2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 #include <linux/slab.h>
10 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12 struct rt_bandwidth def_rt_bandwidth;
14 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
16 struct rt_bandwidth *rt_b =
17 container_of(timer, struct rt_bandwidth, rt_period_timer);
23 now = hrtimer_cb_get_time(timer);
24 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
29 idle = do_sched_rt_period_timer(rt_b, overrun);
32 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
37 rt_b->rt_period = ns_to_ktime(period);
38 rt_b->rt_runtime = runtime;
40 raw_spin_lock_init(&rt_b->rt_runtime_lock);
42 hrtimer_init(&rt_b->rt_period_timer,
43 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
44 rt_b->rt_period_timer.function = sched_rt_period_timer;
47 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
49 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 if (hrtimer_active(&rt_b->rt_period_timer))
55 raw_spin_lock(&rt_b->rt_runtime_lock);
56 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
57 raw_spin_unlock(&rt_b->rt_runtime_lock);
60 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
62 struct rt_prio_array *array;
65 array = &rt_rq->active;
66 for (i = 0; i < MAX_RT_PRIO; i++) {
67 INIT_LIST_HEAD(array->queue + i);
68 __clear_bit(i, array->bitmap);
70 /* delimiter for bitsearch: */
71 __set_bit(MAX_RT_PRIO, array->bitmap);
73 #if defined CONFIG_SMP
74 rt_rq->highest_prio.curr = MAX_RT_PRIO;
75 rt_rq->highest_prio.next = MAX_RT_PRIO;
76 rt_rq->rt_nr_migratory = 0;
77 rt_rq->overloaded = 0;
78 plist_head_init(&rt_rq->pushable_tasks);
82 rt_rq->rt_throttled = 0;
83 rt_rq->rt_runtime = 0;
84 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87 #ifdef CONFIG_RT_GROUP_SCHED
88 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
90 hrtimer_cancel(&rt_b->rt_period_timer);
93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
95 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
97 #ifdef CONFIG_SCHED_DEBUG
98 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
100 return container_of(rt_se, struct task_struct, rt);
103 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
108 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
113 void free_rt_sched_group(struct task_group *tg)
118 destroy_rt_bandwidth(&tg->rt_bandwidth);
120 for_each_possible_cpu(i) {
131 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
132 struct sched_rt_entity *rt_se, int cpu,
133 struct sched_rt_entity *parent)
135 struct rq *rq = cpu_rq(cpu);
137 rt_rq->highest_prio.curr = MAX_RT_PRIO;
138 rt_rq->rt_nr_boosted = 0;
142 tg->rt_rq[cpu] = rt_rq;
143 tg->rt_se[cpu] = rt_se;
149 rt_se->rt_rq = &rq->rt;
151 rt_se->rt_rq = parent->my_q;
154 rt_se->parent = parent;
155 INIT_LIST_HEAD(&rt_se->run_list);
158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161 struct sched_rt_entity *rt_se;
164 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
171 init_rt_bandwidth(&tg->rt_bandwidth,
172 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
174 for_each_possible_cpu(i) {
175 rt_rq = kzalloc_node(sizeof(struct rt_rq),
176 GFP_KERNEL, cpu_to_node(i));
180 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
181 GFP_KERNEL, cpu_to_node(i));
185 init_rt_rq(rt_rq, cpu_rq(i));
186 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
187 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
198 #else /* CONFIG_RT_GROUP_SCHED */
200 #define rt_entity_is_task(rt_se) (1)
202 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
204 return container_of(rt_se, struct task_struct, rt);
207 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
209 return container_of(rt_rq, struct rq, rt);
212 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
214 struct task_struct *p = rt_task_of(rt_se);
215 struct rq *rq = task_rq(p);
220 void free_rt_sched_group(struct task_group *tg) { }
222 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
226 #endif /* CONFIG_RT_GROUP_SCHED */
230 static inline int rt_overloaded(struct rq *rq)
232 return atomic_read(&rq->rd->rto_count);
235 static inline void rt_set_overload(struct rq *rq)
240 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
242 * Make sure the mask is visible before we set
243 * the overload count. That is checked to determine
244 * if we should look at the mask. It would be a shame
245 * if we looked at the mask, but the mask was not
249 atomic_inc(&rq->rd->rto_count);
252 static inline void rt_clear_overload(struct rq *rq)
257 /* the order here really doesn't matter */
258 atomic_dec(&rq->rd->rto_count);
259 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
262 static void update_rt_migration(struct rt_rq *rt_rq)
264 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
265 if (!rt_rq->overloaded) {
266 rt_set_overload(rq_of_rt_rq(rt_rq));
267 rt_rq->overloaded = 1;
269 } else if (rt_rq->overloaded) {
270 rt_clear_overload(rq_of_rt_rq(rt_rq));
271 rt_rq->overloaded = 0;
275 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
277 if (!rt_entity_is_task(rt_se))
280 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
282 rt_rq->rt_nr_total++;
283 if (rt_se->nr_cpus_allowed > 1)
284 rt_rq->rt_nr_migratory++;
286 update_rt_migration(rt_rq);
289 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
291 if (!rt_entity_is_task(rt_se))
294 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
296 rt_rq->rt_nr_total--;
297 if (rt_se->nr_cpus_allowed > 1)
298 rt_rq->rt_nr_migratory--;
300 update_rt_migration(rt_rq);
303 static inline int has_pushable_tasks(struct rq *rq)
305 return !plist_head_empty(&rq->rt.pushable_tasks);
308 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
310 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
311 plist_node_init(&p->pushable_tasks, p->prio);
312 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
314 /* Update the highest prio pushable task */
315 if (p->prio < rq->rt.highest_prio.next)
316 rq->rt.highest_prio.next = p->prio;
319 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
321 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
323 /* Update the new highest prio pushable task */
324 if (has_pushable_tasks(rq)) {
325 p = plist_first_entry(&rq->rt.pushable_tasks,
326 struct task_struct, pushable_tasks);
327 rq->rt.highest_prio.next = p->prio;
329 rq->rt.highest_prio.next = MAX_RT_PRIO;
334 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
338 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
343 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
348 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
352 #endif /* CONFIG_SMP */
354 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
356 return !list_empty(&rt_se->run_list);
359 #ifdef CONFIG_RT_GROUP_SCHED
361 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
366 return rt_rq->rt_runtime;
369 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
371 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
374 typedef struct task_group *rt_rq_iter_t;
376 static inline struct task_group *next_task_group(struct task_group *tg)
379 tg = list_entry_rcu(tg->list.next,
380 typeof(struct task_group), list);
381 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
383 if (&tg->list == &task_groups)
389 #define for_each_rt_rq(rt_rq, iter, rq) \
390 for (iter = container_of(&task_groups, typeof(*iter), list); \
391 (iter = next_task_group(iter)) && \
392 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
394 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
396 list_add_rcu(&rt_rq->leaf_rt_rq_list,
397 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
400 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
402 list_del_rcu(&rt_rq->leaf_rt_rq_list);
405 #define for_each_leaf_rt_rq(rt_rq, rq) \
406 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
408 #define for_each_sched_rt_entity(rt_se) \
409 for (; rt_se; rt_se = rt_se->parent)
411 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
416 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
417 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
419 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
421 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
422 struct sched_rt_entity *rt_se;
424 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
426 rt_se = rt_rq->tg->rt_se[cpu];
428 if (rt_rq->rt_nr_running) {
429 if (rt_se && !on_rt_rq(rt_se))
430 enqueue_rt_entity(rt_se, false);
431 if (rt_rq->highest_prio.curr < curr->prio)
436 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
438 struct sched_rt_entity *rt_se;
439 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
441 rt_se = rt_rq->tg->rt_se[cpu];
443 if (rt_se && on_rt_rq(rt_se))
444 dequeue_rt_entity(rt_se);
447 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
449 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
452 static int rt_se_boosted(struct sched_rt_entity *rt_se)
454 struct rt_rq *rt_rq = group_rt_rq(rt_se);
455 struct task_struct *p;
458 return !!rt_rq->rt_nr_boosted;
460 p = rt_task_of(rt_se);
461 return p->prio != p->normal_prio;
465 static inline const struct cpumask *sched_rt_period_mask(void)
467 return cpu_rq(smp_processor_id())->rd->span;
470 static inline const struct cpumask *sched_rt_period_mask(void)
472 return cpu_online_mask;
477 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
479 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
482 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
484 return &rt_rq->tg->rt_bandwidth;
487 #else /* !CONFIG_RT_GROUP_SCHED */
489 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
491 return rt_rq->rt_runtime;
494 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
496 return ktime_to_ns(def_rt_bandwidth.rt_period);
499 typedef struct rt_rq *rt_rq_iter_t;
501 #define for_each_rt_rq(rt_rq, iter, rq) \
502 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
504 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
508 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
512 #define for_each_leaf_rt_rq(rt_rq, rq) \
513 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
515 #define for_each_sched_rt_entity(rt_se) \
516 for (; rt_se; rt_se = NULL)
518 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
523 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
525 if (rt_rq->rt_nr_running)
526 resched_task(rq_of_rt_rq(rt_rq)->curr);
529 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
533 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
535 return rt_rq->rt_throttled;
538 static inline const struct cpumask *sched_rt_period_mask(void)
540 return cpu_online_mask;
544 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
546 return &cpu_rq(cpu)->rt;
549 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
551 return &def_rt_bandwidth;
554 #endif /* CONFIG_RT_GROUP_SCHED */
558 * We ran out of runtime, see if we can borrow some from our neighbours.
560 static int do_balance_runtime(struct rt_rq *rt_rq)
562 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
563 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
564 int i, weight, more = 0;
567 weight = cpumask_weight(rd->span);
569 raw_spin_lock(&rt_b->rt_runtime_lock);
570 rt_period = ktime_to_ns(rt_b->rt_period);
571 for_each_cpu(i, rd->span) {
572 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
578 raw_spin_lock(&iter->rt_runtime_lock);
580 * Either all rqs have inf runtime and there's nothing to steal
581 * or __disable_runtime() below sets a specific rq to inf to
582 * indicate its been disabled and disalow stealing.
584 if (iter->rt_runtime == RUNTIME_INF)
588 * From runqueues with spare time, take 1/n part of their
589 * spare time, but no more than our period.
591 diff = iter->rt_runtime - iter->rt_time;
593 diff = div_u64((u64)diff, weight);
594 if (rt_rq->rt_runtime + diff > rt_period)
595 diff = rt_period - rt_rq->rt_runtime;
596 iter->rt_runtime -= diff;
597 rt_rq->rt_runtime += diff;
599 if (rt_rq->rt_runtime == rt_period) {
600 raw_spin_unlock(&iter->rt_runtime_lock);
605 raw_spin_unlock(&iter->rt_runtime_lock);
607 raw_spin_unlock(&rt_b->rt_runtime_lock);
613 * Ensure this RQ takes back all the runtime it lend to its neighbours.
615 static void __disable_runtime(struct rq *rq)
617 struct root_domain *rd = rq->rd;
621 if (unlikely(!scheduler_running))
624 for_each_rt_rq(rt_rq, iter, rq) {
625 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
629 raw_spin_lock(&rt_b->rt_runtime_lock);
630 raw_spin_lock(&rt_rq->rt_runtime_lock);
632 * Either we're all inf and nobody needs to borrow, or we're
633 * already disabled and thus have nothing to do, or we have
634 * exactly the right amount of runtime to take out.
636 if (rt_rq->rt_runtime == RUNTIME_INF ||
637 rt_rq->rt_runtime == rt_b->rt_runtime)
639 raw_spin_unlock(&rt_rq->rt_runtime_lock);
642 * Calculate the difference between what we started out with
643 * and what we current have, that's the amount of runtime
644 * we lend and now have to reclaim.
646 want = rt_b->rt_runtime - rt_rq->rt_runtime;
649 * Greedy reclaim, take back as much as we can.
651 for_each_cpu(i, rd->span) {
652 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
656 * Can't reclaim from ourselves or disabled runqueues.
658 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
661 raw_spin_lock(&iter->rt_runtime_lock);
663 diff = min_t(s64, iter->rt_runtime, want);
664 iter->rt_runtime -= diff;
667 iter->rt_runtime -= want;
670 raw_spin_unlock(&iter->rt_runtime_lock);
676 raw_spin_lock(&rt_rq->rt_runtime_lock);
678 * We cannot be left wanting - that would mean some runtime
679 * leaked out of the system.
684 * Disable all the borrow logic by pretending we have inf
685 * runtime - in which case borrowing doesn't make sense.
687 rt_rq->rt_runtime = RUNTIME_INF;
688 raw_spin_unlock(&rt_rq->rt_runtime_lock);
689 raw_spin_unlock(&rt_b->rt_runtime_lock);
693 static void disable_runtime(struct rq *rq)
697 raw_spin_lock_irqsave(&rq->lock, flags);
698 __disable_runtime(rq);
699 raw_spin_unlock_irqrestore(&rq->lock, flags);
702 static void __enable_runtime(struct rq *rq)
707 if (unlikely(!scheduler_running))
711 * Reset each runqueue's bandwidth settings
713 for_each_rt_rq(rt_rq, iter, rq) {
714 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
716 raw_spin_lock(&rt_b->rt_runtime_lock);
717 raw_spin_lock(&rt_rq->rt_runtime_lock);
718 rt_rq->rt_runtime = rt_b->rt_runtime;
720 rt_rq->rt_throttled = 0;
721 raw_spin_unlock(&rt_rq->rt_runtime_lock);
722 raw_spin_unlock(&rt_b->rt_runtime_lock);
726 static void enable_runtime(struct rq *rq)
730 raw_spin_lock_irqsave(&rq->lock, flags);
731 __enable_runtime(rq);
732 raw_spin_unlock_irqrestore(&rq->lock, flags);
735 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
737 int cpu = (int)(long)hcpu;
740 case CPU_DOWN_PREPARE:
741 case CPU_DOWN_PREPARE_FROZEN:
742 disable_runtime(cpu_rq(cpu));
745 case CPU_DOWN_FAILED:
746 case CPU_DOWN_FAILED_FROZEN:
748 case CPU_ONLINE_FROZEN:
749 enable_runtime(cpu_rq(cpu));
757 static int balance_runtime(struct rt_rq *rt_rq)
761 if (!sched_feat(RT_RUNTIME_SHARE))
764 if (rt_rq->rt_time > rt_rq->rt_runtime) {
765 raw_spin_unlock(&rt_rq->rt_runtime_lock);
766 more = do_balance_runtime(rt_rq);
767 raw_spin_lock(&rt_rq->rt_runtime_lock);
772 #else /* !CONFIG_SMP */
773 static inline int balance_runtime(struct rt_rq *rt_rq)
777 #endif /* CONFIG_SMP */
779 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
782 const struct cpumask *span;
784 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
787 span = sched_rt_period_mask();
788 for_each_cpu(i, span) {
790 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
791 struct rq *rq = rq_of_rt_rq(rt_rq);
793 raw_spin_lock(&rq->lock);
794 if (rt_rq->rt_time) {
797 raw_spin_lock(&rt_rq->rt_runtime_lock);
798 if (rt_rq->rt_throttled)
799 balance_runtime(rt_rq);
800 runtime = rt_rq->rt_runtime;
801 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
802 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
803 rt_rq->rt_throttled = 0;
807 * Force a clock update if the CPU was idle,
808 * lest wakeup -> unthrottle time accumulate.
810 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
811 rq->skip_clock_update = -1;
813 if (rt_rq->rt_time || rt_rq->rt_nr_running)
815 raw_spin_unlock(&rt_rq->rt_runtime_lock);
816 } else if (rt_rq->rt_nr_running) {
818 if (!rt_rq_throttled(rt_rq))
823 sched_rt_rq_enqueue(rt_rq);
824 raw_spin_unlock(&rq->lock);
830 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
832 #ifdef CONFIG_RT_GROUP_SCHED
833 struct rt_rq *rt_rq = group_rt_rq(rt_se);
836 return rt_rq->highest_prio.curr;
839 return rt_task_of(rt_se)->prio;
842 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
844 u64 runtime = sched_rt_runtime(rt_rq);
846 if (rt_rq->rt_throttled)
847 return rt_rq_throttled(rt_rq);
849 if (runtime >= sched_rt_period(rt_rq))
852 balance_runtime(rt_rq);
853 runtime = sched_rt_runtime(rt_rq);
854 if (runtime == RUNTIME_INF)
857 if (rt_rq->rt_time > runtime) {
858 rt_rq->rt_throttled = 1;
859 printk_once(KERN_WARNING "sched: RT throttling activated\n");
860 if (rt_rq_throttled(rt_rq)) {
861 sched_rt_rq_dequeue(rt_rq);
870 * Update the current task's runtime statistics. Skip current tasks that
871 * are not in our scheduling class.
873 static void update_curr_rt(struct rq *rq)
875 struct task_struct *curr = rq->curr;
876 struct sched_rt_entity *rt_se = &curr->rt;
877 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
880 if (curr->sched_class != &rt_sched_class)
883 delta_exec = rq->clock_task - curr->se.exec_start;
884 if (unlikely((s64)delta_exec < 0))
887 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
889 curr->se.sum_exec_runtime += delta_exec;
890 account_group_exec_runtime(curr, delta_exec);
892 curr->se.exec_start = rq->clock_task;
893 cpuacct_charge(curr, delta_exec);
895 sched_rt_avg_update(rq, delta_exec);
897 if (!rt_bandwidth_enabled())
900 for_each_sched_rt_entity(rt_se) {
901 rt_rq = rt_rq_of_se(rt_se);
903 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
904 raw_spin_lock(&rt_rq->rt_runtime_lock);
905 rt_rq->rt_time += delta_exec;
906 if (sched_rt_runtime_exceeded(rt_rq))
908 raw_spin_unlock(&rt_rq->rt_runtime_lock);
913 #if defined CONFIG_SMP
916 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
918 struct rq *rq = rq_of_rt_rq(rt_rq);
920 if (rq->online && prio < prev_prio)
921 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
925 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
927 struct rq *rq = rq_of_rt_rq(rt_rq);
929 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
930 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
933 #else /* CONFIG_SMP */
936 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
938 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
940 #endif /* CONFIG_SMP */
942 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
944 inc_rt_prio(struct rt_rq *rt_rq, int prio)
946 int prev_prio = rt_rq->highest_prio.curr;
948 if (prio < prev_prio)
949 rt_rq->highest_prio.curr = prio;
951 inc_rt_prio_smp(rt_rq, prio, prev_prio);
955 dec_rt_prio(struct rt_rq *rt_rq, int prio)
957 int prev_prio = rt_rq->highest_prio.curr;
959 if (rt_rq->rt_nr_running) {
961 WARN_ON(prio < prev_prio);
964 * This may have been our highest task, and therefore
965 * we may have some recomputation to do
967 if (prio == prev_prio) {
968 struct rt_prio_array *array = &rt_rq->active;
970 rt_rq->highest_prio.curr =
971 sched_find_first_bit(array->bitmap);
975 rt_rq->highest_prio.curr = MAX_RT_PRIO;
977 dec_rt_prio_smp(rt_rq, prio, prev_prio);
982 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
983 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
985 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
987 #ifdef CONFIG_RT_GROUP_SCHED
990 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
992 if (rt_se_boosted(rt_se))
993 rt_rq->rt_nr_boosted++;
996 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1000 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1002 if (rt_se_boosted(rt_se))
1003 rt_rq->rt_nr_boosted--;
1005 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1008 #else /* CONFIG_RT_GROUP_SCHED */
1011 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1013 start_rt_bandwidth(&def_rt_bandwidth);
1017 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1019 #endif /* CONFIG_RT_GROUP_SCHED */
1022 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1024 int prio = rt_se_prio(rt_se);
1026 WARN_ON(!rt_prio(prio));
1027 rt_rq->rt_nr_running++;
1029 inc_rt_prio(rt_rq, prio);
1030 inc_rt_migration(rt_se, rt_rq);
1031 inc_rt_group(rt_se, rt_rq);
1035 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1037 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1038 WARN_ON(!rt_rq->rt_nr_running);
1039 rt_rq->rt_nr_running--;
1041 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1042 dec_rt_migration(rt_se, rt_rq);
1043 dec_rt_group(rt_se, rt_rq);
1046 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1048 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1049 struct rt_prio_array *array = &rt_rq->active;
1050 struct rt_rq *group_rq = group_rt_rq(rt_se);
1051 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1054 * Don't enqueue the group if its throttled, or when empty.
1055 * The latter is a consequence of the former when a child group
1056 * get throttled and the current group doesn't have any other
1059 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1062 if (!rt_rq->rt_nr_running)
1063 list_add_leaf_rt_rq(rt_rq);
1066 list_add(&rt_se->run_list, queue);
1068 list_add_tail(&rt_se->run_list, queue);
1069 __set_bit(rt_se_prio(rt_se), array->bitmap);
1071 inc_rt_tasks(rt_se, rt_rq);
1074 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1076 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1077 struct rt_prio_array *array = &rt_rq->active;
1079 list_del_init(&rt_se->run_list);
1080 if (list_empty(array->queue + rt_se_prio(rt_se)))
1081 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1083 dec_rt_tasks(rt_se, rt_rq);
1084 if (!rt_rq->rt_nr_running)
1085 list_del_leaf_rt_rq(rt_rq);
1089 * Because the prio of an upper entry depends on the lower
1090 * entries, we must remove entries top - down.
1092 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1094 struct sched_rt_entity *back = NULL;
1096 for_each_sched_rt_entity(rt_se) {
1101 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1102 if (on_rt_rq(rt_se))
1103 __dequeue_rt_entity(rt_se);
1107 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1109 dequeue_rt_stack(rt_se);
1110 for_each_sched_rt_entity(rt_se)
1111 __enqueue_rt_entity(rt_se, head);
1114 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1116 dequeue_rt_stack(rt_se);
1118 for_each_sched_rt_entity(rt_se) {
1119 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1121 if (rt_rq && rt_rq->rt_nr_running)
1122 __enqueue_rt_entity(rt_se, false);
1127 * Adding/removing a task to/from a priority array:
1130 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1132 struct sched_rt_entity *rt_se = &p->rt;
1134 if (flags & ENQUEUE_WAKEUP)
1137 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1139 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
1140 enqueue_pushable_task(rq, p);
1145 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1147 struct sched_rt_entity *rt_se = &p->rt;
1150 dequeue_rt_entity(rt_se);
1152 dequeue_pushable_task(rq, p);
1158 * Put task to the head or the end of the run list without the overhead of
1159 * dequeue followed by enqueue.
1162 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1164 if (on_rt_rq(rt_se)) {
1165 struct rt_prio_array *array = &rt_rq->active;
1166 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1169 list_move(&rt_se->run_list, queue);
1171 list_move_tail(&rt_se->run_list, queue);
1175 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1177 struct sched_rt_entity *rt_se = &p->rt;
1178 struct rt_rq *rt_rq;
1180 for_each_sched_rt_entity(rt_se) {
1181 rt_rq = rt_rq_of_se(rt_se);
1182 requeue_rt_entity(rt_rq, rt_se, head);
1186 static void yield_task_rt(struct rq *rq)
1188 requeue_task_rt(rq, rq->curr, 0);
1192 static int find_lowest_rq(struct task_struct *task);
1195 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1197 struct task_struct *curr;
1203 if (p->rt.nr_cpus_allowed == 1)
1206 /* For anything but wake ups, just return the task_cpu */
1207 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1213 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1216 * If the current task on @p's runqueue is an RT task, then
1217 * try to see if we can wake this RT task up on another
1218 * runqueue. Otherwise simply start this RT task
1219 * on its current runqueue.
1221 * We want to avoid overloading runqueues. If the woken
1222 * task is a higher priority, then it will stay on this CPU
1223 * and the lower prio task should be moved to another CPU.
1224 * Even though this will probably make the lower prio task
1225 * lose its cache, we do not want to bounce a higher task
1226 * around just because it gave up its CPU, perhaps for a
1229 * For equal prio tasks, we just let the scheduler sort it out.
1231 * Otherwise, just let it ride on the affined RQ and the
1232 * post-schedule router will push the preempted task away
1234 * This test is optimistic, if we get it wrong the load-balancer
1235 * will have to sort it out.
1237 if (curr && unlikely(rt_task(curr)) &&
1238 (curr->rt.nr_cpus_allowed < 2 ||
1239 curr->prio <= p->prio) &&
1240 (p->rt.nr_cpus_allowed > 1)) {
1241 int target = find_lowest_rq(p);
1252 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1254 if (rq->curr->rt.nr_cpus_allowed == 1)
1257 if (p->rt.nr_cpus_allowed != 1
1258 && cpupri_find(&rq->rd->cpupri, p, NULL))
1261 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1265 * There appears to be other cpus that can accept
1266 * current and none to run 'p', so lets reschedule
1267 * to try and push current away:
1269 requeue_task_rt(rq, p, 1);
1270 resched_task(rq->curr);
1273 #endif /* CONFIG_SMP */
1276 * Preempt the current task with a newly woken task if needed:
1278 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1280 if (p->prio < rq->curr->prio) {
1281 resched_task(rq->curr);
1289 * - the newly woken task is of equal priority to the current task
1290 * - the newly woken task is non-migratable while current is migratable
1291 * - current will be preempted on the next reschedule
1293 * we should check to see if current can readily move to a different
1294 * cpu. If so, we will reschedule to allow the push logic to try
1295 * to move current somewhere else, making room for our non-migratable
1298 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1299 check_preempt_equal_prio(rq, p);
1303 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1304 struct rt_rq *rt_rq)
1306 struct rt_prio_array *array = &rt_rq->active;
1307 struct sched_rt_entity *next = NULL;
1308 struct list_head *queue;
1311 idx = sched_find_first_bit(array->bitmap);
1312 BUG_ON(idx >= MAX_RT_PRIO);
1314 queue = array->queue + idx;
1315 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1320 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1322 struct sched_rt_entity *rt_se;
1323 struct task_struct *p;
1324 struct rt_rq *rt_rq;
1328 if (!rt_rq->rt_nr_running)
1331 if (rt_rq_throttled(rt_rq))
1335 rt_se = pick_next_rt_entity(rq, rt_rq);
1337 rt_rq = group_rt_rq(rt_se);
1340 p = rt_task_of(rt_se);
1341 p->se.exec_start = rq->clock_task;
1346 static struct task_struct *pick_next_task_rt(struct rq *rq)
1348 struct task_struct *p = _pick_next_task_rt(rq);
1350 /* The running task is never eligible for pushing */
1352 dequeue_pushable_task(rq, p);
1356 * We detect this state here so that we can avoid taking the RQ
1357 * lock again later if there is no need to push
1359 rq->post_schedule = has_pushable_tasks(rq);
1365 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1370 * The previous task needs to be made eligible for pushing
1371 * if it is still active
1373 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1374 enqueue_pushable_task(rq, p);
1379 /* Only try algorithms three times */
1380 #define RT_MAX_TRIES 3
1382 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1384 if (!task_running(rq, p) &&
1385 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1386 (p->rt.nr_cpus_allowed > 1))
1391 /* Return the second highest RT task, NULL otherwise */
1392 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1394 struct task_struct *next = NULL;
1395 struct sched_rt_entity *rt_se;
1396 struct rt_prio_array *array;
1397 struct rt_rq *rt_rq;
1400 for_each_leaf_rt_rq(rt_rq, rq) {
1401 array = &rt_rq->active;
1402 idx = sched_find_first_bit(array->bitmap);
1404 if (idx >= MAX_RT_PRIO)
1406 if (next && next->prio < idx)
1408 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1409 struct task_struct *p;
1411 if (!rt_entity_is_task(rt_se))
1414 p = rt_task_of(rt_se);
1415 if (pick_rt_task(rq, p, cpu)) {
1421 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1429 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1431 static int find_lowest_rq(struct task_struct *task)
1433 struct sched_domain *sd;
1434 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1435 int this_cpu = smp_processor_id();
1436 int cpu = task_cpu(task);
1438 /* Make sure the mask is initialized first */
1439 if (unlikely(!lowest_mask))
1442 if (task->rt.nr_cpus_allowed == 1)
1443 return -1; /* No other targets possible */
1445 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1446 return -1; /* No targets found */
1449 * At this point we have built a mask of cpus representing the
1450 * lowest priority tasks in the system. Now we want to elect
1451 * the best one based on our affinity and topology.
1453 * We prioritize the last cpu that the task executed on since
1454 * it is most likely cache-hot in that location.
1456 if (cpumask_test_cpu(cpu, lowest_mask))
1460 * Otherwise, we consult the sched_domains span maps to figure
1461 * out which cpu is logically closest to our hot cache data.
1463 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1464 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1467 for_each_domain(cpu, sd) {
1468 if (sd->flags & SD_WAKE_AFFINE) {
1472 * "this_cpu" is cheaper to preempt than a
1475 if (this_cpu != -1 &&
1476 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1481 best_cpu = cpumask_first_and(lowest_mask,
1482 sched_domain_span(sd));
1483 if (best_cpu < nr_cpu_ids) {
1492 * And finally, if there were no matches within the domains
1493 * just give the caller *something* to work with from the compatible
1499 cpu = cpumask_any(lowest_mask);
1500 if (cpu < nr_cpu_ids)
1505 /* Will lock the rq it finds */
1506 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1508 struct rq *lowest_rq = NULL;
1512 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1513 cpu = find_lowest_rq(task);
1515 if ((cpu == -1) || (cpu == rq->cpu))
1518 lowest_rq = cpu_rq(cpu);
1520 /* if the prio of this runqueue changed, try again */
1521 if (double_lock_balance(rq, lowest_rq)) {
1523 * We had to unlock the run queue. In
1524 * the mean time, task could have
1525 * migrated already or had its affinity changed.
1526 * Also make sure that it wasn't scheduled on its rq.
1528 if (unlikely(task_rq(task) != rq ||
1529 !cpumask_test_cpu(lowest_rq->cpu,
1530 tsk_cpus_allowed(task)) ||
1531 task_running(rq, task) ||
1534 raw_spin_unlock(&lowest_rq->lock);
1540 /* If this rq is still suitable use it. */
1541 if (lowest_rq->rt.highest_prio.curr > task->prio)
1545 double_unlock_balance(rq, lowest_rq);
1552 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1554 struct task_struct *p;
1556 if (!has_pushable_tasks(rq))
1559 p = plist_first_entry(&rq->rt.pushable_tasks,
1560 struct task_struct, pushable_tasks);
1562 BUG_ON(rq->cpu != task_cpu(p));
1563 BUG_ON(task_current(rq, p));
1564 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1567 BUG_ON(!rt_task(p));
1573 * If the current CPU has more than one RT task, see if the non
1574 * running task can migrate over to a CPU that is running a task
1575 * of lesser priority.
1577 static int push_rt_task(struct rq *rq)
1579 struct task_struct *next_task;
1580 struct rq *lowest_rq;
1583 if (!rq->rt.overloaded)
1586 next_task = pick_next_pushable_task(rq);
1591 if (unlikely(next_task == rq->curr)) {
1597 * It's possible that the next_task slipped in of
1598 * higher priority than current. If that's the case
1599 * just reschedule current.
1601 if (unlikely(next_task->prio < rq->curr->prio)) {
1602 resched_task(rq->curr);
1606 /* We might release rq lock */
1607 get_task_struct(next_task);
1609 /* find_lock_lowest_rq locks the rq if found */
1610 lowest_rq = find_lock_lowest_rq(next_task, rq);
1612 struct task_struct *task;
1614 * find_lock_lowest_rq releases rq->lock
1615 * so it is possible that next_task has migrated.
1617 * We need to make sure that the task is still on the same
1618 * run-queue and is also still the next task eligible for
1621 task = pick_next_pushable_task(rq);
1622 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1624 * The task hasn't migrated, and is still the next
1625 * eligible task, but we failed to find a run-queue
1626 * to push it to. Do not retry in this case, since
1627 * other cpus will pull from us when ready.
1633 /* No more tasks, just exit */
1637 * Something has shifted, try again.
1639 put_task_struct(next_task);
1644 deactivate_task(rq, next_task, 0);
1645 set_task_cpu(next_task, lowest_rq->cpu);
1646 activate_task(lowest_rq, next_task, 0);
1649 resched_task(lowest_rq->curr);
1651 double_unlock_balance(rq, lowest_rq);
1654 put_task_struct(next_task);
1659 static void push_rt_tasks(struct rq *rq)
1661 /* push_rt_task will return true if it moved an RT */
1662 while (push_rt_task(rq))
1666 static int pull_rt_task(struct rq *this_rq)
1668 int this_cpu = this_rq->cpu, ret = 0, cpu;
1669 struct task_struct *p;
1672 if (likely(!rt_overloaded(this_rq)))
1675 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1676 if (this_cpu == cpu)
1679 src_rq = cpu_rq(cpu);
1682 * Don't bother taking the src_rq->lock if the next highest
1683 * task is known to be lower-priority than our current task.
1684 * This may look racy, but if this value is about to go
1685 * logically higher, the src_rq will push this task away.
1686 * And if its going logically lower, we do not care
1688 if (src_rq->rt.highest_prio.next >=
1689 this_rq->rt.highest_prio.curr)
1693 * We can potentially drop this_rq's lock in
1694 * double_lock_balance, and another CPU could
1697 double_lock_balance(this_rq, src_rq);
1700 * Are there still pullable RT tasks?
1702 if (src_rq->rt.rt_nr_running <= 1)
1705 p = pick_next_highest_task_rt(src_rq, this_cpu);
1708 * Do we have an RT task that preempts
1709 * the to-be-scheduled task?
1711 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1712 WARN_ON(p == src_rq->curr);
1716 * There's a chance that p is higher in priority
1717 * than what's currently running on its cpu.
1718 * This is just that p is wakeing up and hasn't
1719 * had a chance to schedule. We only pull
1720 * p if it is lower in priority than the
1721 * current task on the run queue
1723 if (p->prio < src_rq->curr->prio)
1728 deactivate_task(src_rq, p, 0);
1729 set_task_cpu(p, this_cpu);
1730 activate_task(this_rq, p, 0);
1732 * We continue with the search, just in
1733 * case there's an even higher prio task
1734 * in another runqueue. (low likelihood
1739 double_unlock_balance(this_rq, src_rq);
1745 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1747 /* Try to pull RT tasks here if we lower this rq's prio */
1748 if (rq->rt.highest_prio.curr > prev->prio)
1752 static void post_schedule_rt(struct rq *rq)
1758 * If we are not running and we are not going to reschedule soon, we should
1759 * try to push tasks away now
1761 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1763 if (!task_running(rq, p) &&
1764 !test_tsk_need_resched(rq->curr) &&
1765 has_pushable_tasks(rq) &&
1766 p->rt.nr_cpus_allowed > 1 &&
1767 rt_task(rq->curr) &&
1768 (rq->curr->rt.nr_cpus_allowed < 2 ||
1769 rq->curr->prio <= p->prio))
1773 static void set_cpus_allowed_rt(struct task_struct *p,
1774 const struct cpumask *new_mask)
1776 int weight = cpumask_weight(new_mask);
1778 BUG_ON(!rt_task(p));
1781 * Update the migration status of the RQ if we have an RT task
1782 * which is running AND changing its weight value.
1784 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1785 struct rq *rq = task_rq(p);
1787 if (!task_current(rq, p)) {
1789 * Make sure we dequeue this task from the pushable list
1790 * before going further. It will either remain off of
1791 * the list because we are no longer pushable, or it
1794 if (p->rt.nr_cpus_allowed > 1)
1795 dequeue_pushable_task(rq, p);
1798 * Requeue if our weight is changing and still > 1
1801 enqueue_pushable_task(rq, p);
1805 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1806 rq->rt.rt_nr_migratory++;
1807 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1808 BUG_ON(!rq->rt.rt_nr_migratory);
1809 rq->rt.rt_nr_migratory--;
1812 update_rt_migration(&rq->rt);
1816 /* Assumes rq->lock is held */
1817 static void rq_online_rt(struct rq *rq)
1819 if (rq->rt.overloaded)
1820 rt_set_overload(rq);
1822 __enable_runtime(rq);
1824 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1827 /* Assumes rq->lock is held */
1828 static void rq_offline_rt(struct rq *rq)
1830 if (rq->rt.overloaded)
1831 rt_clear_overload(rq);
1833 __disable_runtime(rq);
1835 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1839 * When switch from the rt queue, we bring ourselves to a position
1840 * that we might want to pull RT tasks from other runqueues.
1842 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1845 * If there are other RT tasks then we will reschedule
1846 * and the scheduling of the other RT tasks will handle
1847 * the balancing. But if we are the last RT task
1848 * we may need to handle the pulling of RT tasks
1851 if (p->on_rq && !rq->rt.rt_nr_running)
1855 void init_sched_rt_class(void)
1859 for_each_possible_cpu(i) {
1860 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1861 GFP_KERNEL, cpu_to_node(i));
1864 #endif /* CONFIG_SMP */
1867 * When switching a task to RT, we may overload the runqueue
1868 * with RT tasks. In this case we try to push them off to
1871 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1873 int check_resched = 1;
1876 * If we are already running, then there's nothing
1877 * that needs to be done. But if we are not running
1878 * we may need to preempt the current running task.
1879 * If that current running task is also an RT task
1880 * then see if we can move to another run queue.
1882 if (p->on_rq && rq->curr != p) {
1884 if (rq->rt.overloaded && push_rt_task(rq) &&
1885 /* Don't resched if we changed runqueues */
1888 #endif /* CONFIG_SMP */
1889 if (check_resched && p->prio < rq->curr->prio)
1890 resched_task(rq->curr);
1895 * Priority of the task has changed. This may cause
1896 * us to initiate a push or pull.
1899 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1904 if (rq->curr == p) {
1907 * If our priority decreases while running, we
1908 * may need to pull tasks to this runqueue.
1910 if (oldprio < p->prio)
1913 * If there's a higher priority task waiting to run
1914 * then reschedule. Note, the above pull_rt_task
1915 * can release the rq lock and p could migrate.
1916 * Only reschedule if p is still on the same runqueue.
1918 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1921 /* For UP simply resched on drop of prio */
1922 if (oldprio < p->prio)
1924 #endif /* CONFIG_SMP */
1927 * This task is not running, but if it is
1928 * greater than the current running task
1931 if (p->prio < rq->curr->prio)
1932 resched_task(rq->curr);
1936 static void watchdog(struct rq *rq, struct task_struct *p)
1938 unsigned long soft, hard;
1940 /* max may change after cur was read, this will be fixed next tick */
1941 soft = task_rlimit(p, RLIMIT_RTTIME);
1942 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1944 if (soft != RLIM_INFINITY) {
1948 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1949 if (p->rt.timeout > next)
1950 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1954 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1961 * RR tasks need a special form of timeslice management.
1962 * FIFO tasks have no timeslices.
1964 if (p->policy != SCHED_RR)
1967 if (--p->rt.time_slice)
1970 p->rt.time_slice = DEF_TIMESLICE;
1973 * Requeue to the end of queue if we are not the only element
1976 if (p->rt.run_list.prev != p->rt.run_list.next) {
1977 requeue_task_rt(rq, p, 0);
1978 set_tsk_need_resched(p);
1982 static void set_curr_task_rt(struct rq *rq)
1984 struct task_struct *p = rq->curr;
1986 p->se.exec_start = rq->clock_task;
1988 /* The running task is never eligible for pushing */
1989 dequeue_pushable_task(rq, p);
1992 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1995 * Time slice is 0 for SCHED_FIFO tasks
1997 if (task->policy == SCHED_RR)
1998 return DEF_TIMESLICE;
2003 const struct sched_class rt_sched_class = {
2004 .next = &fair_sched_class,
2005 .enqueue_task = enqueue_task_rt,
2006 .dequeue_task = dequeue_task_rt,
2007 .yield_task = yield_task_rt,
2009 .check_preempt_curr = check_preempt_curr_rt,
2011 .pick_next_task = pick_next_task_rt,
2012 .put_prev_task = put_prev_task_rt,
2015 .select_task_rq = select_task_rq_rt,
2017 .set_cpus_allowed = set_cpus_allowed_rt,
2018 .rq_online = rq_online_rt,
2019 .rq_offline = rq_offline_rt,
2020 .pre_schedule = pre_schedule_rt,
2021 .post_schedule = post_schedule_rt,
2022 .task_woken = task_woken_rt,
2023 .switched_from = switched_from_rt,
2026 .set_curr_task = set_curr_task_rt,
2027 .task_tick = task_tick_rt,
2029 .get_rr_interval = get_rr_interval_rt,
2031 .prio_changed = prio_changed_rt,
2032 .switched_to = switched_to_rt,
2035 #ifdef CONFIG_SCHED_DEBUG
2036 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2038 void print_rt_stats(struct seq_file *m, int cpu)
2041 struct rt_rq *rt_rq;
2044 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2045 print_rt_rq(m, cpu, rt_rq);
2048 #endif /* CONFIG_SCHED_DEBUG */