1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
59 * SLAB caches for signal bits.
62 static struct kmem_cache *sigqueue_cachep;
64 int print_fatal_signals __read_mostly;
66 static void __user *sig_handler(struct task_struct *t, int sig)
68 return t->sighand->action[sig - 1].sa.sa_handler;
71 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 /* Is it explicitly or implicitly ignored? */
74 return handler == SIG_IGN ||
75 (handler == SIG_DFL && sig_kernel_ignore(sig));
78 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
82 handler = sig_handler(t, sig);
84 /* SIGKILL and SIGSTOP may not be sent to the global init */
85 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
88 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
89 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
92 /* Only allow kernel generated signals to this kthread */
93 if (unlikely((t->flags & PF_KTHREAD) &&
94 (handler == SIG_KTHREAD_KERNEL) && !force))
97 return sig_handler_ignored(handler, sig);
100 static bool sig_ignored(struct task_struct *t, int sig, bool force)
103 * Blocked signals are never ignored, since the
104 * signal handler may change by the time it is
107 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
111 * Tracers may want to know about even ignored signal unless it
112 * is SIGKILL which can't be reported anyway but can be ignored
113 * by SIGNAL_UNKILLABLE task.
115 if (t->ptrace && sig != SIGKILL)
118 return sig_task_ignored(t, sig, force);
122 * Re-calculate pending state from the set of locally pending
123 * signals, globally pending signals, and blocked signals.
125 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
130 switch (_NSIG_WORDS) {
132 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
133 ready |= signal->sig[i] &~ blocked->sig[i];
136 case 4: ready = signal->sig[3] &~ blocked->sig[3];
137 ready |= signal->sig[2] &~ blocked->sig[2];
138 ready |= signal->sig[1] &~ blocked->sig[1];
139 ready |= signal->sig[0] &~ blocked->sig[0];
142 case 2: ready = signal->sig[1] &~ blocked->sig[1];
143 ready |= signal->sig[0] &~ blocked->sig[0];
146 case 1: ready = signal->sig[0] &~ blocked->sig[0];
151 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 static bool recalc_sigpending_tsk(struct task_struct *t)
155 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
156 PENDING(&t->pending, &t->blocked) ||
157 PENDING(&t->signal->shared_pending, &t->blocked) ||
158 cgroup_task_frozen(t)) {
159 set_tsk_thread_flag(t, TIF_SIGPENDING);
164 * We must never clear the flag in another thread, or in current
165 * when it's possible the current syscall is returning -ERESTART*.
166 * So we don't clear it here, and only callers who know they should do.
172 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
173 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 void recalc_sigpending_and_wake(struct task_struct *t)
177 if (recalc_sigpending_tsk(t))
178 signal_wake_up(t, 0);
181 void recalc_sigpending(void)
183 if (!recalc_sigpending_tsk(current) && !freezing(current))
184 clear_thread_flag(TIF_SIGPENDING);
187 EXPORT_SYMBOL(recalc_sigpending);
189 void calculate_sigpending(void)
191 /* Have any signals or users of TIF_SIGPENDING been delayed
194 spin_lock_irq(¤t->sighand->siglock);
195 set_tsk_thread_flag(current, TIF_SIGPENDING);
197 spin_unlock_irq(¤t->sighand->siglock);
200 /* Given the mask, find the first available signal that should be serviced. */
202 #define SYNCHRONOUS_MASK \
203 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
204 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206 int next_signal(struct sigpending *pending, sigset_t *mask)
208 unsigned long i, *s, *m, x;
211 s = pending->signal.sig;
215 * Handle the first word specially: it contains the
216 * synchronous signals that need to be dequeued first.
220 if (x & SYNCHRONOUS_MASK)
221 x &= SYNCHRONOUS_MASK;
226 switch (_NSIG_WORDS) {
228 for (i = 1; i < _NSIG_WORDS; ++i) {
232 sig = ffz(~x) + i*_NSIG_BPW + 1;
241 sig = ffz(~x) + _NSIG_BPW + 1;
252 static inline void print_dropped_signal(int sig)
254 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256 if (!print_fatal_signals)
259 if (!__ratelimit(&ratelimit_state))
262 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
263 current->comm, current->pid, sig);
267 * task_set_jobctl_pending - set jobctl pending bits
269 * @mask: pending bits to set
271 * Clear @mask from @task->jobctl. @mask must be subset of
272 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
273 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
274 * cleared. If @task is already being killed or exiting, this function
278 * Must be called with @task->sighand->siglock held.
281 * %true if @mask is set, %false if made noop because @task was dying.
283 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
286 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
287 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 if (mask & JOBCTL_STOP_SIGMASK)
293 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295 task->jobctl |= mask;
300 * task_clear_jobctl_trapping - clear jobctl trapping bit
303 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
304 * Clear it and wake up the ptracer. Note that we don't need any further
305 * locking. @task->siglock guarantees that @task->parent points to the
309 * Must be called with @task->sighand->siglock held.
311 void task_clear_jobctl_trapping(struct task_struct *task)
313 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
314 task->jobctl &= ~JOBCTL_TRAPPING;
315 smp_mb(); /* advised by wake_up_bit() */
316 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
321 * task_clear_jobctl_pending - clear jobctl pending bits
323 * @mask: pending bits to clear
325 * Clear @mask from @task->jobctl. @mask must be subset of
326 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
327 * STOP bits are cleared together.
329 * If clearing of @mask leaves no stop or trap pending, this function calls
330 * task_clear_jobctl_trapping().
333 * Must be called with @task->sighand->siglock held.
335 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339 if (mask & JOBCTL_STOP_PENDING)
340 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342 task->jobctl &= ~mask;
344 if (!(task->jobctl & JOBCTL_PENDING_MASK))
345 task_clear_jobctl_trapping(task);
349 * task_participate_group_stop - participate in a group stop
350 * @task: task participating in a group stop
352 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
353 * Group stop states are cleared and the group stop count is consumed if
354 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
355 * stop, the appropriate `SIGNAL_*` flags are set.
358 * Must be called with @task->sighand->siglock held.
361 * %true if group stop completion should be notified to the parent, %false
364 static bool task_participate_group_stop(struct task_struct *task)
366 struct signal_struct *sig = task->signal;
367 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
376 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
377 sig->group_stop_count--;
380 * Tell the caller to notify completion iff we are entering into a
381 * fresh group stop. Read comment in do_signal_stop() for details.
383 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
384 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
390 void task_join_group_stop(struct task_struct *task)
392 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
393 struct signal_struct *sig = current->signal;
395 if (sig->group_stop_count) {
396 sig->group_stop_count++;
397 mask |= JOBCTL_STOP_CONSUME;
398 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
401 /* Have the new thread join an on-going signal group stop */
402 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
406 * allocate a new signal queue record
407 * - this may be called without locks if and only if t == current, otherwise an
408 * appropriate lock must be held to stop the target task from exiting
410 static struct sigqueue *
411 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
412 int override_rlimit, const unsigned int sigqueue_flags)
414 struct sigqueue *q = NULL;
415 struct ucounts *ucounts = NULL;
419 * Protect access to @t credentials. This can go away when all
420 * callers hold rcu read lock.
422 * NOTE! A pending signal will hold on to the user refcount,
423 * and we get/put the refcount only when the sigpending count
424 * changes from/to zero.
427 ucounts = task_ucounts(t);
428 sigpending = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1);
429 switch (sigpending) {
431 if (likely(get_ucounts(ucounts)))
436 * we need to decrease the ucount in the userns tree on any
437 * failure to avoid counts leaking.
439 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1);
445 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
446 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
448 print_dropped_signal(sig);
451 if (unlikely(q == NULL)) {
452 if (dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1))
453 put_ucounts(ucounts);
455 INIT_LIST_HEAD(&q->list);
456 q->flags = sigqueue_flags;
457 q->ucounts = ucounts;
462 static void __sigqueue_free(struct sigqueue *q)
464 if (q->flags & SIGQUEUE_PREALLOC)
466 if (q->ucounts && dec_rlimit_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING, 1)) {
467 put_ucounts(q->ucounts);
470 kmem_cache_free(sigqueue_cachep, q);
473 void flush_sigqueue(struct sigpending *queue)
477 sigemptyset(&queue->signal);
478 while (!list_empty(&queue->list)) {
479 q = list_entry(queue->list.next, struct sigqueue , list);
480 list_del_init(&q->list);
486 * Flush all pending signals for this kthread.
488 void flush_signals(struct task_struct *t)
492 spin_lock_irqsave(&t->sighand->siglock, flags);
493 clear_tsk_thread_flag(t, TIF_SIGPENDING);
494 flush_sigqueue(&t->pending);
495 flush_sigqueue(&t->signal->shared_pending);
496 spin_unlock_irqrestore(&t->sighand->siglock, flags);
498 EXPORT_SYMBOL(flush_signals);
500 #ifdef CONFIG_POSIX_TIMERS
501 static void __flush_itimer_signals(struct sigpending *pending)
503 sigset_t signal, retain;
504 struct sigqueue *q, *n;
506 signal = pending->signal;
507 sigemptyset(&retain);
509 list_for_each_entry_safe(q, n, &pending->list, list) {
510 int sig = q->info.si_signo;
512 if (likely(q->info.si_code != SI_TIMER)) {
513 sigaddset(&retain, sig);
515 sigdelset(&signal, sig);
516 list_del_init(&q->list);
521 sigorsets(&pending->signal, &signal, &retain);
524 void flush_itimer_signals(void)
526 struct task_struct *tsk = current;
529 spin_lock_irqsave(&tsk->sighand->siglock, flags);
530 __flush_itimer_signals(&tsk->pending);
531 __flush_itimer_signals(&tsk->signal->shared_pending);
532 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
536 void ignore_signals(struct task_struct *t)
540 for (i = 0; i < _NSIG; ++i)
541 t->sighand->action[i].sa.sa_handler = SIG_IGN;
547 * Flush all handlers for a task.
551 flush_signal_handlers(struct task_struct *t, int force_default)
554 struct k_sigaction *ka = &t->sighand->action[0];
555 for (i = _NSIG ; i != 0 ; i--) {
556 if (force_default || ka->sa.sa_handler != SIG_IGN)
557 ka->sa.sa_handler = SIG_DFL;
559 #ifdef __ARCH_HAS_SA_RESTORER
560 ka->sa.sa_restorer = NULL;
562 sigemptyset(&ka->sa.sa_mask);
567 bool unhandled_signal(struct task_struct *tsk, int sig)
569 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
570 if (is_global_init(tsk))
573 if (handler != SIG_IGN && handler != SIG_DFL)
576 /* if ptraced, let the tracer determine */
580 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
583 struct sigqueue *q, *first = NULL;
586 * Collect the siginfo appropriate to this signal. Check if
587 * there is another siginfo for the same signal.
589 list_for_each_entry(q, &list->list, list) {
590 if (q->info.si_signo == sig) {
597 sigdelset(&list->signal, sig);
601 list_del_init(&first->list);
602 copy_siginfo(info, &first->info);
605 (first->flags & SIGQUEUE_PREALLOC) &&
606 (info->si_code == SI_TIMER) &&
607 (info->si_sys_private);
609 __sigqueue_free(first);
612 * Ok, it wasn't in the queue. This must be
613 * a fast-pathed signal or we must have been
614 * out of queue space. So zero out the info.
617 info->si_signo = sig;
619 info->si_code = SI_USER;
625 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
626 kernel_siginfo_t *info, bool *resched_timer)
628 int sig = next_signal(pending, mask);
631 collect_signal(sig, pending, info, resched_timer);
636 * Dequeue a signal and return the element to the caller, which is
637 * expected to free it.
639 * All callers have to hold the siglock.
641 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
643 bool resched_timer = false;
646 /* We only dequeue private signals from ourselves, we don't let
647 * signalfd steal them
649 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
651 signr = __dequeue_signal(&tsk->signal->shared_pending,
652 mask, info, &resched_timer);
653 #ifdef CONFIG_POSIX_TIMERS
657 * itimers are process shared and we restart periodic
658 * itimers in the signal delivery path to prevent DoS
659 * attacks in the high resolution timer case. This is
660 * compliant with the old way of self-restarting
661 * itimers, as the SIGALRM is a legacy signal and only
662 * queued once. Changing the restart behaviour to
663 * restart the timer in the signal dequeue path is
664 * reducing the timer noise on heavy loaded !highres
667 if (unlikely(signr == SIGALRM)) {
668 struct hrtimer *tmr = &tsk->signal->real_timer;
670 if (!hrtimer_is_queued(tmr) &&
671 tsk->signal->it_real_incr != 0) {
672 hrtimer_forward(tmr, tmr->base->get_time(),
673 tsk->signal->it_real_incr);
674 hrtimer_restart(tmr);
684 if (unlikely(sig_kernel_stop(signr))) {
686 * Set a marker that we have dequeued a stop signal. Our
687 * caller might release the siglock and then the pending
688 * stop signal it is about to process is no longer in the
689 * pending bitmasks, but must still be cleared by a SIGCONT
690 * (and overruled by a SIGKILL). So those cases clear this
691 * shared flag after we've set it. Note that this flag may
692 * remain set after the signal we return is ignored or
693 * handled. That doesn't matter because its only purpose
694 * is to alert stop-signal processing code when another
695 * processor has come along and cleared the flag.
697 current->jobctl |= JOBCTL_STOP_DEQUEUED;
699 #ifdef CONFIG_POSIX_TIMERS
702 * Release the siglock to ensure proper locking order
703 * of timer locks outside of siglocks. Note, we leave
704 * irqs disabled here, since the posix-timers code is
705 * about to disable them again anyway.
707 spin_unlock(&tsk->sighand->siglock);
708 posixtimer_rearm(info);
709 spin_lock(&tsk->sighand->siglock);
711 /* Don't expose the si_sys_private value to userspace */
712 info->si_sys_private = 0;
717 EXPORT_SYMBOL_GPL(dequeue_signal);
719 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
721 struct task_struct *tsk = current;
722 struct sigpending *pending = &tsk->pending;
723 struct sigqueue *q, *sync = NULL;
726 * Might a synchronous signal be in the queue?
728 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
732 * Return the first synchronous signal in the queue.
734 list_for_each_entry(q, &pending->list, list) {
735 /* Synchronous signals have a positive si_code */
736 if ((q->info.si_code > SI_USER) &&
737 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
745 * Check if there is another siginfo for the same signal.
747 list_for_each_entry_continue(q, &pending->list, list) {
748 if (q->info.si_signo == sync->info.si_signo)
752 sigdelset(&pending->signal, sync->info.si_signo);
755 list_del_init(&sync->list);
756 copy_siginfo(info, &sync->info);
757 __sigqueue_free(sync);
758 return info->si_signo;
762 * Tell a process that it has a new active signal..
764 * NOTE! we rely on the previous spin_lock to
765 * lock interrupts for us! We can only be called with
766 * "siglock" held, and the local interrupt must
767 * have been disabled when that got acquired!
769 * No need to set need_resched since signal event passing
770 * goes through ->blocked
772 void signal_wake_up_state(struct task_struct *t, unsigned int state)
774 set_tsk_thread_flag(t, TIF_SIGPENDING);
776 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
777 * case. We don't check t->state here because there is a race with it
778 * executing another processor and just now entering stopped state.
779 * By using wake_up_state, we ensure the process will wake up and
780 * handle its death signal.
782 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
787 * Remove signals in mask from the pending set and queue.
788 * Returns 1 if any signals were found.
790 * All callers must be holding the siglock.
792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
794 struct sigqueue *q, *n;
797 sigandsets(&m, mask, &s->signal);
798 if (sigisemptyset(&m))
801 sigandnsets(&s->signal, &s->signal, mask);
802 list_for_each_entry_safe(q, n, &s->list, list) {
803 if (sigismember(mask, q->info.si_signo)) {
804 list_del_init(&q->list);
810 static inline int is_si_special(const struct kernel_siginfo *info)
812 return info <= SEND_SIG_PRIV;
815 static inline bool si_fromuser(const struct kernel_siginfo *info)
817 return info == SEND_SIG_NOINFO ||
818 (!is_si_special(info) && SI_FROMUSER(info));
822 * called with RCU read lock from check_kill_permission()
824 static bool kill_ok_by_cred(struct task_struct *t)
826 const struct cred *cred = current_cred();
827 const struct cred *tcred = __task_cred(t);
829 return uid_eq(cred->euid, tcred->suid) ||
830 uid_eq(cred->euid, tcred->uid) ||
831 uid_eq(cred->uid, tcred->suid) ||
832 uid_eq(cred->uid, tcred->uid) ||
833 ns_capable(tcred->user_ns, CAP_KILL);
837 * Bad permissions for sending the signal
838 * - the caller must hold the RCU read lock
840 static int check_kill_permission(int sig, struct kernel_siginfo *info,
841 struct task_struct *t)
846 if (!valid_signal(sig))
849 if (!si_fromuser(info))
852 error = audit_signal_info(sig, t); /* Let audit system see the signal */
856 if (!same_thread_group(current, t) &&
857 !kill_ok_by_cred(t)) {
860 sid = task_session(t);
862 * We don't return the error if sid == NULL. The
863 * task was unhashed, the caller must notice this.
865 if (!sid || sid == task_session(current))
873 return security_task_kill(t, info, sig, NULL);
877 * ptrace_trap_notify - schedule trap to notify ptracer
878 * @t: tracee wanting to notify tracer
880 * This function schedules sticky ptrace trap which is cleared on the next
881 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
884 * If @t is running, STOP trap will be taken. If trapped for STOP and
885 * ptracer is listening for events, tracee is woken up so that it can
886 * re-trap for the new event. If trapped otherwise, STOP trap will be
887 * eventually taken without returning to userland after the existing traps
888 * are finished by PTRACE_CONT.
891 * Must be called with @task->sighand->siglock held.
893 static void ptrace_trap_notify(struct task_struct *t)
895 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
896 assert_spin_locked(&t->sighand->siglock);
898 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
899 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
903 * Handle magic process-wide effects of stop/continue signals. Unlike
904 * the signal actions, these happen immediately at signal-generation
905 * time regardless of blocking, ignoring, or handling. This does the
906 * actual continuing for SIGCONT, but not the actual stopping for stop
907 * signals. The process stop is done as a signal action for SIG_DFL.
909 * Returns true if the signal should be actually delivered, otherwise
910 * it should be dropped.
912 static bool prepare_signal(int sig, struct task_struct *p, bool force)
914 struct signal_struct *signal = p->signal;
915 struct task_struct *t;
918 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
919 if (!(signal->flags & SIGNAL_GROUP_EXIT))
920 return sig == SIGKILL;
922 * The process is in the middle of dying, nothing to do.
924 } else if (sig_kernel_stop(sig)) {
926 * This is a stop signal. Remove SIGCONT from all queues.
928 siginitset(&flush, sigmask(SIGCONT));
929 flush_sigqueue_mask(&flush, &signal->shared_pending);
930 for_each_thread(p, t)
931 flush_sigqueue_mask(&flush, &t->pending);
932 } else if (sig == SIGCONT) {
935 * Remove all stop signals from all queues, wake all threads.
937 siginitset(&flush, SIG_KERNEL_STOP_MASK);
938 flush_sigqueue_mask(&flush, &signal->shared_pending);
939 for_each_thread(p, t) {
940 flush_sigqueue_mask(&flush, &t->pending);
941 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
942 if (likely(!(t->ptrace & PT_SEIZED)))
943 wake_up_state(t, __TASK_STOPPED);
945 ptrace_trap_notify(t);
949 * Notify the parent with CLD_CONTINUED if we were stopped.
951 * If we were in the middle of a group stop, we pretend it
952 * was already finished, and then continued. Since SIGCHLD
953 * doesn't queue we report only CLD_STOPPED, as if the next
954 * CLD_CONTINUED was dropped.
957 if (signal->flags & SIGNAL_STOP_STOPPED)
958 why |= SIGNAL_CLD_CONTINUED;
959 else if (signal->group_stop_count)
960 why |= SIGNAL_CLD_STOPPED;
964 * The first thread which returns from do_signal_stop()
965 * will take ->siglock, notice SIGNAL_CLD_MASK, and
966 * notify its parent. See get_signal().
968 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
969 signal->group_stop_count = 0;
970 signal->group_exit_code = 0;
974 return !sig_ignored(p, sig, force);
978 * Test if P wants to take SIG. After we've checked all threads with this,
979 * it's equivalent to finding no threads not blocking SIG. Any threads not
980 * blocking SIG were ruled out because they are not running and already
981 * have pending signals. Such threads will dequeue from the shared queue
982 * as soon as they're available, so putting the signal on the shared queue
983 * will be equivalent to sending it to one such thread.
985 static inline bool wants_signal(int sig, struct task_struct *p)
987 if (sigismember(&p->blocked, sig))
990 if (p->flags & PF_EXITING)
996 if (task_is_stopped_or_traced(p))
999 return task_curr(p) || !task_sigpending(p);
1002 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1004 struct signal_struct *signal = p->signal;
1005 struct task_struct *t;
1008 * Now find a thread we can wake up to take the signal off the queue.
1010 * If the main thread wants the signal, it gets first crack.
1011 * Probably the least surprising to the average bear.
1013 if (wants_signal(sig, p))
1015 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1017 * There is just one thread and it does not need to be woken.
1018 * It will dequeue unblocked signals before it runs again.
1023 * Otherwise try to find a suitable thread.
1025 t = signal->curr_target;
1026 while (!wants_signal(sig, t)) {
1028 if (t == signal->curr_target)
1030 * No thread needs to be woken.
1031 * Any eligible threads will see
1032 * the signal in the queue soon.
1036 signal->curr_target = t;
1040 * Found a killable thread. If the signal will be fatal,
1041 * then start taking the whole group down immediately.
1043 if (sig_fatal(p, sig) &&
1044 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1045 !sigismember(&t->real_blocked, sig) &&
1046 (sig == SIGKILL || !p->ptrace)) {
1048 * This signal will be fatal to the whole group.
1050 if (!sig_kernel_coredump(sig)) {
1052 * Start a group exit and wake everybody up.
1053 * This way we don't have other threads
1054 * running and doing things after a slower
1055 * thread has the fatal signal pending.
1057 signal->flags = SIGNAL_GROUP_EXIT;
1058 signal->group_exit_code = sig;
1059 signal->group_stop_count = 0;
1062 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1063 sigaddset(&t->pending.signal, SIGKILL);
1064 signal_wake_up(t, 1);
1065 } while_each_thread(p, t);
1071 * The signal is already in the shared-pending queue.
1072 * Tell the chosen thread to wake up and dequeue it.
1074 signal_wake_up(t, sig == SIGKILL);
1078 static inline bool legacy_queue(struct sigpending *signals, int sig)
1080 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1083 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1084 enum pid_type type, bool force)
1086 struct sigpending *pending;
1088 int override_rlimit;
1089 int ret = 0, result;
1091 assert_spin_locked(&t->sighand->siglock);
1093 result = TRACE_SIGNAL_IGNORED;
1094 if (!prepare_signal(sig, t, force))
1097 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1099 * Short-circuit ignored signals and support queuing
1100 * exactly one non-rt signal, so that we can get more
1101 * detailed information about the cause of the signal.
1103 result = TRACE_SIGNAL_ALREADY_PENDING;
1104 if (legacy_queue(pending, sig))
1107 result = TRACE_SIGNAL_DELIVERED;
1109 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1111 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1115 * Real-time signals must be queued if sent by sigqueue, or
1116 * some other real-time mechanism. It is implementation
1117 * defined whether kill() does so. We attempt to do so, on
1118 * the principle of least surprise, but since kill is not
1119 * allowed to fail with EAGAIN when low on memory we just
1120 * make sure at least one signal gets delivered and don't
1121 * pass on the info struct.
1124 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1126 override_rlimit = 0;
1128 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1131 list_add_tail(&q->list, &pending->list);
1132 switch ((unsigned long) info) {
1133 case (unsigned long) SEND_SIG_NOINFO:
1134 clear_siginfo(&q->info);
1135 q->info.si_signo = sig;
1136 q->info.si_errno = 0;
1137 q->info.si_code = SI_USER;
1138 q->info.si_pid = task_tgid_nr_ns(current,
1139 task_active_pid_ns(t));
1142 from_kuid_munged(task_cred_xxx(t, user_ns),
1146 case (unsigned long) SEND_SIG_PRIV:
1147 clear_siginfo(&q->info);
1148 q->info.si_signo = sig;
1149 q->info.si_errno = 0;
1150 q->info.si_code = SI_KERNEL;
1155 copy_siginfo(&q->info, info);
1158 } else if (!is_si_special(info) &&
1159 sig >= SIGRTMIN && info->si_code != SI_USER) {
1161 * Queue overflow, abort. We may abort if the
1162 * signal was rt and sent by user using something
1163 * other than kill().
1165 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1170 * This is a silent loss of information. We still
1171 * send the signal, but the *info bits are lost.
1173 result = TRACE_SIGNAL_LOSE_INFO;
1177 signalfd_notify(t, sig);
1178 sigaddset(&pending->signal, sig);
1180 /* Let multiprocess signals appear after on-going forks */
1181 if (type > PIDTYPE_TGID) {
1182 struct multiprocess_signals *delayed;
1183 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1184 sigset_t *signal = &delayed->signal;
1185 /* Can't queue both a stop and a continue signal */
1187 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1188 else if (sig_kernel_stop(sig))
1189 sigdelset(signal, SIGCONT);
1190 sigaddset(signal, sig);
1194 complete_signal(sig, t, type);
1196 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1200 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1203 switch (siginfo_layout(info->si_signo, info->si_code)) {
1212 case SIL_FAULT_TRAPNO:
1213 case SIL_FAULT_MCEERR:
1214 case SIL_FAULT_BNDERR:
1215 case SIL_FAULT_PKUERR:
1216 case SIL_PERF_EVENT:
1224 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1227 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1230 if (info == SEND_SIG_NOINFO) {
1231 /* Force if sent from an ancestor pid namespace */
1232 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1233 } else if (info == SEND_SIG_PRIV) {
1234 /* Don't ignore kernel generated signals */
1236 } else if (has_si_pid_and_uid(info)) {
1237 /* SIGKILL and SIGSTOP is special or has ids */
1238 struct user_namespace *t_user_ns;
1241 t_user_ns = task_cred_xxx(t, user_ns);
1242 if (current_user_ns() != t_user_ns) {
1243 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1244 info->si_uid = from_kuid_munged(t_user_ns, uid);
1248 /* A kernel generated signal? */
1249 force = (info->si_code == SI_KERNEL);
1251 /* From an ancestor pid namespace? */
1252 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1257 return __send_signal(sig, info, t, type, force);
1260 static void print_fatal_signal(int signr)
1262 struct pt_regs *regs = signal_pt_regs();
1263 pr_info("potentially unexpected fatal signal %d.\n", signr);
1265 #if defined(__i386__) && !defined(__arch_um__)
1266 pr_info("code at %08lx: ", regs->ip);
1269 for (i = 0; i < 16; i++) {
1272 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1274 pr_cont("%02x ", insn);
1284 static int __init setup_print_fatal_signals(char *str)
1286 get_option (&str, &print_fatal_signals);
1291 __setup("print-fatal-signals=", setup_print_fatal_signals);
1294 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1296 return send_signal(sig, info, p, PIDTYPE_TGID);
1299 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1302 unsigned long flags;
1305 if (lock_task_sighand(p, &flags)) {
1306 ret = send_signal(sig, info, p, type);
1307 unlock_task_sighand(p, &flags);
1314 * Force a signal that the process can't ignore: if necessary
1315 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1317 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1318 * since we do not want to have a signal handler that was blocked
1319 * be invoked when user space had explicitly blocked it.
1321 * We don't want to have recursive SIGSEGV's etc, for example,
1322 * that is why we also clear SIGNAL_UNKILLABLE.
1325 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1327 unsigned long int flags;
1328 int ret, blocked, ignored;
1329 struct k_sigaction *action;
1330 int sig = info->si_signo;
1332 spin_lock_irqsave(&t->sighand->siglock, flags);
1333 action = &t->sighand->action[sig-1];
1334 ignored = action->sa.sa_handler == SIG_IGN;
1335 blocked = sigismember(&t->blocked, sig);
1336 if (blocked || ignored) {
1337 action->sa.sa_handler = SIG_DFL;
1339 sigdelset(&t->blocked, sig);
1340 recalc_sigpending_and_wake(t);
1344 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1345 * debugging to leave init killable.
1347 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1348 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349 ret = send_signal(sig, info, t, PIDTYPE_PID);
1350 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1355 int force_sig_info(struct kernel_siginfo *info)
1357 return force_sig_info_to_task(info, current);
1361 * Nuke all other threads in the group.
1363 int zap_other_threads(struct task_struct *p)
1365 struct task_struct *t = p;
1368 p->signal->group_stop_count = 0;
1370 while_each_thread(p, t) {
1371 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1374 /* Don't bother with already dead threads */
1377 sigaddset(&t->pending.signal, SIGKILL);
1378 signal_wake_up(t, 1);
1384 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385 unsigned long *flags)
1387 struct sighand_struct *sighand;
1391 sighand = rcu_dereference(tsk->sighand);
1392 if (unlikely(sighand == NULL))
1396 * This sighand can be already freed and even reused, but
1397 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398 * initializes ->siglock: this slab can't go away, it has
1399 * the same object type, ->siglock can't be reinitialized.
1401 * We need to ensure that tsk->sighand is still the same
1402 * after we take the lock, we can race with de_thread() or
1403 * __exit_signal(). In the latter case the next iteration
1404 * must see ->sighand == NULL.
1406 spin_lock_irqsave(&sighand->siglock, *flags);
1407 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1409 spin_unlock_irqrestore(&sighand->siglock, *flags);
1417 * send signal info to all the members of a group
1419 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1420 struct task_struct *p, enum pid_type type)
1425 ret = check_kill_permission(sig, info, p);
1429 ret = do_send_sig_info(sig, info, p, type);
1435 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1436 * control characters do (^C, ^Z etc)
1437 * - the caller must hold at least a readlock on tasklist_lock
1439 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1441 struct task_struct *p = NULL;
1442 int retval, success;
1446 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1447 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1450 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1451 return success ? 0 : retval;
1454 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1457 struct task_struct *p;
1461 p = pid_task(pid, PIDTYPE_PID);
1463 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1465 if (likely(!p || error != -ESRCH))
1469 * The task was unhashed in between, try again. If it
1470 * is dead, pid_task() will return NULL, if we race with
1471 * de_thread() it will find the new leader.
1476 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1480 error = kill_pid_info(sig, info, find_vpid(pid));
1485 static inline bool kill_as_cred_perm(const struct cred *cred,
1486 struct task_struct *target)
1488 const struct cred *pcred = __task_cred(target);
1490 return uid_eq(cred->euid, pcred->suid) ||
1491 uid_eq(cred->euid, pcred->uid) ||
1492 uid_eq(cred->uid, pcred->suid) ||
1493 uid_eq(cred->uid, pcred->uid);
1497 * The usb asyncio usage of siginfo is wrong. The glibc support
1498 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1499 * AKA after the generic fields:
1500 * kernel_pid_t si_pid;
1501 * kernel_uid32_t si_uid;
1502 * sigval_t si_value;
1504 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1505 * after the generic fields is:
1506 * void __user *si_addr;
1508 * This is a practical problem when there is a 64bit big endian kernel
1509 * and a 32bit userspace. As the 32bit address will encoded in the low
1510 * 32bits of the pointer. Those low 32bits will be stored at higher
1511 * address than appear in a 32 bit pointer. So userspace will not
1512 * see the address it was expecting for it's completions.
1514 * There is nothing in the encoding that can allow
1515 * copy_siginfo_to_user32 to detect this confusion of formats, so
1516 * handle this by requiring the caller of kill_pid_usb_asyncio to
1517 * notice when this situration takes place and to store the 32bit
1518 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1521 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1522 struct pid *pid, const struct cred *cred)
1524 struct kernel_siginfo info;
1525 struct task_struct *p;
1526 unsigned long flags;
1529 if (!valid_signal(sig))
1532 clear_siginfo(&info);
1533 info.si_signo = sig;
1534 info.si_errno = errno;
1535 info.si_code = SI_ASYNCIO;
1536 *((sigval_t *)&info.si_pid) = addr;
1539 p = pid_task(pid, PIDTYPE_PID);
1544 if (!kill_as_cred_perm(cred, p)) {
1548 ret = security_task_kill(p, &info, sig, cred);
1553 if (lock_task_sighand(p, &flags)) {
1554 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1555 unlock_task_sighand(p, &flags);
1563 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1566 * kill_something_info() interprets pid in interesting ways just like kill(2).
1568 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1569 * is probably wrong. Should make it like BSD or SYSV.
1572 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1577 return kill_proc_info(sig, info, pid);
1579 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1583 read_lock(&tasklist_lock);
1585 ret = __kill_pgrp_info(sig, info,
1586 pid ? find_vpid(-pid) : task_pgrp(current));
1588 int retval = 0, count = 0;
1589 struct task_struct * p;
1591 for_each_process(p) {
1592 if (task_pid_vnr(p) > 1 &&
1593 !same_thread_group(p, current)) {
1594 int err = group_send_sig_info(sig, info, p,
1601 ret = count ? retval : -ESRCH;
1603 read_unlock(&tasklist_lock);
1609 * These are for backward compatibility with the rest of the kernel source.
1612 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1615 * Make sure legacy kernel users don't send in bad values
1616 * (normal paths check this in check_kill_permission).
1618 if (!valid_signal(sig))
1621 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1623 EXPORT_SYMBOL(send_sig_info);
1625 #define __si_special(priv) \
1626 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1629 send_sig(int sig, struct task_struct *p, int priv)
1631 return send_sig_info(sig, __si_special(priv), p);
1633 EXPORT_SYMBOL(send_sig);
1635 void force_sig(int sig)
1637 struct kernel_siginfo info;
1639 clear_siginfo(&info);
1640 info.si_signo = sig;
1642 info.si_code = SI_KERNEL;
1645 force_sig_info(&info);
1647 EXPORT_SYMBOL(force_sig);
1650 * When things go south during signal handling, we
1651 * will force a SIGSEGV. And if the signal that caused
1652 * the problem was already a SIGSEGV, we'll want to
1653 * make sure we don't even try to deliver the signal..
1655 void force_sigsegv(int sig)
1657 struct task_struct *p = current;
1659 if (sig == SIGSEGV) {
1660 unsigned long flags;
1661 spin_lock_irqsave(&p->sighand->siglock, flags);
1662 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1663 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1668 int force_sig_fault_to_task(int sig, int code, void __user *addr
1669 ___ARCH_SI_TRAPNO(int trapno)
1670 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1671 , struct task_struct *t)
1673 struct kernel_siginfo info;
1675 clear_siginfo(&info);
1676 info.si_signo = sig;
1678 info.si_code = code;
1679 info.si_addr = addr;
1680 #ifdef __ARCH_SI_TRAPNO
1681 info.si_trapno = trapno;
1685 info.si_flags = flags;
1688 return force_sig_info_to_task(&info, t);
1691 int force_sig_fault(int sig, int code, void __user *addr
1692 ___ARCH_SI_TRAPNO(int trapno)
1693 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1695 return force_sig_fault_to_task(sig, code, addr
1696 ___ARCH_SI_TRAPNO(trapno)
1697 ___ARCH_SI_IA64(imm, flags, isr), current);
1700 int send_sig_fault(int sig, int code, void __user *addr
1701 ___ARCH_SI_TRAPNO(int trapno)
1702 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1703 , struct task_struct *t)
1705 struct kernel_siginfo info;
1707 clear_siginfo(&info);
1708 info.si_signo = sig;
1710 info.si_code = code;
1711 info.si_addr = addr;
1712 #ifdef __ARCH_SI_TRAPNO
1713 info.si_trapno = trapno;
1717 info.si_flags = flags;
1720 return send_sig_info(info.si_signo, &info, t);
1723 int force_sig_mceerr(int code, void __user *addr, short lsb)
1725 struct kernel_siginfo info;
1727 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1728 clear_siginfo(&info);
1729 info.si_signo = SIGBUS;
1731 info.si_code = code;
1732 info.si_addr = addr;
1733 info.si_addr_lsb = lsb;
1734 return force_sig_info(&info);
1737 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1739 struct kernel_siginfo info;
1741 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1742 clear_siginfo(&info);
1743 info.si_signo = SIGBUS;
1745 info.si_code = code;
1746 info.si_addr = addr;
1747 info.si_addr_lsb = lsb;
1748 return send_sig_info(info.si_signo, &info, t);
1750 EXPORT_SYMBOL(send_sig_mceerr);
1752 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1754 struct kernel_siginfo info;
1756 clear_siginfo(&info);
1757 info.si_signo = SIGSEGV;
1759 info.si_code = SEGV_BNDERR;
1760 info.si_addr = addr;
1761 info.si_lower = lower;
1762 info.si_upper = upper;
1763 return force_sig_info(&info);
1767 int force_sig_pkuerr(void __user *addr, u32 pkey)
1769 struct kernel_siginfo info;
1771 clear_siginfo(&info);
1772 info.si_signo = SIGSEGV;
1774 info.si_code = SEGV_PKUERR;
1775 info.si_addr = addr;
1776 info.si_pkey = pkey;
1777 return force_sig_info(&info);
1781 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1783 struct kernel_siginfo info;
1785 clear_siginfo(&info);
1786 info.si_signo = SIGTRAP;
1788 info.si_code = TRAP_PERF;
1789 info.si_addr = addr;
1790 info.si_perf_data = sig_data;
1791 info.si_perf_type = type;
1793 return force_sig_info(&info);
1796 /* For the crazy architectures that include trap information in
1797 * the errno field, instead of an actual errno value.
1799 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1801 struct kernel_siginfo info;
1803 clear_siginfo(&info);
1804 info.si_signo = SIGTRAP;
1805 info.si_errno = errno;
1806 info.si_code = TRAP_HWBKPT;
1807 info.si_addr = addr;
1808 return force_sig_info(&info);
1811 int kill_pgrp(struct pid *pid, int sig, int priv)
1815 read_lock(&tasklist_lock);
1816 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1817 read_unlock(&tasklist_lock);
1821 EXPORT_SYMBOL(kill_pgrp);
1823 int kill_pid(struct pid *pid, int sig, int priv)
1825 return kill_pid_info(sig, __si_special(priv), pid);
1827 EXPORT_SYMBOL(kill_pid);
1830 * These functions support sending signals using preallocated sigqueue
1831 * structures. This is needed "because realtime applications cannot
1832 * afford to lose notifications of asynchronous events, like timer
1833 * expirations or I/O completions". In the case of POSIX Timers
1834 * we allocate the sigqueue structure from the timer_create. If this
1835 * allocation fails we are able to report the failure to the application
1836 * with an EAGAIN error.
1838 struct sigqueue *sigqueue_alloc(void)
1840 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1843 void sigqueue_free(struct sigqueue *q)
1845 unsigned long flags;
1846 spinlock_t *lock = ¤t->sighand->siglock;
1848 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1850 * We must hold ->siglock while testing q->list
1851 * to serialize with collect_signal() or with
1852 * __exit_signal()->flush_sigqueue().
1854 spin_lock_irqsave(lock, flags);
1855 q->flags &= ~SIGQUEUE_PREALLOC;
1857 * If it is queued it will be freed when dequeued,
1858 * like the "regular" sigqueue.
1860 if (!list_empty(&q->list))
1862 spin_unlock_irqrestore(lock, flags);
1868 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1870 int sig = q->info.si_signo;
1871 struct sigpending *pending;
1872 struct task_struct *t;
1873 unsigned long flags;
1876 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1880 t = pid_task(pid, type);
1881 if (!t || !likely(lock_task_sighand(t, &flags)))
1884 ret = 1; /* the signal is ignored */
1885 result = TRACE_SIGNAL_IGNORED;
1886 if (!prepare_signal(sig, t, false))
1890 if (unlikely(!list_empty(&q->list))) {
1892 * If an SI_TIMER entry is already queue just increment
1893 * the overrun count.
1895 BUG_ON(q->info.si_code != SI_TIMER);
1896 q->info.si_overrun++;
1897 result = TRACE_SIGNAL_ALREADY_PENDING;
1900 q->info.si_overrun = 0;
1902 signalfd_notify(t, sig);
1903 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1904 list_add_tail(&q->list, &pending->list);
1905 sigaddset(&pending->signal, sig);
1906 complete_signal(sig, t, type);
1907 result = TRACE_SIGNAL_DELIVERED;
1909 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1910 unlock_task_sighand(t, &flags);
1916 static void do_notify_pidfd(struct task_struct *task)
1920 WARN_ON(task->exit_state == 0);
1921 pid = task_pid(task);
1922 wake_up_all(&pid->wait_pidfd);
1926 * Let a parent know about the death of a child.
1927 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1929 * Returns true if our parent ignored us and so we've switched to
1932 bool do_notify_parent(struct task_struct *tsk, int sig)
1934 struct kernel_siginfo info;
1935 unsigned long flags;
1936 struct sighand_struct *psig;
1937 bool autoreap = false;
1942 /* do_notify_parent_cldstop should have been called instead. */
1943 BUG_ON(task_is_stopped_or_traced(tsk));
1945 BUG_ON(!tsk->ptrace &&
1946 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1948 /* Wake up all pidfd waiters */
1949 do_notify_pidfd(tsk);
1951 if (sig != SIGCHLD) {
1953 * This is only possible if parent == real_parent.
1954 * Check if it has changed security domain.
1956 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1960 clear_siginfo(&info);
1961 info.si_signo = sig;
1964 * We are under tasklist_lock here so our parent is tied to
1965 * us and cannot change.
1967 * task_active_pid_ns will always return the same pid namespace
1968 * until a task passes through release_task.
1970 * write_lock() currently calls preempt_disable() which is the
1971 * same as rcu_read_lock(), but according to Oleg, this is not
1972 * correct to rely on this
1975 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1976 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1980 task_cputime(tsk, &utime, &stime);
1981 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1982 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1984 info.si_status = tsk->exit_code & 0x7f;
1985 if (tsk->exit_code & 0x80)
1986 info.si_code = CLD_DUMPED;
1987 else if (tsk->exit_code & 0x7f)
1988 info.si_code = CLD_KILLED;
1990 info.si_code = CLD_EXITED;
1991 info.si_status = tsk->exit_code >> 8;
1994 psig = tsk->parent->sighand;
1995 spin_lock_irqsave(&psig->siglock, flags);
1996 if (!tsk->ptrace && sig == SIGCHLD &&
1997 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1998 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2000 * We are exiting and our parent doesn't care. POSIX.1
2001 * defines special semantics for setting SIGCHLD to SIG_IGN
2002 * or setting the SA_NOCLDWAIT flag: we should be reaped
2003 * automatically and not left for our parent's wait4 call.
2004 * Rather than having the parent do it as a magic kind of
2005 * signal handler, we just set this to tell do_exit that we
2006 * can be cleaned up without becoming a zombie. Note that
2007 * we still call __wake_up_parent in this case, because a
2008 * blocked sys_wait4 might now return -ECHILD.
2010 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2011 * is implementation-defined: we do (if you don't want
2012 * it, just use SIG_IGN instead).
2015 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2019 * Send with __send_signal as si_pid and si_uid are in the
2020 * parent's namespaces.
2022 if (valid_signal(sig) && sig)
2023 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2024 __wake_up_parent(tsk, tsk->parent);
2025 spin_unlock_irqrestore(&psig->siglock, flags);
2031 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2032 * @tsk: task reporting the state change
2033 * @for_ptracer: the notification is for ptracer
2034 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2036 * Notify @tsk's parent that the stopped/continued state has changed. If
2037 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2038 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2041 * Must be called with tasklist_lock at least read locked.
2043 static void do_notify_parent_cldstop(struct task_struct *tsk,
2044 bool for_ptracer, int why)
2046 struct kernel_siginfo info;
2047 unsigned long flags;
2048 struct task_struct *parent;
2049 struct sighand_struct *sighand;
2053 parent = tsk->parent;
2055 tsk = tsk->group_leader;
2056 parent = tsk->real_parent;
2059 clear_siginfo(&info);
2060 info.si_signo = SIGCHLD;
2063 * see comment in do_notify_parent() about the following 4 lines
2066 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2067 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2070 task_cputime(tsk, &utime, &stime);
2071 info.si_utime = nsec_to_clock_t(utime);
2072 info.si_stime = nsec_to_clock_t(stime);
2077 info.si_status = SIGCONT;
2080 info.si_status = tsk->signal->group_exit_code & 0x7f;
2083 info.si_status = tsk->exit_code & 0x7f;
2089 sighand = parent->sighand;
2090 spin_lock_irqsave(&sighand->siglock, flags);
2091 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2092 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2093 __group_send_sig_info(SIGCHLD, &info, parent);
2095 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2097 __wake_up_parent(tsk, parent);
2098 spin_unlock_irqrestore(&sighand->siglock, flags);
2101 static inline bool may_ptrace_stop(void)
2103 if (!likely(current->ptrace))
2106 * Are we in the middle of do_coredump?
2107 * If so and our tracer is also part of the coredump stopping
2108 * is a deadlock situation, and pointless because our tracer
2109 * is dead so don't allow us to stop.
2110 * If SIGKILL was already sent before the caller unlocked
2111 * ->siglock we must see ->core_state != NULL. Otherwise it
2112 * is safe to enter schedule().
2114 * This is almost outdated, a task with the pending SIGKILL can't
2115 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2116 * after SIGKILL was already dequeued.
2118 if (unlikely(current->mm->core_state) &&
2119 unlikely(current->mm == current->parent->mm))
2126 * Return non-zero if there is a SIGKILL that should be waking us up.
2127 * Called with the siglock held.
2129 static bool sigkill_pending(struct task_struct *tsk)
2131 return sigismember(&tsk->pending.signal, SIGKILL) ||
2132 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2136 * This must be called with current->sighand->siglock held.
2138 * This should be the path for all ptrace stops.
2139 * We always set current->last_siginfo while stopped here.
2140 * That makes it a way to test a stopped process for
2141 * being ptrace-stopped vs being job-control-stopped.
2143 * If we actually decide not to stop at all because the tracer
2144 * is gone, we keep current->exit_code unless clear_code.
2146 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2147 __releases(¤t->sighand->siglock)
2148 __acquires(¤t->sighand->siglock)
2150 bool gstop_done = false;
2152 if (arch_ptrace_stop_needed(exit_code, info)) {
2154 * The arch code has something special to do before a
2155 * ptrace stop. This is allowed to block, e.g. for faults
2156 * on user stack pages. We can't keep the siglock while
2157 * calling arch_ptrace_stop, so we must release it now.
2158 * To preserve proper semantics, we must do this before
2159 * any signal bookkeeping like checking group_stop_count.
2160 * Meanwhile, a SIGKILL could come in before we retake the
2161 * siglock. That must prevent us from sleeping in TASK_TRACED.
2162 * So after regaining the lock, we must check for SIGKILL.
2164 spin_unlock_irq(¤t->sighand->siglock);
2165 arch_ptrace_stop(exit_code, info);
2166 spin_lock_irq(¤t->sighand->siglock);
2167 if (sigkill_pending(current))
2171 set_special_state(TASK_TRACED);
2174 * We're committing to trapping. TRACED should be visible before
2175 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2176 * Also, transition to TRACED and updates to ->jobctl should be
2177 * atomic with respect to siglock and should be done after the arch
2178 * hook as siglock is released and regrabbed across it.
2183 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2185 * set_current_state() smp_wmb();
2187 * wait_task_stopped()
2188 * task_stopped_code()
2189 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2193 current->last_siginfo = info;
2194 current->exit_code = exit_code;
2197 * If @why is CLD_STOPPED, we're trapping to participate in a group
2198 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2199 * across siglock relocks since INTERRUPT was scheduled, PENDING
2200 * could be clear now. We act as if SIGCONT is received after
2201 * TASK_TRACED is entered - ignore it.
2203 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2204 gstop_done = task_participate_group_stop(current);
2206 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2207 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2208 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2209 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2211 /* entering a trap, clear TRAPPING */
2212 task_clear_jobctl_trapping(current);
2214 spin_unlock_irq(¤t->sighand->siglock);
2215 read_lock(&tasklist_lock);
2216 if (may_ptrace_stop()) {
2218 * Notify parents of the stop.
2220 * While ptraced, there are two parents - the ptracer and
2221 * the real_parent of the group_leader. The ptracer should
2222 * know about every stop while the real parent is only
2223 * interested in the completion of group stop. The states
2224 * for the two don't interact with each other. Notify
2225 * separately unless they're gonna be duplicates.
2227 do_notify_parent_cldstop(current, true, why);
2228 if (gstop_done && ptrace_reparented(current))
2229 do_notify_parent_cldstop(current, false, why);
2232 * Don't want to allow preemption here, because
2233 * sys_ptrace() needs this task to be inactive.
2235 * XXX: implement read_unlock_no_resched().
2238 read_unlock(&tasklist_lock);
2239 cgroup_enter_frozen();
2240 preempt_enable_no_resched();
2241 freezable_schedule();
2242 cgroup_leave_frozen(true);
2245 * By the time we got the lock, our tracer went away.
2246 * Don't drop the lock yet, another tracer may come.
2248 * If @gstop_done, the ptracer went away between group stop
2249 * completion and here. During detach, it would have set
2250 * JOBCTL_STOP_PENDING on us and we'll re-enter
2251 * TASK_STOPPED in do_signal_stop() on return, so notifying
2252 * the real parent of the group stop completion is enough.
2255 do_notify_parent_cldstop(current, false, why);
2257 /* tasklist protects us from ptrace_freeze_traced() */
2258 __set_current_state(TASK_RUNNING);
2260 current->exit_code = 0;
2261 read_unlock(&tasklist_lock);
2265 * We are back. Now reacquire the siglock before touching
2266 * last_siginfo, so that we are sure to have synchronized with
2267 * any signal-sending on another CPU that wants to examine it.
2269 spin_lock_irq(¤t->sighand->siglock);
2270 current->last_siginfo = NULL;
2272 /* LISTENING can be set only during STOP traps, clear it */
2273 current->jobctl &= ~JOBCTL_LISTENING;
2276 * Queued signals ignored us while we were stopped for tracing.
2277 * So check for any that we should take before resuming user mode.
2278 * This sets TIF_SIGPENDING, but never clears it.
2280 recalc_sigpending_tsk(current);
2283 static void ptrace_do_notify(int signr, int exit_code, int why)
2285 kernel_siginfo_t info;
2287 clear_siginfo(&info);
2288 info.si_signo = signr;
2289 info.si_code = exit_code;
2290 info.si_pid = task_pid_vnr(current);
2291 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2293 /* Let the debugger run. */
2294 ptrace_stop(exit_code, why, 1, &info);
2297 void ptrace_notify(int exit_code)
2299 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2300 if (unlikely(current->task_works))
2303 spin_lock_irq(¤t->sighand->siglock);
2304 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2305 spin_unlock_irq(¤t->sighand->siglock);
2309 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2310 * @signr: signr causing group stop if initiating
2312 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2313 * and participate in it. If already set, participate in the existing
2314 * group stop. If participated in a group stop (and thus slept), %true is
2315 * returned with siglock released.
2317 * If ptraced, this function doesn't handle stop itself. Instead,
2318 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2319 * untouched. The caller must ensure that INTERRUPT trap handling takes
2320 * places afterwards.
2323 * Must be called with @current->sighand->siglock held, which is released
2327 * %false if group stop is already cancelled or ptrace trap is scheduled.
2328 * %true if participated in group stop.
2330 static bool do_signal_stop(int signr)
2331 __releases(¤t->sighand->siglock)
2333 struct signal_struct *sig = current->signal;
2335 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2336 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2337 struct task_struct *t;
2339 /* signr will be recorded in task->jobctl for retries */
2340 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2342 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2343 unlikely(signal_group_exit(sig)))
2346 * There is no group stop already in progress. We must
2349 * While ptraced, a task may be resumed while group stop is
2350 * still in effect and then receive a stop signal and
2351 * initiate another group stop. This deviates from the
2352 * usual behavior as two consecutive stop signals can't
2353 * cause two group stops when !ptraced. That is why we
2354 * also check !task_is_stopped(t) below.
2356 * The condition can be distinguished by testing whether
2357 * SIGNAL_STOP_STOPPED is already set. Don't generate
2358 * group_exit_code in such case.
2360 * This is not necessary for SIGNAL_STOP_CONTINUED because
2361 * an intervening stop signal is required to cause two
2362 * continued events regardless of ptrace.
2364 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2365 sig->group_exit_code = signr;
2367 sig->group_stop_count = 0;
2369 if (task_set_jobctl_pending(current, signr | gstop))
2370 sig->group_stop_count++;
2373 while_each_thread(current, t) {
2375 * Setting state to TASK_STOPPED for a group
2376 * stop is always done with the siglock held,
2377 * so this check has no races.
2379 if (!task_is_stopped(t) &&
2380 task_set_jobctl_pending(t, signr | gstop)) {
2381 sig->group_stop_count++;
2382 if (likely(!(t->ptrace & PT_SEIZED)))
2383 signal_wake_up(t, 0);
2385 ptrace_trap_notify(t);
2390 if (likely(!current->ptrace)) {
2394 * If there are no other threads in the group, or if there
2395 * is a group stop in progress and we are the last to stop,
2396 * report to the parent.
2398 if (task_participate_group_stop(current))
2399 notify = CLD_STOPPED;
2401 set_special_state(TASK_STOPPED);
2402 spin_unlock_irq(¤t->sighand->siglock);
2405 * Notify the parent of the group stop completion. Because
2406 * we're not holding either the siglock or tasklist_lock
2407 * here, ptracer may attach inbetween; however, this is for
2408 * group stop and should always be delivered to the real
2409 * parent of the group leader. The new ptracer will get
2410 * its notification when this task transitions into
2414 read_lock(&tasklist_lock);
2415 do_notify_parent_cldstop(current, false, notify);
2416 read_unlock(&tasklist_lock);
2419 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2420 cgroup_enter_frozen();
2421 freezable_schedule();
2425 * While ptraced, group stop is handled by STOP trap.
2426 * Schedule it and let the caller deal with it.
2428 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2434 * do_jobctl_trap - take care of ptrace jobctl traps
2436 * When PT_SEIZED, it's used for both group stop and explicit
2437 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2438 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2439 * the stop signal; otherwise, %SIGTRAP.
2441 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2442 * number as exit_code and no siginfo.
2445 * Must be called with @current->sighand->siglock held, which may be
2446 * released and re-acquired before returning with intervening sleep.
2448 static void do_jobctl_trap(void)
2450 struct signal_struct *signal = current->signal;
2451 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2453 if (current->ptrace & PT_SEIZED) {
2454 if (!signal->group_stop_count &&
2455 !(signal->flags & SIGNAL_STOP_STOPPED))
2457 WARN_ON_ONCE(!signr);
2458 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2461 WARN_ON_ONCE(!signr);
2462 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2463 current->exit_code = 0;
2468 * do_freezer_trap - handle the freezer jobctl trap
2470 * Puts the task into frozen state, if only the task is not about to quit.
2471 * In this case it drops JOBCTL_TRAP_FREEZE.
2474 * Must be called with @current->sighand->siglock held,
2475 * which is always released before returning.
2477 static void do_freezer_trap(void)
2478 __releases(¤t->sighand->siglock)
2481 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2482 * let's make another loop to give it a chance to be handled.
2483 * In any case, we'll return back.
2485 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2486 JOBCTL_TRAP_FREEZE) {
2487 spin_unlock_irq(¤t->sighand->siglock);
2492 * Now we're sure that there is no pending fatal signal and no
2493 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2494 * immediately (if there is a non-fatal signal pending), and
2495 * put the task into sleep.
2497 __set_current_state(TASK_INTERRUPTIBLE);
2498 clear_thread_flag(TIF_SIGPENDING);
2499 spin_unlock_irq(¤t->sighand->siglock);
2500 cgroup_enter_frozen();
2501 freezable_schedule();
2504 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2507 * We do not check sig_kernel_stop(signr) but set this marker
2508 * unconditionally because we do not know whether debugger will
2509 * change signr. This flag has no meaning unless we are going
2510 * to stop after return from ptrace_stop(). In this case it will
2511 * be checked in do_signal_stop(), we should only stop if it was
2512 * not cleared by SIGCONT while we were sleeping. See also the
2513 * comment in dequeue_signal().
2515 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2516 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2518 /* We're back. Did the debugger cancel the sig? */
2519 signr = current->exit_code;
2523 current->exit_code = 0;
2526 * Update the siginfo structure if the signal has
2527 * changed. If the debugger wanted something
2528 * specific in the siginfo structure then it should
2529 * have updated *info via PTRACE_SETSIGINFO.
2531 if (signr != info->si_signo) {
2532 clear_siginfo(info);
2533 info->si_signo = signr;
2535 info->si_code = SI_USER;
2537 info->si_pid = task_pid_vnr(current->parent);
2538 info->si_uid = from_kuid_munged(current_user_ns(),
2539 task_uid(current->parent));
2543 /* If the (new) signal is now blocked, requeue it. */
2544 if (sigismember(¤t->blocked, signr)) {
2545 send_signal(signr, info, current, PIDTYPE_PID);
2552 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2554 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2556 case SIL_FAULT_TRAPNO:
2557 case SIL_FAULT_MCEERR:
2558 case SIL_FAULT_BNDERR:
2559 case SIL_FAULT_PKUERR:
2560 case SIL_PERF_EVENT:
2561 ksig->info.si_addr = arch_untagged_si_addr(
2562 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2574 bool get_signal(struct ksignal *ksig)
2576 struct sighand_struct *sighand = current->sighand;
2577 struct signal_struct *signal = current->signal;
2580 if (unlikely(current->task_works))
2584 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2585 * that the arch handlers don't all have to do it. If we get here
2586 * without TIF_SIGPENDING, just exit after running signal work.
2588 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2589 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2590 tracehook_notify_signal();
2591 if (!task_sigpending(current))
2595 if (unlikely(uprobe_deny_signal()))
2599 * Do this once, we can't return to user-mode if freezing() == T.
2600 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2601 * thus do not need another check after return.
2606 spin_lock_irq(&sighand->siglock);
2609 * Every stopped thread goes here after wakeup. Check to see if
2610 * we should notify the parent, prepare_signal(SIGCONT) encodes
2611 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2613 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2616 if (signal->flags & SIGNAL_CLD_CONTINUED)
2617 why = CLD_CONTINUED;
2621 signal->flags &= ~SIGNAL_CLD_MASK;
2623 spin_unlock_irq(&sighand->siglock);
2626 * Notify the parent that we're continuing. This event is
2627 * always per-process and doesn't make whole lot of sense
2628 * for ptracers, who shouldn't consume the state via
2629 * wait(2) either, but, for backward compatibility, notify
2630 * the ptracer of the group leader too unless it's gonna be
2633 read_lock(&tasklist_lock);
2634 do_notify_parent_cldstop(current, false, why);
2636 if (ptrace_reparented(current->group_leader))
2637 do_notify_parent_cldstop(current->group_leader,
2639 read_unlock(&tasklist_lock);
2644 /* Has this task already been marked for death? */
2645 if (signal_group_exit(signal)) {
2646 ksig->info.si_signo = signr = SIGKILL;
2647 sigdelset(¤t->pending.signal, SIGKILL);
2648 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2649 &sighand->action[SIGKILL - 1]);
2650 recalc_sigpending();
2655 struct k_sigaction *ka;
2657 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2661 if (unlikely(current->jobctl &
2662 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2663 if (current->jobctl & JOBCTL_TRAP_MASK) {
2665 spin_unlock_irq(&sighand->siglock);
2666 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2673 * If the task is leaving the frozen state, let's update
2674 * cgroup counters and reset the frozen bit.
2676 if (unlikely(cgroup_task_frozen(current))) {
2677 spin_unlock_irq(&sighand->siglock);
2678 cgroup_leave_frozen(false);
2683 * Signals generated by the execution of an instruction
2684 * need to be delivered before any other pending signals
2685 * so that the instruction pointer in the signal stack
2686 * frame points to the faulting instruction.
2688 signr = dequeue_synchronous_signal(&ksig->info);
2690 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2693 break; /* will return 0 */
2695 if (unlikely(current->ptrace) && signr != SIGKILL) {
2696 signr = ptrace_signal(signr, &ksig->info);
2701 ka = &sighand->action[signr-1];
2703 /* Trace actually delivered signals. */
2704 trace_signal_deliver(signr, &ksig->info, ka);
2706 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2708 if (ka->sa.sa_handler != SIG_DFL) {
2709 /* Run the handler. */
2712 if (ka->sa.sa_flags & SA_ONESHOT)
2713 ka->sa.sa_handler = SIG_DFL;
2715 break; /* will return non-zero "signr" value */
2719 * Now we are doing the default action for this signal.
2721 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2725 * Global init gets no signals it doesn't want.
2726 * Container-init gets no signals it doesn't want from same
2729 * Note that if global/container-init sees a sig_kernel_only()
2730 * signal here, the signal must have been generated internally
2731 * or must have come from an ancestor namespace. In either
2732 * case, the signal cannot be dropped.
2734 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2735 !sig_kernel_only(signr))
2738 if (sig_kernel_stop(signr)) {
2740 * The default action is to stop all threads in
2741 * the thread group. The job control signals
2742 * do nothing in an orphaned pgrp, but SIGSTOP
2743 * always works. Note that siglock needs to be
2744 * dropped during the call to is_orphaned_pgrp()
2745 * because of lock ordering with tasklist_lock.
2746 * This allows an intervening SIGCONT to be posted.
2747 * We need to check for that and bail out if necessary.
2749 if (signr != SIGSTOP) {
2750 spin_unlock_irq(&sighand->siglock);
2752 /* signals can be posted during this window */
2754 if (is_current_pgrp_orphaned())
2757 spin_lock_irq(&sighand->siglock);
2760 if (likely(do_signal_stop(ksig->info.si_signo))) {
2761 /* It released the siglock. */
2766 * We didn't actually stop, due to a race
2767 * with SIGCONT or something like that.
2773 spin_unlock_irq(&sighand->siglock);
2774 if (unlikely(cgroup_task_frozen(current)))
2775 cgroup_leave_frozen(true);
2778 * Anything else is fatal, maybe with a core dump.
2780 current->flags |= PF_SIGNALED;
2782 if (sig_kernel_coredump(signr)) {
2783 if (print_fatal_signals)
2784 print_fatal_signal(ksig->info.si_signo);
2785 proc_coredump_connector(current);
2787 * If it was able to dump core, this kills all
2788 * other threads in the group and synchronizes with
2789 * their demise. If we lost the race with another
2790 * thread getting here, it set group_exit_code
2791 * first and our do_group_exit call below will use
2792 * that value and ignore the one we pass it.
2794 do_coredump(&ksig->info);
2798 * PF_IO_WORKER threads will catch and exit on fatal signals
2799 * themselves. They have cleanup that must be performed, so
2800 * we cannot call do_exit() on their behalf.
2802 if (current->flags & PF_IO_WORKER)
2806 * Death signals, no core dump.
2808 do_group_exit(ksig->info.si_signo);
2811 spin_unlock_irq(&sighand->siglock);
2815 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2816 hide_si_addr_tag_bits(ksig);
2818 return ksig->sig > 0;
2822 * signal_delivered -
2823 * @ksig: kernel signal struct
2824 * @stepping: nonzero if debugger single-step or block-step in use
2826 * This function should be called when a signal has successfully been
2827 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2828 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2829 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2831 static void signal_delivered(struct ksignal *ksig, int stepping)
2835 /* A signal was successfully delivered, and the
2836 saved sigmask was stored on the signal frame,
2837 and will be restored by sigreturn. So we can
2838 simply clear the restore sigmask flag. */
2839 clear_restore_sigmask();
2841 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2842 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2843 sigaddset(&blocked, ksig->sig);
2844 set_current_blocked(&blocked);
2845 if (current->sas_ss_flags & SS_AUTODISARM)
2846 sas_ss_reset(current);
2847 tracehook_signal_handler(stepping);
2850 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2853 force_sigsegv(ksig->sig);
2855 signal_delivered(ksig, stepping);
2859 * It could be that complete_signal() picked us to notify about the
2860 * group-wide signal. Other threads should be notified now to take
2861 * the shared signals in @which since we will not.
2863 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2866 struct task_struct *t;
2868 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2869 if (sigisemptyset(&retarget))
2873 while_each_thread(tsk, t) {
2874 if (t->flags & PF_EXITING)
2877 if (!has_pending_signals(&retarget, &t->blocked))
2879 /* Remove the signals this thread can handle. */
2880 sigandsets(&retarget, &retarget, &t->blocked);
2882 if (!task_sigpending(t))
2883 signal_wake_up(t, 0);
2885 if (sigisemptyset(&retarget))
2890 void exit_signals(struct task_struct *tsk)
2896 * @tsk is about to have PF_EXITING set - lock out users which
2897 * expect stable threadgroup.
2899 cgroup_threadgroup_change_begin(tsk);
2901 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2902 tsk->flags |= PF_EXITING;
2903 cgroup_threadgroup_change_end(tsk);
2907 spin_lock_irq(&tsk->sighand->siglock);
2909 * From now this task is not visible for group-wide signals,
2910 * see wants_signal(), do_signal_stop().
2912 tsk->flags |= PF_EXITING;
2914 cgroup_threadgroup_change_end(tsk);
2916 if (!task_sigpending(tsk))
2919 unblocked = tsk->blocked;
2920 signotset(&unblocked);
2921 retarget_shared_pending(tsk, &unblocked);
2923 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2924 task_participate_group_stop(tsk))
2925 group_stop = CLD_STOPPED;
2927 spin_unlock_irq(&tsk->sighand->siglock);
2930 * If group stop has completed, deliver the notification. This
2931 * should always go to the real parent of the group leader.
2933 if (unlikely(group_stop)) {
2934 read_lock(&tasklist_lock);
2935 do_notify_parent_cldstop(tsk, false, group_stop);
2936 read_unlock(&tasklist_lock);
2941 * System call entry points.
2945 * sys_restart_syscall - restart a system call
2947 SYSCALL_DEFINE0(restart_syscall)
2949 struct restart_block *restart = ¤t->restart_block;
2950 return restart->fn(restart);
2953 long do_no_restart_syscall(struct restart_block *param)
2958 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2960 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2961 sigset_t newblocked;
2962 /* A set of now blocked but previously unblocked signals. */
2963 sigandnsets(&newblocked, newset, ¤t->blocked);
2964 retarget_shared_pending(tsk, &newblocked);
2966 tsk->blocked = *newset;
2967 recalc_sigpending();
2971 * set_current_blocked - change current->blocked mask
2974 * It is wrong to change ->blocked directly, this helper should be used
2975 * to ensure the process can't miss a shared signal we are going to block.
2977 void set_current_blocked(sigset_t *newset)
2979 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2980 __set_current_blocked(newset);
2983 void __set_current_blocked(const sigset_t *newset)
2985 struct task_struct *tsk = current;
2988 * In case the signal mask hasn't changed, there is nothing we need
2989 * to do. The current->blocked shouldn't be modified by other task.
2991 if (sigequalsets(&tsk->blocked, newset))
2994 spin_lock_irq(&tsk->sighand->siglock);
2995 __set_task_blocked(tsk, newset);
2996 spin_unlock_irq(&tsk->sighand->siglock);
3000 * This is also useful for kernel threads that want to temporarily
3001 * (or permanently) block certain signals.
3003 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3004 * interface happily blocks "unblockable" signals like SIGKILL
3007 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3009 struct task_struct *tsk = current;
3012 /* Lockless, only current can change ->blocked, never from irq */
3014 *oldset = tsk->blocked;
3018 sigorsets(&newset, &tsk->blocked, set);
3021 sigandnsets(&newset, &tsk->blocked, set);
3030 __set_current_blocked(&newset);
3033 EXPORT_SYMBOL(sigprocmask);
3036 * The api helps set app-provided sigmasks.
3038 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3039 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3041 * Note that it does set_restore_sigmask() in advance, so it must be always
3042 * paired with restore_saved_sigmask_unless() before return from syscall.
3044 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3050 if (sigsetsize != sizeof(sigset_t))
3052 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3055 set_restore_sigmask();
3056 current->saved_sigmask = current->blocked;
3057 set_current_blocked(&kmask);
3062 #ifdef CONFIG_COMPAT
3063 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3070 if (sigsetsize != sizeof(compat_sigset_t))
3072 if (get_compat_sigset(&kmask, umask))
3075 set_restore_sigmask();
3076 current->saved_sigmask = current->blocked;
3077 set_current_blocked(&kmask);
3084 * sys_rt_sigprocmask - change the list of currently blocked signals
3085 * @how: whether to add, remove, or set signals
3086 * @nset: stores pending signals
3087 * @oset: previous value of signal mask if non-null
3088 * @sigsetsize: size of sigset_t type
3090 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3091 sigset_t __user *, oset, size_t, sigsetsize)
3093 sigset_t old_set, new_set;
3096 /* XXX: Don't preclude handling different sized sigset_t's. */
3097 if (sigsetsize != sizeof(sigset_t))
3100 old_set = current->blocked;
3103 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3105 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3107 error = sigprocmask(how, &new_set, NULL);
3113 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3120 #ifdef CONFIG_COMPAT
3121 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3122 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3124 sigset_t old_set = current->blocked;
3126 /* XXX: Don't preclude handling different sized sigset_t's. */
3127 if (sigsetsize != sizeof(sigset_t))
3133 if (get_compat_sigset(&new_set, nset))
3135 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3137 error = sigprocmask(how, &new_set, NULL);
3141 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3145 static void do_sigpending(sigset_t *set)
3147 spin_lock_irq(¤t->sighand->siglock);
3148 sigorsets(set, ¤t->pending.signal,
3149 ¤t->signal->shared_pending.signal);
3150 spin_unlock_irq(¤t->sighand->siglock);
3152 /* Outside the lock because only this thread touches it. */
3153 sigandsets(set, ¤t->blocked, set);
3157 * sys_rt_sigpending - examine a pending signal that has been raised
3159 * @uset: stores pending signals
3160 * @sigsetsize: size of sigset_t type or larger
3162 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3166 if (sigsetsize > sizeof(*uset))
3169 do_sigpending(&set);
3171 if (copy_to_user(uset, &set, sigsetsize))
3177 #ifdef CONFIG_COMPAT
3178 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3179 compat_size_t, sigsetsize)
3183 if (sigsetsize > sizeof(*uset))
3186 do_sigpending(&set);
3188 return put_compat_sigset(uset, &set, sigsetsize);
3192 static const struct {
3193 unsigned char limit, layout;
3195 [SIGILL] = { NSIGILL, SIL_FAULT },
3196 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3197 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3198 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3199 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3201 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3203 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3204 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3205 [SIGSYS] = { NSIGSYS, SIL_SYS },
3208 static bool known_siginfo_layout(unsigned sig, int si_code)
3210 if (si_code == SI_KERNEL)
3212 else if ((si_code > SI_USER)) {
3213 if (sig_specific_sicodes(sig)) {
3214 if (si_code <= sig_sicodes[sig].limit)
3217 else if (si_code <= NSIGPOLL)
3220 else if (si_code >= SI_DETHREAD)
3222 else if (si_code == SI_ASYNCNL)
3227 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3229 enum siginfo_layout layout = SIL_KILL;
3230 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3231 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3232 (si_code <= sig_sicodes[sig].limit)) {
3233 layout = sig_sicodes[sig].layout;
3234 /* Handle the exceptions */
3235 if ((sig == SIGBUS) &&
3236 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3237 layout = SIL_FAULT_MCEERR;
3238 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3239 layout = SIL_FAULT_BNDERR;
3241 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3242 layout = SIL_FAULT_PKUERR;
3244 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3245 layout = SIL_PERF_EVENT;
3246 #ifdef __ARCH_SI_TRAPNO
3247 else if (layout == SIL_FAULT)
3248 layout = SIL_FAULT_TRAPNO;
3251 else if (si_code <= NSIGPOLL)
3254 if (si_code == SI_TIMER)
3256 else if (si_code == SI_SIGIO)
3258 else if (si_code < 0)
3264 static inline char __user *si_expansion(const siginfo_t __user *info)
3266 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3269 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3271 char __user *expansion = si_expansion(to);
3272 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3274 if (clear_user(expansion, SI_EXPANSION_SIZE))
3279 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3280 const siginfo_t __user *from)
3282 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3283 char __user *expansion = si_expansion(from);
3284 char buf[SI_EXPANSION_SIZE];
3287 * An unknown si_code might need more than
3288 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3289 * extra bytes are 0. This guarantees copy_siginfo_to_user
3290 * will return this data to userspace exactly.
3292 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3294 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3302 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3303 const siginfo_t __user *from)
3305 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3307 to->si_signo = signo;
3308 return post_copy_siginfo_from_user(to, from);
3311 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3313 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3315 return post_copy_siginfo_from_user(to, from);
3318 #ifdef CONFIG_COMPAT
3320 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3321 * @to: compat siginfo destination
3322 * @from: kernel siginfo source
3324 * Note: This function does not work properly for the SIGCHLD on x32, but
3325 * fortunately it doesn't have to. The only valid callers for this function are
3326 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3327 * The latter does not care because SIGCHLD will never cause a coredump.
3329 void copy_siginfo_to_external32(struct compat_siginfo *to,
3330 const struct kernel_siginfo *from)
3332 memset(to, 0, sizeof(*to));
3334 to->si_signo = from->si_signo;
3335 to->si_errno = from->si_errno;
3336 to->si_code = from->si_code;
3337 switch(siginfo_layout(from->si_signo, from->si_code)) {
3339 to->si_pid = from->si_pid;
3340 to->si_uid = from->si_uid;
3343 to->si_tid = from->si_tid;
3344 to->si_overrun = from->si_overrun;
3345 to->si_int = from->si_int;
3348 to->si_band = from->si_band;
3349 to->si_fd = from->si_fd;
3352 to->si_addr = ptr_to_compat(from->si_addr);
3354 case SIL_FAULT_TRAPNO:
3355 to->si_addr = ptr_to_compat(from->si_addr);
3356 to->si_trapno = from->si_trapno;
3358 case SIL_FAULT_MCEERR:
3359 to->si_addr = ptr_to_compat(from->si_addr);
3360 to->si_addr_lsb = from->si_addr_lsb;
3362 case SIL_FAULT_BNDERR:
3363 to->si_addr = ptr_to_compat(from->si_addr);
3364 to->si_lower = ptr_to_compat(from->si_lower);
3365 to->si_upper = ptr_to_compat(from->si_upper);
3367 case SIL_FAULT_PKUERR:
3368 to->si_addr = ptr_to_compat(from->si_addr);
3369 to->si_pkey = from->si_pkey;
3371 case SIL_PERF_EVENT:
3372 to->si_addr = ptr_to_compat(from->si_addr);
3373 to->si_perf_data = from->si_perf_data;
3374 to->si_perf_type = from->si_perf_type;
3377 to->si_pid = from->si_pid;
3378 to->si_uid = from->si_uid;
3379 to->si_status = from->si_status;
3380 to->si_utime = from->si_utime;
3381 to->si_stime = from->si_stime;
3384 to->si_pid = from->si_pid;
3385 to->si_uid = from->si_uid;
3386 to->si_int = from->si_int;
3389 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3390 to->si_syscall = from->si_syscall;
3391 to->si_arch = from->si_arch;
3396 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3397 const struct kernel_siginfo *from)
3399 struct compat_siginfo new;
3401 copy_siginfo_to_external32(&new, from);
3402 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3407 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3408 const struct compat_siginfo *from)
3411 to->si_signo = from->si_signo;
3412 to->si_errno = from->si_errno;
3413 to->si_code = from->si_code;
3414 switch(siginfo_layout(from->si_signo, from->si_code)) {
3416 to->si_pid = from->si_pid;
3417 to->si_uid = from->si_uid;
3420 to->si_tid = from->si_tid;
3421 to->si_overrun = from->si_overrun;
3422 to->si_int = from->si_int;
3425 to->si_band = from->si_band;
3426 to->si_fd = from->si_fd;
3429 to->si_addr = compat_ptr(from->si_addr);
3431 case SIL_FAULT_TRAPNO:
3432 to->si_addr = compat_ptr(from->si_addr);
3433 to->si_trapno = from->si_trapno;
3435 case SIL_FAULT_MCEERR:
3436 to->si_addr = compat_ptr(from->si_addr);
3437 to->si_addr_lsb = from->si_addr_lsb;
3439 case SIL_FAULT_BNDERR:
3440 to->si_addr = compat_ptr(from->si_addr);
3441 to->si_lower = compat_ptr(from->si_lower);
3442 to->si_upper = compat_ptr(from->si_upper);
3444 case SIL_FAULT_PKUERR:
3445 to->si_addr = compat_ptr(from->si_addr);
3446 to->si_pkey = from->si_pkey;
3448 case SIL_PERF_EVENT:
3449 to->si_addr = compat_ptr(from->si_addr);
3450 to->si_perf_data = from->si_perf_data;
3451 to->si_perf_type = from->si_perf_type;
3454 to->si_pid = from->si_pid;
3455 to->si_uid = from->si_uid;
3456 to->si_status = from->si_status;
3457 #ifdef CONFIG_X86_X32_ABI
3458 if (in_x32_syscall()) {
3459 to->si_utime = from->_sifields._sigchld_x32._utime;
3460 to->si_stime = from->_sifields._sigchld_x32._stime;
3464 to->si_utime = from->si_utime;
3465 to->si_stime = from->si_stime;
3469 to->si_pid = from->si_pid;
3470 to->si_uid = from->si_uid;
3471 to->si_int = from->si_int;
3474 to->si_call_addr = compat_ptr(from->si_call_addr);
3475 to->si_syscall = from->si_syscall;
3476 to->si_arch = from->si_arch;
3482 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3483 const struct compat_siginfo __user *ufrom)
3485 struct compat_siginfo from;
3487 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3490 from.si_signo = signo;
3491 return post_copy_siginfo_from_user32(to, &from);
3494 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3495 const struct compat_siginfo __user *ufrom)
3497 struct compat_siginfo from;
3499 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3502 return post_copy_siginfo_from_user32(to, &from);
3504 #endif /* CONFIG_COMPAT */
3507 * do_sigtimedwait - wait for queued signals specified in @which
3508 * @which: queued signals to wait for
3509 * @info: if non-null, the signal's siginfo is returned here
3510 * @ts: upper bound on process time suspension
3512 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3513 const struct timespec64 *ts)
3515 ktime_t *to = NULL, timeout = KTIME_MAX;
3516 struct task_struct *tsk = current;
3517 sigset_t mask = *which;
3521 if (!timespec64_valid(ts))
3523 timeout = timespec64_to_ktime(*ts);
3528 * Invert the set of allowed signals to get those we want to block.
3530 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3533 spin_lock_irq(&tsk->sighand->siglock);
3534 sig = dequeue_signal(tsk, &mask, info);
3535 if (!sig && timeout) {
3537 * None ready, temporarily unblock those we're interested
3538 * while we are sleeping in so that we'll be awakened when
3539 * they arrive. Unblocking is always fine, we can avoid
3540 * set_current_blocked().
3542 tsk->real_blocked = tsk->blocked;
3543 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3544 recalc_sigpending();
3545 spin_unlock_irq(&tsk->sighand->siglock);
3547 __set_current_state(TASK_INTERRUPTIBLE);
3548 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3550 spin_lock_irq(&tsk->sighand->siglock);
3551 __set_task_blocked(tsk, &tsk->real_blocked);
3552 sigemptyset(&tsk->real_blocked);
3553 sig = dequeue_signal(tsk, &mask, info);
3555 spin_unlock_irq(&tsk->sighand->siglock);
3559 return ret ? -EINTR : -EAGAIN;
3563 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3565 * @uthese: queued signals to wait for
3566 * @uinfo: if non-null, the signal's siginfo is returned here
3567 * @uts: upper bound on process time suspension
3568 * @sigsetsize: size of sigset_t type
3570 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3571 siginfo_t __user *, uinfo,
3572 const struct __kernel_timespec __user *, uts,
3576 struct timespec64 ts;
3577 kernel_siginfo_t info;
3580 /* XXX: Don't preclude handling different sized sigset_t's. */
3581 if (sigsetsize != sizeof(sigset_t))
3584 if (copy_from_user(&these, uthese, sizeof(these)))
3588 if (get_timespec64(&ts, uts))
3592 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3594 if (ret > 0 && uinfo) {
3595 if (copy_siginfo_to_user(uinfo, &info))
3602 #ifdef CONFIG_COMPAT_32BIT_TIME
3603 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3604 siginfo_t __user *, uinfo,
3605 const struct old_timespec32 __user *, uts,
3609 struct timespec64 ts;
3610 kernel_siginfo_t info;
3613 if (sigsetsize != sizeof(sigset_t))
3616 if (copy_from_user(&these, uthese, sizeof(these)))
3620 if (get_old_timespec32(&ts, uts))
3624 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3626 if (ret > 0 && uinfo) {
3627 if (copy_siginfo_to_user(uinfo, &info))
3635 #ifdef CONFIG_COMPAT
3636 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3637 struct compat_siginfo __user *, uinfo,
3638 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3641 struct timespec64 t;
3642 kernel_siginfo_t info;
3645 if (sigsetsize != sizeof(sigset_t))
3648 if (get_compat_sigset(&s, uthese))
3652 if (get_timespec64(&t, uts))
3656 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3658 if (ret > 0 && uinfo) {
3659 if (copy_siginfo_to_user32(uinfo, &info))
3666 #ifdef CONFIG_COMPAT_32BIT_TIME
3667 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3668 struct compat_siginfo __user *, uinfo,
3669 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3672 struct timespec64 t;
3673 kernel_siginfo_t info;
3676 if (sigsetsize != sizeof(sigset_t))
3679 if (get_compat_sigset(&s, uthese))
3683 if (get_old_timespec32(&t, uts))
3687 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3689 if (ret > 0 && uinfo) {
3690 if (copy_siginfo_to_user32(uinfo, &info))
3699 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3701 clear_siginfo(info);
3702 info->si_signo = sig;
3704 info->si_code = SI_USER;
3705 info->si_pid = task_tgid_vnr(current);
3706 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3710 * sys_kill - send a signal to a process
3711 * @pid: the PID of the process
3712 * @sig: signal to be sent
3714 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3716 struct kernel_siginfo info;
3718 prepare_kill_siginfo(sig, &info);
3720 return kill_something_info(sig, &info, pid);
3724 * Verify that the signaler and signalee either are in the same pid namespace
3725 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3728 static bool access_pidfd_pidns(struct pid *pid)
3730 struct pid_namespace *active = task_active_pid_ns(current);
3731 struct pid_namespace *p = ns_of_pid(pid);
3744 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3745 siginfo_t __user *info)
3747 #ifdef CONFIG_COMPAT
3749 * Avoid hooking up compat syscalls and instead handle necessary
3750 * conversions here. Note, this is a stop-gap measure and should not be
3751 * considered a generic solution.
3753 if (in_compat_syscall())
3754 return copy_siginfo_from_user32(
3755 kinfo, (struct compat_siginfo __user *)info);
3757 return copy_siginfo_from_user(kinfo, info);
3760 static struct pid *pidfd_to_pid(const struct file *file)
3764 pid = pidfd_pid(file);
3768 return tgid_pidfd_to_pid(file);
3772 * sys_pidfd_send_signal - Signal a process through a pidfd
3773 * @pidfd: file descriptor of the process
3774 * @sig: signal to send
3775 * @info: signal info
3776 * @flags: future flags
3778 * The syscall currently only signals via PIDTYPE_PID which covers
3779 * kill(<positive-pid>, <signal>. It does not signal threads or process
3781 * In order to extend the syscall to threads and process groups the @flags
3782 * argument should be used. In essence, the @flags argument will determine
3783 * what is signaled and not the file descriptor itself. Put in other words,
3784 * grouping is a property of the flags argument not a property of the file
3787 * Return: 0 on success, negative errno on failure
3789 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3790 siginfo_t __user *, info, unsigned int, flags)
3795 kernel_siginfo_t kinfo;
3797 /* Enforce flags be set to 0 until we add an extension. */
3805 /* Is this a pidfd? */
3806 pid = pidfd_to_pid(f.file);
3813 if (!access_pidfd_pidns(pid))
3817 ret = copy_siginfo_from_user_any(&kinfo, info);
3822 if (unlikely(sig != kinfo.si_signo))
3825 /* Only allow sending arbitrary signals to yourself. */
3827 if ((task_pid(current) != pid) &&
3828 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3831 prepare_kill_siginfo(sig, &kinfo);
3834 ret = kill_pid_info(sig, &kinfo, pid);
3842 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3844 struct task_struct *p;
3848 p = find_task_by_vpid(pid);
3849 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3850 error = check_kill_permission(sig, info, p);
3852 * The null signal is a permissions and process existence
3853 * probe. No signal is actually delivered.
3855 if (!error && sig) {
3856 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3858 * If lock_task_sighand() failed we pretend the task
3859 * dies after receiving the signal. The window is tiny,
3860 * and the signal is private anyway.
3862 if (unlikely(error == -ESRCH))
3871 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3873 struct kernel_siginfo info;
3875 clear_siginfo(&info);
3876 info.si_signo = sig;
3878 info.si_code = SI_TKILL;
3879 info.si_pid = task_tgid_vnr(current);
3880 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3882 return do_send_specific(tgid, pid, sig, &info);
3886 * sys_tgkill - send signal to one specific thread
3887 * @tgid: the thread group ID of the thread
3888 * @pid: the PID of the thread
3889 * @sig: signal to be sent
3891 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3892 * exists but it's not belonging to the target process anymore. This
3893 * method solves the problem of threads exiting and PIDs getting reused.
3895 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3897 /* This is only valid for single tasks */
3898 if (pid <= 0 || tgid <= 0)
3901 return do_tkill(tgid, pid, sig);
3905 * sys_tkill - send signal to one specific task
3906 * @pid: the PID of the task
3907 * @sig: signal to be sent
3909 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3911 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3913 /* This is only valid for single tasks */
3917 return do_tkill(0, pid, sig);
3920 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3922 /* Not even root can pretend to send signals from the kernel.
3923 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3925 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3926 (task_pid_vnr(current) != pid))
3929 /* POSIX.1b doesn't mention process groups. */
3930 return kill_proc_info(sig, info, pid);
3934 * sys_rt_sigqueueinfo - send signal information to a signal
3935 * @pid: the PID of the thread
3936 * @sig: signal to be sent
3937 * @uinfo: signal info to be sent
3939 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3940 siginfo_t __user *, uinfo)
3942 kernel_siginfo_t info;
3943 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3946 return do_rt_sigqueueinfo(pid, sig, &info);
3949 #ifdef CONFIG_COMPAT
3950 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3953 struct compat_siginfo __user *, uinfo)
3955 kernel_siginfo_t info;
3956 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3959 return do_rt_sigqueueinfo(pid, sig, &info);
3963 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3965 /* This is only valid for single tasks */
3966 if (pid <= 0 || tgid <= 0)
3969 /* Not even root can pretend to send signals from the kernel.
3970 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3972 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3973 (task_pid_vnr(current) != pid))
3976 return do_send_specific(tgid, pid, sig, info);
3979 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3980 siginfo_t __user *, uinfo)
3982 kernel_siginfo_t info;
3983 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3986 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3989 #ifdef CONFIG_COMPAT
3990 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3994 struct compat_siginfo __user *, uinfo)
3996 kernel_siginfo_t info;
3997 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4000 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4005 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4007 void kernel_sigaction(int sig, __sighandler_t action)
4009 spin_lock_irq(¤t->sighand->siglock);
4010 current->sighand->action[sig - 1].sa.sa_handler = action;
4011 if (action == SIG_IGN) {
4015 sigaddset(&mask, sig);
4017 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4018 flush_sigqueue_mask(&mask, ¤t->pending);
4019 recalc_sigpending();
4021 spin_unlock_irq(¤t->sighand->siglock);
4023 EXPORT_SYMBOL(kernel_sigaction);
4025 void __weak sigaction_compat_abi(struct k_sigaction *act,
4026 struct k_sigaction *oact)
4030 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4032 struct task_struct *p = current, *t;
4033 struct k_sigaction *k;
4036 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4039 k = &p->sighand->action[sig-1];
4041 spin_lock_irq(&p->sighand->siglock);
4046 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4047 * e.g. by having an architecture use the bit in their uapi.
4049 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4052 * Clear unknown flag bits in order to allow userspace to detect missing
4053 * support for flag bits and to allow the kernel to use non-uapi bits
4057 act->sa.sa_flags &= UAPI_SA_FLAGS;
4059 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4061 sigaction_compat_abi(act, oact);
4064 sigdelsetmask(&act->sa.sa_mask,
4065 sigmask(SIGKILL) | sigmask(SIGSTOP));
4069 * "Setting a signal action to SIG_IGN for a signal that is
4070 * pending shall cause the pending signal to be discarded,
4071 * whether or not it is blocked."
4073 * "Setting a signal action to SIG_DFL for a signal that is
4074 * pending and whose default action is to ignore the signal
4075 * (for example, SIGCHLD), shall cause the pending signal to
4076 * be discarded, whether or not it is blocked"
4078 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4080 sigaddset(&mask, sig);
4081 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4082 for_each_thread(p, t)
4083 flush_sigqueue_mask(&mask, &t->pending);
4087 spin_unlock_irq(&p->sighand->siglock);
4092 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4095 struct task_struct *t = current;
4098 memset(oss, 0, sizeof(stack_t));
4099 oss->ss_sp = (void __user *) t->sas_ss_sp;
4100 oss->ss_size = t->sas_ss_size;
4101 oss->ss_flags = sas_ss_flags(sp) |
4102 (current->sas_ss_flags & SS_FLAG_BITS);
4106 void __user *ss_sp = ss->ss_sp;
4107 size_t ss_size = ss->ss_size;
4108 unsigned ss_flags = ss->ss_flags;
4111 if (unlikely(on_sig_stack(sp)))
4114 ss_mode = ss_flags & ~SS_FLAG_BITS;
4115 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4119 if (ss_mode == SS_DISABLE) {
4123 if (unlikely(ss_size < min_ss_size))
4127 t->sas_ss_sp = (unsigned long) ss_sp;
4128 t->sas_ss_size = ss_size;
4129 t->sas_ss_flags = ss_flags;
4134 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4138 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4140 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4141 current_user_stack_pointer(),
4143 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4148 int restore_altstack(const stack_t __user *uss)
4151 if (copy_from_user(&new, uss, sizeof(stack_t)))
4153 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4155 /* squash all but EFAULT for now */
4159 int __save_altstack(stack_t __user *uss, unsigned long sp)
4161 struct task_struct *t = current;
4162 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4163 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4164 __put_user(t->sas_ss_size, &uss->ss_size);
4168 #ifdef CONFIG_COMPAT
4169 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4170 compat_stack_t __user *uoss_ptr)
4176 compat_stack_t uss32;
4177 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4179 uss.ss_sp = compat_ptr(uss32.ss_sp);
4180 uss.ss_flags = uss32.ss_flags;
4181 uss.ss_size = uss32.ss_size;
4183 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4184 compat_user_stack_pointer(),
4185 COMPAT_MINSIGSTKSZ);
4186 if (ret >= 0 && uoss_ptr) {
4188 memset(&old, 0, sizeof(old));
4189 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4190 old.ss_flags = uoss.ss_flags;
4191 old.ss_size = uoss.ss_size;
4192 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4198 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4199 const compat_stack_t __user *, uss_ptr,
4200 compat_stack_t __user *, uoss_ptr)
4202 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4205 int compat_restore_altstack(const compat_stack_t __user *uss)
4207 int err = do_compat_sigaltstack(uss, NULL);
4208 /* squash all but -EFAULT for now */
4209 return err == -EFAULT ? err : 0;
4212 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4215 struct task_struct *t = current;
4216 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4218 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4219 __put_user(t->sas_ss_size, &uss->ss_size);
4224 #ifdef __ARCH_WANT_SYS_SIGPENDING
4227 * sys_sigpending - examine pending signals
4228 * @uset: where mask of pending signal is returned
4230 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4234 if (sizeof(old_sigset_t) > sizeof(*uset))
4237 do_sigpending(&set);
4239 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4245 #ifdef CONFIG_COMPAT
4246 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4250 do_sigpending(&set);
4252 return put_user(set.sig[0], set32);
4258 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4260 * sys_sigprocmask - examine and change blocked signals
4261 * @how: whether to add, remove, or set signals
4262 * @nset: signals to add or remove (if non-null)
4263 * @oset: previous value of signal mask if non-null
4265 * Some platforms have their own version with special arguments;
4266 * others support only sys_rt_sigprocmask.
4269 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4270 old_sigset_t __user *, oset)
4272 old_sigset_t old_set, new_set;
4273 sigset_t new_blocked;
4275 old_set = current->blocked.sig[0];
4278 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4281 new_blocked = current->blocked;
4285 sigaddsetmask(&new_blocked, new_set);
4288 sigdelsetmask(&new_blocked, new_set);
4291 new_blocked.sig[0] = new_set;
4297 set_current_blocked(&new_blocked);
4301 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4307 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4309 #ifndef CONFIG_ODD_RT_SIGACTION
4311 * sys_rt_sigaction - alter an action taken by a process
4312 * @sig: signal to be sent
4313 * @act: new sigaction
4314 * @oact: used to save the previous sigaction
4315 * @sigsetsize: size of sigset_t type
4317 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4318 const struct sigaction __user *, act,
4319 struct sigaction __user *, oact,
4322 struct k_sigaction new_sa, old_sa;
4325 /* XXX: Don't preclude handling different sized sigset_t's. */
4326 if (sigsetsize != sizeof(sigset_t))
4329 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4332 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4336 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4341 #ifdef CONFIG_COMPAT
4342 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4343 const struct compat_sigaction __user *, act,
4344 struct compat_sigaction __user *, oact,
4345 compat_size_t, sigsetsize)
4347 struct k_sigaction new_ka, old_ka;
4348 #ifdef __ARCH_HAS_SA_RESTORER
4349 compat_uptr_t restorer;
4353 /* XXX: Don't preclude handling different sized sigset_t's. */
4354 if (sigsetsize != sizeof(compat_sigset_t))
4358 compat_uptr_t handler;
4359 ret = get_user(handler, &act->sa_handler);
4360 new_ka.sa.sa_handler = compat_ptr(handler);
4361 #ifdef __ARCH_HAS_SA_RESTORER
4362 ret |= get_user(restorer, &act->sa_restorer);
4363 new_ka.sa.sa_restorer = compat_ptr(restorer);
4365 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4366 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4371 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4373 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4375 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4376 sizeof(oact->sa_mask));
4377 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4378 #ifdef __ARCH_HAS_SA_RESTORER
4379 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4380 &oact->sa_restorer);
4386 #endif /* !CONFIG_ODD_RT_SIGACTION */
4388 #ifdef CONFIG_OLD_SIGACTION
4389 SYSCALL_DEFINE3(sigaction, int, sig,
4390 const struct old_sigaction __user *, act,
4391 struct old_sigaction __user *, oact)
4393 struct k_sigaction new_ka, old_ka;
4398 if (!access_ok(act, sizeof(*act)) ||
4399 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4400 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4401 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4402 __get_user(mask, &act->sa_mask))
4404 #ifdef __ARCH_HAS_KA_RESTORER
4405 new_ka.ka_restorer = NULL;
4407 siginitset(&new_ka.sa.sa_mask, mask);
4410 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4413 if (!access_ok(oact, sizeof(*oact)) ||
4414 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4415 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4416 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4417 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4424 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4425 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4426 const struct compat_old_sigaction __user *, act,
4427 struct compat_old_sigaction __user *, oact)
4429 struct k_sigaction new_ka, old_ka;
4431 compat_old_sigset_t mask;
4432 compat_uptr_t handler, restorer;
4435 if (!access_ok(act, sizeof(*act)) ||
4436 __get_user(handler, &act->sa_handler) ||
4437 __get_user(restorer, &act->sa_restorer) ||
4438 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4439 __get_user(mask, &act->sa_mask))
4442 #ifdef __ARCH_HAS_KA_RESTORER
4443 new_ka.ka_restorer = NULL;
4445 new_ka.sa.sa_handler = compat_ptr(handler);
4446 new_ka.sa.sa_restorer = compat_ptr(restorer);
4447 siginitset(&new_ka.sa.sa_mask, mask);
4450 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4453 if (!access_ok(oact, sizeof(*oact)) ||
4454 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4455 &oact->sa_handler) ||
4456 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4457 &oact->sa_restorer) ||
4458 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4459 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4466 #ifdef CONFIG_SGETMASK_SYSCALL
4469 * For backwards compatibility. Functionality superseded by sigprocmask.
4471 SYSCALL_DEFINE0(sgetmask)
4474 return current->blocked.sig[0];
4477 SYSCALL_DEFINE1(ssetmask, int, newmask)
4479 int old = current->blocked.sig[0];
4482 siginitset(&newset, newmask);
4483 set_current_blocked(&newset);
4487 #endif /* CONFIG_SGETMASK_SYSCALL */
4489 #ifdef __ARCH_WANT_SYS_SIGNAL
4491 * For backwards compatibility. Functionality superseded by sigaction.
4493 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4495 struct k_sigaction new_sa, old_sa;
4498 new_sa.sa.sa_handler = handler;
4499 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4500 sigemptyset(&new_sa.sa.sa_mask);
4502 ret = do_sigaction(sig, &new_sa, &old_sa);
4504 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4506 #endif /* __ARCH_WANT_SYS_SIGNAL */
4508 #ifdef __ARCH_WANT_SYS_PAUSE
4510 SYSCALL_DEFINE0(pause)
4512 while (!signal_pending(current)) {
4513 __set_current_state(TASK_INTERRUPTIBLE);
4516 return -ERESTARTNOHAND;
4521 static int sigsuspend(sigset_t *set)
4523 current->saved_sigmask = current->blocked;
4524 set_current_blocked(set);
4526 while (!signal_pending(current)) {
4527 __set_current_state(TASK_INTERRUPTIBLE);
4530 set_restore_sigmask();
4531 return -ERESTARTNOHAND;
4535 * sys_rt_sigsuspend - replace the signal mask for a value with the
4536 * @unewset value until a signal is received
4537 * @unewset: new signal mask value
4538 * @sigsetsize: size of sigset_t type
4540 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4544 /* XXX: Don't preclude handling different sized sigset_t's. */
4545 if (sigsetsize != sizeof(sigset_t))
4548 if (copy_from_user(&newset, unewset, sizeof(newset)))
4550 return sigsuspend(&newset);
4553 #ifdef CONFIG_COMPAT
4554 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4558 /* XXX: Don't preclude handling different sized sigset_t's. */
4559 if (sigsetsize != sizeof(sigset_t))
4562 if (get_compat_sigset(&newset, unewset))
4564 return sigsuspend(&newset);
4568 #ifdef CONFIG_OLD_SIGSUSPEND
4569 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4572 siginitset(&blocked, mask);
4573 return sigsuspend(&blocked);
4576 #ifdef CONFIG_OLD_SIGSUSPEND3
4577 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4580 siginitset(&blocked, mask);
4581 return sigsuspend(&blocked);
4585 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4590 static inline void siginfo_buildtime_checks(void)
4592 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4594 /* Verify the offsets in the two siginfos match */
4595 #define CHECK_OFFSET(field) \
4596 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4599 CHECK_OFFSET(si_pid);
4600 CHECK_OFFSET(si_uid);
4603 CHECK_OFFSET(si_tid);
4604 CHECK_OFFSET(si_overrun);
4605 CHECK_OFFSET(si_value);
4608 CHECK_OFFSET(si_pid);
4609 CHECK_OFFSET(si_uid);
4610 CHECK_OFFSET(si_value);
4613 CHECK_OFFSET(si_pid);
4614 CHECK_OFFSET(si_uid);
4615 CHECK_OFFSET(si_status);
4616 CHECK_OFFSET(si_utime);
4617 CHECK_OFFSET(si_stime);
4620 CHECK_OFFSET(si_addr);
4621 CHECK_OFFSET(si_trapno);
4622 CHECK_OFFSET(si_addr_lsb);
4623 CHECK_OFFSET(si_lower);
4624 CHECK_OFFSET(si_upper);
4625 CHECK_OFFSET(si_pkey);
4626 CHECK_OFFSET(si_perf_data);
4627 CHECK_OFFSET(si_perf_type);
4630 CHECK_OFFSET(si_band);
4631 CHECK_OFFSET(si_fd);
4634 CHECK_OFFSET(si_call_addr);
4635 CHECK_OFFSET(si_syscall);
4636 CHECK_OFFSET(si_arch);
4640 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4641 offsetof(struct siginfo, si_addr));
4642 if (sizeof(int) == sizeof(void __user *)) {
4643 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4644 sizeof(void __user *));
4646 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4647 sizeof_field(struct siginfo, si_uid)) !=
4648 sizeof(void __user *));
4649 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4650 offsetof(struct siginfo, si_uid));
4652 #ifdef CONFIG_COMPAT
4653 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4654 offsetof(struct compat_siginfo, si_addr));
4655 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4656 sizeof(compat_uptr_t));
4657 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4658 sizeof_field(struct siginfo, si_pid));
4662 void __init signals_init(void)
4664 siginfo_buildtime_checks();
4666 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4669 #ifdef CONFIG_KGDB_KDB
4670 #include <linux/kdb.h>
4672 * kdb_send_sig - Allows kdb to send signals without exposing
4673 * signal internals. This function checks if the required locks are
4674 * available before calling the main signal code, to avoid kdb
4677 void kdb_send_sig(struct task_struct *t, int sig)
4679 static struct task_struct *kdb_prev_t;
4681 if (!spin_trylock(&t->sighand->siglock)) {
4682 kdb_printf("Can't do kill command now.\n"
4683 "The sigmask lock is held somewhere else in "
4684 "kernel, try again later\n");
4687 new_t = kdb_prev_t != t;
4689 if (!task_is_running(t) && new_t) {
4690 spin_unlock(&t->sighand->siglock);
4691 kdb_printf("Process is not RUNNING, sending a signal from "
4692 "kdb risks deadlock\n"
4693 "on the run queue locks. "
4694 "The signal has _not_ been sent.\n"
4695 "Reissue the kill command if you want to risk "
4699 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4700 spin_unlock(&t->sighand->siglock);
4702 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4705 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4707 #endif /* CONFIG_KGDB_KDB */