1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/signal.h>
54 #include <asm/param.h>
55 #include <linux/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/siginfo.h>
58 #include <asm/cacheflush.h>
59 #include <asm/syscall.h> /* for syscall_get_* */
62 * SLAB caches for signal bits.
65 static struct kmem_cache *sigqueue_cachep;
67 int print_fatal_signals __read_mostly;
69 static void __user *sig_handler(struct task_struct *t, int sig)
71 return t->sighand->action[sig - 1].sa.sa_handler;
74 static inline bool sig_handler_ignored(void __user *handler, int sig)
76 /* Is it explicitly or implicitly ignored? */
77 return handler == SIG_IGN ||
78 (handler == SIG_DFL && sig_kernel_ignore(sig));
81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
85 handler = sig_handler(t, sig);
87 /* SIGKILL and SIGSTOP may not be sent to the global init */
88 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
91 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
92 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
95 /* Only allow kernel generated signals to this kthread */
96 if (unlikely((t->flags & PF_KTHREAD) &&
97 (handler == SIG_KTHREAD_KERNEL) && !force))
100 return sig_handler_ignored(handler, sig);
103 static bool sig_ignored(struct task_struct *t, int sig, bool force)
106 * Blocked signals are never ignored, since the
107 * signal handler may change by the time it is
110 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
114 * Tracers may want to know about even ignored signal unless it
115 * is SIGKILL which can't be reported anyway but can be ignored
116 * by SIGNAL_UNKILLABLE task.
118 if (t->ptrace && sig != SIGKILL)
121 return sig_task_ignored(t, sig, force);
125 * Re-calculate pending state from the set of locally pending
126 * signals, globally pending signals, and blocked signals.
128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
133 switch (_NSIG_WORDS) {
135 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
136 ready |= signal->sig[i] &~ blocked->sig[i];
139 case 4: ready = signal->sig[3] &~ blocked->sig[3];
140 ready |= signal->sig[2] &~ blocked->sig[2];
141 ready |= signal->sig[1] &~ blocked->sig[1];
142 ready |= signal->sig[0] &~ blocked->sig[0];
145 case 2: ready = signal->sig[1] &~ blocked->sig[1];
146 ready |= signal->sig[0] &~ blocked->sig[0];
149 case 1: ready = signal->sig[0] &~ blocked->sig[0];
154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
156 static bool recalc_sigpending_tsk(struct task_struct *t)
158 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
159 PENDING(&t->pending, &t->blocked) ||
160 PENDING(&t->signal->shared_pending, &t->blocked) ||
161 cgroup_task_frozen(t)) {
162 set_tsk_thread_flag(t, TIF_SIGPENDING);
167 * We must never clear the flag in another thread, or in current
168 * when it's possible the current syscall is returning -ERESTART*.
169 * So we don't clear it here, and only callers who know they should do.
175 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
176 * This is superfluous when called on current, the wakeup is a harmless no-op.
178 void recalc_sigpending_and_wake(struct task_struct *t)
180 if (recalc_sigpending_tsk(t))
181 signal_wake_up(t, 0);
184 void recalc_sigpending(void)
186 if (!recalc_sigpending_tsk(current) && !freezing(current))
187 clear_thread_flag(TIF_SIGPENDING);
190 EXPORT_SYMBOL(recalc_sigpending);
192 void calculate_sigpending(void)
194 /* Have any signals or users of TIF_SIGPENDING been delayed
197 spin_lock_irq(¤t->sighand->siglock);
198 set_tsk_thread_flag(current, TIF_SIGPENDING);
200 spin_unlock_irq(¤t->sighand->siglock);
203 /* Given the mask, find the first available signal that should be serviced. */
205 #define SYNCHRONOUS_MASK \
206 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
207 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
209 int next_signal(struct sigpending *pending, sigset_t *mask)
211 unsigned long i, *s, *m, x;
214 s = pending->signal.sig;
218 * Handle the first word specially: it contains the
219 * synchronous signals that need to be dequeued first.
223 if (x & SYNCHRONOUS_MASK)
224 x &= SYNCHRONOUS_MASK;
229 switch (_NSIG_WORDS) {
231 for (i = 1; i < _NSIG_WORDS; ++i) {
235 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 sig = ffz(~x) + _NSIG_BPW + 1;
255 static inline void print_dropped_signal(int sig)
257 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
259 if (!print_fatal_signals)
262 if (!__ratelimit(&ratelimit_state))
265 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
266 current->comm, current->pid, sig);
270 * task_set_jobctl_pending - set jobctl pending bits
272 * @mask: pending bits to set
274 * Clear @mask from @task->jobctl. @mask must be subset of
275 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
276 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
277 * cleared. If @task is already being killed or exiting, this function
281 * Must be called with @task->sighand->siglock held.
284 * %true if @mask is set, %false if made noop because @task was dying.
286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
288 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
289 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
290 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
292 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
295 if (mask & JOBCTL_STOP_SIGMASK)
296 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
298 task->jobctl |= mask;
303 * task_clear_jobctl_trapping - clear jobctl trapping bit
306 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
307 * Clear it and wake up the ptracer. Note that we don't need any further
308 * locking. @task->siglock guarantees that @task->parent points to the
312 * Must be called with @task->sighand->siglock held.
314 void task_clear_jobctl_trapping(struct task_struct *task)
316 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
317 task->jobctl &= ~JOBCTL_TRAPPING;
318 smp_mb(); /* advised by wake_up_bit() */
319 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
324 * task_clear_jobctl_pending - clear jobctl pending bits
326 * @mask: pending bits to clear
328 * Clear @mask from @task->jobctl. @mask must be subset of
329 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
330 * STOP bits are cleared together.
332 * If clearing of @mask leaves no stop or trap pending, this function calls
333 * task_clear_jobctl_trapping().
336 * Must be called with @task->sighand->siglock held.
338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
340 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
342 if (mask & JOBCTL_STOP_PENDING)
343 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
345 task->jobctl &= ~mask;
347 if (!(task->jobctl & JOBCTL_PENDING_MASK))
348 task_clear_jobctl_trapping(task);
352 * task_participate_group_stop - participate in a group stop
353 * @task: task participating in a group stop
355 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
356 * Group stop states are cleared and the group stop count is consumed if
357 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
358 * stop, the appropriate `SIGNAL_*` flags are set.
361 * Must be called with @task->sighand->siglock held.
364 * %true if group stop completion should be notified to the parent, %false
367 static bool task_participate_group_stop(struct task_struct *task)
369 struct signal_struct *sig = task->signal;
370 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
372 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
374 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
379 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
380 sig->group_stop_count--;
383 * Tell the caller to notify completion iff we are entering into a
384 * fresh group stop. Read comment in do_signal_stop() for details.
386 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
387 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
393 void task_join_group_stop(struct task_struct *task)
395 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
396 struct signal_struct *sig = current->signal;
398 if (sig->group_stop_count) {
399 sig->group_stop_count++;
400 mask |= JOBCTL_STOP_CONSUME;
401 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
404 /* Have the new thread join an on-going signal group stop */
405 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
409 * allocate a new signal queue record
410 * - this may be called without locks if and only if t == current, otherwise an
411 * appropriate lock must be held to stop the target task from exiting
413 static struct sigqueue *
414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
415 int override_rlimit, const unsigned int sigqueue_flags)
417 struct sigqueue *q = NULL;
418 struct ucounts *ucounts = NULL;
422 * Protect access to @t credentials. This can go away when all
423 * callers hold rcu read lock.
425 * NOTE! A pending signal will hold on to the user refcount,
426 * and we get/put the refcount only when the sigpending count
427 * changes from/to zero.
430 ucounts = task_ucounts(t);
431 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
436 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
437 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
439 print_dropped_signal(sig);
442 if (unlikely(q == NULL)) {
443 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
445 INIT_LIST_HEAD(&q->list);
446 q->flags = sigqueue_flags;
447 q->ucounts = ucounts;
452 static void __sigqueue_free(struct sigqueue *q)
454 if (q->flags & SIGQUEUE_PREALLOC)
457 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
460 kmem_cache_free(sigqueue_cachep, q);
463 void flush_sigqueue(struct sigpending *queue)
467 sigemptyset(&queue->signal);
468 while (!list_empty(&queue->list)) {
469 q = list_entry(queue->list.next, struct sigqueue , list);
470 list_del_init(&q->list);
476 * Flush all pending signals for this kthread.
478 void flush_signals(struct task_struct *t)
482 spin_lock_irqsave(&t->sighand->siglock, flags);
483 clear_tsk_thread_flag(t, TIF_SIGPENDING);
484 flush_sigqueue(&t->pending);
485 flush_sigqueue(&t->signal->shared_pending);
486 spin_unlock_irqrestore(&t->sighand->siglock, flags);
488 EXPORT_SYMBOL(flush_signals);
490 #ifdef CONFIG_POSIX_TIMERS
491 static void __flush_itimer_signals(struct sigpending *pending)
493 sigset_t signal, retain;
494 struct sigqueue *q, *n;
496 signal = pending->signal;
497 sigemptyset(&retain);
499 list_for_each_entry_safe(q, n, &pending->list, list) {
500 int sig = q->info.si_signo;
502 if (likely(q->info.si_code != SI_TIMER)) {
503 sigaddset(&retain, sig);
505 sigdelset(&signal, sig);
506 list_del_init(&q->list);
511 sigorsets(&pending->signal, &signal, &retain);
514 void flush_itimer_signals(void)
516 struct task_struct *tsk = current;
519 spin_lock_irqsave(&tsk->sighand->siglock, flags);
520 __flush_itimer_signals(&tsk->pending);
521 __flush_itimer_signals(&tsk->signal->shared_pending);
522 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
526 void ignore_signals(struct task_struct *t)
530 for (i = 0; i < _NSIG; ++i)
531 t->sighand->action[i].sa.sa_handler = SIG_IGN;
537 * Flush all handlers for a task.
541 flush_signal_handlers(struct task_struct *t, int force_default)
544 struct k_sigaction *ka = &t->sighand->action[0];
545 for (i = _NSIG ; i != 0 ; i--) {
546 if (force_default || ka->sa.sa_handler != SIG_IGN)
547 ka->sa.sa_handler = SIG_DFL;
549 #ifdef __ARCH_HAS_SA_RESTORER
550 ka->sa.sa_restorer = NULL;
552 sigemptyset(&ka->sa.sa_mask);
557 bool unhandled_signal(struct task_struct *tsk, int sig)
559 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
560 if (is_global_init(tsk))
563 if (handler != SIG_IGN && handler != SIG_DFL)
566 /* If dying, we handle all new signals by ignoring them */
567 if (fatal_signal_pending(tsk))
570 /* if ptraced, let the tracer determine */
574 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
577 struct sigqueue *q, *first = NULL;
580 * Collect the siginfo appropriate to this signal. Check if
581 * there is another siginfo for the same signal.
583 list_for_each_entry(q, &list->list, list) {
584 if (q->info.si_signo == sig) {
591 sigdelset(&list->signal, sig);
595 list_del_init(&first->list);
596 copy_siginfo(info, &first->info);
599 (first->flags & SIGQUEUE_PREALLOC) &&
600 (info->si_code == SI_TIMER) &&
601 (info->si_sys_private);
603 __sigqueue_free(first);
606 * Ok, it wasn't in the queue. This must be
607 * a fast-pathed signal or we must have been
608 * out of queue space. So zero out the info.
611 info->si_signo = sig;
613 info->si_code = SI_USER;
619 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
620 kernel_siginfo_t *info, bool *resched_timer)
622 int sig = next_signal(pending, mask);
625 collect_signal(sig, pending, info, resched_timer);
630 * Dequeue a signal and return the element to the caller, which is
631 * expected to free it.
633 * All callers have to hold the siglock.
635 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
636 kernel_siginfo_t *info, enum pid_type *type)
638 bool resched_timer = false;
641 /* We only dequeue private signals from ourselves, we don't let
642 * signalfd steal them
645 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
647 *type = PIDTYPE_TGID;
648 signr = __dequeue_signal(&tsk->signal->shared_pending,
649 mask, info, &resched_timer);
650 #ifdef CONFIG_POSIX_TIMERS
654 * itimers are process shared and we restart periodic
655 * itimers in the signal delivery path to prevent DoS
656 * attacks in the high resolution timer case. This is
657 * compliant with the old way of self-restarting
658 * itimers, as the SIGALRM is a legacy signal and only
659 * queued once. Changing the restart behaviour to
660 * restart the timer in the signal dequeue path is
661 * reducing the timer noise on heavy loaded !highres
664 if (unlikely(signr == SIGALRM)) {
665 struct hrtimer *tmr = &tsk->signal->real_timer;
667 if (!hrtimer_is_queued(tmr) &&
668 tsk->signal->it_real_incr != 0) {
669 hrtimer_forward(tmr, tmr->base->get_time(),
670 tsk->signal->it_real_incr);
671 hrtimer_restart(tmr);
681 if (unlikely(sig_kernel_stop(signr))) {
683 * Set a marker that we have dequeued a stop signal. Our
684 * caller might release the siglock and then the pending
685 * stop signal it is about to process is no longer in the
686 * pending bitmasks, but must still be cleared by a SIGCONT
687 * (and overruled by a SIGKILL). So those cases clear this
688 * shared flag after we've set it. Note that this flag may
689 * remain set after the signal we return is ignored or
690 * handled. That doesn't matter because its only purpose
691 * is to alert stop-signal processing code when another
692 * processor has come along and cleared the flag.
694 current->jobctl |= JOBCTL_STOP_DEQUEUED;
696 #ifdef CONFIG_POSIX_TIMERS
699 * Release the siglock to ensure proper locking order
700 * of timer locks outside of siglocks. Note, we leave
701 * irqs disabled here, since the posix-timers code is
702 * about to disable them again anyway.
704 spin_unlock(&tsk->sighand->siglock);
705 posixtimer_rearm(info);
706 spin_lock(&tsk->sighand->siglock);
708 /* Don't expose the si_sys_private value to userspace */
709 info->si_sys_private = 0;
714 EXPORT_SYMBOL_GPL(dequeue_signal);
716 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
718 struct task_struct *tsk = current;
719 struct sigpending *pending = &tsk->pending;
720 struct sigqueue *q, *sync = NULL;
723 * Might a synchronous signal be in the queue?
725 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
729 * Return the first synchronous signal in the queue.
731 list_for_each_entry(q, &pending->list, list) {
732 /* Synchronous signals have a positive si_code */
733 if ((q->info.si_code > SI_USER) &&
734 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
742 * Check if there is another siginfo for the same signal.
744 list_for_each_entry_continue(q, &pending->list, list) {
745 if (q->info.si_signo == sync->info.si_signo)
749 sigdelset(&pending->signal, sync->info.si_signo);
752 list_del_init(&sync->list);
753 copy_siginfo(info, &sync->info);
754 __sigqueue_free(sync);
755 return info->si_signo;
759 * Tell a process that it has a new active signal..
761 * NOTE! we rely on the previous spin_lock to
762 * lock interrupts for us! We can only be called with
763 * "siglock" held, and the local interrupt must
764 * have been disabled when that got acquired!
766 * No need to set need_resched since signal event passing
767 * goes through ->blocked
769 void signal_wake_up_state(struct task_struct *t, unsigned int state)
771 lockdep_assert_held(&t->sighand->siglock);
773 set_tsk_thread_flag(t, TIF_SIGPENDING);
776 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
777 * case. We don't check t->state here because there is a race with it
778 * executing another processor and just now entering stopped state.
779 * By using wake_up_state, we ensure the process will wake up and
780 * handle its death signal.
782 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
787 * Remove signals in mask from the pending set and queue.
788 * Returns 1 if any signals were found.
790 * All callers must be holding the siglock.
792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
794 struct sigqueue *q, *n;
797 sigandsets(&m, mask, &s->signal);
798 if (sigisemptyset(&m))
801 sigandnsets(&s->signal, &s->signal, mask);
802 list_for_each_entry_safe(q, n, &s->list, list) {
803 if (sigismember(mask, q->info.si_signo)) {
804 list_del_init(&q->list);
810 static inline int is_si_special(const struct kernel_siginfo *info)
812 return info <= SEND_SIG_PRIV;
815 static inline bool si_fromuser(const struct kernel_siginfo *info)
817 return info == SEND_SIG_NOINFO ||
818 (!is_si_special(info) && SI_FROMUSER(info));
822 * called with RCU read lock from check_kill_permission()
824 static bool kill_ok_by_cred(struct task_struct *t)
826 const struct cred *cred = current_cred();
827 const struct cred *tcred = __task_cred(t);
829 return uid_eq(cred->euid, tcred->suid) ||
830 uid_eq(cred->euid, tcred->uid) ||
831 uid_eq(cred->uid, tcred->suid) ||
832 uid_eq(cred->uid, tcred->uid) ||
833 ns_capable(tcred->user_ns, CAP_KILL);
837 * Bad permissions for sending the signal
838 * - the caller must hold the RCU read lock
840 static int check_kill_permission(int sig, struct kernel_siginfo *info,
841 struct task_struct *t)
846 if (!valid_signal(sig))
849 if (!si_fromuser(info))
852 error = audit_signal_info(sig, t); /* Let audit system see the signal */
856 if (!same_thread_group(current, t) &&
857 !kill_ok_by_cred(t)) {
860 sid = task_session(t);
862 * We don't return the error if sid == NULL. The
863 * task was unhashed, the caller must notice this.
865 if (!sid || sid == task_session(current))
873 return security_task_kill(t, info, sig, NULL);
877 * ptrace_trap_notify - schedule trap to notify ptracer
878 * @t: tracee wanting to notify tracer
880 * This function schedules sticky ptrace trap which is cleared on the next
881 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
884 * If @t is running, STOP trap will be taken. If trapped for STOP and
885 * ptracer is listening for events, tracee is woken up so that it can
886 * re-trap for the new event. If trapped otherwise, STOP trap will be
887 * eventually taken without returning to userland after the existing traps
888 * are finished by PTRACE_CONT.
891 * Must be called with @task->sighand->siglock held.
893 static void ptrace_trap_notify(struct task_struct *t)
895 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
896 lockdep_assert_held(&t->sighand->siglock);
898 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
899 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
903 * Handle magic process-wide effects of stop/continue signals. Unlike
904 * the signal actions, these happen immediately at signal-generation
905 * time regardless of blocking, ignoring, or handling. This does the
906 * actual continuing for SIGCONT, but not the actual stopping for stop
907 * signals. The process stop is done as a signal action for SIG_DFL.
909 * Returns true if the signal should be actually delivered, otherwise
910 * it should be dropped.
912 static bool prepare_signal(int sig, struct task_struct *p, bool force)
914 struct signal_struct *signal = p->signal;
915 struct task_struct *t;
918 if (signal->flags & SIGNAL_GROUP_EXIT) {
919 if (signal->core_state)
920 return sig == SIGKILL;
922 * The process is in the middle of dying, drop the signal.
925 } else if (sig_kernel_stop(sig)) {
927 * This is a stop signal. Remove SIGCONT from all queues.
929 siginitset(&flush, sigmask(SIGCONT));
930 flush_sigqueue_mask(&flush, &signal->shared_pending);
931 for_each_thread(p, t)
932 flush_sigqueue_mask(&flush, &t->pending);
933 } else if (sig == SIGCONT) {
936 * Remove all stop signals from all queues, wake all threads.
938 siginitset(&flush, SIG_KERNEL_STOP_MASK);
939 flush_sigqueue_mask(&flush, &signal->shared_pending);
940 for_each_thread(p, t) {
941 flush_sigqueue_mask(&flush, &t->pending);
942 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
943 if (likely(!(t->ptrace & PT_SEIZED))) {
944 t->jobctl &= ~JOBCTL_STOPPED;
945 wake_up_state(t, __TASK_STOPPED);
947 ptrace_trap_notify(t);
951 * Notify the parent with CLD_CONTINUED if we were stopped.
953 * If we were in the middle of a group stop, we pretend it
954 * was already finished, and then continued. Since SIGCHLD
955 * doesn't queue we report only CLD_STOPPED, as if the next
956 * CLD_CONTINUED was dropped.
959 if (signal->flags & SIGNAL_STOP_STOPPED)
960 why |= SIGNAL_CLD_CONTINUED;
961 else if (signal->group_stop_count)
962 why |= SIGNAL_CLD_STOPPED;
966 * The first thread which returns from do_signal_stop()
967 * will take ->siglock, notice SIGNAL_CLD_MASK, and
968 * notify its parent. See get_signal().
970 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
971 signal->group_stop_count = 0;
972 signal->group_exit_code = 0;
976 return !sig_ignored(p, sig, force);
980 * Test if P wants to take SIG. After we've checked all threads with this,
981 * it's equivalent to finding no threads not blocking SIG. Any threads not
982 * blocking SIG were ruled out because they are not running and already
983 * have pending signals. Such threads will dequeue from the shared queue
984 * as soon as they're available, so putting the signal on the shared queue
985 * will be equivalent to sending it to one such thread.
987 static inline bool wants_signal(int sig, struct task_struct *p)
989 if (sigismember(&p->blocked, sig))
992 if (p->flags & PF_EXITING)
998 if (task_is_stopped_or_traced(p))
1001 return task_curr(p) || !task_sigpending(p);
1004 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1006 struct signal_struct *signal = p->signal;
1007 struct task_struct *t;
1010 * Now find a thread we can wake up to take the signal off the queue.
1012 * Try the suggested task first (may or may not be the main thread).
1014 if (wants_signal(sig, p))
1016 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1018 * There is just one thread and it does not need to be woken.
1019 * It will dequeue unblocked signals before it runs again.
1024 * Otherwise try to find a suitable thread.
1026 t = signal->curr_target;
1027 while (!wants_signal(sig, t)) {
1029 if (t == signal->curr_target)
1031 * No thread needs to be woken.
1032 * Any eligible threads will see
1033 * the signal in the queue soon.
1037 signal->curr_target = t;
1041 * Found a killable thread. If the signal will be fatal,
1042 * then start taking the whole group down immediately.
1044 if (sig_fatal(p, sig) &&
1045 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1046 !sigismember(&t->real_blocked, sig) &&
1047 (sig == SIGKILL || !p->ptrace)) {
1049 * This signal will be fatal to the whole group.
1051 if (!sig_kernel_coredump(sig)) {
1053 * Start a group exit and wake everybody up.
1054 * This way we don't have other threads
1055 * running and doing things after a slower
1056 * thread has the fatal signal pending.
1058 signal->flags = SIGNAL_GROUP_EXIT;
1059 signal->group_exit_code = sig;
1060 signal->group_stop_count = 0;
1063 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1064 sigaddset(&t->pending.signal, SIGKILL);
1065 signal_wake_up(t, 1);
1066 } while_each_thread(p, t);
1072 * The signal is already in the shared-pending queue.
1073 * Tell the chosen thread to wake up and dequeue it.
1075 signal_wake_up(t, sig == SIGKILL);
1079 static inline bool legacy_queue(struct sigpending *signals, int sig)
1081 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1084 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1085 struct task_struct *t, enum pid_type type, bool force)
1087 struct sigpending *pending;
1089 int override_rlimit;
1090 int ret = 0, result;
1092 lockdep_assert_held(&t->sighand->siglock);
1094 result = TRACE_SIGNAL_IGNORED;
1095 if (!prepare_signal(sig, t, force))
1098 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1100 * Short-circuit ignored signals and support queuing
1101 * exactly one non-rt signal, so that we can get more
1102 * detailed information about the cause of the signal.
1104 result = TRACE_SIGNAL_ALREADY_PENDING;
1105 if (legacy_queue(pending, sig))
1108 result = TRACE_SIGNAL_DELIVERED;
1110 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1112 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1116 * Real-time signals must be queued if sent by sigqueue, or
1117 * some other real-time mechanism. It is implementation
1118 * defined whether kill() does so. We attempt to do so, on
1119 * the principle of least surprise, but since kill is not
1120 * allowed to fail with EAGAIN when low on memory we just
1121 * make sure at least one signal gets delivered and don't
1122 * pass on the info struct.
1125 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1127 override_rlimit = 0;
1129 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1132 list_add_tail(&q->list, &pending->list);
1133 switch ((unsigned long) info) {
1134 case (unsigned long) SEND_SIG_NOINFO:
1135 clear_siginfo(&q->info);
1136 q->info.si_signo = sig;
1137 q->info.si_errno = 0;
1138 q->info.si_code = SI_USER;
1139 q->info.si_pid = task_tgid_nr_ns(current,
1140 task_active_pid_ns(t));
1143 from_kuid_munged(task_cred_xxx(t, user_ns),
1147 case (unsigned long) SEND_SIG_PRIV:
1148 clear_siginfo(&q->info);
1149 q->info.si_signo = sig;
1150 q->info.si_errno = 0;
1151 q->info.si_code = SI_KERNEL;
1156 copy_siginfo(&q->info, info);
1159 } else if (!is_si_special(info) &&
1160 sig >= SIGRTMIN && info->si_code != SI_USER) {
1162 * Queue overflow, abort. We may abort if the
1163 * signal was rt and sent by user using something
1164 * other than kill().
1166 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1171 * This is a silent loss of information. We still
1172 * send the signal, but the *info bits are lost.
1174 result = TRACE_SIGNAL_LOSE_INFO;
1178 signalfd_notify(t, sig);
1179 sigaddset(&pending->signal, sig);
1181 /* Let multiprocess signals appear after on-going forks */
1182 if (type > PIDTYPE_TGID) {
1183 struct multiprocess_signals *delayed;
1184 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1185 sigset_t *signal = &delayed->signal;
1186 /* Can't queue both a stop and a continue signal */
1188 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1189 else if (sig_kernel_stop(sig))
1190 sigdelset(signal, SIGCONT);
1191 sigaddset(signal, sig);
1195 complete_signal(sig, t, type);
1197 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1201 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1204 switch (siginfo_layout(info->si_signo, info->si_code)) {
1213 case SIL_FAULT_TRAPNO:
1214 case SIL_FAULT_MCEERR:
1215 case SIL_FAULT_BNDERR:
1216 case SIL_FAULT_PKUERR:
1217 case SIL_FAULT_PERF_EVENT:
1225 int send_signal_locked(int sig, struct kernel_siginfo *info,
1226 struct task_struct *t, enum pid_type type)
1228 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1231 if (info == SEND_SIG_NOINFO) {
1232 /* Force if sent from an ancestor pid namespace */
1233 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1234 } else if (info == SEND_SIG_PRIV) {
1235 /* Don't ignore kernel generated signals */
1237 } else if (has_si_pid_and_uid(info)) {
1238 /* SIGKILL and SIGSTOP is special or has ids */
1239 struct user_namespace *t_user_ns;
1242 t_user_ns = task_cred_xxx(t, user_ns);
1243 if (current_user_ns() != t_user_ns) {
1244 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1245 info->si_uid = from_kuid_munged(t_user_ns, uid);
1249 /* A kernel generated signal? */
1250 force = (info->si_code == SI_KERNEL);
1252 /* From an ancestor pid namespace? */
1253 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1258 return __send_signal_locked(sig, info, t, type, force);
1261 static void print_fatal_signal(int signr)
1263 struct pt_regs *regs = task_pt_regs(current);
1264 struct file *exe_file;
1266 exe_file = get_task_exe_file(current);
1268 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1269 exe_file, current->comm, signr);
1272 pr_info("%s: potentially unexpected fatal signal %d.\n",
1273 current->comm, signr);
1276 #if defined(__i386__) && !defined(__arch_um__)
1277 pr_info("code at %08lx: ", regs->ip);
1280 for (i = 0; i < 16; i++) {
1283 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1285 pr_cont("%02x ", insn);
1295 static int __init setup_print_fatal_signals(char *str)
1297 get_option (&str, &print_fatal_signals);
1302 __setup("print-fatal-signals=", setup_print_fatal_signals);
1304 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1307 unsigned long flags;
1310 if (lock_task_sighand(p, &flags)) {
1311 ret = send_signal_locked(sig, info, p, type);
1312 unlock_task_sighand(p, &flags);
1319 HANDLER_CURRENT, /* If reachable use the current handler */
1320 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1321 HANDLER_EXIT, /* Only visible as the process exit code */
1325 * Force a signal that the process can't ignore: if necessary
1326 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1328 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1329 * since we do not want to have a signal handler that was blocked
1330 * be invoked when user space had explicitly blocked it.
1332 * We don't want to have recursive SIGSEGV's etc, for example,
1333 * that is why we also clear SIGNAL_UNKILLABLE.
1336 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1337 enum sig_handler handler)
1339 unsigned long int flags;
1340 int ret, blocked, ignored;
1341 struct k_sigaction *action;
1342 int sig = info->si_signo;
1344 spin_lock_irqsave(&t->sighand->siglock, flags);
1345 action = &t->sighand->action[sig-1];
1346 ignored = action->sa.sa_handler == SIG_IGN;
1347 blocked = sigismember(&t->blocked, sig);
1348 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1349 action->sa.sa_handler = SIG_DFL;
1350 if (handler == HANDLER_EXIT)
1351 action->sa.sa_flags |= SA_IMMUTABLE;
1353 sigdelset(&t->blocked, sig);
1354 recalc_sigpending_and_wake(t);
1358 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1359 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1361 if (action->sa.sa_handler == SIG_DFL &&
1362 (!t->ptrace || (handler == HANDLER_EXIT)))
1363 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1364 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1365 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1370 int force_sig_info(struct kernel_siginfo *info)
1372 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1376 * Nuke all other threads in the group.
1378 int zap_other_threads(struct task_struct *p)
1380 struct task_struct *t = p;
1383 p->signal->group_stop_count = 0;
1385 while_each_thread(p, t) {
1386 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1387 /* Don't require de_thread to wait for the vhost_worker */
1388 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1391 /* Don't bother with already dead threads */
1394 sigaddset(&t->pending.signal, SIGKILL);
1395 signal_wake_up(t, 1);
1401 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1402 unsigned long *flags)
1404 struct sighand_struct *sighand;
1408 sighand = rcu_dereference(tsk->sighand);
1409 if (unlikely(sighand == NULL))
1413 * This sighand can be already freed and even reused, but
1414 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1415 * initializes ->siglock: this slab can't go away, it has
1416 * the same object type, ->siglock can't be reinitialized.
1418 * We need to ensure that tsk->sighand is still the same
1419 * after we take the lock, we can race with de_thread() or
1420 * __exit_signal(). In the latter case the next iteration
1421 * must see ->sighand == NULL.
1423 spin_lock_irqsave(&sighand->siglock, *flags);
1424 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1426 spin_unlock_irqrestore(&sighand->siglock, *flags);
1433 #ifdef CONFIG_LOCKDEP
1434 void lockdep_assert_task_sighand_held(struct task_struct *task)
1436 struct sighand_struct *sighand;
1439 sighand = rcu_dereference(task->sighand);
1441 lockdep_assert_held(&sighand->siglock);
1449 * send signal info to all the members of a group
1451 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1452 struct task_struct *p, enum pid_type type)
1457 ret = check_kill_permission(sig, info, p);
1461 ret = do_send_sig_info(sig, info, p, type);
1467 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1468 * control characters do (^C, ^Z etc)
1469 * - the caller must hold at least a readlock on tasklist_lock
1471 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1473 struct task_struct *p = NULL;
1474 int retval, success;
1478 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1479 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1482 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1483 return success ? 0 : retval;
1486 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1489 struct task_struct *p;
1493 p = pid_task(pid, PIDTYPE_PID);
1495 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1497 if (likely(!p || error != -ESRCH))
1501 * The task was unhashed in between, try again. If it
1502 * is dead, pid_task() will return NULL, if we race with
1503 * de_thread() it will find the new leader.
1508 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1512 error = kill_pid_info(sig, info, find_vpid(pid));
1517 static inline bool kill_as_cred_perm(const struct cred *cred,
1518 struct task_struct *target)
1520 const struct cred *pcred = __task_cred(target);
1522 return uid_eq(cred->euid, pcred->suid) ||
1523 uid_eq(cred->euid, pcred->uid) ||
1524 uid_eq(cred->uid, pcred->suid) ||
1525 uid_eq(cred->uid, pcred->uid);
1529 * The usb asyncio usage of siginfo is wrong. The glibc support
1530 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1531 * AKA after the generic fields:
1532 * kernel_pid_t si_pid;
1533 * kernel_uid32_t si_uid;
1534 * sigval_t si_value;
1536 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1537 * after the generic fields is:
1538 * void __user *si_addr;
1540 * This is a practical problem when there is a 64bit big endian kernel
1541 * and a 32bit userspace. As the 32bit address will encoded in the low
1542 * 32bits of the pointer. Those low 32bits will be stored at higher
1543 * address than appear in a 32 bit pointer. So userspace will not
1544 * see the address it was expecting for it's completions.
1546 * There is nothing in the encoding that can allow
1547 * copy_siginfo_to_user32 to detect this confusion of formats, so
1548 * handle this by requiring the caller of kill_pid_usb_asyncio to
1549 * notice when this situration takes place and to store the 32bit
1550 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1553 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1554 struct pid *pid, const struct cred *cred)
1556 struct kernel_siginfo info;
1557 struct task_struct *p;
1558 unsigned long flags;
1561 if (!valid_signal(sig))
1564 clear_siginfo(&info);
1565 info.si_signo = sig;
1566 info.si_errno = errno;
1567 info.si_code = SI_ASYNCIO;
1568 *((sigval_t *)&info.si_pid) = addr;
1571 p = pid_task(pid, PIDTYPE_PID);
1576 if (!kill_as_cred_perm(cred, p)) {
1580 ret = security_task_kill(p, &info, sig, cred);
1585 if (lock_task_sighand(p, &flags)) {
1586 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1587 unlock_task_sighand(p, &flags);
1595 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1598 * kill_something_info() interprets pid in interesting ways just like kill(2).
1600 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1601 * is probably wrong. Should make it like BSD or SYSV.
1604 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1609 return kill_proc_info(sig, info, pid);
1611 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1615 read_lock(&tasklist_lock);
1617 ret = __kill_pgrp_info(sig, info,
1618 pid ? find_vpid(-pid) : task_pgrp(current));
1620 int retval = 0, count = 0;
1621 struct task_struct * p;
1623 for_each_process(p) {
1624 if (task_pid_vnr(p) > 1 &&
1625 !same_thread_group(p, current)) {
1626 int err = group_send_sig_info(sig, info, p,
1633 ret = count ? retval : -ESRCH;
1635 read_unlock(&tasklist_lock);
1641 * These are for backward compatibility with the rest of the kernel source.
1644 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1647 * Make sure legacy kernel users don't send in bad values
1648 * (normal paths check this in check_kill_permission).
1650 if (!valid_signal(sig))
1653 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1655 EXPORT_SYMBOL(send_sig_info);
1657 #define __si_special(priv) \
1658 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1661 send_sig(int sig, struct task_struct *p, int priv)
1663 return send_sig_info(sig, __si_special(priv), p);
1665 EXPORT_SYMBOL(send_sig);
1667 void force_sig(int sig)
1669 struct kernel_siginfo info;
1671 clear_siginfo(&info);
1672 info.si_signo = sig;
1674 info.si_code = SI_KERNEL;
1677 force_sig_info(&info);
1679 EXPORT_SYMBOL(force_sig);
1681 void force_fatal_sig(int sig)
1683 struct kernel_siginfo info;
1685 clear_siginfo(&info);
1686 info.si_signo = sig;
1688 info.si_code = SI_KERNEL;
1691 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1694 void force_exit_sig(int sig)
1696 struct kernel_siginfo info;
1698 clear_siginfo(&info);
1699 info.si_signo = sig;
1701 info.si_code = SI_KERNEL;
1704 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1708 * When things go south during signal handling, we
1709 * will force a SIGSEGV. And if the signal that caused
1710 * the problem was already a SIGSEGV, we'll want to
1711 * make sure we don't even try to deliver the signal..
1713 void force_sigsegv(int sig)
1716 force_fatal_sig(SIGSEGV);
1721 int force_sig_fault_to_task(int sig, int code, void __user *addr
1722 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1723 , struct task_struct *t)
1725 struct kernel_siginfo info;
1727 clear_siginfo(&info);
1728 info.si_signo = sig;
1730 info.si_code = code;
1731 info.si_addr = addr;
1734 info.si_flags = flags;
1737 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1740 int force_sig_fault(int sig, int code, void __user *addr
1741 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1743 return force_sig_fault_to_task(sig, code, addr
1744 ___ARCH_SI_IA64(imm, flags, isr), current);
1747 int send_sig_fault(int sig, int code, void __user *addr
1748 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1749 , struct task_struct *t)
1751 struct kernel_siginfo info;
1753 clear_siginfo(&info);
1754 info.si_signo = sig;
1756 info.si_code = code;
1757 info.si_addr = addr;
1760 info.si_flags = flags;
1763 return send_sig_info(info.si_signo, &info, t);
1766 int force_sig_mceerr(int code, void __user *addr, short lsb)
1768 struct kernel_siginfo info;
1770 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1771 clear_siginfo(&info);
1772 info.si_signo = SIGBUS;
1774 info.si_code = code;
1775 info.si_addr = addr;
1776 info.si_addr_lsb = lsb;
1777 return force_sig_info(&info);
1780 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1782 struct kernel_siginfo info;
1784 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1785 clear_siginfo(&info);
1786 info.si_signo = SIGBUS;
1788 info.si_code = code;
1789 info.si_addr = addr;
1790 info.si_addr_lsb = lsb;
1791 return send_sig_info(info.si_signo, &info, t);
1793 EXPORT_SYMBOL(send_sig_mceerr);
1795 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1797 struct kernel_siginfo info;
1799 clear_siginfo(&info);
1800 info.si_signo = SIGSEGV;
1802 info.si_code = SEGV_BNDERR;
1803 info.si_addr = addr;
1804 info.si_lower = lower;
1805 info.si_upper = upper;
1806 return force_sig_info(&info);
1810 int force_sig_pkuerr(void __user *addr, u32 pkey)
1812 struct kernel_siginfo info;
1814 clear_siginfo(&info);
1815 info.si_signo = SIGSEGV;
1817 info.si_code = SEGV_PKUERR;
1818 info.si_addr = addr;
1819 info.si_pkey = pkey;
1820 return force_sig_info(&info);
1824 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1826 struct kernel_siginfo info;
1828 clear_siginfo(&info);
1829 info.si_signo = SIGTRAP;
1831 info.si_code = TRAP_PERF;
1832 info.si_addr = addr;
1833 info.si_perf_data = sig_data;
1834 info.si_perf_type = type;
1837 * Signals generated by perf events should not terminate the whole
1838 * process if SIGTRAP is blocked, however, delivering the signal
1839 * asynchronously is better than not delivering at all. But tell user
1840 * space if the signal was asynchronous, so it can clearly be
1841 * distinguished from normal synchronous ones.
1843 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1844 TRAP_PERF_FLAG_ASYNC :
1847 return send_sig_info(info.si_signo, &info, current);
1851 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1852 * @syscall: syscall number to send to userland
1853 * @reason: filter-supplied reason code to send to userland (via si_errno)
1854 * @force_coredump: true to trigger a coredump
1856 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1858 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1860 struct kernel_siginfo info;
1862 clear_siginfo(&info);
1863 info.si_signo = SIGSYS;
1864 info.si_code = SYS_SECCOMP;
1865 info.si_call_addr = (void __user *)KSTK_EIP(current);
1866 info.si_errno = reason;
1867 info.si_arch = syscall_get_arch(current);
1868 info.si_syscall = syscall;
1869 return force_sig_info_to_task(&info, current,
1870 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1873 /* For the crazy architectures that include trap information in
1874 * the errno field, instead of an actual errno value.
1876 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1878 struct kernel_siginfo info;
1880 clear_siginfo(&info);
1881 info.si_signo = SIGTRAP;
1882 info.si_errno = errno;
1883 info.si_code = TRAP_HWBKPT;
1884 info.si_addr = addr;
1885 return force_sig_info(&info);
1888 /* For the rare architectures that include trap information using
1891 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1893 struct kernel_siginfo info;
1895 clear_siginfo(&info);
1896 info.si_signo = sig;
1898 info.si_code = code;
1899 info.si_addr = addr;
1900 info.si_trapno = trapno;
1901 return force_sig_info(&info);
1904 /* For the rare architectures that include trap information using
1907 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1908 struct task_struct *t)
1910 struct kernel_siginfo info;
1912 clear_siginfo(&info);
1913 info.si_signo = sig;
1915 info.si_code = code;
1916 info.si_addr = addr;
1917 info.si_trapno = trapno;
1918 return send_sig_info(info.si_signo, &info, t);
1921 int kill_pgrp(struct pid *pid, int sig, int priv)
1925 read_lock(&tasklist_lock);
1926 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1927 read_unlock(&tasklist_lock);
1931 EXPORT_SYMBOL(kill_pgrp);
1933 int kill_pid(struct pid *pid, int sig, int priv)
1935 return kill_pid_info(sig, __si_special(priv), pid);
1937 EXPORT_SYMBOL(kill_pid);
1940 * These functions support sending signals using preallocated sigqueue
1941 * structures. This is needed "because realtime applications cannot
1942 * afford to lose notifications of asynchronous events, like timer
1943 * expirations or I/O completions". In the case of POSIX Timers
1944 * we allocate the sigqueue structure from the timer_create. If this
1945 * allocation fails we are able to report the failure to the application
1946 * with an EAGAIN error.
1948 struct sigqueue *sigqueue_alloc(void)
1950 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1953 void sigqueue_free(struct sigqueue *q)
1955 unsigned long flags;
1956 spinlock_t *lock = ¤t->sighand->siglock;
1958 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1960 * We must hold ->siglock while testing q->list
1961 * to serialize with collect_signal() or with
1962 * __exit_signal()->flush_sigqueue().
1964 spin_lock_irqsave(lock, flags);
1965 q->flags &= ~SIGQUEUE_PREALLOC;
1967 * If it is queued it will be freed when dequeued,
1968 * like the "regular" sigqueue.
1970 if (!list_empty(&q->list))
1972 spin_unlock_irqrestore(lock, flags);
1978 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1980 int sig = q->info.si_signo;
1981 struct sigpending *pending;
1982 struct task_struct *t;
1983 unsigned long flags;
1986 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1992 * This function is used by POSIX timers to deliver a timer signal.
1993 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1994 * set), the signal must be delivered to the specific thread (queues
1997 * Where type is not PIDTYPE_PID, signals must be delivered to the
1998 * process. In this case, prefer to deliver to current if it is in
1999 * the same thread group as the target process, which avoids
2000 * unnecessarily waking up a potentially idle task.
2002 t = pid_task(pid, type);
2005 if (type != PIDTYPE_PID && same_thread_group(t, current))
2007 if (!likely(lock_task_sighand(t, &flags)))
2010 ret = 1; /* the signal is ignored */
2011 result = TRACE_SIGNAL_IGNORED;
2012 if (!prepare_signal(sig, t, false))
2016 if (unlikely(!list_empty(&q->list))) {
2018 * If an SI_TIMER entry is already queue just increment
2019 * the overrun count.
2021 BUG_ON(q->info.si_code != SI_TIMER);
2022 q->info.si_overrun++;
2023 result = TRACE_SIGNAL_ALREADY_PENDING;
2026 q->info.si_overrun = 0;
2028 signalfd_notify(t, sig);
2029 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2030 list_add_tail(&q->list, &pending->list);
2031 sigaddset(&pending->signal, sig);
2032 complete_signal(sig, t, type);
2033 result = TRACE_SIGNAL_DELIVERED;
2035 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2036 unlock_task_sighand(t, &flags);
2042 static void do_notify_pidfd(struct task_struct *task)
2046 WARN_ON(task->exit_state == 0);
2047 pid = task_pid(task);
2048 wake_up_all(&pid->wait_pidfd);
2052 * Let a parent know about the death of a child.
2053 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2055 * Returns true if our parent ignored us and so we've switched to
2058 bool do_notify_parent(struct task_struct *tsk, int sig)
2060 struct kernel_siginfo info;
2061 unsigned long flags;
2062 struct sighand_struct *psig;
2063 bool autoreap = false;
2066 WARN_ON_ONCE(sig == -1);
2068 /* do_notify_parent_cldstop should have been called instead. */
2069 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2071 WARN_ON_ONCE(!tsk->ptrace &&
2072 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2074 /* Wake up all pidfd waiters */
2075 do_notify_pidfd(tsk);
2077 if (sig != SIGCHLD) {
2079 * This is only possible if parent == real_parent.
2080 * Check if it has changed security domain.
2082 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2086 clear_siginfo(&info);
2087 info.si_signo = sig;
2090 * We are under tasklist_lock here so our parent is tied to
2091 * us and cannot change.
2093 * task_active_pid_ns will always return the same pid namespace
2094 * until a task passes through release_task.
2096 * write_lock() currently calls preempt_disable() which is the
2097 * same as rcu_read_lock(), but according to Oleg, this is not
2098 * correct to rely on this
2101 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2102 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2106 task_cputime(tsk, &utime, &stime);
2107 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2108 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2110 info.si_status = tsk->exit_code & 0x7f;
2111 if (tsk->exit_code & 0x80)
2112 info.si_code = CLD_DUMPED;
2113 else if (tsk->exit_code & 0x7f)
2114 info.si_code = CLD_KILLED;
2116 info.si_code = CLD_EXITED;
2117 info.si_status = tsk->exit_code >> 8;
2120 psig = tsk->parent->sighand;
2121 spin_lock_irqsave(&psig->siglock, flags);
2122 if (!tsk->ptrace && sig == SIGCHLD &&
2123 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2124 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2126 * We are exiting and our parent doesn't care. POSIX.1
2127 * defines special semantics for setting SIGCHLD to SIG_IGN
2128 * or setting the SA_NOCLDWAIT flag: we should be reaped
2129 * automatically and not left for our parent's wait4 call.
2130 * Rather than having the parent do it as a magic kind of
2131 * signal handler, we just set this to tell do_exit that we
2132 * can be cleaned up without becoming a zombie. Note that
2133 * we still call __wake_up_parent in this case, because a
2134 * blocked sys_wait4 might now return -ECHILD.
2136 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2137 * is implementation-defined: we do (if you don't want
2138 * it, just use SIG_IGN instead).
2141 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2145 * Send with __send_signal as si_pid and si_uid are in the
2146 * parent's namespaces.
2148 if (valid_signal(sig) && sig)
2149 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2150 __wake_up_parent(tsk, tsk->parent);
2151 spin_unlock_irqrestore(&psig->siglock, flags);
2157 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2158 * @tsk: task reporting the state change
2159 * @for_ptracer: the notification is for ptracer
2160 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2162 * Notify @tsk's parent that the stopped/continued state has changed. If
2163 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2164 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2167 * Must be called with tasklist_lock at least read locked.
2169 static void do_notify_parent_cldstop(struct task_struct *tsk,
2170 bool for_ptracer, int why)
2172 struct kernel_siginfo info;
2173 unsigned long flags;
2174 struct task_struct *parent;
2175 struct sighand_struct *sighand;
2179 parent = tsk->parent;
2181 tsk = tsk->group_leader;
2182 parent = tsk->real_parent;
2185 clear_siginfo(&info);
2186 info.si_signo = SIGCHLD;
2189 * see comment in do_notify_parent() about the following 4 lines
2192 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2193 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2196 task_cputime(tsk, &utime, &stime);
2197 info.si_utime = nsec_to_clock_t(utime);
2198 info.si_stime = nsec_to_clock_t(stime);
2203 info.si_status = SIGCONT;
2206 info.si_status = tsk->signal->group_exit_code & 0x7f;
2209 info.si_status = tsk->exit_code & 0x7f;
2215 sighand = parent->sighand;
2216 spin_lock_irqsave(&sighand->siglock, flags);
2217 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2218 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2219 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2221 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2223 __wake_up_parent(tsk, parent);
2224 spin_unlock_irqrestore(&sighand->siglock, flags);
2228 * This must be called with current->sighand->siglock held.
2230 * This should be the path for all ptrace stops.
2231 * We always set current->last_siginfo while stopped here.
2232 * That makes it a way to test a stopped process for
2233 * being ptrace-stopped vs being job-control-stopped.
2235 * Returns the signal the ptracer requested the code resume
2236 * with. If the code did not stop because the tracer is gone,
2237 * the stop signal remains unchanged unless clear_code.
2239 static int ptrace_stop(int exit_code, int why, unsigned long message,
2240 kernel_siginfo_t *info)
2241 __releases(¤t->sighand->siglock)
2242 __acquires(¤t->sighand->siglock)
2244 bool gstop_done = false;
2246 if (arch_ptrace_stop_needed()) {
2248 * The arch code has something special to do before a
2249 * ptrace stop. This is allowed to block, e.g. for faults
2250 * on user stack pages. We can't keep the siglock while
2251 * calling arch_ptrace_stop, so we must release it now.
2252 * To preserve proper semantics, we must do this before
2253 * any signal bookkeeping like checking group_stop_count.
2255 spin_unlock_irq(¤t->sighand->siglock);
2257 spin_lock_irq(¤t->sighand->siglock);
2261 * After this point ptrace_signal_wake_up or signal_wake_up
2262 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2263 * signal comes in. Handle previous ptrace_unlinks and fatal
2264 * signals here to prevent ptrace_stop sleeping in schedule.
2266 if (!current->ptrace || __fatal_signal_pending(current))
2269 set_special_state(TASK_TRACED);
2270 current->jobctl |= JOBCTL_TRACED;
2273 * We're committing to trapping. TRACED should be visible before
2274 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2275 * Also, transition to TRACED and updates to ->jobctl should be
2276 * atomic with respect to siglock and should be done after the arch
2277 * hook as siglock is released and regrabbed across it.
2282 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2284 * set_current_state() smp_wmb();
2286 * wait_task_stopped()
2287 * task_stopped_code()
2288 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2292 current->ptrace_message = message;
2293 current->last_siginfo = info;
2294 current->exit_code = exit_code;
2297 * If @why is CLD_STOPPED, we're trapping to participate in a group
2298 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2299 * across siglock relocks since INTERRUPT was scheduled, PENDING
2300 * could be clear now. We act as if SIGCONT is received after
2301 * TASK_TRACED is entered - ignore it.
2303 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2304 gstop_done = task_participate_group_stop(current);
2306 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2307 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2308 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2309 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2311 /* entering a trap, clear TRAPPING */
2312 task_clear_jobctl_trapping(current);
2314 spin_unlock_irq(¤t->sighand->siglock);
2315 read_lock(&tasklist_lock);
2317 * Notify parents of the stop.
2319 * While ptraced, there are two parents - the ptracer and
2320 * the real_parent of the group_leader. The ptracer should
2321 * know about every stop while the real parent is only
2322 * interested in the completion of group stop. The states
2323 * for the two don't interact with each other. Notify
2324 * separately unless they're gonna be duplicates.
2326 if (current->ptrace)
2327 do_notify_parent_cldstop(current, true, why);
2328 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2329 do_notify_parent_cldstop(current, false, why);
2332 * Don't want to allow preemption here, because
2333 * sys_ptrace() needs this task to be inactive.
2335 * XXX: implement read_unlock_no_resched().
2338 read_unlock(&tasklist_lock);
2339 cgroup_enter_frozen();
2340 preempt_enable_no_resched();
2342 cgroup_leave_frozen(true);
2345 * We are back. Now reacquire the siglock before touching
2346 * last_siginfo, so that we are sure to have synchronized with
2347 * any signal-sending on another CPU that wants to examine it.
2349 spin_lock_irq(¤t->sighand->siglock);
2350 exit_code = current->exit_code;
2351 current->last_siginfo = NULL;
2352 current->ptrace_message = 0;
2353 current->exit_code = 0;
2355 /* LISTENING can be set only during STOP traps, clear it */
2356 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2359 * Queued signals ignored us while we were stopped for tracing.
2360 * So check for any that we should take before resuming user mode.
2361 * This sets TIF_SIGPENDING, but never clears it.
2363 recalc_sigpending_tsk(current);
2367 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2369 kernel_siginfo_t info;
2371 clear_siginfo(&info);
2372 info.si_signo = signr;
2373 info.si_code = exit_code;
2374 info.si_pid = task_pid_vnr(current);
2375 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2377 /* Let the debugger run. */
2378 return ptrace_stop(exit_code, why, message, &info);
2381 int ptrace_notify(int exit_code, unsigned long message)
2385 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2386 if (unlikely(task_work_pending(current)))
2389 spin_lock_irq(¤t->sighand->siglock);
2390 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2391 spin_unlock_irq(¤t->sighand->siglock);
2396 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2397 * @signr: signr causing group stop if initiating
2399 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2400 * and participate in it. If already set, participate in the existing
2401 * group stop. If participated in a group stop (and thus slept), %true is
2402 * returned with siglock released.
2404 * If ptraced, this function doesn't handle stop itself. Instead,
2405 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2406 * untouched. The caller must ensure that INTERRUPT trap handling takes
2407 * places afterwards.
2410 * Must be called with @current->sighand->siglock held, which is released
2414 * %false if group stop is already cancelled or ptrace trap is scheduled.
2415 * %true if participated in group stop.
2417 static bool do_signal_stop(int signr)
2418 __releases(¤t->sighand->siglock)
2420 struct signal_struct *sig = current->signal;
2422 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2423 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2424 struct task_struct *t;
2426 /* signr will be recorded in task->jobctl for retries */
2427 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2429 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2430 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2431 unlikely(sig->group_exec_task))
2434 * There is no group stop already in progress. We must
2437 * While ptraced, a task may be resumed while group stop is
2438 * still in effect and then receive a stop signal and
2439 * initiate another group stop. This deviates from the
2440 * usual behavior as two consecutive stop signals can't
2441 * cause two group stops when !ptraced. That is why we
2442 * also check !task_is_stopped(t) below.
2444 * The condition can be distinguished by testing whether
2445 * SIGNAL_STOP_STOPPED is already set. Don't generate
2446 * group_exit_code in such case.
2448 * This is not necessary for SIGNAL_STOP_CONTINUED because
2449 * an intervening stop signal is required to cause two
2450 * continued events regardless of ptrace.
2452 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2453 sig->group_exit_code = signr;
2455 sig->group_stop_count = 0;
2457 if (task_set_jobctl_pending(current, signr | gstop))
2458 sig->group_stop_count++;
2461 while_each_thread(current, t) {
2463 * Setting state to TASK_STOPPED for a group
2464 * stop is always done with the siglock held,
2465 * so this check has no races.
2467 if (!task_is_stopped(t) &&
2468 task_set_jobctl_pending(t, signr | gstop)) {
2469 sig->group_stop_count++;
2470 if (likely(!(t->ptrace & PT_SEIZED)))
2471 signal_wake_up(t, 0);
2473 ptrace_trap_notify(t);
2478 if (likely(!current->ptrace)) {
2482 * If there are no other threads in the group, or if there
2483 * is a group stop in progress and we are the last to stop,
2484 * report to the parent.
2486 if (task_participate_group_stop(current))
2487 notify = CLD_STOPPED;
2489 current->jobctl |= JOBCTL_STOPPED;
2490 set_special_state(TASK_STOPPED);
2491 spin_unlock_irq(¤t->sighand->siglock);
2494 * Notify the parent of the group stop completion. Because
2495 * we're not holding either the siglock or tasklist_lock
2496 * here, ptracer may attach inbetween; however, this is for
2497 * group stop and should always be delivered to the real
2498 * parent of the group leader. The new ptracer will get
2499 * its notification when this task transitions into
2503 read_lock(&tasklist_lock);
2504 do_notify_parent_cldstop(current, false, notify);
2505 read_unlock(&tasklist_lock);
2508 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2509 cgroup_enter_frozen();
2514 * While ptraced, group stop is handled by STOP trap.
2515 * Schedule it and let the caller deal with it.
2517 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2523 * do_jobctl_trap - take care of ptrace jobctl traps
2525 * When PT_SEIZED, it's used for both group stop and explicit
2526 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2527 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2528 * the stop signal; otherwise, %SIGTRAP.
2530 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2531 * number as exit_code and no siginfo.
2534 * Must be called with @current->sighand->siglock held, which may be
2535 * released and re-acquired before returning with intervening sleep.
2537 static void do_jobctl_trap(void)
2539 struct signal_struct *signal = current->signal;
2540 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2542 if (current->ptrace & PT_SEIZED) {
2543 if (!signal->group_stop_count &&
2544 !(signal->flags & SIGNAL_STOP_STOPPED))
2546 WARN_ON_ONCE(!signr);
2547 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2550 WARN_ON_ONCE(!signr);
2551 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2556 * do_freezer_trap - handle the freezer jobctl trap
2558 * Puts the task into frozen state, if only the task is not about to quit.
2559 * In this case it drops JOBCTL_TRAP_FREEZE.
2562 * Must be called with @current->sighand->siglock held,
2563 * which is always released before returning.
2565 static void do_freezer_trap(void)
2566 __releases(¤t->sighand->siglock)
2569 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2570 * let's make another loop to give it a chance to be handled.
2571 * In any case, we'll return back.
2573 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2574 JOBCTL_TRAP_FREEZE) {
2575 spin_unlock_irq(¤t->sighand->siglock);
2580 * Now we're sure that there is no pending fatal signal and no
2581 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2582 * immediately (if there is a non-fatal signal pending), and
2583 * put the task into sleep.
2585 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2586 clear_thread_flag(TIF_SIGPENDING);
2587 spin_unlock_irq(¤t->sighand->siglock);
2588 cgroup_enter_frozen();
2592 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2595 * We do not check sig_kernel_stop(signr) but set this marker
2596 * unconditionally because we do not know whether debugger will
2597 * change signr. This flag has no meaning unless we are going
2598 * to stop after return from ptrace_stop(). In this case it will
2599 * be checked in do_signal_stop(), we should only stop if it was
2600 * not cleared by SIGCONT while we were sleeping. See also the
2601 * comment in dequeue_signal().
2603 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2604 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2606 /* We're back. Did the debugger cancel the sig? */
2611 * Update the siginfo structure if the signal has
2612 * changed. If the debugger wanted something
2613 * specific in the siginfo structure then it should
2614 * have updated *info via PTRACE_SETSIGINFO.
2616 if (signr != info->si_signo) {
2617 clear_siginfo(info);
2618 info->si_signo = signr;
2620 info->si_code = SI_USER;
2622 info->si_pid = task_pid_vnr(current->parent);
2623 info->si_uid = from_kuid_munged(current_user_ns(),
2624 task_uid(current->parent));
2628 /* If the (new) signal is now blocked, requeue it. */
2629 if (sigismember(¤t->blocked, signr) ||
2630 fatal_signal_pending(current)) {
2631 send_signal_locked(signr, info, current, type);
2638 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2640 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2642 case SIL_FAULT_TRAPNO:
2643 case SIL_FAULT_MCEERR:
2644 case SIL_FAULT_BNDERR:
2645 case SIL_FAULT_PKUERR:
2646 case SIL_FAULT_PERF_EVENT:
2647 ksig->info.si_addr = arch_untagged_si_addr(
2648 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2660 bool get_signal(struct ksignal *ksig)
2662 struct sighand_struct *sighand = current->sighand;
2663 struct signal_struct *signal = current->signal;
2666 clear_notify_signal();
2667 if (unlikely(task_work_pending(current)))
2670 if (!task_sigpending(current))
2673 if (unlikely(uprobe_deny_signal()))
2677 * Do this once, we can't return to user-mode if freezing() == T.
2678 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2679 * thus do not need another check after return.
2684 spin_lock_irq(&sighand->siglock);
2687 * Every stopped thread goes here after wakeup. Check to see if
2688 * we should notify the parent, prepare_signal(SIGCONT) encodes
2689 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2691 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2694 if (signal->flags & SIGNAL_CLD_CONTINUED)
2695 why = CLD_CONTINUED;
2699 signal->flags &= ~SIGNAL_CLD_MASK;
2701 spin_unlock_irq(&sighand->siglock);
2704 * Notify the parent that we're continuing. This event is
2705 * always per-process and doesn't make whole lot of sense
2706 * for ptracers, who shouldn't consume the state via
2707 * wait(2) either, but, for backward compatibility, notify
2708 * the ptracer of the group leader too unless it's gonna be
2711 read_lock(&tasklist_lock);
2712 do_notify_parent_cldstop(current, false, why);
2714 if (ptrace_reparented(current->group_leader))
2715 do_notify_parent_cldstop(current->group_leader,
2717 read_unlock(&tasklist_lock);
2723 struct k_sigaction *ka;
2726 /* Has this task already been marked for death? */
2727 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2728 signal->group_exec_task) {
2729 clear_siginfo(&ksig->info);
2730 ksig->info.si_signo = signr = SIGKILL;
2731 sigdelset(¤t->pending.signal, SIGKILL);
2732 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2733 &sighand->action[SIGKILL - 1]);
2734 recalc_sigpending();
2738 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2742 if (unlikely(current->jobctl &
2743 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2744 if (current->jobctl & JOBCTL_TRAP_MASK) {
2746 spin_unlock_irq(&sighand->siglock);
2747 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2754 * If the task is leaving the frozen state, let's update
2755 * cgroup counters and reset the frozen bit.
2757 if (unlikely(cgroup_task_frozen(current))) {
2758 spin_unlock_irq(&sighand->siglock);
2759 cgroup_leave_frozen(false);
2764 * Signals generated by the execution of an instruction
2765 * need to be delivered before any other pending signals
2766 * so that the instruction pointer in the signal stack
2767 * frame points to the faulting instruction.
2770 signr = dequeue_synchronous_signal(&ksig->info);
2772 signr = dequeue_signal(current, ¤t->blocked,
2773 &ksig->info, &type);
2776 break; /* will return 0 */
2778 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2779 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2780 signr = ptrace_signal(signr, &ksig->info, type);
2785 ka = &sighand->action[signr-1];
2787 /* Trace actually delivered signals. */
2788 trace_signal_deliver(signr, &ksig->info, ka);
2790 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2792 if (ka->sa.sa_handler != SIG_DFL) {
2793 /* Run the handler. */
2796 if (ka->sa.sa_flags & SA_ONESHOT)
2797 ka->sa.sa_handler = SIG_DFL;
2799 break; /* will return non-zero "signr" value */
2803 * Now we are doing the default action for this signal.
2805 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2809 * Global init gets no signals it doesn't want.
2810 * Container-init gets no signals it doesn't want from same
2813 * Note that if global/container-init sees a sig_kernel_only()
2814 * signal here, the signal must have been generated internally
2815 * or must have come from an ancestor namespace. In either
2816 * case, the signal cannot be dropped.
2818 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2819 !sig_kernel_only(signr))
2822 if (sig_kernel_stop(signr)) {
2824 * The default action is to stop all threads in
2825 * the thread group. The job control signals
2826 * do nothing in an orphaned pgrp, but SIGSTOP
2827 * always works. Note that siglock needs to be
2828 * dropped during the call to is_orphaned_pgrp()
2829 * because of lock ordering with tasklist_lock.
2830 * This allows an intervening SIGCONT to be posted.
2831 * We need to check for that and bail out if necessary.
2833 if (signr != SIGSTOP) {
2834 spin_unlock_irq(&sighand->siglock);
2836 /* signals can be posted during this window */
2838 if (is_current_pgrp_orphaned())
2841 spin_lock_irq(&sighand->siglock);
2844 if (likely(do_signal_stop(ksig->info.si_signo))) {
2845 /* It released the siglock. */
2850 * We didn't actually stop, due to a race
2851 * with SIGCONT or something like that.
2857 spin_unlock_irq(&sighand->siglock);
2858 if (unlikely(cgroup_task_frozen(current)))
2859 cgroup_leave_frozen(true);
2862 * Anything else is fatal, maybe with a core dump.
2864 current->flags |= PF_SIGNALED;
2866 if (sig_kernel_coredump(signr)) {
2867 if (print_fatal_signals)
2868 print_fatal_signal(ksig->info.si_signo);
2869 proc_coredump_connector(current);
2871 * If it was able to dump core, this kills all
2872 * other threads in the group and synchronizes with
2873 * their demise. If we lost the race with another
2874 * thread getting here, it set group_exit_code
2875 * first and our do_group_exit call below will use
2876 * that value and ignore the one we pass it.
2878 do_coredump(&ksig->info);
2882 * PF_USER_WORKER threads will catch and exit on fatal signals
2883 * themselves. They have cleanup that must be performed, so
2884 * we cannot call do_exit() on their behalf.
2886 if (current->flags & PF_USER_WORKER)
2890 * Death signals, no core dump.
2892 do_group_exit(ksig->info.si_signo);
2895 spin_unlock_irq(&sighand->siglock);
2899 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2900 hide_si_addr_tag_bits(ksig);
2902 return ksig->sig > 0;
2906 * signal_delivered - called after signal delivery to update blocked signals
2907 * @ksig: kernel signal struct
2908 * @stepping: nonzero if debugger single-step or block-step in use
2910 * This function should be called when a signal has successfully been
2911 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2912 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2913 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2915 static void signal_delivered(struct ksignal *ksig, int stepping)
2919 /* A signal was successfully delivered, and the
2920 saved sigmask was stored on the signal frame,
2921 and will be restored by sigreturn. So we can
2922 simply clear the restore sigmask flag. */
2923 clear_restore_sigmask();
2925 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2926 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2927 sigaddset(&blocked, ksig->sig);
2928 set_current_blocked(&blocked);
2929 if (current->sas_ss_flags & SS_AUTODISARM)
2930 sas_ss_reset(current);
2932 ptrace_notify(SIGTRAP, 0);
2935 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2938 force_sigsegv(ksig->sig);
2940 signal_delivered(ksig, stepping);
2944 * It could be that complete_signal() picked us to notify about the
2945 * group-wide signal. Other threads should be notified now to take
2946 * the shared signals in @which since we will not.
2948 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2951 struct task_struct *t;
2953 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2954 if (sigisemptyset(&retarget))
2958 while_each_thread(tsk, t) {
2959 if (t->flags & PF_EXITING)
2962 if (!has_pending_signals(&retarget, &t->blocked))
2964 /* Remove the signals this thread can handle. */
2965 sigandsets(&retarget, &retarget, &t->blocked);
2967 if (!task_sigpending(t))
2968 signal_wake_up(t, 0);
2970 if (sigisemptyset(&retarget))
2975 void exit_signals(struct task_struct *tsk)
2981 * @tsk is about to have PF_EXITING set - lock out users which
2982 * expect stable threadgroup.
2984 cgroup_threadgroup_change_begin(tsk);
2986 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2987 sched_mm_cid_exit_signals(tsk);
2988 tsk->flags |= PF_EXITING;
2989 cgroup_threadgroup_change_end(tsk);
2993 spin_lock_irq(&tsk->sighand->siglock);
2995 * From now this task is not visible for group-wide signals,
2996 * see wants_signal(), do_signal_stop().
2998 sched_mm_cid_exit_signals(tsk);
2999 tsk->flags |= PF_EXITING;
3001 cgroup_threadgroup_change_end(tsk);
3003 if (!task_sigpending(tsk))
3006 unblocked = tsk->blocked;
3007 signotset(&unblocked);
3008 retarget_shared_pending(tsk, &unblocked);
3010 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3011 task_participate_group_stop(tsk))
3012 group_stop = CLD_STOPPED;
3014 spin_unlock_irq(&tsk->sighand->siglock);
3017 * If group stop has completed, deliver the notification. This
3018 * should always go to the real parent of the group leader.
3020 if (unlikely(group_stop)) {
3021 read_lock(&tasklist_lock);
3022 do_notify_parent_cldstop(tsk, false, group_stop);
3023 read_unlock(&tasklist_lock);
3028 * System call entry points.
3032 * sys_restart_syscall - restart a system call
3034 SYSCALL_DEFINE0(restart_syscall)
3036 struct restart_block *restart = ¤t->restart_block;
3037 return restart->fn(restart);
3040 long do_no_restart_syscall(struct restart_block *param)
3045 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3047 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3048 sigset_t newblocked;
3049 /* A set of now blocked but previously unblocked signals. */
3050 sigandnsets(&newblocked, newset, ¤t->blocked);
3051 retarget_shared_pending(tsk, &newblocked);
3053 tsk->blocked = *newset;
3054 recalc_sigpending();
3058 * set_current_blocked - change current->blocked mask
3061 * It is wrong to change ->blocked directly, this helper should be used
3062 * to ensure the process can't miss a shared signal we are going to block.
3064 void set_current_blocked(sigset_t *newset)
3066 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3067 __set_current_blocked(newset);
3070 void __set_current_blocked(const sigset_t *newset)
3072 struct task_struct *tsk = current;
3075 * In case the signal mask hasn't changed, there is nothing we need
3076 * to do. The current->blocked shouldn't be modified by other task.
3078 if (sigequalsets(&tsk->blocked, newset))
3081 spin_lock_irq(&tsk->sighand->siglock);
3082 __set_task_blocked(tsk, newset);
3083 spin_unlock_irq(&tsk->sighand->siglock);
3087 * This is also useful for kernel threads that want to temporarily
3088 * (or permanently) block certain signals.
3090 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3091 * interface happily blocks "unblockable" signals like SIGKILL
3094 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3096 struct task_struct *tsk = current;
3099 /* Lockless, only current can change ->blocked, never from irq */
3101 *oldset = tsk->blocked;
3105 sigorsets(&newset, &tsk->blocked, set);
3108 sigandnsets(&newset, &tsk->blocked, set);
3117 __set_current_blocked(&newset);
3120 EXPORT_SYMBOL(sigprocmask);
3123 * The api helps set app-provided sigmasks.
3125 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3126 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3128 * Note that it does set_restore_sigmask() in advance, so it must be always
3129 * paired with restore_saved_sigmask_unless() before return from syscall.
3131 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3137 if (sigsetsize != sizeof(sigset_t))
3139 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3142 set_restore_sigmask();
3143 current->saved_sigmask = current->blocked;
3144 set_current_blocked(&kmask);
3149 #ifdef CONFIG_COMPAT
3150 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3157 if (sigsetsize != sizeof(compat_sigset_t))
3159 if (get_compat_sigset(&kmask, umask))
3162 set_restore_sigmask();
3163 current->saved_sigmask = current->blocked;
3164 set_current_blocked(&kmask);
3171 * sys_rt_sigprocmask - change the list of currently blocked signals
3172 * @how: whether to add, remove, or set signals
3173 * @nset: stores pending signals
3174 * @oset: previous value of signal mask if non-null
3175 * @sigsetsize: size of sigset_t type
3177 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3178 sigset_t __user *, oset, size_t, sigsetsize)
3180 sigset_t old_set, new_set;
3183 /* XXX: Don't preclude handling different sized sigset_t's. */
3184 if (sigsetsize != sizeof(sigset_t))
3187 old_set = current->blocked;
3190 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3192 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3194 error = sigprocmask(how, &new_set, NULL);
3200 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3207 #ifdef CONFIG_COMPAT
3208 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3209 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3211 sigset_t old_set = current->blocked;
3213 /* XXX: Don't preclude handling different sized sigset_t's. */
3214 if (sigsetsize != sizeof(sigset_t))
3220 if (get_compat_sigset(&new_set, nset))
3222 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3224 error = sigprocmask(how, &new_set, NULL);
3228 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3232 static void do_sigpending(sigset_t *set)
3234 spin_lock_irq(¤t->sighand->siglock);
3235 sigorsets(set, ¤t->pending.signal,
3236 ¤t->signal->shared_pending.signal);
3237 spin_unlock_irq(¤t->sighand->siglock);
3239 /* Outside the lock because only this thread touches it. */
3240 sigandsets(set, ¤t->blocked, set);
3244 * sys_rt_sigpending - examine a pending signal that has been raised
3246 * @uset: stores pending signals
3247 * @sigsetsize: size of sigset_t type or larger
3249 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3253 if (sigsetsize > sizeof(*uset))
3256 do_sigpending(&set);
3258 if (copy_to_user(uset, &set, sigsetsize))
3264 #ifdef CONFIG_COMPAT
3265 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3266 compat_size_t, sigsetsize)
3270 if (sigsetsize > sizeof(*uset))
3273 do_sigpending(&set);
3275 return put_compat_sigset(uset, &set, sigsetsize);
3279 static const struct {
3280 unsigned char limit, layout;
3282 [SIGILL] = { NSIGILL, SIL_FAULT },
3283 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3284 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3285 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3286 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3288 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3290 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3291 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3292 [SIGSYS] = { NSIGSYS, SIL_SYS },
3295 static bool known_siginfo_layout(unsigned sig, int si_code)
3297 if (si_code == SI_KERNEL)
3299 else if ((si_code > SI_USER)) {
3300 if (sig_specific_sicodes(sig)) {
3301 if (si_code <= sig_sicodes[sig].limit)
3304 else if (si_code <= NSIGPOLL)
3307 else if (si_code >= SI_DETHREAD)
3309 else if (si_code == SI_ASYNCNL)
3314 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3316 enum siginfo_layout layout = SIL_KILL;
3317 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3318 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3319 (si_code <= sig_sicodes[sig].limit)) {
3320 layout = sig_sicodes[sig].layout;
3321 /* Handle the exceptions */
3322 if ((sig == SIGBUS) &&
3323 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3324 layout = SIL_FAULT_MCEERR;
3325 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3326 layout = SIL_FAULT_BNDERR;
3328 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3329 layout = SIL_FAULT_PKUERR;
3331 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3332 layout = SIL_FAULT_PERF_EVENT;
3333 else if (IS_ENABLED(CONFIG_SPARC) &&
3334 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3335 layout = SIL_FAULT_TRAPNO;
3336 else if (IS_ENABLED(CONFIG_ALPHA) &&
3338 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3339 layout = SIL_FAULT_TRAPNO;
3341 else if (si_code <= NSIGPOLL)
3344 if (si_code == SI_TIMER)
3346 else if (si_code == SI_SIGIO)
3348 else if (si_code < 0)
3354 static inline char __user *si_expansion(const siginfo_t __user *info)
3356 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3359 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3361 char __user *expansion = si_expansion(to);
3362 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3364 if (clear_user(expansion, SI_EXPANSION_SIZE))
3369 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3370 const siginfo_t __user *from)
3372 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3373 char __user *expansion = si_expansion(from);
3374 char buf[SI_EXPANSION_SIZE];
3377 * An unknown si_code might need more than
3378 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3379 * extra bytes are 0. This guarantees copy_siginfo_to_user
3380 * will return this data to userspace exactly.
3382 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3384 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3392 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3393 const siginfo_t __user *from)
3395 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3397 to->si_signo = signo;
3398 return post_copy_siginfo_from_user(to, from);
3401 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3403 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3405 return post_copy_siginfo_from_user(to, from);
3408 #ifdef CONFIG_COMPAT
3410 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3411 * @to: compat siginfo destination
3412 * @from: kernel siginfo source
3414 * Note: This function does not work properly for the SIGCHLD on x32, but
3415 * fortunately it doesn't have to. The only valid callers for this function are
3416 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3417 * The latter does not care because SIGCHLD will never cause a coredump.
3419 void copy_siginfo_to_external32(struct compat_siginfo *to,
3420 const struct kernel_siginfo *from)
3422 memset(to, 0, sizeof(*to));
3424 to->si_signo = from->si_signo;
3425 to->si_errno = from->si_errno;
3426 to->si_code = from->si_code;
3427 switch(siginfo_layout(from->si_signo, from->si_code)) {
3429 to->si_pid = from->si_pid;
3430 to->si_uid = from->si_uid;
3433 to->si_tid = from->si_tid;
3434 to->si_overrun = from->si_overrun;
3435 to->si_int = from->si_int;
3438 to->si_band = from->si_band;
3439 to->si_fd = from->si_fd;
3442 to->si_addr = ptr_to_compat(from->si_addr);
3444 case SIL_FAULT_TRAPNO:
3445 to->si_addr = ptr_to_compat(from->si_addr);
3446 to->si_trapno = from->si_trapno;
3448 case SIL_FAULT_MCEERR:
3449 to->si_addr = ptr_to_compat(from->si_addr);
3450 to->si_addr_lsb = from->si_addr_lsb;
3452 case SIL_FAULT_BNDERR:
3453 to->si_addr = ptr_to_compat(from->si_addr);
3454 to->si_lower = ptr_to_compat(from->si_lower);
3455 to->si_upper = ptr_to_compat(from->si_upper);
3457 case SIL_FAULT_PKUERR:
3458 to->si_addr = ptr_to_compat(from->si_addr);
3459 to->si_pkey = from->si_pkey;
3461 case SIL_FAULT_PERF_EVENT:
3462 to->si_addr = ptr_to_compat(from->si_addr);
3463 to->si_perf_data = from->si_perf_data;
3464 to->si_perf_type = from->si_perf_type;
3465 to->si_perf_flags = from->si_perf_flags;
3468 to->si_pid = from->si_pid;
3469 to->si_uid = from->si_uid;
3470 to->si_status = from->si_status;
3471 to->si_utime = from->si_utime;
3472 to->si_stime = from->si_stime;
3475 to->si_pid = from->si_pid;
3476 to->si_uid = from->si_uid;
3477 to->si_int = from->si_int;
3480 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3481 to->si_syscall = from->si_syscall;
3482 to->si_arch = from->si_arch;
3487 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3488 const struct kernel_siginfo *from)
3490 struct compat_siginfo new;
3492 copy_siginfo_to_external32(&new, from);
3493 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3498 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3499 const struct compat_siginfo *from)
3502 to->si_signo = from->si_signo;
3503 to->si_errno = from->si_errno;
3504 to->si_code = from->si_code;
3505 switch(siginfo_layout(from->si_signo, from->si_code)) {
3507 to->si_pid = from->si_pid;
3508 to->si_uid = from->si_uid;
3511 to->si_tid = from->si_tid;
3512 to->si_overrun = from->si_overrun;
3513 to->si_int = from->si_int;
3516 to->si_band = from->si_band;
3517 to->si_fd = from->si_fd;
3520 to->si_addr = compat_ptr(from->si_addr);
3522 case SIL_FAULT_TRAPNO:
3523 to->si_addr = compat_ptr(from->si_addr);
3524 to->si_trapno = from->si_trapno;
3526 case SIL_FAULT_MCEERR:
3527 to->si_addr = compat_ptr(from->si_addr);
3528 to->si_addr_lsb = from->si_addr_lsb;
3530 case SIL_FAULT_BNDERR:
3531 to->si_addr = compat_ptr(from->si_addr);
3532 to->si_lower = compat_ptr(from->si_lower);
3533 to->si_upper = compat_ptr(from->si_upper);
3535 case SIL_FAULT_PKUERR:
3536 to->si_addr = compat_ptr(from->si_addr);
3537 to->si_pkey = from->si_pkey;
3539 case SIL_FAULT_PERF_EVENT:
3540 to->si_addr = compat_ptr(from->si_addr);
3541 to->si_perf_data = from->si_perf_data;
3542 to->si_perf_type = from->si_perf_type;
3543 to->si_perf_flags = from->si_perf_flags;
3546 to->si_pid = from->si_pid;
3547 to->si_uid = from->si_uid;
3548 to->si_status = from->si_status;
3549 #ifdef CONFIG_X86_X32_ABI
3550 if (in_x32_syscall()) {
3551 to->si_utime = from->_sifields._sigchld_x32._utime;
3552 to->si_stime = from->_sifields._sigchld_x32._stime;
3556 to->si_utime = from->si_utime;
3557 to->si_stime = from->si_stime;
3561 to->si_pid = from->si_pid;
3562 to->si_uid = from->si_uid;
3563 to->si_int = from->si_int;
3566 to->si_call_addr = compat_ptr(from->si_call_addr);
3567 to->si_syscall = from->si_syscall;
3568 to->si_arch = from->si_arch;
3574 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3575 const struct compat_siginfo __user *ufrom)
3577 struct compat_siginfo from;
3579 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3582 from.si_signo = signo;
3583 return post_copy_siginfo_from_user32(to, &from);
3586 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3587 const struct compat_siginfo __user *ufrom)
3589 struct compat_siginfo from;
3591 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3594 return post_copy_siginfo_from_user32(to, &from);
3596 #endif /* CONFIG_COMPAT */
3599 * do_sigtimedwait - wait for queued signals specified in @which
3600 * @which: queued signals to wait for
3601 * @info: if non-null, the signal's siginfo is returned here
3602 * @ts: upper bound on process time suspension
3604 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3605 const struct timespec64 *ts)
3607 ktime_t *to = NULL, timeout = KTIME_MAX;
3608 struct task_struct *tsk = current;
3609 sigset_t mask = *which;
3614 if (!timespec64_valid(ts))
3616 timeout = timespec64_to_ktime(*ts);
3621 * Invert the set of allowed signals to get those we want to block.
3623 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3626 spin_lock_irq(&tsk->sighand->siglock);
3627 sig = dequeue_signal(tsk, &mask, info, &type);
3628 if (!sig && timeout) {
3630 * None ready, temporarily unblock those we're interested
3631 * while we are sleeping in so that we'll be awakened when
3632 * they arrive. Unblocking is always fine, we can avoid
3633 * set_current_blocked().
3635 tsk->real_blocked = tsk->blocked;
3636 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3637 recalc_sigpending();
3638 spin_unlock_irq(&tsk->sighand->siglock);
3640 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3641 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3643 spin_lock_irq(&tsk->sighand->siglock);
3644 __set_task_blocked(tsk, &tsk->real_blocked);
3645 sigemptyset(&tsk->real_blocked);
3646 sig = dequeue_signal(tsk, &mask, info, &type);
3648 spin_unlock_irq(&tsk->sighand->siglock);
3652 return ret ? -EINTR : -EAGAIN;
3656 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3658 * @uthese: queued signals to wait for
3659 * @uinfo: if non-null, the signal's siginfo is returned here
3660 * @uts: upper bound on process time suspension
3661 * @sigsetsize: size of sigset_t type
3663 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3664 siginfo_t __user *, uinfo,
3665 const struct __kernel_timespec __user *, uts,
3669 struct timespec64 ts;
3670 kernel_siginfo_t info;
3673 /* XXX: Don't preclude handling different sized sigset_t's. */
3674 if (sigsetsize != sizeof(sigset_t))
3677 if (copy_from_user(&these, uthese, sizeof(these)))
3681 if (get_timespec64(&ts, uts))
3685 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3687 if (ret > 0 && uinfo) {
3688 if (copy_siginfo_to_user(uinfo, &info))
3695 #ifdef CONFIG_COMPAT_32BIT_TIME
3696 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3697 siginfo_t __user *, uinfo,
3698 const struct old_timespec32 __user *, uts,
3702 struct timespec64 ts;
3703 kernel_siginfo_t info;
3706 if (sigsetsize != sizeof(sigset_t))
3709 if (copy_from_user(&these, uthese, sizeof(these)))
3713 if (get_old_timespec32(&ts, uts))
3717 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3719 if (ret > 0 && uinfo) {
3720 if (copy_siginfo_to_user(uinfo, &info))
3728 #ifdef CONFIG_COMPAT
3729 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3730 struct compat_siginfo __user *, uinfo,
3731 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3734 struct timespec64 t;
3735 kernel_siginfo_t info;
3738 if (sigsetsize != sizeof(sigset_t))
3741 if (get_compat_sigset(&s, uthese))
3745 if (get_timespec64(&t, uts))
3749 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3751 if (ret > 0 && uinfo) {
3752 if (copy_siginfo_to_user32(uinfo, &info))
3759 #ifdef CONFIG_COMPAT_32BIT_TIME
3760 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3761 struct compat_siginfo __user *, uinfo,
3762 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3765 struct timespec64 t;
3766 kernel_siginfo_t info;
3769 if (sigsetsize != sizeof(sigset_t))
3772 if (get_compat_sigset(&s, uthese))
3776 if (get_old_timespec32(&t, uts))
3780 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3782 if (ret > 0 && uinfo) {
3783 if (copy_siginfo_to_user32(uinfo, &info))
3792 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3794 clear_siginfo(info);
3795 info->si_signo = sig;
3797 info->si_code = SI_USER;
3798 info->si_pid = task_tgid_vnr(current);
3799 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3803 * sys_kill - send a signal to a process
3804 * @pid: the PID of the process
3805 * @sig: signal to be sent
3807 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3809 struct kernel_siginfo info;
3811 prepare_kill_siginfo(sig, &info);
3813 return kill_something_info(sig, &info, pid);
3817 * Verify that the signaler and signalee either are in the same pid namespace
3818 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3821 static bool access_pidfd_pidns(struct pid *pid)
3823 struct pid_namespace *active = task_active_pid_ns(current);
3824 struct pid_namespace *p = ns_of_pid(pid);
3837 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3838 siginfo_t __user *info)
3840 #ifdef CONFIG_COMPAT
3842 * Avoid hooking up compat syscalls and instead handle necessary
3843 * conversions here. Note, this is a stop-gap measure and should not be
3844 * considered a generic solution.
3846 if (in_compat_syscall())
3847 return copy_siginfo_from_user32(
3848 kinfo, (struct compat_siginfo __user *)info);
3850 return copy_siginfo_from_user(kinfo, info);
3853 static struct pid *pidfd_to_pid(const struct file *file)
3857 pid = pidfd_pid(file);
3861 return tgid_pidfd_to_pid(file);
3865 * sys_pidfd_send_signal - Signal a process through a pidfd
3866 * @pidfd: file descriptor of the process
3867 * @sig: signal to send
3868 * @info: signal info
3869 * @flags: future flags
3871 * The syscall currently only signals via PIDTYPE_PID which covers
3872 * kill(<positive-pid>, <signal>. It does not signal threads or process
3874 * In order to extend the syscall to threads and process groups the @flags
3875 * argument should be used. In essence, the @flags argument will determine
3876 * what is signaled and not the file descriptor itself. Put in other words,
3877 * grouping is a property of the flags argument not a property of the file
3880 * Return: 0 on success, negative errno on failure
3882 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3883 siginfo_t __user *, info, unsigned int, flags)
3888 kernel_siginfo_t kinfo;
3890 /* Enforce flags be set to 0 until we add an extension. */
3898 /* Is this a pidfd? */
3899 pid = pidfd_to_pid(f.file);
3906 if (!access_pidfd_pidns(pid))
3910 ret = copy_siginfo_from_user_any(&kinfo, info);
3915 if (unlikely(sig != kinfo.si_signo))
3918 /* Only allow sending arbitrary signals to yourself. */
3920 if ((task_pid(current) != pid) &&
3921 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3924 prepare_kill_siginfo(sig, &kinfo);
3927 ret = kill_pid_info(sig, &kinfo, pid);
3935 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3937 struct task_struct *p;
3941 p = find_task_by_vpid(pid);
3942 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3943 error = check_kill_permission(sig, info, p);
3945 * The null signal is a permissions and process existence
3946 * probe. No signal is actually delivered.
3948 if (!error && sig) {
3949 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3951 * If lock_task_sighand() failed we pretend the task
3952 * dies after receiving the signal. The window is tiny,
3953 * and the signal is private anyway.
3955 if (unlikely(error == -ESRCH))
3964 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3966 struct kernel_siginfo info;
3968 clear_siginfo(&info);
3969 info.si_signo = sig;
3971 info.si_code = SI_TKILL;
3972 info.si_pid = task_tgid_vnr(current);
3973 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3975 return do_send_specific(tgid, pid, sig, &info);
3979 * sys_tgkill - send signal to one specific thread
3980 * @tgid: the thread group ID of the thread
3981 * @pid: the PID of the thread
3982 * @sig: signal to be sent
3984 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3985 * exists but it's not belonging to the target process anymore. This
3986 * method solves the problem of threads exiting and PIDs getting reused.
3988 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3990 /* This is only valid for single tasks */
3991 if (pid <= 0 || tgid <= 0)
3994 return do_tkill(tgid, pid, sig);
3998 * sys_tkill - send signal to one specific task
3999 * @pid: the PID of the task
4000 * @sig: signal to be sent
4002 * Send a signal to only one task, even if it's a CLONE_THREAD task.
4004 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4006 /* This is only valid for single tasks */
4010 return do_tkill(0, pid, sig);
4013 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4015 /* Not even root can pretend to send signals from the kernel.
4016 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4018 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4019 (task_pid_vnr(current) != pid))
4022 /* POSIX.1b doesn't mention process groups. */
4023 return kill_proc_info(sig, info, pid);
4027 * sys_rt_sigqueueinfo - send signal information to a signal
4028 * @pid: the PID of the thread
4029 * @sig: signal to be sent
4030 * @uinfo: signal info to be sent
4032 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4033 siginfo_t __user *, uinfo)
4035 kernel_siginfo_t info;
4036 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4039 return do_rt_sigqueueinfo(pid, sig, &info);
4042 #ifdef CONFIG_COMPAT
4043 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4046 struct compat_siginfo __user *, uinfo)
4048 kernel_siginfo_t info;
4049 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4052 return do_rt_sigqueueinfo(pid, sig, &info);
4056 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4058 /* This is only valid for single tasks */
4059 if (pid <= 0 || tgid <= 0)
4062 /* Not even root can pretend to send signals from the kernel.
4063 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4065 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4066 (task_pid_vnr(current) != pid))
4069 return do_send_specific(tgid, pid, sig, info);
4072 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4073 siginfo_t __user *, uinfo)
4075 kernel_siginfo_t info;
4076 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4079 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4082 #ifdef CONFIG_COMPAT
4083 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4087 struct compat_siginfo __user *, uinfo)
4089 kernel_siginfo_t info;
4090 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4093 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4098 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4100 void kernel_sigaction(int sig, __sighandler_t action)
4102 spin_lock_irq(¤t->sighand->siglock);
4103 current->sighand->action[sig - 1].sa.sa_handler = action;
4104 if (action == SIG_IGN) {
4108 sigaddset(&mask, sig);
4110 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4111 flush_sigqueue_mask(&mask, ¤t->pending);
4112 recalc_sigpending();
4114 spin_unlock_irq(¤t->sighand->siglock);
4116 EXPORT_SYMBOL(kernel_sigaction);
4118 void __weak sigaction_compat_abi(struct k_sigaction *act,
4119 struct k_sigaction *oact)
4123 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4125 struct task_struct *p = current, *t;
4126 struct k_sigaction *k;
4129 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4132 k = &p->sighand->action[sig-1];
4134 spin_lock_irq(&p->sighand->siglock);
4135 if (k->sa.sa_flags & SA_IMMUTABLE) {
4136 spin_unlock_irq(&p->sighand->siglock);
4143 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4144 * e.g. by having an architecture use the bit in their uapi.
4146 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4149 * Clear unknown flag bits in order to allow userspace to detect missing
4150 * support for flag bits and to allow the kernel to use non-uapi bits
4154 act->sa.sa_flags &= UAPI_SA_FLAGS;
4156 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4158 sigaction_compat_abi(act, oact);
4161 sigdelsetmask(&act->sa.sa_mask,
4162 sigmask(SIGKILL) | sigmask(SIGSTOP));
4166 * "Setting a signal action to SIG_IGN for a signal that is
4167 * pending shall cause the pending signal to be discarded,
4168 * whether or not it is blocked."
4170 * "Setting a signal action to SIG_DFL for a signal that is
4171 * pending and whose default action is to ignore the signal
4172 * (for example, SIGCHLD), shall cause the pending signal to
4173 * be discarded, whether or not it is blocked"
4175 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4177 sigaddset(&mask, sig);
4178 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4179 for_each_thread(p, t)
4180 flush_sigqueue_mask(&mask, &t->pending);
4184 spin_unlock_irq(&p->sighand->siglock);
4188 #ifdef CONFIG_DYNAMIC_SIGFRAME
4189 static inline void sigaltstack_lock(void)
4190 __acquires(¤t->sighand->siglock)
4192 spin_lock_irq(¤t->sighand->siglock);
4195 static inline void sigaltstack_unlock(void)
4196 __releases(¤t->sighand->siglock)
4198 spin_unlock_irq(¤t->sighand->siglock);
4201 static inline void sigaltstack_lock(void) { }
4202 static inline void sigaltstack_unlock(void) { }
4206 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4209 struct task_struct *t = current;
4213 memset(oss, 0, sizeof(stack_t));
4214 oss->ss_sp = (void __user *) t->sas_ss_sp;
4215 oss->ss_size = t->sas_ss_size;
4216 oss->ss_flags = sas_ss_flags(sp) |
4217 (current->sas_ss_flags & SS_FLAG_BITS);
4221 void __user *ss_sp = ss->ss_sp;
4222 size_t ss_size = ss->ss_size;
4223 unsigned ss_flags = ss->ss_flags;
4226 if (unlikely(on_sig_stack(sp)))
4229 ss_mode = ss_flags & ~SS_FLAG_BITS;
4230 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4235 * Return before taking any locks if no actual
4236 * sigaltstack changes were requested.
4238 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4239 t->sas_ss_size == ss_size &&
4240 t->sas_ss_flags == ss_flags)
4244 if (ss_mode == SS_DISABLE) {
4248 if (unlikely(ss_size < min_ss_size))
4250 if (!sigaltstack_size_valid(ss_size))
4254 t->sas_ss_sp = (unsigned long) ss_sp;
4255 t->sas_ss_size = ss_size;
4256 t->sas_ss_flags = ss_flags;
4258 sigaltstack_unlock();
4263 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4267 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4269 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4270 current_user_stack_pointer(),
4272 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4277 int restore_altstack(const stack_t __user *uss)
4280 if (copy_from_user(&new, uss, sizeof(stack_t)))
4282 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4284 /* squash all but EFAULT for now */
4288 int __save_altstack(stack_t __user *uss, unsigned long sp)
4290 struct task_struct *t = current;
4291 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4292 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4293 __put_user(t->sas_ss_size, &uss->ss_size);
4297 #ifdef CONFIG_COMPAT
4298 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4299 compat_stack_t __user *uoss_ptr)
4305 compat_stack_t uss32;
4306 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4308 uss.ss_sp = compat_ptr(uss32.ss_sp);
4309 uss.ss_flags = uss32.ss_flags;
4310 uss.ss_size = uss32.ss_size;
4312 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4313 compat_user_stack_pointer(),
4314 COMPAT_MINSIGSTKSZ);
4315 if (ret >= 0 && uoss_ptr) {
4317 memset(&old, 0, sizeof(old));
4318 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4319 old.ss_flags = uoss.ss_flags;
4320 old.ss_size = uoss.ss_size;
4321 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4327 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4328 const compat_stack_t __user *, uss_ptr,
4329 compat_stack_t __user *, uoss_ptr)
4331 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4334 int compat_restore_altstack(const compat_stack_t __user *uss)
4336 int err = do_compat_sigaltstack(uss, NULL);
4337 /* squash all but -EFAULT for now */
4338 return err == -EFAULT ? err : 0;
4341 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4344 struct task_struct *t = current;
4345 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4347 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4348 __put_user(t->sas_ss_size, &uss->ss_size);
4353 #ifdef __ARCH_WANT_SYS_SIGPENDING
4356 * sys_sigpending - examine pending signals
4357 * @uset: where mask of pending signal is returned
4359 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4363 if (sizeof(old_sigset_t) > sizeof(*uset))
4366 do_sigpending(&set);
4368 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4374 #ifdef CONFIG_COMPAT
4375 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4379 do_sigpending(&set);
4381 return put_user(set.sig[0], set32);
4387 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4389 * sys_sigprocmask - examine and change blocked signals
4390 * @how: whether to add, remove, or set signals
4391 * @nset: signals to add or remove (if non-null)
4392 * @oset: previous value of signal mask if non-null
4394 * Some platforms have their own version with special arguments;
4395 * others support only sys_rt_sigprocmask.
4398 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4399 old_sigset_t __user *, oset)
4401 old_sigset_t old_set, new_set;
4402 sigset_t new_blocked;
4404 old_set = current->blocked.sig[0];
4407 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4410 new_blocked = current->blocked;
4414 sigaddsetmask(&new_blocked, new_set);
4417 sigdelsetmask(&new_blocked, new_set);
4420 new_blocked.sig[0] = new_set;
4426 set_current_blocked(&new_blocked);
4430 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4436 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4438 #ifndef CONFIG_ODD_RT_SIGACTION
4440 * sys_rt_sigaction - alter an action taken by a process
4441 * @sig: signal to be sent
4442 * @act: new sigaction
4443 * @oact: used to save the previous sigaction
4444 * @sigsetsize: size of sigset_t type
4446 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4447 const struct sigaction __user *, act,
4448 struct sigaction __user *, oact,
4451 struct k_sigaction new_sa, old_sa;
4454 /* XXX: Don't preclude handling different sized sigset_t's. */
4455 if (sigsetsize != sizeof(sigset_t))
4458 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4461 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4465 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4470 #ifdef CONFIG_COMPAT
4471 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4472 const struct compat_sigaction __user *, act,
4473 struct compat_sigaction __user *, oact,
4474 compat_size_t, sigsetsize)
4476 struct k_sigaction new_ka, old_ka;
4477 #ifdef __ARCH_HAS_SA_RESTORER
4478 compat_uptr_t restorer;
4482 /* XXX: Don't preclude handling different sized sigset_t's. */
4483 if (sigsetsize != sizeof(compat_sigset_t))
4487 compat_uptr_t handler;
4488 ret = get_user(handler, &act->sa_handler);
4489 new_ka.sa.sa_handler = compat_ptr(handler);
4490 #ifdef __ARCH_HAS_SA_RESTORER
4491 ret |= get_user(restorer, &act->sa_restorer);
4492 new_ka.sa.sa_restorer = compat_ptr(restorer);
4494 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4495 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4500 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4502 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4504 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4505 sizeof(oact->sa_mask));
4506 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4507 #ifdef __ARCH_HAS_SA_RESTORER
4508 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4509 &oact->sa_restorer);
4515 #endif /* !CONFIG_ODD_RT_SIGACTION */
4517 #ifdef CONFIG_OLD_SIGACTION
4518 SYSCALL_DEFINE3(sigaction, int, sig,
4519 const struct old_sigaction __user *, act,
4520 struct old_sigaction __user *, oact)
4522 struct k_sigaction new_ka, old_ka;
4527 if (!access_ok(act, sizeof(*act)) ||
4528 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4529 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4530 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4531 __get_user(mask, &act->sa_mask))
4533 #ifdef __ARCH_HAS_KA_RESTORER
4534 new_ka.ka_restorer = NULL;
4536 siginitset(&new_ka.sa.sa_mask, mask);
4539 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4542 if (!access_ok(oact, sizeof(*oact)) ||
4543 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4544 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4545 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4546 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4553 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4554 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4555 const struct compat_old_sigaction __user *, act,
4556 struct compat_old_sigaction __user *, oact)
4558 struct k_sigaction new_ka, old_ka;
4560 compat_old_sigset_t mask;
4561 compat_uptr_t handler, restorer;
4564 if (!access_ok(act, sizeof(*act)) ||
4565 __get_user(handler, &act->sa_handler) ||
4566 __get_user(restorer, &act->sa_restorer) ||
4567 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4568 __get_user(mask, &act->sa_mask))
4571 #ifdef __ARCH_HAS_KA_RESTORER
4572 new_ka.ka_restorer = NULL;
4574 new_ka.sa.sa_handler = compat_ptr(handler);
4575 new_ka.sa.sa_restorer = compat_ptr(restorer);
4576 siginitset(&new_ka.sa.sa_mask, mask);
4579 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4582 if (!access_ok(oact, sizeof(*oact)) ||
4583 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4584 &oact->sa_handler) ||
4585 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4586 &oact->sa_restorer) ||
4587 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4588 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4595 #ifdef CONFIG_SGETMASK_SYSCALL
4598 * For backwards compatibility. Functionality superseded by sigprocmask.
4600 SYSCALL_DEFINE0(sgetmask)
4603 return current->blocked.sig[0];
4606 SYSCALL_DEFINE1(ssetmask, int, newmask)
4608 int old = current->blocked.sig[0];
4611 siginitset(&newset, newmask);
4612 set_current_blocked(&newset);
4616 #endif /* CONFIG_SGETMASK_SYSCALL */
4618 #ifdef __ARCH_WANT_SYS_SIGNAL
4620 * For backwards compatibility. Functionality superseded by sigaction.
4622 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4624 struct k_sigaction new_sa, old_sa;
4627 new_sa.sa.sa_handler = handler;
4628 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4629 sigemptyset(&new_sa.sa.sa_mask);
4631 ret = do_sigaction(sig, &new_sa, &old_sa);
4633 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4635 #endif /* __ARCH_WANT_SYS_SIGNAL */
4637 #ifdef __ARCH_WANT_SYS_PAUSE
4639 SYSCALL_DEFINE0(pause)
4641 while (!signal_pending(current)) {
4642 __set_current_state(TASK_INTERRUPTIBLE);
4645 return -ERESTARTNOHAND;
4650 static int sigsuspend(sigset_t *set)
4652 current->saved_sigmask = current->blocked;
4653 set_current_blocked(set);
4655 while (!signal_pending(current)) {
4656 __set_current_state(TASK_INTERRUPTIBLE);
4659 set_restore_sigmask();
4660 return -ERESTARTNOHAND;
4664 * sys_rt_sigsuspend - replace the signal mask for a value with the
4665 * @unewset value until a signal is received
4666 * @unewset: new signal mask value
4667 * @sigsetsize: size of sigset_t type
4669 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4673 /* XXX: Don't preclude handling different sized sigset_t's. */
4674 if (sigsetsize != sizeof(sigset_t))
4677 if (copy_from_user(&newset, unewset, sizeof(newset)))
4679 return sigsuspend(&newset);
4682 #ifdef CONFIG_COMPAT
4683 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4687 /* XXX: Don't preclude handling different sized sigset_t's. */
4688 if (sigsetsize != sizeof(sigset_t))
4691 if (get_compat_sigset(&newset, unewset))
4693 return sigsuspend(&newset);
4697 #ifdef CONFIG_OLD_SIGSUSPEND
4698 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4701 siginitset(&blocked, mask);
4702 return sigsuspend(&blocked);
4705 #ifdef CONFIG_OLD_SIGSUSPEND3
4706 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4709 siginitset(&blocked, mask);
4710 return sigsuspend(&blocked);
4714 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4719 static inline void siginfo_buildtime_checks(void)
4721 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4723 /* Verify the offsets in the two siginfos match */
4724 #define CHECK_OFFSET(field) \
4725 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4728 CHECK_OFFSET(si_pid);
4729 CHECK_OFFSET(si_uid);
4732 CHECK_OFFSET(si_tid);
4733 CHECK_OFFSET(si_overrun);
4734 CHECK_OFFSET(si_value);
4737 CHECK_OFFSET(si_pid);
4738 CHECK_OFFSET(si_uid);
4739 CHECK_OFFSET(si_value);
4742 CHECK_OFFSET(si_pid);
4743 CHECK_OFFSET(si_uid);
4744 CHECK_OFFSET(si_status);
4745 CHECK_OFFSET(si_utime);
4746 CHECK_OFFSET(si_stime);
4749 CHECK_OFFSET(si_addr);
4750 CHECK_OFFSET(si_trapno);
4751 CHECK_OFFSET(si_addr_lsb);
4752 CHECK_OFFSET(si_lower);
4753 CHECK_OFFSET(si_upper);
4754 CHECK_OFFSET(si_pkey);
4755 CHECK_OFFSET(si_perf_data);
4756 CHECK_OFFSET(si_perf_type);
4757 CHECK_OFFSET(si_perf_flags);
4760 CHECK_OFFSET(si_band);
4761 CHECK_OFFSET(si_fd);
4764 CHECK_OFFSET(si_call_addr);
4765 CHECK_OFFSET(si_syscall);
4766 CHECK_OFFSET(si_arch);
4770 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4771 offsetof(struct siginfo, si_addr));
4772 if (sizeof(int) == sizeof(void __user *)) {
4773 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4774 sizeof(void __user *));
4776 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4777 sizeof_field(struct siginfo, si_uid)) !=
4778 sizeof(void __user *));
4779 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4780 offsetof(struct siginfo, si_uid));
4782 #ifdef CONFIG_COMPAT
4783 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4784 offsetof(struct compat_siginfo, si_addr));
4785 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4786 sizeof(compat_uptr_t));
4787 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4788 sizeof_field(struct siginfo, si_pid));
4792 #if defined(CONFIG_SYSCTL)
4793 static struct ctl_table signal_debug_table[] = {
4794 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4796 .procname = "exception-trace",
4797 .data = &show_unhandled_signals,
4798 .maxlen = sizeof(int),
4800 .proc_handler = proc_dointvec
4806 static int __init init_signal_sysctls(void)
4808 register_sysctl_init("debug", signal_debug_table);
4811 early_initcall(init_signal_sysctls);
4812 #endif /* CONFIG_SYSCTL */
4814 void __init signals_init(void)
4816 siginfo_buildtime_checks();
4818 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4821 #ifdef CONFIG_KGDB_KDB
4822 #include <linux/kdb.h>
4824 * kdb_send_sig - Allows kdb to send signals without exposing
4825 * signal internals. This function checks if the required locks are
4826 * available before calling the main signal code, to avoid kdb
4829 void kdb_send_sig(struct task_struct *t, int sig)
4831 static struct task_struct *kdb_prev_t;
4833 if (!spin_trylock(&t->sighand->siglock)) {
4834 kdb_printf("Can't do kill command now.\n"
4835 "The sigmask lock is held somewhere else in "
4836 "kernel, try again later\n");
4839 new_t = kdb_prev_t != t;
4841 if (!task_is_running(t) && new_t) {
4842 spin_unlock(&t->sighand->siglock);
4843 kdb_printf("Process is not RUNNING, sending a signal from "
4844 "kdb risks deadlock\n"
4845 "on the run queue locks. "
4846 "The signal has _not_ been sent.\n"
4847 "Reissue the kill command if you want to risk "
4851 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4852 spin_unlock(&t->sighand->siglock);
4854 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4857 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4859 #endif /* CONFIG_KGDB_KDB */