk->real_blocked);
3615 sigemptyset(&tsk->real_blocked);
3616 sig = dequeue_signal(tsk, &mask, info);
3618 spin_unlock_irq(&tsk->sighand->siglock);
3622 return ret ? -EINTR : -EAGAIN;
3626 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3628 * @uthese: queued signals to wait for
3629 * @uinfo: if non-null, the signal's siginfo is returned here
3630 * @uts: upper bound on process time suspension
3631 * @sigsetsize: size of sigset_t type
3633 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3634 siginfo_t __user *, uinfo,
3635 const struct __kernel_timespec __user *, uts,
3639 struct timespec64 ts;
3640 kernel_siginfo_t info;
3643 /* XXX: Don't preclude handling different sized sigset_t's. */
3644 if (sigsetsize != sizeof(sigset_t))
3647 if (copy_from_user(&these, uthese, sizeof(these)))
3651 if (get_timespec64(&ts, uts))
3655 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3657 if (ret > 0 && uinfo) {
3658 if (copy_siginfo_to_user(uinfo, &info))
3665 #ifdef CONFIG_COMPAT_32BIT_TIME
3666 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3667 siginfo_t __user *, uinfo,
3668 const struct old_timespec32 __user *, uts,
3672 struct timespec64 ts;
3673 kernel_siginfo_t info;
3676 if (sigsetsize != sizeof(sigset_t))
3679 if (copy_from_user(&these, uthese, sizeof(these)))
3683 if (get_old_timespec32(&ts, uts))
3687 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3689 if (ret > 0 && uinfo) {
3690 if (copy_siginfo_to_user(uinfo, &info))
3698 #ifdef CONFIG_COMPAT
3699 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3700 struct compat_siginfo __user *, uinfo,
3701 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3704 struct timespec64 t;
3705 kernel_siginfo_t info;
3708 if (sigsetsize != sizeof(sigset_t))
3711 if (get_compat_sigset(&s, uthese))
3715 if (get_timespec64(&t, uts))
3719 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3721 if (ret > 0 && uinfo) {
3722 if (copy_siginfo_to_user32(uinfo, &info))
3729 #ifdef CONFIG_COMPAT_32BIT_TIME
3730 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3731 struct compat_siginfo __user *, uinfo,
3732 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3735 struct timespec64 t;
3736 kernel_siginfo_t info;
3739 if (sigsetsize != sizeof(sigset_t))
3742 if (get_compat_sigset(&s, uthese))
3746 if (get_old_timespec32(&t, uts))
3750 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3752 if (ret > 0 && uinfo) {
3753 if (copy_siginfo_to_user32(uinfo, &info))
3762 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3764 clear_siginfo(info);
3765 info->si_signo = sig;
3767 info->si_code = SI_USER;
3768 info->si_pid = task_tgid_vnr(current);
3769 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3773 * sys_kill - send a signal to a process
3774 * @pid: the PID of the process
3775 * @sig: signal to be sent
3777 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3779 struct kernel_siginfo info;
3781 prepare_kill_siginfo(sig, &info);
3783 return kill_something_info(sig, &info, pid);
3787 * Verify that the signaler and signalee either are in the same pid namespace
3788 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3791 static bool access_pidfd_pidns(struct pid *pid)
3793 struct pid_namespace *active = task_active_pid_ns(current);
3794 struct pid_namespace *p = ns_of_pid(pid);
3807 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3808 siginfo_t __user *info)
3810 #ifdef CONFIG_COMPAT
3812 * Avoid hooking up compat syscalls and instead handle necessary
3813 * conversions here. Note, this is a stop-gap measure and should not be
3814 * considered a generic solution.
3816 if (in_compat_syscall())
3817 return copy_siginfo_from_user32(
3818 kinfo, (struct compat_siginfo __user *)info);
3820 return copy_siginfo_from_user(kinfo, info);
3823 static struct pid *pidfd_to_pid(const struct file *file)
3827 pid = pidfd_pid(file);
3831 return tgid_pidfd_to_pid(file);
3835 * sys_pidfd_send_signal - Signal a process through a pidfd
3836 * @pidfd: file descriptor of the process
3837 * @sig: signal to send
3838 * @info: signal info
3839 * @flags: future flags
3841 * The syscall currently only signals via PIDTYPE_PID which covers
3842 * kill(<positive-pid>, <signal>. It does not signal threads or process
3844 * In order to extend the syscall to threads and process groups the @flags
3845 * argument should be used. In essence, the @flags argument will determine
3846 * what is signaled and not the file descriptor itself. Put in other words,
3847 * grouping is a property of the flags argument not a property of the file
3850 * Return: 0 on success, negative errno on failure
3852 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3853 siginfo_t __user *, info, unsigned int, flags)
3858 kernel_siginfo_t kinfo;
3860 /* Enforce flags be set to 0 until we add an extension. */
3868 /* Is this a pidfd? */
3869 pid = pidfd_to_pid(f.file);
3876 if (!access_pidfd_pidns(pid))
3880 ret = copy_siginfo_from_user_any(&kinfo, info);
3885 if (unlikely(sig != kinfo.si_signo))
3888 /* Only allow sending arbitrary signals to yourself. */
3890 if ((task_pid(current) != pid) &&
3891 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3894 prepare_kill_siginfo(sig, &kinfo);
3897 ret = kill_pid_info(sig, &kinfo, pid);
3905 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3907 struct task_struct *p;
3911 p = find_task_by_vpid(pid);
3912 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3913 error = check_kill_permission(sig, info, p);
3915 * The null signal is a permissions and process existence
3916 * probe. No signal is actually delivered.
3918 if (!error && sig) {
3919 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3921 * If lock_task_sighand() failed we pretend the task
3922 * dies after receiving the signal. The window is tiny,
3923 * and the signal is private anyway.
3925 if (unlikely(error == -ESRCH))
3934 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3936 struct kernel_siginfo info;
3938 clear_siginfo(&info);
3939 info.si_signo = sig;
3941 info.si_code = SI_TKILL;
3942 info.si_pid = task_tgid_vnr(current);
3943 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3945 return do_send_specific(tgid, pid, sig, &info);
3949 * sys_tgkill - send signal to one specific thread
3950 * @tgid: the thread group ID of the thread
3951 * @pid: the PID of the thread
3952 * @sig: signal to be sent
3954 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3955 * exists but it's not belonging to the target process anymore. This
3956 * method solves the problem of threads exiting and PIDs getting reused.
3958 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3960 /* This is only valid for single tasks */
3961 if (pid <= 0 || tgid <= 0)
3964 return do_tkill(tgid, pid, sig);
3968 * sys_tkill - send signal to one specific task
3969 * @pid: the PID of the task
3970 * @sig: signal to be sent
3972 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3974 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3976 /* This is only valid for single tasks */
3980 return do_tkill(0, pid, sig);
3983 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3985 /* Not even root can pretend to send signals from the kernel.
3986 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3988 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3989 (task_pid_vnr(current) != pid))
3992 /* POSIX.1b doesn't mention process groups. */
3993 return kill_proc_info(sig, info, pid);
3997 * sys_rt_sigqueueinfo - send signal information to a signal
3998 * @pid: the PID of the thread
3999 * @sig: signal to be sent
4000 * @uinfo: signal info to be sent
4002 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4003 siginfo_t __user *, uinfo)
4005 kernel_siginfo_t info;
4006 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4009 return do_rt_sigqueueinfo(pid, sig, &info);
4012 #ifdef CONFIG_COMPAT
4013 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4016 struct compat_siginfo __user *, uinfo)
4018 kernel_siginfo_t info;
4019 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4022 return do_rt_sigqueueinfo(pid, sig, &info);
4026 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4028 /* This is only valid for single tasks */
4029 if (pid <= 0 || tgid <= 0)
4032 /* Not even root can pretend to send signals from the kernel.
4033 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4035 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4036 (task_pid_vnr(current) != pid))
4039 return do_send_specific(tgid, pid, sig, info);
4042 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4043 siginfo_t __user *, uinfo)
4045 kernel_siginfo_t info;
4046 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4049 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4052 #ifdef CONFIG_COMPAT
4053 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4057 struct compat_siginfo __user *, uinfo)
4059 kernel_siginfo_t info;
4060 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4063 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4068 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4070 void kernel_sigaction(int sig, __sighandler_t action)
4072 spin_lock_irq(¤t->sighand->siglock);
4073 current->sighand->action[sig - 1].sa.sa_handler = action;
4074 if (action == SIG_IGN) {
4078 sigaddset(&mask, sig);
4080 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4081 flush_sigqueue_mask(&mask, ¤t->pending);
4082 recalc_sigpending();
4084 spin_unlock_irq(¤t->sighand->siglock);
4086 EXPORT_SYMBOL(kernel_sigaction);
4088 void __weak sigaction_compat_abi(struct k_sigaction *act,
4089 struct k_sigaction *oact)
4093 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4095 struct task_struct *p = current, *t;
4096 struct k_sigaction *k;
4099 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4102 k = &p->sighand->action[sig-1];
4104 spin_lock_irq(&p->sighand->siglock);
4109 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4110 * e.g. by having an architecture use the bit in their uapi.
4112 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4115 * Clear unknown flag bits in order to allow userspace to detect missing
4116 * support for flag bits and to allow the kernel to use non-uapi bits
4120 act->sa.sa_flags &= UAPI_SA_FLAGS;
4122 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4124 sigaction_compat_abi(act, oact);
4127 sigdelsetmask(&act->sa.sa_mask,
4128 sigmask(SIGKILL) | sigmask(SIGSTOP));
4132 * "Setting a signal action to SIG_IGN for a signal that is
4133 * pending shall cause the pending signal to be discarded,
4134 * whether or not it is blocked."
4136 * "Setting a signal action to SIG_DFL for a signal that is
4137 * pending and whose default action is to ignore the signal
4138 * (for example, SIGCHLD), shall cause the pending signal to
4139 * be discarded, whether or not it is blocked"
4141 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4143 sigaddset(&mask, sig);
4144 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4145 for_each_thread(p, t)
4146 flush_sigqueue_mask(&mask, &t->pending);
4150 spin_unlock_irq(&p->sighand->siglock);
4155 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4158 struct task_struct *t = current;
4161 memset(oss, 0, sizeof(stack_t));
4162 oss->ss_sp = (void __user *) t->sas_ss_sp;
4163 oss->ss_size = t->sas_ss_size;
4164 oss->ss_flags = sas_ss_flags(sp) |
4165 (current->sas_ss_flags & SS_FLAG_BITS);
4169 void __user *ss_sp = ss->ss_sp;
4170 size_t ss_size = ss->ss_size;
4171 unsigned ss_flags = ss->ss_flags;
4174 if (unlikely(on_sig_stack(sp)))
4177 ss_mode = ss_flags & ~SS_FLAG_BITS;
4178 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4182 if (ss_mode == SS_DISABLE) {
4186 if (unlikely(ss_size < min_ss_size))
4190 t->sas_ss_sp = (unsigned long) ss_sp;
4191 t->sas_ss_size = ss_size;
4192 t->sas_ss_flags = ss_flags;
4197 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4201 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4203 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4204 current_user_stack_pointer(),
4206 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4211 int restore_altstack(const stack_t __user *uss)
4214 if (copy_from_user(&new, uss, sizeof(stack_t)))
4216 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4218 /* squash all but EFAULT for now */
4222 int __save_altstack(stack_t __user *uss, unsigned long sp)
4224 struct task_struct *t = current;
4225 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4226 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4227 __put_user(t->sas_ss_size, &uss->ss_size);
4231 #ifdef CONFIG_COMPAT
4232 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4233 compat_stack_t __user *uoss_ptr)
4239 compat_stack_t uss32;
4240 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4242 uss.ss_sp = compat_ptr(uss32.ss_sp);
4243 uss.ss_flags = uss32.ss_flags;
4244 uss.ss_size = uss32.ss_size;
4246 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4247 compat_user_stack_pointer(),
4248 COMPAT_MINSIGSTKSZ);
4249 if (ret >= 0 && uoss_ptr) {
4251 memset(&old, 0, sizeof(old));
4252 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4253 old.ss_flags = uoss.ss_flags;
4254 old.ss_size = uoss.ss_size;
4255 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4261 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4262 const compat_stack_t __user *, uss_ptr,
4263 compat_stack_t __user *, uoss_ptr)
4265 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4268 int compat_restore_altstack(const compat_stack_t __user *uss)
4270 int err = do_compat_sigaltstack(uss, NULL);
4271 /* squash all but -EFAULT for now */
4272 return err == -EFAULT ? err : 0;
4275 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4278 struct task_struct *t = current;
4279 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4281 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4282 __put_user(t->sas_ss_size, &uss->ss_size);
4287 #ifdef __ARCH_WANT_SYS_SIGPENDING
4290 * sys_sigpending - examine pending signals
4291 * @uset: where mask of pending signal is returned
4293 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4297 if (sizeof(old_sigset_t) > sizeof(*uset))
4300 do_sigpending(&set);
4302 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4308 #ifdef CONFIG_COMPAT
4309 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4313 do_sigpending(&set);
4315 return put_user(set.sig[0], set32);
4321 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4323 * sys_sigprocmask - examine and change blocked signals
4324 * @how: whether to add, remove, or set signals
4325 * @nset: signals to add or remove (if non-null)
4326 * @oset: previous value of signal mask if non-null
4328 * Some platforms have their own version with special arguments;
4329 * others support only sys_rt_sigprocmask.
4332 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4333 old_sigset_t __user *, oset)
4335 old_sigset_t old_set, new_set;
4336 sigset_t new_blocked;
4338 old_set = current->blocked.sig[0];
4341 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4344 new_blocked = current->blocked;
4348 sigaddsetmask(&new_blocked, new_set);
4351 sigdelsetmask(&new_blocked, new_set);
4354 new_blocked.sig[0] = new_set;
4360 set_current_blocked(&new_blocked);
4364 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4370 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4372 #ifndef CONFIG_ODD_RT_SIGACTION
4374 * sys_rt_sigaction - alter an action taken by a process
4375 * @sig: signal to be sent
4376 * @act: new sigaction
4377 * @oact: used to save the previous sigaction
4378 * @sigsetsize: size of sigset_t type
4380 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4381 const struct sigaction __user *, act,
4382 struct sigaction __user *, oact,
4385 struct k_sigaction new_sa, old_sa;
4388 /* XXX: Don't preclude handling different sized sigset_t's. */
4389 if (sigsetsize != sizeof(sigset_t))
4392 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4395 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4399 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4404 #ifdef CONFIG_COMPAT
4405 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4406 const struct compat_sigaction __user *, act,
4407 struct compat_sigaction __user *, oact,
4408 compat_size_t, sigsetsize)
4410 struct k_sigaction new_ka, old_ka;
4411 #ifdef __ARCH_HAS_SA_RESTORER
4412 compat_uptr_t restorer;
4416 /* XXX: Don't preclude handling different sized sigset_t's. */
4417 if (sigsetsize != sizeof(compat_sigset_t))
4421 compat_uptr_t handler;
4422 ret = get_user(handler, &act->sa_handler);
4423 new_ka.sa.sa_handler = compat_ptr(handler);
4424 #ifdef __ARCH_HAS_SA_RESTORER
4425 ret |= get_user(restorer, &act->sa_restorer);
4426 new_ka.sa.sa_restorer = compat_ptr(restorer);
4428 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4429 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4434 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4436 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4438 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4439 sizeof(oact->sa_mask));
4440 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4441 #ifdef __ARCH_HAS_SA_RESTORER
4442 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4443 &oact->sa_restorer);
4449 #endif /* !CONFIG_ODD_RT_SIGACTION */
4451 #ifdef CONFIG_OLD_SIGACTION
4452 SYSCALL_DEFINE3(sigaction, int, sig,
4453 const struct old_sigaction __user *, act,
4454 struct old_sigaction __user *, oact)
4456 struct k_sigaction new_ka, old_ka;
4461 if (!access_ok(act, sizeof(*act)) ||
4462 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4463 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4464 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4465 __get_user(mask, &act->sa_mask))
4467 #ifdef __ARCH_HAS_KA_RESTORER
4468 new_ka.ka_restorer = NULL;
4470 siginitset(&new_ka.sa.sa_mask, mask);
4473 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4476 if (!access_ok(oact, sizeof(*oact)) ||
4477 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4478 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4479 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4480 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4487 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4488 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4489 const struct compat_old_sigaction __user *, act,
4490 struct compat_old_sigaction __user *, oact)
4492 struct k_sigaction new_ka, old_ka;
4494 compat_old_sigset_t mask;
4495 compat_uptr_t handler, restorer;
4498 if (!access_ok(act, sizeof(*act)) ||
4499 __get_user(handler, &act->sa_handler) ||
4500 __get_user(restorer, &act->sa_restorer) ||
4501 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4502 __get_user(mask, &act->sa_mask))
4505 #ifdef __ARCH_HAS_KA_RESTORER
4506 new_ka.ka_restorer = NULL;
4508 new_ka.sa.sa_handler = compat_ptr(handler);
4509 new_ka.sa.sa_restorer = compat_ptr(restorer);
4510 siginitset(&new_ka.sa.sa_mask, mask);
4513 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4516 if (!access_ok(oact, sizeof(*oact)) ||
4517 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4518 &oact->sa_handler) ||
4519 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4520 &oact->sa_restorer) ||
4521 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4522 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4529 #ifdef CONFIG_SGETMASK_SYSCALL
4532 * For backwards compatibility. Functionality superseded by sigprocmask.
4534 SYSCALL_DEFINE0(sgetmask)
4537 return current->blocked.sig[0];
4540 SYSCALL_DEFINE1(ssetmask, int, newmask)
4542 int old = current->blocked.sig[0];
4545 siginitset(&newset, newmask);
4546 set_current_blocked(&newset);
4550 #endif /* CONFIG_SGETMASK_SYSCALL */
4552 #ifdef __ARCH_WANT_SYS_SIGNAL
4554 * For backwards compatibility. Functionality superseded by sigaction.
4556 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4558 struct k_sigaction new_sa, old_sa;
4561 new_sa.sa.sa_handler = handler;
4562 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4563 sigemptyset(&new_sa.sa.sa_mask);
4565 ret = do_sigaction(sig, &new_sa, &old_sa);
4567 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4569 #endif /* __ARCH_WANT_SYS_SIGNAL */
4571 #ifdef __ARCH_WANT_SYS_PAUSE
4573 SYSCALL_DEFINE0(pause)
4575 while (!signal_pending(current)) {
4576 __set_current_state(TASK_INTERRUPTIBLE);
4579 return -ERESTARTNOHAND;
4584 static int sigsuspend(sigset_t *set)
4586 current->saved_sigmask = current->blocked;
4587 set_current_blocked(set);
4589 while (!signal_pending(current)) {
4590 __set_current_state(TASK_INTERRUPTIBLE);
4593 set_restore_sigmask();
4594 return -ERESTARTNOHAND;
4598 * sys_rt_sigsuspend - replace the signal mask for a value with the
4599 * @unewset value until a signal is received
4600 * @unewset: new signal mask value
4601 * @sigsetsize: size of sigset_t type
4603 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4607 /* XXX: Don't preclude handling different sized sigset_t's. */
4608 if (sigsetsize != sizeof(sigset_t))
4611 if (copy_from_user(&newset, unewset, sizeof(newset)))
4613 return sigsuspend(&newset);
4616 #ifdef CONFIG_COMPAT
4617 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4621 /* XXX: Don't preclude handling different sized sigset_t's. */
4622 if (sigsetsize != sizeof(sigset_t))
4625 if (get_compat_sigset(&newset, unewset))
4627 return sigsuspend(&newset);
4631 #ifdef CONFIG_OLD_SIGSUSPEND
4632 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4635 siginitset(&blocked, mask);
4636 return sigsuspend(&blocked);
4639 #ifdef CONFIG_OLD_SIGSUSPEND3
4640 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4643 siginitset(&blocked, mask);
4644 return sigsuspend(&blocked);
4648 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4653 static inline void siginfo_buildtime_checks(void)
4655 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4657 /* Verify the offsets in the two siginfos match */
4658 #define CHECK_OFFSET(field) \
4659 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4662 CHECK_OFFSET(si_pid);
4663 CHECK_OFFSET(si_uid);
4666 CHECK_OFFSET(si_tid);
4667 CHECK_OFFSET(si_overrun);
4668 CHECK_OFFSET(si_value);
4671 CHECK_OFFSET(si_pid);
4672 CHECK_OFFSET(si_uid);
4673 CHECK_OFFSET(si_value);
4676 CHECK_OFFSET(si_pid);
4677 CHECK_OFFSET(si_uid);
4678 CHECK_OFFSET(si_status);
4679 CHECK_OFFSET(si_utime);
4680 CHECK_OFFSET(si_stime);
4683 CHECK_OFFSET(si_addr);
4684 CHECK_OFFSET(si_trapno);
4685 CHECK_OFFSET(si_addr_lsb);
4686 CHECK_OFFSET(si_lower);
4687 CHECK_OFFSET(si_upper);
4688 CHECK_OFFSET(si_pkey);
4689 CHECK_OFFSET(si_perf_data);
4690 CHECK_OFFSET(si_perf_type);
4693 CHECK_OFFSET(si_band);
4694 CHECK_OFFSET(si_fd);
4697 CHECK_OFFSET(si_call_addr);
4698 CHECK_OFFSET(si_syscall);
4699 CHECK_OFFSET(si_arch);
4703 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4704 offsetof(struct siginfo, si_addr));
4705 if (sizeof(int) == sizeof(void __user *)) {
4706 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4707 sizeof(void __user *));
4709 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4710 sizeof_field(struct siginfo, si_uid)) !=
4711 sizeof(void __user *));
4712 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4713 offsetof(struct siginfo, si_uid));
4715 #ifdef CONFIG_COMPAT
4716 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4717 offsetof(struct compat_siginfo, si_addr));
4718 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4719 sizeof(compat_uptr_t));
4720 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4721 sizeof_field(struct siginfo, si_pid));
4725 void __init signals_init(void)
4727 siginfo_buildtime_checks();
4729 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4732 #ifdef CONFIG_KGDB_KDB
4733 #include <linux/kdb.h>
4735 * kdb_send_sig - Allows kdb to send signals without exposing
4736 * signal internals. This function checks if the required locks are
4737 * available before calling the main signal code, to avoid kdb
4740 void kdb_send_sig(struct task_struct *t, int sig)
4742 static struct task_struct *kdb_prev_t;
4744 if (!spin_trylock(&t->sighand->siglock)) {
4745 kdb_printf("Can't do kill command now.\n"
4746 "The sigmask lock is held somewhere else in "
4747 "kernel, try again later\n");
4750 new_t = kdb_prev_t != t;
4752 if (!task_is_running(t) && new_t) {
4753 spin_unlock(&t->sighand->siglock);
4754 kdb_printf("Process is not RUNNING, sending a signal from "
4755 "kdb risks deadlock\n"
4756 "on the run queue locks. "
4757 "The signal has _not_ been sent.\n"
4758 "Reissue the kill command if you want to risk "
4762 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4763 spin_unlock(&t->sighand->siglock);
4765 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4768 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4770 #endif /* CONFIG_KGDB_KDB */