2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/signal.h>
47 #include <asm/param.h>
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/siginfo.h>
51 #include <asm/cacheflush.h>
52 #include "audit.h" /* audit_signal_info() */
55 * SLAB caches for signal bits.
58 static struct kmem_cache *sigqueue_cachep;
60 int print_fatal_signals __read_mostly;
62 static void __user *sig_handler(struct task_struct *t, int sig)
64 return t->sighand->action[sig - 1].sa.sa_handler;
67 static int sig_handler_ignored(void __user *handler, int sig)
69 /* Is it explicitly or implicitly ignored? */
70 return handler == SIG_IGN ||
71 (handler == SIG_DFL && sig_kernel_ignore(sig));
74 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
78 handler = sig_handler(t, sig);
80 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
81 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
84 return sig_handler_ignored(handler, sig);
87 static int sig_ignored(struct task_struct *t, int sig, bool force)
90 * Blocked signals are never ignored, since the
91 * signal handler may change by the time it is
94 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
98 * Tracers may want to know about even ignored signal unless it
99 * is SIGKILL which can't be reported anyway but can be ignored
100 * by SIGNAL_UNKILLABLE task.
102 if (t->ptrace && sig != SIGKILL)
105 return sig_task_ignored(t, sig, force);
109 * Re-calculate pending state from the set of locally pending
110 * signals, globally pending signals, and blocked signals.
112 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
117 switch (_NSIG_WORDS) {
119 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
120 ready |= signal->sig[i] &~ blocked->sig[i];
123 case 4: ready = signal->sig[3] &~ blocked->sig[3];
124 ready |= signal->sig[2] &~ blocked->sig[2];
125 ready |= signal->sig[1] &~ blocked->sig[1];
126 ready |= signal->sig[0] &~ blocked->sig[0];
129 case 2: ready = signal->sig[1] &~ blocked->sig[1];
130 ready |= signal->sig[0] &~ blocked->sig[0];
133 case 1: ready = signal->sig[0] &~ blocked->sig[0];
138 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
140 static int recalc_sigpending_tsk(struct task_struct *t)
142 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
143 PENDING(&t->pending, &t->blocked) ||
144 PENDING(&t->signal->shared_pending, &t->blocked)) {
145 set_tsk_thread_flag(t, TIF_SIGPENDING);
149 * We must never clear the flag in another thread, or in current
150 * when it's possible the current syscall is returning -ERESTART*.
151 * So we don't clear it here, and only callers who know they should do.
157 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
158 * This is superfluous when called on current, the wakeup is a harmless no-op.
160 void recalc_sigpending_and_wake(struct task_struct *t)
162 if (recalc_sigpending_tsk(t))
163 signal_wake_up(t, 0);
166 void recalc_sigpending(void)
168 if (!recalc_sigpending_tsk(current) && !freezing(current))
169 clear_thread_flag(TIF_SIGPENDING);
173 /* Given the mask, find the first available signal that should be serviced. */
175 #define SYNCHRONOUS_MASK \
176 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
177 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
179 int next_signal(struct sigpending *pending, sigset_t *mask)
181 unsigned long i, *s, *m, x;
184 s = pending->signal.sig;
188 * Handle the first word specially: it contains the
189 * synchronous signals that need to be dequeued first.
193 if (x & SYNCHRONOUS_MASK)
194 x &= SYNCHRONOUS_MASK;
199 switch (_NSIG_WORDS) {
201 for (i = 1; i < _NSIG_WORDS; ++i) {
205 sig = ffz(~x) + i*_NSIG_BPW + 1;
214 sig = ffz(~x) + _NSIG_BPW + 1;
225 static inline void print_dropped_signal(int sig)
227 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
229 if (!print_fatal_signals)
232 if (!__ratelimit(&ratelimit_state))
235 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
236 current->comm, current->pid, sig);
240 * task_set_jobctl_pending - set jobctl pending bits
242 * @mask: pending bits to set
244 * Clear @mask from @task->jobctl. @mask must be subset of
245 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
246 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
247 * cleared. If @task is already being killed or exiting, this function
251 * Must be called with @task->sighand->siglock held.
254 * %true if @mask is set, %false if made noop because @task was dying.
256 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
258 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
259 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
260 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
262 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
265 if (mask & JOBCTL_STOP_SIGMASK)
266 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
268 task->jobctl |= mask;
273 * task_clear_jobctl_trapping - clear jobctl trapping bit
276 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
277 * Clear it and wake up the ptracer. Note that we don't need any further
278 * locking. @task->siglock guarantees that @task->parent points to the
282 * Must be called with @task->sighand->siglock held.
284 void task_clear_jobctl_trapping(struct task_struct *task)
286 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
287 task->jobctl &= ~JOBCTL_TRAPPING;
288 smp_mb(); /* advised by wake_up_bit() */
289 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
294 * task_clear_jobctl_pending - clear jobctl pending bits
296 * @mask: pending bits to clear
298 * Clear @mask from @task->jobctl. @mask must be subset of
299 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
300 * STOP bits are cleared together.
302 * If clearing of @mask leaves no stop or trap pending, this function calls
303 * task_clear_jobctl_trapping().
306 * Must be called with @task->sighand->siglock held.
308 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
310 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
312 if (mask & JOBCTL_STOP_PENDING)
313 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
315 task->jobctl &= ~mask;
317 if (!(task->jobctl & JOBCTL_PENDING_MASK))
318 task_clear_jobctl_trapping(task);
322 * task_participate_group_stop - participate in a group stop
323 * @task: task participating in a group stop
325 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
326 * Group stop states are cleared and the group stop count is consumed if
327 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
328 * stop, the appropriate %SIGNAL_* flags are set.
331 * Must be called with @task->sighand->siglock held.
334 * %true if group stop completion should be notified to the parent, %false
337 static bool task_participate_group_stop(struct task_struct *task)
339 struct signal_struct *sig = task->signal;
340 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
342 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
344 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
349 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
350 sig->group_stop_count--;
353 * Tell the caller to notify completion iff we are entering into a
354 * fresh group stop. Read comment in do_signal_stop() for details.
356 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
357 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
364 * allocate a new signal queue record
365 * - this may be called without locks if and only if t == current, otherwise an
366 * appropriate lock must be held to stop the target task from exiting
368 static struct sigqueue *
369 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
371 struct sigqueue *q = NULL;
372 struct user_struct *user;
375 * Protect access to @t credentials. This can go away when all
376 * callers hold rcu read lock.
379 user = get_uid(__task_cred(t)->user);
380 atomic_inc(&user->sigpending);
383 if (override_rlimit ||
384 atomic_read(&user->sigpending) <=
385 task_rlimit(t, RLIMIT_SIGPENDING)) {
386 q = kmem_cache_alloc(sigqueue_cachep, flags);
388 print_dropped_signal(sig);
391 if (unlikely(q == NULL)) {
392 atomic_dec(&user->sigpending);
395 INIT_LIST_HEAD(&q->list);
403 static void __sigqueue_free(struct sigqueue *q)
405 if (q->flags & SIGQUEUE_PREALLOC)
407 atomic_dec(&q->user->sigpending);
409 kmem_cache_free(sigqueue_cachep, q);
412 void flush_sigqueue(struct sigpending *queue)
416 sigemptyset(&queue->signal);
417 while (!list_empty(&queue->list)) {
418 q = list_entry(queue->list.next, struct sigqueue , list);
419 list_del_init(&q->list);
425 * Flush all pending signals for this kthread.
427 void flush_signals(struct task_struct *t)
431 spin_lock_irqsave(&t->sighand->siglock, flags);
432 clear_tsk_thread_flag(t, TIF_SIGPENDING);
433 flush_sigqueue(&t->pending);
434 flush_sigqueue(&t->signal->shared_pending);
435 spin_unlock_irqrestore(&t->sighand->siglock, flags);
438 #ifdef CONFIG_POSIX_TIMERS
439 static void __flush_itimer_signals(struct sigpending *pending)
441 sigset_t signal, retain;
442 struct sigqueue *q, *n;
444 signal = pending->signal;
445 sigemptyset(&retain);
447 list_for_each_entry_safe(q, n, &pending->list, list) {
448 int sig = q->info.si_signo;
450 if (likely(q->info.si_code != SI_TIMER)) {
451 sigaddset(&retain, sig);
453 sigdelset(&signal, sig);
454 list_del_init(&q->list);
459 sigorsets(&pending->signal, &signal, &retain);
462 void flush_itimer_signals(void)
464 struct task_struct *tsk = current;
467 spin_lock_irqsave(&tsk->sighand->siglock, flags);
468 __flush_itimer_signals(&tsk->pending);
469 __flush_itimer_signals(&tsk->signal->shared_pending);
470 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
474 void ignore_signals(struct task_struct *t)
478 for (i = 0; i < _NSIG; ++i)
479 t->sighand->action[i].sa.sa_handler = SIG_IGN;
485 * Flush all handlers for a task.
489 flush_signal_handlers(struct task_struct *t, int force_default)
492 struct k_sigaction *ka = &t->sighand->action[0];
493 for (i = _NSIG ; i != 0 ; i--) {
494 if (force_default || ka->sa.sa_handler != SIG_IGN)
495 ka->sa.sa_handler = SIG_DFL;
497 #ifdef __ARCH_HAS_SA_RESTORER
498 ka->sa.sa_restorer = NULL;
500 sigemptyset(&ka->sa.sa_mask);
505 int unhandled_signal(struct task_struct *tsk, int sig)
507 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
508 if (is_global_init(tsk))
510 if (handler != SIG_IGN && handler != SIG_DFL)
512 /* if ptraced, let the tracer determine */
516 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
519 struct sigqueue *q, *first = NULL;
522 * Collect the siginfo appropriate to this signal. Check if
523 * there is another siginfo for the same signal.
525 list_for_each_entry(q, &list->list, list) {
526 if (q->info.si_signo == sig) {
533 sigdelset(&list->signal, sig);
537 list_del_init(&first->list);
538 copy_siginfo(info, &first->info);
541 (first->flags & SIGQUEUE_PREALLOC) &&
542 (info->si_code == SI_TIMER) &&
543 (info->si_sys_private);
545 __sigqueue_free(first);
548 * Ok, it wasn't in the queue. This must be
549 * a fast-pathed signal or we must have been
550 * out of queue space. So zero out the info.
552 info->si_signo = sig;
554 info->si_code = SI_USER;
560 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
561 siginfo_t *info, bool *resched_timer)
563 int sig = next_signal(pending, mask);
566 collect_signal(sig, pending, info, resched_timer);
571 * Dequeue a signal and return the element to the caller, which is
572 * expected to free it.
574 * All callers have to hold the siglock.
576 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
578 bool resched_timer = false;
581 /* We only dequeue private signals from ourselves, we don't let
582 * signalfd steal them
584 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
586 signr = __dequeue_signal(&tsk->signal->shared_pending,
587 mask, info, &resched_timer);
588 #ifdef CONFIG_POSIX_TIMERS
592 * itimers are process shared and we restart periodic
593 * itimers in the signal delivery path to prevent DoS
594 * attacks in the high resolution timer case. This is
595 * compliant with the old way of self-restarting
596 * itimers, as the SIGALRM is a legacy signal and only
597 * queued once. Changing the restart behaviour to
598 * restart the timer in the signal dequeue path is
599 * reducing the timer noise on heavy loaded !highres
602 if (unlikely(signr == SIGALRM)) {
603 struct hrtimer *tmr = &tsk->signal->real_timer;
605 if (!hrtimer_is_queued(tmr) &&
606 tsk->signal->it_real_incr != 0) {
607 hrtimer_forward(tmr, tmr->base->get_time(),
608 tsk->signal->it_real_incr);
609 hrtimer_restart(tmr);
619 if (unlikely(sig_kernel_stop(signr))) {
621 * Set a marker that we have dequeued a stop signal. Our
622 * caller might release the siglock and then the pending
623 * stop signal it is about to process is no longer in the
624 * pending bitmasks, but must still be cleared by a SIGCONT
625 * (and overruled by a SIGKILL). So those cases clear this
626 * shared flag after we've set it. Note that this flag may
627 * remain set after the signal we return is ignored or
628 * handled. That doesn't matter because its only purpose
629 * is to alert stop-signal processing code when another
630 * processor has come along and cleared the flag.
632 current->jobctl |= JOBCTL_STOP_DEQUEUED;
634 #ifdef CONFIG_POSIX_TIMERS
637 * Release the siglock to ensure proper locking order
638 * of timer locks outside of siglocks. Note, we leave
639 * irqs disabled here, since the posix-timers code is
640 * about to disable them again anyway.
642 spin_unlock(&tsk->sighand->siglock);
643 posixtimer_rearm(info);
644 spin_lock(&tsk->sighand->siglock);
651 * Tell a process that it has a new active signal..
653 * NOTE! we rely on the previous spin_lock to
654 * lock interrupts for us! We can only be called with
655 * "siglock" held, and the local interrupt must
656 * have been disabled when that got acquired!
658 * No need to set need_resched since signal event passing
659 * goes through ->blocked
661 void signal_wake_up_state(struct task_struct *t, unsigned int state)
663 set_tsk_thread_flag(t, TIF_SIGPENDING);
665 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
666 * case. We don't check t->state here because there is a race with it
667 * executing another processor and just now entering stopped state.
668 * By using wake_up_state, we ensure the process will wake up and
669 * handle its death signal.
671 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
676 * Remove signals in mask from the pending set and queue.
677 * Returns 1 if any signals were found.
679 * All callers must be holding the siglock.
681 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
683 struct sigqueue *q, *n;
686 sigandsets(&m, mask, &s->signal);
687 if (sigisemptyset(&m))
690 sigandnsets(&s->signal, &s->signal, mask);
691 list_for_each_entry_safe(q, n, &s->list, list) {
692 if (sigismember(mask, q->info.si_signo)) {
693 list_del_init(&q->list);
700 static inline int is_si_special(const struct siginfo *info)
702 return info <= SEND_SIG_FORCED;
705 static inline bool si_fromuser(const struct siginfo *info)
707 return info == SEND_SIG_NOINFO ||
708 (!is_si_special(info) && SI_FROMUSER(info));
712 * called with RCU read lock from check_kill_permission()
714 static int kill_ok_by_cred(struct task_struct *t)
716 const struct cred *cred = current_cred();
717 const struct cred *tcred = __task_cred(t);
719 if (uid_eq(cred->euid, tcred->suid) ||
720 uid_eq(cred->euid, tcred->uid) ||
721 uid_eq(cred->uid, tcred->suid) ||
722 uid_eq(cred->uid, tcred->uid))
725 if (ns_capable(tcred->user_ns, CAP_KILL))
732 * Bad permissions for sending the signal
733 * - the caller must hold the RCU read lock
735 static int check_kill_permission(int sig, struct siginfo *info,
736 struct task_struct *t)
741 if (!valid_signal(sig))
744 if (!si_fromuser(info))
747 error = audit_signal_info(sig, t); /* Let audit system see the signal */
751 if (!same_thread_group(current, t) &&
752 !kill_ok_by_cred(t)) {
755 sid = task_session(t);
757 * We don't return the error if sid == NULL. The
758 * task was unhashed, the caller must notice this.
760 if (!sid || sid == task_session(current))
767 return security_task_kill(t, info, sig, 0);
771 * ptrace_trap_notify - schedule trap to notify ptracer
772 * @t: tracee wanting to notify tracer
774 * This function schedules sticky ptrace trap which is cleared on the next
775 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
778 * If @t is running, STOP trap will be taken. If trapped for STOP and
779 * ptracer is listening for events, tracee is woken up so that it can
780 * re-trap for the new event. If trapped otherwise, STOP trap will be
781 * eventually taken without returning to userland after the existing traps
782 * are finished by PTRACE_CONT.
785 * Must be called with @task->sighand->siglock held.
787 static void ptrace_trap_notify(struct task_struct *t)
789 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
790 assert_spin_locked(&t->sighand->siglock);
792 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
793 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
797 * Handle magic process-wide effects of stop/continue signals. Unlike
798 * the signal actions, these happen immediately at signal-generation
799 * time regardless of blocking, ignoring, or handling. This does the
800 * actual continuing for SIGCONT, but not the actual stopping for stop
801 * signals. The process stop is done as a signal action for SIG_DFL.
803 * Returns true if the signal should be actually delivered, otherwise
804 * it should be dropped.
806 static bool prepare_signal(int sig, struct task_struct *p, bool force)
808 struct signal_struct *signal = p->signal;
809 struct task_struct *t;
812 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
813 if (!(signal->flags & SIGNAL_GROUP_EXIT))
814 return sig == SIGKILL;
816 * The process is in the middle of dying, nothing to do.
818 } else if (sig_kernel_stop(sig)) {
820 * This is a stop signal. Remove SIGCONT from all queues.
822 siginitset(&flush, sigmask(SIGCONT));
823 flush_sigqueue_mask(&flush, &signal->shared_pending);
824 for_each_thread(p, t)
825 flush_sigqueue_mask(&flush, &t->pending);
826 } else if (sig == SIGCONT) {
829 * Remove all stop signals from all queues, wake all threads.
831 siginitset(&flush, SIG_KERNEL_STOP_MASK);
832 flush_sigqueue_mask(&flush, &signal->shared_pending);
833 for_each_thread(p, t) {
834 flush_sigqueue_mask(&flush, &t->pending);
835 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
836 if (likely(!(t->ptrace & PT_SEIZED)))
837 wake_up_state(t, __TASK_STOPPED);
839 ptrace_trap_notify(t);
843 * Notify the parent with CLD_CONTINUED if we were stopped.
845 * If we were in the middle of a group stop, we pretend it
846 * was already finished, and then continued. Since SIGCHLD
847 * doesn't queue we report only CLD_STOPPED, as if the next
848 * CLD_CONTINUED was dropped.
851 if (signal->flags & SIGNAL_STOP_STOPPED)
852 why |= SIGNAL_CLD_CONTINUED;
853 else if (signal->group_stop_count)
854 why |= SIGNAL_CLD_STOPPED;
858 * The first thread which returns from do_signal_stop()
859 * will take ->siglock, notice SIGNAL_CLD_MASK, and
860 * notify its parent. See get_signal_to_deliver().
862 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
863 signal->group_stop_count = 0;
864 signal->group_exit_code = 0;
868 return !sig_ignored(p, sig, force);
872 * Test if P wants to take SIG. After we've checked all threads with this,
873 * it's equivalent to finding no threads not blocking SIG. Any threads not
874 * blocking SIG were ruled out because they are not running and already
875 * have pending signals. Such threads will dequeue from the shared queue
876 * as soon as they're available, so putting the signal on the shared queue
877 * will be equivalent to sending it to one such thread.
879 static inline int wants_signal(int sig, struct task_struct *p)
881 if (sigismember(&p->blocked, sig))
883 if (p->flags & PF_EXITING)
887 if (task_is_stopped_or_traced(p))
889 return task_curr(p) || !signal_pending(p);
892 static void complete_signal(int sig, struct task_struct *p, int group)
894 struct signal_struct *signal = p->signal;
895 struct task_struct *t;
898 * Now find a thread we can wake up to take the signal off the queue.
900 * If the main thread wants the signal, it gets first crack.
901 * Probably the least surprising to the average bear.
903 if (wants_signal(sig, p))
905 else if (!group || thread_group_empty(p))
907 * There is just one thread and it does not need to be woken.
908 * It will dequeue unblocked signals before it runs again.
913 * Otherwise try to find a suitable thread.
915 t = signal->curr_target;
916 while (!wants_signal(sig, t)) {
918 if (t == signal->curr_target)
920 * No thread needs to be woken.
921 * Any eligible threads will see
922 * the signal in the queue soon.
926 signal->curr_target = t;
930 * Found a killable thread. If the signal will be fatal,
931 * then start taking the whole group down immediately.
933 if (sig_fatal(p, sig) &&
934 !(signal->flags & SIGNAL_GROUP_EXIT) &&
935 !sigismember(&t->real_blocked, sig) &&
936 (sig == SIGKILL || !p->ptrace)) {
938 * This signal will be fatal to the whole group.
940 if (!sig_kernel_coredump(sig)) {
942 * Start a group exit and wake everybody up.
943 * This way we don't have other threads
944 * running and doing things after a slower
945 * thread has the fatal signal pending.
947 signal->flags = SIGNAL_GROUP_EXIT;
948 signal->group_exit_code = sig;
949 signal->group_stop_count = 0;
952 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
953 sigaddset(&t->pending.signal, SIGKILL);
954 signal_wake_up(t, 1);
955 } while_each_thread(p, t);
961 * The signal is already in the shared-pending queue.
962 * Tell the chosen thread to wake up and dequeue it.
964 signal_wake_up(t, sig == SIGKILL);
968 static inline int legacy_queue(struct sigpending *signals, int sig)
970 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
973 #ifdef CONFIG_USER_NS
974 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
976 if (current_user_ns() == task_cred_xxx(t, user_ns))
979 if (SI_FROMKERNEL(info))
983 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
984 make_kuid(current_user_ns(), info->si_uid));
988 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
994 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
995 int group, int from_ancestor_ns)
997 struct sigpending *pending;
1000 int ret = 0, result;
1002 assert_spin_locked(&t->sighand->siglock);
1004 result = TRACE_SIGNAL_IGNORED;
1005 if (!prepare_signal(sig, t,
1006 from_ancestor_ns || (info == SEND_SIG_PRIV) || (info == SEND_SIG_FORCED)))
1009 pending = group ? &t->signal->shared_pending : &t->pending;
1011 * Short-circuit ignored signals and support queuing
1012 * exactly one non-rt signal, so that we can get more
1013 * detailed information about the cause of the signal.
1015 result = TRACE_SIGNAL_ALREADY_PENDING;
1016 if (legacy_queue(pending, sig))
1019 result = TRACE_SIGNAL_DELIVERED;
1021 * fast-pathed signals for kernel-internal things like SIGSTOP
1024 if (info == SEND_SIG_FORCED)
1028 * Real-time signals must be queued if sent by sigqueue, or
1029 * some other real-time mechanism. It is implementation
1030 * defined whether kill() does so. We attempt to do so, on
1031 * the principle of least surprise, but since kill is not
1032 * allowed to fail with EAGAIN when low on memory we just
1033 * make sure at least one signal gets delivered and don't
1034 * pass on the info struct.
1037 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1039 override_rlimit = 0;
1041 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1043 list_add_tail(&q->list, &pending->list);
1044 switch ((unsigned long) info) {
1045 case (unsigned long) SEND_SIG_NOINFO:
1046 q->info.si_signo = sig;
1047 q->info.si_errno = 0;
1048 q->info.si_code = SI_USER;
1049 q->info.si_pid = task_tgid_nr_ns(current,
1050 task_active_pid_ns(t));
1051 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1053 case (unsigned long) SEND_SIG_PRIV:
1054 q->info.si_signo = sig;
1055 q->info.si_errno = 0;
1056 q->info.si_code = SI_KERNEL;
1061 copy_siginfo(&q->info, info);
1062 if (from_ancestor_ns)
1067 userns_fixup_signal_uid(&q->info, t);
1069 } else if (!is_si_special(info)) {
1070 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1072 * Queue overflow, abort. We may abort if the
1073 * signal was rt and sent by user using something
1074 * other than kill().
1076 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1081 * This is a silent loss of information. We still
1082 * send the signal, but the *info bits are lost.
1084 result = TRACE_SIGNAL_LOSE_INFO;
1089 signalfd_notify(t, sig);
1090 sigaddset(&pending->signal, sig);
1091 complete_signal(sig, t, group);
1093 trace_signal_generate(sig, info, t, group, result);
1097 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1100 int from_ancestor_ns = 0;
1102 #ifdef CONFIG_PID_NS
1103 from_ancestor_ns = si_fromuser(info) &&
1104 !task_pid_nr_ns(current, task_active_pid_ns(t));
1107 return __send_signal(sig, info, t, group, from_ancestor_ns);
1110 static void print_fatal_signal(int signr)
1112 struct pt_regs *regs = signal_pt_regs();
1113 pr_info("potentially unexpected fatal signal %d.\n", signr);
1115 #if defined(__i386__) && !defined(__arch_um__)
1116 pr_info("code at %08lx: ", regs->ip);
1119 for (i = 0; i < 16; i++) {
1122 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1124 pr_cont("%02x ", insn);
1134 static int __init setup_print_fatal_signals(char *str)
1136 get_option (&str, &print_fatal_signals);
1141 __setup("print-fatal-signals=", setup_print_fatal_signals);
1144 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1146 return send_signal(sig, info, p, 1);
1150 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1152 return send_signal(sig, info, t, 0);
1155 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1158 unsigned long flags;
1161 if (lock_task_sighand(p, &flags)) {
1162 ret = send_signal(sig, info, p, group);
1163 unlock_task_sighand(p, &flags);
1170 * Force a signal that the process can't ignore: if necessary
1171 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1173 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1174 * since we do not want to have a signal handler that was blocked
1175 * be invoked when user space had explicitly blocked it.
1177 * We don't want to have recursive SIGSEGV's etc, for example,
1178 * that is why we also clear SIGNAL_UNKILLABLE.
1181 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1183 unsigned long int flags;
1184 int ret, blocked, ignored;
1185 struct k_sigaction *action;
1187 spin_lock_irqsave(&t->sighand->siglock, flags);
1188 action = &t->sighand->action[sig-1];
1189 ignored = action->sa.sa_handler == SIG_IGN;
1190 blocked = sigismember(&t->blocked, sig);
1191 if (blocked || ignored) {
1192 action->sa.sa_handler = SIG_DFL;
1194 sigdelset(&t->blocked, sig);
1195 recalc_sigpending_and_wake(t);
1199 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1200 * debugging to leave init killable.
1202 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1203 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1204 ret = specific_send_sig_info(sig, info, t);
1205 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1211 * Nuke all other threads in the group.
1213 int zap_other_threads(struct task_struct *p)
1215 struct task_struct *t = p;
1218 p->signal->group_stop_count = 0;
1220 while_each_thread(p, t) {
1221 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1224 /* Don't bother with already dead threads */
1227 sigaddset(&t->pending.signal, SIGKILL);
1228 signal_wake_up(t, 1);
1234 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1235 unsigned long *flags)
1237 struct sighand_struct *sighand;
1241 * Disable interrupts early to avoid deadlocks.
1242 * See rcu_read_unlock() comment header for details.
1244 local_irq_save(*flags);
1246 sighand = rcu_dereference(tsk->sighand);
1247 if (unlikely(sighand == NULL)) {
1249 local_irq_restore(*flags);
1253 * This sighand can be already freed and even reused, but
1254 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1255 * initializes ->siglock: this slab can't go away, it has
1256 * the same object type, ->siglock can't be reinitialized.
1258 * We need to ensure that tsk->sighand is still the same
1259 * after we take the lock, we can race with de_thread() or
1260 * __exit_signal(). In the latter case the next iteration
1261 * must see ->sighand == NULL.
1263 spin_lock(&sighand->siglock);
1264 if (likely(sighand == tsk->sighand)) {
1268 spin_unlock(&sighand->siglock);
1270 local_irq_restore(*flags);
1277 * send signal info to all the members of a group
1279 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1284 ret = check_kill_permission(sig, info, p);
1288 ret = do_send_sig_info(sig, info, p, true);
1294 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1295 * control characters do (^C, ^Z etc)
1296 * - the caller must hold at least a readlock on tasklist_lock
1298 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1300 struct task_struct *p = NULL;
1301 int retval, success;
1305 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1306 int err = group_send_sig_info(sig, info, p);
1309 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1310 return success ? 0 : retval;
1313 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1316 struct task_struct *p;
1320 p = pid_task(pid, PIDTYPE_PID);
1322 error = group_send_sig_info(sig, info, p);
1324 if (likely(!p || error != -ESRCH))
1328 * The task was unhashed in between, try again. If it
1329 * is dead, pid_task() will return NULL, if we race with
1330 * de_thread() it will find the new leader.
1335 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1339 error = kill_pid_info(sig, info, find_vpid(pid));
1344 static int kill_as_cred_perm(const struct cred *cred,
1345 struct task_struct *target)
1347 const struct cred *pcred = __task_cred(target);
1348 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1349 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1354 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1355 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1356 const struct cred *cred, u32 secid)
1359 struct task_struct *p;
1360 unsigned long flags;
1362 if (!valid_signal(sig))
1366 p = pid_task(pid, PIDTYPE_PID);
1371 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1375 ret = security_task_kill(p, info, sig, secid);
1380 if (lock_task_sighand(p, &flags)) {
1381 ret = __send_signal(sig, info, p, 1, 0);
1382 unlock_task_sighand(p, &flags);
1390 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1393 * kill_something_info() interprets pid in interesting ways just like kill(2).
1395 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1396 * is probably wrong. Should make it like BSD or SYSV.
1399 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1405 ret = kill_pid_info(sig, info, find_vpid(pid));
1410 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1414 read_lock(&tasklist_lock);
1416 ret = __kill_pgrp_info(sig, info,
1417 pid ? find_vpid(-pid) : task_pgrp(current));
1419 int retval = 0, count = 0;
1420 struct task_struct * p;
1422 for_each_process(p) {
1423 if (task_pid_vnr(p) > 1 &&
1424 !same_thread_group(p, current)) {
1425 int err = group_send_sig_info(sig, info, p);
1431 ret = count ? retval : -ESRCH;
1433 read_unlock(&tasklist_lock);
1439 * These are for backward compatibility with the rest of the kernel source.
1442 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1445 * Make sure legacy kernel users don't send in bad values
1446 * (normal paths check this in check_kill_permission).
1448 if (!valid_signal(sig))
1451 return do_send_sig_info(sig, info, p, false);
1454 #define __si_special(priv) \
1455 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1458 send_sig(int sig, struct task_struct *p, int priv)
1460 return send_sig_info(sig, __si_special(priv), p);
1464 force_sig(int sig, struct task_struct *p)
1466 force_sig_info(sig, SEND_SIG_PRIV, p);
1470 * When things go south during signal handling, we
1471 * will force a SIGSEGV. And if the signal that caused
1472 * the problem was already a SIGSEGV, we'll want to
1473 * make sure we don't even try to deliver the signal..
1476 force_sigsegv(int sig, struct task_struct *p)
1478 if (sig == SIGSEGV) {
1479 unsigned long flags;
1480 spin_lock_irqsave(&p->sighand->siglock, flags);
1481 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1482 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1484 force_sig(SIGSEGV, p);
1488 int kill_pgrp(struct pid *pid, int sig, int priv)
1492 read_lock(&tasklist_lock);
1493 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1494 read_unlock(&tasklist_lock);
1498 EXPORT_SYMBOL(kill_pgrp);
1500 int kill_pid(struct pid *pid, int sig, int priv)
1502 return kill_pid_info(sig, __si_special(priv), pid);
1504 EXPORT_SYMBOL(kill_pid);
1507 * These functions support sending signals using preallocated sigqueue
1508 * structures. This is needed "because realtime applications cannot
1509 * afford to lose notifications of asynchronous events, like timer
1510 * expirations or I/O completions". In the case of POSIX Timers
1511 * we allocate the sigqueue structure from the timer_create. If this
1512 * allocation fails we are able to report the failure to the application
1513 * with an EAGAIN error.
1515 struct sigqueue *sigqueue_alloc(void)
1517 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1520 q->flags |= SIGQUEUE_PREALLOC;
1525 void sigqueue_free(struct sigqueue *q)
1527 unsigned long flags;
1528 spinlock_t *lock = ¤t->sighand->siglock;
1530 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1532 * We must hold ->siglock while testing q->list
1533 * to serialize with collect_signal() or with
1534 * __exit_signal()->flush_sigqueue().
1536 spin_lock_irqsave(lock, flags);
1537 q->flags &= ~SIGQUEUE_PREALLOC;
1539 * If it is queued it will be freed when dequeued,
1540 * like the "regular" sigqueue.
1542 if (!list_empty(&q->list))
1544 spin_unlock_irqrestore(lock, flags);
1550 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1552 int sig = q->info.si_signo;
1553 struct sigpending *pending;
1554 unsigned long flags;
1557 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1560 if (!likely(lock_task_sighand(t, &flags)))
1563 ret = 1; /* the signal is ignored */
1564 result = TRACE_SIGNAL_IGNORED;
1565 if (!prepare_signal(sig, t, false))
1569 if (unlikely(!list_empty(&q->list))) {
1571 * If an SI_TIMER entry is already queue just increment
1572 * the overrun count.
1574 BUG_ON(q->info.si_code != SI_TIMER);
1575 q->info.si_overrun++;
1576 result = TRACE_SIGNAL_ALREADY_PENDING;
1579 q->info.si_overrun = 0;
1581 signalfd_notify(t, sig);
1582 pending = group ? &t->signal->shared_pending : &t->pending;
1583 list_add_tail(&q->list, &pending->list);
1584 sigaddset(&pending->signal, sig);
1585 complete_signal(sig, t, group);
1586 result = TRACE_SIGNAL_DELIVERED;
1588 trace_signal_generate(sig, &q->info, t, group, result);
1589 unlock_task_sighand(t, &flags);
1595 * Let a parent know about the death of a child.
1596 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1598 * Returns true if our parent ignored us and so we've switched to
1601 bool do_notify_parent(struct task_struct *tsk, int sig)
1603 struct siginfo info;
1604 unsigned long flags;
1605 struct sighand_struct *psig;
1606 bool autoreap = false;
1611 /* do_notify_parent_cldstop should have been called instead. */
1612 BUG_ON(task_is_stopped_or_traced(tsk));
1614 BUG_ON(!tsk->ptrace &&
1615 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1617 if (sig != SIGCHLD) {
1619 * This is only possible if parent == real_parent.
1620 * Check if it has changed security domain.
1622 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1626 info.si_signo = sig;
1629 * We are under tasklist_lock here so our parent is tied to
1630 * us and cannot change.
1632 * task_active_pid_ns will always return the same pid namespace
1633 * until a task passes through release_task.
1635 * write_lock() currently calls preempt_disable() which is the
1636 * same as rcu_read_lock(), but according to Oleg, this is not
1637 * correct to rely on this
1640 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1641 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1645 task_cputime(tsk, &utime, &stime);
1646 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1647 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1649 info.si_status = tsk->exit_code & 0x7f;
1650 if (tsk->exit_code & 0x80)
1651 info.si_code = CLD_DUMPED;
1652 else if (tsk->exit_code & 0x7f)
1653 info.si_code = CLD_KILLED;
1655 info.si_code = CLD_EXITED;
1656 info.si_status = tsk->exit_code >> 8;
1659 psig = tsk->parent->sighand;
1660 spin_lock_irqsave(&psig->siglock, flags);
1661 if (!tsk->ptrace && sig == SIGCHLD &&
1662 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1663 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1665 * We are exiting and our parent doesn't care. POSIX.1
1666 * defines special semantics for setting SIGCHLD to SIG_IGN
1667 * or setting the SA_NOCLDWAIT flag: we should be reaped
1668 * automatically and not left for our parent's wait4 call.
1669 * Rather than having the parent do it as a magic kind of
1670 * signal handler, we just set this to tell do_exit that we
1671 * can be cleaned up without becoming a zombie. Note that
1672 * we still call __wake_up_parent in this case, because a
1673 * blocked sys_wait4 might now return -ECHILD.
1675 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1676 * is implementation-defined: we do (if you don't want
1677 * it, just use SIG_IGN instead).
1680 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1683 if (valid_signal(sig) && sig)
1684 __group_send_sig_info(sig, &info, tsk->parent);
1685 __wake_up_parent(tsk, tsk->parent);
1686 spin_unlock_irqrestore(&psig->siglock, flags);
1692 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1693 * @tsk: task reporting the state change
1694 * @for_ptracer: the notification is for ptracer
1695 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1697 * Notify @tsk's parent that the stopped/continued state has changed. If
1698 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1699 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1702 * Must be called with tasklist_lock at least read locked.
1704 static void do_notify_parent_cldstop(struct task_struct *tsk,
1705 bool for_ptracer, int why)
1707 struct siginfo info;
1708 unsigned long flags;
1709 struct task_struct *parent;
1710 struct sighand_struct *sighand;
1714 parent = tsk->parent;
1716 tsk = tsk->group_leader;
1717 parent = tsk->real_parent;
1720 info.si_signo = SIGCHLD;
1723 * see comment in do_notify_parent() about the following 4 lines
1726 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1727 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1730 task_cputime(tsk, &utime, &stime);
1731 info.si_utime = nsec_to_clock_t(utime);
1732 info.si_stime = nsec_to_clock_t(stime);
1737 info.si_status = SIGCONT;
1740 info.si_status = tsk->signal->group_exit_code & 0x7f;
1743 info.si_status = tsk->exit_code & 0x7f;
1749 sighand = parent->sighand;
1750 spin_lock_irqsave(&sighand->siglock, flags);
1751 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1752 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1753 __group_send_sig_info(SIGCHLD, &info, parent);
1755 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1757 __wake_up_parent(tsk, parent);
1758 spin_unlock_irqrestore(&sighand->siglock, flags);
1761 static inline int may_ptrace_stop(void)
1763 if (!likely(current->ptrace))
1766 * Are we in the middle of do_coredump?
1767 * If so and our tracer is also part of the coredump stopping
1768 * is a deadlock situation, and pointless because our tracer
1769 * is dead so don't allow us to stop.
1770 * If SIGKILL was already sent before the caller unlocked
1771 * ->siglock we must see ->core_state != NULL. Otherwise it
1772 * is safe to enter schedule().
1774 * This is almost outdated, a task with the pending SIGKILL can't
1775 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1776 * after SIGKILL was already dequeued.
1778 if (unlikely(current->mm->core_state) &&
1779 unlikely(current->mm == current->parent->mm))
1786 * Return non-zero if there is a SIGKILL that should be waking us up.
1787 * Called with the siglock held.
1789 static int sigkill_pending(struct task_struct *tsk)
1791 return sigismember(&tsk->pending.signal, SIGKILL) ||
1792 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1796 * This must be called with current->sighand->siglock held.
1798 * This should be the path for all ptrace stops.
1799 * We always set current->last_siginfo while stopped here.
1800 * That makes it a way to test a stopped process for
1801 * being ptrace-stopped vs being job-control-stopped.
1803 * If we actually decide not to stop at all because the tracer
1804 * is gone, we keep current->exit_code unless clear_code.
1806 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1807 __releases(¤t->sighand->siglock)
1808 __acquires(¤t->sighand->siglock)
1810 bool gstop_done = false;
1812 if (arch_ptrace_stop_needed(exit_code, info)) {
1814 * The arch code has something special to do before a
1815 * ptrace stop. This is allowed to block, e.g. for faults
1816 * on user stack pages. We can't keep the siglock while
1817 * calling arch_ptrace_stop, so we must release it now.
1818 * To preserve proper semantics, we must do this before
1819 * any signal bookkeeping like checking group_stop_count.
1820 * Meanwhile, a SIGKILL could come in before we retake the
1821 * siglock. That must prevent us from sleeping in TASK_TRACED.
1822 * So after regaining the lock, we must check for SIGKILL.
1824 spin_unlock_irq(¤t->sighand->siglock);
1825 arch_ptrace_stop(exit_code, info);
1826 spin_lock_irq(¤t->sighand->siglock);
1827 if (sigkill_pending(current))
1831 set_special_state(TASK_TRACED);
1834 * We're committing to trapping. TRACED should be visible before
1835 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1836 * Also, transition to TRACED and updates to ->jobctl should be
1837 * atomic with respect to siglock and should be done after the arch
1838 * hook as siglock is released and regrabbed across it.
1843 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
1845 * set_current_state() smp_wmb();
1847 * wait_task_stopped()
1848 * task_stopped_code()
1849 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
1853 current->last_siginfo = info;
1854 current->exit_code = exit_code;
1857 * If @why is CLD_STOPPED, we're trapping to participate in a group
1858 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1859 * across siglock relocks since INTERRUPT was scheduled, PENDING
1860 * could be clear now. We act as if SIGCONT is received after
1861 * TASK_TRACED is entered - ignore it.
1863 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1864 gstop_done = task_participate_group_stop(current);
1866 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1867 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1868 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1869 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1871 /* entering a trap, clear TRAPPING */
1872 task_clear_jobctl_trapping(current);
1874 spin_unlock_irq(¤t->sighand->siglock);
1875 read_lock(&tasklist_lock);
1876 if (may_ptrace_stop()) {
1878 * Notify parents of the stop.
1880 * While ptraced, there are two parents - the ptracer and
1881 * the real_parent of the group_leader. The ptracer should
1882 * know about every stop while the real parent is only
1883 * interested in the completion of group stop. The states
1884 * for the two don't interact with each other. Notify
1885 * separately unless they're gonna be duplicates.
1887 do_notify_parent_cldstop(current, true, why);
1888 if (gstop_done && ptrace_reparented(current))
1889 do_notify_parent_cldstop(current, false, why);
1892 * Don't want to allow preemption here, because
1893 * sys_ptrace() needs this task to be inactive.
1895 * XXX: implement read_unlock_no_resched().
1898 read_unlock(&tasklist_lock);
1899 preempt_enable_no_resched();
1900 freezable_schedule();
1903 * By the time we got the lock, our tracer went away.
1904 * Don't drop the lock yet, another tracer may come.
1906 * If @gstop_done, the ptracer went away between group stop
1907 * completion and here. During detach, it would have set
1908 * JOBCTL_STOP_PENDING on us and we'll re-enter
1909 * TASK_STOPPED in do_signal_stop() on return, so notifying
1910 * the real parent of the group stop completion is enough.
1913 do_notify_parent_cldstop(current, false, why);
1915 /* tasklist protects us from ptrace_freeze_traced() */
1916 __set_current_state(TASK_RUNNING);
1918 current->exit_code = 0;
1919 read_unlock(&tasklist_lock);
1923 * We are back. Now reacquire the siglock before touching
1924 * last_siginfo, so that we are sure to have synchronized with
1925 * any signal-sending on another CPU that wants to examine it.
1927 spin_lock_irq(¤t->sighand->siglock);
1928 current->last_siginfo = NULL;
1930 /* LISTENING can be set only during STOP traps, clear it */
1931 current->jobctl &= ~JOBCTL_LISTENING;
1934 * Queued signals ignored us while we were stopped for tracing.
1935 * So check for any that we should take before resuming user mode.
1936 * This sets TIF_SIGPENDING, but never clears it.
1938 recalc_sigpending_tsk(current);
1941 static void ptrace_do_notify(int signr, int exit_code, int why)
1945 memset(&info, 0, sizeof info);
1946 info.si_signo = signr;
1947 info.si_code = exit_code;
1948 info.si_pid = task_pid_vnr(current);
1949 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1951 /* Let the debugger run. */
1952 ptrace_stop(exit_code, why, 1, &info);
1955 void ptrace_notify(int exit_code)
1957 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1958 if (unlikely(current->task_works))
1961 spin_lock_irq(¤t->sighand->siglock);
1962 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1963 spin_unlock_irq(¤t->sighand->siglock);
1967 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1968 * @signr: signr causing group stop if initiating
1970 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1971 * and participate in it. If already set, participate in the existing
1972 * group stop. If participated in a group stop (and thus slept), %true is
1973 * returned with siglock released.
1975 * If ptraced, this function doesn't handle stop itself. Instead,
1976 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1977 * untouched. The caller must ensure that INTERRUPT trap handling takes
1978 * places afterwards.
1981 * Must be called with @current->sighand->siglock held, which is released
1985 * %false if group stop is already cancelled or ptrace trap is scheduled.
1986 * %true if participated in group stop.
1988 static bool do_signal_stop(int signr)
1989 __releases(¤t->sighand->siglock)
1991 struct signal_struct *sig = current->signal;
1993 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1994 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1995 struct task_struct *t;
1997 /* signr will be recorded in task->jobctl for retries */
1998 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2000 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2001 unlikely(signal_group_exit(sig)))
2004 * There is no group stop already in progress. We must
2007 * While ptraced, a task may be resumed while group stop is
2008 * still in effect and then receive a stop signal and
2009 * initiate another group stop. This deviates from the
2010 * usual behavior as two consecutive stop signals can't
2011 * cause two group stops when !ptraced. That is why we
2012 * also check !task_is_stopped(t) below.
2014 * The condition can be distinguished by testing whether
2015 * SIGNAL_STOP_STOPPED is already set. Don't generate
2016 * group_exit_code in such case.
2018 * This is not necessary for SIGNAL_STOP_CONTINUED because
2019 * an intervening stop signal is required to cause two
2020 * continued events regardless of ptrace.
2022 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2023 sig->group_exit_code = signr;
2025 sig->group_stop_count = 0;
2027 if (task_set_jobctl_pending(current, signr | gstop))
2028 sig->group_stop_count++;
2031 while_each_thread(current, t) {
2033 * Setting state to TASK_STOPPED for a group
2034 * stop is always done with the siglock held,
2035 * so this check has no races.
2037 if (!task_is_stopped(t) &&
2038 task_set_jobctl_pending(t, signr | gstop)) {
2039 sig->group_stop_count++;
2040 if (likely(!(t->ptrace & PT_SEIZED)))
2041 signal_wake_up(t, 0);
2043 ptrace_trap_notify(t);
2048 if (likely(!current->ptrace)) {
2052 * If there are no other threads in the group, or if there
2053 * is a group stop in progress and we are the last to stop,
2054 * report to the parent.
2056 if (task_participate_group_stop(current))
2057 notify = CLD_STOPPED;
2059 set_special_state(TASK_STOPPED);
2060 spin_unlock_irq(¤t->sighand->siglock);
2063 * Notify the parent of the group stop completion. Because
2064 * we're not holding either the siglock or tasklist_lock
2065 * here, ptracer may attach inbetween; however, this is for
2066 * group stop and should always be delivered to the real
2067 * parent of the group leader. The new ptracer will get
2068 * its notification when this task transitions into
2072 read_lock(&tasklist_lock);
2073 do_notify_parent_cldstop(current, false, notify);
2074 read_unlock(&tasklist_lock);
2077 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2078 freezable_schedule();
2082 * While ptraced, group stop is handled by STOP trap.
2083 * Schedule it and let the caller deal with it.
2085 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2091 * do_jobctl_trap - take care of ptrace jobctl traps
2093 * When PT_SEIZED, it's used for both group stop and explicit
2094 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2095 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2096 * the stop signal; otherwise, %SIGTRAP.
2098 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2099 * number as exit_code and no siginfo.
2102 * Must be called with @current->sighand->siglock held, which may be
2103 * released and re-acquired before returning with intervening sleep.
2105 static void do_jobctl_trap(void)
2107 struct signal_struct *signal = current->signal;
2108 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2110 if (current->ptrace & PT_SEIZED) {
2111 if (!signal->group_stop_count &&
2112 !(signal->flags & SIGNAL_STOP_STOPPED))
2114 WARN_ON_ONCE(!signr);
2115 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2118 WARN_ON_ONCE(!signr);
2119 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2120 current->exit_code = 0;
2124 static int ptrace_signal(int signr, siginfo_t *info)
2127 * We do not check sig_kernel_stop(signr) but set this marker
2128 * unconditionally because we do not know whether debugger will
2129 * change signr. This flag has no meaning unless we are going
2130 * to stop after return from ptrace_stop(). In this case it will
2131 * be checked in do_signal_stop(), we should only stop if it was
2132 * not cleared by SIGCONT while we were sleeping. See also the
2133 * comment in dequeue_signal().
2135 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2136 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2138 /* We're back. Did the debugger cancel the sig? */
2139 signr = current->exit_code;
2143 current->exit_code = 0;
2146 * Update the siginfo structure if the signal has
2147 * changed. If the debugger wanted something
2148 * specific in the siginfo structure then it should
2149 * have updated *info via PTRACE_SETSIGINFO.
2151 if (signr != info->si_signo) {
2152 info->si_signo = signr;
2154 info->si_code = SI_USER;
2156 info->si_pid = task_pid_vnr(current->parent);
2157 info->si_uid = from_kuid_munged(current_user_ns(),
2158 task_uid(current->parent));
2162 /* If the (new) signal is now blocked, requeue it. */
2163 if (sigismember(¤t->blocked, signr)) {
2164 specific_send_sig_info(signr, info, current);
2171 int get_signal(struct ksignal *ksig)
2173 struct sighand_struct *sighand = current->sighand;
2174 struct signal_struct *signal = current->signal;
2177 if (unlikely(current->task_works))
2180 if (unlikely(uprobe_deny_signal()))
2184 * Do this once, we can't return to user-mode if freezing() == T.
2185 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2186 * thus do not need another check after return.
2191 spin_lock_irq(&sighand->siglock);
2193 * Every stopped thread goes here after wakeup. Check to see if
2194 * we should notify the parent, prepare_signal(SIGCONT) encodes
2195 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2197 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2200 if (signal->flags & SIGNAL_CLD_CONTINUED)
2201 why = CLD_CONTINUED;
2205 signal->flags &= ~SIGNAL_CLD_MASK;
2207 spin_unlock_irq(&sighand->siglock);
2210 * Notify the parent that we're continuing. This event is
2211 * always per-process and doesn't make whole lot of sense
2212 * for ptracers, who shouldn't consume the state via
2213 * wait(2) either, but, for backward compatibility, notify
2214 * the ptracer of the group leader too unless it's gonna be
2217 read_lock(&tasklist_lock);
2218 do_notify_parent_cldstop(current, false, why);
2220 if (ptrace_reparented(current->group_leader))
2221 do_notify_parent_cldstop(current->group_leader,
2223 read_unlock(&tasklist_lock);
2229 struct k_sigaction *ka;
2231 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2235 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2237 spin_unlock_irq(&sighand->siglock);
2241 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2244 break; /* will return 0 */
2246 if (unlikely(current->ptrace) && signr != SIGKILL) {
2247 signr = ptrace_signal(signr, &ksig->info);
2252 ka = &sighand->action[signr-1];
2254 /* Trace actually delivered signals. */
2255 trace_signal_deliver(signr, &ksig->info, ka);
2257 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2259 if (ka->sa.sa_handler != SIG_DFL) {
2260 /* Run the handler. */
2263 if (ka->sa.sa_flags & SA_ONESHOT)
2264 ka->sa.sa_handler = SIG_DFL;
2266 break; /* will return non-zero "signr" value */
2270 * Now we are doing the default action for this signal.
2272 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2276 * Global init gets no signals it doesn't want.
2277 * Container-init gets no signals it doesn't want from same
2280 * Note that if global/container-init sees a sig_kernel_only()
2281 * signal here, the signal must have been generated internally
2282 * or must have come from an ancestor namespace. In either
2283 * case, the signal cannot be dropped.
2285 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2286 !sig_kernel_only(signr))
2289 if (sig_kernel_stop(signr)) {
2291 * The default action is to stop all threads in
2292 * the thread group. The job control signals
2293 * do nothing in an orphaned pgrp, but SIGSTOP
2294 * always works. Note that siglock needs to be
2295 * dropped during the call to is_orphaned_pgrp()
2296 * because of lock ordering with tasklist_lock.
2297 * This allows an intervening SIGCONT to be posted.
2298 * We need to check for that and bail out if necessary.
2300 if (signr != SIGSTOP) {
2301 spin_unlock_irq(&sighand->siglock);
2303 /* signals can be posted during this window */
2305 if (is_current_pgrp_orphaned())
2308 spin_lock_irq(&sighand->siglock);
2311 if (likely(do_signal_stop(ksig->info.si_signo))) {
2312 /* It released the siglock. */
2317 * We didn't actually stop, due to a race
2318 * with SIGCONT or something like that.
2323 spin_unlock_irq(&sighand->siglock);
2326 * Anything else is fatal, maybe with a core dump.
2328 current->flags |= PF_SIGNALED;
2330 if (sig_kernel_coredump(signr)) {
2331 if (print_fatal_signals)
2332 print_fatal_signal(ksig->info.si_signo);
2333 proc_coredump_connector(current);
2335 * If it was able to dump core, this kills all
2336 * other threads in the group and synchronizes with
2337 * their demise. If we lost the race with another
2338 * thread getting here, it set group_exit_code
2339 * first and our do_group_exit call below will use
2340 * that value and ignore the one we pass it.
2342 do_coredump(&ksig->info);
2346 * Death signals, no core dump.
2348 do_group_exit(ksig->info.si_signo);
2351 spin_unlock_irq(&sighand->siglock);
2354 return ksig->sig > 0;
2358 * signal_delivered -
2359 * @ksig: kernel signal struct
2360 * @stepping: nonzero if debugger single-step or block-step in use
2362 * This function should be called when a signal has successfully been
2363 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2364 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2365 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2367 static void signal_delivered(struct ksignal *ksig, int stepping)
2371 /* A signal was successfully delivered, and the
2372 saved sigmask was stored on the signal frame,
2373 and will be restored by sigreturn. So we can
2374 simply clear the restore sigmask flag. */
2375 clear_restore_sigmask();
2377 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2378 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2379 sigaddset(&blocked, ksig->sig);
2380 set_current_blocked(&blocked);
2381 tracehook_signal_handler(stepping);
2384 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2387 force_sigsegv(ksig->sig, current);
2389 signal_delivered(ksig, stepping);
2393 * It could be that complete_signal() picked us to notify about the
2394 * group-wide signal. Other threads should be notified now to take
2395 * the shared signals in @which since we will not.
2397 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2400 struct task_struct *t;
2402 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2403 if (sigisemptyset(&retarget))
2407 while_each_thread(tsk, t) {
2408 if (t->flags & PF_EXITING)
2411 if (!has_pending_signals(&retarget, &t->blocked))
2413 /* Remove the signals this thread can handle. */
2414 sigandsets(&retarget, &retarget, &t->blocked);
2416 if (!signal_pending(t))
2417 signal_wake_up(t, 0);
2419 if (sigisemptyset(&retarget))
2424 void exit_signals(struct task_struct *tsk)
2430 * @tsk is about to have PF_EXITING set - lock out users which
2431 * expect stable threadgroup.
2433 cgroup_threadgroup_change_begin(tsk);
2435 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2436 tsk->flags |= PF_EXITING;
2437 cgroup_threadgroup_change_end(tsk);
2441 spin_lock_irq(&tsk->sighand->siglock);
2443 * From now this task is not visible for group-wide signals,
2444 * see wants_signal(), do_signal_stop().
2446 tsk->flags |= PF_EXITING;
2448 cgroup_threadgroup_change_end(tsk);
2450 if (!signal_pending(tsk))
2453 unblocked = tsk->blocked;
2454 signotset(&unblocked);
2455 retarget_shared_pending(tsk, &unblocked);
2457 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2458 task_participate_group_stop(tsk))
2459 group_stop = CLD_STOPPED;
2461 spin_unlock_irq(&tsk->sighand->siglock);
2464 * If group stop has completed, deliver the notification. This
2465 * should always go to the real parent of the group leader.
2467 if (unlikely(group_stop)) {
2468 read_lock(&tasklist_lock);
2469 do_notify_parent_cldstop(tsk, false, group_stop);
2470 read_unlock(&tasklist_lock);
2474 EXPORT_SYMBOL(recalc_sigpending);
2475 EXPORT_SYMBOL_GPL(dequeue_signal);
2476 EXPORT_SYMBOL(flush_signals);
2477 EXPORT_SYMBOL(force_sig);
2478 EXPORT_SYMBOL(send_sig);
2479 EXPORT_SYMBOL(send_sig_info);
2480 EXPORT_SYMBOL(sigprocmask);
2483 * System call entry points.
2487 * sys_restart_syscall - restart a system call
2489 SYSCALL_DEFINE0(restart_syscall)
2491 struct restart_block *restart = ¤t->restart_block;
2492 return restart->fn(restart);
2495 long do_no_restart_syscall(struct restart_block *param)
2500 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2502 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2503 sigset_t newblocked;
2504 /* A set of now blocked but previously unblocked signals. */
2505 sigandnsets(&newblocked, newset, ¤t->blocked);
2506 retarget_shared_pending(tsk, &newblocked);
2508 tsk->blocked = *newset;
2509 recalc_sigpending();
2513 * set_current_blocked - change current->blocked mask
2516 * It is wrong to change ->blocked directly, this helper should be used
2517 * to ensure the process can't miss a shared signal we are going to block.
2519 void set_current_blocked(sigset_t *newset)
2521 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2522 __set_current_blocked(newset);
2525 void __set_current_blocked(const sigset_t *newset)
2527 struct task_struct *tsk = current;
2530 * In case the signal mask hasn't changed, there is nothing we need
2531 * to do. The current->blocked shouldn't be modified by other task.
2533 if (sigequalsets(&tsk->blocked, newset))
2536 spin_lock_irq(&tsk->sighand->siglock);
2537 __set_task_blocked(tsk, newset);
2538 spin_unlock_irq(&tsk->sighand->siglock);
2542 * This is also useful for kernel threads that want to temporarily
2543 * (or permanently) block certain signals.
2545 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2546 * interface happily blocks "unblockable" signals like SIGKILL
2549 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2551 struct task_struct *tsk = current;
2554 /* Lockless, only current can change ->blocked, never from irq */
2556 *oldset = tsk->blocked;
2560 sigorsets(&newset, &tsk->blocked, set);
2563 sigandnsets(&newset, &tsk->blocked, set);
2572 __set_current_blocked(&newset);
2577 * sys_rt_sigprocmask - change the list of currently blocked signals
2578 * @how: whether to add, remove, or set signals
2579 * @nset: stores pending signals
2580 * @oset: previous value of signal mask if non-null
2581 * @sigsetsize: size of sigset_t type
2583 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2584 sigset_t __user *, oset, size_t, sigsetsize)
2586 sigset_t old_set, new_set;
2589 /* XXX: Don't preclude handling different sized sigset_t's. */
2590 if (sigsetsize != sizeof(sigset_t))
2593 old_set = current->blocked;
2596 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2598 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2600 error = sigprocmask(how, &new_set, NULL);
2606 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2613 #ifdef CONFIG_COMPAT
2614 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2615 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2618 sigset_t old_set = current->blocked;
2620 /* XXX: Don't preclude handling different sized sigset_t's. */
2621 if (sigsetsize != sizeof(sigset_t))
2625 compat_sigset_t new32;
2628 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2631 sigset_from_compat(&new_set, &new32);
2632 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2634 error = sigprocmask(how, &new_set, NULL);
2639 compat_sigset_t old32;
2640 sigset_to_compat(&old32, &old_set);
2641 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2646 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2647 (sigset_t __user *)oset, sigsetsize);
2652 static int do_sigpending(void *set, unsigned long sigsetsize)
2654 if (sigsetsize > sizeof(sigset_t))
2657 spin_lock_irq(¤t->sighand->siglock);
2658 sigorsets(set, ¤t->pending.signal,
2659 ¤t->signal->shared_pending.signal);
2660 spin_unlock_irq(¤t->sighand->siglock);
2662 /* Outside the lock because only this thread touches it. */
2663 sigandsets(set, ¤t->blocked, set);
2668 * sys_rt_sigpending - examine a pending signal that has been raised
2670 * @uset: stores pending signals
2671 * @sigsetsize: size of sigset_t type or larger
2673 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2676 int err = do_sigpending(&set, sigsetsize);
2677 if (!err && copy_to_user(uset, &set, sigsetsize))
2682 #ifdef CONFIG_COMPAT
2683 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2684 compat_size_t, sigsetsize)
2688 int err = do_sigpending(&set, sigsetsize);
2690 compat_sigset_t set32;
2691 sigset_to_compat(&set32, &set);
2692 /* we can get here only if sigsetsize <= sizeof(set) */
2693 if (copy_to_user(uset, &set32, sigsetsize))
2698 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2703 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
2705 enum siginfo_layout layout = SIL_KILL;
2706 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2707 static const struct {
2708 unsigned char limit, layout;
2710 [SIGILL] = { NSIGILL, SIL_FAULT },
2711 [SIGFPE] = { NSIGFPE, SIL_FAULT },
2712 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2713 [SIGBUS] = { NSIGBUS, SIL_FAULT },
2714 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2715 #if defined(SIGEMT) && defined(NSIGEMT)
2716 [SIGEMT] = { NSIGEMT, SIL_FAULT },
2718 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2719 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
2720 #ifdef __ARCH_SIGSYS
2721 [SIGSYS] = { NSIGSYS, SIL_SYS },
2724 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2725 layout = filter[sig].layout;
2726 else if (si_code <= NSIGPOLL)
2729 if (si_code == SI_TIMER)
2731 else if (si_code == SI_SIGIO)
2733 else if (si_code < 0)
2735 /* Tests to support buggy kernel ABIs */
2737 if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2741 if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2748 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2750 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2754 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2756 if (from->si_code < 0)
2757 return __copy_to_user(to, from, sizeof(siginfo_t))
2760 * If you change siginfo_t structure, please be sure
2761 * this code is fixed accordingly.
2762 * Please remember to update the signalfd_copyinfo() function
2763 * inside fs/signalfd.c too, in case siginfo_t changes.
2764 * It should never copy any pad contained in the structure
2765 * to avoid security leaks, but must copy the generic
2766 * 3 ints plus the relevant union member.
2768 err = __put_user(from->si_signo, &to->si_signo);
2769 err |= __put_user(from->si_errno, &to->si_errno);
2770 err |= __put_user(from->si_code, &to->si_code);
2771 switch (siginfo_layout(from->si_signo, from->si_code)) {
2773 err |= __put_user(from->si_pid, &to->si_pid);
2774 err |= __put_user(from->si_uid, &to->si_uid);
2777 /* Unreached SI_TIMER is negative */
2780 err |= __put_user(from->si_band, &to->si_band);
2781 err |= __put_user(from->si_fd, &to->si_fd);
2784 err |= __put_user(from->si_addr, &to->si_addr);
2785 #ifdef __ARCH_SI_TRAPNO
2786 err |= __put_user(from->si_trapno, &to->si_trapno);
2788 #ifdef BUS_MCEERR_AO
2790 * Other callers might not initialize the si_lsb field,
2791 * so check explicitly for the right codes here.
2793 if (from->si_signo == SIGBUS &&
2794 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2795 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2798 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2799 err |= __put_user(from->si_lower, &to->si_lower);
2800 err |= __put_user(from->si_upper, &to->si_upper);
2804 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2805 err |= __put_user(from->si_pkey, &to->si_pkey);
2809 err |= __put_user(from->si_pid, &to->si_pid);
2810 err |= __put_user(from->si_uid, &to->si_uid);
2811 err |= __put_user(from->si_status, &to->si_status);
2812 err |= __put_user(from->si_utime, &to->si_utime);
2813 err |= __put_user(from->si_stime, &to->si_stime);
2816 err |= __put_user(from->si_pid, &to->si_pid);
2817 err |= __put_user(from->si_uid, &to->si_uid);
2818 err |= __put_user(from->si_ptr, &to->si_ptr);
2820 #ifdef __ARCH_SIGSYS
2822 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2823 err |= __put_user(from->si_syscall, &to->si_syscall);
2824 err |= __put_user(from->si_arch, &to->si_arch);
2834 * do_sigtimedwait - wait for queued signals specified in @which
2835 * @which: queued signals to wait for
2836 * @info: if non-null, the signal's siginfo is returned here
2837 * @ts: upper bound on process time suspension
2839 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2840 const struct timespec *ts)
2842 ktime_t *to = NULL, timeout = KTIME_MAX;
2843 struct task_struct *tsk = current;
2844 sigset_t mask = *which;
2848 if (!timespec_valid(ts))
2850 timeout = timespec_to_ktime(*ts);
2855 * Invert the set of allowed signals to get those we want to block.
2857 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2860 spin_lock_irq(&tsk->sighand->siglock);
2861 sig = dequeue_signal(tsk, &mask, info);
2862 if (!sig && timeout) {
2864 * None ready, temporarily unblock those we're interested
2865 * while we are sleeping in so that we'll be awakened when
2866 * they arrive. Unblocking is always fine, we can avoid
2867 * set_current_blocked().
2869 tsk->real_blocked = tsk->blocked;
2870 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2871 recalc_sigpending();
2872 spin_unlock_irq(&tsk->sighand->siglock);
2874 __set_current_state(TASK_INTERRUPTIBLE);
2875 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2877 spin_lock_irq(&tsk->sighand->siglock);
2878 __set_task_blocked(tsk, &tsk->real_blocked);
2879 sigemptyset(&tsk->real_blocked);
2880 sig = dequeue_signal(tsk, &mask, info);
2882 spin_unlock_irq(&tsk->sighand->siglock);
2886 return ret ? -EINTR : -EAGAIN;
2890 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2892 * @uthese: queued signals to wait for
2893 * @uinfo: if non-null, the signal's siginfo is returned here
2894 * @uts: upper bound on process time suspension
2895 * @sigsetsize: size of sigset_t type
2897 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2898 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2906 /* XXX: Don't preclude handling different sized sigset_t's. */
2907 if (sigsetsize != sizeof(sigset_t))
2910 if (copy_from_user(&these, uthese, sizeof(these)))
2914 if (copy_from_user(&ts, uts, sizeof(ts)))
2918 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2920 if (ret > 0 && uinfo) {
2921 if (copy_siginfo_to_user(uinfo, &info))
2928 #ifdef CONFIG_COMPAT
2929 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
2930 struct compat_siginfo __user *, uinfo,
2931 struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
2933 compat_sigset_t s32;
2939 if (sigsetsize != sizeof(sigset_t))
2942 if (copy_from_user(&s32, uthese, sizeof(compat_sigset_t)))
2944 sigset_from_compat(&s, &s32);
2947 if (compat_get_timespec(&t, uts))
2951 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
2953 if (ret > 0 && uinfo) {
2954 if (copy_siginfo_to_user32(uinfo, &info))
2963 * sys_kill - send a signal to a process
2964 * @pid: the PID of the process
2965 * @sig: signal to be sent
2967 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2969 struct siginfo info;
2971 info.si_signo = sig;
2973 info.si_code = SI_USER;
2974 info.si_pid = task_tgid_vnr(current);
2975 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2977 return kill_something_info(sig, &info, pid);
2981 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2983 struct task_struct *p;
2987 p = find_task_by_vpid(pid);
2988 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2989 error = check_kill_permission(sig, info, p);
2991 * The null signal is a permissions and process existence
2992 * probe. No signal is actually delivered.
2994 if (!error && sig) {
2995 error = do_send_sig_info(sig, info, p, false);
2997 * If lock_task_sighand() failed we pretend the task
2998 * dies after receiving the signal. The window is tiny,
2999 * and the signal is private anyway.
3001 if (unlikely(error == -ESRCH))
3010 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3012 struct siginfo info = {};
3014 info.si_signo = sig;
3016 info.si_code = SI_TKILL;
3017 info.si_pid = task_tgid_vnr(current);
3018 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3020 return do_send_specific(tgid, pid, sig, &info);
3024 * sys_tgkill - send signal to one specific thread
3025 * @tgid: the thread group ID of the thread
3026 * @pid: the PID of the thread
3027 * @sig: signal to be sent
3029 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3030 * exists but it's not belonging to the target process anymore. This
3031 * method solves the problem of threads exiting and PIDs getting reused.
3033 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3035 /* This is only valid for single tasks */
3036 if (pid <= 0 || tgid <= 0)
3039 return do_tkill(tgid, pid, sig);
3043 * sys_tkill - send signal to one specific task
3044 * @pid: the PID of the task
3045 * @sig: signal to be sent
3047 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3049 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3051 /* This is only valid for single tasks */
3055 return do_tkill(0, pid, sig);
3058 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3060 /* Not even root can pretend to send signals from the kernel.
3061 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3063 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3064 (task_pid_vnr(current) != pid))
3067 info->si_signo = sig;
3069 /* POSIX.1b doesn't mention process groups. */
3070 return kill_proc_info(sig, info, pid);
3074 * sys_rt_sigqueueinfo - send signal information to a signal
3075 * @pid: the PID of the thread
3076 * @sig: signal to be sent
3077 * @uinfo: signal info to be sent
3079 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3080 siginfo_t __user *, uinfo)
3083 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3085 return do_rt_sigqueueinfo(pid, sig, &info);
3088 #ifdef CONFIG_COMPAT
3089 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3092 struct compat_siginfo __user *, uinfo)
3094 siginfo_t info = {};
3095 int ret = copy_siginfo_from_user32(&info, uinfo);
3098 return do_rt_sigqueueinfo(pid, sig, &info);
3102 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3104 /* This is only valid for single tasks */
3105 if (pid <= 0 || tgid <= 0)
3108 /* Not even root can pretend to send signals from the kernel.
3109 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3111 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3112 (task_pid_vnr(current) != pid))
3115 info->si_signo = sig;
3117 return do_send_specific(tgid, pid, sig, info);
3120 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3121 siginfo_t __user *, uinfo)
3125 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3128 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3131 #ifdef CONFIG_COMPAT
3132 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3136 struct compat_siginfo __user *, uinfo)
3138 siginfo_t info = {};
3140 if (copy_siginfo_from_user32(&info, uinfo))
3142 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3147 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3149 void kernel_sigaction(int sig, __sighandler_t action)
3151 spin_lock_irq(¤t->sighand->siglock);
3152 current->sighand->action[sig - 1].sa.sa_handler = action;
3153 if (action == SIG_IGN) {
3157 sigaddset(&mask, sig);
3159 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
3160 flush_sigqueue_mask(&mask, ¤t->pending);
3161 recalc_sigpending();
3163 spin_unlock_irq(¤t->sighand->siglock);
3165 EXPORT_SYMBOL(kernel_sigaction);
3167 void __weak sigaction_compat_abi(struct k_sigaction *act,
3168 struct k_sigaction *oact)
3172 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3174 struct task_struct *p = current, *t;
3175 struct k_sigaction *k;
3178 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3181 k = &p->sighand->action[sig-1];
3183 spin_lock_irq(&p->sighand->siglock);
3187 sigaction_compat_abi(act, oact);
3190 sigdelsetmask(&act->sa.sa_mask,
3191 sigmask(SIGKILL) | sigmask(SIGSTOP));
3195 * "Setting a signal action to SIG_IGN for a signal that is
3196 * pending shall cause the pending signal to be discarded,
3197 * whether or not it is blocked."
3199 * "Setting a signal action to SIG_DFL for a signal that is
3200 * pending and whose default action is to ignore the signal
3201 * (for example, SIGCHLD), shall cause the pending signal to
3202 * be discarded, whether or not it is blocked"
3204 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3206 sigaddset(&mask, sig);
3207 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3208 for_each_thread(p, t)
3209 flush_sigqueue_mask(&mask, &t->pending);
3213 spin_unlock_irq(&p->sighand->siglock);
3218 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3221 struct task_struct *t = current;
3224 memset(oss, 0, sizeof(stack_t));
3225 oss->ss_sp = (void __user *) t->sas_ss_sp;
3226 oss->ss_size = t->sas_ss_size;
3227 oss->ss_flags = sas_ss_flags(sp) |
3228 (current->sas_ss_flags & SS_FLAG_BITS);
3232 void __user *ss_sp = ss->ss_sp;
3233 size_t ss_size = ss->ss_size;
3234 unsigned ss_flags = ss->ss_flags;
3237 if (unlikely(on_sig_stack(sp)))
3240 ss_mode = ss_flags & ~SS_FLAG_BITS;
3241 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3245 if (ss_mode == SS_DISABLE) {
3249 if (unlikely(ss_size < min_ss_size))
3253 t->sas_ss_sp = (unsigned long) ss_sp;
3254 t->sas_ss_size = ss_size;
3255 t->sas_ss_flags = ss_flags;
3260 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3264 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3266 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3267 current_user_stack_pointer(),
3269 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3274 int restore_altstack(const stack_t __user *uss)
3277 if (copy_from_user(&new, uss, sizeof(stack_t)))
3279 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
3281 /* squash all but EFAULT for now */
3285 int __save_altstack(stack_t __user *uss, unsigned long sp)
3287 struct task_struct *t = current;
3288 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3289 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3290 __put_user(t->sas_ss_size, &uss->ss_size);
3293 if (t->sas_ss_flags & SS_AUTODISARM)
3298 #ifdef CONFIG_COMPAT
3299 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3300 const compat_stack_t __user *, uss_ptr,
3301 compat_stack_t __user *, uoss_ptr)
3307 compat_stack_t uss32;
3308 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3310 uss.ss_sp = compat_ptr(uss32.ss_sp);
3311 uss.ss_flags = uss32.ss_flags;
3312 uss.ss_size = uss32.ss_size;
3314 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3315 compat_user_stack_pointer(),
3316 COMPAT_MINSIGSTKSZ);
3317 if (ret >= 0 && uoss_ptr) {
3319 memset(&old, 0, sizeof(old));
3320 old.ss_sp = ptr_to_compat(uoss.ss_sp);
3321 old.ss_flags = uoss.ss_flags;
3322 old.ss_size = uoss.ss_size;
3323 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3329 int compat_restore_altstack(const compat_stack_t __user *uss)
3331 int err = compat_sys_sigaltstack(uss, NULL);
3332 /* squash all but -EFAULT for now */
3333 return err == -EFAULT ? err : 0;
3336 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3339 struct task_struct *t = current;
3340 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3342 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3343 __put_user(t->sas_ss_size, &uss->ss_size);
3346 if (t->sas_ss_flags & SS_AUTODISARM)
3352 #ifdef __ARCH_WANT_SYS_SIGPENDING
3355 * sys_sigpending - examine pending signals
3356 * @set: where mask of pending signal is returned
3358 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3360 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3363 #ifdef CONFIG_COMPAT
3364 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3368 int err = do_sigpending(&set, sizeof(set.sig[0]));
3370 err = put_user(set.sig[0], set32);
3373 return sys_rt_sigpending((sigset_t __user *)set32, sizeof(*set32));
3380 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3382 * sys_sigprocmask - examine and change blocked signals
3383 * @how: whether to add, remove, or set signals
3384 * @nset: signals to add or remove (if non-null)
3385 * @oset: previous value of signal mask if non-null
3387 * Some platforms have their own version with special arguments;
3388 * others support only sys_rt_sigprocmask.
3391 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3392 old_sigset_t __user *, oset)
3394 old_sigset_t old_set, new_set;
3395 sigset_t new_blocked;
3397 old_set = current->blocked.sig[0];
3400 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3403 new_blocked = current->blocked;
3407 sigaddsetmask(&new_blocked, new_set);
3410 sigdelsetmask(&new_blocked, new_set);
3413 new_blocked.sig[0] = new_set;
3419 set_current_blocked(&new_blocked);
3423 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3429 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3431 #ifndef CONFIG_ODD_RT_SIGACTION
3433 * sys_rt_sigaction - alter an action taken by a process
3434 * @sig: signal to be sent
3435 * @act: new sigaction
3436 * @oact: used to save the previous sigaction
3437 * @sigsetsize: size of sigset_t type
3439 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3440 const struct sigaction __user *, act,
3441 struct sigaction __user *, oact,
3444 struct k_sigaction new_sa, old_sa;
3447 /* XXX: Don't preclude handling different sized sigset_t's. */
3448 if (sigsetsize != sizeof(sigset_t))
3452 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3456 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3459 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3465 #ifdef CONFIG_COMPAT
3466 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3467 const struct compat_sigaction __user *, act,
3468 struct compat_sigaction __user *, oact,
3469 compat_size_t, sigsetsize)
3471 struct k_sigaction new_ka, old_ka;
3472 compat_sigset_t mask;
3473 #ifdef __ARCH_HAS_SA_RESTORER
3474 compat_uptr_t restorer;
3478 /* XXX: Don't preclude handling different sized sigset_t's. */
3479 if (sigsetsize != sizeof(compat_sigset_t))
3483 compat_uptr_t handler;
3484 ret = get_user(handler, &act->sa_handler);
3485 new_ka.sa.sa_handler = compat_ptr(handler);
3486 #ifdef __ARCH_HAS_SA_RESTORER
3487 ret |= get_user(restorer, &act->sa_restorer);
3488 new_ka.sa.sa_restorer = compat_ptr(restorer);
3490 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3491 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3494 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3497 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3499 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3500 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3502 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3503 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3504 #ifdef __ARCH_HAS_SA_RESTORER
3505 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3506 &oact->sa_restorer);
3512 #endif /* !CONFIG_ODD_RT_SIGACTION */
3514 #ifdef CONFIG_OLD_SIGACTION
3515 SYSCALL_DEFINE3(sigaction, int, sig,
3516 const struct old_sigaction __user *, act,
3517 struct old_sigaction __user *, oact)
3519 struct k_sigaction new_ka, old_ka;
3524 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3525 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3526 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3527 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3528 __get_user(mask, &act->sa_mask))
3530 #ifdef __ARCH_HAS_KA_RESTORER
3531 new_ka.ka_restorer = NULL;
3533 siginitset(&new_ka.sa.sa_mask, mask);
3536 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3539 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3540 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3541 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3542 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3543 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3550 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3551 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3552 const struct compat_old_sigaction __user *, act,
3553 struct compat_old_sigaction __user *, oact)
3555 struct k_sigaction new_ka, old_ka;
3557 compat_old_sigset_t mask;
3558 compat_uptr_t handler, restorer;
3561 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3562 __get_user(handler, &act->sa_handler) ||
3563 __get_user(restorer, &act->sa_restorer) ||
3564 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3565 __get_user(mask, &act->sa_mask))
3568 #ifdef __ARCH_HAS_KA_RESTORER
3569 new_ka.ka_restorer = NULL;
3571 new_ka.sa.sa_handler = compat_ptr(handler);
3572 new_ka.sa.sa_restorer = compat_ptr(restorer);
3573 siginitset(&new_ka.sa.sa_mask, mask);
3576 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3579 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3580 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3581 &oact->sa_handler) ||
3582 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3583 &oact->sa_restorer) ||
3584 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3585 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3592 #ifdef CONFIG_SGETMASK_SYSCALL
3595 * For backwards compatibility. Functionality superseded by sigprocmask.
3597 SYSCALL_DEFINE0(sgetmask)
3600 return current->blocked.sig[0];
3603 SYSCALL_DEFINE1(ssetmask, int, newmask)
3605 int old = current->blocked.sig[0];
3608 siginitset(&newset, newmask);
3609 set_current_blocked(&newset);
3613 #endif /* CONFIG_SGETMASK_SYSCALL */
3615 #ifdef __ARCH_WANT_SYS_SIGNAL
3617 * For backwards compatibility. Functionality superseded by sigaction.
3619 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3621 struct k_sigaction new_sa, old_sa;
3624 new_sa.sa.sa_handler = handler;
3625 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3626 sigemptyset(&new_sa.sa.sa_mask);
3628 ret = do_sigaction(sig, &new_sa, &old_sa);
3630 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3632 #endif /* __ARCH_WANT_SYS_SIGNAL */
3634 #ifdef __ARCH_WANT_SYS_PAUSE
3636 SYSCALL_DEFINE0(pause)
3638 while (!signal_pending(current)) {
3639 __set_current_state(TASK_INTERRUPTIBLE);
3642 return -ERESTARTNOHAND;
3647 static int sigsuspend(sigset_t *set)
3649 current->saved_sigmask = current->blocked;
3650 set_current_blocked(set);
3652 while (!signal_pending(current)) {
3653 __set_current_state(TASK_INTERRUPTIBLE);
3656 set_restore_sigmask();
3657 return -ERESTARTNOHAND;
3661 * sys_rt_sigsuspend - replace the signal mask for a value with the
3662 * @unewset value until a signal is received
3663 * @unewset: new signal mask value
3664 * @sigsetsize: size of sigset_t type
3666 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3670 /* XXX: Don't preclude handling different sized sigset_t's. */
3671 if (sigsetsize != sizeof(sigset_t))
3674 if (copy_from_user(&newset, unewset, sizeof(newset)))
3676 return sigsuspend(&newset);
3679 #ifdef CONFIG_COMPAT
3680 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3684 compat_sigset_t newset32;
3686 /* XXX: Don't preclude handling different sized sigset_t's. */
3687 if (sigsetsize != sizeof(sigset_t))
3690 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3692 sigset_from_compat(&newset, &newset32);
3693 return sigsuspend(&newset);
3695 /* on little-endian bitmaps don't care about granularity */
3696 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3701 #ifdef CONFIG_OLD_SIGSUSPEND
3702 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3705 siginitset(&blocked, mask);
3706 return sigsuspend(&blocked);
3709 #ifdef CONFIG_OLD_SIGSUSPEND3
3710 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3713 siginitset(&blocked, mask);
3714 return sigsuspend(&blocked);
3718 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3723 void __init signals_init(void)
3725 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3726 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3727 != offsetof(struct siginfo, _sifields._pad));
3729 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3732 #ifdef CONFIG_KGDB_KDB
3733 #include <linux/kdb.h>
3735 * kdb_send_sig_info - Allows kdb to send signals without exposing
3736 * signal internals. This function checks if the required locks are
3737 * available before calling the main signal code, to avoid kdb
3741 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3743 static struct task_struct *kdb_prev_t;
3745 if (!spin_trylock(&t->sighand->siglock)) {
3746 kdb_printf("Can't do kill command now.\n"
3747 "The sigmask lock is held somewhere else in "
3748 "kernel, try again later\n");
3751 spin_unlock(&t->sighand->siglock);
3752 new_t = kdb_prev_t != t;
3754 if (t->state != TASK_RUNNING && new_t) {
3755 kdb_printf("Process is not RUNNING, sending a signal from "
3756 "kdb risks deadlock\n"
3757 "on the run queue locks. "
3758 "The signal has _not_ been sent.\n"
3759 "Reissue the kill command if you want to risk "
3763 sig = info->si_signo;
3764 if (send_sig_info(sig, info, t))
3765 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3768 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3770 #endif /* CONFIG_KGDB_KDB */