2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
6 #ifdef CONFIG_RT_GROUP_SCHED
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
15 return container_of(rt_se, struct task_struct, rt);
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
28 #else /* CONFIG_RT_GROUP_SCHED */
30 #define rt_entity_is_task(rt_se) (1)
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
34 return container_of(rt_se, struct task_struct, rt);
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
39 return container_of(rt_rq, struct rq, rt);
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
50 #endif /* CONFIG_RT_GROUP_SCHED */
54 static inline int rt_overloaded(struct rq *rq)
56 return atomic_read(&rq->rd->rto_count);
59 static inline void rt_set_overload(struct rq *rq)
64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
73 atomic_inc(&rq->rd->rto_count);
76 static inline void rt_clear_overload(struct rq *rq)
81 /* the order here really doesn't matter */
82 atomic_dec(&rq->rd->rto_count);
83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
86 static void update_rt_migration(struct rt_rq *rt_rq)
88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
101 if (!rt_entity_is_task(rt_se))
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
106 rt_rq->rt_nr_total++;
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
110 update_rt_migration(rt_rq);
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
115 if (!rt_entity_is_task(rt_se))
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
120 rt_rq->rt_nr_total--;
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
124 update_rt_migration(rt_rq);
127 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
129 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 plist_node_init(&p->pushable_tasks, p->prio);
131 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
134 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
139 static inline int has_pushable_tasks(struct rq *rq)
141 return !plist_head_empty(&rq->rt.pushable_tasks);
146 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
150 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
155 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
160 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
164 #endif /* CONFIG_SMP */
166 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
168 return !list_empty(&rt_se->run_list);
171 #ifdef CONFIG_RT_GROUP_SCHED
173 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
178 return rt_rq->rt_runtime;
181 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
183 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
186 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
188 list_add_rcu(&rt_rq->leaf_rt_rq_list,
189 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
192 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
194 list_del_rcu(&rt_rq->leaf_rt_rq_list);
197 #define for_each_leaf_rt_rq(rt_rq, rq) \
198 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
200 #define for_each_sched_rt_entity(rt_se) \
201 for (; rt_se; rt_se = rt_se->parent)
203 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
208 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
209 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
211 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
213 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
214 struct sched_rt_entity *rt_se;
216 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
218 rt_se = rt_rq->tg->rt_se[cpu];
220 if (rt_rq->rt_nr_running) {
221 if (rt_se && !on_rt_rq(rt_se))
222 enqueue_rt_entity(rt_se, false);
223 if (rt_rq->highest_prio.curr < curr->prio)
228 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
230 struct sched_rt_entity *rt_se;
231 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
233 rt_se = rt_rq->tg->rt_se[cpu];
235 if (rt_se && on_rt_rq(rt_se))
236 dequeue_rt_entity(rt_se);
239 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
241 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
244 static int rt_se_boosted(struct sched_rt_entity *rt_se)
246 struct rt_rq *rt_rq = group_rt_rq(rt_se);
247 struct task_struct *p;
250 return !!rt_rq->rt_nr_boosted;
252 p = rt_task_of(rt_se);
253 return p->prio != p->normal_prio;
257 static inline const struct cpumask *sched_rt_period_mask(void)
259 return cpu_rq(smp_processor_id())->rd->span;
262 static inline const struct cpumask *sched_rt_period_mask(void)
264 return cpu_online_mask;
269 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
271 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
274 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
276 return &rt_rq->tg->rt_bandwidth;
279 #else /* !CONFIG_RT_GROUP_SCHED */
281 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
283 return rt_rq->rt_runtime;
286 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
288 return ktime_to_ns(def_rt_bandwidth.rt_period);
291 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
295 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
299 #define for_each_leaf_rt_rq(rt_rq, rq) \
300 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
302 #define for_each_sched_rt_entity(rt_se) \
303 for (; rt_se; rt_se = NULL)
305 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
310 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
312 if (rt_rq->rt_nr_running)
313 resched_task(rq_of_rt_rq(rt_rq)->curr);
316 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
320 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
322 return rt_rq->rt_throttled;
325 static inline const struct cpumask *sched_rt_period_mask(void)
327 return cpu_online_mask;
331 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
333 return &cpu_rq(cpu)->rt;
336 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
338 return &def_rt_bandwidth;
341 #endif /* CONFIG_RT_GROUP_SCHED */
345 * We ran out of runtime, see if we can borrow some from our neighbours.
347 static int do_balance_runtime(struct rt_rq *rt_rq)
349 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
350 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
351 int i, weight, more = 0;
354 weight = cpumask_weight(rd->span);
356 raw_spin_lock(&rt_b->rt_runtime_lock);
357 rt_period = ktime_to_ns(rt_b->rt_period);
358 for_each_cpu(i, rd->span) {
359 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
365 raw_spin_lock(&iter->rt_runtime_lock);
367 * Either all rqs have inf runtime and there's nothing to steal
368 * or __disable_runtime() below sets a specific rq to inf to
369 * indicate its been disabled and disalow stealing.
371 if (iter->rt_runtime == RUNTIME_INF)
375 * From runqueues with spare time, take 1/n part of their
376 * spare time, but no more than our period.
378 diff = iter->rt_runtime - iter->rt_time;
380 diff = div_u64((u64)diff, weight);
381 if (rt_rq->rt_runtime + diff > rt_period)
382 diff = rt_period - rt_rq->rt_runtime;
383 iter->rt_runtime -= diff;
384 rt_rq->rt_runtime += diff;
386 if (rt_rq->rt_runtime == rt_period) {
387 raw_spin_unlock(&iter->rt_runtime_lock);
392 raw_spin_unlock(&iter->rt_runtime_lock);
394 raw_spin_unlock(&rt_b->rt_runtime_lock);
400 * Ensure this RQ takes back all the runtime it lend to its neighbours.
402 static void __disable_runtime(struct rq *rq)
404 struct root_domain *rd = rq->rd;
407 if (unlikely(!scheduler_running))
410 for_each_leaf_rt_rq(rt_rq, rq) {
411 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
415 raw_spin_lock(&rt_b->rt_runtime_lock);
416 raw_spin_lock(&rt_rq->rt_runtime_lock);
418 * Either we're all inf and nobody needs to borrow, or we're
419 * already disabled and thus have nothing to do, or we have
420 * exactly the right amount of runtime to take out.
422 if (rt_rq->rt_runtime == RUNTIME_INF ||
423 rt_rq->rt_runtime == rt_b->rt_runtime)
425 raw_spin_unlock(&rt_rq->rt_runtime_lock);
428 * Calculate the difference between what we started out with
429 * and what we current have, that's the amount of runtime
430 * we lend and now have to reclaim.
432 want = rt_b->rt_runtime - rt_rq->rt_runtime;
435 * Greedy reclaim, take back as much as we can.
437 for_each_cpu(i, rd->span) {
438 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
442 * Can't reclaim from ourselves or disabled runqueues.
444 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
447 raw_spin_lock(&iter->rt_runtime_lock);
449 diff = min_t(s64, iter->rt_runtime, want);
450 iter->rt_runtime -= diff;
453 iter->rt_runtime -= want;
456 raw_spin_unlock(&iter->rt_runtime_lock);
462 raw_spin_lock(&rt_rq->rt_runtime_lock);
464 * We cannot be left wanting - that would mean some runtime
465 * leaked out of the system.
470 * Disable all the borrow logic by pretending we have inf
471 * runtime - in which case borrowing doesn't make sense.
473 rt_rq->rt_runtime = RUNTIME_INF;
474 raw_spin_unlock(&rt_rq->rt_runtime_lock);
475 raw_spin_unlock(&rt_b->rt_runtime_lock);
479 static void disable_runtime(struct rq *rq)
483 raw_spin_lock_irqsave(&rq->lock, flags);
484 __disable_runtime(rq);
485 raw_spin_unlock_irqrestore(&rq->lock, flags);
488 static void __enable_runtime(struct rq *rq)
492 if (unlikely(!scheduler_running))
496 * Reset each runqueue's bandwidth settings
498 for_each_leaf_rt_rq(rt_rq, rq) {
499 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
501 raw_spin_lock(&rt_b->rt_runtime_lock);
502 raw_spin_lock(&rt_rq->rt_runtime_lock);
503 rt_rq->rt_runtime = rt_b->rt_runtime;
505 rt_rq->rt_throttled = 0;
506 raw_spin_unlock(&rt_rq->rt_runtime_lock);
507 raw_spin_unlock(&rt_b->rt_runtime_lock);
511 static void enable_runtime(struct rq *rq)
515 raw_spin_lock_irqsave(&rq->lock, flags);
516 __enable_runtime(rq);
517 raw_spin_unlock_irqrestore(&rq->lock, flags);
520 static int balance_runtime(struct rt_rq *rt_rq)
524 if (rt_rq->rt_time > rt_rq->rt_runtime) {
525 raw_spin_unlock(&rt_rq->rt_runtime_lock);
526 more = do_balance_runtime(rt_rq);
527 raw_spin_lock(&rt_rq->rt_runtime_lock);
532 #else /* !CONFIG_SMP */
533 static inline int balance_runtime(struct rt_rq *rt_rq)
537 #endif /* CONFIG_SMP */
539 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
542 const struct cpumask *span;
544 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
547 span = sched_rt_period_mask();
548 for_each_cpu(i, span) {
550 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
551 struct rq *rq = rq_of_rt_rq(rt_rq);
553 raw_spin_lock(&rq->lock);
554 if (rt_rq->rt_time) {
557 raw_spin_lock(&rt_rq->rt_runtime_lock);
558 if (rt_rq->rt_throttled)
559 balance_runtime(rt_rq);
560 runtime = rt_rq->rt_runtime;
561 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
562 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
563 rt_rq->rt_throttled = 0;
566 if (rt_rq->rt_time || rt_rq->rt_nr_running)
568 raw_spin_unlock(&rt_rq->rt_runtime_lock);
569 } else if (rt_rq->rt_nr_running) {
571 if (!rt_rq_throttled(rt_rq))
576 sched_rt_rq_enqueue(rt_rq);
577 raw_spin_unlock(&rq->lock);
583 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
585 #ifdef CONFIG_RT_GROUP_SCHED
586 struct rt_rq *rt_rq = group_rt_rq(rt_se);
589 return rt_rq->highest_prio.curr;
592 return rt_task_of(rt_se)->prio;
595 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
597 u64 runtime = sched_rt_runtime(rt_rq);
599 if (rt_rq->rt_throttled)
600 return rt_rq_throttled(rt_rq);
602 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
605 balance_runtime(rt_rq);
606 runtime = sched_rt_runtime(rt_rq);
607 if (runtime == RUNTIME_INF)
610 if (rt_rq->rt_time > runtime) {
611 rt_rq->rt_throttled = 1;
612 if (rt_rq_throttled(rt_rq)) {
613 sched_rt_rq_dequeue(rt_rq);
622 * Update the current task's runtime statistics. Skip current tasks that
623 * are not in our scheduling class.
625 static void update_curr_rt(struct rq *rq)
627 struct task_struct *curr = rq->curr;
628 struct sched_rt_entity *rt_se = &curr->rt;
629 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
632 if (curr->sched_class != &rt_sched_class)
635 delta_exec = rq->clock_task - curr->se.exec_start;
636 if (unlikely((s64)delta_exec < 0))
639 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
641 curr->se.sum_exec_runtime += delta_exec;
642 account_group_exec_runtime(curr, delta_exec);
644 curr->se.exec_start = rq->clock_task;
645 cpuacct_charge(curr, delta_exec);
647 sched_rt_avg_update(rq, delta_exec);
649 if (!rt_bandwidth_enabled())
652 for_each_sched_rt_entity(rt_se) {
653 rt_rq = rt_rq_of_se(rt_se);
655 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
656 raw_spin_lock(&rt_rq->rt_runtime_lock);
657 rt_rq->rt_time += delta_exec;
658 if (sched_rt_runtime_exceeded(rt_rq))
660 raw_spin_unlock(&rt_rq->rt_runtime_lock);
665 #if defined CONFIG_SMP
667 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
669 static inline int next_prio(struct rq *rq)
671 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
673 if (next && rt_prio(next->prio))
680 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
682 struct rq *rq = rq_of_rt_rq(rt_rq);
684 if (prio < prev_prio) {
687 * If the new task is higher in priority than anything on the
688 * run-queue, we know that the previous high becomes our
691 rt_rq->highest_prio.next = prev_prio;
694 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
696 } else if (prio == rt_rq->highest_prio.curr)
698 * If the next task is equal in priority to the highest on
699 * the run-queue, then we implicitly know that the next highest
700 * task cannot be any lower than current
702 rt_rq->highest_prio.next = prio;
703 else if (prio < rt_rq->highest_prio.next)
705 * Otherwise, we need to recompute next-highest
707 rt_rq->highest_prio.next = next_prio(rq);
711 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
713 struct rq *rq = rq_of_rt_rq(rt_rq);
715 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
716 rt_rq->highest_prio.next = next_prio(rq);
718 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
719 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
722 #else /* CONFIG_SMP */
725 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
727 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
729 #endif /* CONFIG_SMP */
731 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
733 inc_rt_prio(struct rt_rq *rt_rq, int prio)
735 int prev_prio = rt_rq->highest_prio.curr;
737 if (prio < prev_prio)
738 rt_rq->highest_prio.curr = prio;
740 inc_rt_prio_smp(rt_rq, prio, prev_prio);
744 dec_rt_prio(struct rt_rq *rt_rq, int prio)
746 int prev_prio = rt_rq->highest_prio.curr;
748 if (rt_rq->rt_nr_running) {
750 WARN_ON(prio < prev_prio);
753 * This may have been our highest task, and therefore
754 * we may have some recomputation to do
756 if (prio == prev_prio) {
757 struct rt_prio_array *array = &rt_rq->active;
759 rt_rq->highest_prio.curr =
760 sched_find_first_bit(array->bitmap);
764 rt_rq->highest_prio.curr = MAX_RT_PRIO;
766 dec_rt_prio_smp(rt_rq, prio, prev_prio);
771 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
772 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
774 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
776 #ifdef CONFIG_RT_GROUP_SCHED
779 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
781 if (rt_se_boosted(rt_se))
782 rt_rq->rt_nr_boosted++;
785 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
789 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
791 if (rt_se_boosted(rt_se))
792 rt_rq->rt_nr_boosted--;
794 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
797 #else /* CONFIG_RT_GROUP_SCHED */
800 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
802 start_rt_bandwidth(&def_rt_bandwidth);
806 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
808 #endif /* CONFIG_RT_GROUP_SCHED */
811 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
813 int prio = rt_se_prio(rt_se);
815 WARN_ON(!rt_prio(prio));
816 rt_rq->rt_nr_running++;
818 inc_rt_prio(rt_rq, prio);
819 inc_rt_migration(rt_se, rt_rq);
820 inc_rt_group(rt_se, rt_rq);
824 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
826 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
827 WARN_ON(!rt_rq->rt_nr_running);
828 rt_rq->rt_nr_running--;
830 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
831 dec_rt_migration(rt_se, rt_rq);
832 dec_rt_group(rt_se, rt_rq);
835 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
837 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
838 struct rt_prio_array *array = &rt_rq->active;
839 struct rt_rq *group_rq = group_rt_rq(rt_se);
840 struct list_head *queue = array->queue + rt_se_prio(rt_se);
843 * Don't enqueue the group if its throttled, or when empty.
844 * The latter is a consequence of the former when a child group
845 * get throttled and the current group doesn't have any other
848 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
851 if (!rt_rq->rt_nr_running)
852 list_add_leaf_rt_rq(rt_rq);
855 list_add(&rt_se->run_list, queue);
857 list_add_tail(&rt_se->run_list, queue);
858 __set_bit(rt_se_prio(rt_se), array->bitmap);
860 inc_rt_tasks(rt_se, rt_rq);
863 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
865 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
866 struct rt_prio_array *array = &rt_rq->active;
868 list_del_init(&rt_se->run_list);
869 if (list_empty(array->queue + rt_se_prio(rt_se)))
870 __clear_bit(rt_se_prio(rt_se), array->bitmap);
872 dec_rt_tasks(rt_se, rt_rq);
873 if (!rt_rq->rt_nr_running)
874 list_del_leaf_rt_rq(rt_rq);
878 * Because the prio of an upper entry depends on the lower
879 * entries, we must remove entries top - down.
881 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
883 struct sched_rt_entity *back = NULL;
885 for_each_sched_rt_entity(rt_se) {
890 for (rt_se = back; rt_se; rt_se = rt_se->back) {
892 __dequeue_rt_entity(rt_se);
896 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
898 dequeue_rt_stack(rt_se);
899 for_each_sched_rt_entity(rt_se)
900 __enqueue_rt_entity(rt_se, head);
903 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
905 dequeue_rt_stack(rt_se);
907 for_each_sched_rt_entity(rt_se) {
908 struct rt_rq *rt_rq = group_rt_rq(rt_se);
910 if (rt_rq && rt_rq->rt_nr_running)
911 __enqueue_rt_entity(rt_se, false);
916 * Adding/removing a task to/from a priority array:
919 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
921 struct sched_rt_entity *rt_se = &p->rt;
923 if (flags & ENQUEUE_WAKEUP)
926 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
928 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
929 enqueue_pushable_task(rq, p);
932 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
934 struct sched_rt_entity *rt_se = &p->rt;
937 dequeue_rt_entity(rt_se);
939 dequeue_pushable_task(rq, p);
943 * Put task to the end of the run list without the overhead of dequeue
944 * followed by enqueue.
947 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
949 if (on_rt_rq(rt_se)) {
950 struct rt_prio_array *array = &rt_rq->active;
951 struct list_head *queue = array->queue + rt_se_prio(rt_se);
954 list_move(&rt_se->run_list, queue);
956 list_move_tail(&rt_se->run_list, queue);
960 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
962 struct sched_rt_entity *rt_se = &p->rt;
965 for_each_sched_rt_entity(rt_se) {
966 rt_rq = rt_rq_of_se(rt_se);
967 requeue_rt_entity(rt_rq, rt_se, head);
971 static void yield_task_rt(struct rq *rq)
973 requeue_task_rt(rq, rq->curr, 0);
977 static int find_lowest_rq(struct task_struct *task);
980 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
982 struct task_struct *curr;
986 if (sd_flag != SD_BALANCE_WAKE)
987 return smp_processor_id();
993 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
996 * If the current task on @p's runqueue is an RT task, then
997 * try to see if we can wake this RT task up on another
998 * runqueue. Otherwise simply start this RT task
999 * on its current runqueue.
1001 * We want to avoid overloading runqueues. If the woken
1002 * task is a higher priority, then it will stay on this CPU
1003 * and the lower prio task should be moved to another CPU.
1004 * Even though this will probably make the lower prio task
1005 * lose its cache, we do not want to bounce a higher task
1006 * around just because it gave up its CPU, perhaps for a
1009 * For equal prio tasks, we just let the scheduler sort it out.
1011 * Otherwise, just let it ride on the affined RQ and the
1012 * post-schedule router will push the preempted task away
1014 * This test is optimistic, if we get it wrong the load-balancer
1015 * will have to sort it out.
1017 if (curr && unlikely(rt_task(curr)) &&
1018 (curr->rt.nr_cpus_allowed < 2 ||
1019 curr->prio < p->prio) &&
1020 (p->rt.nr_cpus_allowed > 1)) {
1021 int target = find_lowest_rq(p);
1031 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1033 if (rq->curr->rt.nr_cpus_allowed == 1)
1036 if (p->rt.nr_cpus_allowed != 1
1037 && cpupri_find(&rq->rd->cpupri, p, NULL))
1040 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1044 * There appears to be other cpus that can accept
1045 * current and none to run 'p', so lets reschedule
1046 * to try and push current away:
1048 requeue_task_rt(rq, p, 1);
1049 resched_task(rq->curr);
1052 #endif /* CONFIG_SMP */
1055 * Preempt the current task with a newly woken task if needed:
1057 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1059 if (p->prio < rq->curr->prio) {
1060 resched_task(rq->curr);
1068 * - the newly woken task is of equal priority to the current task
1069 * - the newly woken task is non-migratable while current is migratable
1070 * - current will be preempted on the next reschedule
1072 * we should check to see if current can readily move to a different
1073 * cpu. If so, we will reschedule to allow the push logic to try
1074 * to move current somewhere else, making room for our non-migratable
1077 if (p->prio == rq->curr->prio && !need_resched())
1078 check_preempt_equal_prio(rq, p);
1082 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1083 struct rt_rq *rt_rq)
1085 struct rt_prio_array *array = &rt_rq->active;
1086 struct sched_rt_entity *next = NULL;
1087 struct list_head *queue;
1090 idx = sched_find_first_bit(array->bitmap);
1091 BUG_ON(idx >= MAX_RT_PRIO);
1093 queue = array->queue + idx;
1094 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1099 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1101 struct sched_rt_entity *rt_se;
1102 struct task_struct *p;
1103 struct rt_rq *rt_rq;
1107 if (unlikely(!rt_rq->rt_nr_running))
1110 if (rt_rq_throttled(rt_rq))
1114 rt_se = pick_next_rt_entity(rq, rt_rq);
1116 rt_rq = group_rt_rq(rt_se);
1119 p = rt_task_of(rt_se);
1120 p->se.exec_start = rq->clock_task;
1125 static struct task_struct *pick_next_task_rt(struct rq *rq)
1127 struct task_struct *p = _pick_next_task_rt(rq);
1129 /* The running task is never eligible for pushing */
1131 dequeue_pushable_task(rq, p);
1135 * We detect this state here so that we can avoid taking the RQ
1136 * lock again later if there is no need to push
1138 rq->post_schedule = has_pushable_tasks(rq);
1144 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1147 p->se.exec_start = 0;
1150 * The previous task needs to be made eligible for pushing
1151 * if it is still active
1153 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1154 enqueue_pushable_task(rq, p);
1159 /* Only try algorithms three times */
1160 #define RT_MAX_TRIES 3
1162 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1164 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1166 if (!task_running(rq, p) &&
1167 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1168 (p->rt.nr_cpus_allowed > 1))
1173 /* Return the second highest RT task, NULL otherwise */
1174 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1176 struct task_struct *next = NULL;
1177 struct sched_rt_entity *rt_se;
1178 struct rt_prio_array *array;
1179 struct rt_rq *rt_rq;
1182 for_each_leaf_rt_rq(rt_rq, rq) {
1183 array = &rt_rq->active;
1184 idx = sched_find_first_bit(array->bitmap);
1186 if (idx >= MAX_RT_PRIO)
1188 if (next && next->prio < idx)
1190 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1191 struct task_struct *p;
1193 if (!rt_entity_is_task(rt_se))
1196 p = rt_task_of(rt_se);
1197 if (pick_rt_task(rq, p, cpu)) {
1203 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1211 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1213 static int find_lowest_rq(struct task_struct *task)
1215 struct sched_domain *sd;
1216 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1217 int this_cpu = smp_processor_id();
1218 int cpu = task_cpu(task);
1220 if (task->rt.nr_cpus_allowed == 1)
1221 return -1; /* No other targets possible */
1223 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1224 return -1; /* No targets found */
1227 * At this point we have built a mask of cpus representing the
1228 * lowest priority tasks in the system. Now we want to elect
1229 * the best one based on our affinity and topology.
1231 * We prioritize the last cpu that the task executed on since
1232 * it is most likely cache-hot in that location.
1234 if (cpumask_test_cpu(cpu, lowest_mask))
1238 * Otherwise, we consult the sched_domains span maps to figure
1239 * out which cpu is logically closest to our hot cache data.
1241 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1242 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1244 for_each_domain(cpu, sd) {
1245 if (sd->flags & SD_WAKE_AFFINE) {
1249 * "this_cpu" is cheaper to preempt than a
1252 if (this_cpu != -1 &&
1253 cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
1256 best_cpu = cpumask_first_and(lowest_mask,
1257 sched_domain_span(sd));
1258 if (best_cpu < nr_cpu_ids)
1264 * And finally, if there were no matches within the domains
1265 * just give the caller *something* to work with from the compatible
1271 cpu = cpumask_any(lowest_mask);
1272 if (cpu < nr_cpu_ids)
1277 /* Will lock the rq it finds */
1278 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1280 struct rq *lowest_rq = NULL;
1284 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1285 cpu = find_lowest_rq(task);
1287 if ((cpu == -1) || (cpu == rq->cpu))
1290 lowest_rq = cpu_rq(cpu);
1292 /* if the prio of this runqueue changed, try again */
1293 if (double_lock_balance(rq, lowest_rq)) {
1295 * We had to unlock the run queue. In
1296 * the mean time, task could have
1297 * migrated already or had its affinity changed.
1298 * Also make sure that it wasn't scheduled on its rq.
1300 if (unlikely(task_rq(task) != rq ||
1301 !cpumask_test_cpu(lowest_rq->cpu,
1302 &task->cpus_allowed) ||
1303 task_running(rq, task) ||
1306 raw_spin_unlock(&lowest_rq->lock);
1312 /* If this rq is still suitable use it. */
1313 if (lowest_rq->rt.highest_prio.curr > task->prio)
1317 double_unlock_balance(rq, lowest_rq);
1324 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1326 struct task_struct *p;
1328 if (!has_pushable_tasks(rq))
1331 p = plist_first_entry(&rq->rt.pushable_tasks,
1332 struct task_struct, pushable_tasks);
1334 BUG_ON(rq->cpu != task_cpu(p));
1335 BUG_ON(task_current(rq, p));
1336 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1339 BUG_ON(!rt_task(p));
1345 * If the current CPU has more than one RT task, see if the non
1346 * running task can migrate over to a CPU that is running a task
1347 * of lesser priority.
1349 static int push_rt_task(struct rq *rq)
1351 struct task_struct *next_task;
1352 struct rq *lowest_rq;
1354 if (!rq->rt.overloaded)
1357 next_task = pick_next_pushable_task(rq);
1362 if (unlikely(next_task == rq->curr)) {
1368 * It's possible that the next_task slipped in of
1369 * higher priority than current. If that's the case
1370 * just reschedule current.
1372 if (unlikely(next_task->prio < rq->curr->prio)) {
1373 resched_task(rq->curr);
1377 /* We might release rq lock */
1378 get_task_struct(next_task);
1380 /* find_lock_lowest_rq locks the rq if found */
1381 lowest_rq = find_lock_lowest_rq(next_task, rq);
1383 struct task_struct *task;
1385 * find lock_lowest_rq releases rq->lock
1386 * so it is possible that next_task has migrated.
1388 * We need to make sure that the task is still on the same
1389 * run-queue and is also still the next task eligible for
1392 task = pick_next_pushable_task(rq);
1393 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1395 * If we get here, the task hasn't moved at all, but
1396 * it has failed to push. We will not try again,
1397 * since the other cpus will pull from us when they
1400 dequeue_pushable_task(rq, next_task);
1405 /* No more tasks, just exit */
1409 * Something has shifted, try again.
1411 put_task_struct(next_task);
1416 deactivate_task(rq, next_task, 0);
1417 set_task_cpu(next_task, lowest_rq->cpu);
1418 activate_task(lowest_rq, next_task, 0);
1420 resched_task(lowest_rq->curr);
1422 double_unlock_balance(rq, lowest_rq);
1425 put_task_struct(next_task);
1430 static void push_rt_tasks(struct rq *rq)
1432 /* push_rt_task will return true if it moved an RT */
1433 while (push_rt_task(rq))
1437 static int pull_rt_task(struct rq *this_rq)
1439 int this_cpu = this_rq->cpu, ret = 0, cpu;
1440 struct task_struct *p;
1443 if (likely(!rt_overloaded(this_rq)))
1446 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1447 if (this_cpu == cpu)
1450 src_rq = cpu_rq(cpu);
1453 * Don't bother taking the src_rq->lock if the next highest
1454 * task is known to be lower-priority than our current task.
1455 * This may look racy, but if this value is about to go
1456 * logically higher, the src_rq will push this task away.
1457 * And if its going logically lower, we do not care
1459 if (src_rq->rt.highest_prio.next >=
1460 this_rq->rt.highest_prio.curr)
1464 * We can potentially drop this_rq's lock in
1465 * double_lock_balance, and another CPU could
1468 double_lock_balance(this_rq, src_rq);
1471 * Are there still pullable RT tasks?
1473 if (src_rq->rt.rt_nr_running <= 1)
1476 p = pick_next_highest_task_rt(src_rq, this_cpu);
1479 * Do we have an RT task that preempts
1480 * the to-be-scheduled task?
1482 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1483 WARN_ON(p == src_rq->curr);
1487 * There's a chance that p is higher in priority
1488 * than what's currently running on its cpu.
1489 * This is just that p is wakeing up and hasn't
1490 * had a chance to schedule. We only pull
1491 * p if it is lower in priority than the
1492 * current task on the run queue
1494 if (p->prio < src_rq->curr->prio)
1499 deactivate_task(src_rq, p, 0);
1500 set_task_cpu(p, this_cpu);
1501 activate_task(this_rq, p, 0);
1503 * We continue with the search, just in
1504 * case there's an even higher prio task
1505 * in another runqueue. (low likelihood
1510 double_unlock_balance(this_rq, src_rq);
1516 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1518 /* Try to pull RT tasks here if we lower this rq's prio */
1519 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1523 static void post_schedule_rt(struct rq *rq)
1529 * If we are not running and we are not going to reschedule soon, we should
1530 * try to push tasks away now
1532 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1534 if (!task_running(rq, p) &&
1535 !test_tsk_need_resched(rq->curr) &&
1536 has_pushable_tasks(rq) &&
1537 p->rt.nr_cpus_allowed > 1 &&
1538 rt_task(rq->curr) &&
1539 (rq->curr->rt.nr_cpus_allowed < 2 ||
1540 rq->curr->prio < p->prio))
1544 static void set_cpus_allowed_rt(struct task_struct *p,
1545 const struct cpumask *new_mask)
1547 int weight = cpumask_weight(new_mask);
1549 BUG_ON(!rt_task(p));
1552 * Update the migration status of the RQ if we have an RT task
1553 * which is running AND changing its weight value.
1555 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1556 struct rq *rq = task_rq(p);
1558 if (!task_current(rq, p)) {
1560 * Make sure we dequeue this task from the pushable list
1561 * before going further. It will either remain off of
1562 * the list because we are no longer pushable, or it
1565 if (p->rt.nr_cpus_allowed > 1)
1566 dequeue_pushable_task(rq, p);
1569 * Requeue if our weight is changing and still > 1
1572 enqueue_pushable_task(rq, p);
1576 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1577 rq->rt.rt_nr_migratory++;
1578 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1579 BUG_ON(!rq->rt.rt_nr_migratory);
1580 rq->rt.rt_nr_migratory--;
1583 update_rt_migration(&rq->rt);
1586 cpumask_copy(&p->cpus_allowed, new_mask);
1587 p->rt.nr_cpus_allowed = weight;
1590 /* Assumes rq->lock is held */
1591 static void rq_online_rt(struct rq *rq)
1593 if (rq->rt.overloaded)
1594 rt_set_overload(rq);
1596 __enable_runtime(rq);
1598 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1601 /* Assumes rq->lock is held */
1602 static void rq_offline_rt(struct rq *rq)
1604 if (rq->rt.overloaded)
1605 rt_clear_overload(rq);
1607 __disable_runtime(rq);
1609 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1613 * When switch from the rt queue, we bring ourselves to a position
1614 * that we might want to pull RT tasks from other runqueues.
1616 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1619 * If there are other RT tasks then we will reschedule
1620 * and the scheduling of the other RT tasks will handle
1621 * the balancing. But if we are the last RT task
1622 * we may need to handle the pulling of RT tasks
1625 if (p->on_rq && !rq->rt.rt_nr_running)
1629 static inline void init_sched_rt_class(void)
1633 for_each_possible_cpu(i)
1634 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1635 GFP_KERNEL, cpu_to_node(i));
1637 #endif /* CONFIG_SMP */
1640 * When switching a task to RT, we may overload the runqueue
1641 * with RT tasks. In this case we try to push them off to
1644 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1646 int check_resched = 1;
1649 * If we are already running, then there's nothing
1650 * that needs to be done. But if we are not running
1651 * we may need to preempt the current running task.
1652 * If that current running task is also an RT task
1653 * then see if we can move to another run queue.
1655 if (p->on_rq && rq->curr != p) {
1657 if (rq->rt.overloaded && push_rt_task(rq) &&
1658 /* Don't resched if we changed runqueues */
1661 #endif /* CONFIG_SMP */
1662 if (check_resched && p->prio < rq->curr->prio)
1663 resched_task(rq->curr);
1668 * Priority of the task has changed. This may cause
1669 * us to initiate a push or pull.
1672 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1677 if (rq->curr == p) {
1680 * If our priority decreases while running, we
1681 * may need to pull tasks to this runqueue.
1683 if (oldprio < p->prio)
1686 * If there's a higher priority task waiting to run
1687 * then reschedule. Note, the above pull_rt_task
1688 * can release the rq lock and p could migrate.
1689 * Only reschedule if p is still on the same runqueue.
1691 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1694 /* For UP simply resched on drop of prio */
1695 if (oldprio < p->prio)
1697 #endif /* CONFIG_SMP */
1700 * This task is not running, but if it is
1701 * greater than the current running task
1704 if (p->prio < rq->curr->prio)
1705 resched_task(rq->curr);
1709 static void watchdog(struct rq *rq, struct task_struct *p)
1711 unsigned long soft, hard;
1713 /* max may change after cur was read, this will be fixed next tick */
1714 soft = task_rlimit(p, RLIMIT_RTTIME);
1715 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1717 if (soft != RLIM_INFINITY) {
1721 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1722 if (p->rt.timeout > next)
1723 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1727 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1734 * RR tasks need a special form of timeslice management.
1735 * FIFO tasks have no timeslices.
1737 if (p->policy != SCHED_RR)
1740 if (--p->rt.time_slice)
1743 p->rt.time_slice = DEF_TIMESLICE;
1746 * Requeue to the end of queue if we are not the only element
1749 if (p->rt.run_list.prev != p->rt.run_list.next) {
1750 requeue_task_rt(rq, p, 0);
1751 set_tsk_need_resched(p);
1755 static void set_curr_task_rt(struct rq *rq)
1757 struct task_struct *p = rq->curr;
1759 p->se.exec_start = rq->clock_task;
1761 /* The running task is never eligible for pushing */
1762 dequeue_pushable_task(rq, p);
1765 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1768 * Time slice is 0 for SCHED_FIFO tasks
1770 if (task->policy == SCHED_RR)
1771 return DEF_TIMESLICE;
1776 static const struct sched_class rt_sched_class = {
1777 .next = &fair_sched_class,
1778 .enqueue_task = enqueue_task_rt,
1779 .dequeue_task = dequeue_task_rt,
1780 .yield_task = yield_task_rt,
1782 .check_preempt_curr = check_preempt_curr_rt,
1784 .pick_next_task = pick_next_task_rt,
1785 .put_prev_task = put_prev_task_rt,
1788 .select_task_rq = select_task_rq_rt,
1790 .set_cpus_allowed = set_cpus_allowed_rt,
1791 .rq_online = rq_online_rt,
1792 .rq_offline = rq_offline_rt,
1793 .pre_schedule = pre_schedule_rt,
1794 .post_schedule = post_schedule_rt,
1795 .task_woken = task_woken_rt,
1796 .switched_from = switched_from_rt,
1799 .set_curr_task = set_curr_task_rt,
1800 .task_tick = task_tick_rt,
1802 .get_rr_interval = get_rr_interval_rt,
1804 .prio_changed = prio_changed_rt,
1805 .switched_to = switched_to_rt,
1808 #ifdef CONFIG_SCHED_DEBUG
1809 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1811 static void print_rt_stats(struct seq_file *m, int cpu)
1813 struct rt_rq *rt_rq;
1816 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1817 print_rt_rq(m, cpu, rt_rq);
1820 #endif /* CONFIG_SCHED_DEBUG */