1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/task_work.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h> /* for syscall_get_* */
60 * SLAB caches for signal bits.
63 static struct kmem_cache *sigqueue_cachep;
65 int print_fatal_signals __read_mostly;
67 static void __user *sig_handler(struct task_struct *t, int sig)
69 return t->sighand->action[sig - 1].sa.sa_handler;
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
83 handler = sig_handler(t, sig);
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
98 return sig_handler_ignored(handler, sig);
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
116 if (t->ptrace && sig != SIGKILL)
119 return sig_task_ignored(t, sig, force);
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
131 switch (_NSIG_WORDS) {
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
154 static bool recalc_sigpending_tsk(struct task_struct *t)
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
176 void recalc_sigpending_and_wake(struct task_struct *t)
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
182 void recalc_sigpending(void)
184 if (!recalc_sigpending_tsk(current) && !freezing(current))
185 clear_thread_flag(TIF_SIGPENDING);
188 EXPORT_SYMBOL(recalc_sigpending);
190 void calculate_sigpending(void)
192 /* Have any signals or users of TIF_SIGPENDING been delayed
195 spin_lock_irq(¤t->sighand->siglock);
196 set_tsk_thread_flag(current, TIF_SIGPENDING);
198 spin_unlock_irq(¤t->sighand->siglock);
201 /* Given the mask, find the first available signal that should be serviced. */
203 #define SYNCHRONOUS_MASK \
204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207 int next_signal(struct sigpending *pending, sigset_t *mask)
209 unsigned long i, *s, *m, x;
212 s = pending->signal.sig;
216 * Handle the first word specially: it contains the
217 * synchronous signals that need to be dequeued first.
221 if (x & SYNCHRONOUS_MASK)
222 x &= SYNCHRONOUS_MASK;
227 switch (_NSIG_WORDS) {
229 for (i = 1; i < _NSIG_WORDS; ++i) {
233 sig = ffz(~x) + i*_NSIG_BPW + 1;
242 sig = ffz(~x) + _NSIG_BPW + 1;
253 static inline void print_dropped_signal(int sig)
255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257 if (!print_fatal_signals)
260 if (!__ratelimit(&ratelimit_state))
263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 current->comm, current->pid, sig);
268 * task_set_jobctl_pending - set jobctl pending bits
270 * @mask: pending bits to set
272 * Clear @mask from @task->jobctl. @mask must be subset of
273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
275 * cleared. If @task is already being killed or exiting, this function
279 * Must be called with @task->sighand->siglock held.
282 * %true if @mask is set, %false if made noop because @task was dying.
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
293 if (mask & JOBCTL_STOP_SIGMASK)
294 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296 task->jobctl |= mask;
301 * task_clear_jobctl_trapping - clear jobctl trapping bit
304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305 * Clear it and wake up the ptracer. Note that we don't need any further
306 * locking. @task->siglock guarantees that @task->parent points to the
310 * Must be called with @task->sighand->siglock held.
312 void task_clear_jobctl_trapping(struct task_struct *task)
314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 task->jobctl &= ~JOBCTL_TRAPPING;
316 smp_mb(); /* advised by wake_up_bit() */
317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
322 * task_clear_jobctl_pending - clear jobctl pending bits
324 * @mask: pending bits to clear
326 * Clear @mask from @task->jobctl. @mask must be subset of
327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
328 * STOP bits are cleared together.
330 * If clearing of @mask leaves no stop or trap pending, this function calls
331 * task_clear_jobctl_trapping().
334 * Must be called with @task->sighand->siglock held.
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340 if (mask & JOBCTL_STOP_PENDING)
341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343 task->jobctl &= ~mask;
345 if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 task_clear_jobctl_trapping(task);
350 * task_participate_group_stop - participate in a group stop
351 * @task: task participating in a group stop
353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354 * Group stop states are cleared and the group stop count is consumed if
355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
356 * stop, the appropriate `SIGNAL_*` flags are set.
359 * Must be called with @task->sighand->siglock held.
362 * %true if group stop completion should be notified to the parent, %false
365 static bool task_participate_group_stop(struct task_struct *task)
367 struct signal_struct *sig = task->signal;
368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
377 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 sig->group_stop_count--;
381 * Tell the caller to notify completion iff we are entering into a
382 * fresh group stop. Read comment in do_signal_stop() for details.
384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
391 void task_join_group_stop(struct task_struct *task)
393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 struct signal_struct *sig = current->signal;
396 if (sig->group_stop_count) {
397 sig->group_stop_count++;
398 mask |= JOBCTL_STOP_CONSUME;
399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
402 /* Have the new thread join an on-going signal group stop */
403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 int override_rlimit, const unsigned int sigqueue_flags)
415 struct sigqueue *q = NULL;
416 struct ucounts *ucounts = NULL;
420 * Protect access to @t credentials. This can go away when all
421 * callers hold rcu read lock.
423 * NOTE! A pending signal will hold on to the user refcount,
424 * and we get/put the refcount only when the sigpending count
425 * changes from/to zero.
428 ucounts = task_ucounts(t);
429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
437 print_dropped_signal(sig);
440 if (unlikely(q == NULL)) {
441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
443 INIT_LIST_HEAD(&q->list);
444 q->flags = sigqueue_flags;
445 q->ucounts = ucounts;
450 static void __sigqueue_free(struct sigqueue *q)
452 if (q->flags & SIGQUEUE_PREALLOC)
455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
458 kmem_cache_free(sigqueue_cachep, q);
461 void flush_sigqueue(struct sigpending *queue)
465 sigemptyset(&queue->signal);
466 while (!list_empty(&queue->list)) {
467 q = list_entry(queue->list.next, struct sigqueue , list);
468 list_del_init(&q->list);
474 * Flush all pending signals for this kthread.
476 void flush_signals(struct task_struct *t)
480 spin_lock_irqsave(&t->sighand->siglock, flags);
481 clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 flush_sigqueue(&t->pending);
483 flush_sigqueue(&t->signal->shared_pending);
484 spin_unlock_irqrestore(&t->sighand->siglock, flags);
486 EXPORT_SYMBOL(flush_signals);
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
491 sigset_t signal, retain;
492 struct sigqueue *q, *n;
494 signal = pending->signal;
495 sigemptyset(&retain);
497 list_for_each_entry_safe(q, n, &pending->list, list) {
498 int sig = q->info.si_signo;
500 if (likely(q->info.si_code != SI_TIMER)) {
501 sigaddset(&retain, sig);
503 sigdelset(&signal, sig);
504 list_del_init(&q->list);
509 sigorsets(&pending->signal, &signal, &retain);
512 void flush_itimer_signals(void)
514 struct task_struct *tsk = current;
517 spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 __flush_itimer_signals(&tsk->pending);
519 __flush_itimer_signals(&tsk->signal->shared_pending);
520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
524 void ignore_signals(struct task_struct *t)
528 for (i = 0; i < _NSIG; ++i)
529 t->sighand->action[i].sa.sa_handler = SIG_IGN;
535 * Flush all handlers for a task.
539 flush_signal_handlers(struct task_struct *t, int force_default)
542 struct k_sigaction *ka = &t->sighand->action[0];
543 for (i = _NSIG ; i != 0 ; i--) {
544 if (force_default || ka->sa.sa_handler != SIG_IGN)
545 ka->sa.sa_handler = SIG_DFL;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 ka->sa.sa_restorer = NULL;
550 sigemptyset(&ka->sa.sa_mask);
555 bool unhandled_signal(struct task_struct *tsk, int sig)
557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 if (is_global_init(tsk))
561 if (handler != SIG_IGN && handler != SIG_DFL)
564 /* if ptraced, let the tracer determine */
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
571 struct sigqueue *q, *first = NULL;
574 * Collect the siginfo appropriate to this signal. Check if
575 * there is another siginfo for the same signal.
577 list_for_each_entry(q, &list->list, list) {
578 if (q->info.si_signo == sig) {
585 sigdelset(&list->signal, sig);
589 list_del_init(&first->list);
590 copy_siginfo(info, &first->info);
593 (first->flags & SIGQUEUE_PREALLOC) &&
594 (info->si_code == SI_TIMER) &&
595 (info->si_sys_private);
597 __sigqueue_free(first);
600 * Ok, it wasn't in the queue. This must be
601 * a fast-pathed signal or we must have been
602 * out of queue space. So zero out the info.
605 info->si_signo = sig;
607 info->si_code = SI_USER;
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 kernel_siginfo_t *info, bool *resched_timer)
616 int sig = next_signal(pending, mask);
619 collect_signal(sig, pending, info, resched_timer);
624 * Dequeue a signal and return the element to the caller, which is
625 * expected to free it.
627 * All callers have to hold the siglock.
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
630 kernel_siginfo_t *info, enum pid_type *type)
632 bool resched_timer = false;
635 /* We only dequeue private signals from ourselves, we don't let
636 * signalfd steal them
639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
641 *type = PIDTYPE_TGID;
642 signr = __dequeue_signal(&tsk->signal->shared_pending,
643 mask, info, &resched_timer);
644 #ifdef CONFIG_POSIX_TIMERS
648 * itimers are process shared and we restart periodic
649 * itimers in the signal delivery path to prevent DoS
650 * attacks in the high resolution timer case. This is
651 * compliant with the old way of self-restarting
652 * itimers, as the SIGALRM is a legacy signal and only
653 * queued once. Changing the restart behaviour to
654 * restart the timer in the signal dequeue path is
655 * reducing the timer noise on heavy loaded !highres
658 if (unlikely(signr == SIGALRM)) {
659 struct hrtimer *tmr = &tsk->signal->real_timer;
661 if (!hrtimer_is_queued(tmr) &&
662 tsk->signal->it_real_incr != 0) {
663 hrtimer_forward(tmr, tmr->base->get_time(),
664 tsk->signal->it_real_incr);
665 hrtimer_restart(tmr);
675 if (unlikely(sig_kernel_stop(signr))) {
677 * Set a marker that we have dequeued a stop signal. Our
678 * caller might release the siglock and then the pending
679 * stop signal it is about to process is no longer in the
680 * pending bitmasks, but must still be cleared by a SIGCONT
681 * (and overruled by a SIGKILL). So those cases clear this
682 * shared flag after we've set it. Note that this flag may
683 * remain set after the signal we return is ignored or
684 * handled. That doesn't matter because its only purpose
685 * is to alert stop-signal processing code when another
686 * processor has come along and cleared the flag.
688 current->jobctl |= JOBCTL_STOP_DEQUEUED;
690 #ifdef CONFIG_POSIX_TIMERS
693 * Release the siglock to ensure proper locking order
694 * of timer locks outside of siglocks. Note, we leave
695 * irqs disabled here, since the posix-timers code is
696 * about to disable them again anyway.
698 spin_unlock(&tsk->sighand->siglock);
699 posixtimer_rearm(info);
700 spin_lock(&tsk->sighand->siglock);
702 /* Don't expose the si_sys_private value to userspace */
703 info->si_sys_private = 0;
708 EXPORT_SYMBOL_GPL(dequeue_signal);
710 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
712 struct task_struct *tsk = current;
713 struct sigpending *pending = &tsk->pending;
714 struct sigqueue *q, *sync = NULL;
717 * Might a synchronous signal be in the queue?
719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
723 * Return the first synchronous signal in the queue.
725 list_for_each_entry(q, &pending->list, list) {
726 /* Synchronous signals have a positive si_code */
727 if ((q->info.si_code > SI_USER) &&
728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
736 * Check if there is another siginfo for the same signal.
738 list_for_each_entry_continue(q, &pending->list, list) {
739 if (q->info.si_signo == sync->info.si_signo)
743 sigdelset(&pending->signal, sync->info.si_signo);
746 list_del_init(&sync->list);
747 copy_siginfo(info, &sync->info);
748 __sigqueue_free(sync);
749 return info->si_signo;
753 * Tell a process that it has a new active signal..
755 * NOTE! we rely on the previous spin_lock to
756 * lock interrupts for us! We can only be called with
757 * "siglock" held, and the local interrupt must
758 * have been disabled when that got acquired!
760 * No need to set need_resched since signal event passing
761 * goes through ->blocked
763 void signal_wake_up_state(struct task_struct *t, unsigned int state)
765 lockdep_assert_held(&t->sighand->siglock);
767 set_tsk_thread_flag(t, TIF_SIGPENDING);
770 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
771 * case. We don't check t->state here because there is a race with it
772 * executing another processor and just now entering stopped state.
773 * By using wake_up_state, we ensure the process will wake up and
774 * handle its death signal.
776 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
781 * Remove signals in mask from the pending set and queue.
782 * Returns 1 if any signals were found.
784 * All callers must be holding the siglock.
786 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
788 struct sigqueue *q, *n;
791 sigandsets(&m, mask, &s->signal);
792 if (sigisemptyset(&m))
795 sigandnsets(&s->signal, &s->signal, mask);
796 list_for_each_entry_safe(q, n, &s->list, list) {
797 if (sigismember(mask, q->info.si_signo)) {
798 list_del_init(&q->list);
804 static inline int is_si_special(const struct kernel_siginfo *info)
806 return info <= SEND_SIG_PRIV;
809 static inline bool si_fromuser(const struct kernel_siginfo *info)
811 return info == SEND_SIG_NOINFO ||
812 (!is_si_special(info) && SI_FROMUSER(info));
816 * called with RCU read lock from check_kill_permission()
818 static bool kill_ok_by_cred(struct task_struct *t)
820 const struct cred *cred = current_cred();
821 const struct cred *tcred = __task_cred(t);
823 return uid_eq(cred->euid, tcred->suid) ||
824 uid_eq(cred->euid, tcred->uid) ||
825 uid_eq(cred->uid, tcred->suid) ||
826 uid_eq(cred->uid, tcred->uid) ||
827 ns_capable(tcred->user_ns, CAP_KILL);
831 * Bad permissions for sending the signal
832 * - the caller must hold the RCU read lock
834 static int check_kill_permission(int sig, struct kernel_siginfo *info,
835 struct task_struct *t)
840 if (!valid_signal(sig))
843 if (!si_fromuser(info))
846 error = audit_signal_info(sig, t); /* Let audit system see the signal */
850 if (!same_thread_group(current, t) &&
851 !kill_ok_by_cred(t)) {
854 sid = task_session(t);
856 * We don't return the error if sid == NULL. The
857 * task was unhashed, the caller must notice this.
859 if (!sid || sid == task_session(current))
867 return security_task_kill(t, info, sig, NULL);
871 * ptrace_trap_notify - schedule trap to notify ptracer
872 * @t: tracee wanting to notify tracer
874 * This function schedules sticky ptrace trap which is cleared on the next
875 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
878 * If @t is running, STOP trap will be taken. If trapped for STOP and
879 * ptracer is listening for events, tracee is woken up so that it can
880 * re-trap for the new event. If trapped otherwise, STOP trap will be
881 * eventually taken without returning to userland after the existing traps
882 * are finished by PTRACE_CONT.
885 * Must be called with @task->sighand->siglock held.
887 static void ptrace_trap_notify(struct task_struct *t)
889 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
890 lockdep_assert_held(&t->sighand->siglock);
892 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
893 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
897 * Handle magic process-wide effects of stop/continue signals. Unlike
898 * the signal actions, these happen immediately at signal-generation
899 * time regardless of blocking, ignoring, or handling. This does the
900 * actual continuing for SIGCONT, but not the actual stopping for stop
901 * signals. The process stop is done as a signal action for SIG_DFL.
903 * Returns true if the signal should be actually delivered, otherwise
904 * it should be dropped.
906 static bool prepare_signal(int sig, struct task_struct *p, bool force)
908 struct signal_struct *signal = p->signal;
909 struct task_struct *t;
912 if (signal->flags & SIGNAL_GROUP_EXIT) {
913 if (signal->core_state)
914 return sig == SIGKILL;
916 * The process is in the middle of dying, drop the signal.
919 } else if (sig_kernel_stop(sig)) {
921 * This is a stop signal. Remove SIGCONT from all queues.
923 siginitset(&flush, sigmask(SIGCONT));
924 flush_sigqueue_mask(&flush, &signal->shared_pending);
925 for_each_thread(p, t)
926 flush_sigqueue_mask(&flush, &t->pending);
927 } else if (sig == SIGCONT) {
930 * Remove all stop signals from all queues, wake all threads.
932 siginitset(&flush, SIG_KERNEL_STOP_MASK);
933 flush_sigqueue_mask(&flush, &signal->shared_pending);
934 for_each_thread(p, t) {
935 flush_sigqueue_mask(&flush, &t->pending);
936 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
937 if (likely(!(t->ptrace & PT_SEIZED))) {
938 t->jobctl &= ~JOBCTL_STOPPED;
939 wake_up_state(t, __TASK_STOPPED);
941 ptrace_trap_notify(t);
945 * Notify the parent with CLD_CONTINUED if we were stopped.
947 * If we were in the middle of a group stop, we pretend it
948 * was already finished, and then continued. Since SIGCHLD
949 * doesn't queue we report only CLD_STOPPED, as if the next
950 * CLD_CONTINUED was dropped.
953 if (signal->flags & SIGNAL_STOP_STOPPED)
954 why |= SIGNAL_CLD_CONTINUED;
955 else if (signal->group_stop_count)
956 why |= SIGNAL_CLD_STOPPED;
960 * The first thread which returns from do_signal_stop()
961 * will take ->siglock, notice SIGNAL_CLD_MASK, and
962 * notify its parent. See get_signal().
964 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
965 signal->group_stop_count = 0;
966 signal->group_exit_code = 0;
970 return !sig_ignored(p, sig, force);
974 * Test if P wants to take SIG. After we've checked all threads with this,
975 * it's equivalent to finding no threads not blocking SIG. Any threads not
976 * blocking SIG were ruled out because they are not running and already
977 * have pending signals. Such threads will dequeue from the shared queue
978 * as soon as they're available, so putting the signal on the shared queue
979 * will be equivalent to sending it to one such thread.
981 static inline bool wants_signal(int sig, struct task_struct *p)
983 if (sigismember(&p->blocked, sig))
986 if (p->flags & PF_EXITING)
992 if (task_is_stopped_or_traced(p))
995 return task_curr(p) || !task_sigpending(p);
998 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1000 struct signal_struct *signal = p->signal;
1001 struct task_struct *t;
1004 * Now find a thread we can wake up to take the signal off the queue.
1006 * Try the suggested task first (may or may not be the main thread).
1008 if (wants_signal(sig, p))
1010 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012 * There is just one thread and it does not need to be woken.
1013 * It will dequeue unblocked signals before it runs again.
1018 * Otherwise try to find a suitable thread.
1020 t = signal->curr_target;
1021 while (!wants_signal(sig, t)) {
1023 if (t == signal->curr_target)
1025 * No thread needs to be woken.
1026 * Any eligible threads will see
1027 * the signal in the queue soon.
1031 signal->curr_target = t;
1035 * Found a killable thread. If the signal will be fatal,
1036 * then start taking the whole group down immediately.
1038 if (sig_fatal(p, sig) &&
1039 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1040 !sigismember(&t->real_blocked, sig) &&
1041 (sig == SIGKILL || !p->ptrace)) {
1043 * This signal will be fatal to the whole group.
1045 if (!sig_kernel_coredump(sig)) {
1047 * Start a group exit and wake everybody up.
1048 * This way we don't have other threads
1049 * running and doing things after a slower
1050 * thread has the fatal signal pending.
1052 signal->flags = SIGNAL_GROUP_EXIT;
1053 signal->group_exit_code = sig;
1054 signal->group_stop_count = 0;
1057 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1058 sigaddset(&t->pending.signal, SIGKILL);
1059 signal_wake_up(t, 1);
1060 } while_each_thread(p, t);
1066 * The signal is already in the shared-pending queue.
1067 * Tell the chosen thread to wake up and dequeue it.
1069 signal_wake_up(t, sig == SIGKILL);
1073 static inline bool legacy_queue(struct sigpending *signals, int sig)
1075 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1078 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1079 struct task_struct *t, enum pid_type type, bool force)
1081 struct sigpending *pending;
1083 int override_rlimit;
1084 int ret = 0, result;
1086 lockdep_assert_held(&t->sighand->siglock);
1088 result = TRACE_SIGNAL_IGNORED;
1089 if (!prepare_signal(sig, t, force))
1092 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094 * Short-circuit ignored signals and support queuing
1095 * exactly one non-rt signal, so that we can get more
1096 * detailed information about the cause of the signal.
1098 result = TRACE_SIGNAL_ALREADY_PENDING;
1099 if (legacy_queue(pending, sig))
1102 result = TRACE_SIGNAL_DELIVERED;
1104 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1106 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1110 * Real-time signals must be queued if sent by sigqueue, or
1111 * some other real-time mechanism. It is implementation
1112 * defined whether kill() does so. We attempt to do so, on
1113 * the principle of least surprise, but since kill is not
1114 * allowed to fail with EAGAIN when low on memory we just
1115 * make sure at least one signal gets delivered and don't
1116 * pass on the info struct.
1119 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121 override_rlimit = 0;
1123 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1126 list_add_tail(&q->list, &pending->list);
1127 switch ((unsigned long) info) {
1128 case (unsigned long) SEND_SIG_NOINFO:
1129 clear_siginfo(&q->info);
1130 q->info.si_signo = sig;
1131 q->info.si_errno = 0;
1132 q->info.si_code = SI_USER;
1133 q->info.si_pid = task_tgid_nr_ns(current,
1134 task_active_pid_ns(t));
1137 from_kuid_munged(task_cred_xxx(t, user_ns),
1141 case (unsigned long) SEND_SIG_PRIV:
1142 clear_siginfo(&q->info);
1143 q->info.si_signo = sig;
1144 q->info.si_errno = 0;
1145 q->info.si_code = SI_KERNEL;
1150 copy_siginfo(&q->info, info);
1153 } else if (!is_si_special(info) &&
1154 sig >= SIGRTMIN && info->si_code != SI_USER) {
1156 * Queue overflow, abort. We may abort if the
1157 * signal was rt and sent by user using something
1158 * other than kill().
1160 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1165 * This is a silent loss of information. We still
1166 * send the signal, but the *info bits are lost.
1168 result = TRACE_SIGNAL_LOSE_INFO;
1172 signalfd_notify(t, sig);
1173 sigaddset(&pending->signal, sig);
1175 /* Let multiprocess signals appear after on-going forks */
1176 if (type > PIDTYPE_TGID) {
1177 struct multiprocess_signals *delayed;
1178 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1179 sigset_t *signal = &delayed->signal;
1180 /* Can't queue both a stop and a continue signal */
1182 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1183 else if (sig_kernel_stop(sig))
1184 sigdelset(signal, SIGCONT);
1185 sigaddset(signal, sig);
1189 complete_signal(sig, t, type);
1191 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1195 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1198 switch (siginfo_layout(info->si_signo, info->si_code)) {
1207 case SIL_FAULT_TRAPNO:
1208 case SIL_FAULT_MCEERR:
1209 case SIL_FAULT_BNDERR:
1210 case SIL_FAULT_PKUERR:
1211 case SIL_FAULT_PERF_EVENT:
1219 int send_signal_locked(int sig, struct kernel_siginfo *info,
1220 struct task_struct *t, enum pid_type type)
1222 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1225 if (info == SEND_SIG_NOINFO) {
1226 /* Force if sent from an ancestor pid namespace */
1227 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1228 } else if (info == SEND_SIG_PRIV) {
1229 /* Don't ignore kernel generated signals */
1231 } else if (has_si_pid_and_uid(info)) {
1232 /* SIGKILL and SIGSTOP is special or has ids */
1233 struct user_namespace *t_user_ns;
1236 t_user_ns = task_cred_xxx(t, user_ns);
1237 if (current_user_ns() != t_user_ns) {
1238 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1239 info->si_uid = from_kuid_munged(t_user_ns, uid);
1243 /* A kernel generated signal? */
1244 force = (info->si_code == SI_KERNEL);
1246 /* From an ancestor pid namespace? */
1247 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1252 return __send_signal_locked(sig, info, t, type, force);
1255 static void print_fatal_signal(int signr)
1257 struct pt_regs *regs = task_pt_regs(current);
1258 pr_info("potentially unexpected fatal signal %d.\n", signr);
1260 #if defined(__i386__) && !defined(__arch_um__)
1261 pr_info("code at %08lx: ", regs->ip);
1264 for (i = 0; i < 16; i++) {
1267 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1269 pr_cont("%02x ", insn);
1279 static int __init setup_print_fatal_signals(char *str)
1281 get_option (&str, &print_fatal_signals);
1286 __setup("print-fatal-signals=", setup_print_fatal_signals);
1288 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1291 unsigned long flags;
1294 if (lock_task_sighand(p, &flags)) {
1295 ret = send_signal_locked(sig, info, p, type);
1296 unlock_task_sighand(p, &flags);
1303 HANDLER_CURRENT, /* If reachable use the current handler */
1304 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1305 HANDLER_EXIT, /* Only visible as the process exit code */
1309 * Force a signal that the process can't ignore: if necessary
1310 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1312 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1313 * since we do not want to have a signal handler that was blocked
1314 * be invoked when user space had explicitly blocked it.
1316 * We don't want to have recursive SIGSEGV's etc, for example,
1317 * that is why we also clear SIGNAL_UNKILLABLE.
1320 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1321 enum sig_handler handler)
1323 unsigned long int flags;
1324 int ret, blocked, ignored;
1325 struct k_sigaction *action;
1326 int sig = info->si_signo;
1328 spin_lock_irqsave(&t->sighand->siglock, flags);
1329 action = &t->sighand->action[sig-1];
1330 ignored = action->sa.sa_handler == SIG_IGN;
1331 blocked = sigismember(&t->blocked, sig);
1332 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1333 action->sa.sa_handler = SIG_DFL;
1334 if (handler == HANDLER_EXIT)
1335 action->sa.sa_flags |= SA_IMMUTABLE;
1337 sigdelset(&t->blocked, sig);
1338 recalc_sigpending_and_wake(t);
1342 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1343 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1345 if (action->sa.sa_handler == SIG_DFL &&
1346 (!t->ptrace || (handler == HANDLER_EXIT)))
1347 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1348 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1349 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1354 int force_sig_info(struct kernel_siginfo *info)
1356 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1360 * Nuke all other threads in the group.
1362 int zap_other_threads(struct task_struct *p)
1364 struct task_struct *t = p;
1367 p->signal->group_stop_count = 0;
1369 while_each_thread(p, t) {
1370 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1373 /* Don't bother with already dead threads */
1376 sigaddset(&t->pending.signal, SIGKILL);
1377 signal_wake_up(t, 1);
1383 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1384 unsigned long *flags)
1386 struct sighand_struct *sighand;
1390 sighand = rcu_dereference(tsk->sighand);
1391 if (unlikely(sighand == NULL))
1395 * This sighand can be already freed and even reused, but
1396 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1397 * initializes ->siglock: this slab can't go away, it has
1398 * the same object type, ->siglock can't be reinitialized.
1400 * We need to ensure that tsk->sighand is still the same
1401 * after we take the lock, we can race with de_thread() or
1402 * __exit_signal(). In the latter case the next iteration
1403 * must see ->sighand == NULL.
1405 spin_lock_irqsave(&sighand->siglock, *flags);
1406 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408 spin_unlock_irqrestore(&sighand->siglock, *flags);
1415 #ifdef CONFIG_LOCKDEP
1416 void lockdep_assert_task_sighand_held(struct task_struct *task)
1418 struct sighand_struct *sighand;
1421 sighand = rcu_dereference(task->sighand);
1423 lockdep_assert_held(&sighand->siglock);
1431 * send signal info to all the members of a group
1433 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1434 struct task_struct *p, enum pid_type type)
1439 ret = check_kill_permission(sig, info, p);
1443 ret = do_send_sig_info(sig, info, p, type);
1449 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1450 * control characters do (^C, ^Z etc)
1451 * - the caller must hold at least a readlock on tasklist_lock
1453 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1455 struct task_struct *p = NULL;
1456 int retval, success;
1460 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1461 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1464 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1465 return success ? 0 : retval;
1468 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1471 struct task_struct *p;
1475 p = pid_task(pid, PIDTYPE_PID);
1477 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1479 if (likely(!p || error != -ESRCH))
1483 * The task was unhashed in between, try again. If it
1484 * is dead, pid_task() will return NULL, if we race with
1485 * de_thread() it will find the new leader.
1490 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1494 error = kill_pid_info(sig, info, find_vpid(pid));
1499 static inline bool kill_as_cred_perm(const struct cred *cred,
1500 struct task_struct *target)
1502 const struct cred *pcred = __task_cred(target);
1504 return uid_eq(cred->euid, pcred->suid) ||
1505 uid_eq(cred->euid, pcred->uid) ||
1506 uid_eq(cred->uid, pcred->suid) ||
1507 uid_eq(cred->uid, pcred->uid);
1511 * The usb asyncio usage of siginfo is wrong. The glibc support
1512 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1513 * AKA after the generic fields:
1514 * kernel_pid_t si_pid;
1515 * kernel_uid32_t si_uid;
1516 * sigval_t si_value;
1518 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1519 * after the generic fields is:
1520 * void __user *si_addr;
1522 * This is a practical problem when there is a 64bit big endian kernel
1523 * and a 32bit userspace. As the 32bit address will encoded in the low
1524 * 32bits of the pointer. Those low 32bits will be stored at higher
1525 * address than appear in a 32 bit pointer. So userspace will not
1526 * see the address it was expecting for it's completions.
1528 * There is nothing in the encoding that can allow
1529 * copy_siginfo_to_user32 to detect this confusion of formats, so
1530 * handle this by requiring the caller of kill_pid_usb_asyncio to
1531 * notice when this situration takes place and to store the 32bit
1532 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1535 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1536 struct pid *pid, const struct cred *cred)
1538 struct kernel_siginfo info;
1539 struct task_struct *p;
1540 unsigned long flags;
1543 if (!valid_signal(sig))
1546 clear_siginfo(&info);
1547 info.si_signo = sig;
1548 info.si_errno = errno;
1549 info.si_code = SI_ASYNCIO;
1550 *((sigval_t *)&info.si_pid) = addr;
1553 p = pid_task(pid, PIDTYPE_PID);
1558 if (!kill_as_cred_perm(cred, p)) {
1562 ret = security_task_kill(p, &info, sig, cred);
1567 if (lock_task_sighand(p, &flags)) {
1568 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1569 unlock_task_sighand(p, &flags);
1577 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1580 * kill_something_info() interprets pid in interesting ways just like kill(2).
1582 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1583 * is probably wrong. Should make it like BSD or SYSV.
1586 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1591 return kill_proc_info(sig, info, pid);
1593 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1597 read_lock(&tasklist_lock);
1599 ret = __kill_pgrp_info(sig, info,
1600 pid ? find_vpid(-pid) : task_pgrp(current));
1602 int retval = 0, count = 0;
1603 struct task_struct * p;
1605 for_each_process(p) {
1606 if (task_pid_vnr(p) > 1 &&
1607 !same_thread_group(p, current)) {
1608 int err = group_send_sig_info(sig, info, p,
1615 ret = count ? retval : -ESRCH;
1617 read_unlock(&tasklist_lock);
1623 * These are for backward compatibility with the rest of the kernel source.
1626 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1629 * Make sure legacy kernel users don't send in bad values
1630 * (normal paths check this in check_kill_permission).
1632 if (!valid_signal(sig))
1635 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1637 EXPORT_SYMBOL(send_sig_info);
1639 #define __si_special(priv) \
1640 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1643 send_sig(int sig, struct task_struct *p, int priv)
1645 return send_sig_info(sig, __si_special(priv), p);
1647 EXPORT_SYMBOL(send_sig);
1649 void force_sig(int sig)
1651 struct kernel_siginfo info;
1653 clear_siginfo(&info);
1654 info.si_signo = sig;
1656 info.si_code = SI_KERNEL;
1659 force_sig_info(&info);
1661 EXPORT_SYMBOL(force_sig);
1663 void force_fatal_sig(int sig)
1665 struct kernel_siginfo info;
1667 clear_siginfo(&info);
1668 info.si_signo = sig;
1670 info.si_code = SI_KERNEL;
1673 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1676 void force_exit_sig(int sig)
1678 struct kernel_siginfo info;
1680 clear_siginfo(&info);
1681 info.si_signo = sig;
1683 info.si_code = SI_KERNEL;
1686 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1690 * When things go south during signal handling, we
1691 * will force a SIGSEGV. And if the signal that caused
1692 * the problem was already a SIGSEGV, we'll want to
1693 * make sure we don't even try to deliver the signal..
1695 void force_sigsegv(int sig)
1698 force_fatal_sig(SIGSEGV);
1703 int force_sig_fault_to_task(int sig, int code, void __user *addr
1704 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1705 , struct task_struct *t)
1707 struct kernel_siginfo info;
1709 clear_siginfo(&info);
1710 info.si_signo = sig;
1712 info.si_code = code;
1713 info.si_addr = addr;
1716 info.si_flags = flags;
1719 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1722 int force_sig_fault(int sig, int code, void __user *addr
1723 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1725 return force_sig_fault_to_task(sig, code, addr
1726 ___ARCH_SI_IA64(imm, flags, isr), current);
1729 int send_sig_fault(int sig, int code, void __user *addr
1730 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1731 , struct task_struct *t)
1733 struct kernel_siginfo info;
1735 clear_siginfo(&info);
1736 info.si_signo = sig;
1738 info.si_code = code;
1739 info.si_addr = addr;
1742 info.si_flags = flags;
1745 return send_sig_info(info.si_signo, &info, t);
1748 int force_sig_mceerr(int code, void __user *addr, short lsb)
1750 struct kernel_siginfo info;
1752 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1753 clear_siginfo(&info);
1754 info.si_signo = SIGBUS;
1756 info.si_code = code;
1757 info.si_addr = addr;
1758 info.si_addr_lsb = lsb;
1759 return force_sig_info(&info);
1762 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1764 struct kernel_siginfo info;
1766 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1767 clear_siginfo(&info);
1768 info.si_signo = SIGBUS;
1770 info.si_code = code;
1771 info.si_addr = addr;
1772 info.si_addr_lsb = lsb;
1773 return send_sig_info(info.si_signo, &info, t);
1775 EXPORT_SYMBOL(send_sig_mceerr);
1777 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1779 struct kernel_siginfo info;
1781 clear_siginfo(&info);
1782 info.si_signo = SIGSEGV;
1784 info.si_code = SEGV_BNDERR;
1785 info.si_addr = addr;
1786 info.si_lower = lower;
1787 info.si_upper = upper;
1788 return force_sig_info(&info);
1792 int force_sig_pkuerr(void __user *addr, u32 pkey)
1794 struct kernel_siginfo info;
1796 clear_siginfo(&info);
1797 info.si_signo = SIGSEGV;
1799 info.si_code = SEGV_PKUERR;
1800 info.si_addr = addr;
1801 info.si_pkey = pkey;
1802 return force_sig_info(&info);
1806 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1808 struct kernel_siginfo info;
1810 clear_siginfo(&info);
1811 info.si_signo = SIGTRAP;
1813 info.si_code = TRAP_PERF;
1814 info.si_addr = addr;
1815 info.si_perf_data = sig_data;
1816 info.si_perf_type = type;
1819 * Signals generated by perf events should not terminate the whole
1820 * process if SIGTRAP is blocked, however, delivering the signal
1821 * asynchronously is better than not delivering at all. But tell user
1822 * space if the signal was asynchronous, so it can clearly be
1823 * distinguished from normal synchronous ones.
1825 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1826 TRAP_PERF_FLAG_ASYNC :
1829 return send_sig_info(info.si_signo, &info, current);
1833 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1834 * @syscall: syscall number to send to userland
1835 * @reason: filter-supplied reason code to send to userland (via si_errno)
1836 * @force_coredump: true to trigger a coredump
1838 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1840 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1842 struct kernel_siginfo info;
1844 clear_siginfo(&info);
1845 info.si_signo = SIGSYS;
1846 info.si_code = SYS_SECCOMP;
1847 info.si_call_addr = (void __user *)KSTK_EIP(current);
1848 info.si_errno = reason;
1849 info.si_arch = syscall_get_arch(current);
1850 info.si_syscall = syscall;
1851 return force_sig_info_to_task(&info, current,
1852 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1855 /* For the crazy architectures that include trap information in
1856 * the errno field, instead of an actual errno value.
1858 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1860 struct kernel_siginfo info;
1862 clear_siginfo(&info);
1863 info.si_signo = SIGTRAP;
1864 info.si_errno = errno;
1865 info.si_code = TRAP_HWBKPT;
1866 info.si_addr = addr;
1867 return force_sig_info(&info);
1870 /* For the rare architectures that include trap information using
1873 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1875 struct kernel_siginfo info;
1877 clear_siginfo(&info);
1878 info.si_signo = sig;
1880 info.si_code = code;
1881 info.si_addr = addr;
1882 info.si_trapno = trapno;
1883 return force_sig_info(&info);
1886 /* For the rare architectures that include trap information using
1889 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1890 struct task_struct *t)
1892 struct kernel_siginfo info;
1894 clear_siginfo(&info);
1895 info.si_signo = sig;
1897 info.si_code = code;
1898 info.si_addr = addr;
1899 info.si_trapno = trapno;
1900 return send_sig_info(info.si_signo, &info, t);
1903 int kill_pgrp(struct pid *pid, int sig, int priv)
1907 read_lock(&tasklist_lock);
1908 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1909 read_unlock(&tasklist_lock);
1913 EXPORT_SYMBOL(kill_pgrp);
1915 int kill_pid(struct pid *pid, int sig, int priv)
1917 return kill_pid_info(sig, __si_special(priv), pid);
1919 EXPORT_SYMBOL(kill_pid);
1922 * These functions support sending signals using preallocated sigqueue
1923 * structures. This is needed "because realtime applications cannot
1924 * afford to lose notifications of asynchronous events, like timer
1925 * expirations or I/O completions". In the case of POSIX Timers
1926 * we allocate the sigqueue structure from the timer_create. If this
1927 * allocation fails we are able to report the failure to the application
1928 * with an EAGAIN error.
1930 struct sigqueue *sigqueue_alloc(void)
1932 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1935 void sigqueue_free(struct sigqueue *q)
1937 unsigned long flags;
1938 spinlock_t *lock = ¤t->sighand->siglock;
1940 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1942 * We must hold ->siglock while testing q->list
1943 * to serialize with collect_signal() or with
1944 * __exit_signal()->flush_sigqueue().
1946 spin_lock_irqsave(lock, flags);
1947 q->flags &= ~SIGQUEUE_PREALLOC;
1949 * If it is queued it will be freed when dequeued,
1950 * like the "regular" sigqueue.
1952 if (!list_empty(&q->list))
1954 spin_unlock_irqrestore(lock, flags);
1960 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1962 int sig = q->info.si_signo;
1963 struct sigpending *pending;
1964 struct task_struct *t;
1965 unsigned long flags;
1968 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1974 * This function is used by POSIX timers to deliver a timer signal.
1975 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1976 * set), the signal must be delivered to the specific thread (queues
1979 * Where type is not PIDTYPE_PID, signals must be delivered to the
1980 * process. In this case, prefer to deliver to current if it is in
1981 * the same thread group as the target process, which avoids
1982 * unnecessarily waking up a potentially idle task.
1984 t = pid_task(pid, type);
1987 if (type != PIDTYPE_PID && same_thread_group(t, current))
1989 if (!likely(lock_task_sighand(t, &flags)))
1992 ret = 1; /* the signal is ignored */
1993 result = TRACE_SIGNAL_IGNORED;
1994 if (!prepare_signal(sig, t, false))
1998 if (unlikely(!list_empty(&q->list))) {
2000 * If an SI_TIMER entry is already queue just increment
2001 * the overrun count.
2003 BUG_ON(q->info.si_code != SI_TIMER);
2004 q->info.si_overrun++;
2005 result = TRACE_SIGNAL_ALREADY_PENDING;
2008 q->info.si_overrun = 0;
2010 signalfd_notify(t, sig);
2011 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2012 list_add_tail(&q->list, &pending->list);
2013 sigaddset(&pending->signal, sig);
2014 complete_signal(sig, t, type);
2015 result = TRACE_SIGNAL_DELIVERED;
2017 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2018 unlock_task_sighand(t, &flags);
2024 static void do_notify_pidfd(struct task_struct *task)
2028 WARN_ON(task->exit_state == 0);
2029 pid = task_pid(task);
2030 wake_up_all(&pid->wait_pidfd);
2034 * Let a parent know about the death of a child.
2035 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2037 * Returns true if our parent ignored us and so we've switched to
2040 bool do_notify_parent(struct task_struct *tsk, int sig)
2042 struct kernel_siginfo info;
2043 unsigned long flags;
2044 struct sighand_struct *psig;
2045 bool autoreap = false;
2048 WARN_ON_ONCE(sig == -1);
2050 /* do_notify_parent_cldstop should have been called instead. */
2051 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2053 WARN_ON_ONCE(!tsk->ptrace &&
2054 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2056 /* Wake up all pidfd waiters */
2057 do_notify_pidfd(tsk);
2059 if (sig != SIGCHLD) {
2061 * This is only possible if parent == real_parent.
2062 * Check if it has changed security domain.
2064 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2068 clear_siginfo(&info);
2069 info.si_signo = sig;
2072 * We are under tasklist_lock here so our parent is tied to
2073 * us and cannot change.
2075 * task_active_pid_ns will always return the same pid namespace
2076 * until a task passes through release_task.
2078 * write_lock() currently calls preempt_disable() which is the
2079 * same as rcu_read_lock(), but according to Oleg, this is not
2080 * correct to rely on this
2083 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2084 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2088 task_cputime(tsk, &utime, &stime);
2089 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2090 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2092 info.si_status = tsk->exit_code & 0x7f;
2093 if (tsk->exit_code & 0x80)
2094 info.si_code = CLD_DUMPED;
2095 else if (tsk->exit_code & 0x7f)
2096 info.si_code = CLD_KILLED;
2098 info.si_code = CLD_EXITED;
2099 info.si_status = tsk->exit_code >> 8;
2102 psig = tsk->parent->sighand;
2103 spin_lock_irqsave(&psig->siglock, flags);
2104 if (!tsk->ptrace && sig == SIGCHLD &&
2105 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2106 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2108 * We are exiting and our parent doesn't care. POSIX.1
2109 * defines special semantics for setting SIGCHLD to SIG_IGN
2110 * or setting the SA_NOCLDWAIT flag: we should be reaped
2111 * automatically and not left for our parent's wait4 call.
2112 * Rather than having the parent do it as a magic kind of
2113 * signal handler, we just set this to tell do_exit that we
2114 * can be cleaned up without becoming a zombie. Note that
2115 * we still call __wake_up_parent in this case, because a
2116 * blocked sys_wait4 might now return -ECHILD.
2118 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2119 * is implementation-defined: we do (if you don't want
2120 * it, just use SIG_IGN instead).
2123 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2127 * Send with __send_signal as si_pid and si_uid are in the
2128 * parent's namespaces.
2130 if (valid_signal(sig) && sig)
2131 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2132 __wake_up_parent(tsk, tsk->parent);
2133 spin_unlock_irqrestore(&psig->siglock, flags);
2139 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2140 * @tsk: task reporting the state change
2141 * @for_ptracer: the notification is for ptracer
2142 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2144 * Notify @tsk's parent that the stopped/continued state has changed. If
2145 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2146 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2149 * Must be called with tasklist_lock at least read locked.
2151 static void do_notify_parent_cldstop(struct task_struct *tsk,
2152 bool for_ptracer, int why)
2154 struct kernel_siginfo info;
2155 unsigned long flags;
2156 struct task_struct *parent;
2157 struct sighand_struct *sighand;
2161 parent = tsk->parent;
2163 tsk = tsk->group_leader;
2164 parent = tsk->real_parent;
2167 clear_siginfo(&info);
2168 info.si_signo = SIGCHLD;
2171 * see comment in do_notify_parent() about the following 4 lines
2174 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2175 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2178 task_cputime(tsk, &utime, &stime);
2179 info.si_utime = nsec_to_clock_t(utime);
2180 info.si_stime = nsec_to_clock_t(stime);
2185 info.si_status = SIGCONT;
2188 info.si_status = tsk->signal->group_exit_code & 0x7f;
2191 info.si_status = tsk->exit_code & 0x7f;
2197 sighand = parent->sighand;
2198 spin_lock_irqsave(&sighand->siglock, flags);
2199 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2200 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2201 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2203 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2205 __wake_up_parent(tsk, parent);
2206 spin_unlock_irqrestore(&sighand->siglock, flags);
2210 * This must be called with current->sighand->siglock held.
2212 * This should be the path for all ptrace stops.
2213 * We always set current->last_siginfo while stopped here.
2214 * That makes it a way to test a stopped process for
2215 * being ptrace-stopped vs being job-control-stopped.
2217 * Returns the signal the ptracer requested the code resume
2218 * with. If the code did not stop because the tracer is gone,
2219 * the stop signal remains unchanged unless clear_code.
2221 static int ptrace_stop(int exit_code, int why, unsigned long message,
2222 kernel_siginfo_t *info)
2223 __releases(¤t->sighand->siglock)
2224 __acquires(¤t->sighand->siglock)
2226 bool gstop_done = false;
2228 if (arch_ptrace_stop_needed()) {
2230 * The arch code has something special to do before a
2231 * ptrace stop. This is allowed to block, e.g. for faults
2232 * on user stack pages. We can't keep the siglock while
2233 * calling arch_ptrace_stop, so we must release it now.
2234 * To preserve proper semantics, we must do this before
2235 * any signal bookkeeping like checking group_stop_count.
2237 spin_unlock_irq(¤t->sighand->siglock);
2239 spin_lock_irq(¤t->sighand->siglock);
2243 * After this point ptrace_signal_wake_up or signal_wake_up
2244 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2245 * signal comes in. Handle previous ptrace_unlinks and fatal
2246 * signals here to prevent ptrace_stop sleeping in schedule.
2248 if (!current->ptrace || __fatal_signal_pending(current))
2251 set_special_state(TASK_TRACED);
2252 current->jobctl |= JOBCTL_TRACED;
2255 * We're committing to trapping. TRACED should be visible before
2256 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2257 * Also, transition to TRACED and updates to ->jobctl should be
2258 * atomic with respect to siglock and should be done after the arch
2259 * hook as siglock is released and regrabbed across it.
2264 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2266 * set_current_state() smp_wmb();
2268 * wait_task_stopped()
2269 * task_stopped_code()
2270 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2274 current->ptrace_message = message;
2275 current->last_siginfo = info;
2276 current->exit_code = exit_code;
2279 * If @why is CLD_STOPPED, we're trapping to participate in a group
2280 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2281 * across siglock relocks since INTERRUPT was scheduled, PENDING
2282 * could be clear now. We act as if SIGCONT is received after
2283 * TASK_TRACED is entered - ignore it.
2285 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2286 gstop_done = task_participate_group_stop(current);
2288 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2289 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2290 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2291 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2293 /* entering a trap, clear TRAPPING */
2294 task_clear_jobctl_trapping(current);
2296 spin_unlock_irq(¤t->sighand->siglock);
2297 read_lock(&tasklist_lock);
2299 * Notify parents of the stop.
2301 * While ptraced, there are two parents - the ptracer and
2302 * the real_parent of the group_leader. The ptracer should
2303 * know about every stop while the real parent is only
2304 * interested in the completion of group stop. The states
2305 * for the two don't interact with each other. Notify
2306 * separately unless they're gonna be duplicates.
2308 if (current->ptrace)
2309 do_notify_parent_cldstop(current, true, why);
2310 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2311 do_notify_parent_cldstop(current, false, why);
2314 * Don't want to allow preemption here, because
2315 * sys_ptrace() needs this task to be inactive.
2317 * XXX: implement read_unlock_no_resched().
2320 read_unlock(&tasklist_lock);
2321 cgroup_enter_frozen();
2322 preempt_enable_no_resched();
2324 cgroup_leave_frozen(true);
2327 * We are back. Now reacquire the siglock before touching
2328 * last_siginfo, so that we are sure to have synchronized with
2329 * any signal-sending on another CPU that wants to examine it.
2331 spin_lock_irq(¤t->sighand->siglock);
2332 exit_code = current->exit_code;
2333 current->last_siginfo = NULL;
2334 current->ptrace_message = 0;
2335 current->exit_code = 0;
2337 /* LISTENING can be set only during STOP traps, clear it */
2338 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2341 * Queued signals ignored us while we were stopped for tracing.
2342 * So check for any that we should take before resuming user mode.
2343 * This sets TIF_SIGPENDING, but never clears it.
2345 recalc_sigpending_tsk(current);
2349 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2351 kernel_siginfo_t info;
2353 clear_siginfo(&info);
2354 info.si_signo = signr;
2355 info.si_code = exit_code;
2356 info.si_pid = task_pid_vnr(current);
2357 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2359 /* Let the debugger run. */
2360 return ptrace_stop(exit_code, why, message, &info);
2363 int ptrace_notify(int exit_code, unsigned long message)
2367 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2368 if (unlikely(task_work_pending(current)))
2371 spin_lock_irq(¤t->sighand->siglock);
2372 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2373 spin_unlock_irq(¤t->sighand->siglock);
2378 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2379 * @signr: signr causing group stop if initiating
2381 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2382 * and participate in it. If already set, participate in the existing
2383 * group stop. If participated in a group stop (and thus slept), %true is
2384 * returned with siglock released.
2386 * If ptraced, this function doesn't handle stop itself. Instead,
2387 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2388 * untouched. The caller must ensure that INTERRUPT trap handling takes
2389 * places afterwards.
2392 * Must be called with @current->sighand->siglock held, which is released
2396 * %false if group stop is already cancelled or ptrace trap is scheduled.
2397 * %true if participated in group stop.
2399 static bool do_signal_stop(int signr)
2400 __releases(¤t->sighand->siglock)
2402 struct signal_struct *sig = current->signal;
2404 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2405 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2406 struct task_struct *t;
2408 /* signr will be recorded in task->jobctl for retries */
2409 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2411 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2412 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2413 unlikely(sig->group_exec_task))
2416 * There is no group stop already in progress. We must
2419 * While ptraced, a task may be resumed while group stop is
2420 * still in effect and then receive a stop signal and
2421 * initiate another group stop. This deviates from the
2422 * usual behavior as two consecutive stop signals can't
2423 * cause two group stops when !ptraced. That is why we
2424 * also check !task_is_stopped(t) below.
2426 * The condition can be distinguished by testing whether
2427 * SIGNAL_STOP_STOPPED is already set. Don't generate
2428 * group_exit_code in such case.
2430 * This is not necessary for SIGNAL_STOP_CONTINUED because
2431 * an intervening stop signal is required to cause two
2432 * continued events regardless of ptrace.
2434 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2435 sig->group_exit_code = signr;
2437 sig->group_stop_count = 0;
2439 if (task_set_jobctl_pending(current, signr | gstop))
2440 sig->group_stop_count++;
2443 while_each_thread(current, t) {
2445 * Setting state to TASK_STOPPED for a group
2446 * stop is always done with the siglock held,
2447 * so this check has no races.
2449 if (!task_is_stopped(t) &&
2450 task_set_jobctl_pending(t, signr | gstop)) {
2451 sig->group_stop_count++;
2452 if (likely(!(t->ptrace & PT_SEIZED)))
2453 signal_wake_up(t, 0);
2455 ptrace_trap_notify(t);
2460 if (likely(!current->ptrace)) {
2464 * If there are no other threads in the group, or if there
2465 * is a group stop in progress and we are the last to stop,
2466 * report to the parent.
2468 if (task_participate_group_stop(current))
2469 notify = CLD_STOPPED;
2471 current->jobctl |= JOBCTL_STOPPED;
2472 set_special_state(TASK_STOPPED);
2473 spin_unlock_irq(¤t->sighand->siglock);
2476 * Notify the parent of the group stop completion. Because
2477 * we're not holding either the siglock or tasklist_lock
2478 * here, ptracer may attach inbetween; however, this is for
2479 * group stop and should always be delivered to the real
2480 * parent of the group leader. The new ptracer will get
2481 * its notification when this task transitions into
2485 read_lock(&tasklist_lock);
2486 do_notify_parent_cldstop(current, false, notify);
2487 read_unlock(&tasklist_lock);
2490 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2491 cgroup_enter_frozen();
2496 * While ptraced, group stop is handled by STOP trap.
2497 * Schedule it and let the caller deal with it.
2499 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2505 * do_jobctl_trap - take care of ptrace jobctl traps
2507 * When PT_SEIZED, it's used for both group stop and explicit
2508 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2509 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2510 * the stop signal; otherwise, %SIGTRAP.
2512 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2513 * number as exit_code and no siginfo.
2516 * Must be called with @current->sighand->siglock held, which may be
2517 * released and re-acquired before returning with intervening sleep.
2519 static void do_jobctl_trap(void)
2521 struct signal_struct *signal = current->signal;
2522 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2524 if (current->ptrace & PT_SEIZED) {
2525 if (!signal->group_stop_count &&
2526 !(signal->flags & SIGNAL_STOP_STOPPED))
2528 WARN_ON_ONCE(!signr);
2529 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2532 WARN_ON_ONCE(!signr);
2533 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2538 * do_freezer_trap - handle the freezer jobctl trap
2540 * Puts the task into frozen state, if only the task is not about to quit.
2541 * In this case it drops JOBCTL_TRAP_FREEZE.
2544 * Must be called with @current->sighand->siglock held,
2545 * which is always released before returning.
2547 static void do_freezer_trap(void)
2548 __releases(¤t->sighand->siglock)
2551 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2552 * let's make another loop to give it a chance to be handled.
2553 * In any case, we'll return back.
2555 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2556 JOBCTL_TRAP_FREEZE) {
2557 spin_unlock_irq(¤t->sighand->siglock);
2562 * Now we're sure that there is no pending fatal signal and no
2563 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2564 * immediately (if there is a non-fatal signal pending), and
2565 * put the task into sleep.
2567 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2568 clear_thread_flag(TIF_SIGPENDING);
2569 spin_unlock_irq(¤t->sighand->siglock);
2570 cgroup_enter_frozen();
2574 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2577 * We do not check sig_kernel_stop(signr) but set this marker
2578 * unconditionally because we do not know whether debugger will
2579 * change signr. This flag has no meaning unless we are going
2580 * to stop after return from ptrace_stop(). In this case it will
2581 * be checked in do_signal_stop(), we should only stop if it was
2582 * not cleared by SIGCONT while we were sleeping. See also the
2583 * comment in dequeue_signal().
2585 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2586 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2588 /* We're back. Did the debugger cancel the sig? */
2593 * Update the siginfo structure if the signal has
2594 * changed. If the debugger wanted something
2595 * specific in the siginfo structure then it should
2596 * have updated *info via PTRACE_SETSIGINFO.
2598 if (signr != info->si_signo) {
2599 clear_siginfo(info);
2600 info->si_signo = signr;
2602 info->si_code = SI_USER;
2604 info->si_pid = task_pid_vnr(current->parent);
2605 info->si_uid = from_kuid_munged(current_user_ns(),
2606 task_uid(current->parent));
2610 /* If the (new) signal is now blocked, requeue it. */
2611 if (sigismember(¤t->blocked, signr) ||
2612 fatal_signal_pending(current)) {
2613 send_signal_locked(signr, info, current, type);
2620 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2622 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2624 case SIL_FAULT_TRAPNO:
2625 case SIL_FAULT_MCEERR:
2626 case SIL_FAULT_BNDERR:
2627 case SIL_FAULT_PKUERR:
2628 case SIL_FAULT_PERF_EVENT:
2629 ksig->info.si_addr = arch_untagged_si_addr(
2630 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2642 bool get_signal(struct ksignal *ksig)
2644 struct sighand_struct *sighand = current->sighand;
2645 struct signal_struct *signal = current->signal;
2648 clear_notify_signal();
2649 if (unlikely(task_work_pending(current)))
2652 if (!task_sigpending(current))
2655 if (unlikely(uprobe_deny_signal()))
2659 * Do this once, we can't return to user-mode if freezing() == T.
2660 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2661 * thus do not need another check after return.
2666 spin_lock_irq(&sighand->siglock);
2669 * Every stopped thread goes here after wakeup. Check to see if
2670 * we should notify the parent, prepare_signal(SIGCONT) encodes
2671 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2673 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2676 if (signal->flags & SIGNAL_CLD_CONTINUED)
2677 why = CLD_CONTINUED;
2681 signal->flags &= ~SIGNAL_CLD_MASK;
2683 spin_unlock_irq(&sighand->siglock);
2686 * Notify the parent that we're continuing. This event is
2687 * always per-process and doesn't make whole lot of sense
2688 * for ptracers, who shouldn't consume the state via
2689 * wait(2) either, but, for backward compatibility, notify
2690 * the ptracer of the group leader too unless it's gonna be
2693 read_lock(&tasklist_lock);
2694 do_notify_parent_cldstop(current, false, why);
2696 if (ptrace_reparented(current->group_leader))
2697 do_notify_parent_cldstop(current->group_leader,
2699 read_unlock(&tasklist_lock);
2705 struct k_sigaction *ka;
2708 /* Has this task already been marked for death? */
2709 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2710 signal->group_exec_task) {
2711 clear_siginfo(&ksig->info);
2712 ksig->info.si_signo = signr = SIGKILL;
2713 sigdelset(¤t->pending.signal, SIGKILL);
2714 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2715 &sighand->action[SIGKILL - 1]);
2716 recalc_sigpending();
2720 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2724 if (unlikely(current->jobctl &
2725 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2726 if (current->jobctl & JOBCTL_TRAP_MASK) {
2728 spin_unlock_irq(&sighand->siglock);
2729 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2736 * If the task is leaving the frozen state, let's update
2737 * cgroup counters and reset the frozen bit.
2739 if (unlikely(cgroup_task_frozen(current))) {
2740 spin_unlock_irq(&sighand->siglock);
2741 cgroup_leave_frozen(false);
2746 * Signals generated by the execution of an instruction
2747 * need to be delivered before any other pending signals
2748 * so that the instruction pointer in the signal stack
2749 * frame points to the faulting instruction.
2752 signr = dequeue_synchronous_signal(&ksig->info);
2754 signr = dequeue_signal(current, ¤t->blocked,
2755 &ksig->info, &type);
2758 break; /* will return 0 */
2760 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2761 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2762 signr = ptrace_signal(signr, &ksig->info, type);
2767 ka = &sighand->action[signr-1];
2769 /* Trace actually delivered signals. */
2770 trace_signal_deliver(signr, &ksig->info, ka);
2772 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2774 if (ka->sa.sa_handler != SIG_DFL) {
2775 /* Run the handler. */
2778 if (ka->sa.sa_flags & SA_ONESHOT)
2779 ka->sa.sa_handler = SIG_DFL;
2781 break; /* will return non-zero "signr" value */
2785 * Now we are doing the default action for this signal.
2787 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2791 * Global init gets no signals it doesn't want.
2792 * Container-init gets no signals it doesn't want from same
2795 * Note that if global/container-init sees a sig_kernel_only()
2796 * signal here, the signal must have been generated internally
2797 * or must have come from an ancestor namespace. In either
2798 * case, the signal cannot be dropped.
2800 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2801 !sig_kernel_only(signr))
2804 if (sig_kernel_stop(signr)) {
2806 * The default action is to stop all threads in
2807 * the thread group. The job control signals
2808 * do nothing in an orphaned pgrp, but SIGSTOP
2809 * always works. Note that siglock needs to be
2810 * dropped during the call to is_orphaned_pgrp()
2811 * because of lock ordering with tasklist_lock.
2812 * This allows an intervening SIGCONT to be posted.
2813 * We need to check for that and bail out if necessary.
2815 if (signr != SIGSTOP) {
2816 spin_unlock_irq(&sighand->siglock);
2818 /* signals can be posted during this window */
2820 if (is_current_pgrp_orphaned())
2823 spin_lock_irq(&sighand->siglock);
2826 if (likely(do_signal_stop(ksig->info.si_signo))) {
2827 /* It released the siglock. */
2832 * We didn't actually stop, due to a race
2833 * with SIGCONT or something like that.
2839 spin_unlock_irq(&sighand->siglock);
2840 if (unlikely(cgroup_task_frozen(current)))
2841 cgroup_leave_frozen(true);
2844 * Anything else is fatal, maybe with a core dump.
2846 current->flags |= PF_SIGNALED;
2848 if (sig_kernel_coredump(signr)) {
2849 if (print_fatal_signals)
2850 print_fatal_signal(ksig->info.si_signo);
2851 proc_coredump_connector(current);
2853 * If it was able to dump core, this kills all
2854 * other threads in the group and synchronizes with
2855 * their demise. If we lost the race with another
2856 * thread getting here, it set group_exit_code
2857 * first and our do_group_exit call below will use
2858 * that value and ignore the one we pass it.
2860 do_coredump(&ksig->info);
2864 * PF_IO_WORKER threads will catch and exit on fatal signals
2865 * themselves. They have cleanup that must be performed, so
2866 * we cannot call do_exit() on their behalf.
2868 if (current->flags & PF_IO_WORKER)
2872 * Death signals, no core dump.
2874 do_group_exit(ksig->info.si_signo);
2877 spin_unlock_irq(&sighand->siglock);
2881 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2882 hide_si_addr_tag_bits(ksig);
2884 return ksig->sig > 0;
2888 * signal_delivered - called after signal delivery to update blocked signals
2889 * @ksig: kernel signal struct
2890 * @stepping: nonzero if debugger single-step or block-step in use
2892 * This function should be called when a signal has successfully been
2893 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2894 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2895 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2897 static void signal_delivered(struct ksignal *ksig, int stepping)
2901 /* A signal was successfully delivered, and the
2902 saved sigmask was stored on the signal frame,
2903 and will be restored by sigreturn. So we can
2904 simply clear the restore sigmask flag. */
2905 clear_restore_sigmask();
2907 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2908 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2909 sigaddset(&blocked, ksig->sig);
2910 set_current_blocked(&blocked);
2911 if (current->sas_ss_flags & SS_AUTODISARM)
2912 sas_ss_reset(current);
2914 ptrace_notify(SIGTRAP, 0);
2917 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2920 force_sigsegv(ksig->sig);
2922 signal_delivered(ksig, stepping);
2926 * It could be that complete_signal() picked us to notify about the
2927 * group-wide signal. Other threads should be notified now to take
2928 * the shared signals in @which since we will not.
2930 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2933 struct task_struct *t;
2935 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2936 if (sigisemptyset(&retarget))
2940 while_each_thread(tsk, t) {
2941 if (t->flags & PF_EXITING)
2944 if (!has_pending_signals(&retarget, &t->blocked))
2946 /* Remove the signals this thread can handle. */
2947 sigandsets(&retarget, &retarget, &t->blocked);
2949 if (!task_sigpending(t))
2950 signal_wake_up(t, 0);
2952 if (sigisemptyset(&retarget))
2957 void exit_signals(struct task_struct *tsk)
2963 * @tsk is about to have PF_EXITING set - lock out users which
2964 * expect stable threadgroup.
2966 cgroup_threadgroup_change_begin(tsk);
2968 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2969 sched_mm_cid_exit_signals(tsk);
2970 tsk->flags |= PF_EXITING;
2971 cgroup_threadgroup_change_end(tsk);
2975 spin_lock_irq(&tsk->sighand->siglock);
2977 * From now this task is not visible for group-wide signals,
2978 * see wants_signal(), do_signal_stop().
2980 sched_mm_cid_exit_signals(tsk);
2981 tsk->flags |= PF_EXITING;
2983 cgroup_threadgroup_change_end(tsk);
2985 if (!task_sigpending(tsk))
2988 unblocked = tsk->blocked;
2989 signotset(&unblocked);
2990 retarget_shared_pending(tsk, &unblocked);
2992 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2993 task_participate_group_stop(tsk))
2994 group_stop = CLD_STOPPED;
2996 spin_unlock_irq(&tsk->sighand->siglock);
2999 * If group stop has completed, deliver the notification. This
3000 * should always go to the real parent of the group leader.
3002 if (unlikely(group_stop)) {
3003 read_lock(&tasklist_lock);
3004 do_notify_parent_cldstop(tsk, false, group_stop);
3005 read_unlock(&tasklist_lock);
3010 * System call entry points.
3014 * sys_restart_syscall - restart a system call
3016 SYSCALL_DEFINE0(restart_syscall)
3018 struct restart_block *restart = ¤t->restart_block;
3019 return restart->fn(restart);
3022 long do_no_restart_syscall(struct restart_block *param)
3027 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3029 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3030 sigset_t newblocked;
3031 /* A set of now blocked but previously unblocked signals. */
3032 sigandnsets(&newblocked, newset, ¤t->blocked);
3033 retarget_shared_pending(tsk, &newblocked);
3035 tsk->blocked = *newset;
3036 recalc_sigpending();
3040 * set_current_blocked - change current->blocked mask
3043 * It is wrong to change ->blocked directly, this helper should be used
3044 * to ensure the process can't miss a shared signal we are going to block.
3046 void set_current_blocked(sigset_t *newset)
3048 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3049 __set_current_blocked(newset);
3052 void __set_current_blocked(const sigset_t *newset)
3054 struct task_struct *tsk = current;
3057 * In case the signal mask hasn't changed, there is nothing we need
3058 * to do. The current->blocked shouldn't be modified by other task.
3060 if (sigequalsets(&tsk->blocked, newset))
3063 spin_lock_irq(&tsk->sighand->siglock);
3064 __set_task_blocked(tsk, newset);
3065 spin_unlock_irq(&tsk->sighand->siglock);
3069 * This is also useful for kernel threads that want to temporarily
3070 * (or permanently) block certain signals.
3072 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3073 * interface happily blocks "unblockable" signals like SIGKILL
3076 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3078 struct task_struct *tsk = current;
3081 /* Lockless, only current can change ->blocked, never from irq */
3083 *oldset = tsk->blocked;
3087 sigorsets(&newset, &tsk->blocked, set);
3090 sigandnsets(&newset, &tsk->blocked, set);
3099 __set_current_blocked(&newset);
3102 EXPORT_SYMBOL(sigprocmask);
3105 * The api helps set app-provided sigmasks.
3107 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3108 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3110 * Note that it does set_restore_sigmask() in advance, so it must be always
3111 * paired with restore_saved_sigmask_unless() before return from syscall.
3113 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3119 if (sigsetsize != sizeof(sigset_t))
3121 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3124 set_restore_sigmask();
3125 current->saved_sigmask = current->blocked;
3126 set_current_blocked(&kmask);
3131 #ifdef CONFIG_COMPAT
3132 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3139 if (sigsetsize != sizeof(compat_sigset_t))
3141 if (get_compat_sigset(&kmask, umask))
3144 set_restore_sigmask();
3145 current->saved_sigmask = current->blocked;
3146 set_current_blocked(&kmask);
3153 * sys_rt_sigprocmask - change the list of currently blocked signals
3154 * @how: whether to add, remove, or set signals
3155 * @nset: stores pending signals
3156 * @oset: previous value of signal mask if non-null
3157 * @sigsetsize: size of sigset_t type
3159 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3160 sigset_t __user *, oset, size_t, sigsetsize)
3162 sigset_t old_set, new_set;
3165 /* XXX: Don't preclude handling different sized sigset_t's. */
3166 if (sigsetsize != sizeof(sigset_t))
3169 old_set = current->blocked;
3172 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3174 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3176 error = sigprocmask(how, &new_set, NULL);
3182 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3189 #ifdef CONFIG_COMPAT
3190 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3191 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3193 sigset_t old_set = current->blocked;
3195 /* XXX: Don't preclude handling different sized sigset_t's. */
3196 if (sigsetsize != sizeof(sigset_t))
3202 if (get_compat_sigset(&new_set, nset))
3204 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3206 error = sigprocmask(how, &new_set, NULL);
3210 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3214 static void do_sigpending(sigset_t *set)
3216 spin_lock_irq(¤t->sighand->siglock);
3217 sigorsets(set, ¤t->pending.signal,
3218 ¤t->signal->shared_pending.signal);
3219 spin_unlock_irq(¤t->sighand->siglock);
3221 /* Outside the lock because only this thread touches it. */
3222 sigandsets(set, ¤t->blocked, set);
3226 * sys_rt_sigpending - examine a pending signal that has been raised
3228 * @uset: stores pending signals
3229 * @sigsetsize: size of sigset_t type or larger
3231 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3235 if (sigsetsize > sizeof(*uset))
3238 do_sigpending(&set);
3240 if (copy_to_user(uset, &set, sigsetsize))
3246 #ifdef CONFIG_COMPAT
3247 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3248 compat_size_t, sigsetsize)
3252 if (sigsetsize > sizeof(*uset))
3255 do_sigpending(&set);
3257 return put_compat_sigset(uset, &set, sigsetsize);
3261 static const struct {
3262 unsigned char limit, layout;
3264 [SIGILL] = { NSIGILL, SIL_FAULT },
3265 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3266 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3267 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3268 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3270 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3272 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3273 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3274 [SIGSYS] = { NSIGSYS, SIL_SYS },
3277 static bool known_siginfo_layout(unsigned sig, int si_code)
3279 if (si_code == SI_KERNEL)
3281 else if ((si_code > SI_USER)) {
3282 if (sig_specific_sicodes(sig)) {
3283 if (si_code <= sig_sicodes[sig].limit)
3286 else if (si_code <= NSIGPOLL)
3289 else if (si_code >= SI_DETHREAD)
3291 else if (si_code == SI_ASYNCNL)
3296 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3298 enum siginfo_layout layout = SIL_KILL;
3299 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3300 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3301 (si_code <= sig_sicodes[sig].limit)) {
3302 layout = sig_sicodes[sig].layout;
3303 /* Handle the exceptions */
3304 if ((sig == SIGBUS) &&
3305 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3306 layout = SIL_FAULT_MCEERR;
3307 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3308 layout = SIL_FAULT_BNDERR;
3310 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3311 layout = SIL_FAULT_PKUERR;
3313 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3314 layout = SIL_FAULT_PERF_EVENT;
3315 else if (IS_ENABLED(CONFIG_SPARC) &&
3316 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3317 layout = SIL_FAULT_TRAPNO;
3318 else if (IS_ENABLED(CONFIG_ALPHA) &&
3320 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3321 layout = SIL_FAULT_TRAPNO;
3323 else if (si_code <= NSIGPOLL)
3326 if (si_code == SI_TIMER)
3328 else if (si_code == SI_SIGIO)
3330 else if (si_code < 0)
3336 static inline char __user *si_expansion(const siginfo_t __user *info)
3338 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3341 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3343 char __user *expansion = si_expansion(to);
3344 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3346 if (clear_user(expansion, SI_EXPANSION_SIZE))
3351 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3352 const siginfo_t __user *from)
3354 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3355 char __user *expansion = si_expansion(from);
3356 char buf[SI_EXPANSION_SIZE];
3359 * An unknown si_code might need more than
3360 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3361 * extra bytes are 0. This guarantees copy_siginfo_to_user
3362 * will return this data to userspace exactly.
3364 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3366 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3374 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3375 const siginfo_t __user *from)
3377 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3379 to->si_signo = signo;
3380 return post_copy_siginfo_from_user(to, from);
3383 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3385 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3387 return post_copy_siginfo_from_user(to, from);
3390 #ifdef CONFIG_COMPAT
3392 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3393 * @to: compat siginfo destination
3394 * @from: kernel siginfo source
3396 * Note: This function does not work properly for the SIGCHLD on x32, but
3397 * fortunately it doesn't have to. The only valid callers for this function are
3398 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3399 * The latter does not care because SIGCHLD will never cause a coredump.
3401 void copy_siginfo_to_external32(struct compat_siginfo *to,
3402 const struct kernel_siginfo *from)
3404 memset(to, 0, sizeof(*to));
3406 to->si_signo = from->si_signo;
3407 to->si_errno = from->si_errno;
3408 to->si_code = from->si_code;
3409 switch(siginfo_layout(from->si_signo, from->si_code)) {
3411 to->si_pid = from->si_pid;
3412 to->si_uid = from->si_uid;
3415 to->si_tid = from->si_tid;
3416 to->si_overrun = from->si_overrun;
3417 to->si_int = from->si_int;
3420 to->si_band = from->si_band;
3421 to->si_fd = from->si_fd;
3424 to->si_addr = ptr_to_compat(from->si_addr);
3426 case SIL_FAULT_TRAPNO:
3427 to->si_addr = ptr_to_compat(from->si_addr);
3428 to->si_trapno = from->si_trapno;
3430 case SIL_FAULT_MCEERR:
3431 to->si_addr = ptr_to_compat(from->si_addr);
3432 to->si_addr_lsb = from->si_addr_lsb;
3434 case SIL_FAULT_BNDERR:
3435 to->si_addr = ptr_to_compat(from->si_addr);
3436 to->si_lower = ptr_to_compat(from->si_lower);
3437 to->si_upper = ptr_to_compat(from->si_upper);
3439 case SIL_FAULT_PKUERR:
3440 to->si_addr = ptr_to_compat(from->si_addr);
3441 to->si_pkey = from->si_pkey;
3443 case SIL_FAULT_PERF_EVENT:
3444 to->si_addr = ptr_to_compat(from->si_addr);
3445 to->si_perf_data = from->si_perf_data;
3446 to->si_perf_type = from->si_perf_type;
3447 to->si_perf_flags = from->si_perf_flags;
3450 to->si_pid = from->si_pid;
3451 to->si_uid = from->si_uid;
3452 to->si_status = from->si_status;
3453 to->si_utime = from->si_utime;
3454 to->si_stime = from->si_stime;
3457 to->si_pid = from->si_pid;
3458 to->si_uid = from->si_uid;
3459 to->si_int = from->si_int;
3462 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3463 to->si_syscall = from->si_syscall;
3464 to->si_arch = from->si_arch;
3469 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3470 const struct kernel_siginfo *from)
3472 struct compat_siginfo new;
3474 copy_siginfo_to_external32(&new, from);
3475 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3480 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3481 const struct compat_siginfo *from)
3484 to->si_signo = from->si_signo;
3485 to->si_errno = from->si_errno;
3486 to->si_code = from->si_code;
3487 switch(siginfo_layout(from->si_signo, from->si_code)) {
3489 to->si_pid = from->si_pid;
3490 to->si_uid = from->si_uid;
3493 to->si_tid = from->si_tid;
3494 to->si_overrun = from->si_overrun;
3495 to->si_int = from->si_int;
3498 to->si_band = from->si_band;
3499 to->si_fd = from->si_fd;
3502 to->si_addr = compat_ptr(from->si_addr);
3504 case SIL_FAULT_TRAPNO:
3505 to->si_addr = compat_ptr(from->si_addr);
3506 to->si_trapno = from->si_trapno;
3508 case SIL_FAULT_MCEERR:
3509 to->si_addr = compat_ptr(from->si_addr);
3510 to->si_addr_lsb = from->si_addr_lsb;
3512 case SIL_FAULT_BNDERR:
3513 to->si_addr = compat_ptr(from->si_addr);
3514 to->si_lower = compat_ptr(from->si_lower);
3515 to->si_upper = compat_ptr(from->si_upper);
3517 case SIL_FAULT_PKUERR:
3518 to->si_addr = compat_ptr(from->si_addr);
3519 to->si_pkey = from->si_pkey;
3521 case SIL_FAULT_PERF_EVENT:
3522 to->si_addr = compat_ptr(from->si_addr);
3523 to->si_perf_data = from->si_perf_data;
3524 to->si_perf_type = from->si_perf_type;
3525 to->si_perf_flags = from->si_perf_flags;
3528 to->si_pid = from->si_pid;
3529 to->si_uid = from->si_uid;
3530 to->si_status = from->si_status;
3531 #ifdef CONFIG_X86_X32_ABI
3532 if (in_x32_syscall()) {
3533 to->si_utime = from->_sifields._sigchld_x32._utime;
3534 to->si_stime = from->_sifields._sigchld_x32._stime;
3538 to->si_utime = from->si_utime;
3539 to->si_stime = from->si_stime;
3543 to->si_pid = from->si_pid;
3544 to->si_uid = from->si_uid;
3545 to->si_int = from->si_int;
3548 to->si_call_addr = compat_ptr(from->si_call_addr);
3549 to->si_syscall = from->si_syscall;
3550 to->si_arch = from->si_arch;
3556 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3557 const struct compat_siginfo __user *ufrom)
3559 struct compat_siginfo from;
3561 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3564 from.si_signo = signo;
3565 return post_copy_siginfo_from_user32(to, &from);
3568 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3569 const struct compat_siginfo __user *ufrom)
3571 struct compat_siginfo from;
3573 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3576 return post_copy_siginfo_from_user32(to, &from);
3578 #endif /* CONFIG_COMPAT */
3581 * do_sigtimedwait - wait for queued signals specified in @which
3582 * @which: queued signals to wait for
3583 * @info: if non-null, the signal's siginfo is returned here
3584 * @ts: upper bound on process time suspension
3586 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3587 const struct timespec64 *ts)
3589 ktime_t *to = NULL, timeout = KTIME_MAX;
3590 struct task_struct *tsk = current;
3591 sigset_t mask = *which;
3596 if (!timespec64_valid(ts))
3598 timeout = timespec64_to_ktime(*ts);
3603 * Invert the set of allowed signals to get those we want to block.
3605 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3608 spin_lock_irq(&tsk->sighand->siglock);
3609 sig = dequeue_signal(tsk, &mask, info, &type);
3610 if (!sig && timeout) {
3612 * None ready, temporarily unblock those we're interested
3613 * while we are sleeping in so that we'll be awakened when
3614 * they arrive. Unblocking is always fine, we can avoid
3615 * set_current_blocked().
3617 tsk->real_blocked = tsk->blocked;
3618 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3619 recalc_sigpending();
3620 spin_unlock_irq(&tsk->sighand->siglock);
3622 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3623 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3625 spin_lock_irq(&tsk->sighand->siglock);
3626 __set_task_blocked(tsk, &tsk->real_blocked);
3627 sigemptyset(&tsk->real_blocked);
3628 sig = dequeue_signal(tsk, &mask, info, &type);
3630 spin_unlock_irq(&tsk->sighand->siglock);
3634 return ret ? -EINTR : -EAGAIN;
3638 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3640 * @uthese: queued signals to wait for
3641 * @uinfo: if non-null, the signal's siginfo is returned here
3642 * @uts: upper bound on process time suspension
3643 * @sigsetsize: size of sigset_t type
3645 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3646 siginfo_t __user *, uinfo,
3647 const struct __kernel_timespec __user *, uts,
3651 struct timespec64 ts;
3652 kernel_siginfo_t info;
3655 /* XXX: Don't preclude handling different sized sigset_t's. */
3656 if (sigsetsize != sizeof(sigset_t))
3659 if (copy_from_user(&these, uthese, sizeof(these)))
3663 if (get_timespec64(&ts, uts))
3667 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3669 if (ret > 0 && uinfo) {
3670 if (copy_siginfo_to_user(uinfo, &info))
3677 #ifdef CONFIG_COMPAT_32BIT_TIME
3678 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3679 siginfo_t __user *, uinfo,
3680 const struct old_timespec32 __user *, uts,
3684 struct timespec64 ts;
3685 kernel_siginfo_t info;
3688 if (sigsetsize != sizeof(sigset_t))
3691 if (copy_from_user(&these, uthese, sizeof(these)))
3695 if (get_old_timespec32(&ts, uts))
3699 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3701 if (ret > 0 && uinfo) {
3702 if (copy_siginfo_to_user(uinfo, &info))
3710 #ifdef CONFIG_COMPAT
3711 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3712 struct compat_siginfo __user *, uinfo,
3713 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3716 struct timespec64 t;
3717 kernel_siginfo_t info;
3720 if (sigsetsize != sizeof(sigset_t))
3723 if (get_compat_sigset(&s, uthese))
3727 if (get_timespec64(&t, uts))
3731 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3733 if (ret > 0 && uinfo) {
3734 if (copy_siginfo_to_user32(uinfo, &info))
3741 #ifdef CONFIG_COMPAT_32BIT_TIME
3742 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3743 struct compat_siginfo __user *, uinfo,
3744 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3747 struct timespec64 t;
3748 kernel_siginfo_t info;
3751 if (sigsetsize != sizeof(sigset_t))
3754 if (get_compat_sigset(&s, uthese))
3758 if (get_old_timespec32(&t, uts))
3762 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3764 if (ret > 0 && uinfo) {
3765 if (copy_siginfo_to_user32(uinfo, &info))
3774 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3776 clear_siginfo(info);
3777 info->si_signo = sig;
3779 info->si_code = SI_USER;
3780 info->si_pid = task_tgid_vnr(current);
3781 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3785 * sys_kill - send a signal to a process
3786 * @pid: the PID of the process
3787 * @sig: signal to be sent
3789 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3791 struct kernel_siginfo info;
3793 prepare_kill_siginfo(sig, &info);
3795 return kill_something_info(sig, &info, pid);
3799 * Verify that the signaler and signalee either are in the same pid namespace
3800 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3803 static bool access_pidfd_pidns(struct pid *pid)
3805 struct pid_namespace *active = task_active_pid_ns(current);
3806 struct pid_namespace *p = ns_of_pid(pid);
3819 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3820 siginfo_t __user *info)
3822 #ifdef CONFIG_COMPAT
3824 * Avoid hooking up compat syscalls and instead handle necessary
3825 * conversions here. Note, this is a stop-gap measure and should not be
3826 * considered a generic solution.
3828 if (in_compat_syscall())
3829 return copy_siginfo_from_user32(
3830 kinfo, (struct compat_siginfo __user *)info);
3832 return copy_siginfo_from_user(kinfo, info);
3835 static struct pid *pidfd_to_pid(const struct file *file)
3839 pid = pidfd_pid(file);
3843 return tgid_pidfd_to_pid(file);
3847 * sys_pidfd_send_signal - Signal a process through a pidfd
3848 * @pidfd: file descriptor of the process
3849 * @sig: signal to send
3850 * @info: signal info
3851 * @flags: future flags
3853 * The syscall currently only signals via PIDTYPE_PID which covers
3854 * kill(<positive-pid>, <signal>. It does not signal threads or process
3856 * In order to extend the syscall to threads and process groups the @flags
3857 * argument should be used. In essence, the @flags argument will determine
3858 * what is signaled and not the file descriptor itself. Put in other words,
3859 * grouping is a property of the flags argument not a property of the file
3862 * Return: 0 on success, negative errno on failure
3864 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3865 siginfo_t __user *, info, unsigned int, flags)
3870 kernel_siginfo_t kinfo;
3872 /* Enforce flags be set to 0 until we add an extension. */
3880 /* Is this a pidfd? */
3881 pid = pidfd_to_pid(f.file);
3888 if (!access_pidfd_pidns(pid))
3892 ret = copy_siginfo_from_user_any(&kinfo, info);
3897 if (unlikely(sig != kinfo.si_signo))
3900 /* Only allow sending arbitrary signals to yourself. */
3902 if ((task_pid(current) != pid) &&
3903 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3906 prepare_kill_siginfo(sig, &kinfo);
3909 ret = kill_pid_info(sig, &kinfo, pid);
3917 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3919 struct task_struct *p;
3923 p = find_task_by_vpid(pid);
3924 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3925 error = check_kill_permission(sig, info, p);
3927 * The null signal is a permissions and process existence
3928 * probe. No signal is actually delivered.
3930 if (!error && sig) {
3931 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3933 * If lock_task_sighand() failed we pretend the task
3934 * dies after receiving the signal. The window is tiny,
3935 * and the signal is private anyway.
3937 if (unlikely(error == -ESRCH))
3946 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3948 struct kernel_siginfo info;
3950 clear_siginfo(&info);
3951 info.si_signo = sig;
3953 info.si_code = SI_TKILL;
3954 info.si_pid = task_tgid_vnr(current);
3955 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3957 return do_send_specific(tgid, pid, sig, &info);
3961 * sys_tgkill - send signal to one specific thread
3962 * @tgid: the thread group ID of the thread
3963 * @pid: the PID of the thread
3964 * @sig: signal to be sent
3966 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3967 * exists but it's not belonging to the target process anymore. This
3968 * method solves the problem of threads exiting and PIDs getting reused.
3970 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3972 /* This is only valid for single tasks */
3973 if (pid <= 0 || tgid <= 0)
3976 return do_tkill(tgid, pid, sig);
3980 * sys_tkill - send signal to one specific task
3981 * @pid: the PID of the task
3982 * @sig: signal to be sent
3984 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3986 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3988 /* This is only valid for single tasks */
3992 return do_tkill(0, pid, sig);
3995 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3997 /* Not even root can pretend to send signals from the kernel.
3998 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4000 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4001 (task_pid_vnr(current) != pid))
4004 /* POSIX.1b doesn't mention process groups. */
4005 return kill_proc_info(sig, info, pid);
4009 * sys_rt_sigqueueinfo - send signal information to a signal
4010 * @pid: the PID of the thread
4011 * @sig: signal to be sent
4012 * @uinfo: signal info to be sent
4014 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4015 siginfo_t __user *, uinfo)
4017 kernel_siginfo_t info;
4018 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4021 return do_rt_sigqueueinfo(pid, sig, &info);
4024 #ifdef CONFIG_COMPAT
4025 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4028 struct compat_siginfo __user *, uinfo)
4030 kernel_siginfo_t info;
4031 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4034 return do_rt_sigqueueinfo(pid, sig, &info);
4038 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4040 /* This is only valid for single tasks */
4041 if (pid <= 0 || tgid <= 0)
4044 /* Not even root can pretend to send signals from the kernel.
4045 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4047 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4048 (task_pid_vnr(current) != pid))
4051 return do_send_specific(tgid, pid, sig, info);
4054 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4055 siginfo_t __user *, uinfo)
4057 kernel_siginfo_t info;
4058 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4061 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4064 #ifdef CONFIG_COMPAT
4065 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4069 struct compat_siginfo __user *, uinfo)
4071 kernel_siginfo_t info;
4072 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4075 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4080 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4082 void kernel_sigaction(int sig, __sighandler_t action)
4084 spin_lock_irq(¤t->sighand->siglock);
4085 current->sighand->action[sig - 1].sa.sa_handler = action;
4086 if (action == SIG_IGN) {
4090 sigaddset(&mask, sig);
4092 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4093 flush_sigqueue_mask(&mask, ¤t->pending);
4094 recalc_sigpending();
4096 spin_unlock_irq(¤t->sighand->siglock);
4098 EXPORT_SYMBOL(kernel_sigaction);
4100 void __weak sigaction_compat_abi(struct k_sigaction *act,
4101 struct k_sigaction *oact)
4105 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4107 struct task_struct *p = current, *t;
4108 struct k_sigaction *k;
4111 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4114 k = &p->sighand->action[sig-1];
4116 spin_lock_irq(&p->sighand->siglock);
4117 if (k->sa.sa_flags & SA_IMMUTABLE) {
4118 spin_unlock_irq(&p->sighand->siglock);
4125 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4126 * e.g. by having an architecture use the bit in their uapi.
4128 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4131 * Clear unknown flag bits in order to allow userspace to detect missing
4132 * support for flag bits and to allow the kernel to use non-uapi bits
4136 act->sa.sa_flags &= UAPI_SA_FLAGS;
4138 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4140 sigaction_compat_abi(act, oact);
4143 sigdelsetmask(&act->sa.sa_mask,
4144 sigmask(SIGKILL) | sigmask(SIGSTOP));
4148 * "Setting a signal action to SIG_IGN for a signal that is
4149 * pending shall cause the pending signal to be discarded,
4150 * whether or not it is blocked."
4152 * "Setting a signal action to SIG_DFL for a signal that is
4153 * pending and whose default action is to ignore the signal
4154 * (for example, SIGCHLD), shall cause the pending signal to
4155 * be discarded, whether or not it is blocked"
4157 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4159 sigaddset(&mask, sig);
4160 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4161 for_each_thread(p, t)
4162 flush_sigqueue_mask(&mask, &t->pending);
4166 spin_unlock_irq(&p->sighand->siglock);
4170 #ifdef CONFIG_DYNAMIC_SIGFRAME
4171 static inline void sigaltstack_lock(void)
4172 __acquires(¤t->sighand->siglock)
4174 spin_lock_irq(¤t->sighand->siglock);
4177 static inline void sigaltstack_unlock(void)
4178 __releases(¤t->sighand->siglock)
4180 spin_unlock_irq(¤t->sighand->siglock);
4183 static inline void sigaltstack_lock(void) { }
4184 static inline void sigaltstack_unlock(void) { }
4188 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4191 struct task_struct *t = current;
4195 memset(oss, 0, sizeof(stack_t));
4196 oss->ss_sp = (void __user *) t->sas_ss_sp;
4197 oss->ss_size = t->sas_ss_size;
4198 oss->ss_flags = sas_ss_flags(sp) |
4199 (current->sas_ss_flags & SS_FLAG_BITS);
4203 void __user *ss_sp = ss->ss_sp;
4204 size_t ss_size = ss->ss_size;
4205 unsigned ss_flags = ss->ss_flags;
4208 if (unlikely(on_sig_stack(sp)))
4211 ss_mode = ss_flags & ~SS_FLAG_BITS;
4212 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4217 * Return before taking any locks if no actual
4218 * sigaltstack changes were requested.
4220 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4221 t->sas_ss_size == ss_size &&
4222 t->sas_ss_flags == ss_flags)
4226 if (ss_mode == SS_DISABLE) {
4230 if (unlikely(ss_size < min_ss_size))
4232 if (!sigaltstack_size_valid(ss_size))
4236 t->sas_ss_sp = (unsigned long) ss_sp;
4237 t->sas_ss_size = ss_size;
4238 t->sas_ss_flags = ss_flags;
4240 sigaltstack_unlock();
4245 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4249 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4251 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4252 current_user_stack_pointer(),
4254 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4259 int restore_altstack(const stack_t __user *uss)
4262 if (copy_from_user(&new, uss, sizeof(stack_t)))
4264 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4266 /* squash all but EFAULT for now */
4270 int __save_altstack(stack_t __user *uss, unsigned long sp)
4272 struct task_struct *t = current;
4273 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4274 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4275 __put_user(t->sas_ss_size, &uss->ss_size);
4279 #ifdef CONFIG_COMPAT
4280 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4281 compat_stack_t __user *uoss_ptr)
4287 compat_stack_t uss32;
4288 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4290 uss.ss_sp = compat_ptr(uss32.ss_sp);
4291 uss.ss_flags = uss32.ss_flags;
4292 uss.ss_size = uss32.ss_size;
4294 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4295 compat_user_stack_pointer(),
4296 COMPAT_MINSIGSTKSZ);
4297 if (ret >= 0 && uoss_ptr) {
4299 memset(&old, 0, sizeof(old));
4300 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4301 old.ss_flags = uoss.ss_flags;
4302 old.ss_size = uoss.ss_size;
4303 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4309 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4310 const compat_stack_t __user *, uss_ptr,
4311 compat_stack_t __user *, uoss_ptr)
4313 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4316 int compat_restore_altstack(const compat_stack_t __user *uss)
4318 int err = do_compat_sigaltstack(uss, NULL);
4319 /* squash all but -EFAULT for now */
4320 return err == -EFAULT ? err : 0;
4323 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4326 struct task_struct *t = current;
4327 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4329 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4330 __put_user(t->sas_ss_size, &uss->ss_size);
4335 #ifdef __ARCH_WANT_SYS_SIGPENDING
4338 * sys_sigpending - examine pending signals
4339 * @uset: where mask of pending signal is returned
4341 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4345 if (sizeof(old_sigset_t) > sizeof(*uset))
4348 do_sigpending(&set);
4350 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4356 #ifdef CONFIG_COMPAT
4357 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4361 do_sigpending(&set);
4363 return put_user(set.sig[0], set32);
4369 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4371 * sys_sigprocmask - examine and change blocked signals
4372 * @how: whether to add, remove, or set signals
4373 * @nset: signals to add or remove (if non-null)
4374 * @oset: previous value of signal mask if non-null
4376 * Some platforms have their own version with special arguments;
4377 * others support only sys_rt_sigprocmask.
4380 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4381 old_sigset_t __user *, oset)
4383 old_sigset_t old_set, new_set;
4384 sigset_t new_blocked;
4386 old_set = current->blocked.sig[0];
4389 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4392 new_blocked = current->blocked;
4396 sigaddsetmask(&new_blocked, new_set);
4399 sigdelsetmask(&new_blocked, new_set);
4402 new_blocked.sig[0] = new_set;
4408 set_current_blocked(&new_blocked);
4412 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4418 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4420 #ifndef CONFIG_ODD_RT_SIGACTION
4422 * sys_rt_sigaction - alter an action taken by a process
4423 * @sig: signal to be sent
4424 * @act: new sigaction
4425 * @oact: used to save the previous sigaction
4426 * @sigsetsize: size of sigset_t type
4428 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4429 const struct sigaction __user *, act,
4430 struct sigaction __user *, oact,
4433 struct k_sigaction new_sa, old_sa;
4436 /* XXX: Don't preclude handling different sized sigset_t's. */
4437 if (sigsetsize != sizeof(sigset_t))
4440 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4443 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4447 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4452 #ifdef CONFIG_COMPAT
4453 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4454 const struct compat_sigaction __user *, act,
4455 struct compat_sigaction __user *, oact,
4456 compat_size_t, sigsetsize)
4458 struct k_sigaction new_ka, old_ka;
4459 #ifdef __ARCH_HAS_SA_RESTORER
4460 compat_uptr_t restorer;
4464 /* XXX: Don't preclude handling different sized sigset_t's. */
4465 if (sigsetsize != sizeof(compat_sigset_t))
4469 compat_uptr_t handler;
4470 ret = get_user(handler, &act->sa_handler);
4471 new_ka.sa.sa_handler = compat_ptr(handler);
4472 #ifdef __ARCH_HAS_SA_RESTORER
4473 ret |= get_user(restorer, &act->sa_restorer);
4474 new_ka.sa.sa_restorer = compat_ptr(restorer);
4476 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4477 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4482 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4484 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4486 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4487 sizeof(oact->sa_mask));
4488 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4489 #ifdef __ARCH_HAS_SA_RESTORER
4490 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4491 &oact->sa_restorer);
4497 #endif /* !CONFIG_ODD_RT_SIGACTION */
4499 #ifdef CONFIG_OLD_SIGACTION
4500 SYSCALL_DEFINE3(sigaction, int, sig,
4501 const struct old_sigaction __user *, act,
4502 struct old_sigaction __user *, oact)
4504 struct k_sigaction new_ka, old_ka;
4509 if (!access_ok(act, sizeof(*act)) ||
4510 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4511 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4512 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4513 __get_user(mask, &act->sa_mask))
4515 #ifdef __ARCH_HAS_KA_RESTORER
4516 new_ka.ka_restorer = NULL;
4518 siginitset(&new_ka.sa.sa_mask, mask);
4521 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4524 if (!access_ok(oact, sizeof(*oact)) ||
4525 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4526 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4527 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4528 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4535 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4536 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4537 const struct compat_old_sigaction __user *, act,
4538 struct compat_old_sigaction __user *, oact)
4540 struct k_sigaction new_ka, old_ka;
4542 compat_old_sigset_t mask;
4543 compat_uptr_t handler, restorer;
4546 if (!access_ok(act, sizeof(*act)) ||
4547 __get_user(handler, &act->sa_handler) ||
4548 __get_user(restorer, &act->sa_restorer) ||
4549 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4550 __get_user(mask, &act->sa_mask))
4553 #ifdef __ARCH_HAS_KA_RESTORER
4554 new_ka.ka_restorer = NULL;
4556 new_ka.sa.sa_handler = compat_ptr(handler);
4557 new_ka.sa.sa_restorer = compat_ptr(restorer);
4558 siginitset(&new_ka.sa.sa_mask, mask);
4561 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4564 if (!access_ok(oact, sizeof(*oact)) ||
4565 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4566 &oact->sa_handler) ||
4567 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4568 &oact->sa_restorer) ||
4569 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4570 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4577 #ifdef CONFIG_SGETMASK_SYSCALL
4580 * For backwards compatibility. Functionality superseded by sigprocmask.
4582 SYSCALL_DEFINE0(sgetmask)
4585 return current->blocked.sig[0];
4588 SYSCALL_DEFINE1(ssetmask, int, newmask)
4590 int old = current->blocked.sig[0];
4593 siginitset(&newset, newmask);
4594 set_current_blocked(&newset);
4598 #endif /* CONFIG_SGETMASK_SYSCALL */
4600 #ifdef __ARCH_WANT_SYS_SIGNAL
4602 * For backwards compatibility. Functionality superseded by sigaction.
4604 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4606 struct k_sigaction new_sa, old_sa;
4609 new_sa.sa.sa_handler = handler;
4610 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4611 sigemptyset(&new_sa.sa.sa_mask);
4613 ret = do_sigaction(sig, &new_sa, &old_sa);
4615 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4617 #endif /* __ARCH_WANT_SYS_SIGNAL */
4619 #ifdef __ARCH_WANT_SYS_PAUSE
4621 SYSCALL_DEFINE0(pause)
4623 while (!signal_pending(current)) {
4624 __set_current_state(TASK_INTERRUPTIBLE);
4627 return -ERESTARTNOHAND;
4632 static int sigsuspend(sigset_t *set)
4634 current->saved_sigmask = current->blocked;
4635 set_current_blocked(set);
4637 while (!signal_pending(current)) {
4638 __set_current_state(TASK_INTERRUPTIBLE);
4641 set_restore_sigmask();
4642 return -ERESTARTNOHAND;
4646 * sys_rt_sigsuspend - replace the signal mask for a value with the
4647 * @unewset value until a signal is received
4648 * @unewset: new signal mask value
4649 * @sigsetsize: size of sigset_t type
4651 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4655 /* XXX: Don't preclude handling different sized sigset_t's. */
4656 if (sigsetsize != sizeof(sigset_t))
4659 if (copy_from_user(&newset, unewset, sizeof(newset)))
4661 return sigsuspend(&newset);
4664 #ifdef CONFIG_COMPAT
4665 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4669 /* XXX: Don't preclude handling different sized sigset_t's. */
4670 if (sigsetsize != sizeof(sigset_t))
4673 if (get_compat_sigset(&newset, unewset))
4675 return sigsuspend(&newset);
4679 #ifdef CONFIG_OLD_SIGSUSPEND
4680 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4683 siginitset(&blocked, mask);
4684 return sigsuspend(&blocked);
4687 #ifdef CONFIG_OLD_SIGSUSPEND3
4688 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4691 siginitset(&blocked, mask);
4692 return sigsuspend(&blocked);
4696 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4701 static inline void siginfo_buildtime_checks(void)
4703 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4705 /* Verify the offsets in the two siginfos match */
4706 #define CHECK_OFFSET(field) \
4707 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4710 CHECK_OFFSET(si_pid);
4711 CHECK_OFFSET(si_uid);
4714 CHECK_OFFSET(si_tid);
4715 CHECK_OFFSET(si_overrun);
4716 CHECK_OFFSET(si_value);
4719 CHECK_OFFSET(si_pid);
4720 CHECK_OFFSET(si_uid);
4721 CHECK_OFFSET(si_value);
4724 CHECK_OFFSET(si_pid);
4725 CHECK_OFFSET(si_uid);
4726 CHECK_OFFSET(si_status);
4727 CHECK_OFFSET(si_utime);
4728 CHECK_OFFSET(si_stime);
4731 CHECK_OFFSET(si_addr);
4732 CHECK_OFFSET(si_trapno);
4733 CHECK_OFFSET(si_addr_lsb);
4734 CHECK_OFFSET(si_lower);
4735 CHECK_OFFSET(si_upper);
4736 CHECK_OFFSET(si_pkey);
4737 CHECK_OFFSET(si_perf_data);
4738 CHECK_OFFSET(si_perf_type);
4739 CHECK_OFFSET(si_perf_flags);
4742 CHECK_OFFSET(si_band);
4743 CHECK_OFFSET(si_fd);
4746 CHECK_OFFSET(si_call_addr);
4747 CHECK_OFFSET(si_syscall);
4748 CHECK_OFFSET(si_arch);
4752 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4753 offsetof(struct siginfo, si_addr));
4754 if (sizeof(int) == sizeof(void __user *)) {
4755 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4756 sizeof(void __user *));
4758 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4759 sizeof_field(struct siginfo, si_uid)) !=
4760 sizeof(void __user *));
4761 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4762 offsetof(struct siginfo, si_uid));
4764 #ifdef CONFIG_COMPAT
4765 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4766 offsetof(struct compat_siginfo, si_addr));
4767 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4768 sizeof(compat_uptr_t));
4769 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4770 sizeof_field(struct siginfo, si_pid));
4774 void __init signals_init(void)
4776 siginfo_buildtime_checks();
4778 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4781 #ifdef CONFIG_KGDB_KDB
4782 #include <linux/kdb.h>
4784 * kdb_send_sig - Allows kdb to send signals without exposing
4785 * signal internals. This function checks if the required locks are
4786 * available before calling the main signal code, to avoid kdb
4789 void kdb_send_sig(struct task_struct *t, int sig)
4791 static struct task_struct *kdb_prev_t;
4793 if (!spin_trylock(&t->sighand->siglock)) {
4794 kdb_printf("Can't do kill command now.\n"
4795 "The sigmask lock is held somewhere else in "
4796 "kernel, try again later\n");
4799 new_t = kdb_prev_t != t;
4801 if (!task_is_running(t) && new_t) {
4802 spin_unlock(&t->sighand->siglock);
4803 kdb_printf("Process is not RUNNING, sending a signal from "
4804 "kdb risks deadlock\n"
4805 "on the run queue locks. "
4806 "The signal has _not_ been sent.\n"
4807 "Reissue the kill command if you want to risk "
4811 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4812 spin_unlock(&t->sighand->siglock);
4814 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4817 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4819 #endif /* CONFIG_KGDB_KDB */