Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #ifdef CONFIG_RT_GROUP_SCHED
7
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11 {
12 #ifdef CONFIG_SCHED_DEBUG
13         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15         return container_of(rt_se, struct task_struct, rt);
16 }
17
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19 {
20         return rt_rq->rq;
21 }
22
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24 {
25         return rt_se->rt_rq;
26 }
27
28 #else /* CONFIG_RT_GROUP_SCHED */
29
30 #define rt_entity_is_task(rt_se) (1)
31
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33 {
34         return container_of(rt_se, struct task_struct, rt);
35 }
36
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38 {
39         return container_of(rt_rq, struct rq, rt);
40 }
41
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43 {
44         struct task_struct *p = rt_task_of(rt_se);
45         struct rq *rq = task_rq(p);
46
47         return &rq->rt;
48 }
49
50 #endif /* CONFIG_RT_GROUP_SCHED */
51
52 #ifdef CONFIG_SMP
53
54 static inline int rt_overloaded(struct rq *rq)
55 {
56         return atomic_read(&rq->rd->rto_count);
57 }
58
59 static inline void rt_set_overload(struct rq *rq)
60 {
61         if (!rq->online)
62                 return;
63
64         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
65         /*
66          * Make sure the mask is visible before we set
67          * the overload count. That is checked to determine
68          * if we should look at the mask. It would be a shame
69          * if we looked at the mask, but the mask was not
70          * updated yet.
71          */
72         wmb();
73         atomic_inc(&rq->rd->rto_count);
74 }
75
76 static inline void rt_clear_overload(struct rq *rq)
77 {
78         if (!rq->online)
79                 return;
80
81         /* the order here really doesn't matter */
82         atomic_dec(&rq->rd->rto_count);
83         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
84 }
85
86 static void update_rt_migration(struct rt_rq *rt_rq)
87 {
88         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89                 if (!rt_rq->overloaded) {
90                         rt_set_overload(rq_of_rt_rq(rt_rq));
91                         rt_rq->overloaded = 1;
92                 }
93         } else if (rt_rq->overloaded) {
94                 rt_clear_overload(rq_of_rt_rq(rt_rq));
95                 rt_rq->overloaded = 0;
96         }
97 }
98
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100 {
101         if (!rt_entity_is_task(rt_se))
102                 return;
103
104         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106         rt_rq->rt_nr_total++;
107         if (rt_se->nr_cpus_allowed > 1)
108                 rt_rq->rt_nr_migratory++;
109
110         update_rt_migration(rt_rq);
111 }
112
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114 {
115         if (!rt_entity_is_task(rt_se))
116                 return;
117
118         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120         rt_rq->rt_nr_total--;
121         if (rt_se->nr_cpus_allowed > 1)
122                 rt_rq->rt_nr_migratory--;
123
124         update_rt_migration(rt_rq);
125 }
126
127 static inline int has_pushable_tasks(struct rq *rq)
128 {
129         return !plist_head_empty(&rq->rt.pushable_tasks);
130 }
131
132 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
133 {
134         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
135         plist_node_init(&p->pushable_tasks, p->prio);
136         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
137
138         /* Update the highest prio pushable task */
139         if (p->prio < rq->rt.highest_prio.next)
140                 rq->rt.highest_prio.next = p->prio;
141 }
142
143 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
144 {
145         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
146
147         /* Update the new highest prio pushable task */
148         if (has_pushable_tasks(rq)) {
149                 p = plist_first_entry(&rq->rt.pushable_tasks,
150                                       struct task_struct, pushable_tasks);
151                 rq->rt.highest_prio.next = p->prio;
152         } else
153                 rq->rt.highest_prio.next = MAX_RT_PRIO;
154 }
155
156 #else
157
158 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
159 {
160 }
161
162 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
163 {
164 }
165
166 static inline
167 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
168 {
169 }
170
171 static inline
172 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
173 {
174 }
175
176 #endif /* CONFIG_SMP */
177
178 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
179 {
180         return !list_empty(&rt_se->run_list);
181 }
182
183 #ifdef CONFIG_RT_GROUP_SCHED
184
185 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
186 {
187         if (!rt_rq->tg)
188                 return RUNTIME_INF;
189
190         return rt_rq->rt_runtime;
191 }
192
193 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
194 {
195         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
196 }
197
198 typedef struct task_group *rt_rq_iter_t;
199
200 static inline struct task_group *next_task_group(struct task_group *tg)
201 {
202         do {
203                 tg = list_entry_rcu(tg->list.next,
204                         typeof(struct task_group), list);
205         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
206
207         if (&tg->list == &task_groups)
208                 tg = NULL;
209
210         return tg;
211 }
212
213 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
214         for (iter = container_of(&task_groups, typeof(*iter), list);    \
215                 (iter = next_task_group(iter)) &&                       \
216                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
217
218 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
219 {
220         list_add_rcu(&rt_rq->leaf_rt_rq_list,
221                         &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
222 }
223
224 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
225 {
226         list_del_rcu(&rt_rq->leaf_rt_rq_list);
227 }
228
229 #define for_each_leaf_rt_rq(rt_rq, rq) \
230         list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
231
232 #define for_each_sched_rt_entity(rt_se) \
233         for (; rt_se; rt_se = rt_se->parent)
234
235 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
236 {
237         return rt_se->my_q;
238 }
239
240 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
241 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
242
243 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
244 {
245         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
246         struct sched_rt_entity *rt_se;
247
248         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
249
250         rt_se = rt_rq->tg->rt_se[cpu];
251
252         if (rt_rq->rt_nr_running) {
253                 if (rt_se && !on_rt_rq(rt_se))
254                         enqueue_rt_entity(rt_se, false);
255                 if (rt_rq->highest_prio.curr < curr->prio)
256                         resched_task(curr);
257         }
258 }
259
260 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
261 {
262         struct sched_rt_entity *rt_se;
263         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
264
265         rt_se = rt_rq->tg->rt_se[cpu];
266
267         if (rt_se && on_rt_rq(rt_se))
268                 dequeue_rt_entity(rt_se);
269 }
270
271 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
272 {
273         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
274 }
275
276 static int rt_se_boosted(struct sched_rt_entity *rt_se)
277 {
278         struct rt_rq *rt_rq = group_rt_rq(rt_se);
279         struct task_struct *p;
280
281         if (rt_rq)
282                 return !!rt_rq->rt_nr_boosted;
283
284         p = rt_task_of(rt_se);
285         return p->prio != p->normal_prio;
286 }
287
288 #ifdef CONFIG_SMP
289 static inline const struct cpumask *sched_rt_period_mask(void)
290 {
291         return cpu_rq(smp_processor_id())->rd->span;
292 }
293 #else
294 static inline const struct cpumask *sched_rt_period_mask(void)
295 {
296         return cpu_online_mask;
297 }
298 #endif
299
300 static inline
301 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
302 {
303         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
304 }
305
306 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
307 {
308         return &rt_rq->tg->rt_bandwidth;
309 }
310
311 #else /* !CONFIG_RT_GROUP_SCHED */
312
313 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
314 {
315         return rt_rq->rt_runtime;
316 }
317
318 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
319 {
320         return ktime_to_ns(def_rt_bandwidth.rt_period);
321 }
322
323 typedef struct rt_rq *rt_rq_iter_t;
324
325 #define for_each_rt_rq(rt_rq, iter, rq) \
326         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
327
328 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
329 {
330 }
331
332 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
333 {
334 }
335
336 #define for_each_leaf_rt_rq(rt_rq, rq) \
337         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
338
339 #define for_each_sched_rt_entity(rt_se) \
340         for (; rt_se; rt_se = NULL)
341
342 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
343 {
344         return NULL;
345 }
346
347 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
348 {
349         if (rt_rq->rt_nr_running)
350                 resched_task(rq_of_rt_rq(rt_rq)->curr);
351 }
352
353 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
354 {
355 }
356
357 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
358 {
359         return rt_rq->rt_throttled;
360 }
361
362 static inline const struct cpumask *sched_rt_period_mask(void)
363 {
364         return cpu_online_mask;
365 }
366
367 static inline
368 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
369 {
370         return &cpu_rq(cpu)->rt;
371 }
372
373 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
374 {
375         return &def_rt_bandwidth;
376 }
377
378 #endif /* CONFIG_RT_GROUP_SCHED */
379
380 #ifdef CONFIG_SMP
381 /*
382  * We ran out of runtime, see if we can borrow some from our neighbours.
383  */
384 static int do_balance_runtime(struct rt_rq *rt_rq)
385 {
386         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
387         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
388         int i, weight, more = 0;
389         u64 rt_period;
390
391         weight = cpumask_weight(rd->span);
392
393         raw_spin_lock(&rt_b->rt_runtime_lock);
394         rt_period = ktime_to_ns(rt_b->rt_period);
395         for_each_cpu(i, rd->span) {
396                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
397                 s64 diff;
398
399                 if (iter == rt_rq)
400                         continue;
401
402                 raw_spin_lock(&iter->rt_runtime_lock);
403                 /*
404                  * Either all rqs have inf runtime and there's nothing to steal
405                  * or __disable_runtime() below sets a specific rq to inf to
406                  * indicate its been disabled and disalow stealing.
407                  */
408                 if (iter->rt_runtime == RUNTIME_INF)
409                         goto next;
410
411                 /*
412                  * From runqueues with spare time, take 1/n part of their
413                  * spare time, but no more than our period.
414                  */
415                 diff = iter->rt_runtime - iter->rt_time;
416                 if (diff > 0) {
417                         diff = div_u64((u64)diff, weight);
418                         if (rt_rq->rt_runtime + diff > rt_period)
419                                 diff = rt_period - rt_rq->rt_runtime;
420                         iter->rt_runtime -= diff;
421                         rt_rq->rt_runtime += diff;
422                         more = 1;
423                         if (rt_rq->rt_runtime == rt_period) {
424                                 raw_spin_unlock(&iter->rt_runtime_lock);
425                                 break;
426                         }
427                 }
428 next:
429                 raw_spin_unlock(&iter->rt_runtime_lock);
430         }
431         raw_spin_unlock(&rt_b->rt_runtime_lock);
432
433         return more;
434 }
435
436 /*
437  * Ensure this RQ takes back all the runtime it lend to its neighbours.
438  */
439 static void __disable_runtime(struct rq *rq)
440 {
441         struct root_domain *rd = rq->rd;
442         rt_rq_iter_t iter;
443         struct rt_rq *rt_rq;
444
445         if (unlikely(!scheduler_running))
446                 return;
447
448         for_each_rt_rq(rt_rq, iter, rq) {
449                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
450                 s64 want;
451                 int i;
452
453                 raw_spin_lock(&rt_b->rt_runtime_lock);
454                 raw_spin_lock(&rt_rq->rt_runtime_lock);
455                 /*
456                  * Either we're all inf and nobody needs to borrow, or we're
457                  * already disabled and thus have nothing to do, or we have
458                  * exactly the right amount of runtime to take out.
459                  */
460                 if (rt_rq->rt_runtime == RUNTIME_INF ||
461                                 rt_rq->rt_runtime == rt_b->rt_runtime)
462                         goto balanced;
463                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
464
465                 /*
466                  * Calculate the difference between what we started out with
467                  * and what we current have, that's the amount of runtime
468                  * we lend and now have to reclaim.
469                  */
470                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
471
472                 /*
473                  * Greedy reclaim, take back as much as we can.
474                  */
475                 for_each_cpu(i, rd->span) {
476                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
477                         s64 diff;
478
479                         /*
480                          * Can't reclaim from ourselves or disabled runqueues.
481                          */
482                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
483                                 continue;
484
485                         raw_spin_lock(&iter->rt_runtime_lock);
486                         if (want > 0) {
487                                 diff = min_t(s64, iter->rt_runtime, want);
488                                 iter->rt_runtime -= diff;
489                                 want -= diff;
490                         } else {
491                                 iter->rt_runtime -= want;
492                                 want -= want;
493                         }
494                         raw_spin_unlock(&iter->rt_runtime_lock);
495
496                         if (!want)
497                                 break;
498                 }
499
500                 raw_spin_lock(&rt_rq->rt_runtime_lock);
501                 /*
502                  * We cannot be left wanting - that would mean some runtime
503                  * leaked out of the system.
504                  */
505                 BUG_ON(want);
506 balanced:
507                 /*
508                  * Disable all the borrow logic by pretending we have inf
509                  * runtime - in which case borrowing doesn't make sense.
510                  */
511                 rt_rq->rt_runtime = RUNTIME_INF;
512                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
513                 raw_spin_unlock(&rt_b->rt_runtime_lock);
514         }
515 }
516
517 static void disable_runtime(struct rq *rq)
518 {
519         unsigned long flags;
520
521         raw_spin_lock_irqsave(&rq->lock, flags);
522         __disable_runtime(rq);
523         raw_spin_unlock_irqrestore(&rq->lock, flags);
524 }
525
526 static void __enable_runtime(struct rq *rq)
527 {
528         rt_rq_iter_t iter;
529         struct rt_rq *rt_rq;
530
531         if (unlikely(!scheduler_running))
532                 return;
533
534         /*
535          * Reset each runqueue's bandwidth settings
536          */
537         for_each_rt_rq(rt_rq, iter, rq) {
538                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
539
540                 raw_spin_lock(&rt_b->rt_runtime_lock);
541                 raw_spin_lock(&rt_rq->rt_runtime_lock);
542                 rt_rq->rt_runtime = rt_b->rt_runtime;
543                 rt_rq->rt_time = 0;
544                 rt_rq->rt_throttled = 0;
545                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
546                 raw_spin_unlock(&rt_b->rt_runtime_lock);
547         }
548 }
549
550 static void enable_runtime(struct rq *rq)
551 {
552         unsigned long flags;
553
554         raw_spin_lock_irqsave(&rq->lock, flags);
555         __enable_runtime(rq);
556         raw_spin_unlock_irqrestore(&rq->lock, flags);
557 }
558
559 static int balance_runtime(struct rt_rq *rt_rq)
560 {
561         int more = 0;
562
563         if (!sched_feat(RT_RUNTIME_SHARE))
564                 return more;
565
566         if (rt_rq->rt_time > rt_rq->rt_runtime) {
567                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
568                 more = do_balance_runtime(rt_rq);
569                 raw_spin_lock(&rt_rq->rt_runtime_lock);
570         }
571
572         return more;
573 }
574 #else /* !CONFIG_SMP */
575 static inline int balance_runtime(struct rt_rq *rt_rq)
576 {
577         return 0;
578 }
579 #endif /* CONFIG_SMP */
580
581 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
582 {
583         int i, idle = 1;
584         const struct cpumask *span;
585
586         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
587                 return 1;
588
589         span = sched_rt_period_mask();
590         for_each_cpu(i, span) {
591                 int enqueue = 0;
592                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
593                 struct rq *rq = rq_of_rt_rq(rt_rq);
594
595                 raw_spin_lock(&rq->lock);
596                 if (rt_rq->rt_time) {
597                         u64 runtime;
598
599                         raw_spin_lock(&rt_rq->rt_runtime_lock);
600                         if (rt_rq->rt_throttled)
601                                 balance_runtime(rt_rq);
602                         runtime = rt_rq->rt_runtime;
603                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
604                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
605                                 rt_rq->rt_throttled = 0;
606                                 enqueue = 1;
607
608                                 /*
609                                  * Force a clock update if the CPU was idle,
610                                  * lest wakeup -> unthrottle time accumulate.
611                                  */
612                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
613                                         rq->skip_clock_update = -1;
614                         }
615                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
616                                 idle = 0;
617                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
618                 } else if (rt_rq->rt_nr_running) {
619                         idle = 0;
620                         if (!rt_rq_throttled(rt_rq))
621                                 enqueue = 1;
622                 }
623
624                 if (enqueue)
625                         sched_rt_rq_enqueue(rt_rq);
626                 raw_spin_unlock(&rq->lock);
627         }
628
629         return idle;
630 }
631
632 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
633 {
634 #ifdef CONFIG_RT_GROUP_SCHED
635         struct rt_rq *rt_rq = group_rt_rq(rt_se);
636
637         if (rt_rq)
638                 return rt_rq->highest_prio.curr;
639 #endif
640
641         return rt_task_of(rt_se)->prio;
642 }
643
644 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
645 {
646         u64 runtime = sched_rt_runtime(rt_rq);
647
648         if (rt_rq->rt_throttled)
649                 return rt_rq_throttled(rt_rq);
650
651         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
652                 return 0;
653
654         balance_runtime(rt_rq);
655         runtime = sched_rt_runtime(rt_rq);
656         if (runtime == RUNTIME_INF)
657                 return 0;
658
659         if (rt_rq->rt_time > runtime) {
660                 rt_rq->rt_throttled = 1;
661                 printk_once(KERN_WARNING "sched: RT throttling activated\n");
662                 if (rt_rq_throttled(rt_rq)) {
663                         sched_rt_rq_dequeue(rt_rq);
664                         return 1;
665                 }
666         }
667
668         return 0;
669 }
670
671 /*
672  * Update the current task's runtime statistics. Skip current tasks that
673  * are not in our scheduling class.
674  */
675 static void update_curr_rt(struct rq *rq)
676 {
677         struct task_struct *curr = rq->curr;
678         struct sched_rt_entity *rt_se = &curr->rt;
679         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
680         u64 delta_exec;
681
682         if (curr->sched_class != &rt_sched_class)
683                 return;
684
685         delta_exec = rq->clock_task - curr->se.exec_start;
686         if (unlikely((s64)delta_exec < 0))
687                 delta_exec = 0;
688
689         schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
690
691         curr->se.sum_exec_runtime += delta_exec;
692         account_group_exec_runtime(curr, delta_exec);
693
694         curr->se.exec_start = rq->clock_task;
695         cpuacct_charge(curr, delta_exec);
696
697         sched_rt_avg_update(rq, delta_exec);
698
699         if (!rt_bandwidth_enabled())
700                 return;
701
702         for_each_sched_rt_entity(rt_se) {
703                 rt_rq = rt_rq_of_se(rt_se);
704
705                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
706                         raw_spin_lock(&rt_rq->rt_runtime_lock);
707                         rt_rq->rt_time += delta_exec;
708                         if (sched_rt_runtime_exceeded(rt_rq))
709                                 resched_task(curr);
710                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
711                 }
712         }
713 }
714
715 #if defined CONFIG_SMP
716
717 static void
718 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
719 {
720         struct rq *rq = rq_of_rt_rq(rt_rq);
721
722         if (rq->online && prio < prev_prio)
723                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
724 }
725
726 static void
727 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
728 {
729         struct rq *rq = rq_of_rt_rq(rt_rq);
730
731         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
732                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
733 }
734
735 #else /* CONFIG_SMP */
736
737 static inline
738 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
739 static inline
740 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
741
742 #endif /* CONFIG_SMP */
743
744 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
745 static void
746 inc_rt_prio(struct rt_rq *rt_rq, int prio)
747 {
748         int prev_prio = rt_rq->highest_prio.curr;
749
750         if (prio < prev_prio)
751                 rt_rq->highest_prio.curr = prio;
752
753         inc_rt_prio_smp(rt_rq, prio, prev_prio);
754 }
755
756 static void
757 dec_rt_prio(struct rt_rq *rt_rq, int prio)
758 {
759         int prev_prio = rt_rq->highest_prio.curr;
760
761         if (rt_rq->rt_nr_running) {
762
763                 WARN_ON(prio < prev_prio);
764
765                 /*
766                  * This may have been our highest task, and therefore
767                  * we may have some recomputation to do
768                  */
769                 if (prio == prev_prio) {
770                         struct rt_prio_array *array = &rt_rq->active;
771
772                         rt_rq->highest_prio.curr =
773                                 sched_find_first_bit(array->bitmap);
774                 }
775
776         } else
777                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
778
779         dec_rt_prio_smp(rt_rq, prio, prev_prio);
780 }
781
782 #else
783
784 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
785 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
786
787 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
788
789 #ifdef CONFIG_RT_GROUP_SCHED
790
791 static void
792 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
793 {
794         if (rt_se_boosted(rt_se))
795                 rt_rq->rt_nr_boosted++;
796
797         if (rt_rq->tg)
798                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
799 }
800
801 static void
802 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
803 {
804         if (rt_se_boosted(rt_se))
805                 rt_rq->rt_nr_boosted--;
806
807         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
808 }
809
810 #else /* CONFIG_RT_GROUP_SCHED */
811
812 static void
813 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
814 {
815         start_rt_bandwidth(&def_rt_bandwidth);
816 }
817
818 static inline
819 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
820
821 #endif /* CONFIG_RT_GROUP_SCHED */
822
823 static inline
824 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
825 {
826         int prio = rt_se_prio(rt_se);
827
828         WARN_ON(!rt_prio(prio));
829         rt_rq->rt_nr_running++;
830
831         inc_rt_prio(rt_rq, prio);
832         inc_rt_migration(rt_se, rt_rq);
833         inc_rt_group(rt_se, rt_rq);
834 }
835
836 static inline
837 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
838 {
839         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
840         WARN_ON(!rt_rq->rt_nr_running);
841         rt_rq->rt_nr_running--;
842
843         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
844         dec_rt_migration(rt_se, rt_rq);
845         dec_rt_group(rt_se, rt_rq);
846 }
847
848 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
849 {
850         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
851         struct rt_prio_array *array = &rt_rq->active;
852         struct rt_rq *group_rq = group_rt_rq(rt_se);
853         struct list_head *queue = array->queue + rt_se_prio(rt_se);
854
855         /*
856          * Don't enqueue the group if its throttled, or when empty.
857          * The latter is a consequence of the former when a child group
858          * get throttled and the current group doesn't have any other
859          * active members.
860          */
861         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
862                 return;
863
864         if (!rt_rq->rt_nr_running)
865                 list_add_leaf_rt_rq(rt_rq);
866
867         if (head)
868                 list_add(&rt_se->run_list, queue);
869         else
870                 list_add_tail(&rt_se->run_list, queue);
871         __set_bit(rt_se_prio(rt_se), array->bitmap);
872
873         inc_rt_tasks(rt_se, rt_rq);
874 }
875
876 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
877 {
878         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
879         struct rt_prio_array *array = &rt_rq->active;
880
881         list_del_init(&rt_se->run_list);
882         if (list_empty(array->queue + rt_se_prio(rt_se)))
883                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
884
885         dec_rt_tasks(rt_se, rt_rq);
886         if (!rt_rq->rt_nr_running)
887                 list_del_leaf_rt_rq(rt_rq);
888 }
889
890 /*
891  * Because the prio of an upper entry depends on the lower
892  * entries, we must remove entries top - down.
893  */
894 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
895 {
896         struct sched_rt_entity *back = NULL;
897
898         for_each_sched_rt_entity(rt_se) {
899                 rt_se->back = back;
900                 back = rt_se;
901         }
902
903         for (rt_se = back; rt_se; rt_se = rt_se->back) {
904                 if (on_rt_rq(rt_se))
905                         __dequeue_rt_entity(rt_se);
906         }
907 }
908
909 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
910 {
911         dequeue_rt_stack(rt_se);
912         for_each_sched_rt_entity(rt_se)
913                 __enqueue_rt_entity(rt_se, head);
914 }
915
916 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
917 {
918         dequeue_rt_stack(rt_se);
919
920         for_each_sched_rt_entity(rt_se) {
921                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
922
923                 if (rt_rq && rt_rq->rt_nr_running)
924                         __enqueue_rt_entity(rt_se, false);
925         }
926 }
927
928 /*
929  * Adding/removing a task to/from a priority array:
930  */
931 static void
932 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
933 {
934         struct sched_rt_entity *rt_se = &p->rt;
935
936         if (flags & ENQUEUE_WAKEUP)
937                 rt_se->timeout = 0;
938
939         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
940
941         if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
942                 enqueue_pushable_task(rq, p);
943
944         inc_nr_running(rq);
945 }
946
947 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
948 {
949         struct sched_rt_entity *rt_se = &p->rt;
950
951         update_curr_rt(rq);
952         dequeue_rt_entity(rt_se);
953
954         dequeue_pushable_task(rq, p);
955
956         dec_nr_running(rq);
957 }
958
959 /*
960  * Put task to the end of the run list without the overhead of dequeue
961  * followed by enqueue.
962  */
963 static void
964 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
965 {
966         if (on_rt_rq(rt_se)) {
967                 struct rt_prio_array *array = &rt_rq->active;
968                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
969
970                 if (head)
971                         list_move(&rt_se->run_list, queue);
972                 else
973                         list_move_tail(&rt_se->run_list, queue);
974         }
975 }
976
977 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
978 {
979         struct sched_rt_entity *rt_se = &p->rt;
980         struct rt_rq *rt_rq;
981
982         for_each_sched_rt_entity(rt_se) {
983                 rt_rq = rt_rq_of_se(rt_se);
984                 requeue_rt_entity(rt_rq, rt_se, head);
985         }
986 }
987
988 static void yield_task_rt(struct rq *rq)
989 {
990         requeue_task_rt(rq, rq->curr, 0);
991 }
992
993 #ifdef CONFIG_SMP
994 static int find_lowest_rq(struct task_struct *task);
995
996 static int
997 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
998 {
999         struct task_struct *curr;
1000         struct rq *rq;
1001         int cpu;
1002
1003         cpu = task_cpu(p);
1004
1005         /* For anything but wake ups, just return the task_cpu */
1006         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1007                 goto out;
1008
1009         rq = cpu_rq(cpu);
1010
1011         rcu_read_lock();
1012         curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1013
1014         /*
1015          * If the current task on @p's runqueue is an RT task, then
1016          * try to see if we can wake this RT task up on another
1017          * runqueue. Otherwise simply start this RT task
1018          * on its current runqueue.
1019          *
1020          * We want to avoid overloading runqueues. If the woken
1021          * task is a higher priority, then it will stay on this CPU
1022          * and the lower prio task should be moved to another CPU.
1023          * Even though this will probably make the lower prio task
1024          * lose its cache, we do not want to bounce a higher task
1025          * around just because it gave up its CPU, perhaps for a
1026          * lock?
1027          *
1028          * For equal prio tasks, we just let the scheduler sort it out.
1029          *
1030          * Otherwise, just let it ride on the affined RQ and the
1031          * post-schedule router will push the preempted task away
1032          *
1033          * This test is optimistic, if we get it wrong the load-balancer
1034          * will have to sort it out.
1035          */
1036         if (curr && unlikely(rt_task(curr)) &&
1037             (curr->rt.nr_cpus_allowed < 2 ||
1038              curr->prio <= p->prio) &&
1039             (p->rt.nr_cpus_allowed > 1)) {
1040                 int target = find_lowest_rq(p);
1041
1042                 if (target != -1)
1043                         cpu = target;
1044         }
1045         rcu_read_unlock();
1046
1047 out:
1048         return cpu;
1049 }
1050
1051 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1052 {
1053         if (rq->curr->rt.nr_cpus_allowed == 1)
1054                 return;
1055
1056         if (p->rt.nr_cpus_allowed != 1
1057             && cpupri_find(&rq->rd->cpupri, p, NULL))
1058                 return;
1059
1060         if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1061                 return;
1062
1063         /*
1064          * There appears to be other cpus that can accept
1065          * current and none to run 'p', so lets reschedule
1066          * to try and push current away:
1067          */
1068         requeue_task_rt(rq, p, 1);
1069         resched_task(rq->curr);
1070 }
1071
1072 #endif /* CONFIG_SMP */
1073
1074 /*
1075  * Preempt the current task with a newly woken task if needed:
1076  */
1077 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1078 {
1079         if (p->prio < rq->curr->prio) {
1080                 resched_task(rq->curr);
1081                 return;
1082         }
1083
1084 #ifdef CONFIG_SMP
1085         /*
1086          * If:
1087          *
1088          * - the newly woken task is of equal priority to the current task
1089          * - the newly woken task is non-migratable while current is migratable
1090          * - current will be preempted on the next reschedule
1091          *
1092          * we should check to see if current can readily move to a different
1093          * cpu.  If so, we will reschedule to allow the push logic to try
1094          * to move current somewhere else, making room for our non-migratable
1095          * task.
1096          */
1097         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1098                 check_preempt_equal_prio(rq, p);
1099 #endif
1100 }
1101
1102 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1103                                                    struct rt_rq *rt_rq)
1104 {
1105         struct rt_prio_array *array = &rt_rq->active;
1106         struct sched_rt_entity *next = NULL;
1107         struct list_head *queue;
1108         int idx;
1109
1110         idx = sched_find_first_bit(array->bitmap);
1111         BUG_ON(idx >= MAX_RT_PRIO);
1112
1113         queue = array->queue + idx;
1114         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1115
1116         return next;
1117 }
1118
1119 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1120 {
1121         struct sched_rt_entity *rt_se;
1122         struct task_struct *p;
1123         struct rt_rq *rt_rq;
1124
1125         rt_rq = &rq->rt;
1126
1127         if (!rt_rq->rt_nr_running)
1128                 return NULL;
1129
1130         if (rt_rq_throttled(rt_rq))
1131                 return NULL;
1132
1133         do {
1134                 rt_se = pick_next_rt_entity(rq, rt_rq);
1135                 BUG_ON(!rt_se);
1136                 rt_rq = group_rt_rq(rt_se);
1137         } while (rt_rq);
1138
1139         p = rt_task_of(rt_se);
1140         p->se.exec_start = rq->clock_task;
1141
1142         return p;
1143 }
1144
1145 static struct task_struct *pick_next_task_rt(struct rq *rq)
1146 {
1147         struct task_struct *p = _pick_next_task_rt(rq);
1148
1149         /* The running task is never eligible for pushing */
1150         if (p)
1151                 dequeue_pushable_task(rq, p);
1152
1153 #ifdef CONFIG_SMP
1154         /*
1155          * We detect this state here so that we can avoid taking the RQ
1156          * lock again later if there is no need to push
1157          */
1158         rq->post_schedule = has_pushable_tasks(rq);
1159 #endif
1160
1161         return p;
1162 }
1163
1164 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1165 {
1166         update_curr_rt(rq);
1167
1168         /*
1169          * The previous task needs to be made eligible for pushing
1170          * if it is still active
1171          */
1172         if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1173                 enqueue_pushable_task(rq, p);
1174 }
1175
1176 #ifdef CONFIG_SMP
1177
1178 /* Only try algorithms three times */
1179 #define RT_MAX_TRIES 3
1180
1181 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1182
1183 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1184 {
1185         if (!task_running(rq, p) &&
1186             (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1187             (p->rt.nr_cpus_allowed > 1))
1188                 return 1;
1189         return 0;
1190 }
1191
1192 /* Return the second highest RT task, NULL otherwise */
1193 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1194 {
1195         struct task_struct *next = NULL;
1196         struct sched_rt_entity *rt_se;
1197         struct rt_prio_array *array;
1198         struct rt_rq *rt_rq;
1199         int idx;
1200
1201         for_each_leaf_rt_rq(rt_rq, rq) {
1202                 array = &rt_rq->active;
1203                 idx = sched_find_first_bit(array->bitmap);
1204 next_idx:
1205                 if (idx >= MAX_RT_PRIO)
1206                         continue;
1207                 if (next && next->prio < idx)
1208                         continue;
1209                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1210                         struct task_struct *p;
1211
1212                         if (!rt_entity_is_task(rt_se))
1213                                 continue;
1214
1215                         p = rt_task_of(rt_se);
1216                         if (pick_rt_task(rq, p, cpu)) {
1217                                 next = p;
1218                                 break;
1219                         }
1220                 }
1221                 if (!next) {
1222                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1223                         goto next_idx;
1224                 }
1225         }
1226
1227         return next;
1228 }
1229
1230 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1231
1232 static int find_lowest_rq(struct task_struct *task)
1233 {
1234         struct sched_domain *sd;
1235         struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1236         int this_cpu = smp_processor_id();
1237         int cpu      = task_cpu(task);
1238
1239         /* Make sure the mask is initialized first */
1240         if (unlikely(!lowest_mask))
1241                 return -1;
1242
1243         if (task->rt.nr_cpus_allowed == 1)
1244                 return -1; /* No other targets possible */
1245
1246         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1247                 return -1; /* No targets found */
1248
1249         /*
1250          * At this point we have built a mask of cpus representing the
1251          * lowest priority tasks in the system.  Now we want to elect
1252          * the best one based on our affinity and topology.
1253          *
1254          * We prioritize the last cpu that the task executed on since
1255          * it is most likely cache-hot in that location.
1256          */
1257         if (cpumask_test_cpu(cpu, lowest_mask))
1258                 return cpu;
1259
1260         /*
1261          * Otherwise, we consult the sched_domains span maps to figure
1262          * out which cpu is logically closest to our hot cache data.
1263          */
1264         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1265                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1266
1267         rcu_read_lock();
1268         for_each_domain(cpu, sd) {
1269                 if (sd->flags & SD_WAKE_AFFINE) {
1270                         int best_cpu;
1271
1272                         /*
1273                          * "this_cpu" is cheaper to preempt than a
1274                          * remote processor.
1275                          */
1276                         if (this_cpu != -1 &&
1277                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1278                                 rcu_read_unlock();
1279                                 return this_cpu;
1280                         }
1281
1282                         best_cpu = cpumask_first_and(lowest_mask,
1283                                                      sched_domain_span(sd));
1284                         if (best_cpu < nr_cpu_ids) {
1285                                 rcu_read_unlock();
1286                                 return best_cpu;
1287                         }
1288                 }
1289         }
1290         rcu_read_unlock();
1291
1292         /*
1293          * And finally, if there were no matches within the domains
1294          * just give the caller *something* to work with from the compatible
1295          * locations.
1296          */
1297         if (this_cpu != -1)
1298                 return this_cpu;
1299
1300         cpu = cpumask_any(lowest_mask);
1301         if (cpu < nr_cpu_ids)
1302                 return cpu;
1303         return -1;
1304 }
1305
1306 /* Will lock the rq it finds */
1307 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1308 {
1309         struct rq *lowest_rq = NULL;
1310         int tries;
1311         int cpu;
1312
1313         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1314                 cpu = find_lowest_rq(task);
1315
1316                 if ((cpu == -1) || (cpu == rq->cpu))
1317                         break;
1318
1319                 lowest_rq = cpu_rq(cpu);
1320
1321                 /* if the prio of this runqueue changed, try again */
1322                 if (double_lock_balance(rq, lowest_rq)) {
1323                         /*
1324                          * We had to unlock the run queue. In
1325                          * the mean time, task could have
1326                          * migrated already or had its affinity changed.
1327                          * Also make sure that it wasn't scheduled on its rq.
1328                          */
1329                         if (unlikely(task_rq(task) != rq ||
1330                                      !cpumask_test_cpu(lowest_rq->cpu,
1331                                                        tsk_cpus_allowed(task)) ||
1332                                      task_running(rq, task) ||
1333                                      !task->on_rq)) {
1334
1335                                 raw_spin_unlock(&lowest_rq->lock);
1336                                 lowest_rq = NULL;
1337                                 break;
1338                         }
1339                 }
1340
1341                 /* If this rq is still suitable use it. */
1342                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1343                         break;
1344
1345                 /* try again */
1346                 double_unlock_balance(rq, lowest_rq);
1347                 lowest_rq = NULL;
1348         }
1349
1350         return lowest_rq;
1351 }
1352
1353 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1354 {
1355         struct task_struct *p;
1356
1357         if (!has_pushable_tasks(rq))
1358                 return NULL;
1359
1360         p = plist_first_entry(&rq->rt.pushable_tasks,
1361                               struct task_struct, pushable_tasks);
1362
1363         BUG_ON(rq->cpu != task_cpu(p));
1364         BUG_ON(task_current(rq, p));
1365         BUG_ON(p->rt.nr_cpus_allowed <= 1);
1366
1367         BUG_ON(!p->on_rq);
1368         BUG_ON(!rt_task(p));
1369
1370         return p;
1371 }
1372
1373 /*
1374  * If the current CPU has more than one RT task, see if the non
1375  * running task can migrate over to a CPU that is running a task
1376  * of lesser priority.
1377  */
1378 static int push_rt_task(struct rq *rq)
1379 {
1380         struct task_struct *next_task;
1381         struct rq *lowest_rq;
1382         int ret = 0;
1383
1384         if (!rq->rt.overloaded)
1385                 return 0;
1386
1387         next_task = pick_next_pushable_task(rq);
1388         if (!next_task)
1389                 return 0;
1390
1391 retry:
1392         if (unlikely(next_task == rq->curr)) {
1393                 WARN_ON(1);
1394                 return 0;
1395         }
1396
1397         /*
1398          * It's possible that the next_task slipped in of
1399          * higher priority than current. If that's the case
1400          * just reschedule current.
1401          */
1402         if (unlikely(next_task->prio < rq->curr->prio)) {
1403                 resched_task(rq->curr);
1404                 return 0;
1405         }
1406
1407         /* We might release rq lock */
1408         get_task_struct(next_task);
1409
1410         /* find_lock_lowest_rq locks the rq if found */
1411         lowest_rq = find_lock_lowest_rq(next_task, rq);
1412         if (!lowest_rq) {
1413                 struct task_struct *task;
1414                 /*
1415                  * find_lock_lowest_rq releases rq->lock
1416                  * so it is possible that next_task has migrated.
1417                  *
1418                  * We need to make sure that the task is still on the same
1419                  * run-queue and is also still the next task eligible for
1420                  * pushing.
1421                  */
1422                 task = pick_next_pushable_task(rq);
1423                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1424                         /*
1425                          * The task hasn't migrated, and is still the next
1426                          * eligible task, but we failed to find a run-queue
1427                          * to push it to.  Do not retry in this case, since
1428                          * other cpus will pull from us when ready.
1429                          */
1430                         goto out;
1431                 }
1432
1433                 if (!task)
1434                         /* No more tasks, just exit */
1435                         goto out;
1436
1437                 /*
1438                  * Something has shifted, try again.
1439                  */
1440                 put_task_struct(next_task);
1441                 next_task = task;
1442                 goto retry;
1443         }
1444
1445         deactivate_task(rq, next_task, 0);
1446         set_task_cpu(next_task, lowest_rq->cpu);
1447         activate_task(lowest_rq, next_task, 0);
1448         ret = 1;
1449
1450         resched_task(lowest_rq->curr);
1451
1452         double_unlock_balance(rq, lowest_rq);
1453
1454 out:
1455         put_task_struct(next_task);
1456
1457         return ret;
1458 }
1459
1460 static void push_rt_tasks(struct rq *rq)
1461 {
1462         /* push_rt_task will return true if it moved an RT */
1463         while (push_rt_task(rq))
1464                 ;
1465 }
1466
1467 static int pull_rt_task(struct rq *this_rq)
1468 {
1469         int this_cpu = this_rq->cpu, ret = 0, cpu;
1470         struct task_struct *p;
1471         struct rq *src_rq;
1472
1473         if (likely(!rt_overloaded(this_rq)))
1474                 return 0;
1475
1476         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1477                 if (this_cpu == cpu)
1478                         continue;
1479
1480                 src_rq = cpu_rq(cpu);
1481
1482                 /*
1483                  * Don't bother taking the src_rq->lock if the next highest
1484                  * task is known to be lower-priority than our current task.
1485                  * This may look racy, but if this value is about to go
1486                  * logically higher, the src_rq will push this task away.
1487                  * And if its going logically lower, we do not care
1488                  */
1489                 if (src_rq->rt.highest_prio.next >=
1490                     this_rq->rt.highest_prio.curr)
1491                         continue;
1492
1493                 /*
1494                  * We can potentially drop this_rq's lock in
1495                  * double_lock_balance, and another CPU could
1496                  * alter this_rq
1497                  */
1498                 double_lock_balance(this_rq, src_rq);
1499
1500                 /*
1501                  * Are there still pullable RT tasks?
1502                  */
1503                 if (src_rq->rt.rt_nr_running <= 1)
1504                         goto skip;
1505
1506                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1507
1508                 /*
1509                  * Do we have an RT task that preempts
1510                  * the to-be-scheduled task?
1511                  */
1512                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1513                         WARN_ON(p == src_rq->curr);
1514                         WARN_ON(!p->on_rq);
1515
1516                         /*
1517                          * There's a chance that p is higher in priority
1518                          * than what's currently running on its cpu.
1519                          * This is just that p is wakeing up and hasn't
1520                          * had a chance to schedule. We only pull
1521                          * p if it is lower in priority than the
1522                          * current task on the run queue
1523                          */
1524                         if (p->prio < src_rq->curr->prio)
1525                                 goto skip;
1526
1527                         ret = 1;
1528
1529                         deactivate_task(src_rq, p, 0);
1530                         set_task_cpu(p, this_cpu);
1531                         activate_task(this_rq, p, 0);
1532                         /*
1533                          * We continue with the search, just in
1534                          * case there's an even higher prio task
1535                          * in another runqueue. (low likelihood
1536                          * but possible)
1537                          */
1538                 }
1539 skip:
1540                 double_unlock_balance(this_rq, src_rq);
1541         }
1542
1543         return ret;
1544 }
1545
1546 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1547 {
1548         /* Try to pull RT tasks here if we lower this rq's prio */
1549         if (rq->rt.highest_prio.curr > prev->prio)
1550                 pull_rt_task(rq);
1551 }
1552
1553 static void post_schedule_rt(struct rq *rq)
1554 {
1555         push_rt_tasks(rq);
1556 }
1557
1558 /*
1559  * If we are not running and we are not going to reschedule soon, we should
1560  * try to push tasks away now
1561  */
1562 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1563 {
1564         if (!task_running(rq, p) &&
1565             !test_tsk_need_resched(rq->curr) &&
1566             has_pushable_tasks(rq) &&
1567             p->rt.nr_cpus_allowed > 1 &&
1568             rt_task(rq->curr) &&
1569             (rq->curr->rt.nr_cpus_allowed < 2 ||
1570              rq->curr->prio <= p->prio))
1571                 push_rt_tasks(rq);
1572 }
1573
1574 static void set_cpus_allowed_rt(struct task_struct *p,
1575                                 const struct cpumask *new_mask)
1576 {
1577         int weight = cpumask_weight(new_mask);
1578
1579         BUG_ON(!rt_task(p));
1580
1581         /*
1582          * Update the migration status of the RQ if we have an RT task
1583          * which is running AND changing its weight value.
1584          */
1585         if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1586                 struct rq *rq = task_rq(p);
1587
1588                 if (!task_current(rq, p)) {
1589                         /*
1590                          * Make sure we dequeue this task from the pushable list
1591                          * before going further.  It will either remain off of
1592                          * the list because we are no longer pushable, or it
1593                          * will be requeued.
1594                          */
1595                         if (p->rt.nr_cpus_allowed > 1)
1596                                 dequeue_pushable_task(rq, p);
1597
1598                         /*
1599                          * Requeue if our weight is changing and still > 1
1600                          */
1601                         if (weight > 1)
1602                                 enqueue_pushable_task(rq, p);
1603
1604                 }
1605
1606                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1607                         rq->rt.rt_nr_migratory++;
1608                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1609                         BUG_ON(!rq->rt.rt_nr_migratory);
1610                         rq->rt.rt_nr_migratory--;
1611                 }
1612
1613                 update_rt_migration(&rq->rt);
1614         }
1615 }
1616
1617 /* Assumes rq->lock is held */
1618 static void rq_online_rt(struct rq *rq)
1619 {
1620         if (rq->rt.overloaded)
1621                 rt_set_overload(rq);
1622
1623         __enable_runtime(rq);
1624
1625         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1626 }
1627
1628 /* Assumes rq->lock is held */
1629 static void rq_offline_rt(struct rq *rq)
1630 {
1631         if (rq->rt.overloaded)
1632                 rt_clear_overload(rq);
1633
1634         __disable_runtime(rq);
1635
1636         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1637 }
1638
1639 /*
1640  * When switch from the rt queue, we bring ourselves to a position
1641  * that we might want to pull RT tasks from other runqueues.
1642  */
1643 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1644 {
1645         /*
1646          * If there are other RT tasks then we will reschedule
1647          * and the scheduling of the other RT tasks will handle
1648          * the balancing. But if we are the last RT task
1649          * we may need to handle the pulling of RT tasks
1650          * now.
1651          */
1652         if (p->on_rq && !rq->rt.rt_nr_running)
1653                 pull_rt_task(rq);
1654 }
1655
1656 static inline void init_sched_rt_class(void)
1657 {
1658         unsigned int i;
1659
1660         for_each_possible_cpu(i)
1661                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1662                                         GFP_KERNEL, cpu_to_node(i));
1663 }
1664 #endif /* CONFIG_SMP */
1665
1666 /*
1667  * When switching a task to RT, we may overload the runqueue
1668  * with RT tasks. In this case we try to push them off to
1669  * other runqueues.
1670  */
1671 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1672 {
1673         int check_resched = 1;
1674
1675         /*
1676          * If we are already running, then there's nothing
1677          * that needs to be done. But if we are not running
1678          * we may need to preempt the current running task.
1679          * If that current running task is also an RT task
1680          * then see if we can move to another run queue.
1681          */
1682         if (p->on_rq && rq->curr != p) {
1683 #ifdef CONFIG_SMP
1684                 if (rq->rt.overloaded && push_rt_task(rq) &&
1685                     /* Don't resched if we changed runqueues */
1686                     rq != task_rq(p))
1687                         check_resched = 0;
1688 #endif /* CONFIG_SMP */
1689                 if (check_resched && p->prio < rq->curr->prio)
1690                         resched_task(rq->curr);
1691         }
1692 }
1693
1694 /*
1695  * Priority of the task has changed. This may cause
1696  * us to initiate a push or pull.
1697  */
1698 static void
1699 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1700 {
1701         if (!p->on_rq)
1702                 return;
1703
1704         if (rq->curr == p) {
1705 #ifdef CONFIG_SMP
1706                 /*
1707                  * If our priority decreases while running, we
1708                  * may need to pull tasks to this runqueue.
1709                  */
1710                 if (oldprio < p->prio)
1711                         pull_rt_task(rq);
1712                 /*
1713                  * If there's a higher priority task waiting to run
1714                  * then reschedule. Note, the above pull_rt_task
1715                  * can release the rq lock and p could migrate.
1716                  * Only reschedule if p is still on the same runqueue.
1717                  */
1718                 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1719                         resched_task(p);
1720 #else
1721                 /* For UP simply resched on drop of prio */
1722                 if (oldprio < p->prio)
1723                         resched_task(p);
1724 #endif /* CONFIG_SMP */
1725         } else {
1726                 /*
1727                  * This task is not running, but if it is
1728                  * greater than the current running task
1729                  * then reschedule.
1730                  */
1731                 if (p->prio < rq->curr->prio)
1732                         resched_task(rq->curr);
1733         }
1734 }
1735
1736 static void watchdog(struct rq *rq, struct task_struct *p)
1737 {
1738         unsigned long soft, hard;
1739
1740         /* max may change after cur was read, this will be fixed next tick */
1741         soft = task_rlimit(p, RLIMIT_RTTIME);
1742         hard = task_rlimit_max(p, RLIMIT_RTTIME);
1743
1744         if (soft != RLIM_INFINITY) {
1745                 unsigned long next;
1746
1747                 p->rt.timeout++;
1748                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1749                 if (p->rt.timeout > next)
1750                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1751         }
1752 }
1753
1754 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1755 {
1756         update_curr_rt(rq);
1757
1758         watchdog(rq, p);
1759
1760         /*
1761          * RR tasks need a special form of timeslice management.
1762          * FIFO tasks have no timeslices.
1763          */
1764         if (p->policy != SCHED_RR)
1765                 return;
1766
1767         if (--p->rt.time_slice)
1768                 return;
1769
1770         p->rt.time_slice = DEF_TIMESLICE;
1771
1772         /*
1773          * Requeue to the end of queue if we are not the only element
1774          * on the queue:
1775          */
1776         if (p->rt.run_list.prev != p->rt.run_list.next) {
1777                 requeue_task_rt(rq, p, 0);
1778                 set_tsk_need_resched(p);
1779         }
1780 }
1781
1782 static void set_curr_task_rt(struct rq *rq)
1783 {
1784         struct task_struct *p = rq->curr;
1785
1786         p->se.exec_start = rq->clock_task;
1787
1788         /* The running task is never eligible for pushing */
1789         dequeue_pushable_task(rq, p);
1790 }
1791
1792 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1793 {
1794         /*
1795          * Time slice is 0 for SCHED_FIFO tasks
1796          */
1797         if (task->policy == SCHED_RR)
1798                 return DEF_TIMESLICE;
1799         else
1800                 return 0;
1801 }
1802
1803 static const struct sched_class rt_sched_class = {
1804         .next                   = &fair_sched_class,
1805         .enqueue_task           = enqueue_task_rt,
1806         .dequeue_task           = dequeue_task_rt,
1807         .yield_task             = yield_task_rt,
1808
1809         .check_preempt_curr     = check_preempt_curr_rt,
1810
1811         .pick_next_task         = pick_next_task_rt,
1812         .put_prev_task          = put_prev_task_rt,
1813
1814 #ifdef CONFIG_SMP
1815         .select_task_rq         = select_task_rq_rt,
1816
1817         .set_cpus_allowed       = set_cpus_allowed_rt,
1818         .rq_online              = rq_online_rt,
1819         .rq_offline             = rq_offline_rt,
1820         .pre_schedule           = pre_schedule_rt,
1821         .post_schedule          = post_schedule_rt,
1822         .task_woken             = task_woken_rt,
1823         .switched_from          = switched_from_rt,
1824 #endif
1825
1826         .set_curr_task          = set_curr_task_rt,
1827         .task_tick              = task_tick_rt,
1828
1829         .get_rr_interval        = get_rr_interval_rt,
1830
1831         .prio_changed           = prio_changed_rt,
1832         .switched_to            = switched_to_rt,
1833 };
1834
1835 #ifdef CONFIG_SCHED_DEBUG
1836 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1837
1838 static void print_rt_stats(struct seq_file *m, int cpu)
1839 {
1840         rt_rq_iter_t iter;
1841         struct rt_rq *rt_rq;
1842
1843         rcu_read_lock();
1844         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
1845                 print_rt_rq(m, cpu, rt_rq);
1846         rcu_read_unlock();
1847 }
1848 #endif /* CONFIG_SCHED_DEBUG */