1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/task_work.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h> /* for syscall_get_* */
60 * SLAB caches for signal bits.
63 static struct kmem_cache *sigqueue_cachep;
65 int print_fatal_signals __read_mostly;
67 static void __user *sig_handler(struct task_struct *t, int sig)
69 return t->sighand->action[sig - 1].sa.sa_handler;
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
83 handler = sig_handler(t, sig);
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
98 return sig_handler_ignored(handler, sig);
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
116 if (t->ptrace && sig != SIGKILL)
119 return sig_task_ignored(t, sig, force);
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
131 switch (_NSIG_WORDS) {
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
154 static bool recalc_sigpending_tsk(struct task_struct *t)
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
176 void recalc_sigpending_and_wake(struct task_struct *t)
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
182 void recalc_sigpending(void)
184 if (!recalc_sigpending_tsk(current) && !freezing(current))
185 clear_thread_flag(TIF_SIGPENDING);
188 EXPORT_SYMBOL(recalc_sigpending);
190 void calculate_sigpending(void)
192 /* Have any signals or users of TIF_SIGPENDING been delayed
195 spin_lock_irq(¤t->sighand->siglock);
196 set_tsk_thread_flag(current, TIF_SIGPENDING);
198 spin_unlock_irq(¤t->sighand->siglock);
201 /* Given the mask, find the first available signal that should be serviced. */
203 #define SYNCHRONOUS_MASK \
204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207 int next_signal(struct sigpending *pending, sigset_t *mask)
209 unsigned long i, *s, *m, x;
212 s = pending->signal.sig;
216 * Handle the first word specially: it contains the
217 * synchronous signals that need to be dequeued first.
221 if (x & SYNCHRONOUS_MASK)
222 x &= SYNCHRONOUS_MASK;
227 switch (_NSIG_WORDS) {
229 for (i = 1; i < _NSIG_WORDS; ++i) {
233 sig = ffz(~x) + i*_NSIG_BPW + 1;
242 sig = ffz(~x) + _NSIG_BPW + 1;
253 static inline void print_dropped_signal(int sig)
255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257 if (!print_fatal_signals)
260 if (!__ratelimit(&ratelimit_state))
263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 current->comm, current->pid, sig);
268 * task_set_jobctl_pending - set jobctl pending bits
270 * @mask: pending bits to set
272 * Clear @mask from @task->jobctl. @mask must be subset of
273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
275 * cleared. If @task is already being killed or exiting, this function
279 * Must be called with @task->sighand->siglock held.
282 * %true if @mask is set, %false if made noop because @task was dying.
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
293 if (mask & JOBCTL_STOP_SIGMASK)
294 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296 task->jobctl |= mask;
301 * task_clear_jobctl_trapping - clear jobctl trapping bit
304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305 * Clear it and wake up the ptracer. Note that we don't need any further
306 * locking. @task->siglock guarantees that @task->parent points to the
310 * Must be called with @task->sighand->siglock held.
312 void task_clear_jobctl_trapping(struct task_struct *task)
314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 task->jobctl &= ~JOBCTL_TRAPPING;
316 smp_mb(); /* advised by wake_up_bit() */
317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
322 * task_clear_jobctl_pending - clear jobctl pending bits
324 * @mask: pending bits to clear
326 * Clear @mask from @task->jobctl. @mask must be subset of
327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
328 * STOP bits are cleared together.
330 * If clearing of @mask leaves no stop or trap pending, this function calls
331 * task_clear_jobctl_trapping().
334 * Must be called with @task->sighand->siglock held.
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340 if (mask & JOBCTL_STOP_PENDING)
341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343 task->jobctl &= ~mask;
345 if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 task_clear_jobctl_trapping(task);
350 * task_participate_group_stop - participate in a group stop
351 * @task: task participating in a group stop
353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354 * Group stop states are cleared and the group stop count is consumed if
355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
356 * stop, the appropriate `SIGNAL_*` flags are set.
359 * Must be called with @task->sighand->siglock held.
362 * %true if group stop completion should be notified to the parent, %false
365 static bool task_participate_group_stop(struct task_struct *task)
367 struct signal_struct *sig = task->signal;
368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
377 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 sig->group_stop_count--;
381 * Tell the caller to notify completion iff we are entering into a
382 * fresh group stop. Read comment in do_signal_stop() for details.
384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
391 void task_join_group_stop(struct task_struct *task)
393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 struct signal_struct *sig = current->signal;
396 if (sig->group_stop_count) {
397 sig->group_stop_count++;
398 mask |= JOBCTL_STOP_CONSUME;
399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
402 /* Have the new thread join an on-going signal group stop */
403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 int override_rlimit, const unsigned int sigqueue_flags)
415 struct sigqueue *q = NULL;
416 struct ucounts *ucounts = NULL;
420 * Protect access to @t credentials. This can go away when all
421 * callers hold rcu read lock.
423 * NOTE! A pending signal will hold on to the user refcount,
424 * and we get/put the refcount only when the sigpending count
425 * changes from/to zero.
428 ucounts = task_ucounts(t);
429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
437 print_dropped_signal(sig);
440 if (unlikely(q == NULL)) {
441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
443 INIT_LIST_HEAD(&q->list);
444 q->flags = sigqueue_flags;
445 q->ucounts = ucounts;
450 static void __sigqueue_free(struct sigqueue *q)
452 if (q->flags & SIGQUEUE_PREALLOC)
455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
458 kmem_cache_free(sigqueue_cachep, q);
461 void flush_sigqueue(struct sigpending *queue)
465 sigemptyset(&queue->signal);
466 while (!list_empty(&queue->list)) {
467 q = list_entry(queue->list.next, struct sigqueue , list);
468 list_del_init(&q->list);
474 * Flush all pending signals for this kthread.
476 void flush_signals(struct task_struct *t)
480 spin_lock_irqsave(&t->sighand->siglock, flags);
481 clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 flush_sigqueue(&t->pending);
483 flush_sigqueue(&t->signal->shared_pending);
484 spin_unlock_irqrestore(&t->sighand->siglock, flags);
486 EXPORT_SYMBOL(flush_signals);
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
491 sigset_t signal, retain;
492 struct sigqueue *q, *n;
494 signal = pending->signal;
495 sigemptyset(&retain);
497 list_for_each_entry_safe(q, n, &pending->list, list) {
498 int sig = q->info.si_signo;
500 if (likely(q->info.si_code != SI_TIMER)) {
501 sigaddset(&retain, sig);
503 sigdelset(&signal, sig);
504 list_del_init(&q->list);
509 sigorsets(&pending->signal, &signal, &retain);
512 void flush_itimer_signals(void)
514 struct task_struct *tsk = current;
517 spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 __flush_itimer_signals(&tsk->pending);
519 __flush_itimer_signals(&tsk->signal->shared_pending);
520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
524 void ignore_signals(struct task_struct *t)
528 for (i = 0; i < _NSIG; ++i)
529 t->sighand->action[i].sa.sa_handler = SIG_IGN;
535 * Flush all handlers for a task.
539 flush_signal_handlers(struct task_struct *t, int force_default)
542 struct k_sigaction *ka = &t->sighand->action[0];
543 for (i = _NSIG ; i != 0 ; i--) {
544 if (force_default || ka->sa.sa_handler != SIG_IGN)
545 ka->sa.sa_handler = SIG_DFL;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 ka->sa.sa_restorer = NULL;
550 sigemptyset(&ka->sa.sa_mask);
555 bool unhandled_signal(struct task_struct *tsk, int sig)
557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 if (is_global_init(tsk))
561 if (handler != SIG_IGN && handler != SIG_DFL)
564 /* if ptraced, let the tracer determine */
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
571 struct sigqueue *q, *first = NULL;
574 * Collect the siginfo appropriate to this signal. Check if
575 * there is another siginfo for the same signal.
577 list_for_each_entry(q, &list->list, list) {
578 if (q->info.si_signo == sig) {
585 sigdelset(&list->signal, sig);
589 list_del_init(&first->list);
590 copy_siginfo(info, &first->info);
593 (first->flags & SIGQUEUE_PREALLOC) &&
594 (info->si_code == SI_TIMER) &&
595 (info->si_sys_private);
597 __sigqueue_free(first);
600 * Ok, it wasn't in the queue. This must be
601 * a fast-pathed signal or we must have been
602 * out of queue space. So zero out the info.
605 info->si_signo = sig;
607 info->si_code = SI_USER;
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 kernel_siginfo_t *info, bool *resched_timer)
616 int sig = next_signal(pending, mask);
619 collect_signal(sig, pending, info, resched_timer);
624 * Dequeue a signal and return the element to the caller, which is
625 * expected to free it.
627 * All callers have to hold the siglock.
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
630 kernel_siginfo_t *info, enum pid_type *type)
632 bool resched_timer = false;
635 /* We only dequeue private signals from ourselves, we don't let
636 * signalfd steal them
639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
641 *type = PIDTYPE_TGID;
642 signr = __dequeue_signal(&tsk->signal->shared_pending,
643 mask, info, &resched_timer);
644 #ifdef CONFIG_POSIX_TIMERS
648 * itimers are process shared and we restart periodic
649 * itimers in the signal delivery path to prevent DoS
650 * attacks in the high resolution timer case. This is
651 * compliant with the old way of self-restarting
652 * itimers, as the SIGALRM is a legacy signal and only
653 * queued once. Changing the restart behaviour to
654 * restart the timer in the signal dequeue path is
655 * reducing the timer noise on heavy loaded !highres
658 if (unlikely(signr == SIGALRM)) {
659 struct hrtimer *tmr = &tsk->signal->real_timer;
661 if (!hrtimer_is_queued(tmr) &&
662 tsk->signal->it_real_incr != 0) {
663 hrtimer_forward(tmr, tmr->base->get_time(),
664 tsk->signal->it_real_incr);
665 hrtimer_restart(tmr);
675 if (unlikely(sig_kernel_stop(signr))) {
677 * Set a marker that we have dequeued a stop signal. Our
678 * caller might release the siglock and then the pending
679 * stop signal it is about to process is no longer in the
680 * pending bitmasks, but must still be cleared by a SIGCONT
681 * (and overruled by a SIGKILL). So those cases clear this
682 * shared flag after we've set it. Note that this flag may
683 * remain set after the signal we return is ignored or
684 * handled. That doesn't matter because its only purpose
685 * is to alert stop-signal processing code when another
686 * processor has come along and cleared the flag.
688 current->jobctl |= JOBCTL_STOP_DEQUEUED;
690 #ifdef CONFIG_POSIX_TIMERS
693 * Release the siglock to ensure proper locking order
694 * of timer locks outside of siglocks. Note, we leave
695 * irqs disabled here, since the posix-timers code is
696 * about to disable them again anyway.
698 spin_unlock(&tsk->sighand->siglock);
699 posixtimer_rearm(info);
700 spin_lock(&tsk->sighand->siglock);
702 /* Don't expose the si_sys_private value to userspace */
703 info->si_sys_private = 0;
708 EXPORT_SYMBOL_GPL(dequeue_signal);
710 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
712 struct task_struct *tsk = current;
713 struct sigpending *pending = &tsk->pending;
714 struct sigqueue *q, *sync = NULL;
717 * Might a synchronous signal be in the queue?
719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
723 * Return the first synchronous signal in the queue.
725 list_for_each_entry(q, &pending->list, list) {
726 /* Synchronous signals have a positive si_code */
727 if ((q->info.si_code > SI_USER) &&
728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
736 * Check if there is another siginfo for the same signal.
738 list_for_each_entry_continue(q, &pending->list, list) {
739 if (q->info.si_signo == sync->info.si_signo)
743 sigdelset(&pending->signal, sync->info.si_signo);
746 list_del_init(&sync->list);
747 copy_siginfo(info, &sync->info);
748 __sigqueue_free(sync);
749 return info->si_signo;
753 * Tell a process that it has a new active signal..
755 * NOTE! we rely on the previous spin_lock to
756 * lock interrupts for us! We can only be called with
757 * "siglock" held, and the local interrupt must
758 * have been disabled when that got acquired!
760 * No need to set need_resched since signal event passing
761 * goes through ->blocked
763 void signal_wake_up_state(struct task_struct *t, unsigned int state)
765 set_tsk_thread_flag(t, TIF_SIGPENDING);
767 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
768 * case. We don't check t->state here because there is a race with it
769 * executing another processor and just now entering stopped state.
770 * By using wake_up_state, we ensure the process will wake up and
771 * handle its death signal.
773 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
778 * Remove signals in mask from the pending set and queue.
779 * Returns 1 if any signals were found.
781 * All callers must be holding the siglock.
783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
785 struct sigqueue *q, *n;
788 sigandsets(&m, mask, &s->signal);
789 if (sigisemptyset(&m))
792 sigandnsets(&s->signal, &s->signal, mask);
793 list_for_each_entry_safe(q, n, &s->list, list) {
794 if (sigismember(mask, q->info.si_signo)) {
795 list_del_init(&q->list);
801 static inline int is_si_special(const struct kernel_siginfo *info)
803 return info <= SEND_SIG_PRIV;
806 static inline bool si_fromuser(const struct kernel_siginfo *info)
808 return info == SEND_SIG_NOINFO ||
809 (!is_si_special(info) && SI_FROMUSER(info));
813 * called with RCU read lock from check_kill_permission()
815 static bool kill_ok_by_cred(struct task_struct *t)
817 const struct cred *cred = current_cred();
818 const struct cred *tcred = __task_cred(t);
820 return uid_eq(cred->euid, tcred->suid) ||
821 uid_eq(cred->euid, tcred->uid) ||
822 uid_eq(cred->uid, tcred->suid) ||
823 uid_eq(cred->uid, tcred->uid) ||
824 ns_capable(tcred->user_ns, CAP_KILL);
828 * Bad permissions for sending the signal
829 * - the caller must hold the RCU read lock
831 static int check_kill_permission(int sig, struct kernel_siginfo *info,
832 struct task_struct *t)
837 if (!valid_signal(sig))
840 if (!si_fromuser(info))
843 error = audit_signal_info(sig, t); /* Let audit system see the signal */
847 if (!same_thread_group(current, t) &&
848 !kill_ok_by_cred(t)) {
851 sid = task_session(t);
853 * We don't return the error if sid == NULL. The
854 * task was unhashed, the caller must notice this.
856 if (!sid || sid == task_session(current))
864 return security_task_kill(t, info, sig, NULL);
868 * ptrace_trap_notify - schedule trap to notify ptracer
869 * @t: tracee wanting to notify tracer
871 * This function schedules sticky ptrace trap which is cleared on the next
872 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
875 * If @t is running, STOP trap will be taken. If trapped for STOP and
876 * ptracer is listening for events, tracee is woken up so that it can
877 * re-trap for the new event. If trapped otherwise, STOP trap will be
878 * eventually taken without returning to userland after the existing traps
879 * are finished by PTRACE_CONT.
882 * Must be called with @task->sighand->siglock held.
884 static void ptrace_trap_notify(struct task_struct *t)
886 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
887 assert_spin_locked(&t->sighand->siglock);
889 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
890 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
894 * Handle magic process-wide effects of stop/continue signals. Unlike
895 * the signal actions, these happen immediately at signal-generation
896 * time regardless of blocking, ignoring, or handling. This does the
897 * actual continuing for SIGCONT, but not the actual stopping for stop
898 * signals. The process stop is done as a signal action for SIG_DFL.
900 * Returns true if the signal should be actually delivered, otherwise
901 * it should be dropped.
903 static bool prepare_signal(int sig, struct task_struct *p, bool force)
905 struct signal_struct *signal = p->signal;
906 struct task_struct *t;
909 if (signal->flags & SIGNAL_GROUP_EXIT) {
910 if (signal->core_state)
911 return sig == SIGKILL;
913 * The process is in the middle of dying, nothing to do.
915 } else if (sig_kernel_stop(sig)) {
917 * This is a stop signal. Remove SIGCONT from all queues.
919 siginitset(&flush, sigmask(SIGCONT));
920 flush_sigqueue_mask(&flush, &signal->shared_pending);
921 for_each_thread(p, t)
922 flush_sigqueue_mask(&flush, &t->pending);
923 } else if (sig == SIGCONT) {
926 * Remove all stop signals from all queues, wake all threads.
928 siginitset(&flush, SIG_KERNEL_STOP_MASK);
929 flush_sigqueue_mask(&flush, &signal->shared_pending);
930 for_each_thread(p, t) {
931 flush_sigqueue_mask(&flush, &t->pending);
932 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
933 if (likely(!(t->ptrace & PT_SEIZED)))
934 wake_up_state(t, __TASK_STOPPED);
936 ptrace_trap_notify(t);
940 * Notify the parent with CLD_CONTINUED if we were stopped.
942 * If we were in the middle of a group stop, we pretend it
943 * was already finished, and then continued. Since SIGCHLD
944 * doesn't queue we report only CLD_STOPPED, as if the next
945 * CLD_CONTINUED was dropped.
948 if (signal->flags & SIGNAL_STOP_STOPPED)
949 why |= SIGNAL_CLD_CONTINUED;
950 else if (signal->group_stop_count)
951 why |= SIGNAL_CLD_STOPPED;
955 * The first thread which returns from do_signal_stop()
956 * will take ->siglock, notice SIGNAL_CLD_MASK, and
957 * notify its parent. See get_signal().
959 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
960 signal->group_stop_count = 0;
961 signal->group_exit_code = 0;
965 return !sig_ignored(p, sig, force);
969 * Test if P wants to take SIG. After we've checked all threads with this,
970 * it's equivalent to finding no threads not blocking SIG. Any threads not
971 * blocking SIG were ruled out because they are not running and already
972 * have pending signals. Such threads will dequeue from the shared queue
973 * as soon as they're available, so putting the signal on the shared queue
974 * will be equivalent to sending it to one such thread.
976 static inline bool wants_signal(int sig, struct task_struct *p)
978 if (sigismember(&p->blocked, sig))
981 if (p->flags & PF_EXITING)
987 if (task_is_stopped_or_traced(p))
990 return task_curr(p) || !task_sigpending(p);
993 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
995 struct signal_struct *signal = p->signal;
996 struct task_struct *t;
999 * Now find a thread we can wake up to take the signal off the queue.
1001 * If the main thread wants the signal, it gets first crack.
1002 * Probably the least surprising to the average bear.
1004 if (wants_signal(sig, p))
1006 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1008 * There is just one thread and it does not need to be woken.
1009 * It will dequeue unblocked signals before it runs again.
1014 * Otherwise try to find a suitable thread.
1016 t = signal->curr_target;
1017 while (!wants_signal(sig, t)) {
1019 if (t == signal->curr_target)
1021 * No thread needs to be woken.
1022 * Any eligible threads will see
1023 * the signal in the queue soon.
1027 signal->curr_target = t;
1031 * Found a killable thread. If the signal will be fatal,
1032 * then start taking the whole group down immediately.
1034 if (sig_fatal(p, sig) &&
1035 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1036 !sigismember(&t->real_blocked, sig) &&
1037 (sig == SIGKILL || !p->ptrace)) {
1039 * This signal will be fatal to the whole group.
1041 if (!sig_kernel_coredump(sig)) {
1043 * Start a group exit and wake everybody up.
1044 * This way we don't have other threads
1045 * running and doing things after a slower
1046 * thread has the fatal signal pending.
1048 signal->flags = SIGNAL_GROUP_EXIT;
1049 signal->group_exit_code = sig;
1050 signal->group_stop_count = 0;
1053 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054 sigaddset(&t->pending.signal, SIGKILL);
1055 signal_wake_up(t, 1);
1056 } while_each_thread(p, t);
1062 * The signal is already in the shared-pending queue.
1063 * Tell the chosen thread to wake up and dequeue it.
1065 signal_wake_up(t, sig == SIGKILL);
1069 static inline bool legacy_queue(struct sigpending *signals, int sig)
1071 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1074 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1075 enum pid_type type, bool force)
1077 struct sigpending *pending;
1079 int override_rlimit;
1080 int ret = 0, result;
1082 assert_spin_locked(&t->sighand->siglock);
1084 result = TRACE_SIGNAL_IGNORED;
1085 if (!prepare_signal(sig, t, force))
1088 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1090 * Short-circuit ignored signals and support queuing
1091 * exactly one non-rt signal, so that we can get more
1092 * detailed information about the cause of the signal.
1094 result = TRACE_SIGNAL_ALREADY_PENDING;
1095 if (legacy_queue(pending, sig))
1098 result = TRACE_SIGNAL_DELIVERED;
1100 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1102 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1106 * Real-time signals must be queued if sent by sigqueue, or
1107 * some other real-time mechanism. It is implementation
1108 * defined whether kill() does so. We attempt to do so, on
1109 * the principle of least surprise, but since kill is not
1110 * allowed to fail with EAGAIN when low on memory we just
1111 * make sure at least one signal gets delivered and don't
1112 * pass on the info struct.
1115 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1117 override_rlimit = 0;
1119 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1122 list_add_tail(&q->list, &pending->list);
1123 switch ((unsigned long) info) {
1124 case (unsigned long) SEND_SIG_NOINFO:
1125 clear_siginfo(&q->info);
1126 q->info.si_signo = sig;
1127 q->info.si_errno = 0;
1128 q->info.si_code = SI_USER;
1129 q->info.si_pid = task_tgid_nr_ns(current,
1130 task_active_pid_ns(t));
1133 from_kuid_munged(task_cred_xxx(t, user_ns),
1137 case (unsigned long) SEND_SIG_PRIV:
1138 clear_siginfo(&q->info);
1139 q->info.si_signo = sig;
1140 q->info.si_errno = 0;
1141 q->info.si_code = SI_KERNEL;
1146 copy_siginfo(&q->info, info);
1149 } else if (!is_si_special(info) &&
1150 sig >= SIGRTMIN && info->si_code != SI_USER) {
1152 * Queue overflow, abort. We may abort if the
1153 * signal was rt and sent by user using something
1154 * other than kill().
1156 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1161 * This is a silent loss of information. We still
1162 * send the signal, but the *info bits are lost.
1164 result = TRACE_SIGNAL_LOSE_INFO;
1168 signalfd_notify(t, sig);
1169 sigaddset(&pending->signal, sig);
1171 /* Let multiprocess signals appear after on-going forks */
1172 if (type > PIDTYPE_TGID) {
1173 struct multiprocess_signals *delayed;
1174 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175 sigset_t *signal = &delayed->signal;
1176 /* Can't queue both a stop and a continue signal */
1178 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179 else if (sig_kernel_stop(sig))
1180 sigdelset(signal, SIGCONT);
1181 sigaddset(signal, sig);
1185 complete_signal(sig, t, type);
1187 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1194 switch (siginfo_layout(info->si_signo, info->si_code)) {
1203 case SIL_FAULT_TRAPNO:
1204 case SIL_FAULT_MCEERR:
1205 case SIL_FAULT_BNDERR:
1206 case SIL_FAULT_PKUERR:
1207 case SIL_FAULT_PERF_EVENT:
1215 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1218 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1221 if (info == SEND_SIG_NOINFO) {
1222 /* Force if sent from an ancestor pid namespace */
1223 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224 } else if (info == SEND_SIG_PRIV) {
1225 /* Don't ignore kernel generated signals */
1227 } else if (has_si_pid_and_uid(info)) {
1228 /* SIGKILL and SIGSTOP is special or has ids */
1229 struct user_namespace *t_user_ns;
1232 t_user_ns = task_cred_xxx(t, user_ns);
1233 if (current_user_ns() != t_user_ns) {
1234 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235 info->si_uid = from_kuid_munged(t_user_ns, uid);
1239 /* A kernel generated signal? */
1240 force = (info->si_code == SI_KERNEL);
1242 /* From an ancestor pid namespace? */
1243 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1248 return __send_signal(sig, info, t, type, force);
1251 static void print_fatal_signal(int signr)
1253 struct pt_regs *regs = signal_pt_regs();
1254 pr_info("potentially unexpected fatal signal %d.\n", signr);
1256 #if defined(__i386__) && !defined(__arch_um__)
1257 pr_info("code at %08lx: ", regs->ip);
1260 for (i = 0; i < 16; i++) {
1263 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1265 pr_cont("%02x ", insn);
1275 static int __init setup_print_fatal_signals(char *str)
1277 get_option (&str, &print_fatal_signals);
1282 __setup("print-fatal-signals=", setup_print_fatal_signals);
1285 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1287 return send_signal(sig, info, p, PIDTYPE_TGID);
1290 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1293 unsigned long flags;
1296 if (lock_task_sighand(p, &flags)) {
1297 ret = send_signal(sig, info, p, type);
1298 unlock_task_sighand(p, &flags);
1305 HANDLER_CURRENT, /* If reachable use the current handler */
1306 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1307 HANDLER_EXIT, /* Only visible as the process exit code */
1311 * Force a signal that the process can't ignore: if necessary
1312 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1314 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1315 * since we do not want to have a signal handler that was blocked
1316 * be invoked when user space had explicitly blocked it.
1318 * We don't want to have recursive SIGSEGV's etc, for example,
1319 * that is why we also clear SIGNAL_UNKILLABLE.
1322 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1323 enum sig_handler handler)
1325 unsigned long int flags;
1326 int ret, blocked, ignored;
1327 struct k_sigaction *action;
1328 int sig = info->si_signo;
1330 spin_lock_irqsave(&t->sighand->siglock, flags);
1331 action = &t->sighand->action[sig-1];
1332 ignored = action->sa.sa_handler == SIG_IGN;
1333 blocked = sigismember(&t->blocked, sig);
1334 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1335 action->sa.sa_handler = SIG_DFL;
1336 if (handler == HANDLER_EXIT)
1337 action->sa.sa_flags |= SA_IMMUTABLE;
1339 sigdelset(&t->blocked, sig);
1340 recalc_sigpending_and_wake(t);
1344 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1345 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1347 if (action->sa.sa_handler == SIG_DFL &&
1348 (!t->ptrace || (handler == HANDLER_EXIT)))
1349 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1350 ret = send_signal(sig, info, t, PIDTYPE_PID);
1351 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1356 int force_sig_info(struct kernel_siginfo *info)
1358 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1362 * Nuke all other threads in the group.
1364 int zap_other_threads(struct task_struct *p)
1366 struct task_struct *t = p;
1369 p->signal->group_stop_count = 0;
1371 while_each_thread(p, t) {
1372 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1375 /* Don't bother with already dead threads */
1378 sigaddset(&t->pending.signal, SIGKILL);
1379 signal_wake_up(t, 1);
1385 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1386 unsigned long *flags)
1388 struct sighand_struct *sighand;
1392 sighand = rcu_dereference(tsk->sighand);
1393 if (unlikely(sighand == NULL))
1397 * This sighand can be already freed and even reused, but
1398 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1399 * initializes ->siglock: this slab can't go away, it has
1400 * the same object type, ->siglock can't be reinitialized.
1402 * We need to ensure that tsk->sighand is still the same
1403 * after we take the lock, we can race with de_thread() or
1404 * __exit_signal(). In the latter case the next iteration
1405 * must see ->sighand == NULL.
1407 spin_lock_irqsave(&sighand->siglock, *flags);
1408 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1410 spin_unlock_irqrestore(&sighand->siglock, *flags);
1417 #ifdef CONFIG_LOCKDEP
1418 void lockdep_assert_task_sighand_held(struct task_struct *task)
1420 struct sighand_struct *sighand;
1423 sighand = rcu_dereference(task->sighand);
1425 lockdep_assert_held(&sighand->siglock);
1433 * send signal info to all the members of a group
1435 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1436 struct task_struct *p, enum pid_type type)
1441 ret = check_kill_permission(sig, info, p);
1445 ret = do_send_sig_info(sig, info, p, type);
1451 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1452 * control characters do (^C, ^Z etc)
1453 * - the caller must hold at least a readlock on tasklist_lock
1455 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1457 struct task_struct *p = NULL;
1458 int retval, success;
1462 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1463 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1466 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1467 return success ? 0 : retval;
1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1473 struct task_struct *p;
1477 p = pid_task(pid, PIDTYPE_PID);
1479 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1481 if (likely(!p || error != -ESRCH))
1485 * The task was unhashed in between, try again. If it
1486 * is dead, pid_task() will return NULL, if we race with
1487 * de_thread() it will find the new leader.
1492 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1496 error = kill_pid_info(sig, info, find_vpid(pid));
1501 static inline bool kill_as_cred_perm(const struct cred *cred,
1502 struct task_struct *target)
1504 const struct cred *pcred = __task_cred(target);
1506 return uid_eq(cred->euid, pcred->suid) ||
1507 uid_eq(cred->euid, pcred->uid) ||
1508 uid_eq(cred->uid, pcred->suid) ||
1509 uid_eq(cred->uid, pcred->uid);
1513 * The usb asyncio usage of siginfo is wrong. The glibc support
1514 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1515 * AKA after the generic fields:
1516 * kernel_pid_t si_pid;
1517 * kernel_uid32_t si_uid;
1518 * sigval_t si_value;
1520 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1521 * after the generic fields is:
1522 * void __user *si_addr;
1524 * This is a practical problem when there is a 64bit big endian kernel
1525 * and a 32bit userspace. As the 32bit address will encoded in the low
1526 * 32bits of the pointer. Those low 32bits will be stored at higher
1527 * address than appear in a 32 bit pointer. So userspace will not
1528 * see the address it was expecting for it's completions.
1530 * There is nothing in the encoding that can allow
1531 * copy_siginfo_to_user32 to detect this confusion of formats, so
1532 * handle this by requiring the caller of kill_pid_usb_asyncio to
1533 * notice when this situration takes place and to store the 32bit
1534 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1537 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1538 struct pid *pid, const struct cred *cred)
1540 struct kernel_siginfo info;
1541 struct task_struct *p;
1542 unsigned long flags;
1545 if (!valid_signal(sig))
1548 clear_siginfo(&info);
1549 info.si_signo = sig;
1550 info.si_errno = errno;
1551 info.si_code = SI_ASYNCIO;
1552 *((sigval_t *)&info.si_pid) = addr;
1555 p = pid_task(pid, PIDTYPE_PID);
1560 if (!kill_as_cred_perm(cred, p)) {
1564 ret = security_task_kill(p, &info, sig, cred);
1569 if (lock_task_sighand(p, &flags)) {
1570 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1571 unlock_task_sighand(p, &flags);
1579 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1582 * kill_something_info() interprets pid in interesting ways just like kill(2).
1584 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1585 * is probably wrong. Should make it like BSD or SYSV.
1588 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1593 return kill_proc_info(sig, info, pid);
1595 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1599 read_lock(&tasklist_lock);
1601 ret = __kill_pgrp_info(sig, info,
1602 pid ? find_vpid(-pid) : task_pgrp(current));
1604 int retval = 0, count = 0;
1605 struct task_struct * p;
1607 for_each_process(p) {
1608 if (task_pid_vnr(p) > 1 &&
1609 !same_thread_group(p, current)) {
1610 int err = group_send_sig_info(sig, info, p,
1617 ret = count ? retval : -ESRCH;
1619 read_unlock(&tasklist_lock);
1625 * These are for backward compatibility with the rest of the kernel source.
1628 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1631 * Make sure legacy kernel users don't send in bad values
1632 * (normal paths check this in check_kill_permission).
1634 if (!valid_signal(sig))
1637 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1639 EXPORT_SYMBOL(send_sig_info);
1641 #define __si_special(priv) \
1642 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1645 send_sig(int sig, struct task_struct *p, int priv)
1647 return send_sig_info(sig, __si_special(priv), p);
1649 EXPORT_SYMBOL(send_sig);
1651 void force_sig(int sig)
1653 struct kernel_siginfo info;
1655 clear_siginfo(&info);
1656 info.si_signo = sig;
1658 info.si_code = SI_KERNEL;
1661 force_sig_info(&info);
1663 EXPORT_SYMBOL(force_sig);
1665 void force_fatal_sig(int sig)
1667 struct kernel_siginfo info;
1669 clear_siginfo(&info);
1670 info.si_signo = sig;
1672 info.si_code = SI_KERNEL;
1675 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1678 void force_exit_sig(int sig)
1680 struct kernel_siginfo info;
1682 clear_siginfo(&info);
1683 info.si_signo = sig;
1685 info.si_code = SI_KERNEL;
1688 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1692 * When things go south during signal handling, we
1693 * will force a SIGSEGV. And if the signal that caused
1694 * the problem was already a SIGSEGV, we'll want to
1695 * make sure we don't even try to deliver the signal..
1697 void force_sigsegv(int sig)
1700 force_fatal_sig(SIGSEGV);
1705 int force_sig_fault_to_task(int sig, int code, void __user *addr
1706 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1707 , struct task_struct *t)
1709 struct kernel_siginfo info;
1711 clear_siginfo(&info);
1712 info.si_signo = sig;
1714 info.si_code = code;
1715 info.si_addr = addr;
1718 info.si_flags = flags;
1721 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1724 int force_sig_fault(int sig, int code, void __user *addr
1725 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1727 return force_sig_fault_to_task(sig, code, addr
1728 ___ARCH_SI_IA64(imm, flags, isr), current);
1731 int send_sig_fault(int sig, int code, void __user *addr
1732 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1733 , struct task_struct *t)
1735 struct kernel_siginfo info;
1737 clear_siginfo(&info);
1738 info.si_signo = sig;
1740 info.si_code = code;
1741 info.si_addr = addr;
1744 info.si_flags = flags;
1747 return send_sig_info(info.si_signo, &info, t);
1750 int force_sig_mceerr(int code, void __user *addr, short lsb)
1752 struct kernel_siginfo info;
1754 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1755 clear_siginfo(&info);
1756 info.si_signo = SIGBUS;
1758 info.si_code = code;
1759 info.si_addr = addr;
1760 info.si_addr_lsb = lsb;
1761 return force_sig_info(&info);
1764 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1766 struct kernel_siginfo info;
1768 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1769 clear_siginfo(&info);
1770 info.si_signo = SIGBUS;
1772 info.si_code = code;
1773 info.si_addr = addr;
1774 info.si_addr_lsb = lsb;
1775 return send_sig_info(info.si_signo, &info, t);
1777 EXPORT_SYMBOL(send_sig_mceerr);
1779 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1781 struct kernel_siginfo info;
1783 clear_siginfo(&info);
1784 info.si_signo = SIGSEGV;
1786 info.si_code = SEGV_BNDERR;
1787 info.si_addr = addr;
1788 info.si_lower = lower;
1789 info.si_upper = upper;
1790 return force_sig_info(&info);
1794 int force_sig_pkuerr(void __user *addr, u32 pkey)
1796 struct kernel_siginfo info;
1798 clear_siginfo(&info);
1799 info.si_signo = SIGSEGV;
1801 info.si_code = SEGV_PKUERR;
1802 info.si_addr = addr;
1803 info.si_pkey = pkey;
1804 return force_sig_info(&info);
1808 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1810 struct kernel_siginfo info;
1812 clear_siginfo(&info);
1813 info.si_signo = SIGTRAP;
1815 info.si_code = TRAP_PERF;
1816 info.si_addr = addr;
1817 info.si_perf_data = sig_data;
1818 info.si_perf_type = type;
1820 return force_sig_info(&info);
1824 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1825 * @syscall: syscall number to send to userland
1826 * @reason: filter-supplied reason code to send to userland (via si_errno)
1827 * @force_coredump: true to trigger a coredump
1829 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1831 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1833 struct kernel_siginfo info;
1835 clear_siginfo(&info);
1836 info.si_signo = SIGSYS;
1837 info.si_code = SYS_SECCOMP;
1838 info.si_call_addr = (void __user *)KSTK_EIP(current);
1839 info.si_errno = reason;
1840 info.si_arch = syscall_get_arch(current);
1841 info.si_syscall = syscall;
1842 return force_sig_info_to_task(&info, current,
1843 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1846 /* For the crazy architectures that include trap information in
1847 * the errno field, instead of an actual errno value.
1849 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1851 struct kernel_siginfo info;
1853 clear_siginfo(&info);
1854 info.si_signo = SIGTRAP;
1855 info.si_errno = errno;
1856 info.si_code = TRAP_HWBKPT;
1857 info.si_addr = addr;
1858 return force_sig_info(&info);
1861 /* For the rare architectures that include trap information using
1864 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1866 struct kernel_siginfo info;
1868 clear_siginfo(&info);
1869 info.si_signo = sig;
1871 info.si_code = code;
1872 info.si_addr = addr;
1873 info.si_trapno = trapno;
1874 return force_sig_info(&info);
1877 /* For the rare architectures that include trap information using
1880 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1881 struct task_struct *t)
1883 struct kernel_siginfo info;
1885 clear_siginfo(&info);
1886 info.si_signo = sig;
1888 info.si_code = code;
1889 info.si_addr = addr;
1890 info.si_trapno = trapno;
1891 return send_sig_info(info.si_signo, &info, t);
1894 int kill_pgrp(struct pid *pid, int sig, int priv)
1898 read_lock(&tasklist_lock);
1899 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1900 read_unlock(&tasklist_lock);
1904 EXPORT_SYMBOL(kill_pgrp);
1906 int kill_pid(struct pid *pid, int sig, int priv)
1908 return kill_pid_info(sig, __si_special(priv), pid);
1910 EXPORT_SYMBOL(kill_pid);
1913 * These functions support sending signals using preallocated sigqueue
1914 * structures. This is needed "because realtime applications cannot
1915 * afford to lose notifications of asynchronous events, like timer
1916 * expirations or I/O completions". In the case of POSIX Timers
1917 * we allocate the sigqueue structure from the timer_create. If this
1918 * allocation fails we are able to report the failure to the application
1919 * with an EAGAIN error.
1921 struct sigqueue *sigqueue_alloc(void)
1923 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1926 void sigqueue_free(struct sigqueue *q)
1928 unsigned long flags;
1929 spinlock_t *lock = ¤t->sighand->siglock;
1931 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1933 * We must hold ->siglock while testing q->list
1934 * to serialize with collect_signal() or with
1935 * __exit_signal()->flush_sigqueue().
1937 spin_lock_irqsave(lock, flags);
1938 q->flags &= ~SIGQUEUE_PREALLOC;
1940 * If it is queued it will be freed when dequeued,
1941 * like the "regular" sigqueue.
1943 if (!list_empty(&q->list))
1945 spin_unlock_irqrestore(lock, flags);
1951 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1953 int sig = q->info.si_signo;
1954 struct sigpending *pending;
1955 struct task_struct *t;
1956 unsigned long flags;
1959 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1963 t = pid_task(pid, type);
1964 if (!t || !likely(lock_task_sighand(t, &flags)))
1967 ret = 1; /* the signal is ignored */
1968 result = TRACE_SIGNAL_IGNORED;
1969 if (!prepare_signal(sig, t, false))
1973 if (unlikely(!list_empty(&q->list))) {
1975 * If an SI_TIMER entry is already queue just increment
1976 * the overrun count.
1978 BUG_ON(q->info.si_code != SI_TIMER);
1979 q->info.si_overrun++;
1980 result = TRACE_SIGNAL_ALREADY_PENDING;
1983 q->info.si_overrun = 0;
1985 signalfd_notify(t, sig);
1986 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1987 list_add_tail(&q->list, &pending->list);
1988 sigaddset(&pending->signal, sig);
1989 complete_signal(sig, t, type);
1990 result = TRACE_SIGNAL_DELIVERED;
1992 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1993 unlock_task_sighand(t, &flags);
1999 static void do_notify_pidfd(struct task_struct *task)
2003 WARN_ON(task->exit_state == 0);
2004 pid = task_pid(task);
2005 wake_up_all(&pid->wait_pidfd);
2009 * Let a parent know about the death of a child.
2010 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2012 * Returns true if our parent ignored us and so we've switched to
2015 bool do_notify_parent(struct task_struct *tsk, int sig)
2017 struct kernel_siginfo info;
2018 unsigned long flags;
2019 struct sighand_struct *psig;
2020 bool autoreap = false;
2025 /* do_notify_parent_cldstop should have been called instead. */
2026 BUG_ON(task_is_stopped_or_traced(tsk));
2028 BUG_ON(!tsk->ptrace &&
2029 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2031 /* Wake up all pidfd waiters */
2032 do_notify_pidfd(tsk);
2034 if (sig != SIGCHLD) {
2036 * This is only possible if parent == real_parent.
2037 * Check if it has changed security domain.
2039 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2043 clear_siginfo(&info);
2044 info.si_signo = sig;
2047 * We are under tasklist_lock here so our parent is tied to
2048 * us and cannot change.
2050 * task_active_pid_ns will always return the same pid namespace
2051 * until a task passes through release_task.
2053 * write_lock() currently calls preempt_disable() which is the
2054 * same as rcu_read_lock(), but according to Oleg, this is not
2055 * correct to rely on this
2058 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2059 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2063 task_cputime(tsk, &utime, &stime);
2064 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2065 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2067 info.si_status = tsk->exit_code & 0x7f;
2068 if (tsk->exit_code & 0x80)
2069 info.si_code = CLD_DUMPED;
2070 else if (tsk->exit_code & 0x7f)
2071 info.si_code = CLD_KILLED;
2073 info.si_code = CLD_EXITED;
2074 info.si_status = tsk->exit_code >> 8;
2077 psig = tsk->parent->sighand;
2078 spin_lock_irqsave(&psig->siglock, flags);
2079 if (!tsk->ptrace && sig == SIGCHLD &&
2080 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2081 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2083 * We are exiting and our parent doesn't care. POSIX.1
2084 * defines special semantics for setting SIGCHLD to SIG_IGN
2085 * or setting the SA_NOCLDWAIT flag: we should be reaped
2086 * automatically and not left for our parent's wait4 call.
2087 * Rather than having the parent do it as a magic kind of
2088 * signal handler, we just set this to tell do_exit that we
2089 * can be cleaned up without becoming a zombie. Note that
2090 * we still call __wake_up_parent in this case, because a
2091 * blocked sys_wait4 might now return -ECHILD.
2093 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2094 * is implementation-defined: we do (if you don't want
2095 * it, just use SIG_IGN instead).
2098 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2102 * Send with __send_signal as si_pid and si_uid are in the
2103 * parent's namespaces.
2105 if (valid_signal(sig) && sig)
2106 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2107 __wake_up_parent(tsk, tsk->parent);
2108 spin_unlock_irqrestore(&psig->siglock, flags);
2114 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2115 * @tsk: task reporting the state change
2116 * @for_ptracer: the notification is for ptracer
2117 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2119 * Notify @tsk's parent that the stopped/continued state has changed. If
2120 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2121 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2124 * Must be called with tasklist_lock at least read locked.
2126 static void do_notify_parent_cldstop(struct task_struct *tsk,
2127 bool for_ptracer, int why)
2129 struct kernel_siginfo info;
2130 unsigned long flags;
2131 struct task_struct *parent;
2132 struct sighand_struct *sighand;
2136 parent = tsk->parent;
2138 tsk = tsk->group_leader;
2139 parent = tsk->real_parent;
2142 clear_siginfo(&info);
2143 info.si_signo = SIGCHLD;
2146 * see comment in do_notify_parent() about the following 4 lines
2149 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2150 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2153 task_cputime(tsk, &utime, &stime);
2154 info.si_utime = nsec_to_clock_t(utime);
2155 info.si_stime = nsec_to_clock_t(stime);
2160 info.si_status = SIGCONT;
2163 info.si_status = tsk->signal->group_exit_code & 0x7f;
2166 info.si_status = tsk->exit_code & 0x7f;
2172 sighand = parent->sighand;
2173 spin_lock_irqsave(&sighand->siglock, flags);
2174 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2175 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2176 __group_send_sig_info(SIGCHLD, &info, parent);
2178 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2180 __wake_up_parent(tsk, parent);
2181 spin_unlock_irqrestore(&sighand->siglock, flags);
2185 * This must be called with current->sighand->siglock held.
2187 * This should be the path for all ptrace stops.
2188 * We always set current->last_siginfo while stopped here.
2189 * That makes it a way to test a stopped process for
2190 * being ptrace-stopped vs being job-control-stopped.
2192 * Returns the signal the ptracer requested the code resume
2193 * with. If the code did not stop because the tracer is gone,
2194 * the stop signal remains unchanged unless clear_code.
2196 static int ptrace_stop(int exit_code, int why, int clear_code,
2197 unsigned long message, kernel_siginfo_t *info)
2198 __releases(¤t->sighand->siglock)
2199 __acquires(¤t->sighand->siglock)
2201 bool gstop_done = false;
2202 bool read_code = true;
2204 if (arch_ptrace_stop_needed()) {
2206 * The arch code has something special to do before a
2207 * ptrace stop. This is allowed to block, e.g. for faults
2208 * on user stack pages. We can't keep the siglock while
2209 * calling arch_ptrace_stop, so we must release it now.
2210 * To preserve proper semantics, we must do this before
2211 * any signal bookkeeping like checking group_stop_count.
2213 spin_unlock_irq(¤t->sighand->siglock);
2215 spin_lock_irq(¤t->sighand->siglock);
2219 * schedule() will not sleep if there is a pending signal that
2220 * can awaken the task.
2222 set_special_state(TASK_TRACED);
2225 * We're committing to trapping. TRACED should be visible before
2226 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2227 * Also, transition to TRACED and updates to ->jobctl should be
2228 * atomic with respect to siglock and should be done after the arch
2229 * hook as siglock is released and regrabbed across it.
2234 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2236 * set_current_state() smp_wmb();
2238 * wait_task_stopped()
2239 * task_stopped_code()
2240 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2244 current->ptrace_message = message;
2245 current->last_siginfo = info;
2246 current->exit_code = exit_code;
2249 * If @why is CLD_STOPPED, we're trapping to participate in a group
2250 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2251 * across siglock relocks since INTERRUPT was scheduled, PENDING
2252 * could be clear now. We act as if SIGCONT is received after
2253 * TASK_TRACED is entered - ignore it.
2255 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2256 gstop_done = task_participate_group_stop(current);
2258 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2259 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2260 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2261 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2263 /* entering a trap, clear TRAPPING */
2264 task_clear_jobctl_trapping(current);
2266 spin_unlock_irq(¤t->sighand->siglock);
2267 read_lock(&tasklist_lock);
2268 if (likely(current->ptrace)) {
2270 * Notify parents of the stop.
2272 * While ptraced, there are two parents - the ptracer and
2273 * the real_parent of the group_leader. The ptracer should
2274 * know about every stop while the real parent is only
2275 * interested in the completion of group stop. The states
2276 * for the two don't interact with each other. Notify
2277 * separately unless they're gonna be duplicates.
2279 do_notify_parent_cldstop(current, true, why);
2280 if (gstop_done && ptrace_reparented(current))
2281 do_notify_parent_cldstop(current, false, why);
2284 * Don't want to allow preemption here, because
2285 * sys_ptrace() needs this task to be inactive.
2287 * XXX: implement read_unlock_no_resched().
2290 read_unlock(&tasklist_lock);
2291 cgroup_enter_frozen();
2292 preempt_enable_no_resched();
2293 freezable_schedule();
2294 cgroup_leave_frozen(true);
2297 * By the time we got the lock, our tracer went away.
2298 * Don't drop the lock yet, another tracer may come.
2300 * If @gstop_done, the ptracer went away between group stop
2301 * completion and here. During detach, it would have set
2302 * JOBCTL_STOP_PENDING on us and we'll re-enter
2303 * TASK_STOPPED in do_signal_stop() on return, so notifying
2304 * the real parent of the group stop completion is enough.
2307 do_notify_parent_cldstop(current, false, why);
2309 /* tasklist protects us from ptrace_freeze_traced() */
2310 __set_current_state(TASK_RUNNING);
2314 read_unlock(&tasklist_lock);
2318 * We are back. Now reacquire the siglock before touching
2319 * last_siginfo, so that we are sure to have synchronized with
2320 * any signal-sending on another CPU that wants to examine it.
2322 spin_lock_irq(¤t->sighand->siglock);
2324 exit_code = current->exit_code;
2325 current->last_siginfo = NULL;
2326 current->ptrace_message = 0;
2327 current->exit_code = 0;
2329 /* LISTENING can be set only during STOP traps, clear it */
2330 current->jobctl &= ~JOBCTL_LISTENING;
2333 * Queued signals ignored us while we were stopped for tracing.
2334 * So check for any that we should take before resuming user mode.
2335 * This sets TIF_SIGPENDING, but never clears it.
2337 recalc_sigpending_tsk(current);
2341 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2343 kernel_siginfo_t info;
2345 clear_siginfo(&info);
2346 info.si_signo = signr;
2347 info.si_code = exit_code;
2348 info.si_pid = task_pid_vnr(current);
2349 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2351 /* Let the debugger run. */
2352 return ptrace_stop(exit_code, why, 1, message, &info);
2355 int ptrace_notify(int exit_code, unsigned long message)
2359 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2360 if (unlikely(task_work_pending(current)))
2363 spin_lock_irq(¤t->sighand->siglock);
2364 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2365 spin_unlock_irq(¤t->sighand->siglock);
2370 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2371 * @signr: signr causing group stop if initiating
2373 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2374 * and participate in it. If already set, participate in the existing
2375 * group stop. If participated in a group stop (and thus slept), %true is
2376 * returned with siglock released.
2378 * If ptraced, this function doesn't handle stop itself. Instead,
2379 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2380 * untouched. The caller must ensure that INTERRUPT trap handling takes
2381 * places afterwards.
2384 * Must be called with @current->sighand->siglock held, which is released
2388 * %false if group stop is already cancelled or ptrace trap is scheduled.
2389 * %true if participated in group stop.
2391 static bool do_signal_stop(int signr)
2392 __releases(¤t->sighand->siglock)
2394 struct signal_struct *sig = current->signal;
2396 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2397 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2398 struct task_struct *t;
2400 /* signr will be recorded in task->jobctl for retries */
2401 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2403 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2404 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2405 unlikely(sig->group_exec_task))
2408 * There is no group stop already in progress. We must
2411 * While ptraced, a task may be resumed while group stop is
2412 * still in effect and then receive a stop signal and
2413 * initiate another group stop. This deviates from the
2414 * usual behavior as two consecutive stop signals can't
2415 * cause two group stops when !ptraced. That is why we
2416 * also check !task_is_stopped(t) below.
2418 * The condition can be distinguished by testing whether
2419 * SIGNAL_STOP_STOPPED is already set. Don't generate
2420 * group_exit_code in such case.
2422 * This is not necessary for SIGNAL_STOP_CONTINUED because
2423 * an intervening stop signal is required to cause two
2424 * continued events regardless of ptrace.
2426 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2427 sig->group_exit_code = signr;
2429 sig->group_stop_count = 0;
2431 if (task_set_jobctl_pending(current, signr | gstop))
2432 sig->group_stop_count++;
2435 while_each_thread(current, t) {
2437 * Setting state to TASK_STOPPED for a group
2438 * stop is always done with the siglock held,
2439 * so this check has no races.
2441 if (!task_is_stopped(t) &&
2442 task_set_jobctl_pending(t, signr | gstop)) {
2443 sig->group_stop_count++;
2444 if (likely(!(t->ptrace & PT_SEIZED)))
2445 signal_wake_up(t, 0);
2447 ptrace_trap_notify(t);
2452 if (likely(!current->ptrace)) {
2456 * If there are no other threads in the group, or if there
2457 * is a group stop in progress and we are the last to stop,
2458 * report to the parent.
2460 if (task_participate_group_stop(current))
2461 notify = CLD_STOPPED;
2463 set_special_state(TASK_STOPPED);
2464 spin_unlock_irq(¤t->sighand->siglock);
2467 * Notify the parent of the group stop completion. Because
2468 * we're not holding either the siglock or tasklist_lock
2469 * here, ptracer may attach inbetween; however, this is for
2470 * group stop and should always be delivered to the real
2471 * parent of the group leader. The new ptracer will get
2472 * its notification when this task transitions into
2476 read_lock(&tasklist_lock);
2477 do_notify_parent_cldstop(current, false, notify);
2478 read_unlock(&tasklist_lock);
2481 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2482 cgroup_enter_frozen();
2483 freezable_schedule();
2487 * While ptraced, group stop is handled by STOP trap.
2488 * Schedule it and let the caller deal with it.
2490 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2496 * do_jobctl_trap - take care of ptrace jobctl traps
2498 * When PT_SEIZED, it's used for both group stop and explicit
2499 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2500 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2501 * the stop signal; otherwise, %SIGTRAP.
2503 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2504 * number as exit_code and no siginfo.
2507 * Must be called with @current->sighand->siglock held, which may be
2508 * released and re-acquired before returning with intervening sleep.
2510 static void do_jobctl_trap(void)
2512 struct signal_struct *signal = current->signal;
2513 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2515 if (current->ptrace & PT_SEIZED) {
2516 if (!signal->group_stop_count &&
2517 !(signal->flags & SIGNAL_STOP_STOPPED))
2519 WARN_ON_ONCE(!signr);
2520 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2523 WARN_ON_ONCE(!signr);
2524 ptrace_stop(signr, CLD_STOPPED, 0, 0, NULL);
2529 * do_freezer_trap - handle the freezer jobctl trap
2531 * Puts the task into frozen state, if only the task is not about to quit.
2532 * In this case it drops JOBCTL_TRAP_FREEZE.
2535 * Must be called with @current->sighand->siglock held,
2536 * which is always released before returning.
2538 static void do_freezer_trap(void)
2539 __releases(¤t->sighand->siglock)
2542 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2543 * let's make another loop to give it a chance to be handled.
2544 * In any case, we'll return back.
2546 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2547 JOBCTL_TRAP_FREEZE) {
2548 spin_unlock_irq(¤t->sighand->siglock);
2553 * Now we're sure that there is no pending fatal signal and no
2554 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2555 * immediately (if there is a non-fatal signal pending), and
2556 * put the task into sleep.
2558 __set_current_state(TASK_INTERRUPTIBLE);
2559 clear_thread_flag(TIF_SIGPENDING);
2560 spin_unlock_irq(¤t->sighand->siglock);
2561 cgroup_enter_frozen();
2562 freezable_schedule();
2565 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2568 * We do not check sig_kernel_stop(signr) but set this marker
2569 * unconditionally because we do not know whether debugger will
2570 * change signr. This flag has no meaning unless we are going
2571 * to stop after return from ptrace_stop(). In this case it will
2572 * be checked in do_signal_stop(), we should only stop if it was
2573 * not cleared by SIGCONT while we were sleeping. See also the
2574 * comment in dequeue_signal().
2576 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2577 signr = ptrace_stop(signr, CLD_TRAPPED, 0, 0, info);
2579 /* We're back. Did the debugger cancel the sig? */
2584 * Update the siginfo structure if the signal has
2585 * changed. If the debugger wanted something
2586 * specific in the siginfo structure then it should
2587 * have updated *info via PTRACE_SETSIGINFO.
2589 if (signr != info->si_signo) {
2590 clear_siginfo(info);
2591 info->si_signo = signr;
2593 info->si_code = SI_USER;
2595 info->si_pid = task_pid_vnr(current->parent);
2596 info->si_uid = from_kuid_munged(current_user_ns(),
2597 task_uid(current->parent));
2601 /* If the (new) signal is now blocked, requeue it. */
2602 if (sigismember(¤t->blocked, signr) ||
2603 fatal_signal_pending(current)) {
2604 send_signal(signr, info, current, type);
2611 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2613 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2615 case SIL_FAULT_TRAPNO:
2616 case SIL_FAULT_MCEERR:
2617 case SIL_FAULT_BNDERR:
2618 case SIL_FAULT_PKUERR:
2619 case SIL_FAULT_PERF_EVENT:
2620 ksig->info.si_addr = arch_untagged_si_addr(
2621 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2633 bool get_signal(struct ksignal *ksig)
2635 struct sighand_struct *sighand = current->sighand;
2636 struct signal_struct *signal = current->signal;
2639 clear_notify_signal();
2640 if (unlikely(task_work_pending(current)))
2643 if (!task_sigpending(current))
2646 if (unlikely(uprobe_deny_signal()))
2650 * Do this once, we can't return to user-mode if freezing() == T.
2651 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2652 * thus do not need another check after return.
2657 spin_lock_irq(&sighand->siglock);
2660 * Every stopped thread goes here after wakeup. Check to see if
2661 * we should notify the parent, prepare_signal(SIGCONT) encodes
2662 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2664 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2667 if (signal->flags & SIGNAL_CLD_CONTINUED)
2668 why = CLD_CONTINUED;
2672 signal->flags &= ~SIGNAL_CLD_MASK;
2674 spin_unlock_irq(&sighand->siglock);
2677 * Notify the parent that we're continuing. This event is
2678 * always per-process and doesn't make whole lot of sense
2679 * for ptracers, who shouldn't consume the state via
2680 * wait(2) either, but, for backward compatibility, notify
2681 * the ptracer of the group leader too unless it's gonna be
2684 read_lock(&tasklist_lock);
2685 do_notify_parent_cldstop(current, false, why);
2687 if (ptrace_reparented(current->group_leader))
2688 do_notify_parent_cldstop(current->group_leader,
2690 read_unlock(&tasklist_lock);
2696 struct k_sigaction *ka;
2699 /* Has this task already been marked for death? */
2700 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2701 signal->group_exec_task) {
2702 ksig->info.si_signo = signr = SIGKILL;
2703 sigdelset(¤t->pending.signal, SIGKILL);
2704 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2705 &sighand->action[SIGKILL - 1]);
2706 recalc_sigpending();
2710 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2714 if (unlikely(current->jobctl &
2715 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2716 if (current->jobctl & JOBCTL_TRAP_MASK) {
2718 spin_unlock_irq(&sighand->siglock);
2719 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2726 * If the task is leaving the frozen state, let's update
2727 * cgroup counters and reset the frozen bit.
2729 if (unlikely(cgroup_task_frozen(current))) {
2730 spin_unlock_irq(&sighand->siglock);
2731 cgroup_leave_frozen(false);
2736 * Signals generated by the execution of an instruction
2737 * need to be delivered before any other pending signals
2738 * so that the instruction pointer in the signal stack
2739 * frame points to the faulting instruction.
2742 signr = dequeue_synchronous_signal(&ksig->info);
2744 signr = dequeue_signal(current, ¤t->blocked,
2745 &ksig->info, &type);
2748 break; /* will return 0 */
2750 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2751 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2752 signr = ptrace_signal(signr, &ksig->info, type);
2757 ka = &sighand->action[signr-1];
2759 /* Trace actually delivered signals. */
2760 trace_signal_deliver(signr, &ksig->info, ka);
2762 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2764 if (ka->sa.sa_handler != SIG_DFL) {
2765 /* Run the handler. */
2768 if (ka->sa.sa_flags & SA_ONESHOT)
2769 ka->sa.sa_handler = SIG_DFL;
2771 break; /* will return non-zero "signr" value */
2775 * Now we are doing the default action for this signal.
2777 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2781 * Global init gets no signals it doesn't want.
2782 * Container-init gets no signals it doesn't want from same
2785 * Note that if global/container-init sees a sig_kernel_only()
2786 * signal here, the signal must have been generated internally
2787 * or must have come from an ancestor namespace. In either
2788 * case, the signal cannot be dropped.
2790 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2791 !sig_kernel_only(signr))
2794 if (sig_kernel_stop(signr)) {
2796 * The default action is to stop all threads in
2797 * the thread group. The job control signals
2798 * do nothing in an orphaned pgrp, but SIGSTOP
2799 * always works. Note that siglock needs to be
2800 * dropped during the call to is_orphaned_pgrp()
2801 * because of lock ordering with tasklist_lock.
2802 * This allows an intervening SIGCONT to be posted.
2803 * We need to check for that and bail out if necessary.
2805 if (signr != SIGSTOP) {
2806 spin_unlock_irq(&sighand->siglock);
2808 /* signals can be posted during this window */
2810 if (is_current_pgrp_orphaned())
2813 spin_lock_irq(&sighand->siglock);
2816 if (likely(do_signal_stop(ksig->info.si_signo))) {
2817 /* It released the siglock. */
2822 * We didn't actually stop, due to a race
2823 * with SIGCONT or something like that.
2829 spin_unlock_irq(&sighand->siglock);
2830 if (unlikely(cgroup_task_frozen(current)))
2831 cgroup_leave_frozen(true);
2834 * Anything else is fatal, maybe with a core dump.
2836 current->flags |= PF_SIGNALED;
2838 if (sig_kernel_coredump(signr)) {
2839 if (print_fatal_signals)
2840 print_fatal_signal(ksig->info.si_signo);
2841 proc_coredump_connector(current);
2843 * If it was able to dump core, this kills all
2844 * other threads in the group and synchronizes with
2845 * their demise. If we lost the race with another
2846 * thread getting here, it set group_exit_code
2847 * first and our do_group_exit call below will use
2848 * that value and ignore the one we pass it.
2850 do_coredump(&ksig->info);
2854 * PF_IO_WORKER threads will catch and exit on fatal signals
2855 * themselves. They have cleanup that must be performed, so
2856 * we cannot call do_exit() on their behalf.
2858 if (current->flags & PF_IO_WORKER)
2862 * Death signals, no core dump.
2864 do_group_exit(ksig->info.si_signo);
2867 spin_unlock_irq(&sighand->siglock);
2871 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2872 hide_si_addr_tag_bits(ksig);
2874 return ksig->sig > 0;
2878 * signal_delivered - called after signal delivery to update blocked signals
2879 * @ksig: kernel signal struct
2880 * @stepping: nonzero if debugger single-step or block-step in use
2882 * This function should be called when a signal has successfully been
2883 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2884 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2885 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2887 static void signal_delivered(struct ksignal *ksig, int stepping)
2891 /* A signal was successfully delivered, and the
2892 saved sigmask was stored on the signal frame,
2893 and will be restored by sigreturn. So we can
2894 simply clear the restore sigmask flag. */
2895 clear_restore_sigmask();
2897 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2898 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2899 sigaddset(&blocked, ksig->sig);
2900 set_current_blocked(&blocked);
2901 if (current->sas_ss_flags & SS_AUTODISARM)
2902 sas_ss_reset(current);
2904 ptrace_notify(SIGTRAP, 0);
2907 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2910 force_sigsegv(ksig->sig);
2912 signal_delivered(ksig, stepping);
2916 * It could be that complete_signal() picked us to notify about the
2917 * group-wide signal. Other threads should be notified now to take
2918 * the shared signals in @which since we will not.
2920 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2923 struct task_struct *t;
2925 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2926 if (sigisemptyset(&retarget))
2930 while_each_thread(tsk, t) {
2931 if (t->flags & PF_EXITING)
2934 if (!has_pending_signals(&retarget, &t->blocked))
2936 /* Remove the signals this thread can handle. */
2937 sigandsets(&retarget, &retarget, &t->blocked);
2939 if (!task_sigpending(t))
2940 signal_wake_up(t, 0);
2942 if (sigisemptyset(&retarget))
2947 void exit_signals(struct task_struct *tsk)
2953 * @tsk is about to have PF_EXITING set - lock out users which
2954 * expect stable threadgroup.
2956 cgroup_threadgroup_change_begin(tsk);
2958 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2959 tsk->flags |= PF_EXITING;
2960 cgroup_threadgroup_change_end(tsk);
2964 spin_lock_irq(&tsk->sighand->siglock);
2966 * From now this task is not visible for group-wide signals,
2967 * see wants_signal(), do_signal_stop().
2969 tsk->flags |= PF_EXITING;
2971 cgroup_threadgroup_change_end(tsk);
2973 if (!task_sigpending(tsk))
2976 unblocked = tsk->blocked;
2977 signotset(&unblocked);
2978 retarget_shared_pending(tsk, &unblocked);
2980 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2981 task_participate_group_stop(tsk))
2982 group_stop = CLD_STOPPED;
2984 spin_unlock_irq(&tsk->sighand->siglock);
2987 * If group stop has completed, deliver the notification. This
2988 * should always go to the real parent of the group leader.
2990 if (unlikely(group_stop)) {
2991 read_lock(&tasklist_lock);
2992 do_notify_parent_cldstop(tsk, false, group_stop);
2993 read_unlock(&tasklist_lock);
2998 * System call entry points.
3002 * sys_restart_syscall - restart a system call
3004 SYSCALL_DEFINE0(restart_syscall)
3006 struct restart_block *restart = ¤t->restart_block;
3007 return restart->fn(restart);
3010 long do_no_restart_syscall(struct restart_block *param)
3015 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3017 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3018 sigset_t newblocked;
3019 /* A set of now blocked but previously unblocked signals. */
3020 sigandnsets(&newblocked, newset, ¤t->blocked);
3021 retarget_shared_pending(tsk, &newblocked);
3023 tsk->blocked = *newset;
3024 recalc_sigpending();
3028 * set_current_blocked - change current->blocked mask
3031 * It is wrong to change ->blocked directly, this helper should be used
3032 * to ensure the process can't miss a shared signal we are going to block.
3034 void set_current_blocked(sigset_t *newset)
3036 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3037 __set_current_blocked(newset);
3040 void __set_current_blocked(const sigset_t *newset)
3042 struct task_struct *tsk = current;
3045 * In case the signal mask hasn't changed, there is nothing we need
3046 * to do. The current->blocked shouldn't be modified by other task.
3048 if (sigequalsets(&tsk->blocked, newset))
3051 spin_lock_irq(&tsk->sighand->siglock);
3052 __set_task_blocked(tsk, newset);
3053 spin_unlock_irq(&tsk->sighand->siglock);
3057 * This is also useful for kernel threads that want to temporarily
3058 * (or permanently) block certain signals.
3060 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3061 * interface happily blocks "unblockable" signals like SIGKILL
3064 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3066 struct task_struct *tsk = current;
3069 /* Lockless, only current can change ->blocked, never from irq */
3071 *oldset = tsk->blocked;
3075 sigorsets(&newset, &tsk->blocked, set);
3078 sigandnsets(&newset, &tsk->blocked, set);
3087 __set_current_blocked(&newset);
3090 EXPORT_SYMBOL(sigprocmask);
3093 * The api helps set app-provided sigmasks.
3095 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3096 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3098 * Note that it does set_restore_sigmask() in advance, so it must be always
3099 * paired with restore_saved_sigmask_unless() before return from syscall.
3101 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3107 if (sigsetsize != sizeof(sigset_t))
3109 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3112 set_restore_sigmask();
3113 current->saved_sigmask = current->blocked;
3114 set_current_blocked(&kmask);
3119 #ifdef CONFIG_COMPAT
3120 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3127 if (sigsetsize != sizeof(compat_sigset_t))
3129 if (get_compat_sigset(&kmask, umask))
3132 set_restore_sigmask();
3133 current->saved_sigmask = current->blocked;
3134 set_current_blocked(&kmask);
3141 * sys_rt_sigprocmask - change the list of currently blocked signals
3142 * @how: whether to add, remove, or set signals
3143 * @nset: stores pending signals
3144 * @oset: previous value of signal mask if non-null
3145 * @sigsetsize: size of sigset_t type
3147 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3148 sigset_t __user *, oset, size_t, sigsetsize)
3150 sigset_t old_set, new_set;
3153 /* XXX: Don't preclude handling different sized sigset_t's. */
3154 if (sigsetsize != sizeof(sigset_t))
3157 old_set = current->blocked;
3160 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3162 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3164 error = sigprocmask(how, &new_set, NULL);
3170 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3177 #ifdef CONFIG_COMPAT
3178 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3179 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3181 sigset_t old_set = current->blocked;
3183 /* XXX: Don't preclude handling different sized sigset_t's. */
3184 if (sigsetsize != sizeof(sigset_t))
3190 if (get_compat_sigset(&new_set, nset))
3192 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3194 error = sigprocmask(how, &new_set, NULL);
3198 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3202 static void do_sigpending(sigset_t *set)
3204 spin_lock_irq(¤t->sighand->siglock);
3205 sigorsets(set, ¤t->pending.signal,
3206 ¤t->signal->shared_pending.signal);
3207 spin_unlock_irq(¤t->sighand->siglock);
3209 /* Outside the lock because only this thread touches it. */
3210 sigandsets(set, ¤t->blocked, set);
3214 * sys_rt_sigpending - examine a pending signal that has been raised
3216 * @uset: stores pending signals
3217 * @sigsetsize: size of sigset_t type or larger
3219 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3223 if (sigsetsize > sizeof(*uset))
3226 do_sigpending(&set);
3228 if (copy_to_user(uset, &set, sigsetsize))
3234 #ifdef CONFIG_COMPAT
3235 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3236 compat_size_t, sigsetsize)
3240 if (sigsetsize > sizeof(*uset))
3243 do_sigpending(&set);
3245 return put_compat_sigset(uset, &set, sigsetsize);
3249 static const struct {
3250 unsigned char limit, layout;
3252 [SIGILL] = { NSIGILL, SIL_FAULT },
3253 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3254 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3255 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3256 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3258 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3260 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3261 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3262 [SIGSYS] = { NSIGSYS, SIL_SYS },
3265 static bool known_siginfo_layout(unsigned sig, int si_code)
3267 if (si_code == SI_KERNEL)
3269 else if ((si_code > SI_USER)) {
3270 if (sig_specific_sicodes(sig)) {
3271 if (si_code <= sig_sicodes[sig].limit)
3274 else if (si_code <= NSIGPOLL)
3277 else if (si_code >= SI_DETHREAD)
3279 else if (si_code == SI_ASYNCNL)
3284 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3286 enum siginfo_layout layout = SIL_KILL;
3287 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3288 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3289 (si_code <= sig_sicodes[sig].limit)) {
3290 layout = sig_sicodes[sig].layout;
3291 /* Handle the exceptions */
3292 if ((sig == SIGBUS) &&
3293 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3294 layout = SIL_FAULT_MCEERR;
3295 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3296 layout = SIL_FAULT_BNDERR;
3298 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3299 layout = SIL_FAULT_PKUERR;
3301 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3302 layout = SIL_FAULT_PERF_EVENT;
3303 else if (IS_ENABLED(CONFIG_SPARC) &&
3304 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3305 layout = SIL_FAULT_TRAPNO;
3306 else if (IS_ENABLED(CONFIG_ALPHA) &&
3308 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3309 layout = SIL_FAULT_TRAPNO;
3311 else if (si_code <= NSIGPOLL)
3314 if (si_code == SI_TIMER)
3316 else if (si_code == SI_SIGIO)
3318 else if (si_code < 0)
3324 static inline char __user *si_expansion(const siginfo_t __user *info)
3326 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3329 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3331 char __user *expansion = si_expansion(to);
3332 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3334 if (clear_user(expansion, SI_EXPANSION_SIZE))
3339 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3340 const siginfo_t __user *from)
3342 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3343 char __user *expansion = si_expansion(from);
3344 char buf[SI_EXPANSION_SIZE];
3347 * An unknown si_code might need more than
3348 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3349 * extra bytes are 0. This guarantees copy_siginfo_to_user
3350 * will return this data to userspace exactly.
3352 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3354 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3362 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3363 const siginfo_t __user *from)
3365 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3367 to->si_signo = signo;
3368 return post_copy_siginfo_from_user(to, from);
3371 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3373 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3375 return post_copy_siginfo_from_user(to, from);
3378 #ifdef CONFIG_COMPAT
3380 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3381 * @to: compat siginfo destination
3382 * @from: kernel siginfo source
3384 * Note: This function does not work properly for the SIGCHLD on x32, but
3385 * fortunately it doesn't have to. The only valid callers for this function are
3386 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3387 * The latter does not care because SIGCHLD will never cause a coredump.
3389 void copy_siginfo_to_external32(struct compat_siginfo *to,
3390 const struct kernel_siginfo *from)
3392 memset(to, 0, sizeof(*to));
3394 to->si_signo = from->si_signo;
3395 to->si_errno = from->si_errno;
3396 to->si_code = from->si_code;
3397 switch(siginfo_layout(from->si_signo, from->si_code)) {
3399 to->si_pid = from->si_pid;
3400 to->si_uid = from->si_uid;
3403 to->si_tid = from->si_tid;
3404 to->si_overrun = from->si_overrun;
3405 to->si_int = from->si_int;
3408 to->si_band = from->si_band;
3409 to->si_fd = from->si_fd;
3412 to->si_addr = ptr_to_compat(from->si_addr);
3414 case SIL_FAULT_TRAPNO:
3415 to->si_addr = ptr_to_compat(from->si_addr);
3416 to->si_trapno = from->si_trapno;
3418 case SIL_FAULT_MCEERR:
3419 to->si_addr = ptr_to_compat(from->si_addr);
3420 to->si_addr_lsb = from->si_addr_lsb;
3422 case SIL_FAULT_BNDERR:
3423 to->si_addr = ptr_to_compat(from->si_addr);
3424 to->si_lower = ptr_to_compat(from->si_lower);
3425 to->si_upper = ptr_to_compat(from->si_upper);
3427 case SIL_FAULT_PKUERR:
3428 to->si_addr = ptr_to_compat(from->si_addr);
3429 to->si_pkey = from->si_pkey;
3431 case SIL_FAULT_PERF_EVENT:
3432 to->si_addr = ptr_to_compat(from->si_addr);
3433 to->si_perf_data = from->si_perf_data;
3434 to->si_perf_type = from->si_perf_type;
3437 to->si_pid = from->si_pid;
3438 to->si_uid = from->si_uid;
3439 to->si_status = from->si_status;
3440 to->si_utime = from->si_utime;
3441 to->si_stime = from->si_stime;
3444 to->si_pid = from->si_pid;
3445 to->si_uid = from->si_uid;
3446 to->si_int = from->si_int;
3449 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3450 to->si_syscall = from->si_syscall;
3451 to->si_arch = from->si_arch;
3456 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3457 const struct kernel_siginfo *from)
3459 struct compat_siginfo new;
3461 copy_siginfo_to_external32(&new, from);
3462 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3467 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3468 const struct compat_siginfo *from)
3471 to->si_signo = from->si_signo;
3472 to->si_errno = from->si_errno;
3473 to->si_code = from->si_code;
3474 switch(siginfo_layout(from->si_signo, from->si_code)) {
3476 to->si_pid = from->si_pid;
3477 to->si_uid = from->si_uid;
3480 to->si_tid = from->si_tid;
3481 to->si_overrun = from->si_overrun;
3482 to->si_int = from->si_int;
3485 to->si_band = from->si_band;
3486 to->si_fd = from->si_fd;
3489 to->si_addr = compat_ptr(from->si_addr);
3491 case SIL_FAULT_TRAPNO:
3492 to->si_addr = compat_ptr(from->si_addr);
3493 to->si_trapno = from->si_trapno;
3495 case SIL_FAULT_MCEERR:
3496 to->si_addr = compat_ptr(from->si_addr);
3497 to->si_addr_lsb = from->si_addr_lsb;
3499 case SIL_FAULT_BNDERR:
3500 to->si_addr = compat_ptr(from->si_addr);
3501 to->si_lower = compat_ptr(from->si_lower);
3502 to->si_upper = compat_ptr(from->si_upper);
3504 case SIL_FAULT_PKUERR:
3505 to->si_addr = compat_ptr(from->si_addr);
3506 to->si_pkey = from->si_pkey;
3508 case SIL_FAULT_PERF_EVENT:
3509 to->si_addr = compat_ptr(from->si_addr);
3510 to->si_perf_data = from->si_perf_data;
3511 to->si_perf_type = from->si_perf_type;
3514 to->si_pid = from->si_pid;
3515 to->si_uid = from->si_uid;
3516 to->si_status = from->si_status;
3517 #ifdef CONFIG_X86_X32_ABI
3518 if (in_x32_syscall()) {
3519 to->si_utime = from->_sifields._sigchld_x32._utime;
3520 to->si_stime = from->_sifields._sigchld_x32._stime;
3524 to->si_utime = from->si_utime;
3525 to->si_stime = from->si_stime;
3529 to->si_pid = from->si_pid;
3530 to->si_uid = from->si_uid;
3531 to->si_int = from->si_int;
3534 to->si_call_addr = compat_ptr(from->si_call_addr);
3535 to->si_syscall = from->si_syscall;
3536 to->si_arch = from->si_arch;
3542 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3543 const struct compat_siginfo __user *ufrom)
3545 struct compat_siginfo from;
3547 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3550 from.si_signo = signo;
3551 return post_copy_siginfo_from_user32(to, &from);
3554 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3555 const struct compat_siginfo __user *ufrom)
3557 struct compat_siginfo from;
3559 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3562 return post_copy_siginfo_from_user32(to, &from);
3564 #endif /* CONFIG_COMPAT */
3567 * do_sigtimedwait - wait for queued signals specified in @which
3568 * @which: queued signals to wait for
3569 * @info: if non-null, the signal's siginfo is returned here
3570 * @ts: upper bound on process time suspension
3572 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3573 const struct timespec64 *ts)
3575 ktime_t *to = NULL, timeout = KTIME_MAX;
3576 struct task_struct *tsk = current;
3577 sigset_t mask = *which;
3582 if (!timespec64_valid(ts))
3584 timeout = timespec64_to_ktime(*ts);
3589 * Invert the set of allowed signals to get those we want to block.
3591 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3594 spin_lock_irq(&tsk->sighand->siglock);
3595 sig = dequeue_signal(tsk, &mask, info, &type);
3596 if (!sig && timeout) {
3598 * None ready, temporarily unblock those we're interested
3599 * while we are sleeping in so that we'll be awakened when
3600 * they arrive. Unblocking is always fine, we can avoid
3601 * set_current_blocked().
3603 tsk->real_blocked = tsk->blocked;
3604 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3605 recalc_sigpending();
3606 spin_unlock_irq(&tsk->sighand->siglock);
3608 __set_current_state(TASK_INTERRUPTIBLE);
3609 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3611 spin_lock_irq(&tsk->sighand->siglock);
3612 __set_task_blocked(tsk, &tsk->real_blocked);
3613 sigemptyset(&tsk->real_blocked);
3614 sig = dequeue_signal(tsk, &mask, info, &type);
3616 spin_unlock_irq(&tsk->sighand->siglock);
3620 return ret ? -EINTR : -EAGAIN;
3624 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3626 * @uthese: queued signals to wait for
3627 * @uinfo: if non-null, the signal's siginfo is returned here
3628 * @uts: upper bound on process time suspension
3629 * @sigsetsize: size of sigset_t type
3631 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3632 siginfo_t __user *, uinfo,
3633 const struct __kernel_timespec __user *, uts,
3637 struct timespec64 ts;
3638 kernel_siginfo_t info;
3641 /* XXX: Don't preclude handling different sized sigset_t's. */
3642 if (sigsetsize != sizeof(sigset_t))
3645 if (copy_from_user(&these, uthese, sizeof(these)))
3649 if (get_timespec64(&ts, uts))
3653 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3655 if (ret > 0 && uinfo) {
3656 if (copy_siginfo_to_user(uinfo, &info))
3663 #ifdef CONFIG_COMPAT_32BIT_TIME
3664 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3665 siginfo_t __user *, uinfo,
3666 const struct old_timespec32 __user *, uts,
3670 struct timespec64 ts;
3671 kernel_siginfo_t info;
3674 if (sigsetsize != sizeof(sigset_t))
3677 if (copy_from_user(&these, uthese, sizeof(these)))
3681 if (get_old_timespec32(&ts, uts))
3685 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3687 if (ret > 0 && uinfo) {
3688 if (copy_siginfo_to_user(uinfo, &info))
3696 #ifdef CONFIG_COMPAT
3697 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3698 struct compat_siginfo __user *, uinfo,
3699 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3702 struct timespec64 t;
3703 kernel_siginfo_t info;
3706 if (sigsetsize != sizeof(sigset_t))
3709 if (get_compat_sigset(&s, uthese))
3713 if (get_timespec64(&t, uts))
3717 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3719 if (ret > 0 && uinfo) {
3720 if (copy_siginfo_to_user32(uinfo, &info))
3727 #ifdef CONFIG_COMPAT_32BIT_TIME
3728 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3729 struct compat_siginfo __user *, uinfo,
3730 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3733 struct timespec64 t;
3734 kernel_siginfo_t info;
3737 if (sigsetsize != sizeof(sigset_t))
3740 if (get_compat_sigset(&s, uthese))
3744 if (get_old_timespec32(&t, uts))
3748 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3750 if (ret > 0 && uinfo) {
3751 if (copy_siginfo_to_user32(uinfo, &info))
3760 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3762 clear_siginfo(info);
3763 info->si_signo = sig;
3765 info->si_code = SI_USER;
3766 info->si_pid = task_tgid_vnr(current);
3767 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3771 * sys_kill - send a signal to a process
3772 * @pid: the PID of the process
3773 * @sig: signal to be sent
3775 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3777 struct kernel_siginfo info;
3779 prepare_kill_siginfo(sig, &info);
3781 return kill_something_info(sig, &info, pid);
3785 * Verify that the signaler and signalee either are in the same pid namespace
3786 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3789 static bool access_pidfd_pidns(struct pid *pid)
3791 struct pid_namespace *active = task_active_pid_ns(current);
3792 struct pid_namespace *p = ns_of_pid(pid);
3805 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3806 siginfo_t __user *info)
3808 #ifdef CONFIG_COMPAT
3810 * Avoid hooking up compat syscalls and instead handle necessary
3811 * conversions here. Note, this is a stop-gap measure and should not be
3812 * considered a generic solution.
3814 if (in_compat_syscall())
3815 return copy_siginfo_from_user32(
3816 kinfo, (struct compat_siginfo __user *)info);
3818 return copy_siginfo_from_user(kinfo, info);
3821 static struct pid *pidfd_to_pid(const struct file *file)
3825 pid = pidfd_pid(file);
3829 return tgid_pidfd_to_pid(file);
3833 * sys_pidfd_send_signal - Signal a process through a pidfd
3834 * @pidfd: file descriptor of the process
3835 * @sig: signal to send
3836 * @info: signal info
3837 * @flags: future flags
3839 * The syscall currently only signals via PIDTYPE_PID which covers
3840 * kill(<positive-pid>, <signal>. It does not signal threads or process
3842 * In order to extend the syscall to threads and process groups the @flags
3843 * argument should be used. In essence, the @flags argument will determine
3844 * what is signaled and not the file descriptor itself. Put in other words,
3845 * grouping is a property of the flags argument not a property of the file
3848 * Return: 0 on success, negative errno on failure
3850 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3851 siginfo_t __user *, info, unsigned int, flags)
3856 kernel_siginfo_t kinfo;
3858 /* Enforce flags be set to 0 until we add an extension. */
3866 /* Is this a pidfd? */
3867 pid = pidfd_to_pid(f.file);
3874 if (!access_pidfd_pidns(pid))
3878 ret = copy_siginfo_from_user_any(&kinfo, info);
3883 if (unlikely(sig != kinfo.si_signo))
3886 /* Only allow sending arbitrary signals to yourself. */
3888 if ((task_pid(current) != pid) &&
3889 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3892 prepare_kill_siginfo(sig, &kinfo);
3895 ret = kill_pid_info(sig, &kinfo, pid);
3903 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3905 struct task_struct *p;
3909 p = find_task_by_vpid(pid);
3910 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3911 error = check_kill_permission(sig, info, p);
3913 * The null signal is a permissions and process existence
3914 * probe. No signal is actually delivered.
3916 if (!error && sig) {
3917 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3919 * If lock_task_sighand() failed we pretend the task
3920 * dies after receiving the signal. The window is tiny,
3921 * and the signal is private anyway.
3923 if (unlikely(error == -ESRCH))
3932 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3934 struct kernel_siginfo info;
3936 clear_siginfo(&info);
3937 info.si_signo = sig;
3939 info.si_code = SI_TKILL;
3940 info.si_pid = task_tgid_vnr(current);
3941 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3943 return do_send_specific(tgid, pid, sig, &info);
3947 * sys_tgkill - send signal to one specific thread
3948 * @tgid: the thread group ID of the thread
3949 * @pid: the PID of the thread
3950 * @sig: signal to be sent
3952 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3953 * exists but it's not belonging to the target process anymore. This
3954 * method solves the problem of threads exiting and PIDs getting reused.
3956 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3958 /* This is only valid for single tasks */
3959 if (pid <= 0 || tgid <= 0)
3962 return do_tkill(tgid, pid, sig);
3966 * sys_tkill - send signal to one specific task
3967 * @pid: the PID of the task
3968 * @sig: signal to be sent
3970 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3972 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3974 /* This is only valid for single tasks */
3978 return do_tkill(0, pid, sig);
3981 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3983 /* Not even root can pretend to send signals from the kernel.
3984 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3986 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3987 (task_pid_vnr(current) != pid))
3990 /* POSIX.1b doesn't mention process groups. */
3991 return kill_proc_info(sig, info, pid);
3995 * sys_rt_sigqueueinfo - send signal information to a signal
3996 * @pid: the PID of the thread
3997 * @sig: signal to be sent
3998 * @uinfo: signal info to be sent
4000 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4001 siginfo_t __user *, uinfo)
4003 kernel_siginfo_t info;
4004 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4007 return do_rt_sigqueueinfo(pid, sig, &info);
4010 #ifdef CONFIG_COMPAT
4011 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4014 struct compat_siginfo __user *, uinfo)
4016 kernel_siginfo_t info;
4017 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4020 return do_rt_sigqueueinfo(pid, sig, &info);
4024 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4026 /* This is only valid for single tasks */
4027 if (pid <= 0 || tgid <= 0)
4030 /* Not even root can pretend to send signals from the kernel.
4031 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4033 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4034 (task_pid_vnr(current) != pid))
4037 return do_send_specific(tgid, pid, sig, info);
4040 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4041 siginfo_t __user *, uinfo)
4043 kernel_siginfo_t info;
4044 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4047 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4050 #ifdef CONFIG_COMPAT
4051 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4055 struct compat_siginfo __user *, uinfo)
4057 kernel_siginfo_t info;
4058 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4061 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4066 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4068 void kernel_sigaction(int sig, __sighandler_t action)
4070 spin_lock_irq(¤t->sighand->siglock);
4071 current->sighand->action[sig - 1].sa.sa_handler = action;
4072 if (action == SIG_IGN) {
4076 sigaddset(&mask, sig);
4078 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4079 flush_sigqueue_mask(&mask, ¤t->pending);
4080 recalc_sigpending();
4082 spin_unlock_irq(¤t->sighand->siglock);
4084 EXPORT_SYMBOL(kernel_sigaction);
4086 void __weak sigaction_compat_abi(struct k_sigaction *act,
4087 struct k_sigaction *oact)
4091 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4093 struct task_struct *p = current, *t;
4094 struct k_sigaction *k;
4097 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4100 k = &p->sighand->action[sig-1];
4102 spin_lock_irq(&p->sighand->siglock);
4103 if (k->sa.sa_flags & SA_IMMUTABLE) {
4104 spin_unlock_irq(&p->sighand->siglock);
4111 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4112 * e.g. by having an architecture use the bit in their uapi.
4114 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4117 * Clear unknown flag bits in order to allow userspace to detect missing
4118 * support for flag bits and to allow the kernel to use non-uapi bits
4122 act->sa.sa_flags &= UAPI_SA_FLAGS;
4124 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4126 sigaction_compat_abi(act, oact);
4129 sigdelsetmask(&act->sa.sa_mask,
4130 sigmask(SIGKILL) | sigmask(SIGSTOP));
4134 * "Setting a signal action to SIG_IGN for a signal that is
4135 * pending shall cause the pending signal to be discarded,
4136 * whether or not it is blocked."
4138 * "Setting a signal action to SIG_DFL for a signal that is
4139 * pending and whose default action is to ignore the signal
4140 * (for example, SIGCHLD), shall cause the pending signal to
4141 * be discarded, whether or not it is blocked"
4143 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4145 sigaddset(&mask, sig);
4146 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4147 for_each_thread(p, t)
4148 flush_sigqueue_mask(&mask, &t->pending);
4152 spin_unlock_irq(&p->sighand->siglock);
4156 #ifdef CONFIG_DYNAMIC_SIGFRAME
4157 static inline void sigaltstack_lock(void)
4158 __acquires(¤t->sighand->siglock)
4160 spin_lock_irq(¤t->sighand->siglock);
4163 static inline void sigaltstack_unlock(void)
4164 __releases(¤t->sighand->siglock)
4166 spin_unlock_irq(¤t->sighand->siglock);
4169 static inline void sigaltstack_lock(void) { }
4170 static inline void sigaltstack_unlock(void) { }
4174 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4177 struct task_struct *t = current;
4181 memset(oss, 0, sizeof(stack_t));
4182 oss->ss_sp = (void __user *) t->sas_ss_sp;
4183 oss->ss_size = t->sas_ss_size;
4184 oss->ss_flags = sas_ss_flags(sp) |
4185 (current->sas_ss_flags & SS_FLAG_BITS);
4189 void __user *ss_sp = ss->ss_sp;
4190 size_t ss_size = ss->ss_size;
4191 unsigned ss_flags = ss->ss_flags;
4194 if (unlikely(on_sig_stack(sp)))
4197 ss_mode = ss_flags & ~SS_FLAG_BITS;
4198 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4203 * Return before taking any locks if no actual
4204 * sigaltstack changes were requested.
4206 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4207 t->sas_ss_size == ss_size &&
4208 t->sas_ss_flags == ss_flags)
4212 if (ss_mode == SS_DISABLE) {
4216 if (unlikely(ss_size < min_ss_size))
4218 if (!sigaltstack_size_valid(ss_size))
4222 t->sas_ss_sp = (unsigned long) ss_sp;
4223 t->sas_ss_size = ss_size;
4224 t->sas_ss_flags = ss_flags;
4226 sigaltstack_unlock();
4231 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4235 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4237 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4238 current_user_stack_pointer(),
4240 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4245 int restore_altstack(const stack_t __user *uss)
4248 if (copy_from_user(&new, uss, sizeof(stack_t)))
4250 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4252 /* squash all but EFAULT for now */
4256 int __save_altstack(stack_t __user *uss, unsigned long sp)
4258 struct task_struct *t = current;
4259 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4260 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4261 __put_user(t->sas_ss_size, &uss->ss_size);
4265 #ifdef CONFIG_COMPAT
4266 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4267 compat_stack_t __user *uoss_ptr)
4273 compat_stack_t uss32;
4274 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4276 uss.ss_sp = compat_ptr(uss32.ss_sp);
4277 uss.ss_flags = uss32.ss_flags;
4278 uss.ss_size = uss32.ss_size;
4280 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4281 compat_user_stack_pointer(),
4282 COMPAT_MINSIGSTKSZ);
4283 if (ret >= 0 && uoss_ptr) {
4285 memset(&old, 0, sizeof(old));
4286 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4287 old.ss_flags = uoss.ss_flags;
4288 old.ss_size = uoss.ss_size;
4289 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4295 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4296 const compat_stack_t __user *, uss_ptr,
4297 compat_stack_t __user *, uoss_ptr)
4299 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4302 int compat_restore_altstack(const compat_stack_t __user *uss)
4304 int err = do_compat_sigaltstack(uss, NULL);
4305 /* squash all but -EFAULT for now */
4306 return err == -EFAULT ? err : 0;
4309 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4312 struct task_struct *t = current;
4313 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4315 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4316 __put_user(t->sas_ss_size, &uss->ss_size);
4321 #ifdef __ARCH_WANT_SYS_SIGPENDING
4324 * sys_sigpending - examine pending signals
4325 * @uset: where mask of pending signal is returned
4327 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4331 if (sizeof(old_sigset_t) > sizeof(*uset))
4334 do_sigpending(&set);
4336 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4342 #ifdef CONFIG_COMPAT
4343 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4347 do_sigpending(&set);
4349 return put_user(set.sig[0], set32);
4355 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4357 * sys_sigprocmask - examine and change blocked signals
4358 * @how: whether to add, remove, or set signals
4359 * @nset: signals to add or remove (if non-null)
4360 * @oset: previous value of signal mask if non-null
4362 * Some platforms have their own version with special arguments;
4363 * others support only sys_rt_sigprocmask.
4366 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4367 old_sigset_t __user *, oset)
4369 old_sigset_t old_set, new_set;
4370 sigset_t new_blocked;
4372 old_set = current->blocked.sig[0];
4375 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4378 new_blocked = current->blocked;
4382 sigaddsetmask(&new_blocked, new_set);
4385 sigdelsetmask(&new_blocked, new_set);
4388 new_blocked.sig[0] = new_set;
4394 set_current_blocked(&new_blocked);
4398 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4404 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4406 #ifndef CONFIG_ODD_RT_SIGACTION
4408 * sys_rt_sigaction - alter an action taken by a process
4409 * @sig: signal to be sent
4410 * @act: new sigaction
4411 * @oact: used to save the previous sigaction
4412 * @sigsetsize: size of sigset_t type
4414 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4415 const struct sigaction __user *, act,
4416 struct sigaction __user *, oact,
4419 struct k_sigaction new_sa, old_sa;
4422 /* XXX: Don't preclude handling different sized sigset_t's. */
4423 if (sigsetsize != sizeof(sigset_t))
4426 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4429 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4433 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4438 #ifdef CONFIG_COMPAT
4439 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4440 const struct compat_sigaction __user *, act,
4441 struct compat_sigaction __user *, oact,
4442 compat_size_t, sigsetsize)
4444 struct k_sigaction new_ka, old_ka;
4445 #ifdef __ARCH_HAS_SA_RESTORER
4446 compat_uptr_t restorer;
4450 /* XXX: Don't preclude handling different sized sigset_t's. */
4451 if (sigsetsize != sizeof(compat_sigset_t))
4455 compat_uptr_t handler;
4456 ret = get_user(handler, &act->sa_handler);
4457 new_ka.sa.sa_handler = compat_ptr(handler);
4458 #ifdef __ARCH_HAS_SA_RESTORER
4459 ret |= get_user(restorer, &act->sa_restorer);
4460 new_ka.sa.sa_restorer = compat_ptr(restorer);
4462 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4463 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4468 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4470 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4472 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4473 sizeof(oact->sa_mask));
4474 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4475 #ifdef __ARCH_HAS_SA_RESTORER
4476 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4477 &oact->sa_restorer);
4483 #endif /* !CONFIG_ODD_RT_SIGACTION */
4485 #ifdef CONFIG_OLD_SIGACTION
4486 SYSCALL_DEFINE3(sigaction, int, sig,
4487 const struct old_sigaction __user *, act,
4488 struct old_sigaction __user *, oact)
4490 struct k_sigaction new_ka, old_ka;
4495 if (!access_ok(act, sizeof(*act)) ||
4496 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4497 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4498 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4499 __get_user(mask, &act->sa_mask))
4501 #ifdef __ARCH_HAS_KA_RESTORER
4502 new_ka.ka_restorer = NULL;
4504 siginitset(&new_ka.sa.sa_mask, mask);
4507 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4510 if (!access_ok(oact, sizeof(*oact)) ||
4511 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4512 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4513 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4514 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4521 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4522 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4523 const struct compat_old_sigaction __user *, act,
4524 struct compat_old_sigaction __user *, oact)
4526 struct k_sigaction new_ka, old_ka;
4528 compat_old_sigset_t mask;
4529 compat_uptr_t handler, restorer;
4532 if (!access_ok(act, sizeof(*act)) ||
4533 __get_user(handler, &act->sa_handler) ||
4534 __get_user(restorer, &act->sa_restorer) ||
4535 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4536 __get_user(mask, &act->sa_mask))
4539 #ifdef __ARCH_HAS_KA_RESTORER
4540 new_ka.ka_restorer = NULL;
4542 new_ka.sa.sa_handler = compat_ptr(handler);
4543 new_ka.sa.sa_restorer = compat_ptr(restorer);
4544 siginitset(&new_ka.sa.sa_mask, mask);
4547 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4550 if (!access_ok(oact, sizeof(*oact)) ||
4551 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4552 &oact->sa_handler) ||
4553 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4554 &oact->sa_restorer) ||
4555 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4556 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4563 #ifdef CONFIG_SGETMASK_SYSCALL
4566 * For backwards compatibility. Functionality superseded by sigprocmask.
4568 SYSCALL_DEFINE0(sgetmask)
4571 return current->blocked.sig[0];
4574 SYSCALL_DEFINE1(ssetmask, int, newmask)
4576 int old = current->blocked.sig[0];
4579 siginitset(&newset, newmask);
4580 set_current_blocked(&newset);
4584 #endif /* CONFIG_SGETMASK_SYSCALL */
4586 #ifdef __ARCH_WANT_SYS_SIGNAL
4588 * For backwards compatibility. Functionality superseded by sigaction.
4590 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4592 struct k_sigaction new_sa, old_sa;
4595 new_sa.sa.sa_handler = handler;
4596 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4597 sigemptyset(&new_sa.sa.sa_mask);
4599 ret = do_sigaction(sig, &new_sa, &old_sa);
4601 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4603 #endif /* __ARCH_WANT_SYS_SIGNAL */
4605 #ifdef __ARCH_WANT_SYS_PAUSE
4607 SYSCALL_DEFINE0(pause)
4609 while (!signal_pending(current)) {
4610 __set_current_state(TASK_INTERRUPTIBLE);
4613 return -ERESTARTNOHAND;
4618 static int sigsuspend(sigset_t *set)
4620 current->saved_sigmask = current->blocked;
4621 set_current_blocked(set);
4623 while (!signal_pending(current)) {
4624 __set_current_state(TASK_INTERRUPTIBLE);
4627 set_restore_sigmask();
4628 return -ERESTARTNOHAND;
4632 * sys_rt_sigsuspend - replace the signal mask for a value with the
4633 * @unewset value until a signal is received
4634 * @unewset: new signal mask value
4635 * @sigsetsize: size of sigset_t type
4637 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4641 /* XXX: Don't preclude handling different sized sigset_t's. */
4642 if (sigsetsize != sizeof(sigset_t))
4645 if (copy_from_user(&newset, unewset, sizeof(newset)))
4647 return sigsuspend(&newset);
4650 #ifdef CONFIG_COMPAT
4651 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4655 /* XXX: Don't preclude handling different sized sigset_t's. */
4656 if (sigsetsize != sizeof(sigset_t))
4659 if (get_compat_sigset(&newset, unewset))
4661 return sigsuspend(&newset);
4665 #ifdef CONFIG_OLD_SIGSUSPEND
4666 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4669 siginitset(&blocked, mask);
4670 return sigsuspend(&blocked);
4673 #ifdef CONFIG_OLD_SIGSUSPEND3
4674 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4677 siginitset(&blocked, mask);
4678 return sigsuspend(&blocked);
4682 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4687 static inline void siginfo_buildtime_checks(void)
4689 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4691 /* Verify the offsets in the two siginfos match */
4692 #define CHECK_OFFSET(field) \
4693 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4696 CHECK_OFFSET(si_pid);
4697 CHECK_OFFSET(si_uid);
4700 CHECK_OFFSET(si_tid);
4701 CHECK_OFFSET(si_overrun);
4702 CHECK_OFFSET(si_value);
4705 CHECK_OFFSET(si_pid);
4706 CHECK_OFFSET(si_uid);
4707 CHECK_OFFSET(si_value);
4710 CHECK_OFFSET(si_pid);
4711 CHECK_OFFSET(si_uid);
4712 CHECK_OFFSET(si_status);
4713 CHECK_OFFSET(si_utime);
4714 CHECK_OFFSET(si_stime);
4717 CHECK_OFFSET(si_addr);
4718 CHECK_OFFSET(si_trapno);
4719 CHECK_OFFSET(si_addr_lsb);
4720 CHECK_OFFSET(si_lower);
4721 CHECK_OFFSET(si_upper);
4722 CHECK_OFFSET(si_pkey);
4723 CHECK_OFFSET(si_perf_data);
4724 CHECK_OFFSET(si_perf_type);
4727 CHECK_OFFSET(si_band);
4728 CHECK_OFFSET(si_fd);
4731 CHECK_OFFSET(si_call_addr);
4732 CHECK_OFFSET(si_syscall);
4733 CHECK_OFFSET(si_arch);
4737 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4738 offsetof(struct siginfo, si_addr));
4739 if (sizeof(int) == sizeof(void __user *)) {
4740 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4741 sizeof(void __user *));
4743 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4744 sizeof_field(struct siginfo, si_uid)) !=
4745 sizeof(void __user *));
4746 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4747 offsetof(struct siginfo, si_uid));
4749 #ifdef CONFIG_COMPAT
4750 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4751 offsetof(struct compat_siginfo, si_addr));
4752 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4753 sizeof(compat_uptr_t));
4754 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4755 sizeof_field(struct siginfo, si_pid));
4759 void __init signals_init(void)
4761 siginfo_buildtime_checks();
4763 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4766 #ifdef CONFIG_KGDB_KDB
4767 #include <linux/kdb.h>
4769 * kdb_send_sig - Allows kdb to send signals without exposing
4770 * signal internals. This function checks if the required locks are
4771 * available before calling the main signal code, to avoid kdb
4774 void kdb_send_sig(struct task_struct *t, int sig)
4776 static struct task_struct *kdb_prev_t;
4778 if (!spin_trylock(&t->sighand->siglock)) {
4779 kdb_printf("Can't do kill command now.\n"
4780 "The sigmask lock is held somewhere else in "
4781 "kernel, try again later\n");
4784 new_t = kdb_prev_t != t;
4786 if (!task_is_running(t) && new_t) {
4787 spin_unlock(&t->sighand->siglock);
4788 kdb_printf("Process is not RUNNING, sending a signal from "
4789 "kdb risks deadlock\n"
4790 "on the run queue locks. "
4791 "The signal has _not_ been sent.\n"
4792 "Reissue the kill command if you want to risk "
4796 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4797 spin_unlock(&t->sighand->siglock);
4799 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4802 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4804 #endif /* CONFIG_KGDB_KDB */