1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/task_work.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h> /* for syscall_get_* */
60 * SLAB caches for signal bits.
63 static struct kmem_cache *sigqueue_cachep;
65 int print_fatal_signals __read_mostly;
67 static void __user *sig_handler(struct task_struct *t, int sig)
69 return t->sighand->action[sig - 1].sa.sa_handler;
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
83 handler = sig_handler(t, sig);
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
98 return sig_handler_ignored(handler, sig);
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
116 if (t->ptrace && sig != SIGKILL)
119 return sig_task_ignored(t, sig, force);
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
131 switch (_NSIG_WORDS) {
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
154 static bool recalc_sigpending_tsk(struct task_struct *t)
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
176 void recalc_sigpending_and_wake(struct task_struct *t)
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
182 void recalc_sigpending(void)
184 if (!recalc_sigpending_tsk(current) && !freezing(current))
185 clear_thread_flag(TIF_SIGPENDING);
188 EXPORT_SYMBOL(recalc_sigpending);
190 void calculate_sigpending(void)
192 /* Have any signals or users of TIF_SIGPENDING been delayed
195 spin_lock_irq(¤t->sighand->siglock);
196 set_tsk_thread_flag(current, TIF_SIGPENDING);
198 spin_unlock_irq(¤t->sighand->siglock);
201 /* Given the mask, find the first available signal that should be serviced. */
203 #define SYNCHRONOUS_MASK \
204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207 int next_signal(struct sigpending *pending, sigset_t *mask)
209 unsigned long i, *s, *m, x;
212 s = pending->signal.sig;
216 * Handle the first word specially: it contains the
217 * synchronous signals that need to be dequeued first.
221 if (x & SYNCHRONOUS_MASK)
222 x &= SYNCHRONOUS_MASK;
227 switch (_NSIG_WORDS) {
229 for (i = 1; i < _NSIG_WORDS; ++i) {
233 sig = ffz(~x) + i*_NSIG_BPW + 1;
242 sig = ffz(~x) + _NSIG_BPW + 1;
253 static inline void print_dropped_signal(int sig)
255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257 if (!print_fatal_signals)
260 if (!__ratelimit(&ratelimit_state))
263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 current->comm, current->pid, sig);
268 * task_set_jobctl_pending - set jobctl pending bits
270 * @mask: pending bits to set
272 * Clear @mask from @task->jobctl. @mask must be subset of
273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
275 * cleared. If @task is already being killed or exiting, this function
279 * Must be called with @task->sighand->siglock held.
282 * %true if @mask is set, %false if made noop because @task was dying.
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
293 if (mask & JOBCTL_STOP_SIGMASK)
294 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296 task->jobctl |= mask;
301 * task_clear_jobctl_trapping - clear jobctl trapping bit
304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305 * Clear it and wake up the ptracer. Note that we don't need any further
306 * locking. @task->siglock guarantees that @task->parent points to the
310 * Must be called with @task->sighand->siglock held.
312 void task_clear_jobctl_trapping(struct task_struct *task)
314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 task->jobctl &= ~JOBCTL_TRAPPING;
316 smp_mb(); /* advised by wake_up_bit() */
317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
322 * task_clear_jobctl_pending - clear jobctl pending bits
324 * @mask: pending bits to clear
326 * Clear @mask from @task->jobctl. @mask must be subset of
327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
328 * STOP bits are cleared together.
330 * If clearing of @mask leaves no stop or trap pending, this function calls
331 * task_clear_jobctl_trapping().
334 * Must be called with @task->sighand->siglock held.
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340 if (mask & JOBCTL_STOP_PENDING)
341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343 task->jobctl &= ~mask;
345 if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 task_clear_jobctl_trapping(task);
350 * task_participate_group_stop - participate in a group stop
351 * @task: task participating in a group stop
353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354 * Group stop states are cleared and the group stop count is consumed if
355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
356 * stop, the appropriate `SIGNAL_*` flags are set.
359 * Must be called with @task->sighand->siglock held.
362 * %true if group stop completion should be notified to the parent, %false
365 static bool task_participate_group_stop(struct task_struct *task)
367 struct signal_struct *sig = task->signal;
368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
377 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 sig->group_stop_count--;
381 * Tell the caller to notify completion iff we are entering into a
382 * fresh group stop. Read comment in do_signal_stop() for details.
384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
391 void task_join_group_stop(struct task_struct *task)
393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 struct signal_struct *sig = current->signal;
396 if (sig->group_stop_count) {
397 sig->group_stop_count++;
398 mask |= JOBCTL_STOP_CONSUME;
399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
402 /* Have the new thread join an on-going signal group stop */
403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 int override_rlimit, const unsigned int sigqueue_flags)
415 struct sigqueue *q = NULL;
416 struct ucounts *ucounts = NULL;
420 * Protect access to @t credentials. This can go away when all
421 * callers hold rcu read lock.
423 * NOTE! A pending signal will hold on to the user refcount,
424 * and we get/put the refcount only when the sigpending count
425 * changes from/to zero.
428 ucounts = task_ucounts(t);
429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
437 print_dropped_signal(sig);
440 if (unlikely(q == NULL)) {
441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
443 INIT_LIST_HEAD(&q->list);
444 q->flags = sigqueue_flags;
445 q->ucounts = ucounts;
450 static void __sigqueue_free(struct sigqueue *q)
452 if (q->flags & SIGQUEUE_PREALLOC)
455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
458 kmem_cache_free(sigqueue_cachep, q);
461 void flush_sigqueue(struct sigpending *queue)
465 sigemptyset(&queue->signal);
466 while (!list_empty(&queue->list)) {
467 q = list_entry(queue->list.next, struct sigqueue , list);
468 list_del_init(&q->list);
474 * Flush all pending signals for this kthread.
476 void flush_signals(struct task_struct *t)
480 spin_lock_irqsave(&t->sighand->siglock, flags);
481 clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 flush_sigqueue(&t->pending);
483 flush_sigqueue(&t->signal->shared_pending);
484 spin_unlock_irqrestore(&t->sighand->siglock, flags);
486 EXPORT_SYMBOL(flush_signals);
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
491 sigset_t signal, retain;
492 struct sigqueue *q, *n;
494 signal = pending->signal;
495 sigemptyset(&retain);
497 list_for_each_entry_safe(q, n, &pending->list, list) {
498 int sig = q->info.si_signo;
500 if (likely(q->info.si_code != SI_TIMER)) {
501 sigaddset(&retain, sig);
503 sigdelset(&signal, sig);
504 list_del_init(&q->list);
509 sigorsets(&pending->signal, &signal, &retain);
512 void flush_itimer_signals(void)
514 struct task_struct *tsk = current;
517 spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 __flush_itimer_signals(&tsk->pending);
519 __flush_itimer_signals(&tsk->signal->shared_pending);
520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
524 void ignore_signals(struct task_struct *t)
528 for (i = 0; i < _NSIG; ++i)
529 t->sighand->action[i].sa.sa_handler = SIG_IGN;
535 * Flush all handlers for a task.
539 flush_signal_handlers(struct task_struct *t, int force_default)
542 struct k_sigaction *ka = &t->sighand->action[0];
543 for (i = _NSIG ; i != 0 ; i--) {
544 if (force_default || ka->sa.sa_handler != SIG_IGN)
545 ka->sa.sa_handler = SIG_DFL;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 ka->sa.sa_restorer = NULL;
550 sigemptyset(&ka->sa.sa_mask);
555 bool unhandled_signal(struct task_struct *tsk, int sig)
557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 if (is_global_init(tsk))
561 if (handler != SIG_IGN && handler != SIG_DFL)
564 /* if ptraced, let the tracer determine */
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
571 struct sigqueue *q, *first = NULL;
574 * Collect the siginfo appropriate to this signal. Check if
575 * there is another siginfo for the same signal.
577 list_for_each_entry(q, &list->list, list) {
578 if (q->info.si_signo == sig) {
585 sigdelset(&list->signal, sig);
589 list_del_init(&first->list);
590 copy_siginfo(info, &first->info);
593 (first->flags & SIGQUEUE_PREALLOC) &&
594 (info->si_code == SI_TIMER) &&
595 (info->si_sys_private);
597 __sigqueue_free(first);
600 * Ok, it wasn't in the queue. This must be
601 * a fast-pathed signal or we must have been
602 * out of queue space. So zero out the info.
605 info->si_signo = sig;
607 info->si_code = SI_USER;
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 kernel_siginfo_t *info, bool *resched_timer)
616 int sig = next_signal(pending, mask);
619 collect_signal(sig, pending, info, resched_timer);
624 * Dequeue a signal and return the element to the caller, which is
625 * expected to free it.
627 * All callers have to hold the siglock.
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
630 kernel_siginfo_t *info, enum pid_type *type)
632 bool resched_timer = false;
635 /* We only dequeue private signals from ourselves, we don't let
636 * signalfd steal them
639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
641 *type = PIDTYPE_TGID;
642 signr = __dequeue_signal(&tsk->signal->shared_pending,
643 mask, info, &resched_timer);
644 #ifdef CONFIG_POSIX_TIMERS
648 * itimers are process shared and we restart periodic
649 * itimers in the signal delivery path to prevent DoS
650 * attacks in the high resolution timer case. This is
651 * compliant with the old way of self-restarting
652 * itimers, as the SIGALRM is a legacy signal and only
653 * queued once. Changing the restart behaviour to
654 * restart the timer in the signal dequeue path is
655 * reducing the timer noise on heavy loaded !highres
658 if (unlikely(signr == SIGALRM)) {
659 struct hrtimer *tmr = &tsk->signal->real_timer;
661 if (!hrtimer_is_queued(tmr) &&
662 tsk->signal->it_real_incr != 0) {
663 hrtimer_forward(tmr, tmr->base->get_time(),
664 tsk->signal->it_real_incr);
665 hrtimer_restart(tmr);
675 if (unlikely(sig_kernel_stop(signr))) {
677 * Set a marker that we have dequeued a stop signal. Our
678 * caller might release the siglock and then the pending
679 * stop signal it is about to process is no longer in the
680 * pending bitmasks, but must still be cleared by a SIGCONT
681 * (and overruled by a SIGKILL). So those cases clear this
682 * shared flag after we've set it. Note that this flag may
683 * remain set after the signal we return is ignored or
684 * handled. That doesn't matter because its only purpose
685 * is to alert stop-signal processing code when another
686 * processor has come along and cleared the flag.
688 current->jobctl |= JOBCTL_STOP_DEQUEUED;
690 #ifdef CONFIG_POSIX_TIMERS
693 * Release the siglock to ensure proper locking order
694 * of timer locks outside of siglocks. Note, we leave
695 * irqs disabled here, since the posix-timers code is
696 * about to disable them again anyway.
698 spin_unlock(&tsk->sighand->siglock);
699 posixtimer_rearm(info);
700 spin_lock(&tsk->sighand->siglock);
702 /* Don't expose the si_sys_private value to userspace */
703 info->si_sys_private = 0;
708 EXPORT_SYMBOL_GPL(dequeue_signal);
710 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
712 struct task_struct *tsk = current;
713 struct sigpending *pending = &tsk->pending;
714 struct sigqueue *q, *sync = NULL;
717 * Might a synchronous signal be in the queue?
719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
723 * Return the first synchronous signal in the queue.
725 list_for_each_entry(q, &pending->list, list) {
726 /* Synchronous signals have a positive si_code */
727 if ((q->info.si_code > SI_USER) &&
728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
736 * Check if there is another siginfo for the same signal.
738 list_for_each_entry_continue(q, &pending->list, list) {
739 if (q->info.si_signo == sync->info.si_signo)
743 sigdelset(&pending->signal, sync->info.si_signo);
746 list_del_init(&sync->list);
747 copy_siginfo(info, &sync->info);
748 __sigqueue_free(sync);
749 return info->si_signo;
753 * Tell a process that it has a new active signal..
755 * NOTE! we rely on the previous spin_lock to
756 * lock interrupts for us! We can only be called with
757 * "siglock" held, and the local interrupt must
758 * have been disabled when that got acquired!
760 * No need to set need_resched since signal event passing
761 * goes through ->blocked
763 void signal_wake_up_state(struct task_struct *t, unsigned int state)
765 lockdep_assert_held(&t->sighand->siglock);
767 set_tsk_thread_flag(t, TIF_SIGPENDING);
770 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
771 * case. We don't check t->state here because there is a race with it
772 * executing another processor and just now entering stopped state.
773 * By using wake_up_state, we ensure the process will wake up and
774 * handle its death signal.
776 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
781 * Remove signals in mask from the pending set and queue.
782 * Returns 1 if any signals were found.
784 * All callers must be holding the siglock.
786 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
788 struct sigqueue *q, *n;
791 sigandsets(&m, mask, &s->signal);
792 if (sigisemptyset(&m))
795 sigandnsets(&s->signal, &s->signal, mask);
796 list_for_each_entry_safe(q, n, &s->list, list) {
797 if (sigismember(mask, q->info.si_signo)) {
798 list_del_init(&q->list);
804 static inline int is_si_special(const struct kernel_siginfo *info)
806 return info <= SEND_SIG_PRIV;
809 static inline bool si_fromuser(const struct kernel_siginfo *info)
811 return info == SEND_SIG_NOINFO ||
812 (!is_si_special(info) && SI_FROMUSER(info));
816 * called with RCU read lock from check_kill_permission()
818 static bool kill_ok_by_cred(struct task_struct *t)
820 const struct cred *cred = current_cred();
821 const struct cred *tcred = __task_cred(t);
823 return uid_eq(cred->euid, tcred->suid) ||
824 uid_eq(cred->euid, tcred->uid) ||
825 uid_eq(cred->uid, tcred->suid) ||
826 uid_eq(cred->uid, tcred->uid) ||
827 ns_capable(tcred->user_ns, CAP_KILL);
831 * Bad permissions for sending the signal
832 * - the caller must hold the RCU read lock
834 static int check_kill_permission(int sig, struct kernel_siginfo *info,
835 struct task_struct *t)
840 if (!valid_signal(sig))
843 if (!si_fromuser(info))
846 error = audit_signal_info(sig, t); /* Let audit system see the signal */
850 if (!same_thread_group(current, t) &&
851 !kill_ok_by_cred(t)) {
854 sid = task_session(t);
856 * We don't return the error if sid == NULL. The
857 * task was unhashed, the caller must notice this.
859 if (!sid || sid == task_session(current))
867 return security_task_kill(t, info, sig, NULL);
871 * ptrace_trap_notify - schedule trap to notify ptracer
872 * @t: tracee wanting to notify tracer
874 * This function schedules sticky ptrace trap which is cleared on the next
875 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
878 * If @t is running, STOP trap will be taken. If trapped for STOP and
879 * ptracer is listening for events, tracee is woken up so that it can
880 * re-trap for the new event. If trapped otherwise, STOP trap will be
881 * eventually taken without returning to userland after the existing traps
882 * are finished by PTRACE_CONT.
885 * Must be called with @task->sighand->siglock held.
887 static void ptrace_trap_notify(struct task_struct *t)
889 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
890 lockdep_assert_held(&t->sighand->siglock);
892 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
893 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
897 * Handle magic process-wide effects of stop/continue signals. Unlike
898 * the signal actions, these happen immediately at signal-generation
899 * time regardless of blocking, ignoring, or handling. This does the
900 * actual continuing for SIGCONT, but not the actual stopping for stop
901 * signals. The process stop is done as a signal action for SIG_DFL.
903 * Returns true if the signal should be actually delivered, otherwise
904 * it should be dropped.
906 static bool prepare_signal(int sig, struct task_struct *p, bool force)
908 struct signal_struct *signal = p->signal;
909 struct task_struct *t;
912 if (signal->flags & SIGNAL_GROUP_EXIT) {
913 if (signal->core_state)
914 return sig == SIGKILL;
916 * The process is in the middle of dying, nothing to do.
918 } else if (sig_kernel_stop(sig)) {
920 * This is a stop signal. Remove SIGCONT from all queues.
922 siginitset(&flush, sigmask(SIGCONT));
923 flush_sigqueue_mask(&flush, &signal->shared_pending);
924 for_each_thread(p, t)
925 flush_sigqueue_mask(&flush, &t->pending);
926 } else if (sig == SIGCONT) {
929 * Remove all stop signals from all queues, wake all threads.
931 siginitset(&flush, SIG_KERNEL_STOP_MASK);
932 flush_sigqueue_mask(&flush, &signal->shared_pending);
933 for_each_thread(p, t) {
934 flush_sigqueue_mask(&flush, &t->pending);
935 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
936 if (likely(!(t->ptrace & PT_SEIZED))) {
937 t->jobctl &= ~JOBCTL_STOPPED;
938 wake_up_state(t, __TASK_STOPPED);
940 ptrace_trap_notify(t);
944 * Notify the parent with CLD_CONTINUED if we were stopped.
946 * If we were in the middle of a group stop, we pretend it
947 * was already finished, and then continued. Since SIGCHLD
948 * doesn't queue we report only CLD_STOPPED, as if the next
949 * CLD_CONTINUED was dropped.
952 if (signal->flags & SIGNAL_STOP_STOPPED)
953 why |= SIGNAL_CLD_CONTINUED;
954 else if (signal->group_stop_count)
955 why |= SIGNAL_CLD_STOPPED;
959 * The first thread which returns from do_signal_stop()
960 * will take ->siglock, notice SIGNAL_CLD_MASK, and
961 * notify its parent. See get_signal().
963 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
964 signal->group_stop_count = 0;
965 signal->group_exit_code = 0;
969 return !sig_ignored(p, sig, force);
973 * Test if P wants to take SIG. After we've checked all threads with this,
974 * it's equivalent to finding no threads not blocking SIG. Any threads not
975 * blocking SIG were ruled out because they are not running and already
976 * have pending signals. Such threads will dequeue from the shared queue
977 * as soon as they're available, so putting the signal on the shared queue
978 * will be equivalent to sending it to one such thread.
980 static inline bool wants_signal(int sig, struct task_struct *p)
982 if (sigismember(&p->blocked, sig))
985 if (p->flags & PF_EXITING)
991 if (task_is_stopped_or_traced(p))
994 return task_curr(p) || !task_sigpending(p);
997 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
999 struct signal_struct *signal = p->signal;
1000 struct task_struct *t;
1003 * Now find a thread we can wake up to take the signal off the queue.
1005 * If the main thread wants the signal, it gets first crack.
1006 * Probably the least surprising to the average bear.
1008 if (wants_signal(sig, p))
1010 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012 * There is just one thread and it does not need to be woken.
1013 * It will dequeue unblocked signals before it runs again.
1018 * Otherwise try to find a suitable thread.
1020 t = signal->curr_target;
1021 while (!wants_signal(sig, t)) {
1023 if (t == signal->curr_target)
1025 * No thread needs to be woken.
1026 * Any eligible threads will see
1027 * the signal in the queue soon.
1031 signal->curr_target = t;
1035 * Found a killable thread. If the signal will be fatal,
1036 * then start taking the whole group down immediately.
1038 if (sig_fatal(p, sig) &&
1039 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1040 !sigismember(&t->real_blocked, sig) &&
1041 (sig == SIGKILL || !p->ptrace)) {
1043 * This signal will be fatal to the whole group.
1045 if (!sig_kernel_coredump(sig)) {
1047 * Start a group exit and wake everybody up.
1048 * This way we don't have other threads
1049 * running and doing things after a slower
1050 * thread has the fatal signal pending.
1052 signal->flags = SIGNAL_GROUP_EXIT;
1053 signal->group_exit_code = sig;
1054 signal->group_stop_count = 0;
1057 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1058 sigaddset(&t->pending.signal, SIGKILL);
1059 signal_wake_up(t, 1);
1060 } while_each_thread(p, t);
1066 * The signal is already in the shared-pending queue.
1067 * Tell the chosen thread to wake up and dequeue it.
1069 signal_wake_up(t, sig == SIGKILL);
1073 static inline bool legacy_queue(struct sigpending *signals, int sig)
1075 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1078 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1079 struct task_struct *t, enum pid_type type, bool force)
1081 struct sigpending *pending;
1083 int override_rlimit;
1084 int ret = 0, result;
1086 lockdep_assert_held(&t->sighand->siglock);
1088 result = TRACE_SIGNAL_IGNORED;
1089 if (!prepare_signal(sig, t, force))
1092 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094 * Short-circuit ignored signals and support queuing
1095 * exactly one non-rt signal, so that we can get more
1096 * detailed information about the cause of the signal.
1098 result = TRACE_SIGNAL_ALREADY_PENDING;
1099 if (legacy_queue(pending, sig))
1102 result = TRACE_SIGNAL_DELIVERED;
1104 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1106 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1110 * Real-time signals must be queued if sent by sigqueue, or
1111 * some other real-time mechanism. It is implementation
1112 * defined whether kill() does so. We attempt to do so, on
1113 * the principle of least surprise, but since kill is not
1114 * allowed to fail with EAGAIN when low on memory we just
1115 * make sure at least one signal gets delivered and don't
1116 * pass on the info struct.
1119 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121 override_rlimit = 0;
1123 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1126 list_add_tail(&q->list, &pending->list);
1127 switch ((unsigned long) info) {
1128 case (unsigned long) SEND_SIG_NOINFO:
1129 clear_siginfo(&q->info);
1130 q->info.si_signo = sig;
1131 q->info.si_errno = 0;
1132 q->info.si_code = SI_USER;
1133 q->info.si_pid = task_tgid_nr_ns(current,
1134 task_active_pid_ns(t));
1137 from_kuid_munged(task_cred_xxx(t, user_ns),
1141 case (unsigned long) SEND_SIG_PRIV:
1142 clear_siginfo(&q->info);
1143 q->info.si_signo = sig;
1144 q->info.si_errno = 0;
1145 q->info.si_code = SI_KERNEL;
1150 copy_siginfo(&q->info, info);
1153 } else if (!is_si_special(info) &&
1154 sig >= SIGRTMIN && info->si_code != SI_USER) {
1156 * Queue overflow, abort. We may abort if the
1157 * signal was rt and sent by user using something
1158 * other than kill().
1160 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1165 * This is a silent loss of information. We still
1166 * send the signal, but the *info bits are lost.
1168 result = TRACE_SIGNAL_LOSE_INFO;
1172 signalfd_notify(t, sig);
1173 sigaddset(&pending->signal, sig);
1175 /* Let multiprocess signals appear after on-going forks */
1176 if (type > PIDTYPE_TGID) {
1177 struct multiprocess_signals *delayed;
1178 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1179 sigset_t *signal = &delayed->signal;
1180 /* Can't queue both a stop and a continue signal */
1182 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1183 else if (sig_kernel_stop(sig))
1184 sigdelset(signal, SIGCONT);
1185 sigaddset(signal, sig);
1189 complete_signal(sig, t, type);
1191 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1195 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1198 switch (siginfo_layout(info->si_signo, info->si_code)) {
1207 case SIL_FAULT_TRAPNO:
1208 case SIL_FAULT_MCEERR:
1209 case SIL_FAULT_BNDERR:
1210 case SIL_FAULT_PKUERR:
1211 case SIL_FAULT_PERF_EVENT:
1219 int send_signal_locked(int sig, struct kernel_siginfo *info,
1220 struct task_struct *t, enum pid_type type)
1222 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1225 if (info == SEND_SIG_NOINFO) {
1226 /* Force if sent from an ancestor pid namespace */
1227 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1228 } else if (info == SEND_SIG_PRIV) {
1229 /* Don't ignore kernel generated signals */
1231 } else if (has_si_pid_and_uid(info)) {
1232 /* SIGKILL and SIGSTOP is special or has ids */
1233 struct user_namespace *t_user_ns;
1236 t_user_ns = task_cred_xxx(t, user_ns);
1237 if (current_user_ns() != t_user_ns) {
1238 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1239 info->si_uid = from_kuid_munged(t_user_ns, uid);
1243 /* A kernel generated signal? */
1244 force = (info->si_code == SI_KERNEL);
1246 /* From an ancestor pid namespace? */
1247 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1252 return __send_signal_locked(sig, info, t, type, force);
1255 static void print_fatal_signal(int signr)
1257 struct pt_regs *regs = signal_pt_regs();
1258 pr_info("potentially unexpected fatal signal %d.\n", signr);
1260 #if defined(__i386__) && !defined(__arch_um__)
1261 pr_info("code at %08lx: ", regs->ip);
1264 for (i = 0; i < 16; i++) {
1267 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1269 pr_cont("%02x ", insn);
1279 static int __init setup_print_fatal_signals(char *str)
1281 get_option (&str, &print_fatal_signals);
1286 __setup("print-fatal-signals=", setup_print_fatal_signals);
1288 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1291 unsigned long flags;
1294 if (lock_task_sighand(p, &flags)) {
1295 ret = send_signal_locked(sig, info, p, type);
1296 unlock_task_sighand(p, &flags);
1303 HANDLER_CURRENT, /* If reachable use the current handler */
1304 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1305 HANDLER_EXIT, /* Only visible as the process exit code */
1309 * Force a signal that the process can't ignore: if necessary
1310 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1312 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1313 * since we do not want to have a signal handler that was blocked
1314 * be invoked when user space had explicitly blocked it.
1316 * We don't want to have recursive SIGSEGV's etc, for example,
1317 * that is why we also clear SIGNAL_UNKILLABLE.
1320 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1321 enum sig_handler handler)
1323 unsigned long int flags;
1324 int ret, blocked, ignored;
1325 struct k_sigaction *action;
1326 int sig = info->si_signo;
1328 spin_lock_irqsave(&t->sighand->siglock, flags);
1329 action = &t->sighand->action[sig-1];
1330 ignored = action->sa.sa_handler == SIG_IGN;
1331 blocked = sigismember(&t->blocked, sig);
1332 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1333 action->sa.sa_handler = SIG_DFL;
1334 if (handler == HANDLER_EXIT)
1335 action->sa.sa_flags |= SA_IMMUTABLE;
1337 sigdelset(&t->blocked, sig);
1338 recalc_sigpending_and_wake(t);
1342 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1343 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1345 if (action->sa.sa_handler == SIG_DFL &&
1346 (!t->ptrace || (handler == HANDLER_EXIT)))
1347 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1348 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1349 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1354 int force_sig_info(struct kernel_siginfo *info)
1356 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1360 * Nuke all other threads in the group.
1362 int zap_other_threads(struct task_struct *p)
1364 struct task_struct *t = p;
1367 p->signal->group_stop_count = 0;
1369 while_each_thread(p, t) {
1370 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1373 /* Don't bother with already dead threads */
1376 sigaddset(&t->pending.signal, SIGKILL);
1377 signal_wake_up(t, 1);
1383 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1384 unsigned long *flags)
1386 struct sighand_struct *sighand;
1390 sighand = rcu_dereference(tsk->sighand);
1391 if (unlikely(sighand == NULL))
1395 * This sighand can be already freed and even reused, but
1396 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1397 * initializes ->siglock: this slab can't go away, it has
1398 * the same object type, ->siglock can't be reinitialized.
1400 * We need to ensure that tsk->sighand is still the same
1401 * after we take the lock, we can race with de_thread() or
1402 * __exit_signal(). In the latter case the next iteration
1403 * must see ->sighand == NULL.
1405 spin_lock_irqsave(&sighand->siglock, *flags);
1406 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408 spin_unlock_irqrestore(&sighand->siglock, *flags);
1415 #ifdef CONFIG_LOCKDEP
1416 void lockdep_assert_task_sighand_held(struct task_struct *task)
1418 struct sighand_struct *sighand;
1421 sighand = rcu_dereference(task->sighand);
1423 lockdep_assert_held(&sighand->siglock);
1431 * send signal info to all the members of a group
1433 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1434 struct task_struct *p, enum pid_type type)
1439 ret = check_kill_permission(sig, info, p);
1443 ret = do_send_sig_info(sig, info, p, type);
1449 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1450 * control characters do (^C, ^Z etc)
1451 * - the caller must hold at least a readlock on tasklist_lock
1453 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1455 struct task_struct *p = NULL;
1456 int retval, success;
1460 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1461 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1464 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1465 return success ? 0 : retval;
1468 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1471 struct task_struct *p;
1475 p = pid_task(pid, PIDTYPE_PID);
1477 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1479 if (likely(!p || error != -ESRCH))
1483 * The task was unhashed in between, try again. If it
1484 * is dead, pid_task() will return NULL, if we race with
1485 * de_thread() it will find the new leader.
1490 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1494 error = kill_pid_info(sig, info, find_vpid(pid));
1499 static inline bool kill_as_cred_perm(const struct cred *cred,
1500 struct task_struct *target)
1502 const struct cred *pcred = __task_cred(target);
1504 return uid_eq(cred->euid, pcred->suid) ||
1505 uid_eq(cred->euid, pcred->uid) ||
1506 uid_eq(cred->uid, pcred->suid) ||
1507 uid_eq(cred->uid, pcred->uid);
1511 * The usb asyncio usage of siginfo is wrong. The glibc support
1512 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1513 * AKA after the generic fields:
1514 * kernel_pid_t si_pid;
1515 * kernel_uid32_t si_uid;
1516 * sigval_t si_value;
1518 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1519 * after the generic fields is:
1520 * void __user *si_addr;
1522 * This is a practical problem when there is a 64bit big endian kernel
1523 * and a 32bit userspace. As the 32bit address will encoded in the low
1524 * 32bits of the pointer. Those low 32bits will be stored at higher
1525 * address than appear in a 32 bit pointer. So userspace will not
1526 * see the address it was expecting for it's completions.
1528 * There is nothing in the encoding that can allow
1529 * copy_siginfo_to_user32 to detect this confusion of formats, so
1530 * handle this by requiring the caller of kill_pid_usb_asyncio to
1531 * notice when this situration takes place and to store the 32bit
1532 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1535 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1536 struct pid *pid, const struct cred *cred)
1538 struct kernel_siginfo info;
1539 struct task_struct *p;
1540 unsigned long flags;
1543 if (!valid_signal(sig))
1546 clear_siginfo(&info);
1547 info.si_signo = sig;
1548 info.si_errno = errno;
1549 info.si_code = SI_ASYNCIO;
1550 *((sigval_t *)&info.si_pid) = addr;
1553 p = pid_task(pid, PIDTYPE_PID);
1558 if (!kill_as_cred_perm(cred, p)) {
1562 ret = security_task_kill(p, &info, sig, cred);
1567 if (lock_task_sighand(p, &flags)) {
1568 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1569 unlock_task_sighand(p, &flags);
1577 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1580 * kill_something_info() interprets pid in interesting ways just like kill(2).
1582 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1583 * is probably wrong. Should make it like BSD or SYSV.
1586 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1591 return kill_proc_info(sig, info, pid);
1593 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1597 read_lock(&tasklist_lock);
1599 ret = __kill_pgrp_info(sig, info,
1600 pid ? find_vpid(-pid) : task_pgrp(current));
1602 int retval = 0, count = 0;
1603 struct task_struct * p;
1605 for_each_process(p) {
1606 if (task_pid_vnr(p) > 1 &&
1607 !same_thread_group(p, current)) {
1608 int err = group_send_sig_info(sig, info, p,
1615 ret = count ? retval : -ESRCH;
1617 read_unlock(&tasklist_lock);
1623 * These are for backward compatibility with the rest of the kernel source.
1626 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1629 * Make sure legacy kernel users don't send in bad values
1630 * (normal paths check this in check_kill_permission).
1632 if (!valid_signal(sig))
1635 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1637 EXPORT_SYMBOL(send_sig_info);
1639 #define __si_special(priv) \
1640 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1643 send_sig(int sig, struct task_struct *p, int priv)
1645 return send_sig_info(sig, __si_special(priv), p);
1647 EXPORT_SYMBOL(send_sig);
1649 void force_sig(int sig)
1651 struct kernel_siginfo info;
1653 clear_siginfo(&info);
1654 info.si_signo = sig;
1656 info.si_code = SI_KERNEL;
1659 force_sig_info(&info);
1661 EXPORT_SYMBOL(force_sig);
1663 void force_fatal_sig(int sig)
1665 struct kernel_siginfo info;
1667 clear_siginfo(&info);
1668 info.si_signo = sig;
1670 info.si_code = SI_KERNEL;
1673 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1676 void force_exit_sig(int sig)
1678 struct kernel_siginfo info;
1680 clear_siginfo(&info);
1681 info.si_signo = sig;
1683 info.si_code = SI_KERNEL;
1686 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1690 * When things go south during signal handling, we
1691 * will force a SIGSEGV. And if the signal that caused
1692 * the problem was already a SIGSEGV, we'll want to
1693 * make sure we don't even try to deliver the signal..
1695 void force_sigsegv(int sig)
1698 force_fatal_sig(SIGSEGV);
1703 int force_sig_fault_to_task(int sig, int code, void __user *addr
1704 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1705 , struct task_struct *t)
1707 struct kernel_siginfo info;
1709 clear_siginfo(&info);
1710 info.si_signo = sig;
1712 info.si_code = code;
1713 info.si_addr = addr;
1716 info.si_flags = flags;
1719 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1722 int force_sig_fault(int sig, int code, void __user *addr
1723 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1725 return force_sig_fault_to_task(sig, code, addr
1726 ___ARCH_SI_IA64(imm, flags, isr), current);
1729 int send_sig_fault(int sig, int code, void __user *addr
1730 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1731 , struct task_struct *t)
1733 struct kernel_siginfo info;
1735 clear_siginfo(&info);
1736 info.si_signo = sig;
1738 info.si_code = code;
1739 info.si_addr = addr;
1742 info.si_flags = flags;
1745 return send_sig_info(info.si_signo, &info, t);
1748 int force_sig_mceerr(int code, void __user *addr, short lsb)
1750 struct kernel_siginfo info;
1752 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1753 clear_siginfo(&info);
1754 info.si_signo = SIGBUS;
1756 info.si_code = code;
1757 info.si_addr = addr;
1758 info.si_addr_lsb = lsb;
1759 return force_sig_info(&info);
1762 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1764 struct kernel_siginfo info;
1766 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1767 clear_siginfo(&info);
1768 info.si_signo = SIGBUS;
1770 info.si_code = code;
1771 info.si_addr = addr;
1772 info.si_addr_lsb = lsb;
1773 return send_sig_info(info.si_signo, &info, t);
1775 EXPORT_SYMBOL(send_sig_mceerr);
1777 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1779 struct kernel_siginfo info;
1781 clear_siginfo(&info);
1782 info.si_signo = SIGSEGV;
1784 info.si_code = SEGV_BNDERR;
1785 info.si_addr = addr;
1786 info.si_lower = lower;
1787 info.si_upper = upper;
1788 return force_sig_info(&info);
1792 int force_sig_pkuerr(void __user *addr, u32 pkey)
1794 struct kernel_siginfo info;
1796 clear_siginfo(&info);
1797 info.si_signo = SIGSEGV;
1799 info.si_code = SEGV_PKUERR;
1800 info.si_addr = addr;
1801 info.si_pkey = pkey;
1802 return force_sig_info(&info);
1806 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1808 struct kernel_siginfo info;
1810 clear_siginfo(&info);
1811 info.si_signo = SIGTRAP;
1813 info.si_code = TRAP_PERF;
1814 info.si_addr = addr;
1815 info.si_perf_data = sig_data;
1816 info.si_perf_type = type;
1819 * Signals generated by perf events should not terminate the whole
1820 * process if SIGTRAP is blocked, however, delivering the signal
1821 * asynchronously is better than not delivering at all. But tell user
1822 * space if the signal was asynchronous, so it can clearly be
1823 * distinguished from normal synchronous ones.
1825 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1826 TRAP_PERF_FLAG_ASYNC :
1829 return send_sig_info(info.si_signo, &info, current);
1833 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1834 * @syscall: syscall number to send to userland
1835 * @reason: filter-supplied reason code to send to userland (via si_errno)
1836 * @force_coredump: true to trigger a coredump
1838 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1840 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1842 struct kernel_siginfo info;
1844 clear_siginfo(&info);
1845 info.si_signo = SIGSYS;
1846 info.si_code = SYS_SECCOMP;
1847 info.si_call_addr = (void __user *)KSTK_EIP(current);
1848 info.si_errno = reason;
1849 info.si_arch = syscall_get_arch(current);
1850 info.si_syscall = syscall;
1851 return force_sig_info_to_task(&info, current,
1852 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1855 /* For the crazy architectures that include trap information in
1856 * the errno field, instead of an actual errno value.
1858 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1860 struct kernel_siginfo info;
1862 clear_siginfo(&info);
1863 info.si_signo = SIGTRAP;
1864 info.si_errno = errno;
1865 info.si_code = TRAP_HWBKPT;
1866 info.si_addr = addr;
1867 return force_sig_info(&info);
1870 /* For the rare architectures that include trap information using
1873 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1875 struct kernel_siginfo info;
1877 clear_siginfo(&info);
1878 info.si_signo = sig;
1880 info.si_code = code;
1881 info.si_addr = addr;
1882 info.si_trapno = trapno;
1883 return force_sig_info(&info);
1886 /* For the rare architectures that include trap information using
1889 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1890 struct task_struct *t)
1892 struct kernel_siginfo info;
1894 clear_siginfo(&info);
1895 info.si_signo = sig;
1897 info.si_code = code;
1898 info.si_addr = addr;
1899 info.si_trapno = trapno;
1900 return send_sig_info(info.si_signo, &info, t);
1903 int kill_pgrp(struct pid *pid, int sig, int priv)
1907 read_lock(&tasklist_lock);
1908 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1909 read_unlock(&tasklist_lock);
1913 EXPORT_SYMBOL(kill_pgrp);
1915 int kill_pid(struct pid *pid, int sig, int priv)
1917 return kill_pid_info(sig, __si_special(priv), pid);
1919 EXPORT_SYMBOL(kill_pid);
1922 * These functions support sending signals using preallocated sigqueue
1923 * structures. This is needed "because realtime applications cannot
1924 * afford to lose notifications of asynchronous events, like timer
1925 * expirations or I/O completions". In the case of POSIX Timers
1926 * we allocate the sigqueue structure from the timer_create. If this
1927 * allocation fails we are able to report the failure to the application
1928 * with an EAGAIN error.
1930 struct sigqueue *sigqueue_alloc(void)
1932 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1935 void sigqueue_free(struct sigqueue *q)
1937 unsigned long flags;
1938 spinlock_t *lock = ¤t->sighand->siglock;
1940 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1942 * We must hold ->siglock while testing q->list
1943 * to serialize with collect_signal() or with
1944 * __exit_signal()->flush_sigqueue().
1946 spin_lock_irqsave(lock, flags);
1947 q->flags &= ~SIGQUEUE_PREALLOC;
1949 * If it is queued it will be freed when dequeued,
1950 * like the "regular" sigqueue.
1952 if (!list_empty(&q->list))
1954 spin_unlock_irqrestore(lock, flags);
1960 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1962 int sig = q->info.si_signo;
1963 struct sigpending *pending;
1964 struct task_struct *t;
1965 unsigned long flags;
1968 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1972 t = pid_task(pid, type);
1973 if (!t || !likely(lock_task_sighand(t, &flags)))
1976 ret = 1; /* the signal is ignored */
1977 result = TRACE_SIGNAL_IGNORED;
1978 if (!prepare_signal(sig, t, false))
1982 if (unlikely(!list_empty(&q->list))) {
1984 * If an SI_TIMER entry is already queue just increment
1985 * the overrun count.
1987 BUG_ON(q->info.si_code != SI_TIMER);
1988 q->info.si_overrun++;
1989 result = TRACE_SIGNAL_ALREADY_PENDING;
1992 q->info.si_overrun = 0;
1994 signalfd_notify(t, sig);
1995 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1996 list_add_tail(&q->list, &pending->list);
1997 sigaddset(&pending->signal, sig);
1998 complete_signal(sig, t, type);
1999 result = TRACE_SIGNAL_DELIVERED;
2001 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2002 unlock_task_sighand(t, &flags);
2008 static void do_notify_pidfd(struct task_struct *task)
2012 WARN_ON(task->exit_state == 0);
2013 pid = task_pid(task);
2014 wake_up_all(&pid->wait_pidfd);
2018 * Let a parent know about the death of a child.
2019 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2021 * Returns true if our parent ignored us and so we've switched to
2024 bool do_notify_parent(struct task_struct *tsk, int sig)
2026 struct kernel_siginfo info;
2027 unsigned long flags;
2028 struct sighand_struct *psig;
2029 bool autoreap = false;
2034 /* do_notify_parent_cldstop should have been called instead. */
2035 BUG_ON(task_is_stopped_or_traced(tsk));
2037 BUG_ON(!tsk->ptrace &&
2038 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2040 /* Wake up all pidfd waiters */
2041 do_notify_pidfd(tsk);
2043 if (sig != SIGCHLD) {
2045 * This is only possible if parent == real_parent.
2046 * Check if it has changed security domain.
2048 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2052 clear_siginfo(&info);
2053 info.si_signo = sig;
2056 * We are under tasklist_lock here so our parent is tied to
2057 * us and cannot change.
2059 * task_active_pid_ns will always return the same pid namespace
2060 * until a task passes through release_task.
2062 * write_lock() currently calls preempt_disable() which is the
2063 * same as rcu_read_lock(), but according to Oleg, this is not
2064 * correct to rely on this
2067 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2068 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2072 task_cputime(tsk, &utime, &stime);
2073 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2074 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2076 info.si_status = tsk->exit_code & 0x7f;
2077 if (tsk->exit_code & 0x80)
2078 info.si_code = CLD_DUMPED;
2079 else if (tsk->exit_code & 0x7f)
2080 info.si_code = CLD_KILLED;
2082 info.si_code = CLD_EXITED;
2083 info.si_status = tsk->exit_code >> 8;
2086 psig = tsk->parent->sighand;
2087 spin_lock_irqsave(&psig->siglock, flags);
2088 if (!tsk->ptrace && sig == SIGCHLD &&
2089 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2090 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2092 * We are exiting and our parent doesn't care. POSIX.1
2093 * defines special semantics for setting SIGCHLD to SIG_IGN
2094 * or setting the SA_NOCLDWAIT flag: we should be reaped
2095 * automatically and not left for our parent's wait4 call.
2096 * Rather than having the parent do it as a magic kind of
2097 * signal handler, we just set this to tell do_exit that we
2098 * can be cleaned up without becoming a zombie. Note that
2099 * we still call __wake_up_parent in this case, because a
2100 * blocked sys_wait4 might now return -ECHILD.
2102 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2103 * is implementation-defined: we do (if you don't want
2104 * it, just use SIG_IGN instead).
2107 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2111 * Send with __send_signal as si_pid and si_uid are in the
2112 * parent's namespaces.
2114 if (valid_signal(sig) && sig)
2115 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2116 __wake_up_parent(tsk, tsk->parent);
2117 spin_unlock_irqrestore(&psig->siglock, flags);
2123 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2124 * @tsk: task reporting the state change
2125 * @for_ptracer: the notification is for ptracer
2126 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2128 * Notify @tsk's parent that the stopped/continued state has changed. If
2129 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2130 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2133 * Must be called with tasklist_lock at least read locked.
2135 static void do_notify_parent_cldstop(struct task_struct *tsk,
2136 bool for_ptracer, int why)
2138 struct kernel_siginfo info;
2139 unsigned long flags;
2140 struct task_struct *parent;
2141 struct sighand_struct *sighand;
2145 parent = tsk->parent;
2147 tsk = tsk->group_leader;
2148 parent = tsk->real_parent;
2151 clear_siginfo(&info);
2152 info.si_signo = SIGCHLD;
2155 * see comment in do_notify_parent() about the following 4 lines
2158 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2159 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2162 task_cputime(tsk, &utime, &stime);
2163 info.si_utime = nsec_to_clock_t(utime);
2164 info.si_stime = nsec_to_clock_t(stime);
2169 info.si_status = SIGCONT;
2172 info.si_status = tsk->signal->group_exit_code & 0x7f;
2175 info.si_status = tsk->exit_code & 0x7f;
2181 sighand = parent->sighand;
2182 spin_lock_irqsave(&sighand->siglock, flags);
2183 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2184 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2185 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2187 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2189 __wake_up_parent(tsk, parent);
2190 spin_unlock_irqrestore(&sighand->siglock, flags);
2194 * This must be called with current->sighand->siglock held.
2196 * This should be the path for all ptrace stops.
2197 * We always set current->last_siginfo while stopped here.
2198 * That makes it a way to test a stopped process for
2199 * being ptrace-stopped vs being job-control-stopped.
2201 * Returns the signal the ptracer requested the code resume
2202 * with. If the code did not stop because the tracer is gone,
2203 * the stop signal remains unchanged unless clear_code.
2205 static int ptrace_stop(int exit_code, int why, unsigned long message,
2206 kernel_siginfo_t *info)
2207 __releases(¤t->sighand->siglock)
2208 __acquires(¤t->sighand->siglock)
2210 bool gstop_done = false;
2212 if (arch_ptrace_stop_needed()) {
2214 * The arch code has something special to do before a
2215 * ptrace stop. This is allowed to block, e.g. for faults
2216 * on user stack pages. We can't keep the siglock while
2217 * calling arch_ptrace_stop, so we must release it now.
2218 * To preserve proper semantics, we must do this before
2219 * any signal bookkeeping like checking group_stop_count.
2221 spin_unlock_irq(¤t->sighand->siglock);
2223 spin_lock_irq(¤t->sighand->siglock);
2227 * After this point ptrace_signal_wake_up or signal_wake_up
2228 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2229 * signal comes in. Handle previous ptrace_unlinks and fatal
2230 * signals here to prevent ptrace_stop sleeping in schedule.
2232 if (!current->ptrace || __fatal_signal_pending(current))
2235 set_special_state(TASK_TRACED);
2236 current->jobctl |= JOBCTL_TRACED;
2239 * We're committing to trapping. TRACED should be visible before
2240 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2241 * Also, transition to TRACED and updates to ->jobctl should be
2242 * atomic with respect to siglock and should be done after the arch
2243 * hook as siglock is released and regrabbed across it.
2248 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2250 * set_current_state() smp_wmb();
2252 * wait_task_stopped()
2253 * task_stopped_code()
2254 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2258 current->ptrace_message = message;
2259 current->last_siginfo = info;
2260 current->exit_code = exit_code;
2263 * If @why is CLD_STOPPED, we're trapping to participate in a group
2264 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2265 * across siglock relocks since INTERRUPT was scheduled, PENDING
2266 * could be clear now. We act as if SIGCONT is received after
2267 * TASK_TRACED is entered - ignore it.
2269 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2270 gstop_done = task_participate_group_stop(current);
2272 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2273 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2274 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2275 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2277 /* entering a trap, clear TRAPPING */
2278 task_clear_jobctl_trapping(current);
2280 spin_unlock_irq(¤t->sighand->siglock);
2281 read_lock(&tasklist_lock);
2283 * Notify parents of the stop.
2285 * While ptraced, there are two parents - the ptracer and
2286 * the real_parent of the group_leader. The ptracer should
2287 * know about every stop while the real parent is only
2288 * interested in the completion of group stop. The states
2289 * for the two don't interact with each other. Notify
2290 * separately unless they're gonna be duplicates.
2292 if (current->ptrace)
2293 do_notify_parent_cldstop(current, true, why);
2294 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2295 do_notify_parent_cldstop(current, false, why);
2298 * Don't want to allow preemption here, because
2299 * sys_ptrace() needs this task to be inactive.
2301 * XXX: implement read_unlock_no_resched().
2304 read_unlock(&tasklist_lock);
2305 cgroup_enter_frozen();
2306 preempt_enable_no_resched();
2307 freezable_schedule();
2308 cgroup_leave_frozen(true);
2311 * We are back. Now reacquire the siglock before touching
2312 * last_siginfo, so that we are sure to have synchronized with
2313 * any signal-sending on another CPU that wants to examine it.
2315 spin_lock_irq(¤t->sighand->siglock);
2316 exit_code = current->exit_code;
2317 current->last_siginfo = NULL;
2318 current->ptrace_message = 0;
2319 current->exit_code = 0;
2321 /* LISTENING can be set only during STOP traps, clear it */
2322 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2325 * Queued signals ignored us while we were stopped for tracing.
2326 * So check for any that we should take before resuming user mode.
2327 * This sets TIF_SIGPENDING, but never clears it.
2329 recalc_sigpending_tsk(current);
2333 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2335 kernel_siginfo_t info;
2337 clear_siginfo(&info);
2338 info.si_signo = signr;
2339 info.si_code = exit_code;
2340 info.si_pid = task_pid_vnr(current);
2341 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2343 /* Let the debugger run. */
2344 return ptrace_stop(exit_code, why, message, &info);
2347 int ptrace_notify(int exit_code, unsigned long message)
2351 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2352 if (unlikely(task_work_pending(current)))
2355 spin_lock_irq(¤t->sighand->siglock);
2356 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2357 spin_unlock_irq(¤t->sighand->siglock);
2362 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2363 * @signr: signr causing group stop if initiating
2365 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2366 * and participate in it. If already set, participate in the existing
2367 * group stop. If participated in a group stop (and thus slept), %true is
2368 * returned with siglock released.
2370 * If ptraced, this function doesn't handle stop itself. Instead,
2371 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2372 * untouched. The caller must ensure that INTERRUPT trap handling takes
2373 * places afterwards.
2376 * Must be called with @current->sighand->siglock held, which is released
2380 * %false if group stop is already cancelled or ptrace trap is scheduled.
2381 * %true if participated in group stop.
2383 static bool do_signal_stop(int signr)
2384 __releases(¤t->sighand->siglock)
2386 struct signal_struct *sig = current->signal;
2388 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2389 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2390 struct task_struct *t;
2392 /* signr will be recorded in task->jobctl for retries */
2393 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2395 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2396 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2397 unlikely(sig->group_exec_task))
2400 * There is no group stop already in progress. We must
2403 * While ptraced, a task may be resumed while group stop is
2404 * still in effect and then receive a stop signal and
2405 * initiate another group stop. This deviates from the
2406 * usual behavior as two consecutive stop signals can't
2407 * cause two group stops when !ptraced. That is why we
2408 * also check !task_is_stopped(t) below.
2410 * The condition can be distinguished by testing whether
2411 * SIGNAL_STOP_STOPPED is already set. Don't generate
2412 * group_exit_code in such case.
2414 * This is not necessary for SIGNAL_STOP_CONTINUED because
2415 * an intervening stop signal is required to cause two
2416 * continued events regardless of ptrace.
2418 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2419 sig->group_exit_code = signr;
2421 sig->group_stop_count = 0;
2423 if (task_set_jobctl_pending(current, signr | gstop))
2424 sig->group_stop_count++;
2427 while_each_thread(current, t) {
2429 * Setting state to TASK_STOPPED for a group
2430 * stop is always done with the siglock held,
2431 * so this check has no races.
2433 if (!task_is_stopped(t) &&
2434 task_set_jobctl_pending(t, signr | gstop)) {
2435 sig->group_stop_count++;
2436 if (likely(!(t->ptrace & PT_SEIZED)))
2437 signal_wake_up(t, 0);
2439 ptrace_trap_notify(t);
2444 if (likely(!current->ptrace)) {
2448 * If there are no other threads in the group, or if there
2449 * is a group stop in progress and we are the last to stop,
2450 * report to the parent.
2452 if (task_participate_group_stop(current))
2453 notify = CLD_STOPPED;
2455 current->jobctl |= JOBCTL_STOPPED;
2456 set_special_state(TASK_STOPPED);
2457 spin_unlock_irq(¤t->sighand->siglock);
2460 * Notify the parent of the group stop completion. Because
2461 * we're not holding either the siglock or tasklist_lock
2462 * here, ptracer may attach inbetween; however, this is for
2463 * group stop and should always be delivered to the real
2464 * parent of the group leader. The new ptracer will get
2465 * its notification when this task transitions into
2469 read_lock(&tasklist_lock);
2470 do_notify_parent_cldstop(current, false, notify);
2471 read_unlock(&tasklist_lock);
2474 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2475 cgroup_enter_frozen();
2476 freezable_schedule();
2480 * While ptraced, group stop is handled by STOP trap.
2481 * Schedule it and let the caller deal with it.
2483 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2489 * do_jobctl_trap - take care of ptrace jobctl traps
2491 * When PT_SEIZED, it's used for both group stop and explicit
2492 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2493 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2494 * the stop signal; otherwise, %SIGTRAP.
2496 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2497 * number as exit_code and no siginfo.
2500 * Must be called with @current->sighand->siglock held, which may be
2501 * released and re-acquired before returning with intervening sleep.
2503 static void do_jobctl_trap(void)
2505 struct signal_struct *signal = current->signal;
2506 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2508 if (current->ptrace & PT_SEIZED) {
2509 if (!signal->group_stop_count &&
2510 !(signal->flags & SIGNAL_STOP_STOPPED))
2512 WARN_ON_ONCE(!signr);
2513 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2516 WARN_ON_ONCE(!signr);
2517 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2522 * do_freezer_trap - handle the freezer jobctl trap
2524 * Puts the task into frozen state, if only the task is not about to quit.
2525 * In this case it drops JOBCTL_TRAP_FREEZE.
2528 * Must be called with @current->sighand->siglock held,
2529 * which is always released before returning.
2531 static void do_freezer_trap(void)
2532 __releases(¤t->sighand->siglock)
2535 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2536 * let's make another loop to give it a chance to be handled.
2537 * In any case, we'll return back.
2539 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2540 JOBCTL_TRAP_FREEZE) {
2541 spin_unlock_irq(¤t->sighand->siglock);
2546 * Now we're sure that there is no pending fatal signal and no
2547 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2548 * immediately (if there is a non-fatal signal pending), and
2549 * put the task into sleep.
2551 __set_current_state(TASK_INTERRUPTIBLE);
2552 clear_thread_flag(TIF_SIGPENDING);
2553 spin_unlock_irq(¤t->sighand->siglock);
2554 cgroup_enter_frozen();
2555 freezable_schedule();
2558 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2561 * We do not check sig_kernel_stop(signr) but set this marker
2562 * unconditionally because we do not know whether debugger will
2563 * change signr. This flag has no meaning unless we are going
2564 * to stop after return from ptrace_stop(). In this case it will
2565 * be checked in do_signal_stop(), we should only stop if it was
2566 * not cleared by SIGCONT while we were sleeping. See also the
2567 * comment in dequeue_signal().
2569 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2570 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2572 /* We're back. Did the debugger cancel the sig? */
2577 * Update the siginfo structure if the signal has
2578 * changed. If the debugger wanted something
2579 * specific in the siginfo structure then it should
2580 * have updated *info via PTRACE_SETSIGINFO.
2582 if (signr != info->si_signo) {
2583 clear_siginfo(info);
2584 info->si_signo = signr;
2586 info->si_code = SI_USER;
2588 info->si_pid = task_pid_vnr(current->parent);
2589 info->si_uid = from_kuid_munged(current_user_ns(),
2590 task_uid(current->parent));
2594 /* If the (new) signal is now blocked, requeue it. */
2595 if (sigismember(¤t->blocked, signr) ||
2596 fatal_signal_pending(current)) {
2597 send_signal_locked(signr, info, current, type);
2604 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2606 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2608 case SIL_FAULT_TRAPNO:
2609 case SIL_FAULT_MCEERR:
2610 case SIL_FAULT_BNDERR:
2611 case SIL_FAULT_PKUERR:
2612 case SIL_FAULT_PERF_EVENT:
2613 ksig->info.si_addr = arch_untagged_si_addr(
2614 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2626 bool get_signal(struct ksignal *ksig)
2628 struct sighand_struct *sighand = current->sighand;
2629 struct signal_struct *signal = current->signal;
2632 clear_notify_signal();
2633 if (unlikely(task_work_pending(current)))
2636 if (!task_sigpending(current))
2639 if (unlikely(uprobe_deny_signal()))
2643 * Do this once, we can't return to user-mode if freezing() == T.
2644 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2645 * thus do not need another check after return.
2650 spin_lock_irq(&sighand->siglock);
2653 * Every stopped thread goes here after wakeup. Check to see if
2654 * we should notify the parent, prepare_signal(SIGCONT) encodes
2655 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2657 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2660 if (signal->flags & SIGNAL_CLD_CONTINUED)
2661 why = CLD_CONTINUED;
2665 signal->flags &= ~SIGNAL_CLD_MASK;
2667 spin_unlock_irq(&sighand->siglock);
2670 * Notify the parent that we're continuing. This event is
2671 * always per-process and doesn't make whole lot of sense
2672 * for ptracers, who shouldn't consume the state via
2673 * wait(2) either, but, for backward compatibility, notify
2674 * the ptracer of the group leader too unless it's gonna be
2677 read_lock(&tasklist_lock);
2678 do_notify_parent_cldstop(current, false, why);
2680 if (ptrace_reparented(current->group_leader))
2681 do_notify_parent_cldstop(current->group_leader,
2683 read_unlock(&tasklist_lock);
2689 struct k_sigaction *ka;
2692 /* Has this task already been marked for death? */
2693 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2694 signal->group_exec_task) {
2695 ksig->info.si_signo = signr = SIGKILL;
2696 sigdelset(¤t->pending.signal, SIGKILL);
2697 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2698 &sighand->action[SIGKILL - 1]);
2699 recalc_sigpending();
2703 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2707 if (unlikely(current->jobctl &
2708 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2709 if (current->jobctl & JOBCTL_TRAP_MASK) {
2711 spin_unlock_irq(&sighand->siglock);
2712 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2719 * If the task is leaving the frozen state, let's update
2720 * cgroup counters and reset the frozen bit.
2722 if (unlikely(cgroup_task_frozen(current))) {
2723 spin_unlock_irq(&sighand->siglock);
2724 cgroup_leave_frozen(false);
2729 * Signals generated by the execution of an instruction
2730 * need to be delivered before any other pending signals
2731 * so that the instruction pointer in the signal stack
2732 * frame points to the faulting instruction.
2735 signr = dequeue_synchronous_signal(&ksig->info);
2737 signr = dequeue_signal(current, ¤t->blocked,
2738 &ksig->info, &type);
2741 break; /* will return 0 */
2743 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2744 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2745 signr = ptrace_signal(signr, &ksig->info, type);
2750 ka = &sighand->action[signr-1];
2752 /* Trace actually delivered signals. */
2753 trace_signal_deliver(signr, &ksig->info, ka);
2755 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2757 if (ka->sa.sa_handler != SIG_DFL) {
2758 /* Run the handler. */
2761 if (ka->sa.sa_flags & SA_ONESHOT)
2762 ka->sa.sa_handler = SIG_DFL;
2764 break; /* will return non-zero "signr" value */
2768 * Now we are doing the default action for this signal.
2770 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2774 * Global init gets no signals it doesn't want.
2775 * Container-init gets no signals it doesn't want from same
2778 * Note that if global/container-init sees a sig_kernel_only()
2779 * signal here, the signal must have been generated internally
2780 * or must have come from an ancestor namespace. In either
2781 * case, the signal cannot be dropped.
2783 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2784 !sig_kernel_only(signr))
2787 if (sig_kernel_stop(signr)) {
2789 * The default action is to stop all threads in
2790 * the thread group. The job control signals
2791 * do nothing in an orphaned pgrp, but SIGSTOP
2792 * always works. Note that siglock needs to be
2793 * dropped during the call to is_orphaned_pgrp()
2794 * because of lock ordering with tasklist_lock.
2795 * This allows an intervening SIGCONT to be posted.
2796 * We need to check for that and bail out if necessary.
2798 if (signr != SIGSTOP) {
2799 spin_unlock_irq(&sighand->siglock);
2801 /* signals can be posted during this window */
2803 if (is_current_pgrp_orphaned())
2806 spin_lock_irq(&sighand->siglock);
2809 if (likely(do_signal_stop(ksig->info.si_signo))) {
2810 /* It released the siglock. */
2815 * We didn't actually stop, due to a race
2816 * with SIGCONT or something like that.
2822 spin_unlock_irq(&sighand->siglock);
2823 if (unlikely(cgroup_task_frozen(current)))
2824 cgroup_leave_frozen(true);
2827 * Anything else is fatal, maybe with a core dump.
2829 current->flags |= PF_SIGNALED;
2831 if (sig_kernel_coredump(signr)) {
2832 if (print_fatal_signals)
2833 print_fatal_signal(ksig->info.si_signo);
2834 proc_coredump_connector(current);
2836 * If it was able to dump core, this kills all
2837 * other threads in the group and synchronizes with
2838 * their demise. If we lost the race with another
2839 * thread getting here, it set group_exit_code
2840 * first and our do_group_exit call below will use
2841 * that value and ignore the one we pass it.
2843 do_coredump(&ksig->info);
2847 * PF_IO_WORKER threads will catch and exit on fatal signals
2848 * themselves. They have cleanup that must be performed, so
2849 * we cannot call do_exit() on their behalf.
2851 if (current->flags & PF_IO_WORKER)
2855 * Death signals, no core dump.
2857 do_group_exit(ksig->info.si_signo);
2860 spin_unlock_irq(&sighand->siglock);
2864 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2865 hide_si_addr_tag_bits(ksig);
2867 return ksig->sig > 0;
2871 * signal_delivered - called after signal delivery to update blocked signals
2872 * @ksig: kernel signal struct
2873 * @stepping: nonzero if debugger single-step or block-step in use
2875 * This function should be called when a signal has successfully been
2876 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2877 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2878 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2880 static void signal_delivered(struct ksignal *ksig, int stepping)
2884 /* A signal was successfully delivered, and the
2885 saved sigmask was stored on the signal frame,
2886 and will be restored by sigreturn. So we can
2887 simply clear the restore sigmask flag. */
2888 clear_restore_sigmask();
2890 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2891 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2892 sigaddset(&blocked, ksig->sig);
2893 set_current_blocked(&blocked);
2894 if (current->sas_ss_flags & SS_AUTODISARM)
2895 sas_ss_reset(current);
2897 ptrace_notify(SIGTRAP, 0);
2900 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2903 force_sigsegv(ksig->sig);
2905 signal_delivered(ksig, stepping);
2909 * It could be that complete_signal() picked us to notify about the
2910 * group-wide signal. Other threads should be notified now to take
2911 * the shared signals in @which since we will not.
2913 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2916 struct task_struct *t;
2918 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2919 if (sigisemptyset(&retarget))
2923 while_each_thread(tsk, t) {
2924 if (t->flags & PF_EXITING)
2927 if (!has_pending_signals(&retarget, &t->blocked))
2929 /* Remove the signals this thread can handle. */
2930 sigandsets(&retarget, &retarget, &t->blocked);
2932 if (!task_sigpending(t))
2933 signal_wake_up(t, 0);
2935 if (sigisemptyset(&retarget))
2940 void exit_signals(struct task_struct *tsk)
2946 * @tsk is about to have PF_EXITING set - lock out users which
2947 * expect stable threadgroup.
2949 cgroup_threadgroup_change_begin(tsk);
2951 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2952 tsk->flags |= PF_EXITING;
2953 cgroup_threadgroup_change_end(tsk);
2957 spin_lock_irq(&tsk->sighand->siglock);
2959 * From now this task is not visible for group-wide signals,
2960 * see wants_signal(), do_signal_stop().
2962 tsk->flags |= PF_EXITING;
2964 cgroup_threadgroup_change_end(tsk);
2966 if (!task_sigpending(tsk))
2969 unblocked = tsk->blocked;
2970 signotset(&unblocked);
2971 retarget_shared_pending(tsk, &unblocked);
2973 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2974 task_participate_group_stop(tsk))
2975 group_stop = CLD_STOPPED;
2977 spin_unlock_irq(&tsk->sighand->siglock);
2980 * If group stop has completed, deliver the notification. This
2981 * should always go to the real parent of the group leader.
2983 if (unlikely(group_stop)) {
2984 read_lock(&tasklist_lock);
2985 do_notify_parent_cldstop(tsk, false, group_stop);
2986 read_unlock(&tasklist_lock);
2991 * System call entry points.
2995 * sys_restart_syscall - restart a system call
2997 SYSCALL_DEFINE0(restart_syscall)
2999 struct restart_block *restart = ¤t->restart_block;
3000 return restart->fn(restart);
3003 long do_no_restart_syscall(struct restart_block *param)
3008 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3010 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3011 sigset_t newblocked;
3012 /* A set of now blocked but previously unblocked signals. */
3013 sigandnsets(&newblocked, newset, ¤t->blocked);
3014 retarget_shared_pending(tsk, &newblocked);
3016 tsk->blocked = *newset;
3017 recalc_sigpending();
3021 * set_current_blocked - change current->blocked mask
3024 * It is wrong to change ->blocked directly, this helper should be used
3025 * to ensure the process can't miss a shared signal we are going to block.
3027 void set_current_blocked(sigset_t *newset)
3029 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3030 __set_current_blocked(newset);
3033 void __set_current_blocked(const sigset_t *newset)
3035 struct task_struct *tsk = current;
3038 * In case the signal mask hasn't changed, there is nothing we need
3039 * to do. The current->blocked shouldn't be modified by other task.
3041 if (sigequalsets(&tsk->blocked, newset))
3044 spin_lock_irq(&tsk->sighand->siglock);
3045 __set_task_blocked(tsk, newset);
3046 spin_unlock_irq(&tsk->sighand->siglock);
3050 * This is also useful for kernel threads that want to temporarily
3051 * (or permanently) block certain signals.
3053 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3054 * interface happily blocks "unblockable" signals like SIGKILL
3057 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3059 struct task_struct *tsk = current;
3062 /* Lockless, only current can change ->blocked, never from irq */
3064 *oldset = tsk->blocked;
3068 sigorsets(&newset, &tsk->blocked, set);
3071 sigandnsets(&newset, &tsk->blocked, set);
3080 __set_current_blocked(&newset);
3083 EXPORT_SYMBOL(sigprocmask);
3086 * The api helps set app-provided sigmasks.
3088 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3089 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3091 * Note that it does set_restore_sigmask() in advance, so it must be always
3092 * paired with restore_saved_sigmask_unless() before return from syscall.
3094 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3100 if (sigsetsize != sizeof(sigset_t))
3102 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3105 set_restore_sigmask();
3106 current->saved_sigmask = current->blocked;
3107 set_current_blocked(&kmask);
3112 #ifdef CONFIG_COMPAT
3113 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3120 if (sigsetsize != sizeof(compat_sigset_t))
3122 if (get_compat_sigset(&kmask, umask))
3125 set_restore_sigmask();
3126 current->saved_sigmask = current->blocked;
3127 set_current_blocked(&kmask);
3134 * sys_rt_sigprocmask - change the list of currently blocked signals
3135 * @how: whether to add, remove, or set signals
3136 * @nset: stores pending signals
3137 * @oset: previous value of signal mask if non-null
3138 * @sigsetsize: size of sigset_t type
3140 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3141 sigset_t __user *, oset, size_t, sigsetsize)
3143 sigset_t old_set, new_set;
3146 /* XXX: Don't preclude handling different sized sigset_t's. */
3147 if (sigsetsize != sizeof(sigset_t))
3150 old_set = current->blocked;
3153 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3155 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3157 error = sigprocmask(how, &new_set, NULL);
3163 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3170 #ifdef CONFIG_COMPAT
3171 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3172 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3174 sigset_t old_set = current->blocked;
3176 /* XXX: Don't preclude handling different sized sigset_t's. */
3177 if (sigsetsize != sizeof(sigset_t))
3183 if (get_compat_sigset(&new_set, nset))
3185 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3187 error = sigprocmask(how, &new_set, NULL);
3191 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3195 static void do_sigpending(sigset_t *set)
3197 spin_lock_irq(¤t->sighand->siglock);
3198 sigorsets(set, ¤t->pending.signal,
3199 ¤t->signal->shared_pending.signal);
3200 spin_unlock_irq(¤t->sighand->siglock);
3202 /* Outside the lock because only this thread touches it. */
3203 sigandsets(set, ¤t->blocked, set);
3207 * sys_rt_sigpending - examine a pending signal that has been raised
3209 * @uset: stores pending signals
3210 * @sigsetsize: size of sigset_t type or larger
3212 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3216 if (sigsetsize > sizeof(*uset))
3219 do_sigpending(&set);
3221 if (copy_to_user(uset, &set, sigsetsize))
3227 #ifdef CONFIG_COMPAT
3228 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3229 compat_size_t, sigsetsize)
3233 if (sigsetsize > sizeof(*uset))
3236 do_sigpending(&set);
3238 return put_compat_sigset(uset, &set, sigsetsize);
3242 static const struct {
3243 unsigned char limit, layout;
3245 [SIGILL] = { NSIGILL, SIL_FAULT },
3246 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3247 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3248 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3249 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3251 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3253 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3254 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3255 [SIGSYS] = { NSIGSYS, SIL_SYS },
3258 static bool known_siginfo_layout(unsigned sig, int si_code)
3260 if (si_code == SI_KERNEL)
3262 else if ((si_code > SI_USER)) {
3263 if (sig_specific_sicodes(sig)) {
3264 if (si_code <= sig_sicodes[sig].limit)
3267 else if (si_code <= NSIGPOLL)
3270 else if (si_code >= SI_DETHREAD)
3272 else if (si_code == SI_ASYNCNL)
3277 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3279 enum siginfo_layout layout = SIL_KILL;
3280 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3281 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3282 (si_code <= sig_sicodes[sig].limit)) {
3283 layout = sig_sicodes[sig].layout;
3284 /* Handle the exceptions */
3285 if ((sig == SIGBUS) &&
3286 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3287 layout = SIL_FAULT_MCEERR;
3288 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3289 layout = SIL_FAULT_BNDERR;
3291 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3292 layout = SIL_FAULT_PKUERR;
3294 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3295 layout = SIL_FAULT_PERF_EVENT;
3296 else if (IS_ENABLED(CONFIG_SPARC) &&
3297 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3298 layout = SIL_FAULT_TRAPNO;
3299 else if (IS_ENABLED(CONFIG_ALPHA) &&
3301 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3302 layout = SIL_FAULT_TRAPNO;
3304 else if (si_code <= NSIGPOLL)
3307 if (si_code == SI_TIMER)
3309 else if (si_code == SI_SIGIO)
3311 else if (si_code < 0)
3317 static inline char __user *si_expansion(const siginfo_t __user *info)
3319 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3322 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3324 char __user *expansion = si_expansion(to);
3325 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3327 if (clear_user(expansion, SI_EXPANSION_SIZE))
3332 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3333 const siginfo_t __user *from)
3335 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3336 char __user *expansion = si_expansion(from);
3337 char buf[SI_EXPANSION_SIZE];
3340 * An unknown si_code might need more than
3341 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3342 * extra bytes are 0. This guarantees copy_siginfo_to_user
3343 * will return this data to userspace exactly.
3345 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3347 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3355 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3356 const siginfo_t __user *from)
3358 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3360 to->si_signo = signo;
3361 return post_copy_siginfo_from_user(to, from);
3364 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3366 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3368 return post_copy_siginfo_from_user(to, from);
3371 #ifdef CONFIG_COMPAT
3373 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3374 * @to: compat siginfo destination
3375 * @from: kernel siginfo source
3377 * Note: This function does not work properly for the SIGCHLD on x32, but
3378 * fortunately it doesn't have to. The only valid callers for this function are
3379 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3380 * The latter does not care because SIGCHLD will never cause a coredump.
3382 void copy_siginfo_to_external32(struct compat_siginfo *to,
3383 const struct kernel_siginfo *from)
3385 memset(to, 0, sizeof(*to));
3387 to->si_signo = from->si_signo;
3388 to->si_errno = from->si_errno;
3389 to->si_code = from->si_code;
3390 switch(siginfo_layout(from->si_signo, from->si_code)) {
3392 to->si_pid = from->si_pid;
3393 to->si_uid = from->si_uid;
3396 to->si_tid = from->si_tid;
3397 to->si_overrun = from->si_overrun;
3398 to->si_int = from->si_int;
3401 to->si_band = from->si_band;
3402 to->si_fd = from->si_fd;
3405 to->si_addr = ptr_to_compat(from->si_addr);
3407 case SIL_FAULT_TRAPNO:
3408 to->si_addr = ptr_to_compat(from->si_addr);
3409 to->si_trapno = from->si_trapno;
3411 case SIL_FAULT_MCEERR:
3412 to->si_addr = ptr_to_compat(from->si_addr);
3413 to->si_addr_lsb = from->si_addr_lsb;
3415 case SIL_FAULT_BNDERR:
3416 to->si_addr = ptr_to_compat(from->si_addr);
3417 to->si_lower = ptr_to_compat(from->si_lower);
3418 to->si_upper = ptr_to_compat(from->si_upper);
3420 case SIL_FAULT_PKUERR:
3421 to->si_addr = ptr_to_compat(from->si_addr);
3422 to->si_pkey = from->si_pkey;
3424 case SIL_FAULT_PERF_EVENT:
3425 to->si_addr = ptr_to_compat(from->si_addr);
3426 to->si_perf_data = from->si_perf_data;
3427 to->si_perf_type = from->si_perf_type;
3428 to->si_perf_flags = from->si_perf_flags;
3431 to->si_pid = from->si_pid;
3432 to->si_uid = from->si_uid;
3433 to->si_status = from->si_status;
3434 to->si_utime = from->si_utime;
3435 to->si_stime = from->si_stime;
3438 to->si_pid = from->si_pid;
3439 to->si_uid = from->si_uid;
3440 to->si_int = from->si_int;
3443 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3444 to->si_syscall = from->si_syscall;
3445 to->si_arch = from->si_arch;
3450 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3451 const struct kernel_siginfo *from)
3453 struct compat_siginfo new;
3455 copy_siginfo_to_external32(&new, from);
3456 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3461 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3462 const struct compat_siginfo *from)
3465 to->si_signo = from->si_signo;
3466 to->si_errno = from->si_errno;
3467 to->si_code = from->si_code;
3468 switch(siginfo_layout(from->si_signo, from->si_code)) {
3470 to->si_pid = from->si_pid;
3471 to->si_uid = from->si_uid;
3474 to->si_tid = from->si_tid;
3475 to->si_overrun = from->si_overrun;
3476 to->si_int = from->si_int;
3479 to->si_band = from->si_band;
3480 to->si_fd = from->si_fd;
3483 to->si_addr = compat_ptr(from->si_addr);
3485 case SIL_FAULT_TRAPNO:
3486 to->si_addr = compat_ptr(from->si_addr);
3487 to->si_trapno = from->si_trapno;
3489 case SIL_FAULT_MCEERR:
3490 to->si_addr = compat_ptr(from->si_addr);
3491 to->si_addr_lsb = from->si_addr_lsb;
3493 case SIL_FAULT_BNDERR:
3494 to->si_addr = compat_ptr(from->si_addr);
3495 to->si_lower = compat_ptr(from->si_lower);
3496 to->si_upper = compat_ptr(from->si_upper);
3498 case SIL_FAULT_PKUERR:
3499 to->si_addr = compat_ptr(from->si_addr);
3500 to->si_pkey = from->si_pkey;
3502 case SIL_FAULT_PERF_EVENT:
3503 to->si_addr = compat_ptr(from->si_addr);
3504 to->si_perf_data = from->si_perf_data;
3505 to->si_perf_type = from->si_perf_type;
3506 to->si_perf_flags = from->si_perf_flags;
3509 to->si_pid = from->si_pid;
3510 to->si_uid = from->si_uid;
3511 to->si_status = from->si_status;
3512 #ifdef CONFIG_X86_X32_ABI
3513 if (in_x32_syscall()) {
3514 to->si_utime = from->_sifields._sigchld_x32._utime;
3515 to->si_stime = from->_sifields._sigchld_x32._stime;
3519 to->si_utime = from->si_utime;
3520 to->si_stime = from->si_stime;
3524 to->si_pid = from->si_pid;
3525 to->si_uid = from->si_uid;
3526 to->si_int = from->si_int;
3529 to->si_call_addr = compat_ptr(from->si_call_addr);
3530 to->si_syscall = from->si_syscall;
3531 to->si_arch = from->si_arch;
3537 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3538 const struct compat_siginfo __user *ufrom)
3540 struct compat_siginfo from;
3542 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3545 from.si_signo = signo;
3546 return post_copy_siginfo_from_user32(to, &from);
3549 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3550 const struct compat_siginfo __user *ufrom)
3552 struct compat_siginfo from;
3554 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3557 return post_copy_siginfo_from_user32(to, &from);
3559 #endif /* CONFIG_COMPAT */
3562 * do_sigtimedwait - wait for queued signals specified in @which
3563 * @which: queued signals to wait for
3564 * @info: if non-null, the signal's siginfo is returned here
3565 * @ts: upper bound on process time suspension
3567 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3568 const struct timespec64 *ts)
3570 ktime_t *to = NULL, timeout = KTIME_MAX;
3571 struct task_struct *tsk = current;
3572 sigset_t mask = *which;
3577 if (!timespec64_valid(ts))
3579 timeout = timespec64_to_ktime(*ts);
3584 * Invert the set of allowed signals to get those we want to block.
3586 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3589 spin_lock_irq(&tsk->sighand->siglock);
3590 sig = dequeue_signal(tsk, &mask, info, &type);
3591 if (!sig && timeout) {
3593 * None ready, temporarily unblock those we're interested
3594 * while we are sleeping in so that we'll be awakened when
3595 * they arrive. Unblocking is always fine, we can avoid
3596 * set_current_blocked().
3598 tsk->real_blocked = tsk->blocked;
3599 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3600 recalc_sigpending();
3601 spin_unlock_irq(&tsk->sighand->siglock);
3603 __set_current_state(TASK_INTERRUPTIBLE);
3604 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3606 spin_lock_irq(&tsk->sighand->siglock);
3607 __set_task_blocked(tsk, &tsk->real_blocked);
3608 sigemptyset(&tsk->real_blocked);
3609 sig = dequeue_signal(tsk, &mask, info, &type);
3611 spin_unlock_irq(&tsk->sighand->siglock);
3615 return ret ? -EINTR : -EAGAIN;
3619 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3621 * @uthese: queued signals to wait for
3622 * @uinfo: if non-null, the signal's siginfo is returned here
3623 * @uts: upper bound on process time suspension
3624 * @sigsetsize: size of sigset_t type
3626 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3627 siginfo_t __user *, uinfo,
3628 const struct __kernel_timespec __user *, uts,
3632 struct timespec64 ts;
3633 kernel_siginfo_t info;
3636 /* XXX: Don't preclude handling different sized sigset_t's. */
3637 if (sigsetsize != sizeof(sigset_t))
3640 if (copy_from_user(&these, uthese, sizeof(these)))
3644 if (get_timespec64(&ts, uts))
3648 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3650 if (ret > 0 && uinfo) {
3651 if (copy_siginfo_to_user(uinfo, &info))
3658 #ifdef CONFIG_COMPAT_32BIT_TIME
3659 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3660 siginfo_t __user *, uinfo,
3661 const struct old_timespec32 __user *, uts,
3665 struct timespec64 ts;
3666 kernel_siginfo_t info;
3669 if (sigsetsize != sizeof(sigset_t))
3672 if (copy_from_user(&these, uthese, sizeof(these)))
3676 if (get_old_timespec32(&ts, uts))
3680 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3682 if (ret > 0 && uinfo) {
3683 if (copy_siginfo_to_user(uinfo, &info))
3691 #ifdef CONFIG_COMPAT
3692 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3693 struct compat_siginfo __user *, uinfo,
3694 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3697 struct timespec64 t;
3698 kernel_siginfo_t info;
3701 if (sigsetsize != sizeof(sigset_t))
3704 if (get_compat_sigset(&s, uthese))
3708 if (get_timespec64(&t, uts))
3712 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3714 if (ret > 0 && uinfo) {
3715 if (copy_siginfo_to_user32(uinfo, &info))
3722 #ifdef CONFIG_COMPAT_32BIT_TIME
3723 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3724 struct compat_siginfo __user *, uinfo,
3725 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3728 struct timespec64 t;
3729 kernel_siginfo_t info;
3732 if (sigsetsize != sizeof(sigset_t))
3735 if (get_compat_sigset(&s, uthese))
3739 if (get_old_timespec32(&t, uts))
3743 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3745 if (ret > 0 && uinfo) {
3746 if (copy_siginfo_to_user32(uinfo, &info))
3755 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3757 clear_siginfo(info);
3758 info->si_signo = sig;
3760 info->si_code = SI_USER;
3761 info->si_pid = task_tgid_vnr(current);
3762 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3766 * sys_kill - send a signal to a process
3767 * @pid: the PID of the process
3768 * @sig: signal to be sent
3770 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3772 struct kernel_siginfo info;
3774 prepare_kill_siginfo(sig, &info);
3776 return kill_something_info(sig, &info, pid);
3780 * Verify that the signaler and signalee either are in the same pid namespace
3781 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3784 static bool access_pidfd_pidns(struct pid *pid)
3786 struct pid_namespace *active = task_active_pid_ns(current);
3787 struct pid_namespace *p = ns_of_pid(pid);
3800 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3801 siginfo_t __user *info)
3803 #ifdef CONFIG_COMPAT
3805 * Avoid hooking up compat syscalls and instead handle necessary
3806 * conversions here. Note, this is a stop-gap measure and should not be
3807 * considered a generic solution.
3809 if (in_compat_syscall())
3810 return copy_siginfo_from_user32(
3811 kinfo, (struct compat_siginfo __user *)info);
3813 return copy_siginfo_from_user(kinfo, info);
3816 static struct pid *pidfd_to_pid(const struct file *file)
3820 pid = pidfd_pid(file);
3824 return tgid_pidfd_to_pid(file);
3828 * sys_pidfd_send_signal - Signal a process through a pidfd
3829 * @pidfd: file descriptor of the process
3830 * @sig: signal to send
3831 * @info: signal info
3832 * @flags: future flags
3834 * The syscall currently only signals via PIDTYPE_PID which covers
3835 * kill(<positive-pid>, <signal>. It does not signal threads or process
3837 * In order to extend the syscall to threads and process groups the @flags
3838 * argument should be used. In essence, the @flags argument will determine
3839 * what is signaled and not the file descriptor itself. Put in other words,
3840 * grouping is a property of the flags argument not a property of the file
3843 * Return: 0 on success, negative errno on failure
3845 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3846 siginfo_t __user *, info, unsigned int, flags)
3851 kernel_siginfo_t kinfo;
3853 /* Enforce flags be set to 0 until we add an extension. */
3861 /* Is this a pidfd? */
3862 pid = pidfd_to_pid(f.file);
3869 if (!access_pidfd_pidns(pid))
3873 ret = copy_siginfo_from_user_any(&kinfo, info);
3878 if (unlikely(sig != kinfo.si_signo))
3881 /* Only allow sending arbitrary signals to yourself. */
3883 if ((task_pid(current) != pid) &&
3884 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3887 prepare_kill_siginfo(sig, &kinfo);
3890 ret = kill_pid_info(sig, &kinfo, pid);
3898 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3900 struct task_struct *p;
3904 p = find_task_by_vpid(pid);
3905 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3906 error = check_kill_permission(sig, info, p);
3908 * The null signal is a permissions and process existence
3909 * probe. No signal is actually delivered.
3911 if (!error && sig) {
3912 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3914 * If lock_task_sighand() failed we pretend the task
3915 * dies after receiving the signal. The window is tiny,
3916 * and the signal is private anyway.
3918 if (unlikely(error == -ESRCH))
3927 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3929 struct kernel_siginfo info;
3931 clear_siginfo(&info);
3932 info.si_signo = sig;
3934 info.si_code = SI_TKILL;
3935 info.si_pid = task_tgid_vnr(current);
3936 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3938 return do_send_specific(tgid, pid, sig, &info);
3942 * sys_tgkill - send signal to one specific thread
3943 * @tgid: the thread group ID of the thread
3944 * @pid: the PID of the thread
3945 * @sig: signal to be sent
3947 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3948 * exists but it's not belonging to the target process anymore. This
3949 * method solves the problem of threads exiting and PIDs getting reused.
3951 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3953 /* This is only valid for single tasks */
3954 if (pid <= 0 || tgid <= 0)
3957 return do_tkill(tgid, pid, sig);
3961 * sys_tkill - send signal to one specific task
3962 * @pid: the PID of the task
3963 * @sig: signal to be sent
3965 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3967 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3969 /* This is only valid for single tasks */
3973 return do_tkill(0, pid, sig);
3976 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3978 /* Not even root can pretend to send signals from the kernel.
3979 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3981 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3982 (task_pid_vnr(current) != pid))
3985 /* POSIX.1b doesn't mention process groups. */
3986 return kill_proc_info(sig, info, pid);
3990 * sys_rt_sigqueueinfo - send signal information to a signal
3991 * @pid: the PID of the thread
3992 * @sig: signal to be sent
3993 * @uinfo: signal info to be sent
3995 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3996 siginfo_t __user *, uinfo)
3998 kernel_siginfo_t info;
3999 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4002 return do_rt_sigqueueinfo(pid, sig, &info);
4005 #ifdef CONFIG_COMPAT
4006 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4009 struct compat_siginfo __user *, uinfo)
4011 kernel_siginfo_t info;
4012 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4015 return do_rt_sigqueueinfo(pid, sig, &info);
4019 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4021 /* This is only valid for single tasks */
4022 if (pid <= 0 || tgid <= 0)
4025 /* Not even root can pretend to send signals from the kernel.
4026 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4028 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4029 (task_pid_vnr(current) != pid))
4032 return do_send_specific(tgid, pid, sig, info);
4035 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4036 siginfo_t __user *, uinfo)
4038 kernel_siginfo_t info;
4039 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4042 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4045 #ifdef CONFIG_COMPAT
4046 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4050 struct compat_siginfo __user *, uinfo)
4052 kernel_siginfo_t info;
4053 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4056 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4061 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4063 void kernel_sigaction(int sig, __sighandler_t action)
4065 spin_lock_irq(¤t->sighand->siglock);
4066 current->sighand->action[sig - 1].sa.sa_handler = action;
4067 if (action == SIG_IGN) {
4071 sigaddset(&mask, sig);
4073 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4074 flush_sigqueue_mask(&mask, ¤t->pending);
4075 recalc_sigpending();
4077 spin_unlock_irq(¤t->sighand->siglock);
4079 EXPORT_SYMBOL(kernel_sigaction);
4081 void __weak sigaction_compat_abi(struct k_sigaction *act,
4082 struct k_sigaction *oact)
4086 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4088 struct task_struct *p = current, *t;
4089 struct k_sigaction *k;
4092 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4095 k = &p->sighand->action[sig-1];
4097 spin_lock_irq(&p->sighand->siglock);
4098 if (k->sa.sa_flags & SA_IMMUTABLE) {
4099 spin_unlock_irq(&p->sighand->siglock);
4106 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4107 * e.g. by having an architecture use the bit in their uapi.
4109 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4112 * Clear unknown flag bits in order to allow userspace to detect missing
4113 * support for flag bits and to allow the kernel to use non-uapi bits
4117 act->sa.sa_flags &= UAPI_SA_FLAGS;
4119 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4121 sigaction_compat_abi(act, oact);
4124 sigdelsetmask(&act->sa.sa_mask,
4125 sigmask(SIGKILL) | sigmask(SIGSTOP));
4129 * "Setting a signal action to SIG_IGN for a signal that is
4130 * pending shall cause the pending signal to be discarded,
4131 * whether or not it is blocked."
4133 * "Setting a signal action to SIG_DFL for a signal that is
4134 * pending and whose default action is to ignore the signal
4135 * (for example, SIGCHLD), shall cause the pending signal to
4136 * be discarded, whether or not it is blocked"
4138 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4140 sigaddset(&mask, sig);
4141 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4142 for_each_thread(p, t)
4143 flush_sigqueue_mask(&mask, &t->pending);
4147 spin_unlock_irq(&p->sighand->siglock);
4151 #ifdef CONFIG_DYNAMIC_SIGFRAME
4152 static inline void sigaltstack_lock(void)
4153 __acquires(¤t->sighand->siglock)
4155 spin_lock_irq(¤t->sighand->siglock);
4158 static inline void sigaltstack_unlock(void)
4159 __releases(¤t->sighand->siglock)
4161 spin_unlock_irq(¤t->sighand->siglock);
4164 static inline void sigaltstack_lock(void) { }
4165 static inline void sigaltstack_unlock(void) { }
4169 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4172 struct task_struct *t = current;
4176 memset(oss, 0, sizeof(stack_t));
4177 oss->ss_sp = (void __user *) t->sas_ss_sp;
4178 oss->ss_size = t->sas_ss_size;
4179 oss->ss_flags = sas_ss_flags(sp) |
4180 (current->sas_ss_flags & SS_FLAG_BITS);
4184 void __user *ss_sp = ss->ss_sp;
4185 size_t ss_size = ss->ss_size;
4186 unsigned ss_flags = ss->ss_flags;
4189 if (unlikely(on_sig_stack(sp)))
4192 ss_mode = ss_flags & ~SS_FLAG_BITS;
4193 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4198 * Return before taking any locks if no actual
4199 * sigaltstack changes were requested.
4201 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4202 t->sas_ss_size == ss_size &&
4203 t->sas_ss_flags == ss_flags)
4207 if (ss_mode == SS_DISABLE) {
4211 if (unlikely(ss_size < min_ss_size))
4213 if (!sigaltstack_size_valid(ss_size))
4217 t->sas_ss_sp = (unsigned long) ss_sp;
4218 t->sas_ss_size = ss_size;
4219 t->sas_ss_flags = ss_flags;
4221 sigaltstack_unlock();
4226 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4230 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4232 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4233 current_user_stack_pointer(),
4235 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4240 int restore_altstack(const stack_t __user *uss)
4243 if (copy_from_user(&new, uss, sizeof(stack_t)))
4245 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4247 /* squash all but EFAULT for now */
4251 int __save_altstack(stack_t __user *uss, unsigned long sp)
4253 struct task_struct *t = current;
4254 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4255 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4256 __put_user(t->sas_ss_size, &uss->ss_size);
4260 #ifdef CONFIG_COMPAT
4261 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4262 compat_stack_t __user *uoss_ptr)
4268 compat_stack_t uss32;
4269 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4271 uss.ss_sp = compat_ptr(uss32.ss_sp);
4272 uss.ss_flags = uss32.ss_flags;
4273 uss.ss_size = uss32.ss_size;
4275 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4276 compat_user_stack_pointer(),
4277 COMPAT_MINSIGSTKSZ);
4278 if (ret >= 0 && uoss_ptr) {
4280 memset(&old, 0, sizeof(old));
4281 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4282 old.ss_flags = uoss.ss_flags;
4283 old.ss_size = uoss.ss_size;
4284 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4290 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4291 const compat_stack_t __user *, uss_ptr,
4292 compat_stack_t __user *, uoss_ptr)
4294 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4297 int compat_restore_altstack(const compat_stack_t __user *uss)
4299 int err = do_compat_sigaltstack(uss, NULL);
4300 /* squash all but -EFAULT for now */
4301 return err == -EFAULT ? err : 0;
4304 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4307 struct task_struct *t = current;
4308 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4310 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4311 __put_user(t->sas_ss_size, &uss->ss_size);
4316 #ifdef __ARCH_WANT_SYS_SIGPENDING
4319 * sys_sigpending - examine pending signals
4320 * @uset: where mask of pending signal is returned
4322 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4326 if (sizeof(old_sigset_t) > sizeof(*uset))
4329 do_sigpending(&set);
4331 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4337 #ifdef CONFIG_COMPAT
4338 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4342 do_sigpending(&set);
4344 return put_user(set.sig[0], set32);
4350 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4352 * sys_sigprocmask - examine and change blocked signals
4353 * @how: whether to add, remove, or set signals
4354 * @nset: signals to add or remove (if non-null)
4355 * @oset: previous value of signal mask if non-null
4357 * Some platforms have their own version with special arguments;
4358 * others support only sys_rt_sigprocmask.
4361 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4362 old_sigset_t __user *, oset)
4364 old_sigset_t old_set, new_set;
4365 sigset_t new_blocked;
4367 old_set = current->blocked.sig[0];
4370 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4373 new_blocked = current->blocked;
4377 sigaddsetmask(&new_blocked, new_set);
4380 sigdelsetmask(&new_blocked, new_set);
4383 new_blocked.sig[0] = new_set;
4389 set_current_blocked(&new_blocked);
4393 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4399 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4401 #ifndef CONFIG_ODD_RT_SIGACTION
4403 * sys_rt_sigaction - alter an action taken by a process
4404 * @sig: signal to be sent
4405 * @act: new sigaction
4406 * @oact: used to save the previous sigaction
4407 * @sigsetsize: size of sigset_t type
4409 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4410 const struct sigaction __user *, act,
4411 struct sigaction __user *, oact,
4414 struct k_sigaction new_sa, old_sa;
4417 /* XXX: Don't preclude handling different sized sigset_t's. */
4418 if (sigsetsize != sizeof(sigset_t))
4421 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4424 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4428 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4433 #ifdef CONFIG_COMPAT
4434 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4435 const struct compat_sigaction __user *, act,
4436 struct compat_sigaction __user *, oact,
4437 compat_size_t, sigsetsize)
4439 struct k_sigaction new_ka, old_ka;
4440 #ifdef __ARCH_HAS_SA_RESTORER
4441 compat_uptr_t restorer;
4445 /* XXX: Don't preclude handling different sized sigset_t's. */
4446 if (sigsetsize != sizeof(compat_sigset_t))
4450 compat_uptr_t handler;
4451 ret = get_user(handler, &act->sa_handler);
4452 new_ka.sa.sa_handler = compat_ptr(handler);
4453 #ifdef __ARCH_HAS_SA_RESTORER
4454 ret |= get_user(restorer, &act->sa_restorer);
4455 new_ka.sa.sa_restorer = compat_ptr(restorer);
4457 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4458 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4463 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4465 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4467 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4468 sizeof(oact->sa_mask));
4469 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4470 #ifdef __ARCH_HAS_SA_RESTORER
4471 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4472 &oact->sa_restorer);
4478 #endif /* !CONFIG_ODD_RT_SIGACTION */
4480 #ifdef CONFIG_OLD_SIGACTION
4481 SYSCALL_DEFINE3(sigaction, int, sig,
4482 const struct old_sigaction __user *, act,
4483 struct old_sigaction __user *, oact)
4485 struct k_sigaction new_ka, old_ka;
4490 if (!access_ok(act, sizeof(*act)) ||
4491 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4492 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4493 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4494 __get_user(mask, &act->sa_mask))
4496 #ifdef __ARCH_HAS_KA_RESTORER
4497 new_ka.ka_restorer = NULL;
4499 siginitset(&new_ka.sa.sa_mask, mask);
4502 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4505 if (!access_ok(oact, sizeof(*oact)) ||
4506 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4507 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4508 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4509 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4516 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4517 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4518 const struct compat_old_sigaction __user *, act,
4519 struct compat_old_sigaction __user *, oact)
4521 struct k_sigaction new_ka, old_ka;
4523 compat_old_sigset_t mask;
4524 compat_uptr_t handler, restorer;
4527 if (!access_ok(act, sizeof(*act)) ||
4528 __get_user(handler, &act->sa_handler) ||
4529 __get_user(restorer, &act->sa_restorer) ||
4530 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4531 __get_user(mask, &act->sa_mask))
4534 #ifdef __ARCH_HAS_KA_RESTORER
4535 new_ka.ka_restorer = NULL;
4537 new_ka.sa.sa_handler = compat_ptr(handler);
4538 new_ka.sa.sa_restorer = compat_ptr(restorer);
4539 siginitset(&new_ka.sa.sa_mask, mask);
4542 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4545 if (!access_ok(oact, sizeof(*oact)) ||
4546 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4547 &oact->sa_handler) ||
4548 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4549 &oact->sa_restorer) ||
4550 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4551 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4558 #ifdef CONFIG_SGETMASK_SYSCALL
4561 * For backwards compatibility. Functionality superseded by sigprocmask.
4563 SYSCALL_DEFINE0(sgetmask)
4566 return current->blocked.sig[0];
4569 SYSCALL_DEFINE1(ssetmask, int, newmask)
4571 int old = current->blocked.sig[0];
4574 siginitset(&newset, newmask);
4575 set_current_blocked(&newset);
4579 #endif /* CONFIG_SGETMASK_SYSCALL */
4581 #ifdef __ARCH_WANT_SYS_SIGNAL
4583 * For backwards compatibility. Functionality superseded by sigaction.
4585 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4587 struct k_sigaction new_sa, old_sa;
4590 new_sa.sa.sa_handler = handler;
4591 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4592 sigemptyset(&new_sa.sa.sa_mask);
4594 ret = do_sigaction(sig, &new_sa, &old_sa);
4596 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4598 #endif /* __ARCH_WANT_SYS_SIGNAL */
4600 #ifdef __ARCH_WANT_SYS_PAUSE
4602 SYSCALL_DEFINE0(pause)
4604 while (!signal_pending(current)) {
4605 __set_current_state(TASK_INTERRUPTIBLE);
4608 return -ERESTARTNOHAND;
4613 static int sigsuspend(sigset_t *set)
4615 current->saved_sigmask = current->blocked;
4616 set_current_blocked(set);
4618 while (!signal_pending(current)) {
4619 __set_current_state(TASK_INTERRUPTIBLE);
4622 set_restore_sigmask();
4623 return -ERESTARTNOHAND;
4627 * sys_rt_sigsuspend - replace the signal mask for a value with the
4628 * @unewset value until a signal is received
4629 * @unewset: new signal mask value
4630 * @sigsetsize: size of sigset_t type
4632 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4636 /* XXX: Don't preclude handling different sized sigset_t's. */
4637 if (sigsetsize != sizeof(sigset_t))
4640 if (copy_from_user(&newset, unewset, sizeof(newset)))
4642 return sigsuspend(&newset);
4645 #ifdef CONFIG_COMPAT
4646 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4650 /* XXX: Don't preclude handling different sized sigset_t's. */
4651 if (sigsetsize != sizeof(sigset_t))
4654 if (get_compat_sigset(&newset, unewset))
4656 return sigsuspend(&newset);
4660 #ifdef CONFIG_OLD_SIGSUSPEND
4661 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4664 siginitset(&blocked, mask);
4665 return sigsuspend(&blocked);
4668 #ifdef CONFIG_OLD_SIGSUSPEND3
4669 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4672 siginitset(&blocked, mask);
4673 return sigsuspend(&blocked);
4677 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4682 static inline void siginfo_buildtime_checks(void)
4684 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4686 /* Verify the offsets in the two siginfos match */
4687 #define CHECK_OFFSET(field) \
4688 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4691 CHECK_OFFSET(si_pid);
4692 CHECK_OFFSET(si_uid);
4695 CHECK_OFFSET(si_tid);
4696 CHECK_OFFSET(si_overrun);
4697 CHECK_OFFSET(si_value);
4700 CHECK_OFFSET(si_pid);
4701 CHECK_OFFSET(si_uid);
4702 CHECK_OFFSET(si_value);
4705 CHECK_OFFSET(si_pid);
4706 CHECK_OFFSET(si_uid);
4707 CHECK_OFFSET(si_status);
4708 CHECK_OFFSET(si_utime);
4709 CHECK_OFFSET(si_stime);
4712 CHECK_OFFSET(si_addr);
4713 CHECK_OFFSET(si_trapno);
4714 CHECK_OFFSET(si_addr_lsb);
4715 CHECK_OFFSET(si_lower);
4716 CHECK_OFFSET(si_upper);
4717 CHECK_OFFSET(si_pkey);
4718 CHECK_OFFSET(si_perf_data);
4719 CHECK_OFFSET(si_perf_type);
4720 CHECK_OFFSET(si_perf_flags);
4723 CHECK_OFFSET(si_band);
4724 CHECK_OFFSET(si_fd);
4727 CHECK_OFFSET(si_call_addr);
4728 CHECK_OFFSET(si_syscall);
4729 CHECK_OFFSET(si_arch);
4733 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4734 offsetof(struct siginfo, si_addr));
4735 if (sizeof(int) == sizeof(void __user *)) {
4736 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4737 sizeof(void __user *));
4739 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4740 sizeof_field(struct siginfo, si_uid)) !=
4741 sizeof(void __user *));
4742 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4743 offsetof(struct siginfo, si_uid));
4745 #ifdef CONFIG_COMPAT
4746 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4747 offsetof(struct compat_siginfo, si_addr));
4748 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4749 sizeof(compat_uptr_t));
4750 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4751 sizeof_field(struct siginfo, si_pid));
4755 void __init signals_init(void)
4757 siginfo_buildtime_checks();
4759 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4762 #ifdef CONFIG_KGDB_KDB
4763 #include <linux/kdb.h>
4765 * kdb_send_sig - Allows kdb to send signals without exposing
4766 * signal internals. This function checks if the required locks are
4767 * available before calling the main signal code, to avoid kdb
4770 void kdb_send_sig(struct task_struct *t, int sig)
4772 static struct task_struct *kdb_prev_t;
4774 if (!spin_trylock(&t->sighand->siglock)) {
4775 kdb_printf("Can't do kill command now.\n"
4776 "The sigmask lock is held somewhere else in "
4777 "kernel, try again later\n");
4780 new_t = kdb_prev_t != t;
4782 if (!task_is_running(t) && new_t) {
4783 spin_unlock(&t->sighand->siglock);
4784 kdb_printf("Process is not RUNNING, sending a signal from "
4785 "kdb risks deadlock\n"
4786 "on the run queue locks. "
4787 "The signal has _not_ been sent.\n"
4788 "Reissue the kill command if you want to risk "
4792 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4793 spin_unlock(&t->sighand->siglock);
4795 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4798 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4800 #endif /* CONFIG_KGDB_KDB */