1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/task_work.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 #include <linux/sysctl.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58 #include <asm/syscall.h> /* for syscall_get_* */
61 * SLAB caches for signal bits.
64 static struct kmem_cache *sigqueue_cachep;
66 int print_fatal_signals __read_mostly;
68 static void __user *sig_handler(struct task_struct *t, int sig)
70 return t->sighand->action[sig - 1].sa.sa_handler;
73 static inline bool sig_handler_ignored(void __user *handler, int sig)
75 /* Is it explicitly or implicitly ignored? */
76 return handler == SIG_IGN ||
77 (handler == SIG_DFL && sig_kernel_ignore(sig));
80 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
84 handler = sig_handler(t, sig);
86 /* SIGKILL and SIGSTOP may not be sent to the global init */
87 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
90 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
91 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
94 /* Only allow kernel generated signals to this kthread */
95 if (unlikely((t->flags & PF_KTHREAD) &&
96 (handler == SIG_KTHREAD_KERNEL) && !force))
99 return sig_handler_ignored(handler, sig);
102 static bool sig_ignored(struct task_struct *t, int sig, bool force)
105 * Blocked signals are never ignored, since the
106 * signal handler may change by the time it is
109 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
113 * Tracers may want to know about even ignored signal unless it
114 * is SIGKILL which can't be reported anyway but can be ignored
115 * by SIGNAL_UNKILLABLE task.
117 if (t->ptrace && sig != SIGKILL)
120 return sig_task_ignored(t, sig, force);
124 * Re-calculate pending state from the set of locally pending
125 * signals, globally pending signals, and blocked signals.
127 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
132 switch (_NSIG_WORDS) {
134 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
135 ready |= signal->sig[i] &~ blocked->sig[i];
138 case 4: ready = signal->sig[3] &~ blocked->sig[3];
139 ready |= signal->sig[2] &~ blocked->sig[2];
140 ready |= signal->sig[1] &~ blocked->sig[1];
141 ready |= signal->sig[0] &~ blocked->sig[0];
144 case 2: ready = signal->sig[1] &~ blocked->sig[1];
145 ready |= signal->sig[0] &~ blocked->sig[0];
148 case 1: ready = signal->sig[0] &~ blocked->sig[0];
153 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
155 static bool recalc_sigpending_tsk(struct task_struct *t)
157 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
158 PENDING(&t->pending, &t->blocked) ||
159 PENDING(&t->signal->shared_pending, &t->blocked) ||
160 cgroup_task_frozen(t)) {
161 set_tsk_thread_flag(t, TIF_SIGPENDING);
166 * We must never clear the flag in another thread, or in current
167 * when it's possible the current syscall is returning -ERESTART*.
168 * So we don't clear it here, and only callers who know they should do.
174 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
175 * This is superfluous when called on current, the wakeup is a harmless no-op.
177 void recalc_sigpending_and_wake(struct task_struct *t)
179 if (recalc_sigpending_tsk(t))
180 signal_wake_up(t, 0);
183 void recalc_sigpending(void)
185 if (!recalc_sigpending_tsk(current) && !freezing(current))
186 clear_thread_flag(TIF_SIGPENDING);
189 EXPORT_SYMBOL(recalc_sigpending);
191 void calculate_sigpending(void)
193 /* Have any signals or users of TIF_SIGPENDING been delayed
196 spin_lock_irq(¤t->sighand->siglock);
197 set_tsk_thread_flag(current, TIF_SIGPENDING);
199 spin_unlock_irq(¤t->sighand->siglock);
202 /* Given the mask, find the first available signal that should be serviced. */
204 #define SYNCHRONOUS_MASK \
205 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
208 int next_signal(struct sigpending *pending, sigset_t *mask)
210 unsigned long i, *s, *m, x;
213 s = pending->signal.sig;
217 * Handle the first word specially: it contains the
218 * synchronous signals that need to be dequeued first.
222 if (x & SYNCHRONOUS_MASK)
223 x &= SYNCHRONOUS_MASK;
228 switch (_NSIG_WORDS) {
230 for (i = 1; i < _NSIG_WORDS; ++i) {
234 sig = ffz(~x) + i*_NSIG_BPW + 1;
243 sig = ffz(~x) + _NSIG_BPW + 1;
254 static inline void print_dropped_signal(int sig)
256 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
258 if (!print_fatal_signals)
261 if (!__ratelimit(&ratelimit_state))
264 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 current->comm, current->pid, sig);
269 * task_set_jobctl_pending - set jobctl pending bits
271 * @mask: pending bits to set
273 * Clear @mask from @task->jobctl. @mask must be subset of
274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
276 * cleared. If @task is already being killed or exiting, this function
280 * Must be called with @task->sighand->siglock held.
283 * %true if @mask is set, %false if made noop because @task was dying.
285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
287 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
291 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
294 if (mask & JOBCTL_STOP_SIGMASK)
295 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
297 task->jobctl |= mask;
302 * task_clear_jobctl_trapping - clear jobctl trapping bit
305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306 * Clear it and wake up the ptracer. Note that we don't need any further
307 * locking. @task->siglock guarantees that @task->parent points to the
311 * Must be called with @task->sighand->siglock held.
313 void task_clear_jobctl_trapping(struct task_struct *task)
315 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 task->jobctl &= ~JOBCTL_TRAPPING;
317 smp_mb(); /* advised by wake_up_bit() */
318 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
323 * task_clear_jobctl_pending - clear jobctl pending bits
325 * @mask: pending bits to clear
327 * Clear @mask from @task->jobctl. @mask must be subset of
328 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
329 * STOP bits are cleared together.
331 * If clearing of @mask leaves no stop or trap pending, this function calls
332 * task_clear_jobctl_trapping().
335 * Must be called with @task->sighand->siglock held.
337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
339 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
341 if (mask & JOBCTL_STOP_PENDING)
342 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
344 task->jobctl &= ~mask;
346 if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 task_clear_jobctl_trapping(task);
351 * task_participate_group_stop - participate in a group stop
352 * @task: task participating in a group stop
354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355 * Group stop states are cleared and the group stop count is consumed if
356 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
357 * stop, the appropriate `SIGNAL_*` flags are set.
360 * Must be called with @task->sighand->siglock held.
363 * %true if group stop completion should be notified to the parent, %false
366 static bool task_participate_group_stop(struct task_struct *task)
368 struct signal_struct *sig = task->signal;
369 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
371 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
373 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
378 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 sig->group_stop_count--;
382 * Tell the caller to notify completion iff we are entering into a
383 * fresh group stop. Read comment in do_signal_stop() for details.
385 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
392 void task_join_group_stop(struct task_struct *task)
394 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
395 struct signal_struct *sig = current->signal;
397 if (sig->group_stop_count) {
398 sig->group_stop_count++;
399 mask |= JOBCTL_STOP_CONSUME;
400 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
403 /* Have the new thread join an on-going signal group stop */
404 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
408 * allocate a new signal queue record
409 * - this may be called without locks if and only if t == current, otherwise an
410 * appropriate lock must be held to stop the target task from exiting
412 static struct sigqueue *
413 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
414 int override_rlimit, const unsigned int sigqueue_flags)
416 struct sigqueue *q = NULL;
417 struct ucounts *ucounts = NULL;
421 * Protect access to @t credentials. This can go away when all
422 * callers hold rcu read lock.
424 * NOTE! A pending signal will hold on to the user refcount,
425 * and we get/put the refcount only when the sigpending count
426 * changes from/to zero.
429 ucounts = task_ucounts(t);
430 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
435 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
436 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
438 print_dropped_signal(sig);
441 if (unlikely(q == NULL)) {
442 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
444 INIT_LIST_HEAD(&q->list);
445 q->flags = sigqueue_flags;
446 q->ucounts = ucounts;
451 static void __sigqueue_free(struct sigqueue *q)
453 if (q->flags & SIGQUEUE_PREALLOC)
456 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
459 kmem_cache_free(sigqueue_cachep, q);
462 void flush_sigqueue(struct sigpending *queue)
466 sigemptyset(&queue->signal);
467 while (!list_empty(&queue->list)) {
468 q = list_entry(queue->list.next, struct sigqueue , list);
469 list_del_init(&q->list);
475 * Flush all pending signals for this kthread.
477 void flush_signals(struct task_struct *t)
481 spin_lock_irqsave(&t->sighand->siglock, flags);
482 clear_tsk_thread_flag(t, TIF_SIGPENDING);
483 flush_sigqueue(&t->pending);
484 flush_sigqueue(&t->signal->shared_pending);
485 spin_unlock_irqrestore(&t->sighand->siglock, flags);
487 EXPORT_SYMBOL(flush_signals);
489 #ifdef CONFIG_POSIX_TIMERS
490 static void __flush_itimer_signals(struct sigpending *pending)
492 sigset_t signal, retain;
493 struct sigqueue *q, *n;
495 signal = pending->signal;
496 sigemptyset(&retain);
498 list_for_each_entry_safe(q, n, &pending->list, list) {
499 int sig = q->info.si_signo;
501 if (likely(q->info.si_code != SI_TIMER)) {
502 sigaddset(&retain, sig);
504 sigdelset(&signal, sig);
505 list_del_init(&q->list);
510 sigorsets(&pending->signal, &signal, &retain);
513 void flush_itimer_signals(void)
515 struct task_struct *tsk = current;
518 spin_lock_irqsave(&tsk->sighand->siglock, flags);
519 __flush_itimer_signals(&tsk->pending);
520 __flush_itimer_signals(&tsk->signal->shared_pending);
521 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
525 void ignore_signals(struct task_struct *t)
529 for (i = 0; i < _NSIG; ++i)
530 t->sighand->action[i].sa.sa_handler = SIG_IGN;
536 * Flush all handlers for a task.
540 flush_signal_handlers(struct task_struct *t, int force_default)
543 struct k_sigaction *ka = &t->sighand->action[0];
544 for (i = _NSIG ; i != 0 ; i--) {
545 if (force_default || ka->sa.sa_handler != SIG_IGN)
546 ka->sa.sa_handler = SIG_DFL;
548 #ifdef __ARCH_HAS_SA_RESTORER
549 ka->sa.sa_restorer = NULL;
551 sigemptyset(&ka->sa.sa_mask);
556 bool unhandled_signal(struct task_struct *tsk, int sig)
558 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
559 if (is_global_init(tsk))
562 if (handler != SIG_IGN && handler != SIG_DFL)
565 /* If dying, we handle all new signals by ignoring them */
566 if (fatal_signal_pending(tsk))
569 /* if ptraced, let the tracer determine */
573 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
576 struct sigqueue *q, *first = NULL;
579 * Collect the siginfo appropriate to this signal. Check if
580 * there is another siginfo for the same signal.
582 list_for_each_entry(q, &list->list, list) {
583 if (q->info.si_signo == sig) {
590 sigdelset(&list->signal, sig);
594 list_del_init(&first->list);
595 copy_siginfo(info, &first->info);
598 (first->flags & SIGQUEUE_PREALLOC) &&
599 (info->si_code == SI_TIMER) &&
600 (info->si_sys_private);
602 __sigqueue_free(first);
605 * Ok, it wasn't in the queue. This must be
606 * a fast-pathed signal or we must have been
607 * out of queue space. So zero out the info.
610 info->si_signo = sig;
612 info->si_code = SI_USER;
618 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
619 kernel_siginfo_t *info, bool *resched_timer)
621 int sig = next_signal(pending, mask);
624 collect_signal(sig, pending, info, resched_timer);
629 * Dequeue a signal and return the element to the caller, which is
630 * expected to free it.
632 * All callers have to hold the siglock.
634 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
635 kernel_siginfo_t *info, enum pid_type *type)
637 bool resched_timer = false;
640 /* We only dequeue private signals from ourselves, we don't let
641 * signalfd steal them
644 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
646 *type = PIDTYPE_TGID;
647 signr = __dequeue_signal(&tsk->signal->shared_pending,
648 mask, info, &resched_timer);
649 #ifdef CONFIG_POSIX_TIMERS
653 * itimers are process shared and we restart periodic
654 * itimers in the signal delivery path to prevent DoS
655 * attacks in the high resolution timer case. This is
656 * compliant with the old way of self-restarting
657 * itimers, as the SIGALRM is a legacy signal and only
658 * queued once. Changing the restart behaviour to
659 * restart the timer in the signal dequeue path is
660 * reducing the timer noise on heavy loaded !highres
663 if (unlikely(signr == SIGALRM)) {
664 struct hrtimer *tmr = &tsk->signal->real_timer;
666 if (!hrtimer_is_queued(tmr) &&
667 tsk->signal->it_real_incr != 0) {
668 hrtimer_forward(tmr, tmr->base->get_time(),
669 tsk->signal->it_real_incr);
670 hrtimer_restart(tmr);
680 if (unlikely(sig_kernel_stop(signr))) {
682 * Set a marker that we have dequeued a stop signal. Our
683 * caller might release the siglock and then the pending
684 * stop signal it is about to process is no longer in the
685 * pending bitmasks, but must still be cleared by a SIGCONT
686 * (and overruled by a SIGKILL). So those cases clear this
687 * shared flag after we've set it. Note that this flag may
688 * remain set after the signal we return is ignored or
689 * handled. That doesn't matter because its only purpose
690 * is to alert stop-signal processing code when another
691 * processor has come along and cleared the flag.
693 current->jobctl |= JOBCTL_STOP_DEQUEUED;
695 #ifdef CONFIG_POSIX_TIMERS
698 * Release the siglock to ensure proper locking order
699 * of timer locks outside of siglocks. Note, we leave
700 * irqs disabled here, since the posix-timers code is
701 * about to disable them again anyway.
703 spin_unlock(&tsk->sighand->siglock);
704 posixtimer_rearm(info);
705 spin_lock(&tsk->sighand->siglock);
707 /* Don't expose the si_sys_private value to userspace */
708 info->si_sys_private = 0;
713 EXPORT_SYMBOL_GPL(dequeue_signal);
715 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
717 struct task_struct *tsk = current;
718 struct sigpending *pending = &tsk->pending;
719 struct sigqueue *q, *sync = NULL;
722 * Might a synchronous signal be in the queue?
724 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
728 * Return the first synchronous signal in the queue.
730 list_for_each_entry(q, &pending->list, list) {
731 /* Synchronous signals have a positive si_code */
732 if ((q->info.si_code > SI_USER) &&
733 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
741 * Check if there is another siginfo for the same signal.
743 list_for_each_entry_continue(q, &pending->list, list) {
744 if (q->info.si_signo == sync->info.si_signo)
748 sigdelset(&pending->signal, sync->info.si_signo);
751 list_del_init(&sync->list);
752 copy_siginfo(info, &sync->info);
753 __sigqueue_free(sync);
754 return info->si_signo;
758 * Tell a process that it has a new active signal..
760 * NOTE! we rely on the previous spin_lock to
761 * lock interrupts for us! We can only be called with
762 * "siglock" held, and the local interrupt must
763 * have been disabled when that got acquired!
765 * No need to set need_resched since signal event passing
766 * goes through ->blocked
768 void signal_wake_up_state(struct task_struct *t, unsigned int state)
770 lockdep_assert_held(&t->sighand->siglock);
772 set_tsk_thread_flag(t, TIF_SIGPENDING);
775 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
776 * case. We don't check t->state here because there is a race with it
777 * executing another processor and just now entering stopped state.
778 * By using wake_up_state, we ensure the process will wake up and
779 * handle its death signal.
781 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
786 * Remove signals in mask from the pending set and queue.
787 * Returns 1 if any signals were found.
789 * All callers must be holding the siglock.
791 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
793 struct sigqueue *q, *n;
796 sigandsets(&m, mask, &s->signal);
797 if (sigisemptyset(&m))
800 sigandnsets(&s->signal, &s->signal, mask);
801 list_for_each_entry_safe(q, n, &s->list, list) {
802 if (sigismember(mask, q->info.si_signo)) {
803 list_del_init(&q->list);
809 static inline int is_si_special(const struct kernel_siginfo *info)
811 return info <= SEND_SIG_PRIV;
814 static inline bool si_fromuser(const struct kernel_siginfo *info)
816 return info == SEND_SIG_NOINFO ||
817 (!is_si_special(info) && SI_FROMUSER(info));
821 * called with RCU read lock from check_kill_permission()
823 static bool kill_ok_by_cred(struct task_struct *t)
825 const struct cred *cred = current_cred();
826 const struct cred *tcred = __task_cred(t);
828 return uid_eq(cred->euid, tcred->suid) ||
829 uid_eq(cred->euid, tcred->uid) ||
830 uid_eq(cred->uid, tcred->suid) ||
831 uid_eq(cred->uid, tcred->uid) ||
832 ns_capable(tcred->user_ns, CAP_KILL);
836 * Bad permissions for sending the signal
837 * - the caller must hold the RCU read lock
839 static int check_kill_permission(int sig, struct kernel_siginfo *info,
840 struct task_struct *t)
845 if (!valid_signal(sig))
848 if (!si_fromuser(info))
851 error = audit_signal_info(sig, t); /* Let audit system see the signal */
855 if (!same_thread_group(current, t) &&
856 !kill_ok_by_cred(t)) {
859 sid = task_session(t);
861 * We don't return the error if sid == NULL. The
862 * task was unhashed, the caller must notice this.
864 if (!sid || sid == task_session(current))
872 return security_task_kill(t, info, sig, NULL);
876 * ptrace_trap_notify - schedule trap to notify ptracer
877 * @t: tracee wanting to notify tracer
879 * This function schedules sticky ptrace trap which is cleared on the next
880 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
883 * If @t is running, STOP trap will be taken. If trapped for STOP and
884 * ptracer is listening for events, tracee is woken up so that it can
885 * re-trap for the new event. If trapped otherwise, STOP trap will be
886 * eventually taken without returning to userland after the existing traps
887 * are finished by PTRACE_CONT.
890 * Must be called with @task->sighand->siglock held.
892 static void ptrace_trap_notify(struct task_struct *t)
894 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
895 lockdep_assert_held(&t->sighand->siglock);
897 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
898 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
902 * Handle magic process-wide effects of stop/continue signals. Unlike
903 * the signal actions, these happen immediately at signal-generation
904 * time regardless of blocking, ignoring, or handling. This does the
905 * actual continuing for SIGCONT, but not the actual stopping for stop
906 * signals. The process stop is done as a signal action for SIG_DFL.
908 * Returns true if the signal should be actually delivered, otherwise
909 * it should be dropped.
911 static bool prepare_signal(int sig, struct task_struct *p, bool force)
913 struct signal_struct *signal = p->signal;
914 struct task_struct *t;
917 if (signal->flags & SIGNAL_GROUP_EXIT) {
918 if (signal->core_state)
919 return sig == SIGKILL;
921 * The process is in the middle of dying, drop the signal.
924 } else if (sig_kernel_stop(sig)) {
926 * This is a stop signal. Remove SIGCONT from all queues.
928 siginitset(&flush, sigmask(SIGCONT));
929 flush_sigqueue_mask(&flush, &signal->shared_pending);
930 for_each_thread(p, t)
931 flush_sigqueue_mask(&flush, &t->pending);
932 } else if (sig == SIGCONT) {
935 * Remove all stop signals from all queues, wake all threads.
937 siginitset(&flush, SIG_KERNEL_STOP_MASK);
938 flush_sigqueue_mask(&flush, &signal->shared_pending);
939 for_each_thread(p, t) {
940 flush_sigqueue_mask(&flush, &t->pending);
941 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
942 if (likely(!(t->ptrace & PT_SEIZED))) {
943 t->jobctl &= ~JOBCTL_STOPPED;
944 wake_up_state(t, __TASK_STOPPED);
946 ptrace_trap_notify(t);
950 * Notify the parent with CLD_CONTINUED if we were stopped.
952 * If we were in the middle of a group stop, we pretend it
953 * was already finished, and then continued. Since SIGCHLD
954 * doesn't queue we report only CLD_STOPPED, as if the next
955 * CLD_CONTINUED was dropped.
958 if (signal->flags & SIGNAL_STOP_STOPPED)
959 why |= SIGNAL_CLD_CONTINUED;
960 else if (signal->group_stop_count)
961 why |= SIGNAL_CLD_STOPPED;
965 * The first thread which returns from do_signal_stop()
966 * will take ->siglock, notice SIGNAL_CLD_MASK, and
967 * notify its parent. See get_signal().
969 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
970 signal->group_stop_count = 0;
971 signal->group_exit_code = 0;
975 return !sig_ignored(p, sig, force);
979 * Test if P wants to take SIG. After we've checked all threads with this,
980 * it's equivalent to finding no threads not blocking SIG. Any threads not
981 * blocking SIG were ruled out because they are not running and already
982 * have pending signals. Such threads will dequeue from the shared queue
983 * as soon as they're available, so putting the signal on the shared queue
984 * will be equivalent to sending it to one such thread.
986 static inline bool wants_signal(int sig, struct task_struct *p)
988 if (sigismember(&p->blocked, sig))
991 if (p->flags & PF_EXITING)
997 if (task_is_stopped_or_traced(p))
1000 return task_curr(p) || !task_sigpending(p);
1003 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1005 struct signal_struct *signal = p->signal;
1006 struct task_struct *t;
1009 * Now find a thread we can wake up to take the signal off the queue.
1011 * Try the suggested task first (may or may not be the main thread).
1013 if (wants_signal(sig, p))
1015 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1017 * There is just one thread and it does not need to be woken.
1018 * It will dequeue unblocked signals before it runs again.
1023 * Otherwise try to find a suitable thread.
1025 t = signal->curr_target;
1026 while (!wants_signal(sig, t)) {
1028 if (t == signal->curr_target)
1030 * No thread needs to be woken.
1031 * Any eligible threads will see
1032 * the signal in the queue soon.
1036 signal->curr_target = t;
1040 * Found a killable thread. If the signal will be fatal,
1041 * then start taking the whole group down immediately.
1043 if (sig_fatal(p, sig) &&
1044 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1045 !sigismember(&t->real_blocked, sig) &&
1046 (sig == SIGKILL || !p->ptrace)) {
1048 * This signal will be fatal to the whole group.
1050 if (!sig_kernel_coredump(sig)) {
1052 * Start a group exit and wake everybody up.
1053 * This way we don't have other threads
1054 * running and doing things after a slower
1055 * thread has the fatal signal pending.
1057 signal->flags = SIGNAL_GROUP_EXIT;
1058 signal->group_exit_code = sig;
1059 signal->group_stop_count = 0;
1062 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1063 sigaddset(&t->pending.signal, SIGKILL);
1064 signal_wake_up(t, 1);
1065 } while_each_thread(p, t);
1071 * The signal is already in the shared-pending queue.
1072 * Tell the chosen thread to wake up and dequeue it.
1074 signal_wake_up(t, sig == SIGKILL);
1078 static inline bool legacy_queue(struct sigpending *signals, int sig)
1080 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1083 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1084 struct task_struct *t, enum pid_type type, bool force)
1086 struct sigpending *pending;
1088 int override_rlimit;
1089 int ret = 0, result;
1091 lockdep_assert_held(&t->sighand->siglock);
1093 result = TRACE_SIGNAL_IGNORED;
1094 if (!prepare_signal(sig, t, force))
1097 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1099 * Short-circuit ignored signals and support queuing
1100 * exactly one non-rt signal, so that we can get more
1101 * detailed information about the cause of the signal.
1103 result = TRACE_SIGNAL_ALREADY_PENDING;
1104 if (legacy_queue(pending, sig))
1107 result = TRACE_SIGNAL_DELIVERED;
1109 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1111 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1115 * Real-time signals must be queued if sent by sigqueue, or
1116 * some other real-time mechanism. It is implementation
1117 * defined whether kill() does so. We attempt to do so, on
1118 * the principle of least surprise, but since kill is not
1119 * allowed to fail with EAGAIN when low on memory we just
1120 * make sure at least one signal gets delivered and don't
1121 * pass on the info struct.
1124 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1126 override_rlimit = 0;
1128 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1131 list_add_tail(&q->list, &pending->list);
1132 switch ((unsigned long) info) {
1133 case (unsigned long) SEND_SIG_NOINFO:
1134 clear_siginfo(&q->info);
1135 q->info.si_signo = sig;
1136 q->info.si_errno = 0;
1137 q->info.si_code = SI_USER;
1138 q->info.si_pid = task_tgid_nr_ns(current,
1139 task_active_pid_ns(t));
1142 from_kuid_munged(task_cred_xxx(t, user_ns),
1146 case (unsigned long) SEND_SIG_PRIV:
1147 clear_siginfo(&q->info);
1148 q->info.si_signo = sig;
1149 q->info.si_errno = 0;
1150 q->info.si_code = SI_KERNEL;
1155 copy_siginfo(&q->info, info);
1158 } else if (!is_si_special(info) &&
1159 sig >= SIGRTMIN && info->si_code != SI_USER) {
1161 * Queue overflow, abort. We may abort if the
1162 * signal was rt and sent by user using something
1163 * other than kill().
1165 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1170 * This is a silent loss of information. We still
1171 * send the signal, but the *info bits are lost.
1173 result = TRACE_SIGNAL_LOSE_INFO;
1177 signalfd_notify(t, sig);
1178 sigaddset(&pending->signal, sig);
1180 /* Let multiprocess signals appear after on-going forks */
1181 if (type > PIDTYPE_TGID) {
1182 struct multiprocess_signals *delayed;
1183 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1184 sigset_t *signal = &delayed->signal;
1185 /* Can't queue both a stop and a continue signal */
1187 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1188 else if (sig_kernel_stop(sig))
1189 sigdelset(signal, SIGCONT);
1190 sigaddset(signal, sig);
1194 complete_signal(sig, t, type);
1196 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1200 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1203 switch (siginfo_layout(info->si_signo, info->si_code)) {
1212 case SIL_FAULT_TRAPNO:
1213 case SIL_FAULT_MCEERR:
1214 case SIL_FAULT_BNDERR:
1215 case SIL_FAULT_PKUERR:
1216 case SIL_FAULT_PERF_EVENT:
1224 int send_signal_locked(int sig, struct kernel_siginfo *info,
1225 struct task_struct *t, enum pid_type type)
1227 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1230 if (info == SEND_SIG_NOINFO) {
1231 /* Force if sent from an ancestor pid namespace */
1232 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1233 } else if (info == SEND_SIG_PRIV) {
1234 /* Don't ignore kernel generated signals */
1236 } else if (has_si_pid_and_uid(info)) {
1237 /* SIGKILL and SIGSTOP is special or has ids */
1238 struct user_namespace *t_user_ns;
1241 t_user_ns = task_cred_xxx(t, user_ns);
1242 if (current_user_ns() != t_user_ns) {
1243 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1244 info->si_uid = from_kuid_munged(t_user_ns, uid);
1248 /* A kernel generated signal? */
1249 force = (info->si_code == SI_KERNEL);
1251 /* From an ancestor pid namespace? */
1252 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1257 return __send_signal_locked(sig, info, t, type, force);
1260 static void print_fatal_signal(int signr)
1262 struct pt_regs *regs = task_pt_regs(current);
1263 pr_info("potentially unexpected fatal signal %d.\n", signr);
1265 #if defined(__i386__) && !defined(__arch_um__)
1266 pr_info("code at %08lx: ", regs->ip);
1269 for (i = 0; i < 16; i++) {
1272 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1274 pr_cont("%02x ", insn);
1284 static int __init setup_print_fatal_signals(char *str)
1286 get_option (&str, &print_fatal_signals);
1291 __setup("print-fatal-signals=", setup_print_fatal_signals);
1293 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1296 unsigned long flags;
1299 if (lock_task_sighand(p, &flags)) {
1300 ret = send_signal_locked(sig, info, p, type);
1301 unlock_task_sighand(p, &flags);
1308 HANDLER_CURRENT, /* If reachable use the current handler */
1309 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1310 HANDLER_EXIT, /* Only visible as the process exit code */
1314 * Force a signal that the process can't ignore: if necessary
1315 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1317 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1318 * since we do not want to have a signal handler that was blocked
1319 * be invoked when user space had explicitly blocked it.
1321 * We don't want to have recursive SIGSEGV's etc, for example,
1322 * that is why we also clear SIGNAL_UNKILLABLE.
1325 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1326 enum sig_handler handler)
1328 unsigned long int flags;
1329 int ret, blocked, ignored;
1330 struct k_sigaction *action;
1331 int sig = info->si_signo;
1333 spin_lock_irqsave(&t->sighand->siglock, flags);
1334 action = &t->sighand->action[sig-1];
1335 ignored = action->sa.sa_handler == SIG_IGN;
1336 blocked = sigismember(&t->blocked, sig);
1337 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1338 action->sa.sa_handler = SIG_DFL;
1339 if (handler == HANDLER_EXIT)
1340 action->sa.sa_flags |= SA_IMMUTABLE;
1342 sigdelset(&t->blocked, sig);
1343 recalc_sigpending_and_wake(t);
1347 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1348 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1350 if (action->sa.sa_handler == SIG_DFL &&
1351 (!t->ptrace || (handler == HANDLER_EXIT)))
1352 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1353 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1354 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1359 int force_sig_info(struct kernel_siginfo *info)
1361 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1365 * Nuke all other threads in the group.
1367 int zap_other_threads(struct task_struct *p)
1369 struct task_struct *t = p;
1372 p->signal->group_stop_count = 0;
1374 while_each_thread(p, t) {
1375 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1376 /* Don't require de_thread to wait for the vhost_worker */
1377 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1380 /* Don't bother with already dead threads */
1383 sigaddset(&t->pending.signal, SIGKILL);
1384 signal_wake_up(t, 1);
1390 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1391 unsigned long *flags)
1393 struct sighand_struct *sighand;
1397 sighand = rcu_dereference(tsk->sighand);
1398 if (unlikely(sighand == NULL))
1402 * This sighand can be already freed and even reused, but
1403 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1404 * initializes ->siglock: this slab can't go away, it has
1405 * the same object type, ->siglock can't be reinitialized.
1407 * We need to ensure that tsk->sighand is still the same
1408 * after we take the lock, we can race with de_thread() or
1409 * __exit_signal(). In the latter case the next iteration
1410 * must see ->sighand == NULL.
1412 spin_lock_irqsave(&sighand->siglock, *flags);
1413 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1415 spin_unlock_irqrestore(&sighand->siglock, *flags);
1422 #ifdef CONFIG_LOCKDEP
1423 void lockdep_assert_task_sighand_held(struct task_struct *task)
1425 struct sighand_struct *sighand;
1428 sighand = rcu_dereference(task->sighand);
1430 lockdep_assert_held(&sighand->siglock);
1438 * send signal info to all the members of a group
1440 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1441 struct task_struct *p, enum pid_type type)
1446 ret = check_kill_permission(sig, info, p);
1450 ret = do_send_sig_info(sig, info, p, type);
1456 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1457 * control characters do (^C, ^Z etc)
1458 * - the caller must hold at least a readlock on tasklist_lock
1460 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1462 struct task_struct *p = NULL;
1463 int retval, success;
1467 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1468 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1471 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1472 return success ? 0 : retval;
1475 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1478 struct task_struct *p;
1482 p = pid_task(pid, PIDTYPE_PID);
1484 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1486 if (likely(!p || error != -ESRCH))
1490 * The task was unhashed in between, try again. If it
1491 * is dead, pid_task() will return NULL, if we race with
1492 * de_thread() it will find the new leader.
1497 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1501 error = kill_pid_info(sig, info, find_vpid(pid));
1506 static inline bool kill_as_cred_perm(const struct cred *cred,
1507 struct task_struct *target)
1509 const struct cred *pcred = __task_cred(target);
1511 return uid_eq(cred->euid, pcred->suid) ||
1512 uid_eq(cred->euid, pcred->uid) ||
1513 uid_eq(cred->uid, pcred->suid) ||
1514 uid_eq(cred->uid, pcred->uid);
1518 * The usb asyncio usage of siginfo is wrong. The glibc support
1519 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1520 * AKA after the generic fields:
1521 * kernel_pid_t si_pid;
1522 * kernel_uid32_t si_uid;
1523 * sigval_t si_value;
1525 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1526 * after the generic fields is:
1527 * void __user *si_addr;
1529 * This is a practical problem when there is a 64bit big endian kernel
1530 * and a 32bit userspace. As the 32bit address will encoded in the low
1531 * 32bits of the pointer. Those low 32bits will be stored at higher
1532 * address than appear in a 32 bit pointer. So userspace will not
1533 * see the address it was expecting for it's completions.
1535 * There is nothing in the encoding that can allow
1536 * copy_siginfo_to_user32 to detect this confusion of formats, so
1537 * handle this by requiring the caller of kill_pid_usb_asyncio to
1538 * notice when this situration takes place and to store the 32bit
1539 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1542 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1543 struct pid *pid, const struct cred *cred)
1545 struct kernel_siginfo info;
1546 struct task_struct *p;
1547 unsigned long flags;
1550 if (!valid_signal(sig))
1553 clear_siginfo(&info);
1554 info.si_signo = sig;
1555 info.si_errno = errno;
1556 info.si_code = SI_ASYNCIO;
1557 *((sigval_t *)&info.si_pid) = addr;
1560 p = pid_task(pid, PIDTYPE_PID);
1565 if (!kill_as_cred_perm(cred, p)) {
1569 ret = security_task_kill(p, &info, sig, cred);
1574 if (lock_task_sighand(p, &flags)) {
1575 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1576 unlock_task_sighand(p, &flags);
1584 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1587 * kill_something_info() interprets pid in interesting ways just like kill(2).
1589 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1590 * is probably wrong. Should make it like BSD or SYSV.
1593 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1598 return kill_proc_info(sig, info, pid);
1600 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1604 read_lock(&tasklist_lock);
1606 ret = __kill_pgrp_info(sig, info,
1607 pid ? find_vpid(-pid) : task_pgrp(current));
1609 int retval = 0, count = 0;
1610 struct task_struct * p;
1612 for_each_process(p) {
1613 if (task_pid_vnr(p) > 1 &&
1614 !same_thread_group(p, current)) {
1615 int err = group_send_sig_info(sig, info, p,
1622 ret = count ? retval : -ESRCH;
1624 read_unlock(&tasklist_lock);
1630 * These are for backward compatibility with the rest of the kernel source.
1633 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1636 * Make sure legacy kernel users don't send in bad values
1637 * (normal paths check this in check_kill_permission).
1639 if (!valid_signal(sig))
1642 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1644 EXPORT_SYMBOL(send_sig_info);
1646 #define __si_special(priv) \
1647 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1650 send_sig(int sig, struct task_struct *p, int priv)
1652 return send_sig_info(sig, __si_special(priv), p);
1654 EXPORT_SYMBOL(send_sig);
1656 void force_sig(int sig)
1658 struct kernel_siginfo info;
1660 clear_siginfo(&info);
1661 info.si_signo = sig;
1663 info.si_code = SI_KERNEL;
1666 force_sig_info(&info);
1668 EXPORT_SYMBOL(force_sig);
1670 void force_fatal_sig(int sig)
1672 struct kernel_siginfo info;
1674 clear_siginfo(&info);
1675 info.si_signo = sig;
1677 info.si_code = SI_KERNEL;
1680 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1683 void force_exit_sig(int sig)
1685 struct kernel_siginfo info;
1687 clear_siginfo(&info);
1688 info.si_signo = sig;
1690 info.si_code = SI_KERNEL;
1693 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1697 * When things go south during signal handling, we
1698 * will force a SIGSEGV. And if the signal that caused
1699 * the problem was already a SIGSEGV, we'll want to
1700 * make sure we don't even try to deliver the signal..
1702 void force_sigsegv(int sig)
1705 force_fatal_sig(SIGSEGV);
1710 int force_sig_fault_to_task(int sig, int code, void __user *addr
1711 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1712 , struct task_struct *t)
1714 struct kernel_siginfo info;
1716 clear_siginfo(&info);
1717 info.si_signo = sig;
1719 info.si_code = code;
1720 info.si_addr = addr;
1723 info.si_flags = flags;
1726 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1729 int force_sig_fault(int sig, int code, void __user *addr
1730 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1732 return force_sig_fault_to_task(sig, code, addr
1733 ___ARCH_SI_IA64(imm, flags, isr), current);
1736 int send_sig_fault(int sig, int code, void __user *addr
1737 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1738 , struct task_struct *t)
1740 struct kernel_siginfo info;
1742 clear_siginfo(&info);
1743 info.si_signo = sig;
1745 info.si_code = code;
1746 info.si_addr = addr;
1749 info.si_flags = flags;
1752 return send_sig_info(info.si_signo, &info, t);
1755 int force_sig_mceerr(int code, void __user *addr, short lsb)
1757 struct kernel_siginfo info;
1759 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1760 clear_siginfo(&info);
1761 info.si_signo = SIGBUS;
1763 info.si_code = code;
1764 info.si_addr = addr;
1765 info.si_addr_lsb = lsb;
1766 return force_sig_info(&info);
1769 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1771 struct kernel_siginfo info;
1773 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1774 clear_siginfo(&info);
1775 info.si_signo = SIGBUS;
1777 info.si_code = code;
1778 info.si_addr = addr;
1779 info.si_addr_lsb = lsb;
1780 return send_sig_info(info.si_signo, &info, t);
1782 EXPORT_SYMBOL(send_sig_mceerr);
1784 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1786 struct kernel_siginfo info;
1788 clear_siginfo(&info);
1789 info.si_signo = SIGSEGV;
1791 info.si_code = SEGV_BNDERR;
1792 info.si_addr = addr;
1793 info.si_lower = lower;
1794 info.si_upper = upper;
1795 return force_sig_info(&info);
1799 int force_sig_pkuerr(void __user *addr, u32 pkey)
1801 struct kernel_siginfo info;
1803 clear_siginfo(&info);
1804 info.si_signo = SIGSEGV;
1806 info.si_code = SEGV_PKUERR;
1807 info.si_addr = addr;
1808 info.si_pkey = pkey;
1809 return force_sig_info(&info);
1813 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1815 struct kernel_siginfo info;
1817 clear_siginfo(&info);
1818 info.si_signo = SIGTRAP;
1820 info.si_code = TRAP_PERF;
1821 info.si_addr = addr;
1822 info.si_perf_data = sig_data;
1823 info.si_perf_type = type;
1826 * Signals generated by perf events should not terminate the whole
1827 * process if SIGTRAP is blocked, however, delivering the signal
1828 * asynchronously is better than not delivering at all. But tell user
1829 * space if the signal was asynchronous, so it can clearly be
1830 * distinguished from normal synchronous ones.
1832 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1833 TRAP_PERF_FLAG_ASYNC :
1836 return send_sig_info(info.si_signo, &info, current);
1840 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1841 * @syscall: syscall number to send to userland
1842 * @reason: filter-supplied reason code to send to userland (via si_errno)
1843 * @force_coredump: true to trigger a coredump
1845 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1847 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1849 struct kernel_siginfo info;
1851 clear_siginfo(&info);
1852 info.si_signo = SIGSYS;
1853 info.si_code = SYS_SECCOMP;
1854 info.si_call_addr = (void __user *)KSTK_EIP(current);
1855 info.si_errno = reason;
1856 info.si_arch = syscall_get_arch(current);
1857 info.si_syscall = syscall;
1858 return force_sig_info_to_task(&info, current,
1859 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1862 /* For the crazy architectures that include trap information in
1863 * the errno field, instead of an actual errno value.
1865 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1867 struct kernel_siginfo info;
1869 clear_siginfo(&info);
1870 info.si_signo = SIGTRAP;
1871 info.si_errno = errno;
1872 info.si_code = TRAP_HWBKPT;
1873 info.si_addr = addr;
1874 return force_sig_info(&info);
1877 /* For the rare architectures that include trap information using
1880 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1882 struct kernel_siginfo info;
1884 clear_siginfo(&info);
1885 info.si_signo = sig;
1887 info.si_code = code;
1888 info.si_addr = addr;
1889 info.si_trapno = trapno;
1890 return force_sig_info(&info);
1893 /* For the rare architectures that include trap information using
1896 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1897 struct task_struct *t)
1899 struct kernel_siginfo info;
1901 clear_siginfo(&info);
1902 info.si_signo = sig;
1904 info.si_code = code;
1905 info.si_addr = addr;
1906 info.si_trapno = trapno;
1907 return send_sig_info(info.si_signo, &info, t);
1910 int kill_pgrp(struct pid *pid, int sig, int priv)
1914 read_lock(&tasklist_lock);
1915 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1916 read_unlock(&tasklist_lock);
1920 EXPORT_SYMBOL(kill_pgrp);
1922 int kill_pid(struct pid *pid, int sig, int priv)
1924 return kill_pid_info(sig, __si_special(priv), pid);
1926 EXPORT_SYMBOL(kill_pid);
1929 * These functions support sending signals using preallocated sigqueue
1930 * structures. This is needed "because realtime applications cannot
1931 * afford to lose notifications of asynchronous events, like timer
1932 * expirations or I/O completions". In the case of POSIX Timers
1933 * we allocate the sigqueue structure from the timer_create. If this
1934 * allocation fails we are able to report the failure to the application
1935 * with an EAGAIN error.
1937 struct sigqueue *sigqueue_alloc(void)
1939 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1942 void sigqueue_free(struct sigqueue *q)
1944 unsigned long flags;
1945 spinlock_t *lock = ¤t->sighand->siglock;
1947 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1949 * We must hold ->siglock while testing q->list
1950 * to serialize with collect_signal() or with
1951 * __exit_signal()->flush_sigqueue().
1953 spin_lock_irqsave(lock, flags);
1954 q->flags &= ~SIGQUEUE_PREALLOC;
1956 * If it is queued it will be freed when dequeued,
1957 * like the "regular" sigqueue.
1959 if (!list_empty(&q->list))
1961 spin_unlock_irqrestore(lock, flags);
1967 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1969 int sig = q->info.si_signo;
1970 struct sigpending *pending;
1971 struct task_struct *t;
1972 unsigned long flags;
1975 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1981 * This function is used by POSIX timers to deliver a timer signal.
1982 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1983 * set), the signal must be delivered to the specific thread (queues
1986 * Where type is not PIDTYPE_PID, signals must be delivered to the
1987 * process. In this case, prefer to deliver to current if it is in
1988 * the same thread group as the target process, which avoids
1989 * unnecessarily waking up a potentially idle task.
1991 t = pid_task(pid, type);
1994 if (type != PIDTYPE_PID && same_thread_group(t, current))
1996 if (!likely(lock_task_sighand(t, &flags)))
1999 ret = 1; /* the signal is ignored */
2000 result = TRACE_SIGNAL_IGNORED;
2001 if (!prepare_signal(sig, t, false))
2005 if (unlikely(!list_empty(&q->list))) {
2007 * If an SI_TIMER entry is already queue just increment
2008 * the overrun count.
2010 BUG_ON(q->info.si_code != SI_TIMER);
2011 q->info.si_overrun++;
2012 result = TRACE_SIGNAL_ALREADY_PENDING;
2015 q->info.si_overrun = 0;
2017 signalfd_notify(t, sig);
2018 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2019 list_add_tail(&q->list, &pending->list);
2020 sigaddset(&pending->signal, sig);
2021 complete_signal(sig, t, type);
2022 result = TRACE_SIGNAL_DELIVERED;
2024 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2025 unlock_task_sighand(t, &flags);
2031 static void do_notify_pidfd(struct task_struct *task)
2035 WARN_ON(task->exit_state == 0);
2036 pid = task_pid(task);
2037 wake_up_all(&pid->wait_pidfd);
2041 * Let a parent know about the death of a child.
2042 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2044 * Returns true if our parent ignored us and so we've switched to
2047 bool do_notify_parent(struct task_struct *tsk, int sig)
2049 struct kernel_siginfo info;
2050 unsigned long flags;
2051 struct sighand_struct *psig;
2052 bool autoreap = false;
2055 WARN_ON_ONCE(sig == -1);
2057 /* do_notify_parent_cldstop should have been called instead. */
2058 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2060 WARN_ON_ONCE(!tsk->ptrace &&
2061 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2063 /* Wake up all pidfd waiters */
2064 do_notify_pidfd(tsk);
2066 if (sig != SIGCHLD) {
2068 * This is only possible if parent == real_parent.
2069 * Check if it has changed security domain.
2071 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2075 clear_siginfo(&info);
2076 info.si_signo = sig;
2079 * We are under tasklist_lock here so our parent is tied to
2080 * us and cannot change.
2082 * task_active_pid_ns will always return the same pid namespace
2083 * until a task passes through release_task.
2085 * write_lock() currently calls preempt_disable() which is the
2086 * same as rcu_read_lock(), but according to Oleg, this is not
2087 * correct to rely on this
2090 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2091 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2095 task_cputime(tsk, &utime, &stime);
2096 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2097 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2099 info.si_status = tsk->exit_code & 0x7f;
2100 if (tsk->exit_code & 0x80)
2101 info.si_code = CLD_DUMPED;
2102 else if (tsk->exit_code & 0x7f)
2103 info.si_code = CLD_KILLED;
2105 info.si_code = CLD_EXITED;
2106 info.si_status = tsk->exit_code >> 8;
2109 psig = tsk->parent->sighand;
2110 spin_lock_irqsave(&psig->siglock, flags);
2111 if (!tsk->ptrace && sig == SIGCHLD &&
2112 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2113 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2115 * We are exiting and our parent doesn't care. POSIX.1
2116 * defines special semantics for setting SIGCHLD to SIG_IGN
2117 * or setting the SA_NOCLDWAIT flag: we should be reaped
2118 * automatically and not left for our parent's wait4 call.
2119 * Rather than having the parent do it as a magic kind of
2120 * signal handler, we just set this to tell do_exit that we
2121 * can be cleaned up without becoming a zombie. Note that
2122 * we still call __wake_up_parent in this case, because a
2123 * blocked sys_wait4 might now return -ECHILD.
2125 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2126 * is implementation-defined: we do (if you don't want
2127 * it, just use SIG_IGN instead).
2130 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2134 * Send with __send_signal as si_pid and si_uid are in the
2135 * parent's namespaces.
2137 if (valid_signal(sig) && sig)
2138 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2139 __wake_up_parent(tsk, tsk->parent);
2140 spin_unlock_irqrestore(&psig->siglock, flags);
2146 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2147 * @tsk: task reporting the state change
2148 * @for_ptracer: the notification is for ptracer
2149 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2151 * Notify @tsk's parent that the stopped/continued state has changed. If
2152 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2153 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2156 * Must be called with tasklist_lock at least read locked.
2158 static void do_notify_parent_cldstop(struct task_struct *tsk,
2159 bool for_ptracer, int why)
2161 struct kernel_siginfo info;
2162 unsigned long flags;
2163 struct task_struct *parent;
2164 struct sighand_struct *sighand;
2168 parent = tsk->parent;
2170 tsk = tsk->group_leader;
2171 parent = tsk->real_parent;
2174 clear_siginfo(&info);
2175 info.si_signo = SIGCHLD;
2178 * see comment in do_notify_parent() about the following 4 lines
2181 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2182 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2185 task_cputime(tsk, &utime, &stime);
2186 info.si_utime = nsec_to_clock_t(utime);
2187 info.si_stime = nsec_to_clock_t(stime);
2192 info.si_status = SIGCONT;
2195 info.si_status = tsk->signal->group_exit_code & 0x7f;
2198 info.si_status = tsk->exit_code & 0x7f;
2204 sighand = parent->sighand;
2205 spin_lock_irqsave(&sighand->siglock, flags);
2206 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2207 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2208 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2210 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2212 __wake_up_parent(tsk, parent);
2213 spin_unlock_irqrestore(&sighand->siglock, flags);
2217 * This must be called with current->sighand->siglock held.
2219 * This should be the path for all ptrace stops.
2220 * We always set current->last_siginfo while stopped here.
2221 * That makes it a way to test a stopped process for
2222 * being ptrace-stopped vs being job-control-stopped.
2224 * Returns the signal the ptracer requested the code resume
2225 * with. If the code did not stop because the tracer is gone,
2226 * the stop signal remains unchanged unless clear_code.
2228 static int ptrace_stop(int exit_code, int why, unsigned long message,
2229 kernel_siginfo_t *info)
2230 __releases(¤t->sighand->siglock)
2231 __acquires(¤t->sighand->siglock)
2233 bool gstop_done = false;
2235 if (arch_ptrace_stop_needed()) {
2237 * The arch code has something special to do before a
2238 * ptrace stop. This is allowed to block, e.g. for faults
2239 * on user stack pages. We can't keep the siglock while
2240 * calling arch_ptrace_stop, so we must release it now.
2241 * To preserve proper semantics, we must do this before
2242 * any signal bookkeeping like checking group_stop_count.
2244 spin_unlock_irq(¤t->sighand->siglock);
2246 spin_lock_irq(¤t->sighand->siglock);
2250 * After this point ptrace_signal_wake_up or signal_wake_up
2251 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2252 * signal comes in. Handle previous ptrace_unlinks and fatal
2253 * signals here to prevent ptrace_stop sleeping in schedule.
2255 if (!current->ptrace || __fatal_signal_pending(current))
2258 set_special_state(TASK_TRACED);
2259 current->jobctl |= JOBCTL_TRACED;
2262 * We're committing to trapping. TRACED should be visible before
2263 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2264 * Also, transition to TRACED and updates to ->jobctl should be
2265 * atomic with respect to siglock and should be done after the arch
2266 * hook as siglock is released and regrabbed across it.
2271 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2273 * set_current_state() smp_wmb();
2275 * wait_task_stopped()
2276 * task_stopped_code()
2277 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2281 current->ptrace_message = message;
2282 current->last_siginfo = info;
2283 current->exit_code = exit_code;
2286 * If @why is CLD_STOPPED, we're trapping to participate in a group
2287 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2288 * across siglock relocks since INTERRUPT was scheduled, PENDING
2289 * could be clear now. We act as if SIGCONT is received after
2290 * TASK_TRACED is entered - ignore it.
2292 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2293 gstop_done = task_participate_group_stop(current);
2295 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2296 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2297 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2298 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2300 /* entering a trap, clear TRAPPING */
2301 task_clear_jobctl_trapping(current);
2303 spin_unlock_irq(¤t->sighand->siglock);
2304 read_lock(&tasklist_lock);
2306 * Notify parents of the stop.
2308 * While ptraced, there are two parents - the ptracer and
2309 * the real_parent of the group_leader. The ptracer should
2310 * know about every stop while the real parent is only
2311 * interested in the completion of group stop. The states
2312 * for the two don't interact with each other. Notify
2313 * separately unless they're gonna be duplicates.
2315 if (current->ptrace)
2316 do_notify_parent_cldstop(current, true, why);
2317 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2318 do_notify_parent_cldstop(current, false, why);
2321 * Don't want to allow preemption here, because
2322 * sys_ptrace() needs this task to be inactive.
2324 * XXX: implement read_unlock_no_resched().
2327 read_unlock(&tasklist_lock);
2328 cgroup_enter_frozen();
2329 preempt_enable_no_resched();
2331 cgroup_leave_frozen(true);
2334 * We are back. Now reacquire the siglock before touching
2335 * last_siginfo, so that we are sure to have synchronized with
2336 * any signal-sending on another CPU that wants to examine it.
2338 spin_lock_irq(¤t->sighand->siglock);
2339 exit_code = current->exit_code;
2340 current->last_siginfo = NULL;
2341 current->ptrace_message = 0;
2342 current->exit_code = 0;
2344 /* LISTENING can be set only during STOP traps, clear it */
2345 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2348 * Queued signals ignored us while we were stopped for tracing.
2349 * So check for any that we should take before resuming user mode.
2350 * This sets TIF_SIGPENDING, but never clears it.
2352 recalc_sigpending_tsk(current);
2356 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2358 kernel_siginfo_t info;
2360 clear_siginfo(&info);
2361 info.si_signo = signr;
2362 info.si_code = exit_code;
2363 info.si_pid = task_pid_vnr(current);
2364 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2366 /* Let the debugger run. */
2367 return ptrace_stop(exit_code, why, message, &info);
2370 int ptrace_notify(int exit_code, unsigned long message)
2374 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2375 if (unlikely(task_work_pending(current)))
2378 spin_lock_irq(¤t->sighand->siglock);
2379 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2380 spin_unlock_irq(¤t->sighand->siglock);
2385 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2386 * @signr: signr causing group stop if initiating
2388 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2389 * and participate in it. If already set, participate in the existing
2390 * group stop. If participated in a group stop (and thus slept), %true is
2391 * returned with siglock released.
2393 * If ptraced, this function doesn't handle stop itself. Instead,
2394 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2395 * untouched. The caller must ensure that INTERRUPT trap handling takes
2396 * places afterwards.
2399 * Must be called with @current->sighand->siglock held, which is released
2403 * %false if group stop is already cancelled or ptrace trap is scheduled.
2404 * %true if participated in group stop.
2406 static bool do_signal_stop(int signr)
2407 __releases(¤t->sighand->siglock)
2409 struct signal_struct *sig = current->signal;
2411 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2412 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2413 struct task_struct *t;
2415 /* signr will be recorded in task->jobctl for retries */
2416 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2418 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2419 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2420 unlikely(sig->group_exec_task))
2423 * There is no group stop already in progress. We must
2426 * While ptraced, a task may be resumed while group stop is
2427 * still in effect and then receive a stop signal and
2428 * initiate another group stop. This deviates from the
2429 * usual behavior as two consecutive stop signals can't
2430 * cause two group stops when !ptraced. That is why we
2431 * also check !task_is_stopped(t) below.
2433 * The condition can be distinguished by testing whether
2434 * SIGNAL_STOP_STOPPED is already set. Don't generate
2435 * group_exit_code in such case.
2437 * This is not necessary for SIGNAL_STOP_CONTINUED because
2438 * an intervening stop signal is required to cause two
2439 * continued events regardless of ptrace.
2441 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2442 sig->group_exit_code = signr;
2444 sig->group_stop_count = 0;
2446 if (task_set_jobctl_pending(current, signr | gstop))
2447 sig->group_stop_count++;
2450 while_each_thread(current, t) {
2452 * Setting state to TASK_STOPPED for a group
2453 * stop is always done with the siglock held,
2454 * so this check has no races.
2456 if (!task_is_stopped(t) &&
2457 task_set_jobctl_pending(t, signr | gstop)) {
2458 sig->group_stop_count++;
2459 if (likely(!(t->ptrace & PT_SEIZED)))
2460 signal_wake_up(t, 0);
2462 ptrace_trap_notify(t);
2467 if (likely(!current->ptrace)) {
2471 * If there are no other threads in the group, or if there
2472 * is a group stop in progress and we are the last to stop,
2473 * report to the parent.
2475 if (task_participate_group_stop(current))
2476 notify = CLD_STOPPED;
2478 current->jobctl |= JOBCTL_STOPPED;
2479 set_special_state(TASK_STOPPED);
2480 spin_unlock_irq(¤t->sighand->siglock);
2483 * Notify the parent of the group stop completion. Because
2484 * we're not holding either the siglock or tasklist_lock
2485 * here, ptracer may attach inbetween; however, this is for
2486 * group stop and should always be delivered to the real
2487 * parent of the group leader. The new ptracer will get
2488 * its notification when this task transitions into
2492 read_lock(&tasklist_lock);
2493 do_notify_parent_cldstop(current, false, notify);
2494 read_unlock(&tasklist_lock);
2497 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2498 cgroup_enter_frozen();
2503 * While ptraced, group stop is handled by STOP trap.
2504 * Schedule it and let the caller deal with it.
2506 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2512 * do_jobctl_trap - take care of ptrace jobctl traps
2514 * When PT_SEIZED, it's used for both group stop and explicit
2515 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2516 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2517 * the stop signal; otherwise, %SIGTRAP.
2519 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2520 * number as exit_code and no siginfo.
2523 * Must be called with @current->sighand->siglock held, which may be
2524 * released and re-acquired before returning with intervening sleep.
2526 static void do_jobctl_trap(void)
2528 struct signal_struct *signal = current->signal;
2529 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2531 if (current->ptrace & PT_SEIZED) {
2532 if (!signal->group_stop_count &&
2533 !(signal->flags & SIGNAL_STOP_STOPPED))
2535 WARN_ON_ONCE(!signr);
2536 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2539 WARN_ON_ONCE(!signr);
2540 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2545 * do_freezer_trap - handle the freezer jobctl trap
2547 * Puts the task into frozen state, if only the task is not about to quit.
2548 * In this case it drops JOBCTL_TRAP_FREEZE.
2551 * Must be called with @current->sighand->siglock held,
2552 * which is always released before returning.
2554 static void do_freezer_trap(void)
2555 __releases(¤t->sighand->siglock)
2558 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2559 * let's make another loop to give it a chance to be handled.
2560 * In any case, we'll return back.
2562 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2563 JOBCTL_TRAP_FREEZE) {
2564 spin_unlock_irq(¤t->sighand->siglock);
2569 * Now we're sure that there is no pending fatal signal and no
2570 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2571 * immediately (if there is a non-fatal signal pending), and
2572 * put the task into sleep.
2574 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2575 clear_thread_flag(TIF_SIGPENDING);
2576 spin_unlock_irq(¤t->sighand->siglock);
2577 cgroup_enter_frozen();
2581 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2584 * We do not check sig_kernel_stop(signr) but set this marker
2585 * unconditionally because we do not know whether debugger will
2586 * change signr. This flag has no meaning unless we are going
2587 * to stop after return from ptrace_stop(). In this case it will
2588 * be checked in do_signal_stop(), we should only stop if it was
2589 * not cleared by SIGCONT while we were sleeping. See also the
2590 * comment in dequeue_signal().
2592 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2593 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2595 /* We're back. Did the debugger cancel the sig? */
2600 * Update the siginfo structure if the signal has
2601 * changed. If the debugger wanted something
2602 * specific in the siginfo structure then it should
2603 * have updated *info via PTRACE_SETSIGINFO.
2605 if (signr != info->si_signo) {
2606 clear_siginfo(info);
2607 info->si_signo = signr;
2609 info->si_code = SI_USER;
2611 info->si_pid = task_pid_vnr(current->parent);
2612 info->si_uid = from_kuid_munged(current_user_ns(),
2613 task_uid(current->parent));
2617 /* If the (new) signal is now blocked, requeue it. */
2618 if (sigismember(¤t->blocked, signr) ||
2619 fatal_signal_pending(current)) {
2620 send_signal_locked(signr, info, current, type);
2627 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2629 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2631 case SIL_FAULT_TRAPNO:
2632 case SIL_FAULT_MCEERR:
2633 case SIL_FAULT_BNDERR:
2634 case SIL_FAULT_PKUERR:
2635 case SIL_FAULT_PERF_EVENT:
2636 ksig->info.si_addr = arch_untagged_si_addr(
2637 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2649 bool get_signal(struct ksignal *ksig)
2651 struct sighand_struct *sighand = current->sighand;
2652 struct signal_struct *signal = current->signal;
2655 clear_notify_signal();
2656 if (unlikely(task_work_pending(current)))
2659 if (!task_sigpending(current))
2662 if (unlikely(uprobe_deny_signal()))
2666 * Do this once, we can't return to user-mode if freezing() == T.
2667 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2668 * thus do not need another check after return.
2673 spin_lock_irq(&sighand->siglock);
2676 * Every stopped thread goes here after wakeup. Check to see if
2677 * we should notify the parent, prepare_signal(SIGCONT) encodes
2678 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2680 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2683 if (signal->flags & SIGNAL_CLD_CONTINUED)
2684 why = CLD_CONTINUED;
2688 signal->flags &= ~SIGNAL_CLD_MASK;
2690 spin_unlock_irq(&sighand->siglock);
2693 * Notify the parent that we're continuing. This event is
2694 * always per-process and doesn't make whole lot of sense
2695 * for ptracers, who shouldn't consume the state via
2696 * wait(2) either, but, for backward compatibility, notify
2697 * the ptracer of the group leader too unless it's gonna be
2700 read_lock(&tasklist_lock);
2701 do_notify_parent_cldstop(current, false, why);
2703 if (ptrace_reparented(current->group_leader))
2704 do_notify_parent_cldstop(current->group_leader,
2706 read_unlock(&tasklist_lock);
2712 struct k_sigaction *ka;
2715 /* Has this task already been marked for death? */
2716 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2717 signal->group_exec_task) {
2718 clear_siginfo(&ksig->info);
2719 ksig->info.si_signo = signr = SIGKILL;
2720 sigdelset(¤t->pending.signal, SIGKILL);
2721 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2722 &sighand->action[SIGKILL - 1]);
2723 recalc_sigpending();
2727 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2731 if (unlikely(current->jobctl &
2732 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2733 if (current->jobctl & JOBCTL_TRAP_MASK) {
2735 spin_unlock_irq(&sighand->siglock);
2736 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2743 * If the task is leaving the frozen state, let's update
2744 * cgroup counters and reset the frozen bit.
2746 if (unlikely(cgroup_task_frozen(current))) {
2747 spin_unlock_irq(&sighand->siglock);
2748 cgroup_leave_frozen(false);
2753 * Signals generated by the execution of an instruction
2754 * need to be delivered before any other pending signals
2755 * so that the instruction pointer in the signal stack
2756 * frame points to the faulting instruction.
2759 signr = dequeue_synchronous_signal(&ksig->info);
2761 signr = dequeue_signal(current, ¤t->blocked,
2762 &ksig->info, &type);
2765 break; /* will return 0 */
2767 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2768 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2769 signr = ptrace_signal(signr, &ksig->info, type);
2774 ka = &sighand->action[signr-1];
2776 /* Trace actually delivered signals. */
2777 trace_signal_deliver(signr, &ksig->info, ka);
2779 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2781 if (ka->sa.sa_handler != SIG_DFL) {
2782 /* Run the handler. */
2785 if (ka->sa.sa_flags & SA_ONESHOT)
2786 ka->sa.sa_handler = SIG_DFL;
2788 break; /* will return non-zero "signr" value */
2792 * Now we are doing the default action for this signal.
2794 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2798 * Global init gets no signals it doesn't want.
2799 * Container-init gets no signals it doesn't want from same
2802 * Note that if global/container-init sees a sig_kernel_only()
2803 * signal here, the signal must have been generated internally
2804 * or must have come from an ancestor namespace. In either
2805 * case, the signal cannot be dropped.
2807 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2808 !sig_kernel_only(signr))
2811 if (sig_kernel_stop(signr)) {
2813 * The default action is to stop all threads in
2814 * the thread group. The job control signals
2815 * do nothing in an orphaned pgrp, but SIGSTOP
2816 * always works. Note that siglock needs to be
2817 * dropped during the call to is_orphaned_pgrp()
2818 * because of lock ordering with tasklist_lock.
2819 * This allows an intervening SIGCONT to be posted.
2820 * We need to check for that and bail out if necessary.
2822 if (signr != SIGSTOP) {
2823 spin_unlock_irq(&sighand->siglock);
2825 /* signals can be posted during this window */
2827 if (is_current_pgrp_orphaned())
2830 spin_lock_irq(&sighand->siglock);
2833 if (likely(do_signal_stop(ksig->info.si_signo))) {
2834 /* It released the siglock. */
2839 * We didn't actually stop, due to a race
2840 * with SIGCONT or something like that.
2846 spin_unlock_irq(&sighand->siglock);
2847 if (unlikely(cgroup_task_frozen(current)))
2848 cgroup_leave_frozen(true);
2851 * Anything else is fatal, maybe with a core dump.
2853 current->flags |= PF_SIGNALED;
2855 if (sig_kernel_coredump(signr)) {
2856 if (print_fatal_signals)
2857 print_fatal_signal(ksig->info.si_signo);
2858 proc_coredump_connector(current);
2860 * If it was able to dump core, this kills all
2861 * other threads in the group and synchronizes with
2862 * their demise. If we lost the race with another
2863 * thread getting here, it set group_exit_code
2864 * first and our do_group_exit call below will use
2865 * that value and ignore the one we pass it.
2867 do_coredump(&ksig->info);
2871 * PF_USER_WORKER threads will catch and exit on fatal signals
2872 * themselves. They have cleanup that must be performed, so
2873 * we cannot call do_exit() on their behalf.
2875 if (current->flags & PF_USER_WORKER)
2879 * Death signals, no core dump.
2881 do_group_exit(ksig->info.si_signo);
2884 spin_unlock_irq(&sighand->siglock);
2888 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2889 hide_si_addr_tag_bits(ksig);
2891 return ksig->sig > 0;
2895 * signal_delivered - called after signal delivery to update blocked signals
2896 * @ksig: kernel signal struct
2897 * @stepping: nonzero if debugger single-step or block-step in use
2899 * This function should be called when a signal has successfully been
2900 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2901 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2902 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2904 static void signal_delivered(struct ksignal *ksig, int stepping)
2908 /* A signal was successfully delivered, and the
2909 saved sigmask was stored on the signal frame,
2910 and will be restored by sigreturn. So we can
2911 simply clear the restore sigmask flag. */
2912 clear_restore_sigmask();
2914 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2915 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2916 sigaddset(&blocked, ksig->sig);
2917 set_current_blocked(&blocked);
2918 if (current->sas_ss_flags & SS_AUTODISARM)
2919 sas_ss_reset(current);
2921 ptrace_notify(SIGTRAP, 0);
2924 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2927 force_sigsegv(ksig->sig);
2929 signal_delivered(ksig, stepping);
2933 * It could be that complete_signal() picked us to notify about the
2934 * group-wide signal. Other threads should be notified now to take
2935 * the shared signals in @which since we will not.
2937 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2940 struct task_struct *t;
2942 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2943 if (sigisemptyset(&retarget))
2947 while_each_thread(tsk, t) {
2948 if (t->flags & PF_EXITING)
2951 if (!has_pending_signals(&retarget, &t->blocked))
2953 /* Remove the signals this thread can handle. */
2954 sigandsets(&retarget, &retarget, &t->blocked);
2956 if (!task_sigpending(t))
2957 signal_wake_up(t, 0);
2959 if (sigisemptyset(&retarget))
2964 void exit_signals(struct task_struct *tsk)
2970 * @tsk is about to have PF_EXITING set - lock out users which
2971 * expect stable threadgroup.
2973 cgroup_threadgroup_change_begin(tsk);
2975 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2976 sched_mm_cid_exit_signals(tsk);
2977 tsk->flags |= PF_EXITING;
2978 cgroup_threadgroup_change_end(tsk);
2982 spin_lock_irq(&tsk->sighand->siglock);
2984 * From now this task is not visible for group-wide signals,
2985 * see wants_signal(), do_signal_stop().
2987 sched_mm_cid_exit_signals(tsk);
2988 tsk->flags |= PF_EXITING;
2990 cgroup_threadgroup_change_end(tsk);
2992 if (!task_sigpending(tsk))
2995 unblocked = tsk->blocked;
2996 signotset(&unblocked);
2997 retarget_shared_pending(tsk, &unblocked);
2999 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3000 task_participate_group_stop(tsk))
3001 group_stop = CLD_STOPPED;
3003 spin_unlock_irq(&tsk->sighand->siglock);
3006 * If group stop has completed, deliver the notification. This
3007 * should always go to the real parent of the group leader.
3009 if (unlikely(group_stop)) {
3010 read_lock(&tasklist_lock);
3011 do_notify_parent_cldstop(tsk, false, group_stop);
3012 read_unlock(&tasklist_lock);
3017 * System call entry points.
3021 * sys_restart_syscall - restart a system call
3023 SYSCALL_DEFINE0(restart_syscall)
3025 struct restart_block *restart = ¤t->restart_block;
3026 return restart->fn(restart);
3029 long do_no_restart_syscall(struct restart_block *param)
3034 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3036 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3037 sigset_t newblocked;
3038 /* A set of now blocked but previously unblocked signals. */
3039 sigandnsets(&newblocked, newset, ¤t->blocked);
3040 retarget_shared_pending(tsk, &newblocked);
3042 tsk->blocked = *newset;
3043 recalc_sigpending();
3047 * set_current_blocked - change current->blocked mask
3050 * It is wrong to change ->blocked directly, this helper should be used
3051 * to ensure the process can't miss a shared signal we are going to block.
3053 void set_current_blocked(sigset_t *newset)
3055 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3056 __set_current_blocked(newset);
3059 void __set_current_blocked(const sigset_t *newset)
3061 struct task_struct *tsk = current;
3064 * In case the signal mask hasn't changed, there is nothing we need
3065 * to do. The current->blocked shouldn't be modified by other task.
3067 if (sigequalsets(&tsk->blocked, newset))
3070 spin_lock_irq(&tsk->sighand->siglock);
3071 __set_task_blocked(tsk, newset);
3072 spin_unlock_irq(&tsk->sighand->siglock);
3076 * This is also useful for kernel threads that want to temporarily
3077 * (or permanently) block certain signals.
3079 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3080 * interface happily blocks "unblockable" signals like SIGKILL
3083 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3085 struct task_struct *tsk = current;
3088 /* Lockless, only current can change ->blocked, never from irq */
3090 *oldset = tsk->blocked;
3094 sigorsets(&newset, &tsk->blocked, set);
3097 sigandnsets(&newset, &tsk->blocked, set);
3106 __set_current_blocked(&newset);
3109 EXPORT_SYMBOL(sigprocmask);
3112 * The api helps set app-provided sigmasks.
3114 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3115 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3117 * Note that it does set_restore_sigmask() in advance, so it must be always
3118 * paired with restore_saved_sigmask_unless() before return from syscall.
3120 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3126 if (sigsetsize != sizeof(sigset_t))
3128 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3131 set_restore_sigmask();
3132 current->saved_sigmask = current->blocked;
3133 set_current_blocked(&kmask);
3138 #ifdef CONFIG_COMPAT
3139 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3146 if (sigsetsize != sizeof(compat_sigset_t))
3148 if (get_compat_sigset(&kmask, umask))
3151 set_restore_sigmask();
3152 current->saved_sigmask = current->blocked;
3153 set_current_blocked(&kmask);
3160 * sys_rt_sigprocmask - change the list of currently blocked signals
3161 * @how: whether to add, remove, or set signals
3162 * @nset: stores pending signals
3163 * @oset: previous value of signal mask if non-null
3164 * @sigsetsize: size of sigset_t type
3166 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3167 sigset_t __user *, oset, size_t, sigsetsize)
3169 sigset_t old_set, new_set;
3172 /* XXX: Don't preclude handling different sized sigset_t's. */
3173 if (sigsetsize != sizeof(sigset_t))
3176 old_set = current->blocked;
3179 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3181 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3183 error = sigprocmask(how, &new_set, NULL);
3189 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3196 #ifdef CONFIG_COMPAT
3197 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3198 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3200 sigset_t old_set = current->blocked;
3202 /* XXX: Don't preclude handling different sized sigset_t's. */
3203 if (sigsetsize != sizeof(sigset_t))
3209 if (get_compat_sigset(&new_set, nset))
3211 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3213 error = sigprocmask(how, &new_set, NULL);
3217 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3221 static void do_sigpending(sigset_t *set)
3223 spin_lock_irq(¤t->sighand->siglock);
3224 sigorsets(set, ¤t->pending.signal,
3225 ¤t->signal->shared_pending.signal);
3226 spin_unlock_irq(¤t->sighand->siglock);
3228 /* Outside the lock because only this thread touches it. */
3229 sigandsets(set, ¤t->blocked, set);
3233 * sys_rt_sigpending - examine a pending signal that has been raised
3235 * @uset: stores pending signals
3236 * @sigsetsize: size of sigset_t type or larger
3238 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3242 if (sigsetsize > sizeof(*uset))
3245 do_sigpending(&set);
3247 if (copy_to_user(uset, &set, sigsetsize))
3253 #ifdef CONFIG_COMPAT
3254 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3255 compat_size_t, sigsetsize)
3259 if (sigsetsize > sizeof(*uset))
3262 do_sigpending(&set);
3264 return put_compat_sigset(uset, &set, sigsetsize);
3268 static const struct {
3269 unsigned char limit, layout;
3271 [SIGILL] = { NSIGILL, SIL_FAULT },
3272 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3273 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3274 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3275 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3277 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3279 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3280 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3281 [SIGSYS] = { NSIGSYS, SIL_SYS },
3284 static bool known_siginfo_layout(unsigned sig, int si_code)
3286 if (si_code == SI_KERNEL)
3288 else if ((si_code > SI_USER)) {
3289 if (sig_specific_sicodes(sig)) {
3290 if (si_code <= sig_sicodes[sig].limit)
3293 else if (si_code <= NSIGPOLL)
3296 else if (si_code >= SI_DETHREAD)
3298 else if (si_code == SI_ASYNCNL)
3303 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3305 enum siginfo_layout layout = SIL_KILL;
3306 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3307 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3308 (si_code <= sig_sicodes[sig].limit)) {
3309 layout = sig_sicodes[sig].layout;
3310 /* Handle the exceptions */
3311 if ((sig == SIGBUS) &&
3312 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3313 layout = SIL_FAULT_MCEERR;
3314 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3315 layout = SIL_FAULT_BNDERR;
3317 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3318 layout = SIL_FAULT_PKUERR;
3320 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3321 layout = SIL_FAULT_PERF_EVENT;
3322 else if (IS_ENABLED(CONFIG_SPARC) &&
3323 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3324 layout = SIL_FAULT_TRAPNO;
3325 else if (IS_ENABLED(CONFIG_ALPHA) &&
3327 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3328 layout = SIL_FAULT_TRAPNO;
3330 else if (si_code <= NSIGPOLL)
3333 if (si_code == SI_TIMER)
3335 else if (si_code == SI_SIGIO)
3337 else if (si_code < 0)
3343 static inline char __user *si_expansion(const siginfo_t __user *info)
3345 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3348 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3350 char __user *expansion = si_expansion(to);
3351 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3353 if (clear_user(expansion, SI_EXPANSION_SIZE))
3358 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3359 const siginfo_t __user *from)
3361 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3362 char __user *expansion = si_expansion(from);
3363 char buf[SI_EXPANSION_SIZE];
3366 * An unknown si_code might need more than
3367 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3368 * extra bytes are 0. This guarantees copy_siginfo_to_user
3369 * will return this data to userspace exactly.
3371 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3373 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3381 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3382 const siginfo_t __user *from)
3384 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3386 to->si_signo = signo;
3387 return post_copy_siginfo_from_user(to, from);
3390 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3392 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3394 return post_copy_siginfo_from_user(to, from);
3397 #ifdef CONFIG_COMPAT
3399 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3400 * @to: compat siginfo destination
3401 * @from: kernel siginfo source
3403 * Note: This function does not work properly for the SIGCHLD on x32, but
3404 * fortunately it doesn't have to. The only valid callers for this function are
3405 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3406 * The latter does not care because SIGCHLD will never cause a coredump.
3408 void copy_siginfo_to_external32(struct compat_siginfo *to,
3409 const struct kernel_siginfo *from)
3411 memset(to, 0, sizeof(*to));
3413 to->si_signo = from->si_signo;
3414 to->si_errno = from->si_errno;
3415 to->si_code = from->si_code;
3416 switch(siginfo_layout(from->si_signo, from->si_code)) {
3418 to->si_pid = from->si_pid;
3419 to->si_uid = from->si_uid;
3422 to->si_tid = from->si_tid;
3423 to->si_overrun = from->si_overrun;
3424 to->si_int = from->si_int;
3427 to->si_band = from->si_band;
3428 to->si_fd = from->si_fd;
3431 to->si_addr = ptr_to_compat(from->si_addr);
3433 case SIL_FAULT_TRAPNO:
3434 to->si_addr = ptr_to_compat(from->si_addr);
3435 to->si_trapno = from->si_trapno;
3437 case SIL_FAULT_MCEERR:
3438 to->si_addr = ptr_to_compat(from->si_addr);
3439 to->si_addr_lsb = from->si_addr_lsb;
3441 case SIL_FAULT_BNDERR:
3442 to->si_addr = ptr_to_compat(from->si_addr);
3443 to->si_lower = ptr_to_compat(from->si_lower);
3444 to->si_upper = ptr_to_compat(from->si_upper);
3446 case SIL_FAULT_PKUERR:
3447 to->si_addr = ptr_to_compat(from->si_addr);
3448 to->si_pkey = from->si_pkey;
3450 case SIL_FAULT_PERF_EVENT:
3451 to->si_addr = ptr_to_compat(from->si_addr);
3452 to->si_perf_data = from->si_perf_data;
3453 to->si_perf_type = from->si_perf_type;
3454 to->si_perf_flags = from->si_perf_flags;
3457 to->si_pid = from->si_pid;
3458 to->si_uid = from->si_uid;
3459 to->si_status = from->si_status;
3460 to->si_utime = from->si_utime;
3461 to->si_stime = from->si_stime;
3464 to->si_pid = from->si_pid;
3465 to->si_uid = from->si_uid;
3466 to->si_int = from->si_int;
3469 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3470 to->si_syscall = from->si_syscall;
3471 to->si_arch = from->si_arch;
3476 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3477 const struct kernel_siginfo *from)
3479 struct compat_siginfo new;
3481 copy_siginfo_to_external32(&new, from);
3482 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3487 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3488 const struct compat_siginfo *from)
3491 to->si_signo = from->si_signo;
3492 to->si_errno = from->si_errno;
3493 to->si_code = from->si_code;
3494 switch(siginfo_layout(from->si_signo, from->si_code)) {
3496 to->si_pid = from->si_pid;
3497 to->si_uid = from->si_uid;
3500 to->si_tid = from->si_tid;
3501 to->si_overrun = from->si_overrun;
3502 to->si_int = from->si_int;
3505 to->si_band = from->si_band;
3506 to->si_fd = from->si_fd;
3509 to->si_addr = compat_ptr(from->si_addr);
3511 case SIL_FAULT_TRAPNO:
3512 to->si_addr = compat_ptr(from->si_addr);
3513 to->si_trapno = from->si_trapno;
3515 case SIL_FAULT_MCEERR:
3516 to->si_addr = compat_ptr(from->si_addr);
3517 to->si_addr_lsb = from->si_addr_lsb;
3519 case SIL_FAULT_BNDERR:
3520 to->si_addr = compat_ptr(from->si_addr);
3521 to->si_lower = compat_ptr(from->si_lower);
3522 to->si_upper = compat_ptr(from->si_upper);
3524 case SIL_FAULT_PKUERR:
3525 to->si_addr = compat_ptr(from->si_addr);
3526 to->si_pkey = from->si_pkey;
3528 case SIL_FAULT_PERF_EVENT:
3529 to->si_addr = compat_ptr(from->si_addr);
3530 to->si_perf_data = from->si_perf_data;
3531 to->si_perf_type = from->si_perf_type;
3532 to->si_perf_flags = from->si_perf_flags;
3535 to->si_pid = from->si_pid;
3536 to->si_uid = from->si_uid;
3537 to->si_status = from->si_status;
3538 #ifdef CONFIG_X86_X32_ABI
3539 if (in_x32_syscall()) {
3540 to->si_utime = from->_sifields._sigchld_x32._utime;
3541 to->si_stime = from->_sifields._sigchld_x32._stime;
3545 to->si_utime = from->si_utime;
3546 to->si_stime = from->si_stime;
3550 to->si_pid = from->si_pid;
3551 to->si_uid = from->si_uid;
3552 to->si_int = from->si_int;
3555 to->si_call_addr = compat_ptr(from->si_call_addr);
3556 to->si_syscall = from->si_syscall;
3557 to->si_arch = from->si_arch;
3563 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3564 const struct compat_siginfo __user *ufrom)
3566 struct compat_siginfo from;
3568 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3571 from.si_signo = signo;
3572 return post_copy_siginfo_from_user32(to, &from);
3575 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3576 const struct compat_siginfo __user *ufrom)
3578 struct compat_siginfo from;
3580 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3583 return post_copy_siginfo_from_user32(to, &from);
3585 #endif /* CONFIG_COMPAT */
3588 * do_sigtimedwait - wait for queued signals specified in @which
3589 * @which: queued signals to wait for
3590 * @info: if non-null, the signal's siginfo is returned here
3591 * @ts: upper bound on process time suspension
3593 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3594 const struct timespec64 *ts)
3596 ktime_t *to = NULL, timeout = KTIME_MAX;
3597 struct task_struct *tsk = current;
3598 sigset_t mask = *which;
3603 if (!timespec64_valid(ts))
3605 timeout = timespec64_to_ktime(*ts);
3610 * Invert the set of allowed signals to get those we want to block.
3612 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3615 spin_lock_irq(&tsk->sighand->siglock);
3616 sig = dequeue_signal(tsk, &mask, info, &type);
3617 if (!sig && timeout) {
3619 * None ready, temporarily unblock those we're interested
3620 * while we are sleeping in so that we'll be awakened when
3621 * they arrive. Unblocking is always fine, we can avoid
3622 * set_current_blocked().
3624 tsk->real_blocked = tsk->blocked;
3625 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3626 recalc_sigpending();
3627 spin_unlock_irq(&tsk->sighand->siglock);
3629 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3630 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3632 spin_lock_irq(&tsk->sighand->siglock);
3633 __set_task_blocked(tsk, &tsk->real_blocked);
3634 sigemptyset(&tsk->real_blocked);
3635 sig = dequeue_signal(tsk, &mask, info, &type);
3637 spin_unlock_irq(&tsk->sighand->siglock);
3641 return ret ? -EINTR : -EAGAIN;
3645 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3647 * @uthese: queued signals to wait for
3648 * @uinfo: if non-null, the signal's siginfo is returned here
3649 * @uts: upper bound on process time suspension
3650 * @sigsetsize: size of sigset_t type
3652 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3653 siginfo_t __user *, uinfo,
3654 const struct __kernel_timespec __user *, uts,
3658 struct timespec64 ts;
3659 kernel_siginfo_t info;
3662 /* XXX: Don't preclude handling different sized sigset_t's. */
3663 if (sigsetsize != sizeof(sigset_t))
3666 if (copy_from_user(&these, uthese, sizeof(these)))
3670 if (get_timespec64(&ts, uts))
3674 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3676 if (ret > 0 && uinfo) {
3677 if (copy_siginfo_to_user(uinfo, &info))
3684 #ifdef CONFIG_COMPAT_32BIT_TIME
3685 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3686 siginfo_t __user *, uinfo,
3687 const struct old_timespec32 __user *, uts,
3691 struct timespec64 ts;
3692 kernel_siginfo_t info;
3695 if (sigsetsize != sizeof(sigset_t))
3698 if (copy_from_user(&these, uthese, sizeof(these)))
3702 if (get_old_timespec32(&ts, uts))
3706 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3708 if (ret > 0 && uinfo) {
3709 if (copy_siginfo_to_user(uinfo, &info))
3717 #ifdef CONFIG_COMPAT
3718 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3719 struct compat_siginfo __user *, uinfo,
3720 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3723 struct timespec64 t;
3724 kernel_siginfo_t info;
3727 if (sigsetsize != sizeof(sigset_t))
3730 if (get_compat_sigset(&s, uthese))
3734 if (get_timespec64(&t, uts))
3738 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3740 if (ret > 0 && uinfo) {
3741 if (copy_siginfo_to_user32(uinfo, &info))
3748 #ifdef CONFIG_COMPAT_32BIT_TIME
3749 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3750 struct compat_siginfo __user *, uinfo,
3751 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3754 struct timespec64 t;
3755 kernel_siginfo_t info;
3758 if (sigsetsize != sizeof(sigset_t))
3761 if (get_compat_sigset(&s, uthese))
3765 if (get_old_timespec32(&t, uts))
3769 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3771 if (ret > 0 && uinfo) {
3772 if (copy_siginfo_to_user32(uinfo, &info))
3781 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3783 clear_siginfo(info);
3784 info->si_signo = sig;
3786 info->si_code = SI_USER;
3787 info->si_pid = task_tgid_vnr(current);
3788 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3792 * sys_kill - send a signal to a process
3793 * @pid: the PID of the process
3794 * @sig: signal to be sent
3796 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3798 struct kernel_siginfo info;
3800 prepare_kill_siginfo(sig, &info);
3802 return kill_something_info(sig, &info, pid);
3806 * Verify that the signaler and signalee either are in the same pid namespace
3807 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3810 static bool access_pidfd_pidns(struct pid *pid)
3812 struct pid_namespace *active = task_active_pid_ns(current);
3813 struct pid_namespace *p = ns_of_pid(pid);
3826 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3827 siginfo_t __user *info)
3829 #ifdef CONFIG_COMPAT
3831 * Avoid hooking up compat syscalls and instead handle necessary
3832 * conversions here. Note, this is a stop-gap measure and should not be
3833 * considered a generic solution.
3835 if (in_compat_syscall())
3836 return copy_siginfo_from_user32(
3837 kinfo, (struct compat_siginfo __user *)info);
3839 return copy_siginfo_from_user(kinfo, info);
3842 static struct pid *pidfd_to_pid(const struct file *file)
3846 pid = pidfd_pid(file);
3850 return tgid_pidfd_to_pid(file);
3854 * sys_pidfd_send_signal - Signal a process through a pidfd
3855 * @pidfd: file descriptor of the process
3856 * @sig: signal to send
3857 * @info: signal info
3858 * @flags: future flags
3860 * The syscall currently only signals via PIDTYPE_PID which covers
3861 * kill(<positive-pid>, <signal>. It does not signal threads or process
3863 * In order to extend the syscall to threads and process groups the @flags
3864 * argument should be used. In essence, the @flags argument will determine
3865 * what is signaled and not the file descriptor itself. Put in other words,
3866 * grouping is a property of the flags argument not a property of the file
3869 * Return: 0 on success, negative errno on failure
3871 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3872 siginfo_t __user *, info, unsigned int, flags)
3877 kernel_siginfo_t kinfo;
3879 /* Enforce flags be set to 0 until we add an extension. */
3887 /* Is this a pidfd? */
3888 pid = pidfd_to_pid(f.file);
3895 if (!access_pidfd_pidns(pid))
3899 ret = copy_siginfo_from_user_any(&kinfo, info);
3904 if (unlikely(sig != kinfo.si_signo))
3907 /* Only allow sending arbitrary signals to yourself. */
3909 if ((task_pid(current) != pid) &&
3910 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3913 prepare_kill_siginfo(sig, &kinfo);
3916 ret = kill_pid_info(sig, &kinfo, pid);
3924 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3926 struct task_struct *p;
3930 p = find_task_by_vpid(pid);
3931 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3932 error = check_kill_permission(sig, info, p);
3934 * The null signal is a permissions and process existence
3935 * probe. No signal is actually delivered.
3937 if (!error && sig) {
3938 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3940 * If lock_task_sighand() failed we pretend the task
3941 * dies after receiving the signal. The window is tiny,
3942 * and the signal is private anyway.
3944 if (unlikely(error == -ESRCH))
3953 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3955 struct kernel_siginfo info;
3957 clear_siginfo(&info);
3958 info.si_signo = sig;
3960 info.si_code = SI_TKILL;
3961 info.si_pid = task_tgid_vnr(current);
3962 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3964 return do_send_specific(tgid, pid, sig, &info);
3968 * sys_tgkill - send signal to one specific thread
3969 * @tgid: the thread group ID of the thread
3970 * @pid: the PID of the thread
3971 * @sig: signal to be sent
3973 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3974 * exists but it's not belonging to the target process anymore. This
3975 * method solves the problem of threads exiting and PIDs getting reused.
3977 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3979 /* This is only valid for single tasks */
3980 if (pid <= 0 || tgid <= 0)
3983 return do_tkill(tgid, pid, sig);
3987 * sys_tkill - send signal to one specific task
3988 * @pid: the PID of the task
3989 * @sig: signal to be sent
3991 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3993 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3995 /* This is only valid for single tasks */
3999 return do_tkill(0, pid, sig);
4002 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4004 /* Not even root can pretend to send signals from the kernel.
4005 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4007 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4008 (task_pid_vnr(current) != pid))
4011 /* POSIX.1b doesn't mention process groups. */
4012 return kill_proc_info(sig, info, pid);
4016 * sys_rt_sigqueueinfo - send signal information to a signal
4017 * @pid: the PID of the thread
4018 * @sig: signal to be sent
4019 * @uinfo: signal info to be sent
4021 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4022 siginfo_t __user *, uinfo)
4024 kernel_siginfo_t info;
4025 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4028 return do_rt_sigqueueinfo(pid, sig, &info);
4031 #ifdef CONFIG_COMPAT
4032 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4035 struct compat_siginfo __user *, uinfo)
4037 kernel_siginfo_t info;
4038 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4041 return do_rt_sigqueueinfo(pid, sig, &info);
4045 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4047 /* This is only valid for single tasks */
4048 if (pid <= 0 || tgid <= 0)
4051 /* Not even root can pretend to send signals from the kernel.
4052 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4054 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4055 (task_pid_vnr(current) != pid))
4058 return do_send_specific(tgid, pid, sig, info);
4061 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4062 siginfo_t __user *, uinfo)
4064 kernel_siginfo_t info;
4065 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4068 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4071 #ifdef CONFIG_COMPAT
4072 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4076 struct compat_siginfo __user *, uinfo)
4078 kernel_siginfo_t info;
4079 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4082 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4087 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4089 void kernel_sigaction(int sig, __sighandler_t action)
4091 spin_lock_irq(¤t->sighand->siglock);
4092 current->sighand->action[sig - 1].sa.sa_handler = action;
4093 if (action == SIG_IGN) {
4097 sigaddset(&mask, sig);
4099 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4100 flush_sigqueue_mask(&mask, ¤t->pending);
4101 recalc_sigpending();
4103 spin_unlock_irq(¤t->sighand->siglock);
4105 EXPORT_SYMBOL(kernel_sigaction);
4107 void __weak sigaction_compat_abi(struct k_sigaction *act,
4108 struct k_sigaction *oact)
4112 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4114 struct task_struct *p = current, *t;
4115 struct k_sigaction *k;
4118 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4121 k = &p->sighand->action[sig-1];
4123 spin_lock_irq(&p->sighand->siglock);
4124 if (k->sa.sa_flags & SA_IMMUTABLE) {
4125 spin_unlock_irq(&p->sighand->siglock);
4132 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4133 * e.g. by having an architecture use the bit in their uapi.
4135 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4138 * Clear unknown flag bits in order to allow userspace to detect missing
4139 * support for flag bits and to allow the kernel to use non-uapi bits
4143 act->sa.sa_flags &= UAPI_SA_FLAGS;
4145 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4147 sigaction_compat_abi(act, oact);
4150 sigdelsetmask(&act->sa.sa_mask,
4151 sigmask(SIGKILL) | sigmask(SIGSTOP));
4155 * "Setting a signal action to SIG_IGN for a signal that is
4156 * pending shall cause the pending signal to be discarded,
4157 * whether or not it is blocked."
4159 * "Setting a signal action to SIG_DFL for a signal that is
4160 * pending and whose default action is to ignore the signal
4161 * (for example, SIGCHLD), shall cause the pending signal to
4162 * be discarded, whether or not it is blocked"
4164 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4166 sigaddset(&mask, sig);
4167 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4168 for_each_thread(p, t)
4169 flush_sigqueue_mask(&mask, &t->pending);
4173 spin_unlock_irq(&p->sighand->siglock);
4177 #ifdef CONFIG_DYNAMIC_SIGFRAME
4178 static inline void sigaltstack_lock(void)
4179 __acquires(¤t->sighand->siglock)
4181 spin_lock_irq(¤t->sighand->siglock);
4184 static inline void sigaltstack_unlock(void)
4185 __releases(¤t->sighand->siglock)
4187 spin_unlock_irq(¤t->sighand->siglock);
4190 static inline void sigaltstack_lock(void) { }
4191 static inline void sigaltstack_unlock(void) { }
4195 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4198 struct task_struct *t = current;
4202 memset(oss, 0, sizeof(stack_t));
4203 oss->ss_sp = (void __user *) t->sas_ss_sp;
4204 oss->ss_size = t->sas_ss_size;
4205 oss->ss_flags = sas_ss_flags(sp) |
4206 (current->sas_ss_flags & SS_FLAG_BITS);
4210 void __user *ss_sp = ss->ss_sp;
4211 size_t ss_size = ss->ss_size;
4212 unsigned ss_flags = ss->ss_flags;
4215 if (unlikely(on_sig_stack(sp)))
4218 ss_mode = ss_flags & ~SS_FLAG_BITS;
4219 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4224 * Return before taking any locks if no actual
4225 * sigaltstack changes were requested.
4227 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4228 t->sas_ss_size == ss_size &&
4229 t->sas_ss_flags == ss_flags)
4233 if (ss_mode == SS_DISABLE) {
4237 if (unlikely(ss_size < min_ss_size))
4239 if (!sigaltstack_size_valid(ss_size))
4243 t->sas_ss_sp = (unsigned long) ss_sp;
4244 t->sas_ss_size = ss_size;
4245 t->sas_ss_flags = ss_flags;
4247 sigaltstack_unlock();
4252 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4256 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4258 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4259 current_user_stack_pointer(),
4261 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4266 int restore_altstack(const stack_t __user *uss)
4269 if (copy_from_user(&new, uss, sizeof(stack_t)))
4271 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4273 /* squash all but EFAULT for now */
4277 int __save_altstack(stack_t __user *uss, unsigned long sp)
4279 struct task_struct *t = current;
4280 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4281 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4282 __put_user(t->sas_ss_size, &uss->ss_size);
4286 #ifdef CONFIG_COMPAT
4287 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4288 compat_stack_t __user *uoss_ptr)
4294 compat_stack_t uss32;
4295 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4297 uss.ss_sp = compat_ptr(uss32.ss_sp);
4298 uss.ss_flags = uss32.ss_flags;
4299 uss.ss_size = uss32.ss_size;
4301 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4302 compat_user_stack_pointer(),
4303 COMPAT_MINSIGSTKSZ);
4304 if (ret >= 0 && uoss_ptr) {
4306 memset(&old, 0, sizeof(old));
4307 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4308 old.ss_flags = uoss.ss_flags;
4309 old.ss_size = uoss.ss_size;
4310 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4316 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4317 const compat_stack_t __user *, uss_ptr,
4318 compat_stack_t __user *, uoss_ptr)
4320 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4323 int compat_restore_altstack(const compat_stack_t __user *uss)
4325 int err = do_compat_sigaltstack(uss, NULL);
4326 /* squash all but -EFAULT for now */
4327 return err == -EFAULT ? err : 0;
4330 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4333 struct task_struct *t = current;
4334 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4336 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4337 __put_user(t->sas_ss_size, &uss->ss_size);
4342 #ifdef __ARCH_WANT_SYS_SIGPENDING
4345 * sys_sigpending - examine pending signals
4346 * @uset: where mask of pending signal is returned
4348 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4352 if (sizeof(old_sigset_t) > sizeof(*uset))
4355 do_sigpending(&set);
4357 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4363 #ifdef CONFIG_COMPAT
4364 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4368 do_sigpending(&set);
4370 return put_user(set.sig[0], set32);
4376 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4378 * sys_sigprocmask - examine and change blocked signals
4379 * @how: whether to add, remove, or set signals
4380 * @nset: signals to add or remove (if non-null)
4381 * @oset: previous value of signal mask if non-null
4383 * Some platforms have their own version with special arguments;
4384 * others support only sys_rt_sigprocmask.
4387 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4388 old_sigset_t __user *, oset)
4390 old_sigset_t old_set, new_set;
4391 sigset_t new_blocked;
4393 old_set = current->blocked.sig[0];
4396 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4399 new_blocked = current->blocked;
4403 sigaddsetmask(&new_blocked, new_set);
4406 sigdelsetmask(&new_blocked, new_set);
4409 new_blocked.sig[0] = new_set;
4415 set_current_blocked(&new_blocked);
4419 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4425 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4427 #ifndef CONFIG_ODD_RT_SIGACTION
4429 * sys_rt_sigaction - alter an action taken by a process
4430 * @sig: signal to be sent
4431 * @act: new sigaction
4432 * @oact: used to save the previous sigaction
4433 * @sigsetsize: size of sigset_t type
4435 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4436 const struct sigaction __user *, act,
4437 struct sigaction __user *, oact,
4440 struct k_sigaction new_sa, old_sa;
4443 /* XXX: Don't preclude handling different sized sigset_t's. */
4444 if (sigsetsize != sizeof(sigset_t))
4447 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4450 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4454 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4459 #ifdef CONFIG_COMPAT
4460 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4461 const struct compat_sigaction __user *, act,
4462 struct compat_sigaction __user *, oact,
4463 compat_size_t, sigsetsize)
4465 struct k_sigaction new_ka, old_ka;
4466 #ifdef __ARCH_HAS_SA_RESTORER
4467 compat_uptr_t restorer;
4471 /* XXX: Don't preclude handling different sized sigset_t's. */
4472 if (sigsetsize != sizeof(compat_sigset_t))
4476 compat_uptr_t handler;
4477 ret = get_user(handler, &act->sa_handler);
4478 new_ka.sa.sa_handler = compat_ptr(handler);
4479 #ifdef __ARCH_HAS_SA_RESTORER
4480 ret |= get_user(restorer, &act->sa_restorer);
4481 new_ka.sa.sa_restorer = compat_ptr(restorer);
4483 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4484 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4489 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4491 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4493 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4494 sizeof(oact->sa_mask));
4495 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4496 #ifdef __ARCH_HAS_SA_RESTORER
4497 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4498 &oact->sa_restorer);
4504 #endif /* !CONFIG_ODD_RT_SIGACTION */
4506 #ifdef CONFIG_OLD_SIGACTION
4507 SYSCALL_DEFINE3(sigaction, int, sig,
4508 const struct old_sigaction __user *, act,
4509 struct old_sigaction __user *, oact)
4511 struct k_sigaction new_ka, old_ka;
4516 if (!access_ok(act, sizeof(*act)) ||
4517 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4518 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4519 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4520 __get_user(mask, &act->sa_mask))
4522 #ifdef __ARCH_HAS_KA_RESTORER
4523 new_ka.ka_restorer = NULL;
4525 siginitset(&new_ka.sa.sa_mask, mask);
4528 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4531 if (!access_ok(oact, sizeof(*oact)) ||
4532 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4533 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4534 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4535 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4542 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4543 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4544 const struct compat_old_sigaction __user *, act,
4545 struct compat_old_sigaction __user *, oact)
4547 struct k_sigaction new_ka, old_ka;
4549 compat_old_sigset_t mask;
4550 compat_uptr_t handler, restorer;
4553 if (!access_ok(act, sizeof(*act)) ||
4554 __get_user(handler, &act->sa_handler) ||
4555 __get_user(restorer, &act->sa_restorer) ||
4556 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4557 __get_user(mask, &act->sa_mask))
4560 #ifdef __ARCH_HAS_KA_RESTORER
4561 new_ka.ka_restorer = NULL;
4563 new_ka.sa.sa_handler = compat_ptr(handler);
4564 new_ka.sa.sa_restorer = compat_ptr(restorer);
4565 siginitset(&new_ka.sa.sa_mask, mask);
4568 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4571 if (!access_ok(oact, sizeof(*oact)) ||
4572 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4573 &oact->sa_handler) ||
4574 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4575 &oact->sa_restorer) ||
4576 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4577 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4584 #ifdef CONFIG_SGETMASK_SYSCALL
4587 * For backwards compatibility. Functionality superseded by sigprocmask.
4589 SYSCALL_DEFINE0(sgetmask)
4592 return current->blocked.sig[0];
4595 SYSCALL_DEFINE1(ssetmask, int, newmask)
4597 int old = current->blocked.sig[0];
4600 siginitset(&newset, newmask);
4601 set_current_blocked(&newset);
4605 #endif /* CONFIG_SGETMASK_SYSCALL */
4607 #ifdef __ARCH_WANT_SYS_SIGNAL
4609 * For backwards compatibility. Functionality superseded by sigaction.
4611 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4613 struct k_sigaction new_sa, old_sa;
4616 new_sa.sa.sa_handler = handler;
4617 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4618 sigemptyset(&new_sa.sa.sa_mask);
4620 ret = do_sigaction(sig, &new_sa, &old_sa);
4622 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4624 #endif /* __ARCH_WANT_SYS_SIGNAL */
4626 #ifdef __ARCH_WANT_SYS_PAUSE
4628 SYSCALL_DEFINE0(pause)
4630 while (!signal_pending(current)) {
4631 __set_current_state(TASK_INTERRUPTIBLE);
4634 return -ERESTARTNOHAND;
4639 static int sigsuspend(sigset_t *set)
4641 current->saved_sigmask = current->blocked;
4642 set_current_blocked(set);
4644 while (!signal_pending(current)) {
4645 __set_current_state(TASK_INTERRUPTIBLE);
4648 set_restore_sigmask();
4649 return -ERESTARTNOHAND;
4653 * sys_rt_sigsuspend - replace the signal mask for a value with the
4654 * @unewset value until a signal is received
4655 * @unewset: new signal mask value
4656 * @sigsetsize: size of sigset_t type
4658 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4662 /* XXX: Don't preclude handling different sized sigset_t's. */
4663 if (sigsetsize != sizeof(sigset_t))
4666 if (copy_from_user(&newset, unewset, sizeof(newset)))
4668 return sigsuspend(&newset);
4671 #ifdef CONFIG_COMPAT
4672 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4676 /* XXX: Don't preclude handling different sized sigset_t's. */
4677 if (sigsetsize != sizeof(sigset_t))
4680 if (get_compat_sigset(&newset, unewset))
4682 return sigsuspend(&newset);
4686 #ifdef CONFIG_OLD_SIGSUSPEND
4687 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4690 siginitset(&blocked, mask);
4691 return sigsuspend(&blocked);
4694 #ifdef CONFIG_OLD_SIGSUSPEND3
4695 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4698 siginitset(&blocked, mask);
4699 return sigsuspend(&blocked);
4703 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4708 static inline void siginfo_buildtime_checks(void)
4710 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4712 /* Verify the offsets in the two siginfos match */
4713 #define CHECK_OFFSET(field) \
4714 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4717 CHECK_OFFSET(si_pid);
4718 CHECK_OFFSET(si_uid);
4721 CHECK_OFFSET(si_tid);
4722 CHECK_OFFSET(si_overrun);
4723 CHECK_OFFSET(si_value);
4726 CHECK_OFFSET(si_pid);
4727 CHECK_OFFSET(si_uid);
4728 CHECK_OFFSET(si_value);
4731 CHECK_OFFSET(si_pid);
4732 CHECK_OFFSET(si_uid);
4733 CHECK_OFFSET(si_status);
4734 CHECK_OFFSET(si_utime);
4735 CHECK_OFFSET(si_stime);
4738 CHECK_OFFSET(si_addr);
4739 CHECK_OFFSET(si_trapno);
4740 CHECK_OFFSET(si_addr_lsb);
4741 CHECK_OFFSET(si_lower);
4742 CHECK_OFFSET(si_upper);
4743 CHECK_OFFSET(si_pkey);
4744 CHECK_OFFSET(si_perf_data);
4745 CHECK_OFFSET(si_perf_type);
4746 CHECK_OFFSET(si_perf_flags);
4749 CHECK_OFFSET(si_band);
4750 CHECK_OFFSET(si_fd);
4753 CHECK_OFFSET(si_call_addr);
4754 CHECK_OFFSET(si_syscall);
4755 CHECK_OFFSET(si_arch);
4759 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4760 offsetof(struct siginfo, si_addr));
4761 if (sizeof(int) == sizeof(void __user *)) {
4762 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4763 sizeof(void __user *));
4765 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4766 sizeof_field(struct siginfo, si_uid)) !=
4767 sizeof(void __user *));
4768 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4769 offsetof(struct siginfo, si_uid));
4771 #ifdef CONFIG_COMPAT
4772 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4773 offsetof(struct compat_siginfo, si_addr));
4774 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4775 sizeof(compat_uptr_t));
4776 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4777 sizeof_field(struct siginfo, si_pid));
4781 #if defined(CONFIG_SYSCTL)
4782 static struct ctl_table signal_debug_table[] = {
4783 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4785 .procname = "exception-trace",
4786 .data = &show_unhandled_signals,
4787 .maxlen = sizeof(int),
4789 .proc_handler = proc_dointvec
4795 static int __init init_signal_sysctls(void)
4797 register_sysctl_init("debug", signal_debug_table);
4800 early_initcall(init_signal_sysctls);
4801 #endif /* CONFIG_SYSCTL */
4803 void __init signals_init(void)
4805 siginfo_buildtime_checks();
4807 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4810 #ifdef CONFIG_KGDB_KDB
4811 #include <linux/kdb.h>
4813 * kdb_send_sig - Allows kdb to send signals without exposing
4814 * signal internals. This function checks if the required locks are
4815 * available before calling the main signal code, to avoid kdb
4818 void kdb_send_sig(struct task_struct *t, int sig)
4820 static struct task_struct *kdb_prev_t;
4822 if (!spin_trylock(&t->sighand->siglock)) {
4823 kdb_printf("Can't do kill command now.\n"
4824 "The sigmask lock is held somewhere else in "
4825 "kernel, try again later\n");
4828 new_t = kdb_prev_t != t;
4830 if (!task_is_running(t) && new_t) {
4831 spin_unlock(&t->sighand->siglock);
4832 kdb_printf("Process is not RUNNING, sending a signal from "
4833 "kdb risks deadlock\n"
4834 "on the run queue locks. "
4835 "The signal has _not_ been sent.\n"
4836 "Reissue the kill command if you want to risk "
4840 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4841 spin_unlock(&t->sighand->siglock);
4843 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4846 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4848 #endif /* CONFIG_KGDB_KDB */