1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
59 * SLAB caches for signal bits.
62 static struct kmem_cache *sigqueue_cachep;
64 int print_fatal_signals __read_mostly;
66 static void __user *sig_handler(struct task_struct *t, int sig)
68 return t->sighand->action[sig - 1].sa.sa_handler;
71 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 /* Is it explicitly or implicitly ignored? */
74 return handler == SIG_IGN ||
75 (handler == SIG_DFL && sig_kernel_ignore(sig));
78 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
82 handler = sig_handler(t, sig);
84 /* SIGKILL and SIGSTOP may not be sent to the global init */
85 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
88 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
89 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
92 /* Only allow kernel generated signals to this kthread */
93 if (unlikely((t->flags & PF_KTHREAD) &&
94 (handler == SIG_KTHREAD_KERNEL) && !force))
97 return sig_handler_ignored(handler, sig);
100 static bool sig_ignored(struct task_struct *t, int sig, bool force)
103 * Blocked signals are never ignored, since the
104 * signal handler may change by the time it is
107 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
111 * Tracers may want to know about even ignored signal unless it
112 * is SIGKILL which can't be reported anyway but can be ignored
113 * by SIGNAL_UNKILLABLE task.
115 if (t->ptrace && sig != SIGKILL)
118 return sig_task_ignored(t, sig, force);
122 * Re-calculate pending state from the set of locally pending
123 * signals, globally pending signals, and blocked signals.
125 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
130 switch (_NSIG_WORDS) {
132 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
133 ready |= signal->sig[i] &~ blocked->sig[i];
136 case 4: ready = signal->sig[3] &~ blocked->sig[3];
137 ready |= signal->sig[2] &~ blocked->sig[2];
138 ready |= signal->sig[1] &~ blocked->sig[1];
139 ready |= signal->sig[0] &~ blocked->sig[0];
142 case 2: ready = signal->sig[1] &~ blocked->sig[1];
143 ready |= signal->sig[0] &~ blocked->sig[0];
146 case 1: ready = signal->sig[0] &~ blocked->sig[0];
151 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 static bool recalc_sigpending_tsk(struct task_struct *t)
155 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
156 PENDING(&t->pending, &t->blocked) ||
157 PENDING(&t->signal->shared_pending, &t->blocked) ||
158 cgroup_task_frozen(t)) {
159 set_tsk_thread_flag(t, TIF_SIGPENDING);
164 * We must never clear the flag in another thread, or in current
165 * when it's possible the current syscall is returning -ERESTART*.
166 * So we don't clear it here, and only callers who know they should do.
172 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
173 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 void recalc_sigpending_and_wake(struct task_struct *t)
177 if (recalc_sigpending_tsk(t))
178 signal_wake_up(t, 0);
181 void recalc_sigpending(void)
183 if (!recalc_sigpending_tsk(current) && !freezing(current))
184 clear_thread_flag(TIF_SIGPENDING);
187 EXPORT_SYMBOL(recalc_sigpending);
189 void calculate_sigpending(void)
191 /* Have any signals or users of TIF_SIGPENDING been delayed
194 spin_lock_irq(¤t->sighand->siglock);
195 set_tsk_thread_flag(current, TIF_SIGPENDING);
197 spin_unlock_irq(¤t->sighand->siglock);
200 /* Given the mask, find the first available signal that should be serviced. */
202 #define SYNCHRONOUS_MASK \
203 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
204 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206 int next_signal(struct sigpending *pending, sigset_t *mask)
208 unsigned long i, *s, *m, x;
211 s = pending->signal.sig;
215 * Handle the first word specially: it contains the
216 * synchronous signals that need to be dequeued first.
220 if (x & SYNCHRONOUS_MASK)
221 x &= SYNCHRONOUS_MASK;
226 switch (_NSIG_WORDS) {
228 for (i = 1; i < _NSIG_WORDS; ++i) {
232 sig = ffz(~x) + i*_NSIG_BPW + 1;
241 sig = ffz(~x) + _NSIG_BPW + 1;
252 static inline void print_dropped_signal(int sig)
254 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256 if (!print_fatal_signals)
259 if (!__ratelimit(&ratelimit_state))
262 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
263 current->comm, current->pid, sig);
267 * task_set_jobctl_pending - set jobctl pending bits
269 * @mask: pending bits to set
271 * Clear @mask from @task->jobctl. @mask must be subset of
272 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
273 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
274 * cleared. If @task is already being killed or exiting, this function
278 * Must be called with @task->sighand->siglock held.
281 * %true if @mask is set, %false if made noop because @task was dying.
283 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
286 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
287 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 if (mask & JOBCTL_STOP_SIGMASK)
293 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295 task->jobctl |= mask;
300 * task_clear_jobctl_trapping - clear jobctl trapping bit
303 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
304 * Clear it and wake up the ptracer. Note that we don't need any further
305 * locking. @task->siglock guarantees that @task->parent points to the
309 * Must be called with @task->sighand->siglock held.
311 void task_clear_jobctl_trapping(struct task_struct *task)
313 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
314 task->jobctl &= ~JOBCTL_TRAPPING;
315 smp_mb(); /* advised by wake_up_bit() */
316 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
321 * task_clear_jobctl_pending - clear jobctl pending bits
323 * @mask: pending bits to clear
325 * Clear @mask from @task->jobctl. @mask must be subset of
326 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
327 * STOP bits are cleared together.
329 * If clearing of @mask leaves no stop or trap pending, this function calls
330 * task_clear_jobctl_trapping().
333 * Must be called with @task->sighand->siglock held.
335 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339 if (mask & JOBCTL_STOP_PENDING)
340 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342 task->jobctl &= ~mask;
344 if (!(task->jobctl & JOBCTL_PENDING_MASK))
345 task_clear_jobctl_trapping(task);
349 * task_participate_group_stop - participate in a group stop
350 * @task: task participating in a group stop
352 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
353 * Group stop states are cleared and the group stop count is consumed if
354 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
355 * stop, the appropriate `SIGNAL_*` flags are set.
358 * Must be called with @task->sighand->siglock held.
361 * %true if group stop completion should be notified to the parent, %false
364 static bool task_participate_group_stop(struct task_struct *task)
366 struct signal_struct *sig = task->signal;
367 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
376 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
377 sig->group_stop_count--;
380 * Tell the caller to notify completion iff we are entering into a
381 * fresh group stop. Read comment in do_signal_stop() for details.
383 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
384 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
390 void task_join_group_stop(struct task_struct *task)
392 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
393 struct signal_struct *sig = current->signal;
395 if (sig->group_stop_count) {
396 sig->group_stop_count++;
397 mask |= JOBCTL_STOP_CONSUME;
398 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
401 /* Have the new thread join an on-going signal group stop */
402 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
406 * allocate a new signal queue record
407 * - this may be called without locks if and only if t == current, otherwise an
408 * appropriate lock must be held to stop the target task from exiting
410 static struct sigqueue *
411 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
412 int override_rlimit, const unsigned int sigqueue_flags)
414 struct sigqueue *q = NULL;
415 struct ucounts *ucounts = NULL;
419 * Protect access to @t credentials. This can go away when all
420 * callers hold rcu read lock.
422 * NOTE! A pending signal will hold on to the user refcount,
423 * and we get/put the refcount only when the sigpending count
424 * changes from/to zero.
427 ucounts = task_ucounts(t);
428 sigpending = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1);
429 switch (sigpending) {
431 if (likely(get_ucounts(ucounts)))
436 * we need to decrease the ucount in the userns tree on any
437 * failure to avoid counts leaking.
439 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1);
445 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
446 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
448 print_dropped_signal(sig);
451 if (unlikely(q == NULL)) {
452 if (dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1))
453 put_ucounts(ucounts);
455 INIT_LIST_HEAD(&q->list);
456 q->flags = sigqueue_flags;
457 q->ucounts = ucounts;
462 static void __sigqueue_free(struct sigqueue *q)
464 if (q->flags & SIGQUEUE_PREALLOC)
466 if (q->ucounts && dec_rlimit_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING, 1)) {
467 put_ucounts(q->ucounts);
470 kmem_cache_free(sigqueue_cachep, q);
473 void flush_sigqueue(struct sigpending *queue)
477 sigemptyset(&queue->signal);
478 while (!list_empty(&queue->list)) {
479 q = list_entry(queue->list.next, struct sigqueue , list);
480 list_del_init(&q->list);
486 * Flush all pending signals for this kthread.
488 void flush_signals(struct task_struct *t)
492 spin_lock_irqsave(&t->sighand->siglock, flags);
493 clear_tsk_thread_flag(t, TIF_SIGPENDING);
494 flush_sigqueue(&t->pending);
495 flush_sigqueue(&t->signal->shared_pending);
496 spin_unlock_irqrestore(&t->sighand->siglock, flags);
498 EXPORT_SYMBOL(flush_signals);
500 #ifdef CONFIG_POSIX_TIMERS
501 static void __flush_itimer_signals(struct sigpending *pending)
503 sigset_t signal, retain;
504 struct sigqueue *q, *n;
506 signal = pending->signal;
507 sigemptyset(&retain);
509 list_for_each_entry_safe(q, n, &pending->list, list) {
510 int sig = q->info.si_signo;
512 if (likely(q->info.si_code != SI_TIMER)) {
513 sigaddset(&retain, sig);
515 sigdelset(&signal, sig);
516 list_del_init(&q->list);
521 sigorsets(&pending->signal, &signal, &retain);
524 void flush_itimer_signals(void)
526 struct task_struct *tsk = current;
529 spin_lock_irqsave(&tsk->sighand->siglock, flags);
530 __flush_itimer_signals(&tsk->pending);
531 __flush_itimer_signals(&tsk->signal->shared_pending);
532 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
536 void ignore_signals(struct task_struct *t)
540 for (i = 0; i < _NSIG; ++i)
541 t->sighand->action[i].sa.sa_handler = SIG_IGN;
547 * Flush all handlers for a task.
551 flush_signal_handlers(struct task_struct *t, int force_default)
554 struct k_sigaction *ka = &t->sighand->action[0];
555 for (i = _NSIG ; i != 0 ; i--) {
556 if (force_default || ka->sa.sa_handler != SIG_IGN)
557 ka->sa.sa_handler = SIG_DFL;
559 #ifdef __ARCH_HAS_SA_RESTORER
560 ka->sa.sa_restorer = NULL;
562 sigemptyset(&ka->sa.sa_mask);
567 bool unhandled_signal(struct task_struct *tsk, int sig)
569 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
570 if (is_global_init(tsk))
573 if (handler != SIG_IGN && handler != SIG_DFL)
576 /* if ptraced, let the tracer determine */
580 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
583 struct sigqueue *q, *first = NULL;
586 * Collect the siginfo appropriate to this signal. Check if
587 * there is another siginfo for the same signal.
589 list_for_each_entry(q, &list->list, list) {
590 if (q->info.si_signo == sig) {
597 sigdelset(&list->signal, sig);
601 list_del_init(&first->list);
602 copy_siginfo(info, &first->info);
605 (first->flags & SIGQUEUE_PREALLOC) &&
606 (info->si_code == SI_TIMER) &&
607 (info->si_sys_private);
609 __sigqueue_free(first);
612 * Ok, it wasn't in the queue. This must be
613 * a fast-pathed signal or we must have been
614 * out of queue space. So zero out the info.
617 info->si_signo = sig;
619 info->si_code = SI_USER;
625 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
626 kernel_siginfo_t *info, bool *resched_timer)
628 int sig = next_signal(pending, mask);
631 collect_signal(sig, pending, info, resched_timer);
636 * Dequeue a signal and return the element to the caller, which is
637 * expected to free it.
639 * All callers have to hold the siglock.
641 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
643 bool resched_timer = false;
646 /* We only dequeue private signals from ourselves, we don't let
647 * signalfd steal them
649 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
651 signr = __dequeue_signal(&tsk->signal->shared_pending,
652 mask, info, &resched_timer);
653 #ifdef CONFIG_POSIX_TIMERS
657 * itimers are process shared and we restart periodic
658 * itimers in the signal delivery path to prevent DoS
659 * attacks in the high resolution timer case. This is
660 * compliant with the old way of self-restarting
661 * itimers, as the SIGALRM is a legacy signal and only
662 * queued once. Changing the restart behaviour to
663 * restart the timer in the signal dequeue path is
664 * reducing the timer noise on heavy loaded !highres
667 if (unlikely(signr == SIGALRM)) {
668 struct hrtimer *tmr = &tsk->signal->real_timer;
670 if (!hrtimer_is_queued(tmr) &&
671 tsk->signal->it_real_incr != 0) {
672 hrtimer_forward(tmr, tmr->base->get_time(),
673 tsk->signal->it_real_incr);
674 hrtimer_restart(tmr);
684 if (unlikely(sig_kernel_stop(signr))) {
686 * Set a marker that we have dequeued a stop signal. Our
687 * caller might release the siglock and then the pending
688 * stop signal it is about to process is no longer in the
689 * pending bitmasks, but must still be cleared by a SIGCONT
690 * (and overruled by a SIGKILL). So those cases clear this
691 * shared flag after we've set it. Note that this flag may
692 * remain set after the signal we return is ignored or
693 * handled. That doesn't matter because its only purpose
694 * is to alert stop-signal processing code when another
695 * processor has come along and cleared the flag.
697 current->jobctl |= JOBCTL_STOP_DEQUEUED;
699 #ifdef CONFIG_POSIX_TIMERS
702 * Release the siglock to ensure proper locking order
703 * of timer locks outside of siglocks. Note, we leave
704 * irqs disabled here, since the posix-timers code is
705 * about to disable them again anyway.
707 spin_unlock(&tsk->sighand->siglock);
708 posixtimer_rearm(info);
709 spin_lock(&tsk->sighand->siglock);
711 /* Don't expose the si_sys_private value to userspace */
712 info->si_sys_private = 0;
717 EXPORT_SYMBOL_GPL(dequeue_signal);
719 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
721 struct task_struct *tsk = current;
722 struct sigpending *pending = &tsk->pending;
723 struct sigqueue *q, *sync = NULL;
726 * Might a synchronous signal be in the queue?
728 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
732 * Return the first synchronous signal in the queue.
734 list_for_each_entry(q, &pending->list, list) {
735 /* Synchronous signals have a positive si_code */
736 if ((q->info.si_code > SI_USER) &&
737 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
745 * Check if there is another siginfo for the same signal.
747 list_for_each_entry_continue(q, &pending->list, list) {
748 if (q->info.si_signo == sync->info.si_signo)
752 sigdelset(&pending->signal, sync->info.si_signo);
755 list_del_init(&sync->list);
756 copy_siginfo(info, &sync->info);
757 __sigqueue_free(sync);
758 return info->si_signo;
762 * Tell a process that it has a new active signal..
764 * NOTE! we rely on the previous spin_lock to
765 * lock interrupts for us! We can only be called with
766 * "siglock" held, and the local interrupt must
767 * have been disabled when that got acquired!
769 * No need to set need_resched since signal event passing
770 * goes through ->blocked
772 void signal_wake_up_state(struct task_struct *t, unsigned int state)
774 set_tsk_thread_flag(t, TIF_SIGPENDING);
776 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
777 * case. We don't check t->state here because there is a race with it
778 * executing another processor and just now entering stopped state.
779 * By using wake_up_state, we ensure the process will wake up and
780 * handle its death signal.
782 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
787 * Remove signals in mask from the pending set and queue.
788 * Returns 1 if any signals were found.
790 * All callers must be holding the siglock.
792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
794 struct sigqueue *q, *n;
797 sigandsets(&m, mask, &s->signal);
798 if (sigisemptyset(&m))
801 sigandnsets(&s->signal, &s->signal, mask);
802 list_for_each_entry_safe(q, n, &s->list, list) {
803 if (sigismember(mask, q->info.si_signo)) {
804 list_del_init(&q->list);
810 static inline int is_si_special(const struct kernel_siginfo *info)
812 return info <= SEND_SIG_PRIV;
815 static inline bool si_fromuser(const struct kernel_siginfo *info)
817 return info == SEND_SIG_NOINFO ||
818 (!is_si_special(info) && SI_FROMUSER(info));
822 * called with RCU read lock from check_kill_permission()
824 static bool kill_ok_by_cred(struct task_struct *t)
826 const struct cred *cred = current_cred();
827 const struct cred *tcred = __task_cred(t);
829 return uid_eq(cred->euid, tcred->suid) ||
830 uid_eq(cred->euid, tcred->uid) ||
831 uid_eq(cred->uid, tcred->suid) ||
832 uid_eq(cred->uid, tcred->uid) ||
833 ns_capable(tcred->user_ns, CAP_KILL);
837 * Bad permissions for sending the signal
838 * - the caller must hold the RCU read lock
840 static int check_kill_permission(int sig, struct kernel_siginfo *info,
841 struct task_struct *t)
846 if (!valid_signal(sig))
849 if (!si_fromuser(info))
852 error = audit_signal_info(sig, t); /* Let audit system see the signal */
856 if (!same_thread_group(current, t) &&
857 !kill_ok_by_cred(t)) {
860 sid = task_session(t);
862 * We don't return the error if sid == NULL. The
863 * task was unhashed, the caller must notice this.
865 if (!sid || sid == task_session(current))
873 return security_task_kill(t, info, sig, NULL);
877 * ptrace_trap_notify - schedule trap to notify ptracer
878 * @t: tracee wanting to notify tracer
880 * This function schedules sticky ptrace trap which is cleared on the next
881 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
884 * If @t is running, STOP trap will be taken. If trapped for STOP and
885 * ptracer is listening for events, tracee is woken up so that it can
886 * re-trap for the new event. If trapped otherwise, STOP trap will be
887 * eventually taken without returning to userland after the existing traps
888 * are finished by PTRACE_CONT.
891 * Must be called with @task->sighand->siglock held.
893 static void ptrace_trap_notify(struct task_struct *t)
895 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
896 assert_spin_locked(&t->sighand->siglock);
898 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
899 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
903 * Handle magic process-wide effects of stop/continue signals. Unlike
904 * the signal actions, these happen immediately at signal-generation
905 * time regardless of blocking, ignoring, or handling. This does the
906 * actual continuing for SIGCONT, but not the actual stopping for stop
907 * signals. The process stop is done as a signal action for SIG_DFL.
909 * Returns true if the signal should be actually delivered, otherwise
910 * it should be dropped.
912 static bool prepare_signal(int sig, struct task_struct *p, bool force)
914 struct signal_struct *signal = p->signal;
915 struct task_struct *t;
918 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
919 if (!(signal->flags & SIGNAL_GROUP_EXIT))
920 return sig == SIGKILL;
922 * The process is in the middle of dying, nothing to do.
924 } else if (sig_kernel_stop(sig)) {
926 * This is a stop signal. Remove SIGCONT from all queues.
928 siginitset(&flush, sigmask(SIGCONT));
929 flush_sigqueue_mask(&flush, &signal->shared_pending);
930 for_each_thread(p, t)
931 flush_sigqueue_mask(&flush, &t->pending);
932 } else if (sig == SIGCONT) {
935 * Remove all stop signals from all queues, wake all threads.
937 siginitset(&flush, SIG_KERNEL_STOP_MASK);
938 flush_sigqueue_mask(&flush, &signal->shared_pending);
939 for_each_thread(p, t) {
940 flush_sigqueue_mask(&flush, &t->pending);
941 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
942 if (likely(!(t->ptrace & PT_SEIZED)))
943 wake_up_state(t, __TASK_STOPPED);
945 ptrace_trap_notify(t);
949 * Notify the parent with CLD_CONTINUED if we were stopped.
951 * If we were in the middle of a group stop, we pretend it
952 * was already finished, and then continued. Since SIGCHLD
953 * doesn't queue we report only CLD_STOPPED, as if the next
954 * CLD_CONTINUED was dropped.
957 if (signal->flags & SIGNAL_STOP_STOPPED)
958 why |= SIGNAL_CLD_CONTINUED;
959 else if (signal->group_stop_count)
960 why |= SIGNAL_CLD_STOPPED;
964 * The first thread which returns from do_signal_stop()
965 * will take ->siglock, notice SIGNAL_CLD_MASK, and
966 * notify its parent. See get_signal().
968 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
969 signal->group_stop_count = 0;
970 signal->group_exit_code = 0;
974 return !sig_ignored(p, sig, force);
978 * Test if P wants to take SIG. After we've checked all threads with this,
979 * it's equivalent to finding no threads not blocking SIG. Any threads not
980 * blocking SIG were ruled out because they are not running and already
981 * have pending signals. Such threads will dequeue from the shared queue
982 * as soon as they're available, so putting the signal on the shared queue
983 * will be equivalent to sending it to one such thread.
985 static inline bool wants_signal(int sig, struct task_struct *p)
987 if (sigismember(&p->blocked, sig))
990 if (p->flags & PF_EXITING)
996 if (task_is_stopped_or_traced(p))
999 return task_curr(p) || !task_sigpending(p);
1002 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1004 struct signal_struct *signal = p->signal;
1005 struct task_struct *t;
1008 * Now find a thread we can wake up to take the signal off the queue.
1010 * If the main thread wants the signal, it gets first crack.
1011 * Probably the least surprising to the average bear.
1013 if (wants_signal(sig, p))
1015 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1017 * There is just one thread and it does not need to be woken.
1018 * It will dequeue unblocked signals before it runs again.
1023 * Otherwise try to find a suitable thread.
1025 t = signal->curr_target;
1026 while (!wants_signal(sig, t)) {
1028 if (t == signal->curr_target)
1030 * No thread needs to be woken.
1031 * Any eligible threads will see
1032 * the signal in the queue soon.
1036 signal->curr_target = t;
1040 * Found a killable thread. If the signal will be fatal,
1041 * then start taking the whole group down immediately.
1043 if (sig_fatal(p, sig) &&
1044 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1045 !sigismember(&t->real_blocked, sig) &&
1046 (sig == SIGKILL || !p->ptrace)) {
1048 * This signal will be fatal to the whole group.
1050 if (!sig_kernel_coredump(sig)) {
1052 * Start a group exit and wake everybody up.
1053 * This way we don't have other threads
1054 * running and doing things after a slower
1055 * thread has the fatal signal pending.
1057 signal->flags = SIGNAL_GROUP_EXIT;
1058 signal->group_exit_code = sig;
1059 signal->group_stop_count = 0;
1062 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1063 sigaddset(&t->pending.signal, SIGKILL);
1064 signal_wake_up(t, 1);
1065 } while_each_thread(p, t);
1071 * The signal is already in the shared-pending queue.
1072 * Tell the chosen thread to wake up and dequeue it.
1074 signal_wake_up(t, sig == SIGKILL);
1078 static inline bool legacy_queue(struct sigpending *signals, int sig)
1080 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1083 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1084 enum pid_type type, bool force)
1086 struct sigpending *pending;
1088 int override_rlimit;
1089 int ret = 0, result;
1091 assert_spin_locked(&t->sighand->siglock);
1093 result = TRACE_SIGNAL_IGNORED;
1094 if (!prepare_signal(sig, t, force))
1097 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1099 * Short-circuit ignored signals and support queuing
1100 * exactly one non-rt signal, so that we can get more
1101 * detailed information about the cause of the signal.
1103 result = TRACE_SIGNAL_ALREADY_PENDING;
1104 if (legacy_queue(pending, sig))
1107 result = TRACE_SIGNAL_DELIVERED;
1109 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1111 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1115 * Real-time signals must be queued if sent by sigqueue, or
1116 * some other real-time mechanism. It is implementation
1117 * defined whether kill() does so. We attempt to do so, on
1118 * the principle of least surprise, but since kill is not
1119 * allowed to fail with EAGAIN when low on memory we just
1120 * make sure at least one signal gets delivered and don't
1121 * pass on the info struct.
1124 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1126 override_rlimit = 0;
1128 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1131 list_add_tail(&q->list, &pending->list);
1132 switch ((unsigned long) info) {
1133 case (unsigned long) SEND_SIG_NOINFO:
1134 clear_siginfo(&q->info);
1135 q->info.si_signo = sig;
1136 q->info.si_errno = 0;
1137 q->info.si_code = SI_USER;
1138 q->info.si_pid = task_tgid_nr_ns(current,
1139 task_active_pid_ns(t));
1142 from_kuid_munged(task_cred_xxx(t, user_ns),
1146 case (unsigned long) SEND_SIG_PRIV:
1147 clear_siginfo(&q->info);
1148 q->info.si_signo = sig;
1149 q->info.si_errno = 0;
1150 q->info.si_code = SI_KERNEL;
1155 copy_siginfo(&q->info, info);
1158 } else if (!is_si_special(info) &&
1159 sig >= SIGRTMIN && info->si_code != SI_USER) {
1161 * Queue overflow, abort. We may abort if the
1162 * signal was rt and sent by user using something
1163 * other than kill().
1165 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1170 * This is a silent loss of information. We still
1171 * send the signal, but the *info bits are lost.
1173 result = TRACE_SIGNAL_LOSE_INFO;
1177 signalfd_notify(t, sig);
1178 sigaddset(&pending->signal, sig);
1180 /* Let multiprocess signals appear after on-going forks */
1181 if (type > PIDTYPE_TGID) {
1182 struct multiprocess_signals *delayed;
1183 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1184 sigset_t *signal = &delayed->signal;
1185 /* Can't queue both a stop and a continue signal */
1187 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1188 else if (sig_kernel_stop(sig))
1189 sigdelset(signal, SIGCONT);
1190 sigaddset(signal, sig);
1194 complete_signal(sig, t, type);
1196 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1200 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1203 switch (siginfo_layout(info->si_signo, info->si_code)) {
1212 case SIL_FAULT_TRAPNO:
1213 case SIL_FAULT_MCEERR:
1214 case SIL_FAULT_BNDERR:
1215 case SIL_FAULT_PKUERR:
1216 case SIL_PERF_EVENT:
1224 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1227 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1230 if (info == SEND_SIG_NOINFO) {
1231 /* Force if sent from an ancestor pid namespace */
1232 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1233 } else if (info == SEND_SIG_PRIV) {
1234 /* Don't ignore kernel generated signals */
1236 } else if (has_si_pid_and_uid(info)) {
1237 /* SIGKILL and SIGSTOP is special or has ids */
1238 struct user_namespace *t_user_ns;
1241 t_user_ns = task_cred_xxx(t, user_ns);
1242 if (current_user_ns() != t_user_ns) {
1243 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1244 info->si_uid = from_kuid_munged(t_user_ns, uid);
1248 /* A kernel generated signal? */
1249 force = (info->si_code == SI_KERNEL);
1251 /* From an ancestor pid namespace? */
1252 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1257 return __send_signal(sig, info, t, type, force);
1260 static void print_fatal_signal(int signr)
1262 struct pt_regs *regs = signal_pt_regs();
1263 pr_info("potentially unexpected fatal signal %d.\n", signr);
1265 #if defined(__i386__) && !defined(__arch_um__)
1266 pr_info("code at %08lx: ", regs->ip);
1269 for (i = 0; i < 16; i++) {
1272 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1274 pr_cont("%02x ", insn);
1284 static int __init setup_print_fatal_signals(char *str)
1286 get_option (&str, &print_fatal_signals);
1291 __setup("print-fatal-signals=", setup_print_fatal_signals);
1294 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1296 return send_signal(sig, info, p, PIDTYPE_TGID);
1299 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1302 unsigned long flags;
1305 if (lock_task_sighand(p, &flags)) {
1306 ret = send_signal(sig, info, p, type);
1307 unlock_task_sighand(p, &flags);
1314 * Force a signal that the process can't ignore: if necessary
1315 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1317 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1318 * since we do not want to have a signal handler that was blocked
1319 * be invoked when user space had explicitly blocked it.
1321 * We don't want to have recursive SIGSEGV's etc, for example,
1322 * that is why we also clear SIGNAL_UNKILLABLE.
1325 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1327 unsigned long int flags;
1328 int ret, blocked, ignored;
1329 struct k_sigaction *action;
1330 int sig = info->si_signo;
1332 spin_lock_irqsave(&t->sighand->siglock, flags);
1333 action = &t->sighand->action[sig-1];
1334 ignored = action->sa.sa_handler == SIG_IGN;
1335 blocked = sigismember(&t->blocked, sig);
1336 if (blocked || ignored) {
1337 action->sa.sa_handler = SIG_DFL;
1339 sigdelset(&t->blocked, sig);
1340 recalc_sigpending_and_wake(t);
1344 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1345 * debugging to leave init killable.
1347 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1348 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349 ret = send_signal(sig, info, t, PIDTYPE_PID);
1350 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1355 int force_sig_info(struct kernel_siginfo *info)
1357 return force_sig_info_to_task(info, current);
1361 * Nuke all other threads in the group.
1363 int zap_other_threads(struct task_struct *p)
1365 struct task_struct *t = p;
1368 p->signal->group_stop_count = 0;
1370 while_each_thread(p, t) {
1371 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1374 /* Don't bother with already dead threads */
1377 sigaddset(&t->pending.signal, SIGKILL);
1378 signal_wake_up(t, 1);
1384 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385 unsigned long *flags)
1387 struct sighand_struct *sighand;
1391 sighand = rcu_dereference(tsk->sighand);
1392 if (unlikely(sighand == NULL))
1396 * This sighand can be already freed and even reused, but
1397 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398 * initializes ->siglock: this slab can't go away, it has
1399 * the same object type, ->siglock can't be reinitialized.
1401 * We need to ensure that tsk->sighand is still the same
1402 * after we take the lock, we can race with de_thread() or
1403 * __exit_signal(). In the latter case the next iteration
1404 * must see ->sighand == NULL.
1406 spin_lock_irqsave(&sighand->siglock, *flags);
1407 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1409 spin_unlock_irqrestore(&sighand->siglock, *flags);
1416 #ifdef CONFIG_LOCKDEP
1417 void lockdep_assert_task_sighand_held(struct task_struct *task)
1419 struct sighand_struct *sighand;
1422 sighand = rcu_dereference(task->sighand);
1424 lockdep_assert_held(&sighand->siglock);
1432 * send signal info to all the members of a group
1434 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1435 struct task_struct *p, enum pid_type type)
1440 ret = check_kill_permission(sig, info, p);
1444 ret = do_send_sig_info(sig, info, p, type);
1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1451 * control characters do (^C, ^Z etc)
1452 * - the caller must hold at least a readlock on tasklist_lock
1454 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1456 struct task_struct *p = NULL;
1457 int retval, success;
1461 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1462 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1465 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1466 return success ? 0 : retval;
1469 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1472 struct task_struct *p;
1476 p = pid_task(pid, PIDTYPE_PID);
1478 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1480 if (likely(!p || error != -ESRCH))
1484 * The task was unhashed in between, try again. If it
1485 * is dead, pid_task() will return NULL, if we race with
1486 * de_thread() it will find the new leader.
1491 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1495 error = kill_pid_info(sig, info, find_vpid(pid));
1500 static inline bool kill_as_cred_perm(const struct cred *cred,
1501 struct task_struct *target)
1503 const struct cred *pcred = __task_cred(target);
1505 return uid_eq(cred->euid, pcred->suid) ||
1506 uid_eq(cred->euid, pcred->uid) ||
1507 uid_eq(cred->uid, pcred->suid) ||
1508 uid_eq(cred->uid, pcred->uid);
1512 * The usb asyncio usage of siginfo is wrong. The glibc support
1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1514 * AKA after the generic fields:
1515 * kernel_pid_t si_pid;
1516 * kernel_uid32_t si_uid;
1517 * sigval_t si_value;
1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1520 * after the generic fields is:
1521 * void __user *si_addr;
1523 * This is a practical problem when there is a 64bit big endian kernel
1524 * and a 32bit userspace. As the 32bit address will encoded in the low
1525 * 32bits of the pointer. Those low 32bits will be stored at higher
1526 * address than appear in a 32 bit pointer. So userspace will not
1527 * see the address it was expecting for it's completions.
1529 * There is nothing in the encoding that can allow
1530 * copy_siginfo_to_user32 to detect this confusion of formats, so
1531 * handle this by requiring the caller of kill_pid_usb_asyncio to
1532 * notice when this situration takes place and to store the 32bit
1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1536 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1537 struct pid *pid, const struct cred *cred)
1539 struct kernel_siginfo info;
1540 struct task_struct *p;
1541 unsigned long flags;
1544 if (!valid_signal(sig))
1547 clear_siginfo(&info);
1548 info.si_signo = sig;
1549 info.si_errno = errno;
1550 info.si_code = SI_ASYNCIO;
1551 *((sigval_t *)&info.si_pid) = addr;
1554 p = pid_task(pid, PIDTYPE_PID);
1559 if (!kill_as_cred_perm(cred, p)) {
1563 ret = security_task_kill(p, &info, sig, cred);
1568 if (lock_task_sighand(p, &flags)) {
1569 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1570 unlock_task_sighand(p, &flags);
1578 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1581 * kill_something_info() interprets pid in interesting ways just like kill(2).
1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1584 * is probably wrong. Should make it like BSD or SYSV.
1587 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1592 return kill_proc_info(sig, info, pid);
1594 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1598 read_lock(&tasklist_lock);
1600 ret = __kill_pgrp_info(sig, info,
1601 pid ? find_vpid(-pid) : task_pgrp(current));
1603 int retval = 0, count = 0;
1604 struct task_struct * p;
1606 for_each_process(p) {
1607 if (task_pid_vnr(p) > 1 &&
1608 !same_thread_group(p, current)) {
1609 int err = group_send_sig_info(sig, info, p,
1616 ret = count ? retval : -ESRCH;
1618 read_unlock(&tasklist_lock);
1624 * These are for backward compatibility with the rest of the kernel source.
1627 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1630 * Make sure legacy kernel users don't send in bad values
1631 * (normal paths check this in check_kill_permission).
1633 if (!valid_signal(sig))
1636 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1638 EXPORT_SYMBOL(send_sig_info);
1640 #define __si_special(priv) \
1641 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1644 send_sig(int sig, struct task_struct *p, int priv)
1646 return send_sig_info(sig, __si_special(priv), p);
1648 EXPORT_SYMBOL(send_sig);
1650 void force_sig(int sig)
1652 struct kernel_siginfo info;
1654 clear_siginfo(&info);
1655 info.si_signo = sig;
1657 info.si_code = SI_KERNEL;
1660 force_sig_info(&info);
1662 EXPORT_SYMBOL(force_sig);
1665 * When things go south during signal handling, we
1666 * will force a SIGSEGV. And if the signal that caused
1667 * the problem was already a SIGSEGV, we'll want to
1668 * make sure we don't even try to deliver the signal..
1670 void force_sigsegv(int sig)
1672 struct task_struct *p = current;
1674 if (sig == SIGSEGV) {
1675 unsigned long flags;
1676 spin_lock_irqsave(&p->sighand->siglock, flags);
1677 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1678 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1683 int force_sig_fault_to_task(int sig, int code, void __user *addr
1684 ___ARCH_SI_TRAPNO(int trapno)
1685 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686 , struct task_struct *t)
1688 struct kernel_siginfo info;
1690 clear_siginfo(&info);
1691 info.si_signo = sig;
1693 info.si_code = code;
1694 info.si_addr = addr;
1695 #ifdef __ARCH_SI_TRAPNO
1696 info.si_trapno = trapno;
1700 info.si_flags = flags;
1703 return force_sig_info_to_task(&info, t);
1706 int force_sig_fault(int sig, int code, void __user *addr
1707 ___ARCH_SI_TRAPNO(int trapno)
1708 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1710 return force_sig_fault_to_task(sig, code, addr
1711 ___ARCH_SI_TRAPNO(trapno)
1712 ___ARCH_SI_IA64(imm, flags, isr), current);
1715 int send_sig_fault(int sig, int code, void __user *addr
1716 ___ARCH_SI_TRAPNO(int trapno)
1717 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1718 , struct task_struct *t)
1720 struct kernel_siginfo info;
1722 clear_siginfo(&info);
1723 info.si_signo = sig;
1725 info.si_code = code;
1726 info.si_addr = addr;
1727 #ifdef __ARCH_SI_TRAPNO
1728 info.si_trapno = trapno;
1732 info.si_flags = flags;
1735 return send_sig_info(info.si_signo, &info, t);
1738 int force_sig_mceerr(int code, void __user *addr, short lsb)
1740 struct kernel_siginfo info;
1742 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1743 clear_siginfo(&info);
1744 info.si_signo = SIGBUS;
1746 info.si_code = code;
1747 info.si_addr = addr;
1748 info.si_addr_lsb = lsb;
1749 return force_sig_info(&info);
1752 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1754 struct kernel_siginfo info;
1756 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1757 clear_siginfo(&info);
1758 info.si_signo = SIGBUS;
1760 info.si_code = code;
1761 info.si_addr = addr;
1762 info.si_addr_lsb = lsb;
1763 return send_sig_info(info.si_signo, &info, t);
1765 EXPORT_SYMBOL(send_sig_mceerr);
1767 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1769 struct kernel_siginfo info;
1771 clear_siginfo(&info);
1772 info.si_signo = SIGSEGV;
1774 info.si_code = SEGV_BNDERR;
1775 info.si_addr = addr;
1776 info.si_lower = lower;
1777 info.si_upper = upper;
1778 return force_sig_info(&info);
1782 int force_sig_pkuerr(void __user *addr, u32 pkey)
1784 struct kernel_siginfo info;
1786 clear_siginfo(&info);
1787 info.si_signo = SIGSEGV;
1789 info.si_code = SEGV_PKUERR;
1790 info.si_addr = addr;
1791 info.si_pkey = pkey;
1792 return force_sig_info(&info);
1796 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1798 struct kernel_siginfo info;
1800 clear_siginfo(&info);
1801 info.si_signo = SIGTRAP;
1803 info.si_code = TRAP_PERF;
1804 info.si_addr = addr;
1805 info.si_perf_data = sig_data;
1806 info.si_perf_type = type;
1808 return force_sig_info(&info);
1811 /* For the crazy architectures that include trap information in
1812 * the errno field, instead of an actual errno value.
1814 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1816 struct kernel_siginfo info;
1818 clear_siginfo(&info);
1819 info.si_signo = SIGTRAP;
1820 info.si_errno = errno;
1821 info.si_code = TRAP_HWBKPT;
1822 info.si_addr = addr;
1823 return force_sig_info(&info);
1826 int kill_pgrp(struct pid *pid, int sig, int priv)
1830 read_lock(&tasklist_lock);
1831 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1832 read_unlock(&tasklist_lock);
1836 EXPORT_SYMBOL(kill_pgrp);
1838 int kill_pid(struct pid *pid, int sig, int priv)
1840 return kill_pid_info(sig, __si_special(priv), pid);
1842 EXPORT_SYMBOL(kill_pid);
1845 * These functions support sending signals using preallocated sigqueue
1846 * structures. This is needed "because realtime applications cannot
1847 * afford to lose notifications of asynchronous events, like timer
1848 * expirations or I/O completions". In the case of POSIX Timers
1849 * we allocate the sigqueue structure from the timer_create. If this
1850 * allocation fails we are able to report the failure to the application
1851 * with an EAGAIN error.
1853 struct sigqueue *sigqueue_alloc(void)
1855 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1858 void sigqueue_free(struct sigqueue *q)
1860 unsigned long flags;
1861 spinlock_t *lock = ¤t->sighand->siglock;
1863 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1865 * We must hold ->siglock while testing q->list
1866 * to serialize with collect_signal() or with
1867 * __exit_signal()->flush_sigqueue().
1869 spin_lock_irqsave(lock, flags);
1870 q->flags &= ~SIGQUEUE_PREALLOC;
1872 * If it is queued it will be freed when dequeued,
1873 * like the "regular" sigqueue.
1875 if (!list_empty(&q->list))
1877 spin_unlock_irqrestore(lock, flags);
1883 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1885 int sig = q->info.si_signo;
1886 struct sigpending *pending;
1887 struct task_struct *t;
1888 unsigned long flags;
1891 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1895 t = pid_task(pid, type);
1896 if (!t || !likely(lock_task_sighand(t, &flags)))
1899 ret = 1; /* the signal is ignored */
1900 result = TRACE_SIGNAL_IGNORED;
1901 if (!prepare_signal(sig, t, false))
1905 if (unlikely(!list_empty(&q->list))) {
1907 * If an SI_TIMER entry is already queue just increment
1908 * the overrun count.
1910 BUG_ON(q->info.si_code != SI_TIMER);
1911 q->info.si_overrun++;
1912 result = TRACE_SIGNAL_ALREADY_PENDING;
1915 q->info.si_overrun = 0;
1917 signalfd_notify(t, sig);
1918 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1919 list_add_tail(&q->list, &pending->list);
1920 sigaddset(&pending->signal, sig);
1921 complete_signal(sig, t, type);
1922 result = TRACE_SIGNAL_DELIVERED;
1924 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1925 unlock_task_sighand(t, &flags);
1931 static void do_notify_pidfd(struct task_struct *task)
1935 WARN_ON(task->exit_state == 0);
1936 pid = task_pid(task);
1937 wake_up_all(&pid->wait_pidfd);
1941 * Let a parent know about the death of a child.
1942 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1944 * Returns true if our parent ignored us and so we've switched to
1947 bool do_notify_parent(struct task_struct *tsk, int sig)
1949 struct kernel_siginfo info;
1950 unsigned long flags;
1951 struct sighand_struct *psig;
1952 bool autoreap = false;
1957 /* do_notify_parent_cldstop should have been called instead. */
1958 BUG_ON(task_is_stopped_or_traced(tsk));
1960 BUG_ON(!tsk->ptrace &&
1961 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1963 /* Wake up all pidfd waiters */
1964 do_notify_pidfd(tsk);
1966 if (sig != SIGCHLD) {
1968 * This is only possible if parent == real_parent.
1969 * Check if it has changed security domain.
1971 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1975 clear_siginfo(&info);
1976 info.si_signo = sig;
1979 * We are under tasklist_lock here so our parent is tied to
1980 * us and cannot change.
1982 * task_active_pid_ns will always return the same pid namespace
1983 * until a task passes through release_task.
1985 * write_lock() currently calls preempt_disable() which is the
1986 * same as rcu_read_lock(), but according to Oleg, this is not
1987 * correct to rely on this
1990 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1991 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1995 task_cputime(tsk, &utime, &stime);
1996 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1997 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1999 info.si_status = tsk->exit_code & 0x7f;
2000 if (tsk->exit_code & 0x80)
2001 info.si_code = CLD_DUMPED;
2002 else if (tsk->exit_code & 0x7f)
2003 info.si_code = CLD_KILLED;
2005 info.si_code = CLD_EXITED;
2006 info.si_status = tsk->exit_code >> 8;
2009 psig = tsk->parent->sighand;
2010 spin_lock_irqsave(&psig->siglock, flags);
2011 if (!tsk->ptrace && sig == SIGCHLD &&
2012 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2013 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2015 * We are exiting and our parent doesn't care. POSIX.1
2016 * defines special semantics for setting SIGCHLD to SIG_IGN
2017 * or setting the SA_NOCLDWAIT flag: we should be reaped
2018 * automatically and not left for our parent's wait4 call.
2019 * Rather than having the parent do it as a magic kind of
2020 * signal handler, we just set this to tell do_exit that we
2021 * can be cleaned up without becoming a zombie. Note that
2022 * we still call __wake_up_parent in this case, because a
2023 * blocked sys_wait4 might now return -ECHILD.
2025 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2026 * is implementation-defined: we do (if you don't want
2027 * it, just use SIG_IGN instead).
2030 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2034 * Send with __send_signal as si_pid and si_uid are in the
2035 * parent's namespaces.
2037 if (valid_signal(sig) && sig)
2038 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2039 __wake_up_parent(tsk, tsk->parent);
2040 spin_unlock_irqrestore(&psig->siglock, flags);
2046 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2047 * @tsk: task reporting the state change
2048 * @for_ptracer: the notification is for ptracer
2049 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2051 * Notify @tsk's parent that the stopped/continued state has changed. If
2052 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2053 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2056 * Must be called with tasklist_lock at least read locked.
2058 static void do_notify_parent_cldstop(struct task_struct *tsk,
2059 bool for_ptracer, int why)
2061 struct kernel_siginfo info;
2062 unsigned long flags;
2063 struct task_struct *parent;
2064 struct sighand_struct *sighand;
2068 parent = tsk->parent;
2070 tsk = tsk->group_leader;
2071 parent = tsk->real_parent;
2074 clear_siginfo(&info);
2075 info.si_signo = SIGCHLD;
2078 * see comment in do_notify_parent() about the following 4 lines
2081 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2082 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2085 task_cputime(tsk, &utime, &stime);
2086 info.si_utime = nsec_to_clock_t(utime);
2087 info.si_stime = nsec_to_clock_t(stime);
2092 info.si_status = SIGCONT;
2095 info.si_status = tsk->signal->group_exit_code & 0x7f;
2098 info.si_status = tsk->exit_code & 0x7f;
2104 sighand = parent->sighand;
2105 spin_lock_irqsave(&sighand->siglock, flags);
2106 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2107 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2108 __group_send_sig_info(SIGCHLD, &info, parent);
2110 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2112 __wake_up_parent(tsk, parent);
2113 spin_unlock_irqrestore(&sighand->siglock, flags);
2116 static inline bool may_ptrace_stop(void)
2118 if (!likely(current->ptrace))
2121 * Are we in the middle of do_coredump?
2122 * If so and our tracer is also part of the coredump stopping
2123 * is a deadlock situation, and pointless because our tracer
2124 * is dead so don't allow us to stop.
2125 * If SIGKILL was already sent before the caller unlocked
2126 * ->siglock we must see ->core_state != NULL. Otherwise it
2127 * is safe to enter schedule().
2129 * This is almost outdated, a task with the pending SIGKILL can't
2130 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2131 * after SIGKILL was already dequeued.
2133 if (unlikely(current->mm->core_state) &&
2134 unlikely(current->mm == current->parent->mm))
2141 * Return non-zero if there is a SIGKILL that should be waking us up.
2142 * Called with the siglock held.
2144 static bool sigkill_pending(struct task_struct *tsk)
2146 return sigismember(&tsk->pending.signal, SIGKILL) ||
2147 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2151 * This must be called with current->sighand->siglock held.
2153 * This should be the path for all ptrace stops.
2154 * We always set current->last_siginfo while stopped here.
2155 * That makes it a way to test a stopped process for
2156 * being ptrace-stopped vs being job-control-stopped.
2158 * If we actually decide not to stop at all because the tracer
2159 * is gone, we keep current->exit_code unless clear_code.
2161 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2162 __releases(¤t->sighand->siglock)
2163 __acquires(¤t->sighand->siglock)
2165 bool gstop_done = false;
2167 if (arch_ptrace_stop_needed(exit_code, info)) {
2169 * The arch code has something special to do before a
2170 * ptrace stop. This is allowed to block, e.g. for faults
2171 * on user stack pages. We can't keep the siglock while
2172 * calling arch_ptrace_stop, so we must release it now.
2173 * To preserve proper semantics, we must do this before
2174 * any signal bookkeeping like checking group_stop_count.
2175 * Meanwhile, a SIGKILL could come in before we retake the
2176 * siglock. That must prevent us from sleeping in TASK_TRACED.
2177 * So after regaining the lock, we must check for SIGKILL.
2179 spin_unlock_irq(¤t->sighand->siglock);
2180 arch_ptrace_stop(exit_code, info);
2181 spin_lock_irq(¤t->sighand->siglock);
2182 if (sigkill_pending(current))
2186 set_special_state(TASK_TRACED);
2189 * We're committing to trapping. TRACED should be visible before
2190 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2191 * Also, transition to TRACED and updates to ->jobctl should be
2192 * atomic with respect to siglock and should be done after the arch
2193 * hook as siglock is released and regrabbed across it.
2198 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2200 * set_current_state() smp_wmb();
2202 * wait_task_stopped()
2203 * task_stopped_code()
2204 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2208 current->last_siginfo = info;
2209 current->exit_code = exit_code;
2212 * If @why is CLD_STOPPED, we're trapping to participate in a group
2213 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2214 * across siglock relocks since INTERRUPT was scheduled, PENDING
2215 * could be clear now. We act as if SIGCONT is received after
2216 * TASK_TRACED is entered - ignore it.
2218 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2219 gstop_done = task_participate_group_stop(current);
2221 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2222 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2223 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2224 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2226 /* entering a trap, clear TRAPPING */
2227 task_clear_jobctl_trapping(current);
2229 spin_unlock_irq(¤t->sighand->siglock);
2230 read_lock(&tasklist_lock);
2231 if (may_ptrace_stop()) {
2233 * Notify parents of the stop.
2235 * While ptraced, there are two parents - the ptracer and
2236 * the real_parent of the group_leader. The ptracer should
2237 * know about every stop while the real parent is only
2238 * interested in the completion of group stop. The states
2239 * for the two don't interact with each other. Notify
2240 * separately unless they're gonna be duplicates.
2242 do_notify_parent_cldstop(current, true, why);
2243 if (gstop_done && ptrace_reparented(current))
2244 do_notify_parent_cldstop(current, false, why);
2247 * Don't want to allow preemption here, because
2248 * sys_ptrace() needs this task to be inactive.
2250 * XXX: implement read_unlock_no_resched().
2253 read_unlock(&tasklist_lock);
2254 cgroup_enter_frozen();
2255 preempt_enable_no_resched();
2256 freezable_schedule();
2257 cgroup_leave_frozen(true);
2260 * By the time we got the lock, our tracer went away.
2261 * Don't drop the lock yet, another tracer may come.
2263 * If @gstop_done, the ptracer went away between group stop
2264 * completion and here. During detach, it would have set
2265 * JOBCTL_STOP_PENDING on us and we'll re-enter
2266 * TASK_STOPPED in do_signal_stop() on return, so notifying
2267 * the real parent of the group stop completion is enough.
2270 do_notify_parent_cldstop(current, false, why);
2272 /* tasklist protects us from ptrace_freeze_traced() */
2273 __set_current_state(TASK_RUNNING);
2275 current->exit_code = 0;
2276 read_unlock(&tasklist_lock);
2280 * We are back. Now reacquire the siglock before touching
2281 * last_siginfo, so that we are sure to have synchronized with
2282 * any signal-sending on another CPU that wants to examine it.
2284 spin_lock_irq(¤t->sighand->siglock);
2285 current->last_siginfo = NULL;
2287 /* LISTENING can be set only during STOP traps, clear it */
2288 current->jobctl &= ~JOBCTL_LISTENING;
2291 * Queued signals ignored us while we were stopped for tracing.
2292 * So check for any that we should take before resuming user mode.
2293 * This sets TIF_SIGPENDING, but never clears it.
2295 recalc_sigpending_tsk(current);
2298 static void ptrace_do_notify(int signr, int exit_code, int why)
2300 kernel_siginfo_t info;
2302 clear_siginfo(&info);
2303 info.si_signo = signr;
2304 info.si_code = exit_code;
2305 info.si_pid = task_pid_vnr(current);
2306 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2308 /* Let the debugger run. */
2309 ptrace_stop(exit_code, why, 1, &info);
2312 void ptrace_notify(int exit_code)
2314 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2315 if (unlikely(current->task_works))
2318 spin_lock_irq(¤t->sighand->siglock);
2319 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2320 spin_unlock_irq(¤t->sighand->siglock);
2324 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2325 * @signr: signr causing group stop if initiating
2327 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2328 * and participate in it. If already set, participate in the existing
2329 * group stop. If participated in a group stop (and thus slept), %true is
2330 * returned with siglock released.
2332 * If ptraced, this function doesn't handle stop itself. Instead,
2333 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2334 * untouched. The caller must ensure that INTERRUPT trap handling takes
2335 * places afterwards.
2338 * Must be called with @current->sighand->siglock held, which is released
2342 * %false if group stop is already cancelled or ptrace trap is scheduled.
2343 * %true if participated in group stop.
2345 static bool do_signal_stop(int signr)
2346 __releases(¤t->sighand->siglock)
2348 struct signal_struct *sig = current->signal;
2350 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2351 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2352 struct task_struct *t;
2354 /* signr will be recorded in task->jobctl for retries */
2355 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2357 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2358 unlikely(signal_group_exit(sig)))
2361 * There is no group stop already in progress. We must
2364 * While ptraced, a task may be resumed while group stop is
2365 * still in effect and then receive a stop signal and
2366 * initiate another group stop. This deviates from the
2367 * usual behavior as two consecutive stop signals can't
2368 * cause two group stops when !ptraced. That is why we
2369 * also check !task_is_stopped(t) below.
2371 * The condition can be distinguished by testing whether
2372 * SIGNAL_STOP_STOPPED is already set. Don't generate
2373 * group_exit_code in such case.
2375 * This is not necessary for SIGNAL_STOP_CONTINUED because
2376 * an intervening stop signal is required to cause two
2377 * continued events regardless of ptrace.
2379 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2380 sig->group_exit_code = signr;
2382 sig->group_stop_count = 0;
2384 if (task_set_jobctl_pending(current, signr | gstop))
2385 sig->group_stop_count++;
2388 while_each_thread(current, t) {
2390 * Setting state to TASK_STOPPED for a group
2391 * stop is always done with the siglock held,
2392 * so this check has no races.
2394 if (!task_is_stopped(t) &&
2395 task_set_jobctl_pending(t, signr | gstop)) {
2396 sig->group_stop_count++;
2397 if (likely(!(t->ptrace & PT_SEIZED)))
2398 signal_wake_up(t, 0);
2400 ptrace_trap_notify(t);
2405 if (likely(!current->ptrace)) {
2409 * If there are no other threads in the group, or if there
2410 * is a group stop in progress and we are the last to stop,
2411 * report to the parent.
2413 if (task_participate_group_stop(current))
2414 notify = CLD_STOPPED;
2416 set_special_state(TASK_STOPPED);
2417 spin_unlock_irq(¤t->sighand->siglock);
2420 * Notify the parent of the group stop completion. Because
2421 * we're not holding either the siglock or tasklist_lock
2422 * here, ptracer may attach inbetween; however, this is for
2423 * group stop and should always be delivered to the real
2424 * parent of the group leader. The new ptracer will get
2425 * its notification when this task transitions into
2429 read_lock(&tasklist_lock);
2430 do_notify_parent_cldstop(current, false, notify);
2431 read_unlock(&tasklist_lock);
2434 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2435 cgroup_enter_frozen();
2436 freezable_schedule();
2440 * While ptraced, group stop is handled by STOP trap.
2441 * Schedule it and let the caller deal with it.
2443 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2449 * do_jobctl_trap - take care of ptrace jobctl traps
2451 * When PT_SEIZED, it's used for both group stop and explicit
2452 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2453 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2454 * the stop signal; otherwise, %SIGTRAP.
2456 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2457 * number as exit_code and no siginfo.
2460 * Must be called with @current->sighand->siglock held, which may be
2461 * released and re-acquired before returning with intervening sleep.
2463 static void do_jobctl_trap(void)
2465 struct signal_struct *signal = current->signal;
2466 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2468 if (current->ptrace & PT_SEIZED) {
2469 if (!signal->group_stop_count &&
2470 !(signal->flags & SIGNAL_STOP_STOPPED))
2472 WARN_ON_ONCE(!signr);
2473 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2476 WARN_ON_ONCE(!signr);
2477 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2478 current->exit_code = 0;
2483 * do_freezer_trap - handle the freezer jobctl trap
2485 * Puts the task into frozen state, if only the task is not about to quit.
2486 * In this case it drops JOBCTL_TRAP_FREEZE.
2489 * Must be called with @current->sighand->siglock held,
2490 * which is always released before returning.
2492 static void do_freezer_trap(void)
2493 __releases(¤t->sighand->siglock)
2496 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2497 * let's make another loop to give it a chance to be handled.
2498 * In any case, we'll return back.
2500 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2501 JOBCTL_TRAP_FREEZE) {
2502 spin_unlock_irq(¤t->sighand->siglock);
2507 * Now we're sure that there is no pending fatal signal and no
2508 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2509 * immediately (if there is a non-fatal signal pending), and
2510 * put the task into sleep.
2512 __set_current_state(TASK_INTERRUPTIBLE);
2513 clear_thread_flag(TIF_SIGPENDING);
2514 spin_unlock_irq(¤t->sighand->siglock);
2515 cgroup_enter_frozen();
2516 freezable_schedule();
2519 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2522 * We do not check sig_kernel_stop(signr) but set this marker
2523 * unconditionally because we do not know whether debugger will
2524 * change signr. This flag has no meaning unless we are going
2525 * to stop after return from ptrace_stop(). In this case it will
2526 * be checked in do_signal_stop(), we should only stop if it was
2527 * not cleared by SIGCONT while we were sleeping. See also the
2528 * comment in dequeue_signal().
2530 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2531 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2533 /* We're back. Did the debugger cancel the sig? */
2534 signr = current->exit_code;
2538 current->exit_code = 0;
2541 * Update the siginfo structure if the signal has
2542 * changed. If the debugger wanted something
2543 * specific in the siginfo structure then it should
2544 * have updated *info via PTRACE_SETSIGINFO.
2546 if (signr != info->si_signo) {
2547 clear_siginfo(info);
2548 info->si_signo = signr;
2550 info->si_code = SI_USER;
2552 info->si_pid = task_pid_vnr(current->parent);
2553 info->si_uid = from_kuid_munged(current_user_ns(),
2554 task_uid(current->parent));
2558 /* If the (new) signal is now blocked, requeue it. */
2559 if (sigismember(¤t->blocked, signr)) {
2560 send_signal(signr, info, current, PIDTYPE_PID);
2567 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2569 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2571 case SIL_FAULT_TRAPNO:
2572 case SIL_FAULT_MCEERR:
2573 case SIL_FAULT_BNDERR:
2574 case SIL_FAULT_PKUERR:
2575 case SIL_PERF_EVENT:
2576 ksig->info.si_addr = arch_untagged_si_addr(
2577 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2589 bool get_signal(struct ksignal *ksig)
2591 struct sighand_struct *sighand = current->sighand;
2592 struct signal_struct *signal = current->signal;
2595 if (unlikely(current->task_works))
2599 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2600 * that the arch handlers don't all have to do it. If we get here
2601 * without TIF_SIGPENDING, just exit after running signal work.
2603 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2604 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2605 tracehook_notify_signal();
2606 if (!task_sigpending(current))
2610 if (unlikely(uprobe_deny_signal()))
2614 * Do this once, we can't return to user-mode if freezing() == T.
2615 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2616 * thus do not need another check after return.
2621 spin_lock_irq(&sighand->siglock);
2624 * Every stopped thread goes here after wakeup. Check to see if
2625 * we should notify the parent, prepare_signal(SIGCONT) encodes
2626 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2628 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2631 if (signal->flags & SIGNAL_CLD_CONTINUED)
2632 why = CLD_CONTINUED;
2636 signal->flags &= ~SIGNAL_CLD_MASK;
2638 spin_unlock_irq(&sighand->siglock);
2641 * Notify the parent that we're continuing. This event is
2642 * always per-process and doesn't make whole lot of sense
2643 * for ptracers, who shouldn't consume the state via
2644 * wait(2) either, but, for backward compatibility, notify
2645 * the ptracer of the group leader too unless it's gonna be
2648 read_lock(&tasklist_lock);
2649 do_notify_parent_cldstop(current, false, why);
2651 if (ptrace_reparented(current->group_leader))
2652 do_notify_parent_cldstop(current->group_leader,
2654 read_unlock(&tasklist_lock);
2659 /* Has this task already been marked for death? */
2660 if (signal_group_exit(signal)) {
2661 ksig->info.si_signo = signr = SIGKILL;
2662 sigdelset(¤t->pending.signal, SIGKILL);
2663 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2664 &sighand->action[SIGKILL - 1]);
2665 recalc_sigpending();
2670 struct k_sigaction *ka;
2672 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2676 if (unlikely(current->jobctl &
2677 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2678 if (current->jobctl & JOBCTL_TRAP_MASK) {
2680 spin_unlock_irq(&sighand->siglock);
2681 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2688 * If the task is leaving the frozen state, let's update
2689 * cgroup counters and reset the frozen bit.
2691 if (unlikely(cgroup_task_frozen(current))) {
2692 spin_unlock_irq(&sighand->siglock);
2693 cgroup_leave_frozen(false);
2698 * Signals generated by the execution of an instruction
2699 * need to be delivered before any other pending signals
2700 * so that the instruction pointer in the signal stack
2701 * frame points to the faulting instruction.
2703 signr = dequeue_synchronous_signal(&ksig->info);
2705 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2708 break; /* will return 0 */
2710 if (unlikely(current->ptrace) && signr != SIGKILL) {
2711 signr = ptrace_signal(signr, &ksig->info);
2716 ka = &sighand->action[signr-1];
2718 /* Trace actually delivered signals. */
2719 trace_signal_deliver(signr, &ksig->info, ka);
2721 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2723 if (ka->sa.sa_handler != SIG_DFL) {
2724 /* Run the handler. */
2727 if (ka->sa.sa_flags & SA_ONESHOT)
2728 ka->sa.sa_handler = SIG_DFL;
2730 break; /* will return non-zero "signr" value */
2734 * Now we are doing the default action for this signal.
2736 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2740 * Global init gets no signals it doesn't want.
2741 * Container-init gets no signals it doesn't want from same
2744 * Note that if global/container-init sees a sig_kernel_only()
2745 * signal here, the signal must have been generated internally
2746 * or must have come from an ancestor namespace. In either
2747 * case, the signal cannot be dropped.
2749 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2750 !sig_kernel_only(signr))
2753 if (sig_kernel_stop(signr)) {
2755 * The default action is to stop all threads in
2756 * the thread group. The job control signals
2757 * do nothing in an orphaned pgrp, but SIGSTOP
2758 * always works. Note that siglock needs to be
2759 * dropped during the call to is_orphaned_pgrp()
2760 * because of lock ordering with tasklist_lock.
2761 * This allows an intervening SIGCONT to be posted.
2762 * We need to check for that and bail out if necessary.
2764 if (signr != SIGSTOP) {
2765 spin_unlock_irq(&sighand->siglock);
2767 /* signals can be posted during this window */
2769 if (is_current_pgrp_orphaned())
2772 spin_lock_irq(&sighand->siglock);
2775 if (likely(do_signal_stop(ksig->info.si_signo))) {
2776 /* It released the siglock. */
2781 * We didn't actually stop, due to a race
2782 * with SIGCONT or something like that.
2788 spin_unlock_irq(&sighand->siglock);
2789 if (unlikely(cgroup_task_frozen(current)))
2790 cgroup_leave_frozen(true);
2793 * Anything else is fatal, maybe with a core dump.
2795 current->flags |= PF_SIGNALED;
2797 if (sig_kernel_coredump(signr)) {
2798 if (print_fatal_signals)
2799 print_fatal_signal(ksig->info.si_signo);
2800 proc_coredump_connector(current);
2802 * If it was able to dump core, this kills all
2803 * other threads in the group and synchronizes with
2804 * their demise. If we lost the race with another
2805 * thread getting here, it set group_exit_code
2806 * first and our do_group_exit call below will use
2807 * that value and ignore the one we pass it.
2809 do_coredump(&ksig->info);
2813 * PF_IO_WORKER threads will catch and exit on fatal signals
2814 * themselves. They have cleanup that must be performed, so
2815 * we cannot call do_exit() on their behalf.
2817 if (current->flags & PF_IO_WORKER)
2821 * Death signals, no core dump.
2823 do_group_exit(ksig->info.si_signo);
2826 spin_unlock_irq(&sighand->siglock);
2830 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2831 hide_si_addr_tag_bits(ksig);
2833 return ksig->sig > 0;
2837 * signal_delivered -
2838 * @ksig: kernel signal struct
2839 * @stepping: nonzero if debugger single-step or block-step in use
2841 * This function should be called when a signal has successfully been
2842 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2843 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2844 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2846 static void signal_delivered(struct ksignal *ksig, int stepping)
2850 /* A signal was successfully delivered, and the
2851 saved sigmask was stored on the signal frame,
2852 and will be restored by sigreturn. So we can
2853 simply clear the restore sigmask flag. */
2854 clear_restore_sigmask();
2856 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2857 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2858 sigaddset(&blocked, ksig->sig);
2859 set_current_blocked(&blocked);
2860 if (current->sas_ss_flags & SS_AUTODISARM)
2861 sas_ss_reset(current);
2862 tracehook_signal_handler(stepping);
2865 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2868 force_sigsegv(ksig->sig);
2870 signal_delivered(ksig, stepping);
2874 * It could be that complete_signal() picked us to notify about the
2875 * group-wide signal. Other threads should be notified now to take
2876 * the shared signals in @which since we will not.
2878 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2881 struct task_struct *t;
2883 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2884 if (sigisemptyset(&retarget))
2888 while_each_thread(tsk, t) {
2889 if (t->flags & PF_EXITING)
2892 if (!has_pending_signals(&retarget, &t->blocked))
2894 /* Remove the signals this thread can handle. */
2895 sigandsets(&retarget, &retarget, &t->blocked);
2897 if (!task_sigpending(t))
2898 signal_wake_up(t, 0);
2900 if (sigisemptyset(&retarget))
2905 void exit_signals(struct task_struct *tsk)
2911 * @tsk is about to have PF_EXITING set - lock out users which
2912 * expect stable threadgroup.
2914 cgroup_threadgroup_change_begin(tsk);
2916 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2917 tsk->flags |= PF_EXITING;
2918 cgroup_threadgroup_change_end(tsk);
2922 spin_lock_irq(&tsk->sighand->siglock);
2924 * From now this task is not visible for group-wide signals,
2925 * see wants_signal(), do_signal_stop().
2927 tsk->flags |= PF_EXITING;
2929 cgroup_threadgroup_change_end(tsk);
2931 if (!task_sigpending(tsk))
2934 unblocked = tsk->blocked;
2935 signotset(&unblocked);
2936 retarget_shared_pending(tsk, &unblocked);
2938 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2939 task_participate_group_stop(tsk))
2940 group_stop = CLD_STOPPED;
2942 spin_unlock_irq(&tsk->sighand->siglock);
2945 * If group stop has completed, deliver the notification. This
2946 * should always go to the real parent of the group leader.
2948 if (unlikely(group_stop)) {
2949 read_lock(&tasklist_lock);
2950 do_notify_parent_cldstop(tsk, false, group_stop);
2951 read_unlock(&tasklist_lock);
2956 * System call entry points.
2960 * sys_restart_syscall - restart a system call
2962 SYSCALL_DEFINE0(restart_syscall)
2964 struct restart_block *restart = ¤t->restart_block;
2965 return restart->fn(restart);
2968 long do_no_restart_syscall(struct restart_block *param)
2973 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2975 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2976 sigset_t newblocked;
2977 /* A set of now blocked but previously unblocked signals. */
2978 sigandnsets(&newblocked, newset, ¤t->blocked);
2979 retarget_shared_pending(tsk, &newblocked);
2981 tsk->blocked = *newset;
2982 recalc_sigpending();
2986 * set_current_blocked - change current->blocked mask
2989 * It is wrong to change ->blocked directly, this helper should be used
2990 * to ensure the process can't miss a shared signal we are going to block.
2992 void set_current_blocked(sigset_t *newset)
2994 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2995 __set_current_blocked(newset);
2998 void __set_current_blocked(const sigset_t *newset)
3000 struct task_struct *tsk = current;
3003 * In case the signal mask hasn't changed, there is nothing we need
3004 * to do. The current->blocked shouldn't be modified by other task.
3006 if (sigequalsets(&tsk->blocked, newset))
3009 spin_lock_irq(&tsk->sighand->siglock);
3010 __set_task_blocked(tsk, newset);
3011 spin_unlock_irq(&tsk->sighand->siglock);
3015 * This is also useful for kernel threads that want to temporarily
3016 * (or permanently) block certain signals.
3018 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3019 * interface happily blocks "unblockable" signals like SIGKILL
3022 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3024 struct task_struct *tsk = current;
3027 /* Lockless, only current can change ->blocked, never from irq */
3029 *oldset = tsk->blocked;
3033 sigorsets(&newset, &tsk->blocked, set);
3036 sigandnsets(&newset, &tsk->blocked, set);
3045 __set_current_blocked(&newset);
3048 EXPORT_SYMBOL(sigprocmask);
3051 * The api helps set app-provided sigmasks.
3053 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3054 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3056 * Note that it does set_restore_sigmask() in advance, so it must be always
3057 * paired with restore_saved_sigmask_unless() before return from syscall.
3059 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3065 if (sigsetsize != sizeof(sigset_t))
3067 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3070 set_restore_sigmask();
3071 current->saved_sigmask = current->blocked;
3072 set_current_blocked(&kmask);
3077 #ifdef CONFIG_COMPAT
3078 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3085 if (sigsetsize != sizeof(compat_sigset_t))
3087 if (get_compat_sigset(&kmask, umask))
3090 set_restore_sigmask();
3091 current->saved_sigmask = current->blocked;
3092 set_current_blocked(&kmask);
3099 * sys_rt_sigprocmask - change the list of currently blocked signals
3100 * @how: whether to add, remove, or set signals
3101 * @nset: stores pending signals
3102 * @oset: previous value of signal mask if non-null
3103 * @sigsetsize: size of sigset_t type
3105 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3106 sigset_t __user *, oset, size_t, sigsetsize)
3108 sigset_t old_set, new_set;
3111 /* XXX: Don't preclude handling different sized sigset_t's. */
3112 if (sigsetsize != sizeof(sigset_t))
3115 old_set = current->blocked;
3118 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3120 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3122 error = sigprocmask(how, &new_set, NULL);
3128 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3135 #ifdef CONFIG_COMPAT
3136 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3137 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3139 sigset_t old_set = current->blocked;
3141 /* XXX: Don't preclude handling different sized sigset_t's. */
3142 if (sigsetsize != sizeof(sigset_t))
3148 if (get_compat_sigset(&new_set, nset))
3150 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3152 error = sigprocmask(how, &new_set, NULL);
3156 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3160 static void do_sigpending(sigset_t *set)
3162 spin_lock_irq(¤t->sighand->siglock);
3163 sigorsets(set, ¤t->pending.signal,
3164 ¤t->signal->shared_pending.signal);
3165 spin_unlock_irq(¤t->sighand->siglock);
3167 /* Outside the lock because only this thread touches it. */
3168 sigandsets(set, ¤t->blocked, set);
3172 * sys_rt_sigpending - examine a pending signal that has been raised
3174 * @uset: stores pending signals
3175 * @sigsetsize: size of sigset_t type or larger
3177 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3181 if (sigsetsize > sizeof(*uset))
3184 do_sigpending(&set);
3186 if (copy_to_user(uset, &set, sigsetsize))
3192 #ifdef CONFIG_COMPAT
3193 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3194 compat_size_t, sigsetsize)
3198 if (sigsetsize > sizeof(*uset))
3201 do_sigpending(&set);
3203 return put_compat_sigset(uset, &set, sigsetsize);
3207 static const struct {
3208 unsigned char limit, layout;
3210 [SIGILL] = { NSIGILL, SIL_FAULT },
3211 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3212 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3213 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3214 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3216 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3218 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3219 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3220 [SIGSYS] = { NSIGSYS, SIL_SYS },
3223 static bool known_siginfo_layout(unsigned sig, int si_code)
3225 if (si_code == SI_KERNEL)
3227 else if ((si_code > SI_USER)) {
3228 if (sig_specific_sicodes(sig)) {
3229 if (si_code <= sig_sicodes[sig].limit)
3232 else if (si_code <= NSIGPOLL)
3235 else if (si_code >= SI_DETHREAD)
3237 else if (si_code == SI_ASYNCNL)
3242 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3244 enum siginfo_layout layout = SIL_KILL;
3245 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3246 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3247 (si_code <= sig_sicodes[sig].limit)) {
3248 layout = sig_sicodes[sig].layout;
3249 /* Handle the exceptions */
3250 if ((sig == SIGBUS) &&
3251 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3252 layout = SIL_FAULT_MCEERR;
3253 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3254 layout = SIL_FAULT_BNDERR;
3256 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3257 layout = SIL_FAULT_PKUERR;
3259 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3260 layout = SIL_PERF_EVENT;
3261 #ifdef __ARCH_SI_TRAPNO
3262 else if (layout == SIL_FAULT)
3263 layout = SIL_FAULT_TRAPNO;
3266 else if (si_code <= NSIGPOLL)
3269 if (si_code == SI_TIMER)
3271 else if (si_code == SI_SIGIO)
3273 else if (si_code < 0)
3279 static inline char __user *si_expansion(const siginfo_t __user *info)
3281 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3284 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3286 char __user *expansion = si_expansion(to);
3287 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3289 if (clear_user(expansion, SI_EXPANSION_SIZE))
3294 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3295 const siginfo_t __user *from)
3297 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3298 char __user *expansion = si_expansion(from);
3299 char buf[SI_EXPANSION_SIZE];
3302 * An unknown si_code might need more than
3303 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3304 * extra bytes are 0. This guarantees copy_siginfo_to_user
3305 * will return this data to userspace exactly.
3307 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3309 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3317 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3318 const siginfo_t __user *from)
3320 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3322 to->si_signo = signo;
3323 return post_copy_siginfo_from_user(to, from);
3326 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3328 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3330 return post_copy_siginfo_from_user(to, from);
3333 #ifdef CONFIG_COMPAT
3335 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3336 * @to: compat siginfo destination
3337 * @from: kernel siginfo source
3339 * Note: This function does not work properly for the SIGCHLD on x32, but
3340 * fortunately it doesn't have to. The only valid callers for this function are
3341 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3342 * The latter does not care because SIGCHLD will never cause a coredump.
3344 void copy_siginfo_to_external32(struct compat_siginfo *to,
3345 const struct kernel_siginfo *from)
3347 memset(to, 0, sizeof(*to));
3349 to->si_signo = from->si_signo;
3350 to->si_errno = from->si_errno;
3351 to->si_code = from->si_code;
3352 switch(siginfo_layout(from->si_signo, from->si_code)) {
3354 to->si_pid = from->si_pid;
3355 to->si_uid = from->si_uid;
3358 to->si_tid = from->si_tid;
3359 to->si_overrun = from->si_overrun;
3360 to->si_int = from->si_int;
3363 to->si_band = from->si_band;
3364 to->si_fd = from->si_fd;
3367 to->si_addr = ptr_to_compat(from->si_addr);
3369 case SIL_FAULT_TRAPNO:
3370 to->si_addr = ptr_to_compat(from->si_addr);
3371 to->si_trapno = from->si_trapno;
3373 case SIL_FAULT_MCEERR:
3374 to->si_addr = ptr_to_compat(from->si_addr);
3375 to->si_addr_lsb = from->si_addr_lsb;
3377 case SIL_FAULT_BNDERR:
3378 to->si_addr = ptr_to_compat(from->si_addr);
3379 to->si_lower = ptr_to_compat(from->si_lower);
3380 to->si_upper = ptr_to_compat(from->si_upper);
3382 case SIL_FAULT_PKUERR:
3383 to->si_addr = ptr_to_compat(from->si_addr);
3384 to->si_pkey = from->si_pkey;
3386 case SIL_PERF_EVENT:
3387 to->si_addr = ptr_to_compat(from->si_addr);
3388 to->si_perf_data = from->si_perf_data;
3389 to->si_perf_type = from->si_perf_type;
3392 to->si_pid = from->si_pid;
3393 to->si_uid = from->si_uid;
3394 to->si_status = from->si_status;
3395 to->si_utime = from->si_utime;
3396 to->si_stime = from->si_stime;
3399 to->si_pid = from->si_pid;
3400 to->si_uid = from->si_uid;
3401 to->si_int = from->si_int;
3404 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3405 to->si_syscall = from->si_syscall;
3406 to->si_arch = from->si_arch;
3411 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3412 const struct kernel_siginfo *from)
3414 struct compat_siginfo new;
3416 copy_siginfo_to_external32(&new, from);
3417 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3422 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3423 const struct compat_siginfo *from)
3426 to->si_signo = from->si_signo;
3427 to->si_errno = from->si_errno;
3428 to->si_code = from->si_code;
3429 switch(siginfo_layout(from->si_signo, from->si_code)) {
3431 to->si_pid = from->si_pid;
3432 to->si_uid = from->si_uid;
3435 to->si_tid = from->si_tid;
3436 to->si_overrun = from->si_overrun;
3437 to->si_int = from->si_int;
3440 to->si_band = from->si_band;
3441 to->si_fd = from->si_fd;
3444 to->si_addr = compat_ptr(from->si_addr);
3446 case SIL_FAULT_TRAPNO:
3447 to->si_addr = compat_ptr(from->si_addr);
3448 to->si_trapno = from->si_trapno;
3450 case SIL_FAULT_MCEERR:
3451 to->si_addr = compat_ptr(from->si_addr);
3452 to->si_addr_lsb = from->si_addr_lsb;
3454 case SIL_FAULT_BNDERR:
3455 to->si_addr = compat_ptr(from->si_addr);
3456 to->si_lower = compat_ptr(from->si_lower);
3457 to->si_upper = compat_ptr(from->si_upper);
3459 case SIL_FAULT_PKUERR:
3460 to->si_addr = compat_ptr(from->si_addr);
3461 to->si_pkey = from->si_pkey;
3463 case SIL_PERF_EVENT:
3464 to->si_addr = compat_ptr(from->si_addr);
3465 to->si_perf_data = from->si_perf_data;
3466 to->si_perf_type = from->si_perf_type;
3469 to->si_pid = from->si_pid;
3470 to->si_uid = from->si_uid;
3471 to->si_status = from->si_status;
3472 #ifdef CONFIG_X86_X32_ABI
3473 if (in_x32_syscall()) {
3474 to->si_utime = from->_sifields._sigchld_x32._utime;
3475 to->si_stime = from->_sifields._sigchld_x32._stime;
3479 to->si_utime = from->si_utime;
3480 to->si_stime = from->si_stime;
3484 to->si_pid = from->si_pid;
3485 to->si_uid = from->si_uid;
3486 to->si_int = from->si_int;
3489 to->si_call_addr = compat_ptr(from->si_call_addr);
3490 to->si_syscall = from->si_syscall;
3491 to->si_arch = from->si_arch;
3497 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3498 const struct compat_siginfo __user *ufrom)
3500 struct compat_siginfo from;
3502 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3505 from.si_signo = signo;
3506 return post_copy_siginfo_from_user32(to, &from);
3509 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3510 const struct compat_siginfo __user *ufrom)
3512 struct compat_siginfo from;
3514 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3517 return post_copy_siginfo_from_user32(to, &from);
3519 #endif /* CONFIG_COMPAT */
3522 * do_sigtimedwait - wait for queued signals specified in @which
3523 * @which: queued signals to wait for
3524 * @info: if non-null, the signal's siginfo is returned here
3525 * @ts: upper bound on process time suspension
3527 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3528 const struct timespec64 *ts)
3530 ktime_t *to = NULL, timeout = KTIME_MAX;
3531 struct task_struct *tsk = current;
3532 sigset_t mask = *which;
3536 if (!timespec64_valid(ts))
3538 timeout = timespec64_to_ktime(*ts);
3543 * Invert the set of allowed signals to get those we want to block.
3545 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3548 spin_lock_irq(&tsk->sighand->siglock);
3549 sig = dequeue_signal(tsk, &mask, info);
3550 if (!sig && timeout) {
3552 * None ready, temporarily unblock those we're interested
3553 * while we are sleeping in so that we'll be awakened when
3554 * they arrive. Unblocking is always fine, we can avoid
3555 * set_current_blocked().
3557 tsk->real_blocked = tsk->blocked;
3558 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3559 recalc_sigpending();
3560 spin_unlock_irq(&tsk->sighand->siglock);
3562 __set_current_state(TASK_INTERRUPTIBLE);
3563 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3565 spin_lock_irq(&tsk->sighand->siglock);
3566 __set_task_blocked(tsk, &tsk->real_blocked);
3567 sigemptyset(&tsk->real_blocked);
3568 sig = dequeue_signal(tsk, &mask, info);
3570 spin_unlock_irq(&tsk->sighand->siglock);
3574 return ret ? -EINTR : -EAGAIN;
3578 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3580 * @uthese: queued signals to wait for
3581 * @uinfo: if non-null, the signal's siginfo is returned here
3582 * @uts: upper bound on process time suspension
3583 * @sigsetsize: size of sigset_t type
3585 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3586 siginfo_t __user *, uinfo,
3587 const struct __kernel_timespec __user *, uts,
3591 struct timespec64 ts;
3592 kernel_siginfo_t info;
3595 /* XXX: Don't preclude handling different sized sigset_t's. */
3596 if (sigsetsize != sizeof(sigset_t))
3599 if (copy_from_user(&these, uthese, sizeof(these)))
3603 if (get_timespec64(&ts, uts))
3607 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3609 if (ret > 0 && uinfo) {
3610 if (copy_siginfo_to_user(uinfo, &info))
3617 #ifdef CONFIG_COMPAT_32BIT_TIME
3618 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3619 siginfo_t __user *, uinfo,
3620 const struct old_timespec32 __user *, uts,
3624 struct timespec64 ts;
3625 kernel_siginfo_t info;
3628 if (sigsetsize != sizeof(sigset_t))
3631 if (copy_from_user(&these, uthese, sizeof(these)))
3635 if (get_old_timespec32(&ts, uts))
3639 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3641 if (ret > 0 && uinfo) {
3642 if (copy_siginfo_to_user(uinfo, &info))
3650 #ifdef CONFIG_COMPAT
3651 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3652 struct compat_siginfo __user *, uinfo,
3653 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3656 struct timespec64 t;
3657 kernel_siginfo_t info;
3660 if (sigsetsize != sizeof(sigset_t))
3663 if (get_compat_sigset(&s, uthese))
3667 if (get_timespec64(&t, uts))
3671 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3673 if (ret > 0 && uinfo) {
3674 if (copy_siginfo_to_user32(uinfo, &info))
3681 #ifdef CONFIG_COMPAT_32BIT_TIME
3682 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3683 struct compat_siginfo __user *, uinfo,
3684 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3687 struct timespec64 t;
3688 kernel_siginfo_t info;
3691 if (sigsetsize != sizeof(sigset_t))
3694 if (get_compat_sigset(&s, uthese))
3698 if (get_old_timespec32(&t, uts))
3702 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3704 if (ret > 0 && uinfo) {
3705 if (copy_siginfo_to_user32(uinfo, &info))
3714 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3716 clear_siginfo(info);
3717 info->si_signo = sig;
3719 info->si_code = SI_USER;
3720 info->si_pid = task_tgid_vnr(current);
3721 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3725 * sys_kill - send a signal to a process
3726 * @pid: the PID of the process
3727 * @sig: signal to be sent
3729 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3731 struct kernel_siginfo info;
3733 prepare_kill_siginfo(sig, &info);
3735 return kill_something_info(sig, &info, pid);
3739 * Verify that the signaler and signalee either are in the same pid namespace
3740 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3743 static bool access_pidfd_pidns(struct pid *pid)
3745 struct pid_namespace *active = task_active_pid_ns(current);
3746 struct pid_namespace *p = ns_of_pid(pid);
3759 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3760 siginfo_t __user *info)
3762 #ifdef CONFIG_COMPAT
3764 * Avoid hooking up compat syscalls and instead handle necessary
3765 * conversions here. Note, this is a stop-gap measure and should not be
3766 * considered a generic solution.
3768 if (in_compat_syscall())
3769 return copy_siginfo_from_user32(
3770 kinfo, (struct compat_siginfo __user *)info);
3772 return copy_siginfo_from_user(kinfo, info);
3775 static struct pid *pidfd_to_pid(const struct file *file)
3779 pid = pidfd_pid(file);
3783 return tgid_pidfd_to_pid(file);
3787 * sys_pidfd_send_signal - Signal a process through a pidfd
3788 * @pidfd: file descriptor of the process
3789 * @sig: signal to send
3790 * @info: signal info
3791 * @flags: future flags
3793 * The syscall currently only signals via PIDTYPE_PID which covers
3794 * kill(<positive-pid>, <signal>. It does not signal threads or process
3796 * In order to extend the syscall to threads and process groups the @flags
3797 * argument should be used. In essence, the @flags argument will determine
3798 * what is signaled and not the file descriptor itself. Put in other words,
3799 * grouping is a property of the flags argument not a property of the file
3802 * Return: 0 on success, negative errno on failure
3804 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3805 siginfo_t __user *, info, unsigned int, flags)
3810 kernel_siginfo_t kinfo;
3812 /* Enforce flags be set to 0 until we add an extension. */
3820 /* Is this a pidfd? */
3821 pid = pidfd_to_pid(f.file);
3828 if (!access_pidfd_pidns(pid))
3832 ret = copy_siginfo_from_user_any(&kinfo, info);
3837 if (unlikely(sig != kinfo.si_signo))
3840 /* Only allow sending arbitrary signals to yourself. */
3842 if ((task_pid(current) != pid) &&
3843 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3846 prepare_kill_siginfo(sig, &kinfo);
3849 ret = kill_pid_info(sig, &kinfo, pid);
3857 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3859 struct task_struct *p;
3863 p = find_task_by_vpid(pid);
3864 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3865 error = check_kill_permission(sig, info, p);
3867 * The null signal is a permissions and process existence
3868 * probe. No signal is actually delivered.
3870 if (!error && sig) {
3871 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3873 * If lock_task_sighand() failed we pretend the task
3874 * dies after receiving the signal. The window is tiny,
3875 * and the signal is private anyway.
3877 if (unlikely(error == -ESRCH))
3886 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3888 struct kernel_siginfo info;
3890 clear_siginfo(&info);
3891 info.si_signo = sig;
3893 info.si_code = SI_TKILL;
3894 info.si_pid = task_tgid_vnr(current);
3895 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3897 return do_send_specific(tgid, pid, sig, &info);
3901 * sys_tgkill - send signal to one specific thread
3902 * @tgid: the thread group ID of the thread
3903 * @pid: the PID of the thread
3904 * @sig: signal to be sent
3906 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3907 * exists but it's not belonging to the target process anymore. This
3908 * method solves the problem of threads exiting and PIDs getting reused.
3910 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3912 /* This is only valid for single tasks */
3913 if (pid <= 0 || tgid <= 0)
3916 return do_tkill(tgid, pid, sig);
3920 * sys_tkill - send signal to one specific task
3921 * @pid: the PID of the task
3922 * @sig: signal to be sent
3924 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3926 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3928 /* This is only valid for single tasks */
3932 return do_tkill(0, pid, sig);
3935 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3937 /* Not even root can pretend to send signals from the kernel.
3938 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3940 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3941 (task_pid_vnr(current) != pid))
3944 /* POSIX.1b doesn't mention process groups. */
3945 return kill_proc_info(sig, info, pid);
3949 * sys_rt_sigqueueinfo - send signal information to a signal
3950 * @pid: the PID of the thread
3951 * @sig: signal to be sent
3952 * @uinfo: signal info to be sent
3954 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3955 siginfo_t __user *, uinfo)
3957 kernel_siginfo_t info;
3958 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3961 return do_rt_sigqueueinfo(pid, sig, &info);
3964 #ifdef CONFIG_COMPAT
3965 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3968 struct compat_siginfo __user *, uinfo)
3970 kernel_siginfo_t info;
3971 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3974 return do_rt_sigqueueinfo(pid, sig, &info);
3978 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3980 /* This is only valid for single tasks */
3981 if (pid <= 0 || tgid <= 0)
3984 /* Not even root can pretend to send signals from the kernel.
3985 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3987 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3988 (task_pid_vnr(current) != pid))
3991 return do_send_specific(tgid, pid, sig, info);
3994 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3995 siginfo_t __user *, uinfo)
3997 kernel_siginfo_t info;
3998 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4001 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4004 #ifdef CONFIG_COMPAT
4005 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4009 struct compat_siginfo __user *, uinfo)
4011 kernel_siginfo_t info;
4012 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4015 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4020 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4022 void kernel_sigaction(int sig, __sighandler_t action)
4024 spin_lock_irq(¤t->sighand->siglock);
4025 current->sighand->action[sig - 1].sa.sa_handler = action;
4026 if (action == SIG_IGN) {
4030 sigaddset(&mask, sig);
4032 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4033 flush_sigqueue_mask(&mask, ¤t->pending);
4034 recalc_sigpending();
4036 spin_unlock_irq(¤t->sighand->siglock);
4038 EXPORT_SYMBOL(kernel_sigaction);
4040 void __weak sigaction_compat_abi(struct k_sigaction *act,
4041 struct k_sigaction *oact)
4045 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4047 struct task_struct *p = current, *t;
4048 struct k_sigaction *k;
4051 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4054 k = &p->sighand->action[sig-1];
4056 spin_lock_irq(&p->sighand->siglock);
4061 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4062 * e.g. by having an architecture use the bit in their uapi.
4064 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4067 * Clear unknown flag bits in order to allow userspace to detect missing
4068 * support for flag bits and to allow the kernel to use non-uapi bits
4072 act->sa.sa_flags &= UAPI_SA_FLAGS;
4074 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4076 sigaction_compat_abi(act, oact);
4079 sigdelsetmask(&act->sa.sa_mask,
4080 sigmask(SIGKILL) | sigmask(SIGSTOP));
4084 * "Setting a signal action to SIG_IGN for a signal that is
4085 * pending shall cause the pending signal to be discarded,
4086 * whether or not it is blocked."
4088 * "Setting a signal action to SIG_DFL for a signal that is
4089 * pending and whose default action is to ignore the signal
4090 * (for example, SIGCHLD), shall cause the pending signal to
4091 * be discarded, whether or not it is blocked"
4093 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4095 sigaddset(&mask, sig);
4096 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4097 for_each_thread(p, t)
4098 flush_sigqueue_mask(&mask, &t->pending);
4102 spin_unlock_irq(&p->sighand->siglock);
4107 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4110 struct task_struct *t = current;
4113 memset(oss, 0, sizeof(stack_t));
4114 oss->ss_sp = (void __user *) t->sas_ss_sp;
4115 oss->ss_size = t->sas_ss_size;
4116 oss->ss_flags = sas_ss_flags(sp) |
4117 (current->sas_ss_flags & SS_FLAG_BITS);
4121 void __user *ss_sp = ss->ss_sp;
4122 size_t ss_size = ss->ss_size;
4123 unsigned ss_flags = ss->ss_flags;
4126 if (unlikely(on_sig_stack(sp)))
4129 ss_mode = ss_flags & ~SS_FLAG_BITS;
4130 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4134 if (ss_mode == SS_DISABLE) {
4138 if (unlikely(ss_size < min_ss_size))
4142 t->sas_ss_sp = (unsigned long) ss_sp;
4143 t->sas_ss_size = ss_size;
4144 t->sas_ss_flags = ss_flags;
4149 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4153 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4155 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4156 current_user_stack_pointer(),
4158 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4163 int restore_altstack(const stack_t __user *uss)
4166 if (copy_from_user(&new, uss, sizeof(stack_t)))
4168 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4170 /* squash all but EFAULT for now */
4174 int __save_altstack(stack_t __user *uss, unsigned long sp)
4176 struct task_struct *t = current;
4177 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4178 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4179 __put_user(t->sas_ss_size, &uss->ss_size);
4183 #ifdef CONFIG_COMPAT
4184 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4185 compat_stack_t __user *uoss_ptr)
4191 compat_stack_t uss32;
4192 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4194 uss.ss_sp = compat_ptr(uss32.ss_sp);
4195 uss.ss_flags = uss32.ss_flags;
4196 uss.ss_size = uss32.ss_size;
4198 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4199 compat_user_stack_pointer(),
4200 COMPAT_MINSIGSTKSZ);
4201 if (ret >= 0 && uoss_ptr) {
4203 memset(&old, 0, sizeof(old));
4204 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4205 old.ss_flags = uoss.ss_flags;
4206 old.ss_size = uoss.ss_size;
4207 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4213 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4214 const compat_stack_t __user *, uss_ptr,
4215 compat_stack_t __user *, uoss_ptr)
4217 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4220 int compat_restore_altstack(const compat_stack_t __user *uss)
4222 int err = do_compat_sigaltstack(uss, NULL);
4223 /* squash all but -EFAULT for now */
4224 return err == -EFAULT ? err : 0;
4227 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4230 struct task_struct *t = current;
4231 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4233 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4234 __put_user(t->sas_ss_size, &uss->ss_size);
4239 #ifdef __ARCH_WANT_SYS_SIGPENDING
4242 * sys_sigpending - examine pending signals
4243 * @uset: where mask of pending signal is returned
4245 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4249 if (sizeof(old_sigset_t) > sizeof(*uset))
4252 do_sigpending(&set);
4254 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4260 #ifdef CONFIG_COMPAT
4261 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4265 do_sigpending(&set);
4267 return put_user(set.sig[0], set32);
4273 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4275 * sys_sigprocmask - examine and change blocked signals
4276 * @how: whether to add, remove, or set signals
4277 * @nset: signals to add or remove (if non-null)
4278 * @oset: previous value of signal mask if non-null
4280 * Some platforms have their own version with special arguments;
4281 * others support only sys_rt_sigprocmask.
4284 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4285 old_sigset_t __user *, oset)
4287 old_sigset_t old_set, new_set;
4288 sigset_t new_blocked;
4290 old_set = current->blocked.sig[0];
4293 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4296 new_blocked = current->blocked;
4300 sigaddsetmask(&new_blocked, new_set);
4303 sigdelsetmask(&new_blocked, new_set);
4306 new_blocked.sig[0] = new_set;
4312 set_current_blocked(&new_blocked);
4316 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4322 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4324 #ifndef CONFIG_ODD_RT_SIGACTION
4326 * sys_rt_sigaction - alter an action taken by a process
4327 * @sig: signal to be sent
4328 * @act: new sigaction
4329 * @oact: used to save the previous sigaction
4330 * @sigsetsize: size of sigset_t type
4332 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4333 const struct sigaction __user *, act,
4334 struct sigaction __user *, oact,
4337 struct k_sigaction new_sa, old_sa;
4340 /* XXX: Don't preclude handling different sized sigset_t's. */
4341 if (sigsetsize != sizeof(sigset_t))
4344 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4347 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4351 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4356 #ifdef CONFIG_COMPAT
4357 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4358 const struct compat_sigaction __user *, act,
4359 struct compat_sigaction __user *, oact,
4360 compat_size_t, sigsetsize)
4362 struct k_sigaction new_ka, old_ka;
4363 #ifdef __ARCH_HAS_SA_RESTORER
4364 compat_uptr_t restorer;
4368 /* XXX: Don't preclude handling different sized sigset_t's. */
4369 if (sigsetsize != sizeof(compat_sigset_t))
4373 compat_uptr_t handler;
4374 ret = get_user(handler, &act->sa_handler);
4375 new_ka.sa.sa_handler = compat_ptr(handler);
4376 #ifdef __ARCH_HAS_SA_RESTORER
4377 ret |= get_user(restorer, &act->sa_restorer);
4378 new_ka.sa.sa_restorer = compat_ptr(restorer);
4380 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4381 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4386 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4388 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4390 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4391 sizeof(oact->sa_mask));
4392 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4393 #ifdef __ARCH_HAS_SA_RESTORER
4394 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4395 &oact->sa_restorer);
4401 #endif /* !CONFIG_ODD_RT_SIGACTION */
4403 #ifdef CONFIG_OLD_SIGACTION
4404 SYSCALL_DEFINE3(sigaction, int, sig,
4405 const struct old_sigaction __user *, act,
4406 struct old_sigaction __user *, oact)
4408 struct k_sigaction new_ka, old_ka;
4413 if (!access_ok(act, sizeof(*act)) ||
4414 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4415 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4416 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4417 __get_user(mask, &act->sa_mask))
4419 #ifdef __ARCH_HAS_KA_RESTORER
4420 new_ka.ka_restorer = NULL;
4422 siginitset(&new_ka.sa.sa_mask, mask);
4425 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4428 if (!access_ok(oact, sizeof(*oact)) ||
4429 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4430 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4431 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4432 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4439 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4440 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4441 const struct compat_old_sigaction __user *, act,
4442 struct compat_old_sigaction __user *, oact)
4444 struct k_sigaction new_ka, old_ka;
4446 compat_old_sigset_t mask;
4447 compat_uptr_t handler, restorer;
4450 if (!access_ok(act, sizeof(*act)) ||
4451 __get_user(handler, &act->sa_handler) ||
4452 __get_user(restorer, &act->sa_restorer) ||
4453 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4454 __get_user(mask, &act->sa_mask))
4457 #ifdef __ARCH_HAS_KA_RESTORER
4458 new_ka.ka_restorer = NULL;
4460 new_ka.sa.sa_handler = compat_ptr(handler);
4461 new_ka.sa.sa_restorer = compat_ptr(restorer);
4462 siginitset(&new_ka.sa.sa_mask, mask);
4465 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4468 if (!access_ok(oact, sizeof(*oact)) ||
4469 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4470 &oact->sa_handler) ||
4471 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4472 &oact->sa_restorer) ||
4473 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4474 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4481 #ifdef CONFIG_SGETMASK_SYSCALL
4484 * For backwards compatibility. Functionality superseded by sigprocmask.
4486 SYSCALL_DEFINE0(sgetmask)
4489 return current->blocked.sig[0];
4492 SYSCALL_DEFINE1(ssetmask, int, newmask)
4494 int old = current->blocked.sig[0];
4497 siginitset(&newset, newmask);
4498 set_current_blocked(&newset);
4502 #endif /* CONFIG_SGETMASK_SYSCALL */
4504 #ifdef __ARCH_WANT_SYS_SIGNAL
4506 * For backwards compatibility. Functionality superseded by sigaction.
4508 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4510 struct k_sigaction new_sa, old_sa;
4513 new_sa.sa.sa_handler = handler;
4514 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4515 sigemptyset(&new_sa.sa.sa_mask);
4517 ret = do_sigaction(sig, &new_sa, &old_sa);
4519 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4521 #endif /* __ARCH_WANT_SYS_SIGNAL */
4523 #ifdef __ARCH_WANT_SYS_PAUSE
4525 SYSCALL_DEFINE0(pause)
4527 while (!signal_pending(current)) {
4528 __set_current_state(TASK_INTERRUPTIBLE);
4531 return -ERESTARTNOHAND;
4536 static int sigsuspend(sigset_t *set)
4538 current->saved_sigmask = current->blocked;
4539 set_current_blocked(set);
4541 while (!signal_pending(current)) {
4542 __set_current_state(TASK_INTERRUPTIBLE);
4545 set_restore_sigmask();
4546 return -ERESTARTNOHAND;
4550 * sys_rt_sigsuspend - replace the signal mask for a value with the
4551 * @unewset value until a signal is received
4552 * @unewset: new signal mask value
4553 * @sigsetsize: size of sigset_t type
4555 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4559 /* XXX: Don't preclude handling different sized sigset_t's. */
4560 if (sigsetsize != sizeof(sigset_t))
4563 if (copy_from_user(&newset, unewset, sizeof(newset)))
4565 return sigsuspend(&newset);
4568 #ifdef CONFIG_COMPAT
4569 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4573 /* XXX: Don't preclude handling different sized sigset_t's. */
4574 if (sigsetsize != sizeof(sigset_t))
4577 if (get_compat_sigset(&newset, unewset))
4579 return sigsuspend(&newset);
4583 #ifdef CONFIG_OLD_SIGSUSPEND
4584 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4587 siginitset(&blocked, mask);
4588 return sigsuspend(&blocked);
4591 #ifdef CONFIG_OLD_SIGSUSPEND3
4592 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4595 siginitset(&blocked, mask);
4596 return sigsuspend(&blocked);
4600 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4605 static inline void siginfo_buildtime_checks(void)
4607 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4609 /* Verify the offsets in the two siginfos match */
4610 #define CHECK_OFFSET(field) \
4611 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4614 CHECK_OFFSET(si_pid);
4615 CHECK_OFFSET(si_uid);
4618 CHECK_OFFSET(si_tid);
4619 CHECK_OFFSET(si_overrun);
4620 CHECK_OFFSET(si_value);
4623 CHECK_OFFSET(si_pid);
4624 CHECK_OFFSET(si_uid);
4625 CHECK_OFFSET(si_value);
4628 CHECK_OFFSET(si_pid);
4629 CHECK_OFFSET(si_uid);
4630 CHECK_OFFSET(si_status);
4631 CHECK_OFFSET(si_utime);
4632 CHECK_OFFSET(si_stime);
4635 CHECK_OFFSET(si_addr);
4636 CHECK_OFFSET(si_trapno);
4637 CHECK_OFFSET(si_addr_lsb);
4638 CHECK_OFFSET(si_lower);
4639 CHECK_OFFSET(si_upper);
4640 CHECK_OFFSET(si_pkey);
4641 CHECK_OFFSET(si_perf_data);
4642 CHECK_OFFSET(si_perf_type);
4645 CHECK_OFFSET(si_band);
4646 CHECK_OFFSET(si_fd);
4649 CHECK_OFFSET(si_call_addr);
4650 CHECK_OFFSET(si_syscall);
4651 CHECK_OFFSET(si_arch);
4655 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4656 offsetof(struct siginfo, si_addr));
4657 if (sizeof(int) == sizeof(void __user *)) {
4658 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4659 sizeof(void __user *));
4661 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4662 sizeof_field(struct siginfo, si_uid)) !=
4663 sizeof(void __user *));
4664 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4665 offsetof(struct siginfo, si_uid));
4667 #ifdef CONFIG_COMPAT
4668 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4669 offsetof(struct compat_siginfo, si_addr));
4670 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4671 sizeof(compat_uptr_t));
4672 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4673 sizeof_field(struct siginfo, si_pid));
4677 void __init signals_init(void)
4679 siginfo_buildtime_checks();
4681 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4684 #ifdef CONFIG_KGDB_KDB
4685 #include <linux/kdb.h>
4687 * kdb_send_sig - Allows kdb to send signals without exposing
4688 * signal internals. This function checks if the required locks are
4689 * available before calling the main signal code, to avoid kdb
4692 void kdb_send_sig(struct task_struct *t, int sig)
4694 static struct task_struct *kdb_prev_t;
4696 if (!spin_trylock(&t->sighand->siglock)) {
4697 kdb_printf("Can't do kill command now.\n"
4698 "The sigmask lock is held somewhere else in "
4699 "kernel, try again later\n");
4702 new_t = kdb_prev_t != t;
4704 if (!task_is_running(t) && new_t) {
4705 spin_unlock(&t->sighand->siglock);
4706 kdb_printf("Process is not RUNNING, sending a signal from "
4707 "kdb risks deadlock\n"
4708 "on the run queue locks. "
4709 "The signal has _not_ been sent.\n"
4710 "Reissue the kill command if you want to risk "
4714 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4715 spin_unlock(&t->sighand->siglock);
4717 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4720 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4722 #endif /* CONFIG_KGDB_KDB */