perf/core: fix parent pid/tid in task exit events
[platform/kernel/linux-rpi.git] / kernel / signal.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *              Changes to use preallocated sigqueue structures
11  *              to allow signals to be sent reliably.
12  */
13
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58
59 /*
60  * SLAB caches for signal bits.
61  */
62
63 static struct kmem_cache *sigqueue_cachep;
64
65 int print_fatal_signals __read_mostly;
66
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69         return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74         /* Is it explicitly or implicitly ignored? */
75         return handler == SIG_IGN ||
76                (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81         void __user *handler;
82
83         handler = sig_handler(t, sig);
84
85         /* SIGKILL and SIGSTOP may not be sent to the global init */
86         if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87                 return true;
88
89         if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90             handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91                 return true;
92
93         /* Only allow kernel generated signals to this kthread */
94         if (unlikely((t->flags & PF_KTHREAD) &&
95                      (handler == SIG_KTHREAD_KERNEL) && !force))
96                 return true;
97
98         return sig_handler_ignored(handler, sig);
99 }
100
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103         /*
104          * Blocked signals are never ignored, since the
105          * signal handler may change by the time it is
106          * unblocked.
107          */
108         if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109                 return false;
110
111         /*
112          * Tracers may want to know about even ignored signal unless it
113          * is SIGKILL which can't be reported anyway but can be ignored
114          * by SIGNAL_UNKILLABLE task.
115          */
116         if (t->ptrace && sig != SIGKILL)
117                 return false;
118
119         return sig_task_ignored(t, sig, force);
120 }
121
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128         unsigned long ready;
129         long i;
130
131         switch (_NSIG_WORDS) {
132         default:
133                 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134                         ready |= signal->sig[i] &~ blocked->sig[i];
135                 break;
136
137         case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138                 ready |= signal->sig[2] &~ blocked->sig[2];
139                 ready |= signal->sig[1] &~ blocked->sig[1];
140                 ready |= signal->sig[0] &~ blocked->sig[0];
141                 break;
142
143         case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144                 ready |= signal->sig[0] &~ blocked->sig[0];
145                 break;
146
147         case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148         }
149         return ready != 0;
150 }
151
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156         if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157             PENDING(&t->pending, &t->blocked) ||
158             PENDING(&t->signal->shared_pending, &t->blocked) ||
159             cgroup_task_frozen(t)) {
160                 set_tsk_thread_flag(t, TIF_SIGPENDING);
161                 return true;
162         }
163
164         /*
165          * We must never clear the flag in another thread, or in current
166          * when it's possible the current syscall is returning -ERESTART*.
167          * So we don't clear it here, and only callers who know they should do.
168          */
169         return false;
170 }
171
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178         if (recalc_sigpending_tsk(t))
179                 signal_wake_up(t, 0);
180 }
181
182 void recalc_sigpending(void)
183 {
184         if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185             !klp_patch_pending(current))
186                 clear_thread_flag(TIF_SIGPENDING);
187
188 }
189 EXPORT_SYMBOL(recalc_sigpending);
190
191 void calculate_sigpending(void)
192 {
193         /* Have any signals or users of TIF_SIGPENDING been delayed
194          * until after fork?
195          */
196         spin_lock_irq(&current->sighand->siglock);
197         set_tsk_thread_flag(current, TIF_SIGPENDING);
198         recalc_sigpending();
199         spin_unlock_irq(&current->sighand->siglock);
200 }
201
202 /* Given the mask, find the first available signal that should be serviced. */
203
204 #define SYNCHRONOUS_MASK \
205         (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206          sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207
208 int next_signal(struct sigpending *pending, sigset_t *mask)
209 {
210         unsigned long i, *s, *m, x;
211         int sig = 0;
212
213         s = pending->signal.sig;
214         m = mask->sig;
215
216         /*
217          * Handle the first word specially: it contains the
218          * synchronous signals that need to be dequeued first.
219          */
220         x = *s &~ *m;
221         if (x) {
222                 if (x & SYNCHRONOUS_MASK)
223                         x &= SYNCHRONOUS_MASK;
224                 sig = ffz(~x) + 1;
225                 return sig;
226         }
227
228         switch (_NSIG_WORDS) {
229         default:
230                 for (i = 1; i < _NSIG_WORDS; ++i) {
231                         x = *++s &~ *++m;
232                         if (!x)
233                                 continue;
234                         sig = ffz(~x) + i*_NSIG_BPW + 1;
235                         break;
236                 }
237                 break;
238
239         case 2:
240                 x = s[1] &~ m[1];
241                 if (!x)
242                         break;
243                 sig = ffz(~x) + _NSIG_BPW + 1;
244                 break;
245
246         case 1:
247                 /* Nothing to do */
248                 break;
249         }
250
251         return sig;
252 }
253
254 static inline void print_dropped_signal(int sig)
255 {
256         static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257
258         if (!print_fatal_signals)
259                 return;
260
261         if (!__ratelimit(&ratelimit_state))
262                 return;
263
264         pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265                                 current->comm, current->pid, sig);
266 }
267
268 /**
269  * task_set_jobctl_pending - set jobctl pending bits
270  * @task: target task
271  * @mask: pending bits to set
272  *
273  * Clear @mask from @task->jobctl.  @mask must be subset of
274  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
276  * cleared.  If @task is already being killed or exiting, this function
277  * becomes noop.
278  *
279  * CONTEXT:
280  * Must be called with @task->sighand->siglock held.
281  *
282  * RETURNS:
283  * %true if @mask is set, %false if made noop because @task was dying.
284  */
285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 {
287         BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288                         JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289         BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290
291         if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292                 return false;
293
294         if (mask & JOBCTL_STOP_SIGMASK)
295                 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296
297         task->jobctl |= mask;
298         return true;
299 }
300
301 /**
302  * task_clear_jobctl_trapping - clear jobctl trapping bit
303  * @task: target task
304  *
305  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306  * Clear it and wake up the ptracer.  Note that we don't need any further
307  * locking.  @task->siglock guarantees that @task->parent points to the
308  * ptracer.
309  *
310  * CONTEXT:
311  * Must be called with @task->sighand->siglock held.
312  */
313 void task_clear_jobctl_trapping(struct task_struct *task)
314 {
315         if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316                 task->jobctl &= ~JOBCTL_TRAPPING;
317                 smp_mb();       /* advised by wake_up_bit() */
318                 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319         }
320 }
321
322 /**
323  * task_clear_jobctl_pending - clear jobctl pending bits
324  * @task: target task
325  * @mask: pending bits to clear
326  *
327  * Clear @mask from @task->jobctl.  @mask must be subset of
328  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
329  * STOP bits are cleared together.
330  *
331  * If clearing of @mask leaves no stop or trap pending, this function calls
332  * task_clear_jobctl_trapping().
333  *
334  * CONTEXT:
335  * Must be called with @task->sighand->siglock held.
336  */
337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 {
339         BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340
341         if (mask & JOBCTL_STOP_PENDING)
342                 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343
344         task->jobctl &= ~mask;
345
346         if (!(task->jobctl & JOBCTL_PENDING_MASK))
347                 task_clear_jobctl_trapping(task);
348 }
349
350 /**
351  * task_participate_group_stop - participate in a group stop
352  * @task: task participating in a group stop
353  *
354  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355  * Group stop states are cleared and the group stop count is consumed if
356  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
357  * stop, the appropriate `SIGNAL_*` flags are set.
358  *
359  * CONTEXT:
360  * Must be called with @task->sighand->siglock held.
361  *
362  * RETURNS:
363  * %true if group stop completion should be notified to the parent, %false
364  * otherwise.
365  */
366 static bool task_participate_group_stop(struct task_struct *task)
367 {
368         struct signal_struct *sig = task->signal;
369         bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370
371         WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372
373         task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374
375         if (!consume)
376                 return false;
377
378         if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379                 sig->group_stop_count--;
380
381         /*
382          * Tell the caller to notify completion iff we are entering into a
383          * fresh group stop.  Read comment in do_signal_stop() for details.
384          */
385         if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386                 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387                 return true;
388         }
389         return false;
390 }
391
392 void task_join_group_stop(struct task_struct *task)
393 {
394         /* Have the new thread join an on-going signal group stop */
395         unsigned long jobctl = current->jobctl;
396         if (jobctl & JOBCTL_STOP_PENDING) {
397                 struct signal_struct *sig = current->signal;
398                 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
399                 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
400                 if (task_set_jobctl_pending(task, signr | gstop)) {
401                         sig->group_stop_count++;
402                 }
403         }
404 }
405
406 /*
407  * allocate a new signal queue record
408  * - this may be called without locks if and only if t == current, otherwise an
409  *   appropriate lock must be held to stop the target task from exiting
410  */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
413 {
414         struct sigqueue *q = NULL;
415         struct user_struct *user;
416         int sigpending;
417
418         /*
419          * Protect access to @t credentials. This can go away when all
420          * callers hold rcu read lock.
421          *
422          * NOTE! A pending signal will hold on to the user refcount,
423          * and we get/put the refcount only when the sigpending count
424          * changes from/to zero.
425          */
426         rcu_read_lock();
427         user = __task_cred(t)->user;
428         sigpending = atomic_inc_return(&user->sigpending);
429         if (sigpending == 1)
430                 get_uid(user);
431         rcu_read_unlock();
432
433         if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
434                 q = kmem_cache_alloc(sigqueue_cachep, flags);
435         } else {
436                 print_dropped_signal(sig);
437         }
438
439         if (unlikely(q == NULL)) {
440                 if (atomic_dec_and_test(&user->sigpending))
441                         free_uid(user);
442         } else {
443                 INIT_LIST_HEAD(&q->list);
444                 q->flags = 0;
445                 q->user = user;
446         }
447
448         return q;
449 }
450
451 static void __sigqueue_free(struct sigqueue *q)
452 {
453         if (q->flags & SIGQUEUE_PREALLOC)
454                 return;
455         if (atomic_dec_and_test(&q->user->sigpending))
456                 free_uid(q->user);
457         kmem_cache_free(sigqueue_cachep, q);
458 }
459
460 void flush_sigqueue(struct sigpending *queue)
461 {
462         struct sigqueue *q;
463
464         sigemptyset(&queue->signal);
465         while (!list_empty(&queue->list)) {
466                 q = list_entry(queue->list.next, struct sigqueue , list);
467                 list_del_init(&q->list);
468                 __sigqueue_free(q);
469         }
470 }
471
472 /*
473  * Flush all pending signals for this kthread.
474  */
475 void flush_signals(struct task_struct *t)
476 {
477         unsigned long flags;
478
479         spin_lock_irqsave(&t->sighand->siglock, flags);
480         clear_tsk_thread_flag(t, TIF_SIGPENDING);
481         flush_sigqueue(&t->pending);
482         flush_sigqueue(&t->signal->shared_pending);
483         spin_unlock_irqrestore(&t->sighand->siglock, flags);
484 }
485 EXPORT_SYMBOL(flush_signals);
486
487 #ifdef CONFIG_POSIX_TIMERS
488 static void __flush_itimer_signals(struct sigpending *pending)
489 {
490         sigset_t signal, retain;
491         struct sigqueue *q, *n;
492
493         signal = pending->signal;
494         sigemptyset(&retain);
495
496         list_for_each_entry_safe(q, n, &pending->list, list) {
497                 int sig = q->info.si_signo;
498
499                 if (likely(q->info.si_code != SI_TIMER)) {
500                         sigaddset(&retain, sig);
501                 } else {
502                         sigdelset(&signal, sig);
503                         list_del_init(&q->list);
504                         __sigqueue_free(q);
505                 }
506         }
507
508         sigorsets(&pending->signal, &signal, &retain);
509 }
510
511 void flush_itimer_signals(void)
512 {
513         struct task_struct *tsk = current;
514         unsigned long flags;
515
516         spin_lock_irqsave(&tsk->sighand->siglock, flags);
517         __flush_itimer_signals(&tsk->pending);
518         __flush_itimer_signals(&tsk->signal->shared_pending);
519         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
520 }
521 #endif
522
523 void ignore_signals(struct task_struct *t)
524 {
525         int i;
526
527         for (i = 0; i < _NSIG; ++i)
528                 t->sighand->action[i].sa.sa_handler = SIG_IGN;
529
530         flush_signals(t);
531 }
532
533 /*
534  * Flush all handlers for a task.
535  */
536
537 void
538 flush_signal_handlers(struct task_struct *t, int force_default)
539 {
540         int i;
541         struct k_sigaction *ka = &t->sighand->action[0];
542         for (i = _NSIG ; i != 0 ; i--) {
543                 if (force_default || ka->sa.sa_handler != SIG_IGN)
544                         ka->sa.sa_handler = SIG_DFL;
545                 ka->sa.sa_flags = 0;
546 #ifdef __ARCH_HAS_SA_RESTORER
547                 ka->sa.sa_restorer = NULL;
548 #endif
549                 sigemptyset(&ka->sa.sa_mask);
550                 ka++;
551         }
552 }
553
554 bool unhandled_signal(struct task_struct *tsk, int sig)
555 {
556         void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
557         if (is_global_init(tsk))
558                 return true;
559
560         if (handler != SIG_IGN && handler != SIG_DFL)
561                 return false;
562
563         /* if ptraced, let the tracer determine */
564         return !tsk->ptrace;
565 }
566
567 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
568                            bool *resched_timer)
569 {
570         struct sigqueue *q, *first = NULL;
571
572         /*
573          * Collect the siginfo appropriate to this signal.  Check if
574          * there is another siginfo for the same signal.
575         */
576         list_for_each_entry(q, &list->list, list) {
577                 if (q->info.si_signo == sig) {
578                         if (first)
579                                 goto still_pending;
580                         first = q;
581                 }
582         }
583
584         sigdelset(&list->signal, sig);
585
586         if (first) {
587 still_pending:
588                 list_del_init(&first->list);
589                 copy_siginfo(info, &first->info);
590
591                 *resched_timer =
592                         (first->flags & SIGQUEUE_PREALLOC) &&
593                         (info->si_code == SI_TIMER) &&
594                         (info->si_sys_private);
595
596                 __sigqueue_free(first);
597         } else {
598                 /*
599                  * Ok, it wasn't in the queue.  This must be
600                  * a fast-pathed signal or we must have been
601                  * out of queue space.  So zero out the info.
602                  */
603                 clear_siginfo(info);
604                 info->si_signo = sig;
605                 info->si_errno = 0;
606                 info->si_code = SI_USER;
607                 info->si_pid = 0;
608                 info->si_uid = 0;
609         }
610 }
611
612 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
613                         kernel_siginfo_t *info, bool *resched_timer)
614 {
615         int sig = next_signal(pending, mask);
616
617         if (sig)
618                 collect_signal(sig, pending, info, resched_timer);
619         return sig;
620 }
621
622 /*
623  * Dequeue a signal and return the element to the caller, which is
624  * expected to free it.
625  *
626  * All callers have to hold the siglock.
627  */
628 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
629 {
630         bool resched_timer = false;
631         int signr;
632
633         /* We only dequeue private signals from ourselves, we don't let
634          * signalfd steal them
635          */
636         signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637         if (!signr) {
638                 signr = __dequeue_signal(&tsk->signal->shared_pending,
639                                          mask, info, &resched_timer);
640 #ifdef CONFIG_POSIX_TIMERS
641                 /*
642                  * itimer signal ?
643                  *
644                  * itimers are process shared and we restart periodic
645                  * itimers in the signal delivery path to prevent DoS
646                  * attacks in the high resolution timer case. This is
647                  * compliant with the old way of self-restarting
648                  * itimers, as the SIGALRM is a legacy signal and only
649                  * queued once. Changing the restart behaviour to
650                  * restart the timer in the signal dequeue path is
651                  * reducing the timer noise on heavy loaded !highres
652                  * systems too.
653                  */
654                 if (unlikely(signr == SIGALRM)) {
655                         struct hrtimer *tmr = &tsk->signal->real_timer;
656
657                         if (!hrtimer_is_queued(tmr) &&
658                             tsk->signal->it_real_incr != 0) {
659                                 hrtimer_forward(tmr, tmr->base->get_time(),
660                                                 tsk->signal->it_real_incr);
661                                 hrtimer_restart(tmr);
662                         }
663                 }
664 #endif
665         }
666
667         recalc_sigpending();
668         if (!signr)
669                 return 0;
670
671         if (unlikely(sig_kernel_stop(signr))) {
672                 /*
673                  * Set a marker that we have dequeued a stop signal.  Our
674                  * caller might release the siglock and then the pending
675                  * stop signal it is about to process is no longer in the
676                  * pending bitmasks, but must still be cleared by a SIGCONT
677                  * (and overruled by a SIGKILL).  So those cases clear this
678                  * shared flag after we've set it.  Note that this flag may
679                  * remain set after the signal we return is ignored or
680                  * handled.  That doesn't matter because its only purpose
681                  * is to alert stop-signal processing code when another
682                  * processor has come along and cleared the flag.
683                  */
684                 current->jobctl |= JOBCTL_STOP_DEQUEUED;
685         }
686 #ifdef CONFIG_POSIX_TIMERS
687         if (resched_timer) {
688                 /*
689                  * Release the siglock to ensure proper locking order
690                  * of timer locks outside of siglocks.  Note, we leave
691                  * irqs disabled here, since the posix-timers code is
692                  * about to disable them again anyway.
693                  */
694                 spin_unlock(&tsk->sighand->siglock);
695                 posixtimer_rearm(info);
696                 spin_lock(&tsk->sighand->siglock);
697
698                 /* Don't expose the si_sys_private value to userspace */
699                 info->si_sys_private = 0;
700         }
701 #endif
702         return signr;
703 }
704 EXPORT_SYMBOL_GPL(dequeue_signal);
705
706 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
707 {
708         struct task_struct *tsk = current;
709         struct sigpending *pending = &tsk->pending;
710         struct sigqueue *q, *sync = NULL;
711
712         /*
713          * Might a synchronous signal be in the queue?
714          */
715         if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
716                 return 0;
717
718         /*
719          * Return the first synchronous signal in the queue.
720          */
721         list_for_each_entry(q, &pending->list, list) {
722                 /* Synchronous signals have a postive si_code */
723                 if ((q->info.si_code > SI_USER) &&
724                     (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
725                         sync = q;
726                         goto next;
727                 }
728         }
729         return 0;
730 next:
731         /*
732          * Check if there is another siginfo for the same signal.
733          */
734         list_for_each_entry_continue(q, &pending->list, list) {
735                 if (q->info.si_signo == sync->info.si_signo)
736                         goto still_pending;
737         }
738
739         sigdelset(&pending->signal, sync->info.si_signo);
740         recalc_sigpending();
741 still_pending:
742         list_del_init(&sync->list);
743         copy_siginfo(info, &sync->info);
744         __sigqueue_free(sync);
745         return info->si_signo;
746 }
747
748 /*
749  * Tell a process that it has a new active signal..
750  *
751  * NOTE! we rely on the previous spin_lock to
752  * lock interrupts for us! We can only be called with
753  * "siglock" held, and the local interrupt must
754  * have been disabled when that got acquired!
755  *
756  * No need to set need_resched since signal event passing
757  * goes through ->blocked
758  */
759 void signal_wake_up_state(struct task_struct *t, unsigned int state)
760 {
761         set_tsk_thread_flag(t, TIF_SIGPENDING);
762         /*
763          * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
764          * case. We don't check t->state here because there is a race with it
765          * executing another processor and just now entering stopped state.
766          * By using wake_up_state, we ensure the process will wake up and
767          * handle its death signal.
768          */
769         if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
770                 kick_process(t);
771 }
772
773 /*
774  * Remove signals in mask from the pending set and queue.
775  * Returns 1 if any signals were found.
776  *
777  * All callers must be holding the siglock.
778  */
779 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
780 {
781         struct sigqueue *q, *n;
782         sigset_t m;
783
784         sigandsets(&m, mask, &s->signal);
785         if (sigisemptyset(&m))
786                 return;
787
788         sigandnsets(&s->signal, &s->signal, mask);
789         list_for_each_entry_safe(q, n, &s->list, list) {
790                 if (sigismember(mask, q->info.si_signo)) {
791                         list_del_init(&q->list);
792                         __sigqueue_free(q);
793                 }
794         }
795 }
796
797 static inline int is_si_special(const struct kernel_siginfo *info)
798 {
799         return info <= SEND_SIG_PRIV;
800 }
801
802 static inline bool si_fromuser(const struct kernel_siginfo *info)
803 {
804         return info == SEND_SIG_NOINFO ||
805                 (!is_si_special(info) && SI_FROMUSER(info));
806 }
807
808 /*
809  * called with RCU read lock from check_kill_permission()
810  */
811 static bool kill_ok_by_cred(struct task_struct *t)
812 {
813         const struct cred *cred = current_cred();
814         const struct cred *tcred = __task_cred(t);
815
816         return uid_eq(cred->euid, tcred->suid) ||
817                uid_eq(cred->euid, tcred->uid) ||
818                uid_eq(cred->uid, tcred->suid) ||
819                uid_eq(cred->uid, tcred->uid) ||
820                ns_capable(tcred->user_ns, CAP_KILL);
821 }
822
823 /*
824  * Bad permissions for sending the signal
825  * - the caller must hold the RCU read lock
826  */
827 static int check_kill_permission(int sig, struct kernel_siginfo *info,
828                                  struct task_struct *t)
829 {
830         struct pid *sid;
831         int error;
832
833         if (!valid_signal(sig))
834                 return -EINVAL;
835
836         if (!si_fromuser(info))
837                 return 0;
838
839         error = audit_signal_info(sig, t); /* Let audit system see the signal */
840         if (error)
841                 return error;
842
843         if (!same_thread_group(current, t) &&
844             !kill_ok_by_cred(t)) {
845                 switch (sig) {
846                 case SIGCONT:
847                         sid = task_session(t);
848                         /*
849                          * We don't return the error if sid == NULL. The
850                          * task was unhashed, the caller must notice this.
851                          */
852                         if (!sid || sid == task_session(current))
853                                 break;
854                         /* fall through */
855                 default:
856                         return -EPERM;
857                 }
858         }
859
860         return security_task_kill(t, info, sig, NULL);
861 }
862
863 /**
864  * ptrace_trap_notify - schedule trap to notify ptracer
865  * @t: tracee wanting to notify tracer
866  *
867  * This function schedules sticky ptrace trap which is cleared on the next
868  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
869  * ptracer.
870  *
871  * If @t is running, STOP trap will be taken.  If trapped for STOP and
872  * ptracer is listening for events, tracee is woken up so that it can
873  * re-trap for the new event.  If trapped otherwise, STOP trap will be
874  * eventually taken without returning to userland after the existing traps
875  * are finished by PTRACE_CONT.
876  *
877  * CONTEXT:
878  * Must be called with @task->sighand->siglock held.
879  */
880 static void ptrace_trap_notify(struct task_struct *t)
881 {
882         WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
883         assert_spin_locked(&t->sighand->siglock);
884
885         task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
886         ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
887 }
888
889 /*
890  * Handle magic process-wide effects of stop/continue signals. Unlike
891  * the signal actions, these happen immediately at signal-generation
892  * time regardless of blocking, ignoring, or handling.  This does the
893  * actual continuing for SIGCONT, but not the actual stopping for stop
894  * signals. The process stop is done as a signal action for SIG_DFL.
895  *
896  * Returns true if the signal should be actually delivered, otherwise
897  * it should be dropped.
898  */
899 static bool prepare_signal(int sig, struct task_struct *p, bool force)
900 {
901         struct signal_struct *signal = p->signal;
902         struct task_struct *t;
903         sigset_t flush;
904
905         if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
906                 if (!(signal->flags & SIGNAL_GROUP_EXIT))
907                         return sig == SIGKILL;
908                 /*
909                  * The process is in the middle of dying, nothing to do.
910                  */
911         } else if (sig_kernel_stop(sig)) {
912                 /*
913                  * This is a stop signal.  Remove SIGCONT from all queues.
914                  */
915                 siginitset(&flush, sigmask(SIGCONT));
916                 flush_sigqueue_mask(&flush, &signal->shared_pending);
917                 for_each_thread(p, t)
918                         flush_sigqueue_mask(&flush, &t->pending);
919         } else if (sig == SIGCONT) {
920                 unsigned int why;
921                 /*
922                  * Remove all stop signals from all queues, wake all threads.
923                  */
924                 siginitset(&flush, SIG_KERNEL_STOP_MASK);
925                 flush_sigqueue_mask(&flush, &signal->shared_pending);
926                 for_each_thread(p, t) {
927                         flush_sigqueue_mask(&flush, &t->pending);
928                         task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
929                         if (likely(!(t->ptrace & PT_SEIZED)))
930                                 wake_up_state(t, __TASK_STOPPED);
931                         else
932                                 ptrace_trap_notify(t);
933                 }
934
935                 /*
936                  * Notify the parent with CLD_CONTINUED if we were stopped.
937                  *
938                  * If we were in the middle of a group stop, we pretend it
939                  * was already finished, and then continued. Since SIGCHLD
940                  * doesn't queue we report only CLD_STOPPED, as if the next
941                  * CLD_CONTINUED was dropped.
942                  */
943                 why = 0;
944                 if (signal->flags & SIGNAL_STOP_STOPPED)
945                         why |= SIGNAL_CLD_CONTINUED;
946                 else if (signal->group_stop_count)
947                         why |= SIGNAL_CLD_STOPPED;
948
949                 if (why) {
950                         /*
951                          * The first thread which returns from do_signal_stop()
952                          * will take ->siglock, notice SIGNAL_CLD_MASK, and
953                          * notify its parent. See get_signal().
954                          */
955                         signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
956                         signal->group_stop_count = 0;
957                         signal->group_exit_code = 0;
958                 }
959         }
960
961         return !sig_ignored(p, sig, force);
962 }
963
964 /*
965  * Test if P wants to take SIG.  After we've checked all threads with this,
966  * it's equivalent to finding no threads not blocking SIG.  Any threads not
967  * blocking SIG were ruled out because they are not running and already
968  * have pending signals.  Such threads will dequeue from the shared queue
969  * as soon as they're available, so putting the signal on the shared queue
970  * will be equivalent to sending it to one such thread.
971  */
972 static inline bool wants_signal(int sig, struct task_struct *p)
973 {
974         if (sigismember(&p->blocked, sig))
975                 return false;
976
977         if (p->flags & PF_EXITING)
978                 return false;
979
980         if (sig == SIGKILL)
981                 return true;
982
983         if (task_is_stopped_or_traced(p))
984                 return false;
985
986         return task_curr(p) || !signal_pending(p);
987 }
988
989 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
990 {
991         struct signal_struct *signal = p->signal;
992         struct task_struct *t;
993
994         /*
995          * Now find a thread we can wake up to take the signal off the queue.
996          *
997          * If the main thread wants the signal, it gets first crack.
998          * Probably the least surprising to the average bear.
999          */
1000         if (wants_signal(sig, p))
1001                 t = p;
1002         else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003                 /*
1004                  * There is just one thread and it does not need to be woken.
1005                  * It will dequeue unblocked signals before it runs again.
1006                  */
1007                 return;
1008         else {
1009                 /*
1010                  * Otherwise try to find a suitable thread.
1011                  */
1012                 t = signal->curr_target;
1013                 while (!wants_signal(sig, t)) {
1014                         t = next_thread(t);
1015                         if (t == signal->curr_target)
1016                                 /*
1017                                  * No thread needs to be woken.
1018                                  * Any eligible threads will see
1019                                  * the signal in the queue soon.
1020                                  */
1021                                 return;
1022                 }
1023                 signal->curr_target = t;
1024         }
1025
1026         /*
1027          * Found a killable thread.  If the signal will be fatal,
1028          * then start taking the whole group down immediately.
1029          */
1030         if (sig_fatal(p, sig) &&
1031             !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032             !sigismember(&t->real_blocked, sig) &&
1033             (sig == SIGKILL || !p->ptrace)) {
1034                 /*
1035                  * This signal will be fatal to the whole group.
1036                  */
1037                 if (!sig_kernel_coredump(sig)) {
1038                         /*
1039                          * Start a group exit and wake everybody up.
1040                          * This way we don't have other threads
1041                          * running and doing things after a slower
1042                          * thread has the fatal signal pending.
1043                          */
1044                         signal->flags = SIGNAL_GROUP_EXIT;
1045                         signal->group_exit_code = sig;
1046                         signal->group_stop_count = 0;
1047                         t = p;
1048                         do {
1049                                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050                                 sigaddset(&t->pending.signal, SIGKILL);
1051                                 signal_wake_up(t, 1);
1052                         } while_each_thread(p, t);
1053                         return;
1054                 }
1055         }
1056
1057         /*
1058          * The signal is already in the shared-pending queue.
1059          * Tell the chosen thread to wake up and dequeue it.
1060          */
1061         signal_wake_up(t, sig == SIGKILL);
1062         return;
1063 }
1064
1065 static inline bool legacy_queue(struct sigpending *signals, int sig)
1066 {
1067         return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068 }
1069
1070 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071                         enum pid_type type, bool force)
1072 {
1073         struct sigpending *pending;
1074         struct sigqueue *q;
1075         int override_rlimit;
1076         int ret = 0, result;
1077
1078         assert_spin_locked(&t->sighand->siglock);
1079
1080         result = TRACE_SIGNAL_IGNORED;
1081         if (!prepare_signal(sig, t, force))
1082                 goto ret;
1083
1084         pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085         /*
1086          * Short-circuit ignored signals and support queuing
1087          * exactly one non-rt signal, so that we can get more
1088          * detailed information about the cause of the signal.
1089          */
1090         result = TRACE_SIGNAL_ALREADY_PENDING;
1091         if (legacy_queue(pending, sig))
1092                 goto ret;
1093
1094         result = TRACE_SIGNAL_DELIVERED;
1095         /*
1096          * Skip useless siginfo allocation for SIGKILL and kernel threads.
1097          */
1098         if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099                 goto out_set;
1100
1101         /*
1102          * Real-time signals must be queued if sent by sigqueue, or
1103          * some other real-time mechanism.  It is implementation
1104          * defined whether kill() does so.  We attempt to do so, on
1105          * the principle of least surprise, but since kill is not
1106          * allowed to fail with EAGAIN when low on memory we just
1107          * make sure at least one signal gets delivered and don't
1108          * pass on the info struct.
1109          */
1110         if (sig < SIGRTMIN)
1111                 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112         else
1113                 override_rlimit = 0;
1114
1115         q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1116         if (q) {
1117                 list_add_tail(&q->list, &pending->list);
1118                 switch ((unsigned long) info) {
1119                 case (unsigned long) SEND_SIG_NOINFO:
1120                         clear_siginfo(&q->info);
1121                         q->info.si_signo = sig;
1122                         q->info.si_errno = 0;
1123                         q->info.si_code = SI_USER;
1124                         q->info.si_pid = task_tgid_nr_ns(current,
1125                                                         task_active_pid_ns(t));
1126                         rcu_read_lock();
1127                         q->info.si_uid =
1128                                 from_kuid_munged(task_cred_xxx(t, user_ns),
1129                                                  current_uid());
1130                         rcu_read_unlock();
1131                         break;
1132                 case (unsigned long) SEND_SIG_PRIV:
1133                         clear_siginfo(&q->info);
1134                         q->info.si_signo = sig;
1135                         q->info.si_errno = 0;
1136                         q->info.si_code = SI_KERNEL;
1137                         q->info.si_pid = 0;
1138                         q->info.si_uid = 0;
1139                         break;
1140                 default:
1141                         copy_siginfo(&q->info, info);
1142                         break;
1143                 }
1144         } else if (!is_si_special(info) &&
1145                    sig >= SIGRTMIN && info->si_code != SI_USER) {
1146                 /*
1147                  * Queue overflow, abort.  We may abort if the
1148                  * signal was rt and sent by user using something
1149                  * other than kill().
1150                  */
1151                 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1152                 ret = -EAGAIN;
1153                 goto ret;
1154         } else {
1155                 /*
1156                  * This is a silent loss of information.  We still
1157                  * send the signal, but the *info bits are lost.
1158                  */
1159                 result = TRACE_SIGNAL_LOSE_INFO;
1160         }
1161
1162 out_set:
1163         signalfd_notify(t, sig);
1164         sigaddset(&pending->signal, sig);
1165
1166         /* Let multiprocess signals appear after on-going forks */
1167         if (type > PIDTYPE_TGID) {
1168                 struct multiprocess_signals *delayed;
1169                 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1170                         sigset_t *signal = &delayed->signal;
1171                         /* Can't queue both a stop and a continue signal */
1172                         if (sig == SIGCONT)
1173                                 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1174                         else if (sig_kernel_stop(sig))
1175                                 sigdelset(signal, SIGCONT);
1176                         sigaddset(signal, sig);
1177                 }
1178         }
1179
1180         complete_signal(sig, t, type);
1181 ret:
1182         trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1183         return ret;
1184 }
1185
1186 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1187 {
1188         bool ret = false;
1189         switch (siginfo_layout(info->si_signo, info->si_code)) {
1190         case SIL_KILL:
1191         case SIL_CHLD:
1192         case SIL_RT:
1193                 ret = true;
1194                 break;
1195         case SIL_TIMER:
1196         case SIL_POLL:
1197         case SIL_FAULT:
1198         case SIL_FAULT_MCEERR:
1199         case SIL_FAULT_BNDERR:
1200         case SIL_FAULT_PKUERR:
1201         case SIL_SYS:
1202                 ret = false;
1203                 break;
1204         }
1205         return ret;
1206 }
1207
1208 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1209                         enum pid_type type)
1210 {
1211         /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1212         bool force = false;
1213
1214         if (info == SEND_SIG_NOINFO) {
1215                 /* Force if sent from an ancestor pid namespace */
1216                 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1217         } else if (info == SEND_SIG_PRIV) {
1218                 /* Don't ignore kernel generated signals */
1219                 force = true;
1220         } else if (has_si_pid_and_uid(info)) {
1221                 /* SIGKILL and SIGSTOP is special or has ids */
1222                 struct user_namespace *t_user_ns;
1223
1224                 rcu_read_lock();
1225                 t_user_ns = task_cred_xxx(t, user_ns);
1226                 if (current_user_ns() != t_user_ns) {
1227                         kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1228                         info->si_uid = from_kuid_munged(t_user_ns, uid);
1229                 }
1230                 rcu_read_unlock();
1231
1232                 /* A kernel generated signal? */
1233                 force = (info->si_code == SI_KERNEL);
1234
1235                 /* From an ancestor pid namespace? */
1236                 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1237                         info->si_pid = 0;
1238                         force = true;
1239                 }
1240         }
1241         return __send_signal(sig, info, t, type, force);
1242 }
1243
1244 static void print_fatal_signal(int signr)
1245 {
1246         struct pt_regs *regs = signal_pt_regs();
1247         pr_info("potentially unexpected fatal signal %d.\n", signr);
1248
1249 #if defined(__i386__) && !defined(__arch_um__)
1250         pr_info("code at %08lx: ", regs->ip);
1251         {
1252                 int i;
1253                 for (i = 0; i < 16; i++) {
1254                         unsigned char insn;
1255
1256                         if (get_user(insn, (unsigned char *)(regs->ip + i)))
1257                                 break;
1258                         pr_cont("%02x ", insn);
1259                 }
1260         }
1261         pr_cont("\n");
1262 #endif
1263         preempt_disable();
1264         show_regs(regs);
1265         preempt_enable();
1266 }
1267
1268 static int __init setup_print_fatal_signals(char *str)
1269 {
1270         get_option (&str, &print_fatal_signals);
1271
1272         return 1;
1273 }
1274
1275 __setup("print-fatal-signals=", setup_print_fatal_signals);
1276
1277 int
1278 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1279 {
1280         return send_signal(sig, info, p, PIDTYPE_TGID);
1281 }
1282
1283 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1284                         enum pid_type type)
1285 {
1286         unsigned long flags;
1287         int ret = -ESRCH;
1288
1289         if (lock_task_sighand(p, &flags)) {
1290                 ret = send_signal(sig, info, p, type);
1291                 unlock_task_sighand(p, &flags);
1292         }
1293
1294         return ret;
1295 }
1296
1297 /*
1298  * Force a signal that the process can't ignore: if necessary
1299  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1300  *
1301  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1302  * since we do not want to have a signal handler that was blocked
1303  * be invoked when user space had explicitly blocked it.
1304  *
1305  * We don't want to have recursive SIGSEGV's etc, for example,
1306  * that is why we also clear SIGNAL_UNKILLABLE.
1307  */
1308 static int
1309 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1310 {
1311         unsigned long int flags;
1312         int ret, blocked, ignored;
1313         struct k_sigaction *action;
1314         int sig = info->si_signo;
1315
1316         spin_lock_irqsave(&t->sighand->siglock, flags);
1317         action = &t->sighand->action[sig-1];
1318         ignored = action->sa.sa_handler == SIG_IGN;
1319         blocked = sigismember(&t->blocked, sig);
1320         if (blocked || ignored) {
1321                 action->sa.sa_handler = SIG_DFL;
1322                 if (blocked) {
1323                         sigdelset(&t->blocked, sig);
1324                         recalc_sigpending_and_wake(t);
1325                 }
1326         }
1327         /*
1328          * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1329          * debugging to leave init killable.
1330          */
1331         if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1332                 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1333         ret = send_signal(sig, info, t, PIDTYPE_PID);
1334         spin_unlock_irqrestore(&t->sighand->siglock, flags);
1335
1336         return ret;
1337 }
1338
1339 int force_sig_info(struct kernel_siginfo *info)
1340 {
1341         return force_sig_info_to_task(info, current);
1342 }
1343
1344 /*
1345  * Nuke all other threads in the group.
1346  */
1347 int zap_other_threads(struct task_struct *p)
1348 {
1349         struct task_struct *t = p;
1350         int count = 0;
1351
1352         p->signal->group_stop_count = 0;
1353
1354         while_each_thread(p, t) {
1355                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1356                 count++;
1357
1358                 /* Don't bother with already dead threads */
1359                 if (t->exit_state)
1360                         continue;
1361                 sigaddset(&t->pending.signal, SIGKILL);
1362                 signal_wake_up(t, 1);
1363         }
1364
1365         return count;
1366 }
1367
1368 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1369                                            unsigned long *flags)
1370 {
1371         struct sighand_struct *sighand;
1372
1373         rcu_read_lock();
1374         for (;;) {
1375                 sighand = rcu_dereference(tsk->sighand);
1376                 if (unlikely(sighand == NULL))
1377                         break;
1378
1379                 /*
1380                  * This sighand can be already freed and even reused, but
1381                  * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1382                  * initializes ->siglock: this slab can't go away, it has
1383                  * the same object type, ->siglock can't be reinitialized.
1384                  *
1385                  * We need to ensure that tsk->sighand is still the same
1386                  * after we take the lock, we can race with de_thread() or
1387                  * __exit_signal(). In the latter case the next iteration
1388                  * must see ->sighand == NULL.
1389                  */
1390                 spin_lock_irqsave(&sighand->siglock, *flags);
1391                 if (likely(sighand == tsk->sighand))
1392                         break;
1393                 spin_unlock_irqrestore(&sighand->siglock, *flags);
1394         }
1395         rcu_read_unlock();
1396
1397         return sighand;
1398 }
1399
1400 /*
1401  * send signal info to all the members of a group
1402  */
1403 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1404                         struct task_struct *p, enum pid_type type)
1405 {
1406         int ret;
1407
1408         rcu_read_lock();
1409         ret = check_kill_permission(sig, info, p);
1410         rcu_read_unlock();
1411
1412         if (!ret && sig)
1413                 ret = do_send_sig_info(sig, info, p, type);
1414
1415         return ret;
1416 }
1417
1418 /*
1419  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1420  * control characters do (^C, ^Z etc)
1421  * - the caller must hold at least a readlock on tasklist_lock
1422  */
1423 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1424 {
1425         struct task_struct *p = NULL;
1426         int retval, success;
1427
1428         success = 0;
1429         retval = -ESRCH;
1430         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1431                 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1432                 success |= !err;
1433                 retval = err;
1434         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1435         return success ? 0 : retval;
1436 }
1437
1438 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1439 {
1440         int error = -ESRCH;
1441         struct task_struct *p;
1442
1443         for (;;) {
1444                 rcu_read_lock();
1445                 p = pid_task(pid, PIDTYPE_PID);
1446                 if (p)
1447                         error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1448                 rcu_read_unlock();
1449                 if (likely(!p || error != -ESRCH))
1450                         return error;
1451
1452                 /*
1453                  * The task was unhashed in between, try again.  If it
1454                  * is dead, pid_task() will return NULL, if we race with
1455                  * de_thread() it will find the new leader.
1456                  */
1457         }
1458 }
1459
1460 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1461 {
1462         int error;
1463         rcu_read_lock();
1464         error = kill_pid_info(sig, info, find_vpid(pid));
1465         rcu_read_unlock();
1466         return error;
1467 }
1468
1469 static inline bool kill_as_cred_perm(const struct cred *cred,
1470                                      struct task_struct *target)
1471 {
1472         const struct cred *pcred = __task_cred(target);
1473
1474         return uid_eq(cred->euid, pcred->suid) ||
1475                uid_eq(cred->euid, pcred->uid) ||
1476                uid_eq(cred->uid, pcred->suid) ||
1477                uid_eq(cred->uid, pcred->uid);
1478 }
1479
1480 /*
1481  * The usb asyncio usage of siginfo is wrong.  The glibc support
1482  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1483  * AKA after the generic fields:
1484  *      kernel_pid_t    si_pid;
1485  *      kernel_uid32_t  si_uid;
1486  *      sigval_t        si_value;
1487  *
1488  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1489  * after the generic fields is:
1490  *      void __user     *si_addr;
1491  *
1492  * This is a practical problem when there is a 64bit big endian kernel
1493  * and a 32bit userspace.  As the 32bit address will encoded in the low
1494  * 32bits of the pointer.  Those low 32bits will be stored at higher
1495  * address than appear in a 32 bit pointer.  So userspace will not
1496  * see the address it was expecting for it's completions.
1497  *
1498  * There is nothing in the encoding that can allow
1499  * copy_siginfo_to_user32 to detect this confusion of formats, so
1500  * handle this by requiring the caller of kill_pid_usb_asyncio to
1501  * notice when this situration takes place and to store the 32bit
1502  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1503  * parameter.
1504  */
1505 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1506                          struct pid *pid, const struct cred *cred)
1507 {
1508         struct kernel_siginfo info;
1509         struct task_struct *p;
1510         unsigned long flags;
1511         int ret = -EINVAL;
1512
1513         clear_siginfo(&info);
1514         info.si_signo = sig;
1515         info.si_errno = errno;
1516         info.si_code = SI_ASYNCIO;
1517         *((sigval_t *)&info.si_pid) = addr;
1518
1519         if (!valid_signal(sig))
1520                 return ret;
1521
1522         rcu_read_lock();
1523         p = pid_task(pid, PIDTYPE_PID);
1524         if (!p) {
1525                 ret = -ESRCH;
1526                 goto out_unlock;
1527         }
1528         if (!kill_as_cred_perm(cred, p)) {
1529                 ret = -EPERM;
1530                 goto out_unlock;
1531         }
1532         ret = security_task_kill(p, &info, sig, cred);
1533         if (ret)
1534                 goto out_unlock;
1535
1536         if (sig) {
1537                 if (lock_task_sighand(p, &flags)) {
1538                         ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1539                         unlock_task_sighand(p, &flags);
1540                 } else
1541                         ret = -ESRCH;
1542         }
1543 out_unlock:
1544         rcu_read_unlock();
1545         return ret;
1546 }
1547 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1548
1549 /*
1550  * kill_something_info() interprets pid in interesting ways just like kill(2).
1551  *
1552  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1553  * is probably wrong.  Should make it like BSD or SYSV.
1554  */
1555
1556 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1557 {
1558         int ret;
1559
1560         if (pid > 0) {
1561                 rcu_read_lock();
1562                 ret = kill_pid_info(sig, info, find_vpid(pid));
1563                 rcu_read_unlock();
1564                 return ret;
1565         }
1566
1567         /* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1568         if (pid == INT_MIN)
1569                 return -ESRCH;
1570
1571         read_lock(&tasklist_lock);
1572         if (pid != -1) {
1573                 ret = __kill_pgrp_info(sig, info,
1574                                 pid ? find_vpid(-pid) : task_pgrp(current));
1575         } else {
1576                 int retval = 0, count = 0;
1577                 struct task_struct * p;
1578
1579                 for_each_process(p) {
1580                         if (task_pid_vnr(p) > 1 &&
1581                                         !same_thread_group(p, current)) {
1582                                 int err = group_send_sig_info(sig, info, p,
1583                                                               PIDTYPE_MAX);
1584                                 ++count;
1585                                 if (err != -EPERM)
1586                                         retval = err;
1587                         }
1588                 }
1589                 ret = count ? retval : -ESRCH;
1590         }
1591         read_unlock(&tasklist_lock);
1592
1593         return ret;
1594 }
1595
1596 /*
1597  * These are for backward compatibility with the rest of the kernel source.
1598  */
1599
1600 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1601 {
1602         /*
1603          * Make sure legacy kernel users don't send in bad values
1604          * (normal paths check this in check_kill_permission).
1605          */
1606         if (!valid_signal(sig))
1607                 return -EINVAL;
1608
1609         return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1610 }
1611 EXPORT_SYMBOL(send_sig_info);
1612
1613 #define __si_special(priv) \
1614         ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1615
1616 int
1617 send_sig(int sig, struct task_struct *p, int priv)
1618 {
1619         return send_sig_info(sig, __si_special(priv), p);
1620 }
1621 EXPORT_SYMBOL(send_sig);
1622
1623 void force_sig(int sig)
1624 {
1625         struct kernel_siginfo info;
1626
1627         clear_siginfo(&info);
1628         info.si_signo = sig;
1629         info.si_errno = 0;
1630         info.si_code = SI_KERNEL;
1631         info.si_pid = 0;
1632         info.si_uid = 0;
1633         force_sig_info(&info);
1634 }
1635 EXPORT_SYMBOL(force_sig);
1636
1637 /*
1638  * When things go south during signal handling, we
1639  * will force a SIGSEGV. And if the signal that caused
1640  * the problem was already a SIGSEGV, we'll want to
1641  * make sure we don't even try to deliver the signal..
1642  */
1643 void force_sigsegv(int sig)
1644 {
1645         struct task_struct *p = current;
1646
1647         if (sig == SIGSEGV) {
1648                 unsigned long flags;
1649                 spin_lock_irqsave(&p->sighand->siglock, flags);
1650                 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1651                 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1652         }
1653         force_sig(SIGSEGV);
1654 }
1655
1656 int force_sig_fault_to_task(int sig, int code, void __user *addr
1657         ___ARCH_SI_TRAPNO(int trapno)
1658         ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1659         , struct task_struct *t)
1660 {
1661         struct kernel_siginfo info;
1662
1663         clear_siginfo(&info);
1664         info.si_signo = sig;
1665         info.si_errno = 0;
1666         info.si_code  = code;
1667         info.si_addr  = addr;
1668 #ifdef __ARCH_SI_TRAPNO
1669         info.si_trapno = trapno;
1670 #endif
1671 #ifdef __ia64__
1672         info.si_imm = imm;
1673         info.si_flags = flags;
1674         info.si_isr = isr;
1675 #endif
1676         return force_sig_info_to_task(&info, t);
1677 }
1678
1679 int force_sig_fault(int sig, int code, void __user *addr
1680         ___ARCH_SI_TRAPNO(int trapno)
1681         ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1682 {
1683         return force_sig_fault_to_task(sig, code, addr
1684                                        ___ARCH_SI_TRAPNO(trapno)
1685                                        ___ARCH_SI_IA64(imm, flags, isr), current);
1686 }
1687
1688 int send_sig_fault(int sig, int code, void __user *addr
1689         ___ARCH_SI_TRAPNO(int trapno)
1690         ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1691         , struct task_struct *t)
1692 {
1693         struct kernel_siginfo info;
1694
1695         clear_siginfo(&info);
1696         info.si_signo = sig;
1697         info.si_errno = 0;
1698         info.si_code  = code;
1699         info.si_addr  = addr;
1700 #ifdef __ARCH_SI_TRAPNO
1701         info.si_trapno = trapno;
1702 #endif
1703 #ifdef __ia64__
1704         info.si_imm = imm;
1705         info.si_flags = flags;
1706         info.si_isr = isr;
1707 #endif
1708         return send_sig_info(info.si_signo, &info, t);
1709 }
1710
1711 int force_sig_mceerr(int code, void __user *addr, short lsb)
1712 {
1713         struct kernel_siginfo info;
1714
1715         WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1716         clear_siginfo(&info);
1717         info.si_signo = SIGBUS;
1718         info.si_errno = 0;
1719         info.si_code = code;
1720         info.si_addr = addr;
1721         info.si_addr_lsb = lsb;
1722         return force_sig_info(&info);
1723 }
1724
1725 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1726 {
1727         struct kernel_siginfo info;
1728
1729         WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1730         clear_siginfo(&info);
1731         info.si_signo = SIGBUS;
1732         info.si_errno = 0;
1733         info.si_code = code;
1734         info.si_addr = addr;
1735         info.si_addr_lsb = lsb;
1736         return send_sig_info(info.si_signo, &info, t);
1737 }
1738 EXPORT_SYMBOL(send_sig_mceerr);
1739
1740 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1741 {
1742         struct kernel_siginfo info;
1743
1744         clear_siginfo(&info);
1745         info.si_signo = SIGSEGV;
1746         info.si_errno = 0;
1747         info.si_code  = SEGV_BNDERR;
1748         info.si_addr  = addr;
1749         info.si_lower = lower;
1750         info.si_upper = upper;
1751         return force_sig_info(&info);
1752 }
1753
1754 #ifdef SEGV_PKUERR
1755 int force_sig_pkuerr(void __user *addr, u32 pkey)
1756 {
1757         struct kernel_siginfo info;
1758
1759         clear_siginfo(&info);
1760         info.si_signo = SIGSEGV;
1761         info.si_errno = 0;
1762         info.si_code  = SEGV_PKUERR;
1763         info.si_addr  = addr;
1764         info.si_pkey  = pkey;
1765         return force_sig_info(&info);
1766 }
1767 #endif
1768
1769 /* For the crazy architectures that include trap information in
1770  * the errno field, instead of an actual errno value.
1771  */
1772 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1773 {
1774         struct kernel_siginfo info;
1775
1776         clear_siginfo(&info);
1777         info.si_signo = SIGTRAP;
1778         info.si_errno = errno;
1779         info.si_code  = TRAP_HWBKPT;
1780         info.si_addr  = addr;
1781         return force_sig_info(&info);
1782 }
1783
1784 int kill_pgrp(struct pid *pid, int sig, int priv)
1785 {
1786         int ret;
1787
1788         read_lock(&tasklist_lock);
1789         ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1790         read_unlock(&tasklist_lock);
1791
1792         return ret;
1793 }
1794 EXPORT_SYMBOL(kill_pgrp);
1795
1796 int kill_pid(struct pid *pid, int sig, int priv)
1797 {
1798         return kill_pid_info(sig, __si_special(priv), pid);
1799 }
1800 EXPORT_SYMBOL(kill_pid);
1801
1802 /*
1803  * These functions support sending signals using preallocated sigqueue
1804  * structures.  This is needed "because realtime applications cannot
1805  * afford to lose notifications of asynchronous events, like timer
1806  * expirations or I/O completions".  In the case of POSIX Timers
1807  * we allocate the sigqueue structure from the timer_create.  If this
1808  * allocation fails we are able to report the failure to the application
1809  * with an EAGAIN error.
1810  */
1811 struct sigqueue *sigqueue_alloc(void)
1812 {
1813         struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1814
1815         if (q)
1816                 q->flags |= SIGQUEUE_PREALLOC;
1817
1818         return q;
1819 }
1820
1821 void sigqueue_free(struct sigqueue *q)
1822 {
1823         unsigned long flags;
1824         spinlock_t *lock = &current->sighand->siglock;
1825
1826         BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1827         /*
1828          * We must hold ->siglock while testing q->list
1829          * to serialize with collect_signal() or with
1830          * __exit_signal()->flush_sigqueue().
1831          */
1832         spin_lock_irqsave(lock, flags);
1833         q->flags &= ~SIGQUEUE_PREALLOC;
1834         /*
1835          * If it is queued it will be freed when dequeued,
1836          * like the "regular" sigqueue.
1837          */
1838         if (!list_empty(&q->list))
1839                 q = NULL;
1840         spin_unlock_irqrestore(lock, flags);
1841
1842         if (q)
1843                 __sigqueue_free(q);
1844 }
1845
1846 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1847 {
1848         int sig = q->info.si_signo;
1849         struct sigpending *pending;
1850         struct task_struct *t;
1851         unsigned long flags;
1852         int ret, result;
1853
1854         BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1855
1856         ret = -1;
1857         rcu_read_lock();
1858         t = pid_task(pid, type);
1859         if (!t || !likely(lock_task_sighand(t, &flags)))
1860                 goto ret;
1861
1862         ret = 1; /* the signal is ignored */
1863         result = TRACE_SIGNAL_IGNORED;
1864         if (!prepare_signal(sig, t, false))
1865                 goto out;
1866
1867         ret = 0;
1868         if (unlikely(!list_empty(&q->list))) {
1869                 /*
1870                  * If an SI_TIMER entry is already queue just increment
1871                  * the overrun count.
1872                  */
1873                 BUG_ON(q->info.si_code != SI_TIMER);
1874                 q->info.si_overrun++;
1875                 result = TRACE_SIGNAL_ALREADY_PENDING;
1876                 goto out;
1877         }
1878         q->info.si_overrun = 0;
1879
1880         signalfd_notify(t, sig);
1881         pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1882         list_add_tail(&q->list, &pending->list);
1883         sigaddset(&pending->signal, sig);
1884         complete_signal(sig, t, type);
1885         result = TRACE_SIGNAL_DELIVERED;
1886 out:
1887         trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1888         unlock_task_sighand(t, &flags);
1889 ret:
1890         rcu_read_unlock();
1891         return ret;
1892 }
1893
1894 static void do_notify_pidfd(struct task_struct *task)
1895 {
1896         struct pid *pid;
1897
1898         WARN_ON(task->exit_state == 0);
1899         pid = task_pid(task);
1900         wake_up_all(&pid->wait_pidfd);
1901 }
1902
1903 /*
1904  * Let a parent know about the death of a child.
1905  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1906  *
1907  * Returns true if our parent ignored us and so we've switched to
1908  * self-reaping.
1909  */
1910 bool do_notify_parent(struct task_struct *tsk, int sig)
1911 {
1912         struct kernel_siginfo info;
1913         unsigned long flags;
1914         struct sighand_struct *psig;
1915         bool autoreap = false;
1916         u64 utime, stime;
1917
1918         BUG_ON(sig == -1);
1919
1920         /* do_notify_parent_cldstop should have been called instead.  */
1921         BUG_ON(task_is_stopped_or_traced(tsk));
1922
1923         BUG_ON(!tsk->ptrace &&
1924                (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1925
1926         /* Wake up all pidfd waiters */
1927         do_notify_pidfd(tsk);
1928
1929         if (sig != SIGCHLD) {
1930                 /*
1931                  * This is only possible if parent == real_parent.
1932                  * Check if it has changed security domain.
1933                  */
1934                 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1935                         sig = SIGCHLD;
1936         }
1937
1938         clear_siginfo(&info);
1939         info.si_signo = sig;
1940         info.si_errno = 0;
1941         /*
1942          * We are under tasklist_lock here so our parent is tied to
1943          * us and cannot change.
1944          *
1945          * task_active_pid_ns will always return the same pid namespace
1946          * until a task passes through release_task.
1947          *
1948          * write_lock() currently calls preempt_disable() which is the
1949          * same as rcu_read_lock(), but according to Oleg, this is not
1950          * correct to rely on this
1951          */
1952         rcu_read_lock();
1953         info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1954         info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1955                                        task_uid(tsk));
1956         rcu_read_unlock();
1957
1958         task_cputime(tsk, &utime, &stime);
1959         info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1960         info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1961
1962         info.si_status = tsk->exit_code & 0x7f;
1963         if (tsk->exit_code & 0x80)
1964                 info.si_code = CLD_DUMPED;
1965         else if (tsk->exit_code & 0x7f)
1966                 info.si_code = CLD_KILLED;
1967         else {
1968                 info.si_code = CLD_EXITED;
1969                 info.si_status = tsk->exit_code >> 8;
1970         }
1971
1972         psig = tsk->parent->sighand;
1973         spin_lock_irqsave(&psig->siglock, flags);
1974         if (!tsk->ptrace && sig == SIGCHLD &&
1975             (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1976              (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1977                 /*
1978                  * We are exiting and our parent doesn't care.  POSIX.1
1979                  * defines special semantics for setting SIGCHLD to SIG_IGN
1980                  * or setting the SA_NOCLDWAIT flag: we should be reaped
1981                  * automatically and not left for our parent's wait4 call.
1982                  * Rather than having the parent do it as a magic kind of
1983                  * signal handler, we just set this to tell do_exit that we
1984                  * can be cleaned up without becoming a zombie.  Note that
1985                  * we still call __wake_up_parent in this case, because a
1986                  * blocked sys_wait4 might now return -ECHILD.
1987                  *
1988                  * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1989                  * is implementation-defined: we do (if you don't want
1990                  * it, just use SIG_IGN instead).
1991                  */
1992                 autoreap = true;
1993                 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1994                         sig = 0;
1995         }
1996         /*
1997          * Send with __send_signal as si_pid and si_uid are in the
1998          * parent's namespaces.
1999          */
2000         if (valid_signal(sig) && sig)
2001                 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2002         __wake_up_parent(tsk, tsk->parent);
2003         spin_unlock_irqrestore(&psig->siglock, flags);
2004
2005         return autoreap;
2006 }
2007
2008 /**
2009  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2010  * @tsk: task reporting the state change
2011  * @for_ptracer: the notification is for ptracer
2012  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2013  *
2014  * Notify @tsk's parent that the stopped/continued state has changed.  If
2015  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2016  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2017  *
2018  * CONTEXT:
2019  * Must be called with tasklist_lock at least read locked.
2020  */
2021 static void do_notify_parent_cldstop(struct task_struct *tsk,
2022                                      bool for_ptracer, int why)
2023 {
2024         struct kernel_siginfo info;
2025         unsigned long flags;
2026         struct task_struct *parent;
2027         struct sighand_struct *sighand;
2028         u64 utime, stime;
2029
2030         if (for_ptracer) {
2031                 parent = tsk->parent;
2032         } else {
2033                 tsk = tsk->group_leader;
2034                 parent = tsk->real_parent;
2035         }
2036
2037         clear_siginfo(&info);
2038         info.si_signo = SIGCHLD;
2039         info.si_errno = 0;
2040         /*
2041          * see comment in do_notify_parent() about the following 4 lines
2042          */
2043         rcu_read_lock();
2044         info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2045         info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2046         rcu_read_unlock();
2047
2048         task_cputime(tsk, &utime, &stime);
2049         info.si_utime = nsec_to_clock_t(utime);
2050         info.si_stime = nsec_to_clock_t(stime);
2051
2052         info.si_code = why;
2053         switch (why) {
2054         case CLD_CONTINUED:
2055                 info.si_status = SIGCONT;
2056                 break;
2057         case CLD_STOPPED:
2058                 info.si_status = tsk->signal->group_exit_code & 0x7f;
2059                 break;
2060         case CLD_TRAPPED:
2061                 info.si_status = tsk->exit_code & 0x7f;
2062                 break;
2063         default:
2064                 BUG();
2065         }
2066
2067         sighand = parent->sighand;
2068         spin_lock_irqsave(&sighand->siglock, flags);
2069         if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2070             !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2071                 __group_send_sig_info(SIGCHLD, &info, parent);
2072         /*
2073          * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2074          */
2075         __wake_up_parent(tsk, parent);
2076         spin_unlock_irqrestore(&sighand->siglock, flags);
2077 }
2078
2079 static inline bool may_ptrace_stop(void)
2080 {
2081         if (!likely(current->ptrace))
2082                 return false;
2083         /*
2084          * Are we in the middle of do_coredump?
2085          * If so and our tracer is also part of the coredump stopping
2086          * is a deadlock situation, and pointless because our tracer
2087          * is dead so don't allow us to stop.
2088          * If SIGKILL was already sent before the caller unlocked
2089          * ->siglock we must see ->core_state != NULL. Otherwise it
2090          * is safe to enter schedule().
2091          *
2092          * This is almost outdated, a task with the pending SIGKILL can't
2093          * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2094          * after SIGKILL was already dequeued.
2095          */
2096         if (unlikely(current->mm->core_state) &&
2097             unlikely(current->mm == current->parent->mm))
2098                 return false;
2099
2100         return true;
2101 }
2102
2103 /*
2104  * Return non-zero if there is a SIGKILL that should be waking us up.
2105  * Called with the siglock held.
2106  */
2107 static bool sigkill_pending(struct task_struct *tsk)
2108 {
2109         return sigismember(&tsk->pending.signal, SIGKILL) ||
2110                sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2111 }
2112
2113 /*
2114  * This must be called with current->sighand->siglock held.
2115  *
2116  * This should be the path for all ptrace stops.
2117  * We always set current->last_siginfo while stopped here.
2118  * That makes it a way to test a stopped process for
2119  * being ptrace-stopped vs being job-control-stopped.
2120  *
2121  * If we actually decide not to stop at all because the tracer
2122  * is gone, we keep current->exit_code unless clear_code.
2123  */
2124 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2125         __releases(&current->sighand->siglock)
2126         __acquires(&current->sighand->siglock)
2127 {
2128         bool gstop_done = false;
2129
2130         if (arch_ptrace_stop_needed(exit_code, info)) {
2131                 /*
2132                  * The arch code has something special to do before a
2133                  * ptrace stop.  This is allowed to block, e.g. for faults
2134                  * on user stack pages.  We can't keep the siglock while
2135                  * calling arch_ptrace_stop, so we must release it now.
2136                  * To preserve proper semantics, we must do this before
2137                  * any signal bookkeeping like checking group_stop_count.
2138                  * Meanwhile, a SIGKILL could come in before we retake the
2139                  * siglock.  That must prevent us from sleeping in TASK_TRACED.
2140                  * So after regaining the lock, we must check for SIGKILL.
2141                  */
2142                 spin_unlock_irq(&current->sighand->siglock);
2143                 arch_ptrace_stop(exit_code, info);
2144                 spin_lock_irq(&current->sighand->siglock);
2145                 if (sigkill_pending(current))
2146                         return;
2147         }
2148
2149         set_special_state(TASK_TRACED);
2150
2151         /*
2152          * We're committing to trapping.  TRACED should be visible before
2153          * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2154          * Also, transition to TRACED and updates to ->jobctl should be
2155          * atomic with respect to siglock and should be done after the arch
2156          * hook as siglock is released and regrabbed across it.
2157          *
2158          *     TRACER                               TRACEE
2159          *
2160          *     ptrace_attach()
2161          * [L]   wait_on_bit(JOBCTL_TRAPPING)   [S] set_special_state(TRACED)
2162          *     do_wait()
2163          *       set_current_state()                smp_wmb();
2164          *       ptrace_do_wait()
2165          *         wait_task_stopped()
2166          *           task_stopped_code()
2167          * [L]         task_is_traced()         [S] task_clear_jobctl_trapping();
2168          */
2169         smp_wmb();
2170
2171         current->last_siginfo = info;
2172         current->exit_code = exit_code;
2173
2174         /*
2175          * If @why is CLD_STOPPED, we're trapping to participate in a group
2176          * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2177          * across siglock relocks since INTERRUPT was scheduled, PENDING
2178          * could be clear now.  We act as if SIGCONT is received after
2179          * TASK_TRACED is entered - ignore it.
2180          */
2181         if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2182                 gstop_done = task_participate_group_stop(current);
2183
2184         /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2185         task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2186         if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2187                 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2188
2189         /* entering a trap, clear TRAPPING */
2190         task_clear_jobctl_trapping(current);
2191
2192         spin_unlock_irq(&current->sighand->siglock);
2193         read_lock(&tasklist_lock);
2194         if (may_ptrace_stop()) {
2195                 /*
2196                  * Notify parents of the stop.
2197                  *
2198                  * While ptraced, there are two parents - the ptracer and
2199                  * the real_parent of the group_leader.  The ptracer should
2200                  * know about every stop while the real parent is only
2201                  * interested in the completion of group stop.  The states
2202                  * for the two don't interact with each other.  Notify
2203                  * separately unless they're gonna be duplicates.
2204                  */
2205                 do_notify_parent_cldstop(current, true, why);
2206                 if (gstop_done && ptrace_reparented(current))
2207                         do_notify_parent_cldstop(current, false, why);
2208
2209                 /*
2210                  * Don't want to allow preemption here, because
2211                  * sys_ptrace() needs this task to be inactive.
2212                  *
2213                  * XXX: implement read_unlock_no_resched().
2214                  */
2215                 preempt_disable();
2216                 read_unlock(&tasklist_lock);
2217                 cgroup_enter_frozen();
2218                 preempt_enable_no_resched();
2219                 freezable_schedule();
2220                 cgroup_leave_frozen(true);
2221         } else {
2222                 /*
2223                  * By the time we got the lock, our tracer went away.
2224                  * Don't drop the lock yet, another tracer may come.
2225                  *
2226                  * If @gstop_done, the ptracer went away between group stop
2227                  * completion and here.  During detach, it would have set
2228                  * JOBCTL_STOP_PENDING on us and we'll re-enter
2229                  * TASK_STOPPED in do_signal_stop() on return, so notifying
2230                  * the real parent of the group stop completion is enough.
2231                  */
2232                 if (gstop_done)
2233                         do_notify_parent_cldstop(current, false, why);
2234
2235                 /* tasklist protects us from ptrace_freeze_traced() */
2236                 __set_current_state(TASK_RUNNING);
2237                 if (clear_code)
2238                         current->exit_code = 0;
2239                 read_unlock(&tasklist_lock);
2240         }
2241
2242         /*
2243          * We are back.  Now reacquire the siglock before touching
2244          * last_siginfo, so that we are sure to have synchronized with
2245          * any signal-sending on another CPU that wants to examine it.
2246          */
2247         spin_lock_irq(&current->sighand->siglock);
2248         current->last_siginfo = NULL;
2249
2250         /* LISTENING can be set only during STOP traps, clear it */
2251         current->jobctl &= ~JOBCTL_LISTENING;
2252
2253         /*
2254          * Queued signals ignored us while we were stopped for tracing.
2255          * So check for any that we should take before resuming user mode.
2256          * This sets TIF_SIGPENDING, but never clears it.
2257          */
2258         recalc_sigpending_tsk(current);
2259 }
2260
2261 static void ptrace_do_notify(int signr, int exit_code, int why)
2262 {
2263         kernel_siginfo_t info;
2264
2265         clear_siginfo(&info);
2266         info.si_signo = signr;
2267         info.si_code = exit_code;
2268         info.si_pid = task_pid_vnr(current);
2269         info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2270
2271         /* Let the debugger run.  */
2272         ptrace_stop(exit_code, why, 1, &info);
2273 }
2274
2275 void ptrace_notify(int exit_code)
2276 {
2277         BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2278         if (unlikely(current->task_works))
2279                 task_work_run();
2280
2281         spin_lock_irq(&current->sighand->siglock);
2282         ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2283         spin_unlock_irq(&current->sighand->siglock);
2284 }
2285
2286 /**
2287  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2288  * @signr: signr causing group stop if initiating
2289  *
2290  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2291  * and participate in it.  If already set, participate in the existing
2292  * group stop.  If participated in a group stop (and thus slept), %true is
2293  * returned with siglock released.
2294  *
2295  * If ptraced, this function doesn't handle stop itself.  Instead,
2296  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2297  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2298  * places afterwards.
2299  *
2300  * CONTEXT:
2301  * Must be called with @current->sighand->siglock held, which is released
2302  * on %true return.
2303  *
2304  * RETURNS:
2305  * %false if group stop is already cancelled or ptrace trap is scheduled.
2306  * %true if participated in group stop.
2307  */
2308 static bool do_signal_stop(int signr)
2309         __releases(&current->sighand->siglock)
2310 {
2311         struct signal_struct *sig = current->signal;
2312
2313         if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2314                 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2315                 struct task_struct *t;
2316
2317                 /* signr will be recorded in task->jobctl for retries */
2318                 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2319
2320                 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2321                     unlikely(signal_group_exit(sig)))
2322                         return false;
2323                 /*
2324                  * There is no group stop already in progress.  We must
2325                  * initiate one now.
2326                  *
2327                  * While ptraced, a task may be resumed while group stop is
2328                  * still in effect and then receive a stop signal and
2329                  * initiate another group stop.  This deviates from the
2330                  * usual behavior as two consecutive stop signals can't
2331                  * cause two group stops when !ptraced.  That is why we
2332                  * also check !task_is_stopped(t) below.
2333                  *
2334                  * The condition can be distinguished by testing whether
2335                  * SIGNAL_STOP_STOPPED is already set.  Don't generate
2336                  * group_exit_code in such case.
2337                  *
2338                  * This is not necessary for SIGNAL_STOP_CONTINUED because
2339                  * an intervening stop signal is required to cause two
2340                  * continued events regardless of ptrace.
2341                  */
2342                 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2343                         sig->group_exit_code = signr;
2344
2345                 sig->group_stop_count = 0;
2346
2347                 if (task_set_jobctl_pending(current, signr | gstop))
2348                         sig->group_stop_count++;
2349
2350                 t = current;
2351                 while_each_thread(current, t) {
2352                         /*
2353                          * Setting state to TASK_STOPPED for a group
2354                          * stop is always done with the siglock held,
2355                          * so this check has no races.
2356                          */
2357                         if (!task_is_stopped(t) &&
2358                             task_set_jobctl_pending(t, signr | gstop)) {
2359                                 sig->group_stop_count++;
2360                                 if (likely(!(t->ptrace & PT_SEIZED)))
2361                                         signal_wake_up(t, 0);
2362                                 else
2363                                         ptrace_trap_notify(t);
2364                         }
2365                 }
2366         }
2367
2368         if (likely(!current->ptrace)) {
2369                 int notify = 0;
2370
2371                 /*
2372                  * If there are no other threads in the group, or if there
2373                  * is a group stop in progress and we are the last to stop,
2374                  * report to the parent.
2375                  */
2376                 if (task_participate_group_stop(current))
2377                         notify = CLD_STOPPED;
2378
2379                 set_special_state(TASK_STOPPED);
2380                 spin_unlock_irq(&current->sighand->siglock);
2381
2382                 /*
2383                  * Notify the parent of the group stop completion.  Because
2384                  * we're not holding either the siglock or tasklist_lock
2385                  * here, ptracer may attach inbetween; however, this is for
2386                  * group stop and should always be delivered to the real
2387                  * parent of the group leader.  The new ptracer will get
2388                  * its notification when this task transitions into
2389                  * TASK_TRACED.
2390                  */
2391                 if (notify) {
2392                         read_lock(&tasklist_lock);
2393                         do_notify_parent_cldstop(current, false, notify);
2394                         read_unlock(&tasklist_lock);
2395                 }
2396
2397                 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2398                 cgroup_enter_frozen();
2399                 freezable_schedule();
2400                 return true;
2401         } else {
2402                 /*
2403                  * While ptraced, group stop is handled by STOP trap.
2404                  * Schedule it and let the caller deal with it.
2405                  */
2406                 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2407                 return false;
2408         }
2409 }
2410
2411 /**
2412  * do_jobctl_trap - take care of ptrace jobctl traps
2413  *
2414  * When PT_SEIZED, it's used for both group stop and explicit
2415  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2416  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2417  * the stop signal; otherwise, %SIGTRAP.
2418  *
2419  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2420  * number as exit_code and no siginfo.
2421  *
2422  * CONTEXT:
2423  * Must be called with @current->sighand->siglock held, which may be
2424  * released and re-acquired before returning with intervening sleep.
2425  */
2426 static void do_jobctl_trap(void)
2427 {
2428         struct signal_struct *signal = current->signal;
2429         int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2430
2431         if (current->ptrace & PT_SEIZED) {
2432                 if (!signal->group_stop_count &&
2433                     !(signal->flags & SIGNAL_STOP_STOPPED))
2434                         signr = SIGTRAP;
2435                 WARN_ON_ONCE(!signr);
2436                 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2437                                  CLD_STOPPED);
2438         } else {
2439                 WARN_ON_ONCE(!signr);
2440                 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2441                 current->exit_code = 0;
2442         }
2443 }
2444
2445 /**
2446  * do_freezer_trap - handle the freezer jobctl trap
2447  *
2448  * Puts the task into frozen state, if only the task is not about to quit.
2449  * In this case it drops JOBCTL_TRAP_FREEZE.
2450  *
2451  * CONTEXT:
2452  * Must be called with @current->sighand->siglock held,
2453  * which is always released before returning.
2454  */
2455 static void do_freezer_trap(void)
2456         __releases(&current->sighand->siglock)
2457 {
2458         /*
2459          * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2460          * let's make another loop to give it a chance to be handled.
2461          * In any case, we'll return back.
2462          */
2463         if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2464              JOBCTL_TRAP_FREEZE) {
2465                 spin_unlock_irq(&current->sighand->siglock);
2466                 return;
2467         }
2468
2469         /*
2470          * Now we're sure that there is no pending fatal signal and no
2471          * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2472          * immediately (if there is a non-fatal signal pending), and
2473          * put the task into sleep.
2474          */
2475         __set_current_state(TASK_INTERRUPTIBLE);
2476         clear_thread_flag(TIF_SIGPENDING);
2477         spin_unlock_irq(&current->sighand->siglock);
2478         cgroup_enter_frozen();
2479         freezable_schedule();
2480 }
2481
2482 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2483 {
2484         /*
2485          * We do not check sig_kernel_stop(signr) but set this marker
2486          * unconditionally because we do not know whether debugger will
2487          * change signr. This flag has no meaning unless we are going
2488          * to stop after return from ptrace_stop(). In this case it will
2489          * be checked in do_signal_stop(), we should only stop if it was
2490          * not cleared by SIGCONT while we were sleeping. See also the
2491          * comment in dequeue_signal().
2492          */
2493         current->jobctl |= JOBCTL_STOP_DEQUEUED;
2494         ptrace_stop(signr, CLD_TRAPPED, 0, info);
2495
2496         /* We're back.  Did the debugger cancel the sig?  */
2497         signr = current->exit_code;
2498         if (signr == 0)
2499                 return signr;
2500
2501         current->exit_code = 0;
2502
2503         /*
2504          * Update the siginfo structure if the signal has
2505          * changed.  If the debugger wanted something
2506          * specific in the siginfo structure then it should
2507          * have updated *info via PTRACE_SETSIGINFO.
2508          */
2509         if (signr != info->si_signo) {
2510                 clear_siginfo(info);
2511                 info->si_signo = signr;
2512                 info->si_errno = 0;
2513                 info->si_code = SI_USER;
2514                 rcu_read_lock();
2515                 info->si_pid = task_pid_vnr(current->parent);
2516                 info->si_uid = from_kuid_munged(current_user_ns(),
2517                                                 task_uid(current->parent));
2518                 rcu_read_unlock();
2519         }
2520
2521         /* If the (new) signal is now blocked, requeue it.  */
2522         if (sigismember(&current->blocked, signr)) {
2523                 send_signal(signr, info, current, PIDTYPE_PID);
2524                 signr = 0;
2525         }
2526
2527         return signr;
2528 }
2529
2530 bool get_signal(struct ksignal *ksig)
2531 {
2532         struct sighand_struct *sighand = current->sighand;
2533         struct signal_struct *signal = current->signal;
2534         int signr;
2535
2536         if (unlikely(current->task_works))
2537                 task_work_run();
2538
2539         if (unlikely(uprobe_deny_signal()))
2540                 return false;
2541
2542         /*
2543          * Do this once, we can't return to user-mode if freezing() == T.
2544          * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2545          * thus do not need another check after return.
2546          */
2547         try_to_freeze();
2548
2549 relock:
2550         spin_lock_irq(&sighand->siglock);
2551         /*
2552          * Every stopped thread goes here after wakeup. Check to see if
2553          * we should notify the parent, prepare_signal(SIGCONT) encodes
2554          * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2555          */
2556         if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2557                 int why;
2558
2559                 if (signal->flags & SIGNAL_CLD_CONTINUED)
2560                         why = CLD_CONTINUED;
2561                 else
2562                         why = CLD_STOPPED;
2563
2564                 signal->flags &= ~SIGNAL_CLD_MASK;
2565
2566                 spin_unlock_irq(&sighand->siglock);
2567
2568                 /*
2569                  * Notify the parent that we're continuing.  This event is
2570                  * always per-process and doesn't make whole lot of sense
2571                  * for ptracers, who shouldn't consume the state via
2572                  * wait(2) either, but, for backward compatibility, notify
2573                  * the ptracer of the group leader too unless it's gonna be
2574                  * a duplicate.
2575                  */
2576                 read_lock(&tasklist_lock);
2577                 do_notify_parent_cldstop(current, false, why);
2578
2579                 if (ptrace_reparented(current->group_leader))
2580                         do_notify_parent_cldstop(current->group_leader,
2581                                                 true, why);
2582                 read_unlock(&tasklist_lock);
2583
2584                 goto relock;
2585         }
2586
2587         /* Has this task already been marked for death? */
2588         if (signal_group_exit(signal)) {
2589                 ksig->info.si_signo = signr = SIGKILL;
2590                 sigdelset(&current->pending.signal, SIGKILL);
2591                 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2592                                 &sighand->action[SIGKILL - 1]);
2593                 recalc_sigpending();
2594                 goto fatal;
2595         }
2596
2597         for (;;) {
2598                 struct k_sigaction *ka;
2599
2600                 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2601                     do_signal_stop(0))
2602                         goto relock;
2603
2604                 if (unlikely(current->jobctl &
2605                              (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2606                         if (current->jobctl & JOBCTL_TRAP_MASK) {
2607                                 do_jobctl_trap();
2608                                 spin_unlock_irq(&sighand->siglock);
2609                         } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2610                                 do_freezer_trap();
2611
2612                         goto relock;
2613                 }
2614
2615                 /*
2616                  * If the task is leaving the frozen state, let's update
2617                  * cgroup counters and reset the frozen bit.
2618                  */
2619                 if (unlikely(cgroup_task_frozen(current))) {
2620                         spin_unlock_irq(&sighand->siglock);
2621                         cgroup_leave_frozen(false);
2622                         goto relock;
2623                 }
2624
2625                 /*
2626                  * Signals generated by the execution of an instruction
2627                  * need to be delivered before any other pending signals
2628                  * so that the instruction pointer in the signal stack
2629                  * frame points to the faulting instruction.
2630                  */
2631                 signr = dequeue_synchronous_signal(&ksig->info);
2632                 if (!signr)
2633                         signr = dequeue_signal(current, &current->blocked, &ksig->info);
2634
2635                 if (!signr)
2636                         break; /* will return 0 */
2637
2638                 if (unlikely(current->ptrace) && signr != SIGKILL) {
2639                         signr = ptrace_signal(signr, &ksig->info);
2640                         if (!signr)
2641                                 continue;
2642                 }
2643
2644                 ka = &sighand->action[signr-1];
2645
2646                 /* Trace actually delivered signals. */
2647                 trace_signal_deliver(signr, &ksig->info, ka);
2648
2649                 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2650                         continue;
2651                 if (ka->sa.sa_handler != SIG_DFL) {
2652                         /* Run the handler.  */
2653                         ksig->ka = *ka;
2654
2655                         if (ka->sa.sa_flags & SA_ONESHOT)
2656                                 ka->sa.sa_handler = SIG_DFL;
2657
2658                         break; /* will return non-zero "signr" value */
2659                 }
2660
2661                 /*
2662                  * Now we are doing the default action for this signal.
2663                  */
2664                 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2665                         continue;
2666
2667                 /*
2668                  * Global init gets no signals it doesn't want.
2669                  * Container-init gets no signals it doesn't want from same
2670                  * container.
2671                  *
2672                  * Note that if global/container-init sees a sig_kernel_only()
2673                  * signal here, the signal must have been generated internally
2674                  * or must have come from an ancestor namespace. In either
2675                  * case, the signal cannot be dropped.
2676                  */
2677                 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2678                                 !sig_kernel_only(signr))
2679                         continue;
2680
2681                 if (sig_kernel_stop(signr)) {
2682                         /*
2683                          * The default action is to stop all threads in
2684                          * the thread group.  The job control signals
2685                          * do nothing in an orphaned pgrp, but SIGSTOP
2686                          * always works.  Note that siglock needs to be
2687                          * dropped during the call to is_orphaned_pgrp()
2688                          * because of lock ordering with tasklist_lock.
2689                          * This allows an intervening SIGCONT to be posted.
2690                          * We need to check for that and bail out if necessary.
2691                          */
2692                         if (signr != SIGSTOP) {
2693                                 spin_unlock_irq(&sighand->siglock);
2694
2695                                 /* signals can be posted during this window */
2696
2697                                 if (is_current_pgrp_orphaned())
2698                                         goto relock;
2699
2700                                 spin_lock_irq(&sighand->siglock);
2701                         }
2702
2703                         if (likely(do_signal_stop(ksig->info.si_signo))) {
2704                                 /* It released the siglock.  */
2705                                 goto relock;
2706                         }
2707
2708                         /*
2709                          * We didn't actually stop, due to a race
2710                          * with SIGCONT or something like that.
2711                          */
2712                         continue;
2713                 }
2714
2715         fatal:
2716                 spin_unlock_irq(&sighand->siglock);
2717                 if (unlikely(cgroup_task_frozen(current)))
2718                         cgroup_leave_frozen(true);
2719
2720                 /*
2721                  * Anything else is fatal, maybe with a core dump.
2722                  */
2723                 current->flags |= PF_SIGNALED;
2724
2725                 if (sig_kernel_coredump(signr)) {
2726                         if (print_fatal_signals)
2727                                 print_fatal_signal(ksig->info.si_signo);
2728                         proc_coredump_connector(current);
2729                         /*
2730                          * If it was able to dump core, this kills all
2731                          * other threads in the group and synchronizes with
2732                          * their demise.  If we lost the race with another
2733                          * thread getting here, it set group_exit_code
2734                          * first and our do_group_exit call below will use
2735                          * that value and ignore the one we pass it.
2736                          */
2737                         do_coredump(&ksig->info);
2738                 }
2739
2740                 /*
2741                  * Death signals, no core dump.
2742                  */
2743                 do_group_exit(ksig->info.si_signo);
2744                 /* NOTREACHED */
2745         }
2746         spin_unlock_irq(&sighand->siglock);
2747
2748         ksig->sig = signr;
2749         return ksig->sig > 0;
2750 }
2751
2752 /**
2753  * signal_delivered - 
2754  * @ksig:               kernel signal struct
2755  * @stepping:           nonzero if debugger single-step or block-step in use
2756  *
2757  * This function should be called when a signal has successfully been
2758  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2759  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2760  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2761  */
2762 static void signal_delivered(struct ksignal *ksig, int stepping)
2763 {
2764         sigset_t blocked;
2765
2766         /* A signal was successfully delivered, and the
2767            saved sigmask was stored on the signal frame,
2768            and will be restored by sigreturn.  So we can
2769            simply clear the restore sigmask flag.  */
2770         clear_restore_sigmask();
2771
2772         sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2773         if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2774                 sigaddset(&blocked, ksig->sig);
2775         set_current_blocked(&blocked);
2776         tracehook_signal_handler(stepping);
2777 }
2778
2779 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2780 {
2781         if (failed)
2782                 force_sigsegv(ksig->sig);
2783         else
2784                 signal_delivered(ksig, stepping);
2785 }
2786
2787 /*
2788  * It could be that complete_signal() picked us to notify about the
2789  * group-wide signal. Other threads should be notified now to take
2790  * the shared signals in @which since we will not.
2791  */
2792 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2793 {
2794         sigset_t retarget;
2795         struct task_struct *t;
2796
2797         sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2798         if (sigisemptyset(&retarget))
2799                 return;
2800
2801         t = tsk;
2802         while_each_thread(tsk, t) {
2803                 if (t->flags & PF_EXITING)
2804                         continue;
2805
2806                 if (!has_pending_signals(&retarget, &t->blocked))
2807                         continue;
2808                 /* Remove the signals this thread can handle. */
2809                 sigandsets(&retarget, &retarget, &t->blocked);
2810
2811                 if (!signal_pending(t))
2812                         signal_wake_up(t, 0);
2813
2814                 if (sigisemptyset(&retarget))
2815                         break;
2816         }
2817 }
2818
2819 void exit_signals(struct task_struct *tsk)
2820 {
2821         int group_stop = 0;
2822         sigset_t unblocked;
2823
2824         /*
2825          * @tsk is about to have PF_EXITING set - lock out users which
2826          * expect stable threadgroup.
2827          */
2828         cgroup_threadgroup_change_begin(tsk);
2829
2830         if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2831                 tsk->flags |= PF_EXITING;
2832                 cgroup_threadgroup_change_end(tsk);
2833                 return;
2834         }
2835
2836         spin_lock_irq(&tsk->sighand->siglock);
2837         /*
2838          * From now this task is not visible for group-wide signals,
2839          * see wants_signal(), do_signal_stop().
2840          */
2841         tsk->flags |= PF_EXITING;
2842
2843         cgroup_threadgroup_change_end(tsk);
2844
2845         if (!signal_pending(tsk))
2846                 goto out;
2847
2848         unblocked = tsk->blocked;
2849         signotset(&unblocked);
2850         retarget_shared_pending(tsk, &unblocked);
2851
2852         if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2853             task_participate_group_stop(tsk))
2854                 group_stop = CLD_STOPPED;
2855 out:
2856         spin_unlock_irq(&tsk->sighand->siglock);
2857
2858         /*
2859          * If group stop has completed, deliver the notification.  This
2860          * should always go to the real parent of the group leader.
2861          */
2862         if (unlikely(group_stop)) {
2863                 read_lock(&tasklist_lock);
2864                 do_notify_parent_cldstop(tsk, false, group_stop);
2865                 read_unlock(&tasklist_lock);
2866         }
2867 }
2868
2869 /*
2870  * System call entry points.
2871  */
2872
2873 /**
2874  *  sys_restart_syscall - restart a system call
2875  */
2876 SYSCALL_DEFINE0(restart_syscall)
2877 {
2878         struct restart_block *restart = &current->restart_block;
2879         return restart->fn(restart);
2880 }
2881
2882 long do_no_restart_syscall(struct restart_block *param)
2883 {
2884         return -EINTR;
2885 }
2886
2887 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2888 {
2889         if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2890                 sigset_t newblocked;
2891                 /* A set of now blocked but previously unblocked signals. */
2892                 sigandnsets(&newblocked, newset, &current->blocked);
2893                 retarget_shared_pending(tsk, &newblocked);
2894         }
2895         tsk->blocked = *newset;
2896         recalc_sigpending();
2897 }
2898
2899 /**
2900  * set_current_blocked - change current->blocked mask
2901  * @newset: new mask
2902  *
2903  * It is wrong to change ->blocked directly, this helper should be used
2904  * to ensure the process can't miss a shared signal we are going to block.
2905  */
2906 void set_current_blocked(sigset_t *newset)
2907 {
2908         sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2909         __set_current_blocked(newset);
2910 }
2911
2912 void __set_current_blocked(const sigset_t *newset)
2913 {
2914         struct task_struct *tsk = current;
2915
2916         /*
2917          * In case the signal mask hasn't changed, there is nothing we need
2918          * to do. The current->blocked shouldn't be modified by other task.
2919          */
2920         if (sigequalsets(&tsk->blocked, newset))
2921                 return;
2922
2923         spin_lock_irq(&tsk->sighand->siglock);
2924         __set_task_blocked(tsk, newset);
2925         spin_unlock_irq(&tsk->sighand->siglock);
2926 }
2927
2928 /*
2929  * This is also useful for kernel threads that want to temporarily
2930  * (or permanently) block certain signals.
2931  *
2932  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2933  * interface happily blocks "unblockable" signals like SIGKILL
2934  * and friends.
2935  */
2936 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2937 {
2938         struct task_struct *tsk = current;
2939         sigset_t newset;
2940
2941         /* Lockless, only current can change ->blocked, never from irq */
2942         if (oldset)
2943                 *oldset = tsk->blocked;
2944
2945         switch (how) {
2946         case SIG_BLOCK:
2947                 sigorsets(&newset, &tsk->blocked, set);
2948                 break;
2949         case SIG_UNBLOCK:
2950                 sigandnsets(&newset, &tsk->blocked, set);
2951                 break;
2952         case SIG_SETMASK:
2953                 newset = *set;
2954                 break;
2955         default:
2956                 return -EINVAL;
2957         }
2958
2959         __set_current_blocked(&newset);
2960         return 0;
2961 }
2962 EXPORT_SYMBOL(sigprocmask);
2963
2964 /*
2965  * The api helps set app-provided sigmasks.
2966  *
2967  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2968  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2969  *
2970  * Note that it does set_restore_sigmask() in advance, so it must be always
2971  * paired with restore_saved_sigmask_unless() before return from syscall.
2972  */
2973 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2974 {
2975         sigset_t kmask;
2976
2977         if (!umask)
2978                 return 0;
2979         if (sigsetsize != sizeof(sigset_t))
2980                 return -EINVAL;
2981         if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2982                 return -EFAULT;
2983
2984         set_restore_sigmask();
2985         current->saved_sigmask = current->blocked;
2986         set_current_blocked(&kmask);
2987
2988         return 0;
2989 }
2990
2991 #ifdef CONFIG_COMPAT
2992 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2993                             size_t sigsetsize)
2994 {
2995         sigset_t kmask;
2996
2997         if (!umask)
2998                 return 0;
2999         if (sigsetsize != sizeof(compat_sigset_t))
3000                 return -EINVAL;
3001         if (get_compat_sigset(&kmask, umask))
3002                 return -EFAULT;
3003
3004         set_restore_sigmask();
3005         current->saved_sigmask = current->blocked;
3006         set_current_blocked(&kmask);
3007
3008         return 0;
3009 }
3010 #endif
3011
3012 /**
3013  *  sys_rt_sigprocmask - change the list of currently blocked signals
3014  *  @how: whether to add, remove, or set signals
3015  *  @nset: stores pending signals
3016  *  @oset: previous value of signal mask if non-null
3017  *  @sigsetsize: size of sigset_t type
3018  */
3019 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3020                 sigset_t __user *, oset, size_t, sigsetsize)
3021 {
3022         sigset_t old_set, new_set;
3023         int error;
3024
3025         /* XXX: Don't preclude handling different sized sigset_t's.  */
3026         if (sigsetsize != sizeof(sigset_t))
3027                 return -EINVAL;
3028
3029         old_set = current->blocked;
3030
3031         if (nset) {
3032                 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3033                         return -EFAULT;
3034                 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3035
3036                 error = sigprocmask(how, &new_set, NULL);
3037                 if (error)
3038                         return error;
3039         }
3040
3041         if (oset) {
3042                 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3043                         return -EFAULT;
3044         }
3045
3046         return 0;
3047 }
3048
3049 #ifdef CONFIG_COMPAT
3050 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3051                 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3052 {
3053         sigset_t old_set = current->blocked;
3054
3055         /* XXX: Don't preclude handling different sized sigset_t's.  */
3056         if (sigsetsize != sizeof(sigset_t))
3057                 return -EINVAL;
3058
3059         if (nset) {
3060                 sigset_t new_set;
3061                 int error;
3062                 if (get_compat_sigset(&new_set, nset))
3063                         return -EFAULT;
3064                 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3065
3066                 error = sigprocmask(how, &new_set, NULL);
3067                 if (error)
3068                         return error;
3069         }
3070         return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3071 }
3072 #endif
3073
3074 static void do_sigpending(sigset_t *set)
3075 {
3076         spin_lock_irq(&current->sighand->siglock);
3077         sigorsets(set, &current->pending.signal,
3078                   &current->signal->shared_pending.signal);
3079         spin_unlock_irq(&current->sighand->siglock);
3080
3081         /* Outside the lock because only this thread touches it.  */
3082         sigandsets(set, &current->blocked, set);
3083 }
3084
3085 /**
3086  *  sys_rt_sigpending - examine a pending signal that has been raised
3087  *                      while blocked
3088  *  @uset: stores pending signals
3089  *  @sigsetsize: size of sigset_t type or larger
3090  */
3091 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3092 {
3093         sigset_t set;
3094
3095         if (sigsetsize > sizeof(*uset))
3096                 return -EINVAL;
3097
3098         do_sigpending(&set);
3099
3100         if (copy_to_user(uset, &set, sigsetsize))
3101                 return -EFAULT;
3102
3103         return 0;
3104 }
3105
3106 #ifdef CONFIG_COMPAT
3107 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3108                 compat_size_t, sigsetsize)
3109 {
3110         sigset_t set;
3111
3112         if (sigsetsize > sizeof(*uset))
3113                 return -EINVAL;
3114
3115         do_sigpending(&set);
3116
3117         return put_compat_sigset(uset, &set, sigsetsize);
3118 }
3119 #endif
3120
3121 static const struct {
3122         unsigned char limit, layout;
3123 } sig_sicodes[] = {
3124         [SIGILL]  = { NSIGILL,  SIL_FAULT },
3125         [SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3126         [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3127         [SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3128         [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3129 #if defined(SIGEMT)
3130         [SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3131 #endif
3132         [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3133         [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3134         [SIGSYS]  = { NSIGSYS,  SIL_SYS },
3135 };
3136
3137 static bool known_siginfo_layout(unsigned sig, int si_code)
3138 {
3139         if (si_code == SI_KERNEL)
3140                 return true;
3141         else if ((si_code > SI_USER)) {
3142                 if (sig_specific_sicodes(sig)) {
3143                         if (si_code <= sig_sicodes[sig].limit)
3144                                 return true;
3145                 }
3146                 else if (si_code <= NSIGPOLL)
3147                         return true;
3148         }
3149         else if (si_code >= SI_DETHREAD)
3150                 return true;
3151         else if (si_code == SI_ASYNCNL)
3152                 return true;
3153         return false;
3154 }
3155
3156 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3157 {
3158         enum siginfo_layout layout = SIL_KILL;
3159         if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3160                 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3161                     (si_code <= sig_sicodes[sig].limit)) {
3162                         layout = sig_sicodes[sig].layout;
3163                         /* Handle the exceptions */
3164                         if ((sig == SIGBUS) &&
3165                             (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3166                                 layout = SIL_FAULT_MCEERR;
3167                         else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3168                                 layout = SIL_FAULT_BNDERR;
3169 #ifdef SEGV_PKUERR
3170                         else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3171                                 layout = SIL_FAULT_PKUERR;
3172 #endif
3173                 }
3174                 else if (si_code <= NSIGPOLL)
3175                         layout = SIL_POLL;
3176         } else {
3177                 if (si_code == SI_TIMER)
3178                         layout = SIL_TIMER;
3179                 else if (si_code == SI_SIGIO)
3180                         layout = SIL_POLL;
3181                 else if (si_code < 0)
3182                         layout = SIL_RT;
3183         }
3184         return layout;
3185 }
3186
3187 static inline char __user *si_expansion(const siginfo_t __user *info)
3188 {
3189         return ((char __user *)info) + sizeof(struct kernel_siginfo);
3190 }
3191
3192 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3193 {
3194         char __user *expansion = si_expansion(to);
3195         if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3196                 return -EFAULT;
3197         if (clear_user(expansion, SI_EXPANSION_SIZE))
3198                 return -EFAULT;
3199         return 0;
3200 }
3201
3202 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3203                                        const siginfo_t __user *from)
3204 {
3205         if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3206                 char __user *expansion = si_expansion(from);
3207                 char buf[SI_EXPANSION_SIZE];
3208                 int i;
3209                 /*
3210                  * An unknown si_code might need more than
3211                  * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3212                  * extra bytes are 0.  This guarantees copy_siginfo_to_user
3213                  * will return this data to userspace exactly.
3214                  */
3215                 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3216                         return -EFAULT;
3217                 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3218                         if (buf[i] != 0)
3219                                 return -E2BIG;
3220                 }
3221         }
3222         return 0;
3223 }
3224
3225 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3226                                     const siginfo_t __user *from)
3227 {
3228         if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3229                 return -EFAULT;
3230         to->si_signo = signo;
3231         return post_copy_siginfo_from_user(to, from);
3232 }
3233
3234 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3235 {
3236         if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3237                 return -EFAULT;
3238         return post_copy_siginfo_from_user(to, from);
3239 }
3240
3241 #ifdef CONFIG_COMPAT
3242 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3243                            const struct kernel_siginfo *from)
3244 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3245 {
3246         return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3247 }
3248 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3249                              const struct kernel_siginfo *from, bool x32_ABI)
3250 #endif
3251 {
3252         struct compat_siginfo new;
3253         memset(&new, 0, sizeof(new));
3254
3255         new.si_signo = from->si_signo;
3256         new.si_errno = from->si_errno;
3257         new.si_code  = from->si_code;
3258         switch(siginfo_layout(from->si_signo, from->si_code)) {
3259         case SIL_KILL:
3260                 new.si_pid = from->si_pid;
3261                 new.si_uid = from->si_uid;
3262                 break;
3263         case SIL_TIMER:
3264                 new.si_tid     = from->si_tid;
3265                 new.si_overrun = from->si_overrun;
3266                 new.si_int     = from->si_int;
3267                 break;
3268         case SIL_POLL:
3269                 new.si_band = from->si_band;
3270                 new.si_fd   = from->si_fd;
3271                 break;
3272         case SIL_FAULT:
3273                 new.si_addr = ptr_to_compat(from->si_addr);
3274 #ifdef __ARCH_SI_TRAPNO
3275                 new.si_trapno = from->si_trapno;
3276 #endif
3277                 break;
3278         case SIL_FAULT_MCEERR:
3279                 new.si_addr = ptr_to_compat(from->si_addr);
3280 #ifdef __ARCH_SI_TRAPNO
3281                 new.si_trapno = from->si_trapno;
3282 #endif
3283                 new.si_addr_lsb = from->si_addr_lsb;
3284                 break;
3285         case SIL_FAULT_BNDERR:
3286                 new.si_addr = ptr_to_compat(from->si_addr);
3287 #ifdef __ARCH_SI_TRAPNO
3288                 new.si_trapno = from->si_trapno;
3289 #endif
3290                 new.si_lower = ptr_to_compat(from->si_lower);
3291                 new.si_upper = ptr_to_compat(from->si_upper);
3292                 break;
3293         case SIL_FAULT_PKUERR:
3294                 new.si_addr = ptr_to_compat(from->si_addr);
3295 #ifdef __ARCH_SI_TRAPNO
3296                 new.si_trapno = from->si_trapno;
3297 #endif
3298                 new.si_pkey = from->si_pkey;
3299                 break;
3300         case SIL_CHLD:
3301                 new.si_pid    = from->si_pid;
3302                 new.si_uid    = from->si_uid;
3303                 new.si_status = from->si_status;
3304 #ifdef CONFIG_X86_X32_ABI
3305                 if (x32_ABI) {
3306                         new._sifields._sigchld_x32._utime = from->si_utime;
3307                         new._sifields._sigchld_x32._stime = from->si_stime;
3308                 } else
3309 #endif
3310                 {
3311                         new.si_utime = from->si_utime;
3312                         new.si_stime = from->si_stime;
3313                 }
3314                 break;
3315         case SIL_RT:
3316                 new.si_pid = from->si_pid;
3317                 new.si_uid = from->si_uid;
3318                 new.si_int = from->si_int;
3319                 break;
3320         case SIL_SYS:
3321                 new.si_call_addr = ptr_to_compat(from->si_call_addr);
3322                 new.si_syscall   = from->si_syscall;
3323                 new.si_arch      = from->si_arch;
3324                 break;
3325         }
3326
3327         if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3328                 return -EFAULT;
3329
3330         return 0;
3331 }
3332
3333 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3334                                          const struct compat_siginfo *from)
3335 {
3336         clear_siginfo(to);
3337         to->si_signo = from->si_signo;
3338         to->si_errno = from->si_errno;
3339         to->si_code  = from->si_code;
3340         switch(siginfo_layout(from->si_signo, from->si_code)) {
3341         case SIL_KILL:
3342                 to->si_pid = from->si_pid;
3343                 to->si_uid = from->si_uid;
3344                 break;
3345         case SIL_TIMER:
3346                 to->si_tid     = from->si_tid;
3347                 to->si_overrun = from->si_overrun;
3348                 to->si_int     = from->si_int;
3349                 break;
3350         case SIL_POLL:
3351                 to->si_band = from->si_band;
3352                 to->si_fd   = from->si_fd;
3353                 break;
3354         case SIL_FAULT:
3355                 to->si_addr = compat_ptr(from->si_addr);
3356 #ifdef __ARCH_SI_TRAPNO
3357                 to->si_trapno = from->si_trapno;
3358 #endif
3359                 break;
3360         case SIL_FAULT_MCEERR:
3361                 to->si_addr = compat_ptr(from->si_addr);
3362 #ifdef __ARCH_SI_TRAPNO
3363                 to->si_trapno = from->si_trapno;
3364 #endif
3365                 to->si_addr_lsb = from->si_addr_lsb;
3366                 break;
3367         case SIL_FAULT_BNDERR:
3368                 to->si_addr = compat_ptr(from->si_addr);
3369 #ifdef __ARCH_SI_TRAPNO
3370                 to->si_trapno = from->si_trapno;
3371 #endif
3372                 to->si_lower = compat_ptr(from->si_lower);
3373                 to->si_upper = compat_ptr(from->si_upper);
3374                 break;
3375         case SIL_FAULT_PKUERR:
3376                 to->si_addr = compat_ptr(from->si_addr);
3377 #ifdef __ARCH_SI_TRAPNO
3378                 to->si_trapno = from->si_trapno;
3379 #endif
3380                 to->si_pkey = from->si_pkey;
3381                 break;
3382         case SIL_CHLD:
3383                 to->si_pid    = from->si_pid;
3384                 to->si_uid    = from->si_uid;
3385                 to->si_status = from->si_status;
3386 #ifdef CONFIG_X86_X32_ABI
3387                 if (in_x32_syscall()) {
3388                         to->si_utime = from->_sifields._sigchld_x32._utime;
3389                         to->si_stime = from->_sifields._sigchld_x32._stime;
3390                 } else
3391 #endif
3392                 {
3393                         to->si_utime = from->si_utime;
3394                         to->si_stime = from->si_stime;
3395                 }
3396                 break;
3397         case SIL_RT:
3398                 to->si_pid = from->si_pid;
3399                 to->si_uid = from->si_uid;
3400                 to->si_int = from->si_int;
3401                 break;
3402         case SIL_SYS:
3403                 to->si_call_addr = compat_ptr(from->si_call_addr);
3404                 to->si_syscall   = from->si_syscall;
3405                 to->si_arch      = from->si_arch;
3406                 break;
3407         }
3408         return 0;
3409 }
3410
3411 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3412                                       const struct compat_siginfo __user *ufrom)
3413 {
3414         struct compat_siginfo from;
3415
3416         if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3417                 return -EFAULT;
3418
3419         from.si_signo = signo;
3420         return post_copy_siginfo_from_user32(to, &from);
3421 }
3422
3423 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3424                              const struct compat_siginfo __user *ufrom)
3425 {
3426         struct compat_siginfo from;
3427
3428         if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3429                 return -EFAULT;
3430
3431         return post_copy_siginfo_from_user32(to, &from);
3432 }
3433 #endif /* CONFIG_COMPAT */
3434
3435 /**
3436  *  do_sigtimedwait - wait for queued signals specified in @which
3437  *  @which: queued signals to wait for
3438  *  @info: if non-null, the signal's siginfo is returned here
3439  *  @ts: upper bound on process time suspension
3440  */
3441 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3442                     const struct timespec64 *ts)
3443 {
3444         ktime_t *to = NULL, timeout = KTIME_MAX;
3445         struct task_struct *tsk = current;
3446         sigset_t mask = *which;
3447         int sig, ret = 0;
3448
3449         if (ts) {
3450                 if (!timespec64_valid(ts))
3451                         return -EINVAL;
3452                 timeout = timespec64_to_ktime(*ts);
3453                 to = &timeout;
3454         }
3455
3456         /*
3457          * Invert the set of allowed signals to get those we want to block.
3458          */
3459         sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3460         signotset(&mask);
3461
3462         spin_lock_irq(&tsk->sighand->siglock);
3463         sig = dequeue_signal(tsk, &mask, info);
3464         if (!sig && timeout) {
3465                 /*
3466                  * None ready, temporarily unblock those we're interested
3467                  * while we are sleeping in so that we'll be awakened when
3468                  * they arrive. Unblocking is always fine, we can avoid
3469                  * set_current_blocked().
3470                  */
3471                 tsk->real_blocked = tsk->blocked;
3472                 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3473                 recalc_sigpending();
3474                 spin_unlock_irq(&tsk->sighand->siglock);
3475
3476                 __set_current_state(TASK_INTERRUPTIBLE);
3477                 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3478                                                          HRTIMER_MODE_REL);
3479                 spin_lock_irq(&tsk->sighand->siglock);
3480                 __set_task_blocked(tsk, &tsk->real_blocked);
3481                 sigemptyset(&tsk->real_blocked);
3482                 sig = dequeue_signal(tsk, &mask, info);
3483         }
3484         spin_unlock_irq(&tsk->sighand->siglock);
3485
3486         if (sig)
3487                 return sig;
3488         return ret ? -EINTR : -EAGAIN;
3489 }
3490
3491 /**
3492  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3493  *                      in @uthese
3494  *  @uthese: queued signals to wait for
3495  *  @uinfo: if non-null, the signal's siginfo is returned here
3496  *  @uts: upper bound on process time suspension
3497  *  @sigsetsize: size of sigset_t type
3498  */
3499 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3500                 siginfo_t __user *, uinfo,
3501                 const struct __kernel_timespec __user *, uts,
3502                 size_t, sigsetsize)
3503 {
3504         sigset_t these;
3505         struct timespec64 ts;
3506         kernel_siginfo_t info;
3507         int ret;
3508
3509         /* XXX: Don't preclude handling different sized sigset_t's.  */
3510         if (sigsetsize != sizeof(sigset_t))
3511                 return -EINVAL;
3512
3513         if (copy_from_user(&these, uthese, sizeof(these)))
3514                 return -EFAULT;
3515
3516         if (uts) {
3517                 if (get_timespec64(&ts, uts))
3518                         return -EFAULT;
3519         }
3520
3521         ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3522
3523         if (ret > 0 && uinfo) {
3524                 if (copy_siginfo_to_user(uinfo, &info))
3525                         ret = -EFAULT;
3526         }
3527
3528         return ret;
3529 }
3530
3531 #ifdef CONFIG_COMPAT_32BIT_TIME
3532 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3533                 siginfo_t __user *, uinfo,
3534                 const struct old_timespec32 __user *, uts,
3535                 size_t, sigsetsize)
3536 {
3537         sigset_t these;
3538         struct timespec64 ts;
3539         kernel_siginfo_t info;
3540         int ret;
3541
3542         if (sigsetsize != sizeof(sigset_t))
3543                 return -EINVAL;
3544
3545         if (copy_from_user(&these, uthese, sizeof(these)))
3546                 return -EFAULT;
3547
3548         if (uts) {
3549                 if (get_old_timespec32(&ts, uts))
3550                         return -EFAULT;
3551         }
3552
3553         ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3554
3555         if (ret > 0 && uinfo) {
3556                 if (copy_siginfo_to_user(uinfo, &info))
3557                         ret = -EFAULT;
3558         }
3559
3560         return ret;
3561 }
3562 #endif
3563
3564 #ifdef CONFIG_COMPAT
3565 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3566                 struct compat_siginfo __user *, uinfo,
3567                 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3568 {
3569         sigset_t s;
3570         struct timespec64 t;
3571         kernel_siginfo_t info;
3572         long ret;
3573
3574         if (sigsetsize != sizeof(sigset_t))
3575                 return -EINVAL;
3576
3577         if (get_compat_sigset(&s, uthese))
3578                 return -EFAULT;
3579
3580         if (uts) {
3581                 if (get_timespec64(&t, uts))
3582                         return -EFAULT;
3583         }
3584
3585         ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3586
3587         if (ret > 0 && uinfo) {
3588                 if (copy_siginfo_to_user32(uinfo, &info))
3589                         ret = -EFAULT;
3590         }
3591
3592         return ret;
3593 }
3594
3595 #ifdef CONFIG_COMPAT_32BIT_TIME
3596 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3597                 struct compat_siginfo __user *, uinfo,
3598                 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3599 {
3600         sigset_t s;
3601         struct timespec64 t;
3602         kernel_siginfo_t info;
3603         long ret;
3604
3605         if (sigsetsize != sizeof(sigset_t))
3606                 return -EINVAL;
3607
3608         if (get_compat_sigset(&s, uthese))
3609                 return -EFAULT;
3610
3611         if (uts) {
3612                 if (get_old_timespec32(&t, uts))
3613                         return -EFAULT;
3614         }
3615
3616         ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3617
3618         if (ret > 0 && uinfo) {
3619                 if (copy_siginfo_to_user32(uinfo, &info))
3620                         ret = -EFAULT;
3621         }
3622
3623         return ret;
3624 }
3625 #endif
3626 #endif
3627
3628 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3629 {
3630         clear_siginfo(info);
3631         info->si_signo = sig;
3632         info->si_errno = 0;
3633         info->si_code = SI_USER;
3634         info->si_pid = task_tgid_vnr(current);
3635         info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3636 }
3637
3638 /**
3639  *  sys_kill - send a signal to a process
3640  *  @pid: the PID of the process
3641  *  @sig: signal to be sent
3642  */
3643 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3644 {
3645         struct kernel_siginfo info;
3646
3647         prepare_kill_siginfo(sig, &info);
3648
3649         return kill_something_info(sig, &info, pid);
3650 }
3651
3652 /*
3653  * Verify that the signaler and signalee either are in the same pid namespace
3654  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3655  * namespace.
3656  */
3657 static bool access_pidfd_pidns(struct pid *pid)
3658 {
3659         struct pid_namespace *active = task_active_pid_ns(current);
3660         struct pid_namespace *p = ns_of_pid(pid);
3661
3662         for (;;) {
3663                 if (!p)
3664                         return false;
3665                 if (p == active)
3666                         break;
3667                 p = p->parent;
3668         }
3669
3670         return true;
3671 }
3672
3673 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3674 {
3675 #ifdef CONFIG_COMPAT
3676         /*
3677          * Avoid hooking up compat syscalls and instead handle necessary
3678          * conversions here. Note, this is a stop-gap measure and should not be
3679          * considered a generic solution.
3680          */
3681         if (in_compat_syscall())
3682                 return copy_siginfo_from_user32(
3683                         kinfo, (struct compat_siginfo __user *)info);
3684 #endif
3685         return copy_siginfo_from_user(kinfo, info);
3686 }
3687
3688 static struct pid *pidfd_to_pid(const struct file *file)
3689 {
3690         struct pid *pid;
3691
3692         pid = pidfd_pid(file);
3693         if (!IS_ERR(pid))
3694                 return pid;
3695
3696         return tgid_pidfd_to_pid(file);
3697 }
3698
3699 /**
3700  * sys_pidfd_send_signal - Signal a process through a pidfd
3701  * @pidfd:  file descriptor of the process
3702  * @sig:    signal to send
3703  * @info:   signal info
3704  * @flags:  future flags
3705  *
3706  * The syscall currently only signals via PIDTYPE_PID which covers
3707  * kill(<positive-pid>, <signal>. It does not signal threads or process
3708  * groups.
3709  * In order to extend the syscall to threads and process groups the @flags
3710  * argument should be used. In essence, the @flags argument will determine
3711  * what is signaled and not the file descriptor itself. Put in other words,
3712  * grouping is a property of the flags argument not a property of the file
3713  * descriptor.
3714  *
3715  * Return: 0 on success, negative errno on failure
3716  */
3717 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3718                 siginfo_t __user *, info, unsigned int, flags)
3719 {
3720         int ret;
3721         struct fd f;
3722         struct pid *pid;
3723         kernel_siginfo_t kinfo;
3724
3725         /* Enforce flags be set to 0 until we add an extension. */
3726         if (flags)
3727                 return -EINVAL;
3728
3729         f = fdget(pidfd);
3730         if (!f.file)
3731                 return -EBADF;
3732
3733         /* Is this a pidfd? */
3734         pid = pidfd_to_pid(f.file);
3735         if (IS_ERR(pid)) {
3736                 ret = PTR_ERR(pid);
3737                 goto err;
3738         }
3739
3740         ret = -EINVAL;
3741         if (!access_pidfd_pidns(pid))
3742                 goto err;
3743
3744         if (info) {
3745                 ret = copy_siginfo_from_user_any(&kinfo, info);
3746                 if (unlikely(ret))
3747                         goto err;
3748
3749                 ret = -EINVAL;
3750                 if (unlikely(sig != kinfo.si_signo))
3751                         goto err;
3752
3753                 /* Only allow sending arbitrary signals to yourself. */
3754                 ret = -EPERM;
3755                 if ((task_pid(current) != pid) &&
3756                     (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3757                         goto err;
3758         } else {
3759                 prepare_kill_siginfo(sig, &kinfo);
3760         }
3761
3762         ret = kill_pid_info(sig, &kinfo, pid);
3763
3764 err:
3765         fdput(f);
3766         return ret;
3767 }
3768
3769 static int
3770 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3771 {
3772         struct task_struct *p;
3773         int error = -ESRCH;
3774
3775         rcu_read_lock();
3776         p = find_task_by_vpid(pid);
3777         if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3778                 error = check_kill_permission(sig, info, p);
3779                 /*
3780                  * The null signal is a permissions and process existence
3781                  * probe.  No signal is actually delivered.
3782                  */
3783                 if (!error && sig) {
3784                         error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3785                         /*
3786                          * If lock_task_sighand() failed we pretend the task
3787                          * dies after receiving the signal. The window is tiny,
3788                          * and the signal is private anyway.
3789                          */
3790                         if (unlikely(error == -ESRCH))
3791                                 error = 0;
3792                 }
3793         }
3794         rcu_read_unlock();
3795
3796         return error;
3797 }
3798
3799 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3800 {
3801         struct kernel_siginfo info;
3802
3803         clear_siginfo(&info);
3804         info.si_signo = sig;
3805         info.si_errno = 0;
3806         info.si_code = SI_TKILL;
3807         info.si_pid = task_tgid_vnr(current);
3808         info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3809
3810         return do_send_specific(tgid, pid, sig, &info);
3811 }
3812
3813 /**
3814  *  sys_tgkill - send signal to one specific thread
3815  *  @tgid: the thread group ID of the thread
3816  *  @pid: the PID of the thread
3817  *  @sig: signal to be sent
3818  *
3819  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3820  *  exists but it's not belonging to the target process anymore. This
3821  *  method solves the problem of threads exiting and PIDs getting reused.
3822  */
3823 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3824 {
3825         /* This is only valid for single tasks */
3826         if (pid <= 0 || tgid <= 0)
3827                 return -EINVAL;
3828
3829         return do_tkill(tgid, pid, sig);
3830 }
3831
3832 /**
3833  *  sys_tkill - send signal to one specific task
3834  *  @pid: the PID of the task
3835  *  @sig: signal to be sent
3836  *
3837  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3838  */
3839 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3840 {
3841         /* This is only valid for single tasks */
3842         if (pid <= 0)
3843                 return -EINVAL;
3844
3845         return do_tkill(0, pid, sig);
3846 }
3847
3848 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3849 {
3850         /* Not even root can pretend to send signals from the kernel.
3851          * Nor can they impersonate a kill()/tgkill(), which adds source info.
3852          */
3853         if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3854             (task_pid_vnr(current) != pid))
3855                 return -EPERM;
3856
3857         /* POSIX.1b doesn't mention process groups.  */
3858         return kill_proc_info(sig, info, pid);
3859 }
3860
3861 /**
3862  *  sys_rt_sigqueueinfo - send signal information to a signal
3863  *  @pid: the PID of the thread
3864  *  @sig: signal to be sent
3865  *  @uinfo: signal info to be sent
3866  */
3867 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3868                 siginfo_t __user *, uinfo)
3869 {
3870         kernel_siginfo_t info;
3871         int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3872         if (unlikely(ret))
3873                 return ret;
3874         return do_rt_sigqueueinfo(pid, sig, &info);
3875 }
3876
3877 #ifdef CONFIG_COMPAT
3878 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3879                         compat_pid_t, pid,
3880                         int, sig,
3881                         struct compat_siginfo __user *, uinfo)
3882 {
3883         kernel_siginfo_t info;
3884         int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3885         if (unlikely(ret))
3886                 return ret;
3887         return do_rt_sigqueueinfo(pid, sig, &info);
3888 }
3889 #endif
3890
3891 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3892 {
3893         /* This is only valid for single tasks */
3894         if (pid <= 0 || tgid <= 0)
3895                 return -EINVAL;
3896
3897         /* Not even root can pretend to send signals from the kernel.
3898          * Nor can they impersonate a kill()/tgkill(), which adds source info.
3899          */
3900         if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3901             (task_pid_vnr(current) != pid))
3902                 return -EPERM;
3903
3904         return do_send_specific(tgid, pid, sig, info);
3905 }
3906
3907 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3908                 siginfo_t __user *, uinfo)
3909 {
3910         kernel_siginfo_t info;
3911         int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3912         if (unlikely(ret))
3913                 return ret;
3914         return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3915 }
3916
3917 #ifdef CONFIG_COMPAT
3918 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3919                         compat_pid_t, tgid,
3920                         compat_pid_t, pid,
3921                         int, sig,
3922                         struct compat_siginfo __user *, uinfo)
3923 {
3924         kernel_siginfo_t info;
3925         int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3926         if (unlikely(ret))
3927                 return ret;
3928         return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3929 }
3930 #endif
3931
3932 /*
3933  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3934  */
3935 void kernel_sigaction(int sig, __sighandler_t action)
3936 {
3937         spin_lock_irq(&current->sighand->siglock);
3938         current->sighand->action[sig - 1].sa.sa_handler = action;
3939         if (action == SIG_IGN) {
3940                 sigset_t mask;
3941
3942                 sigemptyset(&mask);
3943                 sigaddset(&mask, sig);
3944
3945                 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3946                 flush_sigqueue_mask(&mask, &current->pending);
3947                 recalc_sigpending();
3948         }
3949         spin_unlock_irq(&current->sighand->siglock);
3950 }
3951 EXPORT_SYMBOL(kernel_sigaction);
3952
3953 void __weak sigaction_compat_abi(struct k_sigaction *act,
3954                 struct k_sigaction *oact)
3955 {
3956 }
3957
3958 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3959 {
3960         struct task_struct *p = current, *t;
3961         struct k_sigaction *k;
3962         sigset_t mask;
3963
3964         if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3965                 return -EINVAL;
3966
3967         k = &p->sighand->action[sig-1];
3968
3969         spin_lock_irq(&p->sighand->siglock);
3970         if (oact)
3971                 *oact = *k;
3972
3973         sigaction_compat_abi(act, oact);
3974
3975         if (act) {
3976                 sigdelsetmask(&act->sa.sa_mask,
3977                               sigmask(SIGKILL) | sigmask(SIGSTOP));
3978                 *k = *act;
3979                 /*
3980                  * POSIX 3.3.1.3:
3981                  *  "Setting a signal action to SIG_IGN for a signal that is
3982                  *   pending shall cause the pending signal to be discarded,
3983                  *   whether or not it is blocked."
3984                  *
3985                  *  "Setting a signal action to SIG_DFL for a signal that is
3986                  *   pending and whose default action is to ignore the signal
3987                  *   (for example, SIGCHLD), shall cause the pending signal to
3988                  *   be discarded, whether or not it is blocked"
3989                  */
3990                 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3991                         sigemptyset(&mask);
3992                         sigaddset(&mask, sig);
3993                         flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3994                         for_each_thread(p, t)
3995                                 flush_sigqueue_mask(&mask, &t->pending);
3996                 }
3997         }
3998
3999         spin_unlock_irq(&p->sighand->siglock);
4000         return 0;
4001 }
4002
4003 static int
4004 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4005                 size_t min_ss_size)
4006 {
4007         struct task_struct *t = current;
4008
4009         if (oss) {
4010                 memset(oss, 0, sizeof(stack_t));
4011                 oss->ss_sp = (void __user *) t->sas_ss_sp;
4012                 oss->ss_size = t->sas_ss_size;
4013                 oss->ss_flags = sas_ss_flags(sp) |
4014                         (current->sas_ss_flags & SS_FLAG_BITS);
4015         }
4016
4017         if (ss) {
4018                 void __user *ss_sp = ss->ss_sp;
4019                 size_t ss_size = ss->ss_size;
4020                 unsigned ss_flags = ss->ss_flags;
4021                 int ss_mode;
4022
4023                 if (unlikely(on_sig_stack(sp)))
4024                         return -EPERM;
4025
4026                 ss_mode = ss_flags & ~SS_FLAG_BITS;
4027                 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4028                                 ss_mode != 0))
4029                         return -EINVAL;
4030
4031                 if (ss_mode == SS_DISABLE) {
4032                         ss_size = 0;
4033                         ss_sp = NULL;
4034                 } else {
4035                         if (unlikely(ss_size < min_ss_size))
4036                                 return -ENOMEM;
4037                 }
4038
4039                 t->sas_ss_sp = (unsigned long) ss_sp;
4040                 t->sas_ss_size = ss_size;
4041                 t->sas_ss_flags = ss_flags;
4042         }
4043         return 0;
4044 }
4045
4046 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4047 {
4048         stack_t new, old;
4049         int err;
4050         if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4051                 return -EFAULT;
4052         err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4053                               current_user_stack_pointer(),
4054                               MINSIGSTKSZ);
4055         if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4056                 err = -EFAULT;
4057         return err;
4058 }
4059
4060 int restore_altstack(const stack_t __user *uss)
4061 {
4062         stack_t new;
4063         if (copy_from_user(&new, uss, sizeof(stack_t)))
4064                 return -EFAULT;
4065         (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4066                              MINSIGSTKSZ);
4067         /* squash all but EFAULT for now */
4068         return 0;
4069 }
4070
4071 int __save_altstack(stack_t __user *uss, unsigned long sp)
4072 {
4073         struct task_struct *t = current;
4074         int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4075                 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4076                 __put_user(t->sas_ss_size, &uss->ss_size);
4077         if (err)
4078                 return err;
4079         if (t->sas_ss_flags & SS_AUTODISARM)
4080                 sas_ss_reset(t);
4081         return 0;
4082 }
4083
4084 #ifdef CONFIG_COMPAT
4085 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4086                                  compat_stack_t __user *uoss_ptr)
4087 {
4088         stack_t uss, uoss;
4089         int ret;
4090
4091         if (uss_ptr) {
4092                 compat_stack_t uss32;
4093                 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4094                         return -EFAULT;
4095                 uss.ss_sp = compat_ptr(uss32.ss_sp);
4096                 uss.ss_flags = uss32.ss_flags;
4097                 uss.ss_size = uss32.ss_size;
4098         }
4099         ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4100                              compat_user_stack_pointer(),
4101                              COMPAT_MINSIGSTKSZ);
4102         if (ret >= 0 && uoss_ptr)  {
4103                 compat_stack_t old;
4104                 memset(&old, 0, sizeof(old));
4105                 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4106                 old.ss_flags = uoss.ss_flags;
4107                 old.ss_size = uoss.ss_size;
4108                 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4109                         ret = -EFAULT;
4110         }
4111         return ret;
4112 }
4113
4114 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4115                         const compat_stack_t __user *, uss_ptr,
4116                         compat_stack_t __user *, uoss_ptr)
4117 {
4118         return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4119 }
4120
4121 int compat_restore_altstack(const compat_stack_t __user *uss)
4122 {
4123         int err = do_compat_sigaltstack(uss, NULL);
4124         /* squash all but -EFAULT for now */
4125         return err == -EFAULT ? err : 0;
4126 }
4127
4128 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4129 {
4130         int err;
4131         struct task_struct *t = current;
4132         err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4133                          &uss->ss_sp) |
4134                 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4135                 __put_user(t->sas_ss_size, &uss->ss_size);
4136         if (err)
4137                 return err;
4138         if (t->sas_ss_flags & SS_AUTODISARM)
4139                 sas_ss_reset(t);
4140         return 0;
4141 }
4142 #endif
4143
4144 #ifdef __ARCH_WANT_SYS_SIGPENDING
4145
4146 /**
4147  *  sys_sigpending - examine pending signals
4148  *  @uset: where mask of pending signal is returned
4149  */
4150 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4151 {
4152         sigset_t set;
4153
4154         if (sizeof(old_sigset_t) > sizeof(*uset))
4155                 return -EINVAL;
4156
4157         do_sigpending(&set);
4158
4159         if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4160                 return -EFAULT;
4161
4162         return 0;
4163 }
4164
4165 #ifdef CONFIG_COMPAT
4166 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4167 {
4168         sigset_t set;
4169
4170         do_sigpending(&set);
4171
4172         return put_user(set.sig[0], set32);
4173 }
4174 #endif
4175
4176 #endif
4177
4178 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4179 /**
4180  *  sys_sigprocmask - examine and change blocked signals
4181  *  @how: whether to add, remove, or set signals
4182  *  @nset: signals to add or remove (if non-null)
4183  *  @oset: previous value of signal mask if non-null
4184  *
4185  * Some platforms have their own version with special arguments;
4186  * others support only sys_rt_sigprocmask.
4187  */
4188
4189 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4190                 old_sigset_t __user *, oset)
4191 {
4192         old_sigset_t old_set, new_set;
4193         sigset_t new_blocked;
4194
4195         old_set = current->blocked.sig[0];
4196
4197         if (nset) {
4198                 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4199                         return -EFAULT;
4200
4201                 new_blocked = current->blocked;
4202
4203                 switch (how) {
4204                 case SIG_BLOCK:
4205                         sigaddsetmask(&new_blocked, new_set);
4206                         break;
4207                 case SIG_UNBLOCK:
4208                         sigdelsetmask(&new_blocked, new_set);
4209                         break;
4210                 case SIG_SETMASK:
4211                         new_blocked.sig[0] = new_set;
4212                         break;
4213                 default:
4214                         return -EINVAL;
4215                 }
4216
4217                 set_current_blocked(&new_blocked);
4218         }
4219
4220         if (oset) {
4221                 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4222                         return -EFAULT;
4223         }
4224
4225         return 0;
4226 }
4227 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4228
4229 #ifndef CONFIG_ODD_RT_SIGACTION
4230 /**
4231  *  sys_rt_sigaction - alter an action taken by a process
4232  *  @sig: signal to be sent
4233  *  @act: new sigaction
4234  *  @oact: used to save the previous sigaction
4235  *  @sigsetsize: size of sigset_t type
4236  */
4237 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4238                 const struct sigaction __user *, act,
4239                 struct sigaction __user *, oact,
4240                 size_t, sigsetsize)
4241 {
4242         struct k_sigaction new_sa, old_sa;
4243         int ret;
4244
4245         /* XXX: Don't preclude handling different sized sigset_t's.  */
4246         if (sigsetsize != sizeof(sigset_t))
4247                 return -EINVAL;
4248
4249         if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4250                 return -EFAULT;
4251
4252         ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4253         if (ret)
4254                 return ret;
4255
4256         if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4257                 return -EFAULT;
4258
4259         return 0;
4260 }
4261 #ifdef CONFIG_COMPAT
4262 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4263                 const struct compat_sigaction __user *, act,
4264                 struct compat_sigaction __user *, oact,
4265                 compat_size_t, sigsetsize)
4266 {
4267         struct k_sigaction new_ka, old_ka;
4268 #ifdef __ARCH_HAS_SA_RESTORER
4269         compat_uptr_t restorer;
4270 #endif
4271         int ret;
4272
4273         /* XXX: Don't preclude handling different sized sigset_t's.  */
4274         if (sigsetsize != sizeof(compat_sigset_t))
4275                 return -EINVAL;
4276
4277         if (act) {
4278                 compat_uptr_t handler;
4279                 ret = get_user(handler, &act->sa_handler);
4280                 new_ka.sa.sa_handler = compat_ptr(handler);
4281 #ifdef __ARCH_HAS_SA_RESTORER
4282                 ret |= get_user(restorer, &act->sa_restorer);
4283                 new_ka.sa.sa_restorer = compat_ptr(restorer);
4284 #endif
4285                 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4286                 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4287                 if (ret)
4288                         return -EFAULT;
4289         }
4290
4291         ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4292         if (!ret && oact) {
4293                 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4294                                &oact->sa_handler);
4295                 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4296                                          sizeof(oact->sa_mask));
4297                 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4298 #ifdef __ARCH_HAS_SA_RESTORER
4299                 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4300                                 &oact->sa_restorer);
4301 #endif
4302         }
4303         return ret;
4304 }
4305 #endif
4306 #endif /* !CONFIG_ODD_RT_SIGACTION */
4307
4308 #ifdef CONFIG_OLD_SIGACTION
4309 SYSCALL_DEFINE3(sigaction, int, sig,
4310                 const struct old_sigaction __user *, act,
4311                 struct old_sigaction __user *, oact)
4312 {
4313         struct k_sigaction new_ka, old_ka;
4314         int ret;
4315
4316         if (act) {
4317                 old_sigset_t mask;
4318                 if (!access_ok(act, sizeof(*act)) ||
4319                     __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4320                     __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4321                     __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4322                     __get_user(mask, &act->sa_mask))
4323                         return -EFAULT;
4324 #ifdef __ARCH_HAS_KA_RESTORER
4325                 new_ka.ka_restorer = NULL;
4326 #endif
4327                 siginitset(&new_ka.sa.sa_mask, mask);
4328         }
4329
4330         ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4331
4332         if (!ret && oact) {
4333                 if (!access_ok(oact, sizeof(*oact)) ||
4334                     __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4335                     __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4336                     __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4337                     __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4338                         return -EFAULT;
4339         }
4340
4341         return ret;
4342 }
4343 #endif
4344 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4345 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4346                 const struct compat_old_sigaction __user *, act,
4347                 struct compat_old_sigaction __user *, oact)
4348 {
4349         struct k_sigaction new_ka, old_ka;
4350         int ret;
4351         compat_old_sigset_t mask;
4352         compat_uptr_t handler, restorer;
4353
4354         if (act) {
4355                 if (!access_ok(act, sizeof(*act)) ||
4356                     __get_user(handler, &act->sa_handler) ||
4357                     __get_user(restorer, &act->sa_restorer) ||
4358                     __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4359                     __get_user(mask, &act->sa_mask))
4360                         return -EFAULT;
4361
4362 #ifdef __ARCH_HAS_KA_RESTORER
4363                 new_ka.ka_restorer = NULL;
4364 #endif
4365                 new_ka.sa.sa_handler = compat_ptr(handler);
4366                 new_ka.sa.sa_restorer = compat_ptr(restorer);
4367                 siginitset(&new_ka.sa.sa_mask, mask);
4368         }
4369
4370         ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4371
4372         if (!ret && oact) {
4373                 if (!access_ok(oact, sizeof(*oact)) ||
4374                     __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4375                                &oact->sa_handler) ||
4376                     __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4377                                &oact->sa_restorer) ||
4378                     __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4379                     __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4380                         return -EFAULT;
4381         }
4382         return ret;
4383 }
4384 #endif
4385
4386 #ifdef CONFIG_SGETMASK_SYSCALL
4387
4388 /*
4389  * For backwards compatibility.  Functionality superseded by sigprocmask.
4390  */
4391 SYSCALL_DEFINE0(sgetmask)
4392 {
4393         /* SMP safe */
4394         return current->blocked.sig[0];
4395 }
4396
4397 SYSCALL_DEFINE1(ssetmask, int, newmask)
4398 {
4399         int old = current->blocked.sig[0];
4400         sigset_t newset;
4401
4402         siginitset(&newset, newmask);
4403         set_current_blocked(&newset);
4404
4405         return old;
4406 }
4407 #endif /* CONFIG_SGETMASK_SYSCALL */
4408
4409 #ifdef __ARCH_WANT_SYS_SIGNAL
4410 /*
4411  * For backwards compatibility.  Functionality superseded by sigaction.
4412  */
4413 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4414 {
4415         struct k_sigaction new_sa, old_sa;
4416         int ret;
4417
4418         new_sa.sa.sa_handler = handler;
4419         new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4420         sigemptyset(&new_sa.sa.sa_mask);
4421
4422         ret = do_sigaction(sig, &new_sa, &old_sa);
4423
4424         return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4425 }
4426 #endif /* __ARCH_WANT_SYS_SIGNAL */
4427
4428 #ifdef __ARCH_WANT_SYS_PAUSE
4429
4430 SYSCALL_DEFINE0(pause)
4431 {
4432         while (!signal_pending(current)) {
4433                 __set_current_state(TASK_INTERRUPTIBLE);
4434                 schedule();
4435         }
4436         return -ERESTARTNOHAND;
4437 }
4438
4439 #endif
4440
4441 static int sigsuspend(sigset_t *set)
4442 {
4443         current->saved_sigmask = current->blocked;
4444         set_current_blocked(set);
4445
4446         while (!signal_pending(current)) {
4447                 __set_current_state(TASK_INTERRUPTIBLE);
4448                 schedule();
4449         }
4450         set_restore_sigmask();
4451         return -ERESTARTNOHAND;
4452 }
4453
4454 /**
4455  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4456  *      @unewset value until a signal is received
4457  *  @unewset: new signal mask value
4458  *  @sigsetsize: size of sigset_t type
4459  */
4460 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4461 {
4462         sigset_t newset;
4463
4464         /* XXX: Don't preclude handling different sized sigset_t's.  */
4465         if (sigsetsize != sizeof(sigset_t))
4466                 return -EINVAL;
4467
4468         if (copy_from_user(&newset, unewset, sizeof(newset)))
4469                 return -EFAULT;
4470         return sigsuspend(&newset);
4471 }
4472  
4473 #ifdef CONFIG_COMPAT
4474 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4475 {
4476         sigset_t newset;
4477
4478         /* XXX: Don't preclude handling different sized sigset_t's.  */
4479         if (sigsetsize != sizeof(sigset_t))
4480                 return -EINVAL;
4481
4482         if (get_compat_sigset(&newset, unewset))
4483                 return -EFAULT;
4484         return sigsuspend(&newset);
4485 }
4486 #endif
4487
4488 #ifdef CONFIG_OLD_SIGSUSPEND
4489 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4490 {
4491         sigset_t blocked;
4492         siginitset(&blocked, mask);
4493         return sigsuspend(&blocked);
4494 }
4495 #endif
4496 #ifdef CONFIG_OLD_SIGSUSPEND3
4497 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4498 {
4499         sigset_t blocked;
4500         siginitset(&blocked, mask);
4501         return sigsuspend(&blocked);
4502 }
4503 #endif
4504
4505 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4506 {
4507         return NULL;
4508 }
4509
4510 static inline void siginfo_buildtime_checks(void)
4511 {
4512         BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4513
4514         /* Verify the offsets in the two siginfos match */
4515 #define CHECK_OFFSET(field) \
4516         BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4517
4518         /* kill */
4519         CHECK_OFFSET(si_pid);
4520         CHECK_OFFSET(si_uid);
4521
4522         /* timer */
4523         CHECK_OFFSET(si_tid);
4524         CHECK_OFFSET(si_overrun);
4525         CHECK_OFFSET(si_value);
4526
4527         /* rt */
4528         CHECK_OFFSET(si_pid);
4529         CHECK_OFFSET(si_uid);
4530         CHECK_OFFSET(si_value);
4531
4532         /* sigchld */
4533         CHECK_OFFSET(si_pid);
4534         CHECK_OFFSET(si_uid);
4535         CHECK_OFFSET(si_status);
4536         CHECK_OFFSET(si_utime);
4537         CHECK_OFFSET(si_stime);
4538
4539         /* sigfault */
4540         CHECK_OFFSET(si_addr);
4541         CHECK_OFFSET(si_addr_lsb);
4542         CHECK_OFFSET(si_lower);
4543         CHECK_OFFSET(si_upper);
4544         CHECK_OFFSET(si_pkey);
4545
4546         /* sigpoll */
4547         CHECK_OFFSET(si_band);
4548         CHECK_OFFSET(si_fd);
4549
4550         /* sigsys */
4551         CHECK_OFFSET(si_call_addr);
4552         CHECK_OFFSET(si_syscall);
4553         CHECK_OFFSET(si_arch);
4554 #undef CHECK_OFFSET
4555
4556         /* usb asyncio */
4557         BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4558                      offsetof(struct siginfo, si_addr));
4559         if (sizeof(int) == sizeof(void __user *)) {
4560                 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4561                              sizeof(void __user *));
4562         } else {
4563                 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4564                               sizeof_field(struct siginfo, si_uid)) !=
4565                              sizeof(void __user *));
4566                 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4567                              offsetof(struct siginfo, si_uid));
4568         }
4569 #ifdef CONFIG_COMPAT
4570         BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4571                      offsetof(struct compat_siginfo, si_addr));
4572         BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4573                      sizeof(compat_uptr_t));
4574         BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4575                      sizeof_field(struct siginfo, si_pid));
4576 #endif
4577 }
4578
4579 void __init signals_init(void)
4580 {
4581         siginfo_buildtime_checks();
4582
4583         sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4584 }
4585
4586 #ifdef CONFIG_KGDB_KDB
4587 #include <linux/kdb.h>
4588 /*
4589  * kdb_send_sig - Allows kdb to send signals without exposing
4590  * signal internals.  This function checks if the required locks are
4591  * available before calling the main signal code, to avoid kdb
4592  * deadlocks.
4593  */
4594 void kdb_send_sig(struct task_struct *t, int sig)
4595 {
4596         static struct task_struct *kdb_prev_t;
4597         int new_t, ret;
4598         if (!spin_trylock(&t->sighand->siglock)) {
4599                 kdb_printf("Can't do kill command now.\n"
4600                            "The sigmask lock is held somewhere else in "
4601                            "kernel, try again later\n");
4602                 return;
4603         }
4604         new_t = kdb_prev_t != t;
4605         kdb_prev_t = t;
4606         if (t->state != TASK_RUNNING && new_t) {
4607                 spin_unlock(&t->sighand->siglock);
4608                 kdb_printf("Process is not RUNNING, sending a signal from "
4609                            "kdb risks deadlock\n"
4610                            "on the run queue locks. "
4611                            "The signal has _not_ been sent.\n"
4612                            "Reissue the kill command if you want to risk "
4613                            "the deadlock.\n");
4614                 return;
4615         }
4616         ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4617         spin_unlock(&t->sighand->siglock);
4618         if (ret)
4619                 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4620                            sig, t->pid);
4621         else
4622                 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4623 }
4624 #endif  /* CONFIG_KGDB_KDB */