2 #ifdef CONFIG_SCHEDSTATS
5 * Expects runqueue lock to be held for atomicity of update
8 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
11 rq->rq_sched_info.run_delay += delta;
12 rq->rq_sched_info.pcount++;
17 * Expects runqueue lock to be held for atomicity of update
20 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
23 rq->rq_cpu_time += delta;
27 rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
30 rq->rq_sched_info.run_delay += delta;
32 #define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
33 #define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
34 #define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
35 #define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
36 #define schedstat_val(var) (var)
37 #define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
39 #else /* !CONFIG_SCHEDSTATS */
41 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
44 rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
47 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
49 #define schedstat_enabled() 0
50 #define schedstat_inc(var) do { } while (0)
51 #define schedstat_add(var, amt) do { } while (0)
52 #define schedstat_set(var, val) do { } while (0)
53 #define schedstat_val(var) 0
54 #define schedstat_val_or_zero(var) 0
55 #endif /* CONFIG_SCHEDSTATS */
57 #ifdef CONFIG_SCHED_INFO
58 static inline void sched_info_reset_dequeued(struct task_struct *t)
60 t->sched_info.last_queued = 0;
64 * We are interested in knowing how long it was from the *first* time a
65 * task was queued to the time that it finally hit a cpu, we call this routine
66 * from dequeue_task() to account for possible rq->clock skew across cpus. The
67 * delta taken on each cpu would annul the skew.
69 static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
71 unsigned long long now = rq_clock(rq), delta = 0;
73 if (unlikely(sched_info_on()))
74 if (t->sched_info.last_queued)
75 delta = now - t->sched_info.last_queued;
76 sched_info_reset_dequeued(t);
77 t->sched_info.run_delay += delta;
79 rq_sched_info_dequeued(rq, delta);
83 * Called when a task finally hits the cpu. We can now calculate how
84 * long it was waiting to run. We also note when it began so that we
85 * can keep stats on how long its timeslice is.
87 static void sched_info_arrive(struct rq *rq, struct task_struct *t)
89 unsigned long long now = rq_clock(rq), delta = 0;
91 if (t->sched_info.last_queued)
92 delta = now - t->sched_info.last_queued;
93 sched_info_reset_dequeued(t);
94 t->sched_info.run_delay += delta;
95 t->sched_info.last_arrival = now;
96 t->sched_info.pcount++;
98 rq_sched_info_arrive(rq, delta);
102 * This function is only called from enqueue_task(), but also only updates
103 * the timestamp if it is already not set. It's assumed that
104 * sched_info_dequeued() will clear that stamp when appropriate.
106 static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
108 if (unlikely(sched_info_on()))
109 if (!t->sched_info.last_queued)
110 t->sched_info.last_queued = rq_clock(rq);
114 * Called when a process ceases being the active-running process involuntarily
115 * due, typically, to expiring its time slice (this may also be called when
116 * switching to the idle task). Now we can calculate how long we ran.
117 * Also, if the process is still in the TASK_RUNNING state, call
118 * sched_info_queued() to mark that it has now again started waiting on
121 static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
123 unsigned long long delta = rq_clock(rq) -
124 t->sched_info.last_arrival;
126 rq_sched_info_depart(rq, delta);
128 if (t->state == TASK_RUNNING)
129 sched_info_queued(rq, t);
133 * Called when tasks are switched involuntarily due, typically, to expiring
134 * their time slice. (This may also be called when switching to or from
135 * the idle task.) We are only called when prev != next.
138 __sched_info_switch(struct rq *rq,
139 struct task_struct *prev, struct task_struct *next)
142 * prev now departs the cpu. It's not interesting to record
143 * stats about how efficient we were at scheduling the idle
146 if (prev != rq->idle)
147 sched_info_depart(rq, prev);
149 if (next != rq->idle)
150 sched_info_arrive(rq, next);
153 sched_info_switch(struct rq *rq,
154 struct task_struct *prev, struct task_struct *next)
156 if (unlikely(sched_info_on()))
157 __sched_info_switch(rq, prev, next);
160 #define sched_info_queued(rq, t) do { } while (0)
161 #define sched_info_reset_dequeued(t) do { } while (0)
162 #define sched_info_dequeued(rq, t) do { } while (0)
163 #define sched_info_depart(rq, t) do { } while (0)
164 #define sched_info_arrive(rq, next) do { } while (0)
165 #define sched_info_switch(rq, t, next) do { } while (0)
166 #endif /* CONFIG_SCHED_INFO */
169 * The following are functions that support scheduler-internal time accounting.
170 * These functions are generally called at the timer tick. None of this depends
171 * on CONFIG_SCHEDSTATS.
175 * cputimer_running - return true if cputimer is running
177 * @tsk: Pointer to target task.
179 static inline bool cputimer_running(struct task_struct *tsk)
182 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
184 /* Check if cputimer isn't running. This is accessed without locking. */
185 if (!READ_ONCE(cputimer->running))
189 * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime
190 * in __exit_signal(), we won't account to the signal struct further
191 * cputime consumed by that task, even though the task can still be
192 * ticking after __exit_signal().
194 * In order to keep a consistent behaviour between thread group cputime
195 * and thread group cputimer accounting, lets also ignore the cputime
196 * elapsing after __exit_signal() in any thread group timer running.
198 * This makes sure that POSIX CPU clocks and timers are synchronized, so
199 * that a POSIX CPU timer won't expire while the corresponding POSIX CPU
200 * clock delta is behind the expiring timer value.
202 if (unlikely(!tsk->sighand))
209 * account_group_user_time - Maintain utime for a thread group.
211 * @tsk: Pointer to task structure.
212 * @cputime: Time value by which to increment the utime field of the
213 * thread_group_cputime structure.
215 * If thread group time is being maintained, get the structure for the
216 * running CPU and update the utime field there.
218 static inline void account_group_user_time(struct task_struct *tsk,
221 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
223 if (!cputimer_running(tsk))
226 atomic64_add(cputime, &cputimer->cputime_atomic.utime);
230 * account_group_system_time - Maintain stime for a thread group.
232 * @tsk: Pointer to task structure.
233 * @cputime: Time value by which to increment the stime field of the
234 * thread_group_cputime structure.
236 * If thread group time is being maintained, get the structure for the
237 * running CPU and update the stime field there.
239 static inline void account_group_system_time(struct task_struct *tsk,
242 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
244 if (!cputimer_running(tsk))
247 atomic64_add(cputime, &cputimer->cputime_atomic.stime);
251 * account_group_exec_runtime - Maintain exec runtime for a thread group.
253 * @tsk: Pointer to task structure.
254 * @ns: Time value by which to increment the sum_exec_runtime field
255 * of the thread_group_cputime structure.
257 * If thread group time is being maintained, get the structure for the
258 * running CPU and update the sum_exec_runtime field there.
260 static inline void account_group_exec_runtime(struct task_struct *tsk,
261 unsigned long long ns)
263 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
265 if (!cputimer_running(tsk))
268 atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime);