Merge tag 'linux-kselftest-fixes-6.1-rc4' of git://git.kernel.org/pub/scm/linux/kerne...
[platform/kernel/linux-starfive.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12
13 struct rt_bandwidth def_rt_bandwidth;
14
15 /*
16  * period over which we measure -rt task CPU usage in us.
17  * default: 1s
18  */
19 unsigned int sysctl_sched_rt_period = 1000000;
20
21 /*
22  * part of the period that we allow rt tasks to run in us.
23  * default: 0.95s
24  */
25 int sysctl_sched_rt_runtime = 950000;
26
27 #ifdef CONFIG_SYSCTL
28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30                 size_t *lenp, loff_t *ppos);
31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32                 size_t *lenp, loff_t *ppos);
33 static struct ctl_table sched_rt_sysctls[] = {
34         {
35                 .procname       = "sched_rt_period_us",
36                 .data           = &sysctl_sched_rt_period,
37                 .maxlen         = sizeof(unsigned int),
38                 .mode           = 0644,
39                 .proc_handler   = sched_rt_handler,
40         },
41         {
42                 .procname       = "sched_rt_runtime_us",
43                 .data           = &sysctl_sched_rt_runtime,
44                 .maxlen         = sizeof(int),
45                 .mode           = 0644,
46                 .proc_handler   = sched_rt_handler,
47         },
48         {
49                 .procname       = "sched_rr_timeslice_ms",
50                 .data           = &sysctl_sched_rr_timeslice,
51                 .maxlen         = sizeof(int),
52                 .mode           = 0644,
53                 .proc_handler   = sched_rr_handler,
54         },
55         {}
56 };
57
58 static int __init sched_rt_sysctl_init(void)
59 {
60         register_sysctl_init("kernel", sched_rt_sysctls);
61         return 0;
62 }
63 late_initcall(sched_rt_sysctl_init);
64 #endif
65
66 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
67 {
68         struct rt_bandwidth *rt_b =
69                 container_of(timer, struct rt_bandwidth, rt_period_timer);
70         int idle = 0;
71         int overrun;
72
73         raw_spin_lock(&rt_b->rt_runtime_lock);
74         for (;;) {
75                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
76                 if (!overrun)
77                         break;
78
79                 raw_spin_unlock(&rt_b->rt_runtime_lock);
80                 idle = do_sched_rt_period_timer(rt_b, overrun);
81                 raw_spin_lock(&rt_b->rt_runtime_lock);
82         }
83         if (idle)
84                 rt_b->rt_period_active = 0;
85         raw_spin_unlock(&rt_b->rt_runtime_lock);
86
87         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
88 }
89
90 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
91 {
92         rt_b->rt_period = ns_to_ktime(period);
93         rt_b->rt_runtime = runtime;
94
95         raw_spin_lock_init(&rt_b->rt_runtime_lock);
96
97         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
98                      HRTIMER_MODE_REL_HARD);
99         rt_b->rt_period_timer.function = sched_rt_period_timer;
100 }
101
102 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
103 {
104         raw_spin_lock(&rt_b->rt_runtime_lock);
105         if (!rt_b->rt_period_active) {
106                 rt_b->rt_period_active = 1;
107                 /*
108                  * SCHED_DEADLINE updates the bandwidth, as a run away
109                  * RT task with a DL task could hog a CPU. But DL does
110                  * not reset the period. If a deadline task was running
111                  * without an RT task running, it can cause RT tasks to
112                  * throttle when they start up. Kick the timer right away
113                  * to update the period.
114                  */
115                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
116                 hrtimer_start_expires(&rt_b->rt_period_timer,
117                                       HRTIMER_MODE_ABS_PINNED_HARD);
118         }
119         raw_spin_unlock(&rt_b->rt_runtime_lock);
120 }
121
122 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
123 {
124         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
125                 return;
126
127         do_start_rt_bandwidth(rt_b);
128 }
129
130 void init_rt_rq(struct rt_rq *rt_rq)
131 {
132         struct rt_prio_array *array;
133         int i;
134
135         array = &rt_rq->active;
136         for (i = 0; i < MAX_RT_PRIO; i++) {
137                 INIT_LIST_HEAD(array->queue + i);
138                 __clear_bit(i, array->bitmap);
139         }
140         /* delimiter for bitsearch: */
141         __set_bit(MAX_RT_PRIO, array->bitmap);
142
143 #if defined CONFIG_SMP
144         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
145         rt_rq->highest_prio.next = MAX_RT_PRIO-1;
146         rt_rq->rt_nr_migratory = 0;
147         rt_rq->overloaded = 0;
148         plist_head_init(&rt_rq->pushable_tasks);
149 #endif /* CONFIG_SMP */
150         /* We start is dequeued state, because no RT tasks are queued */
151         rt_rq->rt_queued = 0;
152
153         rt_rq->rt_time = 0;
154         rt_rq->rt_throttled = 0;
155         rt_rq->rt_runtime = 0;
156         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
157 }
158
159 #ifdef CONFIG_RT_GROUP_SCHED
160 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
161 {
162         hrtimer_cancel(&rt_b->rt_period_timer);
163 }
164
165 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
166
167 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
168 {
169 #ifdef CONFIG_SCHED_DEBUG
170         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
171 #endif
172         return container_of(rt_se, struct task_struct, rt);
173 }
174
175 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
176 {
177         return rt_rq->rq;
178 }
179
180 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
181 {
182         return rt_se->rt_rq;
183 }
184
185 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
186 {
187         struct rt_rq *rt_rq = rt_se->rt_rq;
188
189         return rt_rq->rq;
190 }
191
192 void unregister_rt_sched_group(struct task_group *tg)
193 {
194         if (tg->rt_se)
195                 destroy_rt_bandwidth(&tg->rt_bandwidth);
196
197 }
198
199 void free_rt_sched_group(struct task_group *tg)
200 {
201         int i;
202
203         for_each_possible_cpu(i) {
204                 if (tg->rt_rq)
205                         kfree(tg->rt_rq[i]);
206                 if (tg->rt_se)
207                         kfree(tg->rt_se[i]);
208         }
209
210         kfree(tg->rt_rq);
211         kfree(tg->rt_se);
212 }
213
214 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
215                 struct sched_rt_entity *rt_se, int cpu,
216                 struct sched_rt_entity *parent)
217 {
218         struct rq *rq = cpu_rq(cpu);
219
220         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
221         rt_rq->rt_nr_boosted = 0;
222         rt_rq->rq = rq;
223         rt_rq->tg = tg;
224
225         tg->rt_rq[cpu] = rt_rq;
226         tg->rt_se[cpu] = rt_se;
227
228         if (!rt_se)
229                 return;
230
231         if (!parent)
232                 rt_se->rt_rq = &rq->rt;
233         else
234                 rt_se->rt_rq = parent->my_q;
235
236         rt_se->my_q = rt_rq;
237         rt_se->parent = parent;
238         INIT_LIST_HEAD(&rt_se->run_list);
239 }
240
241 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
242 {
243         struct rt_rq *rt_rq;
244         struct sched_rt_entity *rt_se;
245         int i;
246
247         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
248         if (!tg->rt_rq)
249                 goto err;
250         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
251         if (!tg->rt_se)
252                 goto err;
253
254         init_rt_bandwidth(&tg->rt_bandwidth,
255                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
256
257         for_each_possible_cpu(i) {
258                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
259                                      GFP_KERNEL, cpu_to_node(i));
260                 if (!rt_rq)
261                         goto err;
262
263                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
264                                      GFP_KERNEL, cpu_to_node(i));
265                 if (!rt_se)
266                         goto err_free_rq;
267
268                 init_rt_rq(rt_rq);
269                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
270                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
271         }
272
273         return 1;
274
275 err_free_rq:
276         kfree(rt_rq);
277 err:
278         return 0;
279 }
280
281 #else /* CONFIG_RT_GROUP_SCHED */
282
283 #define rt_entity_is_task(rt_se) (1)
284
285 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
286 {
287         return container_of(rt_se, struct task_struct, rt);
288 }
289
290 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
291 {
292         return container_of(rt_rq, struct rq, rt);
293 }
294
295 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
296 {
297         struct task_struct *p = rt_task_of(rt_se);
298
299         return task_rq(p);
300 }
301
302 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
303 {
304         struct rq *rq = rq_of_rt_se(rt_se);
305
306         return &rq->rt;
307 }
308
309 void unregister_rt_sched_group(struct task_group *tg) { }
310
311 void free_rt_sched_group(struct task_group *tg) { }
312
313 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
314 {
315         return 1;
316 }
317 #endif /* CONFIG_RT_GROUP_SCHED */
318
319 #ifdef CONFIG_SMP
320
321 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
322 {
323         /* Try to pull RT tasks here if we lower this rq's prio */
324         return rq->online && rq->rt.highest_prio.curr > prev->prio;
325 }
326
327 static inline int rt_overloaded(struct rq *rq)
328 {
329         return atomic_read(&rq->rd->rto_count);
330 }
331
332 static inline void rt_set_overload(struct rq *rq)
333 {
334         if (!rq->online)
335                 return;
336
337         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
338         /*
339          * Make sure the mask is visible before we set
340          * the overload count. That is checked to determine
341          * if we should look at the mask. It would be a shame
342          * if we looked at the mask, but the mask was not
343          * updated yet.
344          *
345          * Matched by the barrier in pull_rt_task().
346          */
347         smp_wmb();
348         atomic_inc(&rq->rd->rto_count);
349 }
350
351 static inline void rt_clear_overload(struct rq *rq)
352 {
353         if (!rq->online)
354                 return;
355
356         /* the order here really doesn't matter */
357         atomic_dec(&rq->rd->rto_count);
358         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
359 }
360
361 static void update_rt_migration(struct rt_rq *rt_rq)
362 {
363         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
364                 if (!rt_rq->overloaded) {
365                         rt_set_overload(rq_of_rt_rq(rt_rq));
366                         rt_rq->overloaded = 1;
367                 }
368         } else if (rt_rq->overloaded) {
369                 rt_clear_overload(rq_of_rt_rq(rt_rq));
370                 rt_rq->overloaded = 0;
371         }
372 }
373
374 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
375 {
376         struct task_struct *p;
377
378         if (!rt_entity_is_task(rt_se))
379                 return;
380
381         p = rt_task_of(rt_se);
382         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
383
384         rt_rq->rt_nr_total++;
385         if (p->nr_cpus_allowed > 1)
386                 rt_rq->rt_nr_migratory++;
387
388         update_rt_migration(rt_rq);
389 }
390
391 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
392 {
393         struct task_struct *p;
394
395         if (!rt_entity_is_task(rt_se))
396                 return;
397
398         p = rt_task_of(rt_se);
399         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
400
401         rt_rq->rt_nr_total--;
402         if (p->nr_cpus_allowed > 1)
403                 rt_rq->rt_nr_migratory--;
404
405         update_rt_migration(rt_rq);
406 }
407
408 static inline int has_pushable_tasks(struct rq *rq)
409 {
410         return !plist_head_empty(&rq->rt.pushable_tasks);
411 }
412
413 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
414 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
415
416 static void push_rt_tasks(struct rq *);
417 static void pull_rt_task(struct rq *);
418
419 static inline void rt_queue_push_tasks(struct rq *rq)
420 {
421         if (!has_pushable_tasks(rq))
422                 return;
423
424         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
425 }
426
427 static inline void rt_queue_pull_task(struct rq *rq)
428 {
429         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
430 }
431
432 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
433 {
434         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
435         plist_node_init(&p->pushable_tasks, p->prio);
436         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
437
438         /* Update the highest prio pushable task */
439         if (p->prio < rq->rt.highest_prio.next)
440                 rq->rt.highest_prio.next = p->prio;
441 }
442
443 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
444 {
445         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
446
447         /* Update the new highest prio pushable task */
448         if (has_pushable_tasks(rq)) {
449                 p = plist_first_entry(&rq->rt.pushable_tasks,
450                                       struct task_struct, pushable_tasks);
451                 rq->rt.highest_prio.next = p->prio;
452         } else {
453                 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
454         }
455 }
456
457 #else
458
459 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
460 {
461 }
462
463 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
464 {
465 }
466
467 static inline
468 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
469 {
470 }
471
472 static inline
473 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
474 {
475 }
476
477 static inline void rt_queue_push_tasks(struct rq *rq)
478 {
479 }
480 #endif /* CONFIG_SMP */
481
482 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
483 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
484
485 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
486 {
487         return rt_se->on_rq;
488 }
489
490 #ifdef CONFIG_UCLAMP_TASK
491 /*
492  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
493  * settings.
494  *
495  * This check is only important for heterogeneous systems where uclamp_min value
496  * is higher than the capacity of a @cpu. For non-heterogeneous system this
497  * function will always return true.
498  *
499  * The function will return true if the capacity of the @cpu is >= the
500  * uclamp_min and false otherwise.
501  *
502  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
503  * > uclamp_max.
504  */
505 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
506 {
507         unsigned int min_cap;
508         unsigned int max_cap;
509         unsigned int cpu_cap;
510
511         /* Only heterogeneous systems can benefit from this check */
512         if (!sched_asym_cpucap_active())
513                 return true;
514
515         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
516         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
517
518         cpu_cap = capacity_orig_of(cpu);
519
520         return cpu_cap >= min(min_cap, max_cap);
521 }
522 #else
523 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
524 {
525         return true;
526 }
527 #endif
528
529 #ifdef CONFIG_RT_GROUP_SCHED
530
531 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
532 {
533         if (!rt_rq->tg)
534                 return RUNTIME_INF;
535
536         return rt_rq->rt_runtime;
537 }
538
539 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
540 {
541         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
542 }
543
544 typedef struct task_group *rt_rq_iter_t;
545
546 static inline struct task_group *next_task_group(struct task_group *tg)
547 {
548         do {
549                 tg = list_entry_rcu(tg->list.next,
550                         typeof(struct task_group), list);
551         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
552
553         if (&tg->list == &task_groups)
554                 tg = NULL;
555
556         return tg;
557 }
558
559 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
560         for (iter = container_of(&task_groups, typeof(*iter), list);    \
561                 (iter = next_task_group(iter)) &&                       \
562                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
563
564 #define for_each_sched_rt_entity(rt_se) \
565         for (; rt_se; rt_se = rt_se->parent)
566
567 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
568 {
569         return rt_se->my_q;
570 }
571
572 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
573 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
574
575 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
576 {
577         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
578         struct rq *rq = rq_of_rt_rq(rt_rq);
579         struct sched_rt_entity *rt_se;
580
581         int cpu = cpu_of(rq);
582
583         rt_se = rt_rq->tg->rt_se[cpu];
584
585         if (rt_rq->rt_nr_running) {
586                 if (!rt_se)
587                         enqueue_top_rt_rq(rt_rq);
588                 else if (!on_rt_rq(rt_se))
589                         enqueue_rt_entity(rt_se, 0);
590
591                 if (rt_rq->highest_prio.curr < curr->prio)
592                         resched_curr(rq);
593         }
594 }
595
596 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
597 {
598         struct sched_rt_entity *rt_se;
599         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
600
601         rt_se = rt_rq->tg->rt_se[cpu];
602
603         if (!rt_se) {
604                 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
605                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
606                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
607         }
608         else if (on_rt_rq(rt_se))
609                 dequeue_rt_entity(rt_se, 0);
610 }
611
612 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
613 {
614         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
615 }
616
617 static int rt_se_boosted(struct sched_rt_entity *rt_se)
618 {
619         struct rt_rq *rt_rq = group_rt_rq(rt_se);
620         struct task_struct *p;
621
622         if (rt_rq)
623                 return !!rt_rq->rt_nr_boosted;
624
625         p = rt_task_of(rt_se);
626         return p->prio != p->normal_prio;
627 }
628
629 #ifdef CONFIG_SMP
630 static inline const struct cpumask *sched_rt_period_mask(void)
631 {
632         return this_rq()->rd->span;
633 }
634 #else
635 static inline const struct cpumask *sched_rt_period_mask(void)
636 {
637         return cpu_online_mask;
638 }
639 #endif
640
641 static inline
642 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
643 {
644         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
645 }
646
647 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
648 {
649         return &rt_rq->tg->rt_bandwidth;
650 }
651
652 #else /* !CONFIG_RT_GROUP_SCHED */
653
654 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
655 {
656         return rt_rq->rt_runtime;
657 }
658
659 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
660 {
661         return ktime_to_ns(def_rt_bandwidth.rt_period);
662 }
663
664 typedef struct rt_rq *rt_rq_iter_t;
665
666 #define for_each_rt_rq(rt_rq, iter, rq) \
667         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
668
669 #define for_each_sched_rt_entity(rt_se) \
670         for (; rt_se; rt_se = NULL)
671
672 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
673 {
674         return NULL;
675 }
676
677 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
678 {
679         struct rq *rq = rq_of_rt_rq(rt_rq);
680
681         if (!rt_rq->rt_nr_running)
682                 return;
683
684         enqueue_top_rt_rq(rt_rq);
685         resched_curr(rq);
686 }
687
688 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
689 {
690         dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
691 }
692
693 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
694 {
695         return rt_rq->rt_throttled;
696 }
697
698 static inline const struct cpumask *sched_rt_period_mask(void)
699 {
700         return cpu_online_mask;
701 }
702
703 static inline
704 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
705 {
706         return &cpu_rq(cpu)->rt;
707 }
708
709 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
710 {
711         return &def_rt_bandwidth;
712 }
713
714 #endif /* CONFIG_RT_GROUP_SCHED */
715
716 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
717 {
718         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
719
720         return (hrtimer_active(&rt_b->rt_period_timer) ||
721                 rt_rq->rt_time < rt_b->rt_runtime);
722 }
723
724 #ifdef CONFIG_SMP
725 /*
726  * We ran out of runtime, see if we can borrow some from our neighbours.
727  */
728 static void do_balance_runtime(struct rt_rq *rt_rq)
729 {
730         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
731         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
732         int i, weight;
733         u64 rt_period;
734
735         weight = cpumask_weight(rd->span);
736
737         raw_spin_lock(&rt_b->rt_runtime_lock);
738         rt_period = ktime_to_ns(rt_b->rt_period);
739         for_each_cpu(i, rd->span) {
740                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
741                 s64 diff;
742
743                 if (iter == rt_rq)
744                         continue;
745
746                 raw_spin_lock(&iter->rt_runtime_lock);
747                 /*
748                  * Either all rqs have inf runtime and there's nothing to steal
749                  * or __disable_runtime() below sets a specific rq to inf to
750                  * indicate its been disabled and disallow stealing.
751                  */
752                 if (iter->rt_runtime == RUNTIME_INF)
753                         goto next;
754
755                 /*
756                  * From runqueues with spare time, take 1/n part of their
757                  * spare time, but no more than our period.
758                  */
759                 diff = iter->rt_runtime - iter->rt_time;
760                 if (diff > 0) {
761                         diff = div_u64((u64)diff, weight);
762                         if (rt_rq->rt_runtime + diff > rt_period)
763                                 diff = rt_period - rt_rq->rt_runtime;
764                         iter->rt_runtime -= diff;
765                         rt_rq->rt_runtime += diff;
766                         if (rt_rq->rt_runtime == rt_period) {
767                                 raw_spin_unlock(&iter->rt_runtime_lock);
768                                 break;
769                         }
770                 }
771 next:
772                 raw_spin_unlock(&iter->rt_runtime_lock);
773         }
774         raw_spin_unlock(&rt_b->rt_runtime_lock);
775 }
776
777 /*
778  * Ensure this RQ takes back all the runtime it lend to its neighbours.
779  */
780 static void __disable_runtime(struct rq *rq)
781 {
782         struct root_domain *rd = rq->rd;
783         rt_rq_iter_t iter;
784         struct rt_rq *rt_rq;
785
786         if (unlikely(!scheduler_running))
787                 return;
788
789         for_each_rt_rq(rt_rq, iter, rq) {
790                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
791                 s64 want;
792                 int i;
793
794                 raw_spin_lock(&rt_b->rt_runtime_lock);
795                 raw_spin_lock(&rt_rq->rt_runtime_lock);
796                 /*
797                  * Either we're all inf and nobody needs to borrow, or we're
798                  * already disabled and thus have nothing to do, or we have
799                  * exactly the right amount of runtime to take out.
800                  */
801                 if (rt_rq->rt_runtime == RUNTIME_INF ||
802                                 rt_rq->rt_runtime == rt_b->rt_runtime)
803                         goto balanced;
804                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805
806                 /*
807                  * Calculate the difference between what we started out with
808                  * and what we current have, that's the amount of runtime
809                  * we lend and now have to reclaim.
810                  */
811                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
812
813                 /*
814                  * Greedy reclaim, take back as much as we can.
815                  */
816                 for_each_cpu(i, rd->span) {
817                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
818                         s64 diff;
819
820                         /*
821                          * Can't reclaim from ourselves or disabled runqueues.
822                          */
823                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
824                                 continue;
825
826                         raw_spin_lock(&iter->rt_runtime_lock);
827                         if (want > 0) {
828                                 diff = min_t(s64, iter->rt_runtime, want);
829                                 iter->rt_runtime -= diff;
830                                 want -= diff;
831                         } else {
832                                 iter->rt_runtime -= want;
833                                 want -= want;
834                         }
835                         raw_spin_unlock(&iter->rt_runtime_lock);
836
837                         if (!want)
838                                 break;
839                 }
840
841                 raw_spin_lock(&rt_rq->rt_runtime_lock);
842                 /*
843                  * We cannot be left wanting - that would mean some runtime
844                  * leaked out of the system.
845                  */
846                 WARN_ON_ONCE(want);
847 balanced:
848                 /*
849                  * Disable all the borrow logic by pretending we have inf
850                  * runtime - in which case borrowing doesn't make sense.
851                  */
852                 rt_rq->rt_runtime = RUNTIME_INF;
853                 rt_rq->rt_throttled = 0;
854                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
855                 raw_spin_unlock(&rt_b->rt_runtime_lock);
856
857                 /* Make rt_rq available for pick_next_task() */
858                 sched_rt_rq_enqueue(rt_rq);
859         }
860 }
861
862 static void __enable_runtime(struct rq *rq)
863 {
864         rt_rq_iter_t iter;
865         struct rt_rq *rt_rq;
866
867         if (unlikely(!scheduler_running))
868                 return;
869
870         /*
871          * Reset each runqueue's bandwidth settings
872          */
873         for_each_rt_rq(rt_rq, iter, rq) {
874                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
875
876                 raw_spin_lock(&rt_b->rt_runtime_lock);
877                 raw_spin_lock(&rt_rq->rt_runtime_lock);
878                 rt_rq->rt_runtime = rt_b->rt_runtime;
879                 rt_rq->rt_time = 0;
880                 rt_rq->rt_throttled = 0;
881                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
882                 raw_spin_unlock(&rt_b->rt_runtime_lock);
883         }
884 }
885
886 static void balance_runtime(struct rt_rq *rt_rq)
887 {
888         if (!sched_feat(RT_RUNTIME_SHARE))
889                 return;
890
891         if (rt_rq->rt_time > rt_rq->rt_runtime) {
892                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
893                 do_balance_runtime(rt_rq);
894                 raw_spin_lock(&rt_rq->rt_runtime_lock);
895         }
896 }
897 #else /* !CONFIG_SMP */
898 static inline void balance_runtime(struct rt_rq *rt_rq) {}
899 #endif /* CONFIG_SMP */
900
901 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
902 {
903         int i, idle = 1, throttled = 0;
904         const struct cpumask *span;
905
906         span = sched_rt_period_mask();
907 #ifdef CONFIG_RT_GROUP_SCHED
908         /*
909          * FIXME: isolated CPUs should really leave the root task group,
910          * whether they are isolcpus or were isolated via cpusets, lest
911          * the timer run on a CPU which does not service all runqueues,
912          * potentially leaving other CPUs indefinitely throttled.  If
913          * isolation is really required, the user will turn the throttle
914          * off to kill the perturbations it causes anyway.  Meanwhile,
915          * this maintains functionality for boot and/or troubleshooting.
916          */
917         if (rt_b == &root_task_group.rt_bandwidth)
918                 span = cpu_online_mask;
919 #endif
920         for_each_cpu(i, span) {
921                 int enqueue = 0;
922                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
923                 struct rq *rq = rq_of_rt_rq(rt_rq);
924                 struct rq_flags rf;
925                 int skip;
926
927                 /*
928                  * When span == cpu_online_mask, taking each rq->lock
929                  * can be time-consuming. Try to avoid it when possible.
930                  */
931                 raw_spin_lock(&rt_rq->rt_runtime_lock);
932                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
933                         rt_rq->rt_runtime = rt_b->rt_runtime;
934                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
935                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
936                 if (skip)
937                         continue;
938
939                 rq_lock(rq, &rf);
940                 update_rq_clock(rq);
941
942                 if (rt_rq->rt_time) {
943                         u64 runtime;
944
945                         raw_spin_lock(&rt_rq->rt_runtime_lock);
946                         if (rt_rq->rt_throttled)
947                                 balance_runtime(rt_rq);
948                         runtime = rt_rq->rt_runtime;
949                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
950                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
951                                 rt_rq->rt_throttled = 0;
952                                 enqueue = 1;
953
954                                 /*
955                                  * When we're idle and a woken (rt) task is
956                                  * throttled check_preempt_curr() will set
957                                  * skip_update and the time between the wakeup
958                                  * and this unthrottle will get accounted as
959                                  * 'runtime'.
960                                  */
961                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
962                                         rq_clock_cancel_skipupdate(rq);
963                         }
964                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
965                                 idle = 0;
966                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
967                 } else if (rt_rq->rt_nr_running) {
968                         idle = 0;
969                         if (!rt_rq_throttled(rt_rq))
970                                 enqueue = 1;
971                 }
972                 if (rt_rq->rt_throttled)
973                         throttled = 1;
974
975                 if (enqueue)
976                         sched_rt_rq_enqueue(rt_rq);
977                 rq_unlock(rq, &rf);
978         }
979
980         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
981                 return 1;
982
983         return idle;
984 }
985
986 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
987 {
988 #ifdef CONFIG_RT_GROUP_SCHED
989         struct rt_rq *rt_rq = group_rt_rq(rt_se);
990
991         if (rt_rq)
992                 return rt_rq->highest_prio.curr;
993 #endif
994
995         return rt_task_of(rt_se)->prio;
996 }
997
998 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
999 {
1000         u64 runtime = sched_rt_runtime(rt_rq);
1001
1002         if (rt_rq->rt_throttled)
1003                 return rt_rq_throttled(rt_rq);
1004
1005         if (runtime >= sched_rt_period(rt_rq))
1006                 return 0;
1007
1008         balance_runtime(rt_rq);
1009         runtime = sched_rt_runtime(rt_rq);
1010         if (runtime == RUNTIME_INF)
1011                 return 0;
1012
1013         if (rt_rq->rt_time > runtime) {
1014                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1015
1016                 /*
1017                  * Don't actually throttle groups that have no runtime assigned
1018                  * but accrue some time due to boosting.
1019                  */
1020                 if (likely(rt_b->rt_runtime)) {
1021                         rt_rq->rt_throttled = 1;
1022                         printk_deferred_once("sched: RT throttling activated\n");
1023                 } else {
1024                         /*
1025                          * In case we did anyway, make it go away,
1026                          * replenishment is a joke, since it will replenish us
1027                          * with exactly 0 ns.
1028                          */
1029                         rt_rq->rt_time = 0;
1030                 }
1031
1032                 if (rt_rq_throttled(rt_rq)) {
1033                         sched_rt_rq_dequeue(rt_rq);
1034                         return 1;
1035                 }
1036         }
1037
1038         return 0;
1039 }
1040
1041 /*
1042  * Update the current task's runtime statistics. Skip current tasks that
1043  * are not in our scheduling class.
1044  */
1045 static void update_curr_rt(struct rq *rq)
1046 {
1047         struct task_struct *curr = rq->curr;
1048         struct sched_rt_entity *rt_se = &curr->rt;
1049         u64 delta_exec;
1050         u64 now;
1051
1052         if (curr->sched_class != &rt_sched_class)
1053                 return;
1054
1055         now = rq_clock_task(rq);
1056         delta_exec = now - curr->se.exec_start;
1057         if (unlikely((s64)delta_exec <= 0))
1058                 return;
1059
1060         schedstat_set(curr->stats.exec_max,
1061                       max(curr->stats.exec_max, delta_exec));
1062
1063         trace_sched_stat_runtime(curr, delta_exec, 0);
1064
1065         update_current_exec_runtime(curr, now, delta_exec);
1066
1067         if (!rt_bandwidth_enabled())
1068                 return;
1069
1070         for_each_sched_rt_entity(rt_se) {
1071                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1072                 int exceeded;
1073
1074                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1075                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1076                         rt_rq->rt_time += delta_exec;
1077                         exceeded = sched_rt_runtime_exceeded(rt_rq);
1078                         if (exceeded)
1079                                 resched_curr(rq);
1080                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1081                         if (exceeded)
1082                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1083                 }
1084         }
1085 }
1086
1087 static void
1088 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1089 {
1090         struct rq *rq = rq_of_rt_rq(rt_rq);
1091
1092         BUG_ON(&rq->rt != rt_rq);
1093
1094         if (!rt_rq->rt_queued)
1095                 return;
1096
1097         BUG_ON(!rq->nr_running);
1098
1099         sub_nr_running(rq, count);
1100         rt_rq->rt_queued = 0;
1101
1102 }
1103
1104 static void
1105 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1106 {
1107         struct rq *rq = rq_of_rt_rq(rt_rq);
1108
1109         BUG_ON(&rq->rt != rt_rq);
1110
1111         if (rt_rq->rt_queued)
1112                 return;
1113
1114         if (rt_rq_throttled(rt_rq))
1115                 return;
1116
1117         if (rt_rq->rt_nr_running) {
1118                 add_nr_running(rq, rt_rq->rt_nr_running);
1119                 rt_rq->rt_queued = 1;
1120         }
1121
1122         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1123         cpufreq_update_util(rq, 0);
1124 }
1125
1126 #if defined CONFIG_SMP
1127
1128 static void
1129 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1130 {
1131         struct rq *rq = rq_of_rt_rq(rt_rq);
1132
1133 #ifdef CONFIG_RT_GROUP_SCHED
1134         /*
1135          * Change rq's cpupri only if rt_rq is the top queue.
1136          */
1137         if (&rq->rt != rt_rq)
1138                 return;
1139 #endif
1140         if (rq->online && prio < prev_prio)
1141                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1142 }
1143
1144 static void
1145 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1146 {
1147         struct rq *rq = rq_of_rt_rq(rt_rq);
1148
1149 #ifdef CONFIG_RT_GROUP_SCHED
1150         /*
1151          * Change rq's cpupri only if rt_rq is the top queue.
1152          */
1153         if (&rq->rt != rt_rq)
1154                 return;
1155 #endif
1156         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1157                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1158 }
1159
1160 #else /* CONFIG_SMP */
1161
1162 static inline
1163 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1164 static inline
1165 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1166
1167 #endif /* CONFIG_SMP */
1168
1169 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1170 static void
1171 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1172 {
1173         int prev_prio = rt_rq->highest_prio.curr;
1174
1175         if (prio < prev_prio)
1176                 rt_rq->highest_prio.curr = prio;
1177
1178         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1179 }
1180
1181 static void
1182 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1183 {
1184         int prev_prio = rt_rq->highest_prio.curr;
1185
1186         if (rt_rq->rt_nr_running) {
1187
1188                 WARN_ON(prio < prev_prio);
1189
1190                 /*
1191                  * This may have been our highest task, and therefore
1192                  * we may have some recomputation to do
1193                  */
1194                 if (prio == prev_prio) {
1195                         struct rt_prio_array *array = &rt_rq->active;
1196
1197                         rt_rq->highest_prio.curr =
1198                                 sched_find_first_bit(array->bitmap);
1199                 }
1200
1201         } else {
1202                 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1203         }
1204
1205         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1206 }
1207
1208 #else
1209
1210 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1211 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1212
1213 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1214
1215 #ifdef CONFIG_RT_GROUP_SCHED
1216
1217 static void
1218 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1219 {
1220         if (rt_se_boosted(rt_se))
1221                 rt_rq->rt_nr_boosted++;
1222
1223         if (rt_rq->tg)
1224                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1225 }
1226
1227 static void
1228 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1229 {
1230         if (rt_se_boosted(rt_se))
1231                 rt_rq->rt_nr_boosted--;
1232
1233         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1234 }
1235
1236 #else /* CONFIG_RT_GROUP_SCHED */
1237
1238 static void
1239 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1240 {
1241         start_rt_bandwidth(&def_rt_bandwidth);
1242 }
1243
1244 static inline
1245 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1246
1247 #endif /* CONFIG_RT_GROUP_SCHED */
1248
1249 static inline
1250 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1251 {
1252         struct rt_rq *group_rq = group_rt_rq(rt_se);
1253
1254         if (group_rq)
1255                 return group_rq->rt_nr_running;
1256         else
1257                 return 1;
1258 }
1259
1260 static inline
1261 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1262 {
1263         struct rt_rq *group_rq = group_rt_rq(rt_se);
1264         struct task_struct *tsk;
1265
1266         if (group_rq)
1267                 return group_rq->rr_nr_running;
1268
1269         tsk = rt_task_of(rt_se);
1270
1271         return (tsk->policy == SCHED_RR) ? 1 : 0;
1272 }
1273
1274 static inline
1275 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1276 {
1277         int prio = rt_se_prio(rt_se);
1278
1279         WARN_ON(!rt_prio(prio));
1280         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1281         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1282
1283         inc_rt_prio(rt_rq, prio);
1284         inc_rt_migration(rt_se, rt_rq);
1285         inc_rt_group(rt_se, rt_rq);
1286 }
1287
1288 static inline
1289 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1290 {
1291         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1292         WARN_ON(!rt_rq->rt_nr_running);
1293         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1294         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1295
1296         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1297         dec_rt_migration(rt_se, rt_rq);
1298         dec_rt_group(rt_se, rt_rq);
1299 }
1300
1301 /*
1302  * Change rt_se->run_list location unless SAVE && !MOVE
1303  *
1304  * assumes ENQUEUE/DEQUEUE flags match
1305  */
1306 static inline bool move_entity(unsigned int flags)
1307 {
1308         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1309                 return false;
1310
1311         return true;
1312 }
1313
1314 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1315 {
1316         list_del_init(&rt_se->run_list);
1317
1318         if (list_empty(array->queue + rt_se_prio(rt_se)))
1319                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1320
1321         rt_se->on_list = 0;
1322 }
1323
1324 static inline struct sched_statistics *
1325 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1326 {
1327 #ifdef CONFIG_RT_GROUP_SCHED
1328         /* schedstats is not supported for rt group. */
1329         if (!rt_entity_is_task(rt_se))
1330                 return NULL;
1331 #endif
1332
1333         return &rt_task_of(rt_se)->stats;
1334 }
1335
1336 static inline void
1337 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1338 {
1339         struct sched_statistics *stats;
1340         struct task_struct *p = NULL;
1341
1342         if (!schedstat_enabled())
1343                 return;
1344
1345         if (rt_entity_is_task(rt_se))
1346                 p = rt_task_of(rt_se);
1347
1348         stats = __schedstats_from_rt_se(rt_se);
1349         if (!stats)
1350                 return;
1351
1352         __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1353 }
1354
1355 static inline void
1356 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1357 {
1358         struct sched_statistics *stats;
1359         struct task_struct *p = NULL;
1360
1361         if (!schedstat_enabled())
1362                 return;
1363
1364         if (rt_entity_is_task(rt_se))
1365                 p = rt_task_of(rt_se);
1366
1367         stats = __schedstats_from_rt_se(rt_se);
1368         if (!stats)
1369                 return;
1370
1371         __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1372 }
1373
1374 static inline void
1375 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1376                         int flags)
1377 {
1378         if (!schedstat_enabled())
1379                 return;
1380
1381         if (flags & ENQUEUE_WAKEUP)
1382                 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1383 }
1384
1385 static inline void
1386 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1387 {
1388         struct sched_statistics *stats;
1389         struct task_struct *p = NULL;
1390
1391         if (!schedstat_enabled())
1392                 return;
1393
1394         if (rt_entity_is_task(rt_se))
1395                 p = rt_task_of(rt_se);
1396
1397         stats = __schedstats_from_rt_se(rt_se);
1398         if (!stats)
1399                 return;
1400
1401         __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1402 }
1403
1404 static inline void
1405 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1406                         int flags)
1407 {
1408         struct task_struct *p = NULL;
1409
1410         if (!schedstat_enabled())
1411                 return;
1412
1413         if (rt_entity_is_task(rt_se))
1414                 p = rt_task_of(rt_se);
1415
1416         if ((flags & DEQUEUE_SLEEP) && p) {
1417                 unsigned int state;
1418
1419                 state = READ_ONCE(p->__state);
1420                 if (state & TASK_INTERRUPTIBLE)
1421                         __schedstat_set(p->stats.sleep_start,
1422                                         rq_clock(rq_of_rt_rq(rt_rq)));
1423
1424                 if (state & TASK_UNINTERRUPTIBLE)
1425                         __schedstat_set(p->stats.block_start,
1426                                         rq_clock(rq_of_rt_rq(rt_rq)));
1427         }
1428 }
1429
1430 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1431 {
1432         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1433         struct rt_prio_array *array = &rt_rq->active;
1434         struct rt_rq *group_rq = group_rt_rq(rt_se);
1435         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1436
1437         /*
1438          * Don't enqueue the group if its throttled, or when empty.
1439          * The latter is a consequence of the former when a child group
1440          * get throttled and the current group doesn't have any other
1441          * active members.
1442          */
1443         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1444                 if (rt_se->on_list)
1445                         __delist_rt_entity(rt_se, array);
1446                 return;
1447         }
1448
1449         if (move_entity(flags)) {
1450                 WARN_ON_ONCE(rt_se->on_list);
1451                 if (flags & ENQUEUE_HEAD)
1452                         list_add(&rt_se->run_list, queue);
1453                 else
1454                         list_add_tail(&rt_se->run_list, queue);
1455
1456                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1457                 rt_se->on_list = 1;
1458         }
1459         rt_se->on_rq = 1;
1460
1461         inc_rt_tasks(rt_se, rt_rq);
1462 }
1463
1464 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1465 {
1466         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1467         struct rt_prio_array *array = &rt_rq->active;
1468
1469         if (move_entity(flags)) {
1470                 WARN_ON_ONCE(!rt_se->on_list);
1471                 __delist_rt_entity(rt_se, array);
1472         }
1473         rt_se->on_rq = 0;
1474
1475         dec_rt_tasks(rt_se, rt_rq);
1476 }
1477
1478 /*
1479  * Because the prio of an upper entry depends on the lower
1480  * entries, we must remove entries top - down.
1481  */
1482 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1483 {
1484         struct sched_rt_entity *back = NULL;
1485         unsigned int rt_nr_running;
1486
1487         for_each_sched_rt_entity(rt_se) {
1488                 rt_se->back = back;
1489                 back = rt_se;
1490         }
1491
1492         rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1493
1494         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1495                 if (on_rt_rq(rt_se))
1496                         __dequeue_rt_entity(rt_se, flags);
1497         }
1498
1499         dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1500 }
1501
1502 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1503 {
1504         struct rq *rq = rq_of_rt_se(rt_se);
1505
1506         update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1507
1508         dequeue_rt_stack(rt_se, flags);
1509         for_each_sched_rt_entity(rt_se)
1510                 __enqueue_rt_entity(rt_se, flags);
1511         enqueue_top_rt_rq(&rq->rt);
1512 }
1513
1514 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1515 {
1516         struct rq *rq = rq_of_rt_se(rt_se);
1517
1518         update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1519
1520         dequeue_rt_stack(rt_se, flags);
1521
1522         for_each_sched_rt_entity(rt_se) {
1523                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1524
1525                 if (rt_rq && rt_rq->rt_nr_running)
1526                         __enqueue_rt_entity(rt_se, flags);
1527         }
1528         enqueue_top_rt_rq(&rq->rt);
1529 }
1530
1531 /*
1532  * Adding/removing a task to/from a priority array:
1533  */
1534 static void
1535 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1536 {
1537         struct sched_rt_entity *rt_se = &p->rt;
1538
1539         if (flags & ENQUEUE_WAKEUP)
1540                 rt_se->timeout = 0;
1541
1542         check_schedstat_required();
1543         update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1544
1545         enqueue_rt_entity(rt_se, flags);
1546
1547         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1548                 enqueue_pushable_task(rq, p);
1549 }
1550
1551 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1552 {
1553         struct sched_rt_entity *rt_se = &p->rt;
1554
1555         update_curr_rt(rq);
1556         dequeue_rt_entity(rt_se, flags);
1557
1558         dequeue_pushable_task(rq, p);
1559 }
1560
1561 /*
1562  * Put task to the head or the end of the run list without the overhead of
1563  * dequeue followed by enqueue.
1564  */
1565 static void
1566 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1567 {
1568         if (on_rt_rq(rt_se)) {
1569                 struct rt_prio_array *array = &rt_rq->active;
1570                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1571
1572                 if (head)
1573                         list_move(&rt_se->run_list, queue);
1574                 else
1575                         list_move_tail(&rt_se->run_list, queue);
1576         }
1577 }
1578
1579 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1580 {
1581         struct sched_rt_entity *rt_se = &p->rt;
1582         struct rt_rq *rt_rq;
1583
1584         for_each_sched_rt_entity(rt_se) {
1585                 rt_rq = rt_rq_of_se(rt_se);
1586                 requeue_rt_entity(rt_rq, rt_se, head);
1587         }
1588 }
1589
1590 static void yield_task_rt(struct rq *rq)
1591 {
1592         requeue_task_rt(rq, rq->curr, 0);
1593 }
1594
1595 #ifdef CONFIG_SMP
1596 static int find_lowest_rq(struct task_struct *task);
1597
1598 static int
1599 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1600 {
1601         struct task_struct *curr;
1602         struct rq *rq;
1603         bool test;
1604
1605         /* For anything but wake ups, just return the task_cpu */
1606         if (!(flags & (WF_TTWU | WF_FORK)))
1607                 goto out;
1608
1609         rq = cpu_rq(cpu);
1610
1611         rcu_read_lock();
1612         curr = READ_ONCE(rq->curr); /* unlocked access */
1613
1614         /*
1615          * If the current task on @p's runqueue is an RT task, then
1616          * try to see if we can wake this RT task up on another
1617          * runqueue. Otherwise simply start this RT task
1618          * on its current runqueue.
1619          *
1620          * We want to avoid overloading runqueues. If the woken
1621          * task is a higher priority, then it will stay on this CPU
1622          * and the lower prio task should be moved to another CPU.
1623          * Even though this will probably make the lower prio task
1624          * lose its cache, we do not want to bounce a higher task
1625          * around just because it gave up its CPU, perhaps for a
1626          * lock?
1627          *
1628          * For equal prio tasks, we just let the scheduler sort it out.
1629          *
1630          * Otherwise, just let it ride on the affined RQ and the
1631          * post-schedule router will push the preempted task away
1632          *
1633          * This test is optimistic, if we get it wrong the load-balancer
1634          * will have to sort it out.
1635          *
1636          * We take into account the capacity of the CPU to ensure it fits the
1637          * requirement of the task - which is only important on heterogeneous
1638          * systems like big.LITTLE.
1639          */
1640         test = curr &&
1641                unlikely(rt_task(curr)) &&
1642                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1643
1644         if (test || !rt_task_fits_capacity(p, cpu)) {
1645                 int target = find_lowest_rq(p);
1646
1647                 /*
1648                  * Bail out if we were forcing a migration to find a better
1649                  * fitting CPU but our search failed.
1650                  */
1651                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1652                         goto out_unlock;
1653
1654                 /*
1655                  * Don't bother moving it if the destination CPU is
1656                  * not running a lower priority task.
1657                  */
1658                 if (target != -1 &&
1659                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1660                         cpu = target;
1661         }
1662
1663 out_unlock:
1664         rcu_read_unlock();
1665
1666 out:
1667         return cpu;
1668 }
1669
1670 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1671 {
1672         /*
1673          * Current can't be migrated, useless to reschedule,
1674          * let's hope p can move out.
1675          */
1676         if (rq->curr->nr_cpus_allowed == 1 ||
1677             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1678                 return;
1679
1680         /*
1681          * p is migratable, so let's not schedule it and
1682          * see if it is pushed or pulled somewhere else.
1683          */
1684         if (p->nr_cpus_allowed != 1 &&
1685             cpupri_find(&rq->rd->cpupri, p, NULL))
1686                 return;
1687
1688         /*
1689          * There appear to be other CPUs that can accept
1690          * the current task but none can run 'p', so lets reschedule
1691          * to try and push the current task away:
1692          */
1693         requeue_task_rt(rq, p, 1);
1694         resched_curr(rq);
1695 }
1696
1697 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1698 {
1699         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1700                 /*
1701                  * This is OK, because current is on_cpu, which avoids it being
1702                  * picked for load-balance and preemption/IRQs are still
1703                  * disabled avoiding further scheduler activity on it and we've
1704                  * not yet started the picking loop.
1705                  */
1706                 rq_unpin_lock(rq, rf);
1707                 pull_rt_task(rq);
1708                 rq_repin_lock(rq, rf);
1709         }
1710
1711         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1712 }
1713 #endif /* CONFIG_SMP */
1714
1715 /*
1716  * Preempt the current task with a newly woken task if needed:
1717  */
1718 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1719 {
1720         if (p->prio < rq->curr->prio) {
1721                 resched_curr(rq);
1722                 return;
1723         }
1724
1725 #ifdef CONFIG_SMP
1726         /*
1727          * If:
1728          *
1729          * - the newly woken task is of equal priority to the current task
1730          * - the newly woken task is non-migratable while current is migratable
1731          * - current will be preempted on the next reschedule
1732          *
1733          * we should check to see if current can readily move to a different
1734          * cpu.  If so, we will reschedule to allow the push logic to try
1735          * to move current somewhere else, making room for our non-migratable
1736          * task.
1737          */
1738         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1739                 check_preempt_equal_prio(rq, p);
1740 #endif
1741 }
1742
1743 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1744 {
1745         struct sched_rt_entity *rt_se = &p->rt;
1746         struct rt_rq *rt_rq = &rq->rt;
1747
1748         p->se.exec_start = rq_clock_task(rq);
1749         if (on_rt_rq(&p->rt))
1750                 update_stats_wait_end_rt(rt_rq, rt_se);
1751
1752         /* The running task is never eligible for pushing */
1753         dequeue_pushable_task(rq, p);
1754
1755         if (!first)
1756                 return;
1757
1758         /*
1759          * If prev task was rt, put_prev_task() has already updated the
1760          * utilization. We only care of the case where we start to schedule a
1761          * rt task
1762          */
1763         if (rq->curr->sched_class != &rt_sched_class)
1764                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1765
1766         rt_queue_push_tasks(rq);
1767 }
1768
1769 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1770 {
1771         struct rt_prio_array *array = &rt_rq->active;
1772         struct sched_rt_entity *next = NULL;
1773         struct list_head *queue;
1774         int idx;
1775
1776         idx = sched_find_first_bit(array->bitmap);
1777         BUG_ON(idx >= MAX_RT_PRIO);
1778
1779         queue = array->queue + idx;
1780         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1781
1782         return next;
1783 }
1784
1785 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1786 {
1787         struct sched_rt_entity *rt_se;
1788         struct rt_rq *rt_rq  = &rq->rt;
1789
1790         do {
1791                 rt_se = pick_next_rt_entity(rt_rq);
1792                 BUG_ON(!rt_se);
1793                 rt_rq = group_rt_rq(rt_se);
1794         } while (rt_rq);
1795
1796         return rt_task_of(rt_se);
1797 }
1798
1799 static struct task_struct *pick_task_rt(struct rq *rq)
1800 {
1801         struct task_struct *p;
1802
1803         if (!sched_rt_runnable(rq))
1804                 return NULL;
1805
1806         p = _pick_next_task_rt(rq);
1807
1808         return p;
1809 }
1810
1811 static struct task_struct *pick_next_task_rt(struct rq *rq)
1812 {
1813         struct task_struct *p = pick_task_rt(rq);
1814
1815         if (p)
1816                 set_next_task_rt(rq, p, true);
1817
1818         return p;
1819 }
1820
1821 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1822 {
1823         struct sched_rt_entity *rt_se = &p->rt;
1824         struct rt_rq *rt_rq = &rq->rt;
1825
1826         if (on_rt_rq(&p->rt))
1827                 update_stats_wait_start_rt(rt_rq, rt_se);
1828
1829         update_curr_rt(rq);
1830
1831         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1832
1833         /*
1834          * The previous task needs to be made eligible for pushing
1835          * if it is still active
1836          */
1837         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1838                 enqueue_pushable_task(rq, p);
1839 }
1840
1841 #ifdef CONFIG_SMP
1842
1843 /* Only try algorithms three times */
1844 #define RT_MAX_TRIES 3
1845
1846 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1847 {
1848         if (!task_on_cpu(rq, p) &&
1849             cpumask_test_cpu(cpu, &p->cpus_mask))
1850                 return 1;
1851
1852         return 0;
1853 }
1854
1855 /*
1856  * Return the highest pushable rq's task, which is suitable to be executed
1857  * on the CPU, NULL otherwise
1858  */
1859 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1860 {
1861         struct plist_head *head = &rq->rt.pushable_tasks;
1862         struct task_struct *p;
1863
1864         if (!has_pushable_tasks(rq))
1865                 return NULL;
1866
1867         plist_for_each_entry(p, head, pushable_tasks) {
1868                 if (pick_rt_task(rq, p, cpu))
1869                         return p;
1870         }
1871
1872         return NULL;
1873 }
1874
1875 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1876
1877 static int find_lowest_rq(struct task_struct *task)
1878 {
1879         struct sched_domain *sd;
1880         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1881         int this_cpu = smp_processor_id();
1882         int cpu      = task_cpu(task);
1883         int ret;
1884
1885         /* Make sure the mask is initialized first */
1886         if (unlikely(!lowest_mask))
1887                 return -1;
1888
1889         if (task->nr_cpus_allowed == 1)
1890                 return -1; /* No other targets possible */
1891
1892         /*
1893          * If we're on asym system ensure we consider the different capacities
1894          * of the CPUs when searching for the lowest_mask.
1895          */
1896         if (sched_asym_cpucap_active()) {
1897
1898                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1899                                           task, lowest_mask,
1900                                           rt_task_fits_capacity);
1901         } else {
1902
1903                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1904                                   task, lowest_mask);
1905         }
1906
1907         if (!ret)
1908                 return -1; /* No targets found */
1909
1910         /*
1911          * At this point we have built a mask of CPUs representing the
1912          * lowest priority tasks in the system.  Now we want to elect
1913          * the best one based on our affinity and topology.
1914          *
1915          * We prioritize the last CPU that the task executed on since
1916          * it is most likely cache-hot in that location.
1917          */
1918         if (cpumask_test_cpu(cpu, lowest_mask))
1919                 return cpu;
1920
1921         /*
1922          * Otherwise, we consult the sched_domains span maps to figure
1923          * out which CPU is logically closest to our hot cache data.
1924          */
1925         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1926                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1927
1928         rcu_read_lock();
1929         for_each_domain(cpu, sd) {
1930                 if (sd->flags & SD_WAKE_AFFINE) {
1931                         int best_cpu;
1932
1933                         /*
1934                          * "this_cpu" is cheaper to preempt than a
1935                          * remote processor.
1936                          */
1937                         if (this_cpu != -1 &&
1938                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1939                                 rcu_read_unlock();
1940                                 return this_cpu;
1941                         }
1942
1943                         best_cpu = cpumask_any_and_distribute(lowest_mask,
1944                                                               sched_domain_span(sd));
1945                         if (best_cpu < nr_cpu_ids) {
1946                                 rcu_read_unlock();
1947                                 return best_cpu;
1948                         }
1949                 }
1950         }
1951         rcu_read_unlock();
1952
1953         /*
1954          * And finally, if there were no matches within the domains
1955          * just give the caller *something* to work with from the compatible
1956          * locations.
1957          */
1958         if (this_cpu != -1)
1959                 return this_cpu;
1960
1961         cpu = cpumask_any_distribute(lowest_mask);
1962         if (cpu < nr_cpu_ids)
1963                 return cpu;
1964
1965         return -1;
1966 }
1967
1968 /* Will lock the rq it finds */
1969 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1970 {
1971         struct rq *lowest_rq = NULL;
1972         int tries;
1973         int cpu;
1974
1975         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1976                 cpu = find_lowest_rq(task);
1977
1978                 if ((cpu == -1) || (cpu == rq->cpu))
1979                         break;
1980
1981                 lowest_rq = cpu_rq(cpu);
1982
1983                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1984                         /*
1985                          * Target rq has tasks of equal or higher priority,
1986                          * retrying does not release any lock and is unlikely
1987                          * to yield a different result.
1988                          */
1989                         lowest_rq = NULL;
1990                         break;
1991                 }
1992
1993                 /* if the prio of this runqueue changed, try again */
1994                 if (double_lock_balance(rq, lowest_rq)) {
1995                         /*
1996                          * We had to unlock the run queue. In
1997                          * the mean time, task could have
1998                          * migrated already or had its affinity changed.
1999                          * Also make sure that it wasn't scheduled on its rq.
2000                          */
2001                         if (unlikely(task_rq(task) != rq ||
2002                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2003                                      task_on_cpu(rq, task) ||
2004                                      !rt_task(task) ||
2005                                      !task_on_rq_queued(task))) {
2006
2007                                 double_unlock_balance(rq, lowest_rq);
2008                                 lowest_rq = NULL;
2009                                 break;
2010                         }
2011                 }
2012
2013                 /* If this rq is still suitable use it. */
2014                 if (lowest_rq->rt.highest_prio.curr > task->prio)
2015                         break;
2016
2017                 /* try again */
2018                 double_unlock_balance(rq, lowest_rq);
2019                 lowest_rq = NULL;
2020         }
2021
2022         return lowest_rq;
2023 }
2024
2025 static struct task_struct *pick_next_pushable_task(struct rq *rq)
2026 {
2027         struct task_struct *p;
2028
2029         if (!has_pushable_tasks(rq))
2030                 return NULL;
2031
2032         p = plist_first_entry(&rq->rt.pushable_tasks,
2033                               struct task_struct, pushable_tasks);
2034
2035         BUG_ON(rq->cpu != task_cpu(p));
2036         BUG_ON(task_current(rq, p));
2037         BUG_ON(p->nr_cpus_allowed <= 1);
2038
2039         BUG_ON(!task_on_rq_queued(p));
2040         BUG_ON(!rt_task(p));
2041
2042         return p;
2043 }
2044
2045 /*
2046  * If the current CPU has more than one RT task, see if the non
2047  * running task can migrate over to a CPU that is running a task
2048  * of lesser priority.
2049  */
2050 static int push_rt_task(struct rq *rq, bool pull)
2051 {
2052         struct task_struct *next_task;
2053         struct rq *lowest_rq;
2054         int ret = 0;
2055
2056         if (!rq->rt.overloaded)
2057                 return 0;
2058
2059         next_task = pick_next_pushable_task(rq);
2060         if (!next_task)
2061                 return 0;
2062
2063 retry:
2064         /*
2065          * It's possible that the next_task slipped in of
2066          * higher priority than current. If that's the case
2067          * just reschedule current.
2068          */
2069         if (unlikely(next_task->prio < rq->curr->prio)) {
2070                 resched_curr(rq);
2071                 return 0;
2072         }
2073
2074         if (is_migration_disabled(next_task)) {
2075                 struct task_struct *push_task = NULL;
2076                 int cpu;
2077
2078                 if (!pull || rq->push_busy)
2079                         return 0;
2080
2081                 /*
2082                  * Invoking find_lowest_rq() on anything but an RT task doesn't
2083                  * make sense. Per the above priority check, curr has to
2084                  * be of higher priority than next_task, so no need to
2085                  * reschedule when bailing out.
2086                  *
2087                  * Note that the stoppers are masqueraded as SCHED_FIFO
2088                  * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2089                  */
2090                 if (rq->curr->sched_class != &rt_sched_class)
2091                         return 0;
2092
2093                 cpu = find_lowest_rq(rq->curr);
2094                 if (cpu == -1 || cpu == rq->cpu)
2095                         return 0;
2096
2097                 /*
2098                  * Given we found a CPU with lower priority than @next_task,
2099                  * therefore it should be running. However we cannot migrate it
2100                  * to this other CPU, instead attempt to push the current
2101                  * running task on this CPU away.
2102                  */
2103                 push_task = get_push_task(rq);
2104                 if (push_task) {
2105                         raw_spin_rq_unlock(rq);
2106                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2107                                             push_task, &rq->push_work);
2108                         raw_spin_rq_lock(rq);
2109                 }
2110
2111                 return 0;
2112         }
2113
2114         if (WARN_ON(next_task == rq->curr))
2115                 return 0;
2116
2117         /* We might release rq lock */
2118         get_task_struct(next_task);
2119
2120         /* find_lock_lowest_rq locks the rq if found */
2121         lowest_rq = find_lock_lowest_rq(next_task, rq);
2122         if (!lowest_rq) {
2123                 struct task_struct *task;
2124                 /*
2125                  * find_lock_lowest_rq releases rq->lock
2126                  * so it is possible that next_task has migrated.
2127                  *
2128                  * We need to make sure that the task is still on the same
2129                  * run-queue and is also still the next task eligible for
2130                  * pushing.
2131                  */
2132                 task = pick_next_pushable_task(rq);
2133                 if (task == next_task) {
2134                         /*
2135                          * The task hasn't migrated, and is still the next
2136                          * eligible task, but we failed to find a run-queue
2137                          * to push it to.  Do not retry in this case, since
2138                          * other CPUs will pull from us when ready.
2139                          */
2140                         goto out;
2141                 }
2142
2143                 if (!task)
2144                         /* No more tasks, just exit */
2145                         goto out;
2146
2147                 /*
2148                  * Something has shifted, try again.
2149                  */
2150                 put_task_struct(next_task);
2151                 next_task = task;
2152                 goto retry;
2153         }
2154
2155         deactivate_task(rq, next_task, 0);
2156         set_task_cpu(next_task, lowest_rq->cpu);
2157         activate_task(lowest_rq, next_task, 0);
2158         resched_curr(lowest_rq);
2159         ret = 1;
2160
2161         double_unlock_balance(rq, lowest_rq);
2162 out:
2163         put_task_struct(next_task);
2164
2165         return ret;
2166 }
2167
2168 static void push_rt_tasks(struct rq *rq)
2169 {
2170         /* push_rt_task will return true if it moved an RT */
2171         while (push_rt_task(rq, false))
2172                 ;
2173 }
2174
2175 #ifdef HAVE_RT_PUSH_IPI
2176
2177 /*
2178  * When a high priority task schedules out from a CPU and a lower priority
2179  * task is scheduled in, a check is made to see if there's any RT tasks
2180  * on other CPUs that are waiting to run because a higher priority RT task
2181  * is currently running on its CPU. In this case, the CPU with multiple RT
2182  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2183  * up that may be able to run one of its non-running queued RT tasks.
2184  *
2185  * All CPUs with overloaded RT tasks need to be notified as there is currently
2186  * no way to know which of these CPUs have the highest priority task waiting
2187  * to run. Instead of trying to take a spinlock on each of these CPUs,
2188  * which has shown to cause large latency when done on machines with many
2189  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2190  * RT tasks waiting to run.
2191  *
2192  * Just sending an IPI to each of the CPUs is also an issue, as on large
2193  * count CPU machines, this can cause an IPI storm on a CPU, especially
2194  * if its the only CPU with multiple RT tasks queued, and a large number
2195  * of CPUs scheduling a lower priority task at the same time.
2196  *
2197  * Each root domain has its own irq work function that can iterate over
2198  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2199  * task must be checked if there's one or many CPUs that are lowering
2200  * their priority, there's a single irq work iterator that will try to
2201  * push off RT tasks that are waiting to run.
2202  *
2203  * When a CPU schedules a lower priority task, it will kick off the
2204  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2205  * As it only takes the first CPU that schedules a lower priority task
2206  * to start the process, the rto_start variable is incremented and if
2207  * the atomic result is one, then that CPU will try to take the rto_lock.
2208  * This prevents high contention on the lock as the process handles all
2209  * CPUs scheduling lower priority tasks.
2210  *
2211  * All CPUs that are scheduling a lower priority task will increment the
2212  * rt_loop_next variable. This will make sure that the irq work iterator
2213  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2214  * priority task, even if the iterator is in the middle of a scan. Incrementing
2215  * the rt_loop_next will cause the iterator to perform another scan.
2216  *
2217  */
2218 static int rto_next_cpu(struct root_domain *rd)
2219 {
2220         int next;
2221         int cpu;
2222
2223         /*
2224          * When starting the IPI RT pushing, the rto_cpu is set to -1,
2225          * rt_next_cpu() will simply return the first CPU found in
2226          * the rto_mask.
2227          *
2228          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2229          * will return the next CPU found in the rto_mask.
2230          *
2231          * If there are no more CPUs left in the rto_mask, then a check is made
2232          * against rto_loop and rto_loop_next. rto_loop is only updated with
2233          * the rto_lock held, but any CPU may increment the rto_loop_next
2234          * without any locking.
2235          */
2236         for (;;) {
2237
2238                 /* When rto_cpu is -1 this acts like cpumask_first() */
2239                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2240
2241                 rd->rto_cpu = cpu;
2242
2243                 if (cpu < nr_cpu_ids)
2244                         return cpu;
2245
2246                 rd->rto_cpu = -1;
2247
2248                 /*
2249                  * ACQUIRE ensures we see the @rto_mask changes
2250                  * made prior to the @next value observed.
2251                  *
2252                  * Matches WMB in rt_set_overload().
2253                  */
2254                 next = atomic_read_acquire(&rd->rto_loop_next);
2255
2256                 if (rd->rto_loop == next)
2257                         break;
2258
2259                 rd->rto_loop = next;
2260         }
2261
2262         return -1;
2263 }
2264
2265 static inline bool rto_start_trylock(atomic_t *v)
2266 {
2267         return !atomic_cmpxchg_acquire(v, 0, 1);
2268 }
2269
2270 static inline void rto_start_unlock(atomic_t *v)
2271 {
2272         atomic_set_release(v, 0);
2273 }
2274
2275 static void tell_cpu_to_push(struct rq *rq)
2276 {
2277         int cpu = -1;
2278
2279         /* Keep the loop going if the IPI is currently active */
2280         atomic_inc(&rq->rd->rto_loop_next);
2281
2282         /* Only one CPU can initiate a loop at a time */
2283         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2284                 return;
2285
2286         raw_spin_lock(&rq->rd->rto_lock);
2287
2288         /*
2289          * The rto_cpu is updated under the lock, if it has a valid CPU
2290          * then the IPI is still running and will continue due to the
2291          * update to loop_next, and nothing needs to be done here.
2292          * Otherwise it is finishing up and an ipi needs to be sent.
2293          */
2294         if (rq->rd->rto_cpu < 0)
2295                 cpu = rto_next_cpu(rq->rd);
2296
2297         raw_spin_unlock(&rq->rd->rto_lock);
2298
2299         rto_start_unlock(&rq->rd->rto_loop_start);
2300
2301         if (cpu >= 0) {
2302                 /* Make sure the rd does not get freed while pushing */
2303                 sched_get_rd(rq->rd);
2304                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2305         }
2306 }
2307
2308 /* Called from hardirq context */
2309 void rto_push_irq_work_func(struct irq_work *work)
2310 {
2311         struct root_domain *rd =
2312                 container_of(work, struct root_domain, rto_push_work);
2313         struct rq *rq;
2314         int cpu;
2315
2316         rq = this_rq();
2317
2318         /*
2319          * We do not need to grab the lock to check for has_pushable_tasks.
2320          * When it gets updated, a check is made if a push is possible.
2321          */
2322         if (has_pushable_tasks(rq)) {
2323                 raw_spin_rq_lock(rq);
2324                 while (push_rt_task(rq, true))
2325                         ;
2326                 raw_spin_rq_unlock(rq);
2327         }
2328
2329         raw_spin_lock(&rd->rto_lock);
2330
2331         /* Pass the IPI to the next rt overloaded queue */
2332         cpu = rto_next_cpu(rd);
2333
2334         raw_spin_unlock(&rd->rto_lock);
2335
2336         if (cpu < 0) {
2337                 sched_put_rd(rd);
2338                 return;
2339         }
2340
2341         /* Try the next RT overloaded CPU */
2342         irq_work_queue_on(&rd->rto_push_work, cpu);
2343 }
2344 #endif /* HAVE_RT_PUSH_IPI */
2345
2346 static void pull_rt_task(struct rq *this_rq)
2347 {
2348         int this_cpu = this_rq->cpu, cpu;
2349         bool resched = false;
2350         struct task_struct *p, *push_task;
2351         struct rq *src_rq;
2352         int rt_overload_count = rt_overloaded(this_rq);
2353
2354         if (likely(!rt_overload_count))
2355                 return;
2356
2357         /*
2358          * Match the barrier from rt_set_overloaded; this guarantees that if we
2359          * see overloaded we must also see the rto_mask bit.
2360          */
2361         smp_rmb();
2362
2363         /* If we are the only overloaded CPU do nothing */
2364         if (rt_overload_count == 1 &&
2365             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2366                 return;
2367
2368 #ifdef HAVE_RT_PUSH_IPI
2369         if (sched_feat(RT_PUSH_IPI)) {
2370                 tell_cpu_to_push(this_rq);
2371                 return;
2372         }
2373 #endif
2374
2375         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2376                 if (this_cpu == cpu)
2377                         continue;
2378
2379                 src_rq = cpu_rq(cpu);
2380
2381                 /*
2382                  * Don't bother taking the src_rq->lock if the next highest
2383                  * task is known to be lower-priority than our current task.
2384                  * This may look racy, but if this value is about to go
2385                  * logically higher, the src_rq will push this task away.
2386                  * And if its going logically lower, we do not care
2387                  */
2388                 if (src_rq->rt.highest_prio.next >=
2389                     this_rq->rt.highest_prio.curr)
2390                         continue;
2391
2392                 /*
2393                  * We can potentially drop this_rq's lock in
2394                  * double_lock_balance, and another CPU could
2395                  * alter this_rq
2396                  */
2397                 push_task = NULL;
2398                 double_lock_balance(this_rq, src_rq);
2399
2400                 /*
2401                  * We can pull only a task, which is pushable
2402                  * on its rq, and no others.
2403                  */
2404                 p = pick_highest_pushable_task(src_rq, this_cpu);
2405
2406                 /*
2407                  * Do we have an RT task that preempts
2408                  * the to-be-scheduled task?
2409                  */
2410                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2411                         WARN_ON(p == src_rq->curr);
2412                         WARN_ON(!task_on_rq_queued(p));
2413
2414                         /*
2415                          * There's a chance that p is higher in priority
2416                          * than what's currently running on its CPU.
2417                          * This is just that p is waking up and hasn't
2418                          * had a chance to schedule. We only pull
2419                          * p if it is lower in priority than the
2420                          * current task on the run queue
2421                          */
2422                         if (p->prio < src_rq->curr->prio)
2423                                 goto skip;
2424
2425                         if (is_migration_disabled(p)) {
2426                                 push_task = get_push_task(src_rq);
2427                         } else {
2428                                 deactivate_task(src_rq, p, 0);
2429                                 set_task_cpu(p, this_cpu);
2430                                 activate_task(this_rq, p, 0);
2431                                 resched = true;
2432                         }
2433                         /*
2434                          * We continue with the search, just in
2435                          * case there's an even higher prio task
2436                          * in another runqueue. (low likelihood
2437                          * but possible)
2438                          */
2439                 }
2440 skip:
2441                 double_unlock_balance(this_rq, src_rq);
2442
2443                 if (push_task) {
2444                         raw_spin_rq_unlock(this_rq);
2445                         stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2446                                             push_task, &src_rq->push_work);
2447                         raw_spin_rq_lock(this_rq);
2448                 }
2449         }
2450
2451         if (resched)
2452                 resched_curr(this_rq);
2453 }
2454
2455 /*
2456  * If we are not running and we are not going to reschedule soon, we should
2457  * try to push tasks away now
2458  */
2459 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2460 {
2461         bool need_to_push = !task_on_cpu(rq, p) &&
2462                             !test_tsk_need_resched(rq->curr) &&
2463                             p->nr_cpus_allowed > 1 &&
2464                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2465                             (rq->curr->nr_cpus_allowed < 2 ||
2466                              rq->curr->prio <= p->prio);
2467
2468         if (need_to_push)
2469                 push_rt_tasks(rq);
2470 }
2471
2472 /* Assumes rq->lock is held */
2473 static void rq_online_rt(struct rq *rq)
2474 {
2475         if (rq->rt.overloaded)
2476                 rt_set_overload(rq);
2477
2478         __enable_runtime(rq);
2479
2480         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2481 }
2482
2483 /* Assumes rq->lock is held */
2484 static void rq_offline_rt(struct rq *rq)
2485 {
2486         if (rq->rt.overloaded)
2487                 rt_clear_overload(rq);
2488
2489         __disable_runtime(rq);
2490
2491         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2492 }
2493
2494 /*
2495  * When switch from the rt queue, we bring ourselves to a position
2496  * that we might want to pull RT tasks from other runqueues.
2497  */
2498 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2499 {
2500         /*
2501          * If there are other RT tasks then we will reschedule
2502          * and the scheduling of the other RT tasks will handle
2503          * the balancing. But if we are the last RT task
2504          * we may need to handle the pulling of RT tasks
2505          * now.
2506          */
2507         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2508                 return;
2509
2510         rt_queue_pull_task(rq);
2511 }
2512
2513 void __init init_sched_rt_class(void)
2514 {
2515         unsigned int i;
2516
2517         for_each_possible_cpu(i) {
2518                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2519                                         GFP_KERNEL, cpu_to_node(i));
2520         }
2521 }
2522 #endif /* CONFIG_SMP */
2523
2524 /*
2525  * When switching a task to RT, we may overload the runqueue
2526  * with RT tasks. In this case we try to push them off to
2527  * other runqueues.
2528  */
2529 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2530 {
2531         /*
2532          * If we are running, update the avg_rt tracking, as the running time
2533          * will now on be accounted into the latter.
2534          */
2535         if (task_current(rq, p)) {
2536                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2537                 return;
2538         }
2539
2540         /*
2541          * If we are not running we may need to preempt the current
2542          * running task. If that current running task is also an RT task
2543          * then see if we can move to another run queue.
2544          */
2545         if (task_on_rq_queued(p)) {
2546 #ifdef CONFIG_SMP
2547                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2548                         rt_queue_push_tasks(rq);
2549 #endif /* CONFIG_SMP */
2550                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2551                         resched_curr(rq);
2552         }
2553 }
2554
2555 /*
2556  * Priority of the task has changed. This may cause
2557  * us to initiate a push or pull.
2558  */
2559 static void
2560 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2561 {
2562         if (!task_on_rq_queued(p))
2563                 return;
2564
2565         if (task_current(rq, p)) {
2566 #ifdef CONFIG_SMP
2567                 /*
2568                  * If our priority decreases while running, we
2569                  * may need to pull tasks to this runqueue.
2570                  */
2571                 if (oldprio < p->prio)
2572                         rt_queue_pull_task(rq);
2573
2574                 /*
2575                  * If there's a higher priority task waiting to run
2576                  * then reschedule.
2577                  */
2578                 if (p->prio > rq->rt.highest_prio.curr)
2579                         resched_curr(rq);
2580 #else
2581                 /* For UP simply resched on drop of prio */
2582                 if (oldprio < p->prio)
2583                         resched_curr(rq);
2584 #endif /* CONFIG_SMP */
2585         } else {
2586                 /*
2587                  * This task is not running, but if it is
2588                  * greater than the current running task
2589                  * then reschedule.
2590                  */
2591                 if (p->prio < rq->curr->prio)
2592                         resched_curr(rq);
2593         }
2594 }
2595
2596 #ifdef CONFIG_POSIX_TIMERS
2597 static void watchdog(struct rq *rq, struct task_struct *p)
2598 {
2599         unsigned long soft, hard;
2600
2601         /* max may change after cur was read, this will be fixed next tick */
2602         soft = task_rlimit(p, RLIMIT_RTTIME);
2603         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2604
2605         if (soft != RLIM_INFINITY) {
2606                 unsigned long next;
2607
2608                 if (p->rt.watchdog_stamp != jiffies) {
2609                         p->rt.timeout++;
2610                         p->rt.watchdog_stamp = jiffies;
2611                 }
2612
2613                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2614                 if (p->rt.timeout > next) {
2615                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2616                                                     p->se.sum_exec_runtime);
2617                 }
2618         }
2619 }
2620 #else
2621 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2622 #endif
2623
2624 /*
2625  * scheduler tick hitting a task of our scheduling class.
2626  *
2627  * NOTE: This function can be called remotely by the tick offload that
2628  * goes along full dynticks. Therefore no local assumption can be made
2629  * and everything must be accessed through the @rq and @curr passed in
2630  * parameters.
2631  */
2632 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2633 {
2634         struct sched_rt_entity *rt_se = &p->rt;
2635
2636         update_curr_rt(rq);
2637         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2638
2639         watchdog(rq, p);
2640
2641         /*
2642          * RR tasks need a special form of timeslice management.
2643          * FIFO tasks have no timeslices.
2644          */
2645         if (p->policy != SCHED_RR)
2646                 return;
2647
2648         if (--p->rt.time_slice)
2649                 return;
2650
2651         p->rt.time_slice = sched_rr_timeslice;
2652
2653         /*
2654          * Requeue to the end of queue if we (and all of our ancestors) are not
2655          * the only element on the queue
2656          */
2657         for_each_sched_rt_entity(rt_se) {
2658                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2659                         requeue_task_rt(rq, p, 0);
2660                         resched_curr(rq);
2661                         return;
2662                 }
2663         }
2664 }
2665
2666 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2667 {
2668         /*
2669          * Time slice is 0 for SCHED_FIFO tasks
2670          */
2671         if (task->policy == SCHED_RR)
2672                 return sched_rr_timeslice;
2673         else
2674                 return 0;
2675 }
2676
2677 DEFINE_SCHED_CLASS(rt) = {
2678
2679         .enqueue_task           = enqueue_task_rt,
2680         .dequeue_task           = dequeue_task_rt,
2681         .yield_task             = yield_task_rt,
2682
2683         .check_preempt_curr     = check_preempt_curr_rt,
2684
2685         .pick_next_task         = pick_next_task_rt,
2686         .put_prev_task          = put_prev_task_rt,
2687         .set_next_task          = set_next_task_rt,
2688
2689 #ifdef CONFIG_SMP
2690         .balance                = balance_rt,
2691         .pick_task              = pick_task_rt,
2692         .select_task_rq         = select_task_rq_rt,
2693         .set_cpus_allowed       = set_cpus_allowed_common,
2694         .rq_online              = rq_online_rt,
2695         .rq_offline             = rq_offline_rt,
2696         .task_woken             = task_woken_rt,
2697         .switched_from          = switched_from_rt,
2698         .find_lock_rq           = find_lock_lowest_rq,
2699 #endif
2700
2701         .task_tick              = task_tick_rt,
2702
2703         .get_rr_interval        = get_rr_interval_rt,
2704
2705         .prio_changed           = prio_changed_rt,
2706         .switched_to            = switched_to_rt,
2707
2708         .update_curr            = update_curr_rt,
2709
2710 #ifdef CONFIG_UCLAMP_TASK
2711         .uclamp_enabled         = 1,
2712 #endif
2713 };
2714
2715 #ifdef CONFIG_RT_GROUP_SCHED
2716 /*
2717  * Ensure that the real time constraints are schedulable.
2718  */
2719 static DEFINE_MUTEX(rt_constraints_mutex);
2720
2721 static inline int tg_has_rt_tasks(struct task_group *tg)
2722 {
2723         struct task_struct *task;
2724         struct css_task_iter it;
2725         int ret = 0;
2726
2727         /*
2728          * Autogroups do not have RT tasks; see autogroup_create().
2729          */
2730         if (task_group_is_autogroup(tg))
2731                 return 0;
2732
2733         css_task_iter_start(&tg->css, 0, &it);
2734         while (!ret && (task = css_task_iter_next(&it)))
2735                 ret |= rt_task(task);
2736         css_task_iter_end(&it);
2737
2738         return ret;
2739 }
2740
2741 struct rt_schedulable_data {
2742         struct task_group *tg;
2743         u64 rt_period;
2744         u64 rt_runtime;
2745 };
2746
2747 static int tg_rt_schedulable(struct task_group *tg, void *data)
2748 {
2749         struct rt_schedulable_data *d = data;
2750         struct task_group *child;
2751         unsigned long total, sum = 0;
2752         u64 period, runtime;
2753
2754         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2755         runtime = tg->rt_bandwidth.rt_runtime;
2756
2757         if (tg == d->tg) {
2758                 period = d->rt_period;
2759                 runtime = d->rt_runtime;
2760         }
2761
2762         /*
2763          * Cannot have more runtime than the period.
2764          */
2765         if (runtime > period && runtime != RUNTIME_INF)
2766                 return -EINVAL;
2767
2768         /*
2769          * Ensure we don't starve existing RT tasks if runtime turns zero.
2770          */
2771         if (rt_bandwidth_enabled() && !runtime &&
2772             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2773                 return -EBUSY;
2774
2775         total = to_ratio(period, runtime);
2776
2777         /*
2778          * Nobody can have more than the global setting allows.
2779          */
2780         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2781                 return -EINVAL;
2782
2783         /*
2784          * The sum of our children's runtime should not exceed our own.
2785          */
2786         list_for_each_entry_rcu(child, &tg->children, siblings) {
2787                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2788                 runtime = child->rt_bandwidth.rt_runtime;
2789
2790                 if (child == d->tg) {
2791                         period = d->rt_period;
2792                         runtime = d->rt_runtime;
2793                 }
2794
2795                 sum += to_ratio(period, runtime);
2796         }
2797
2798         if (sum > total)
2799                 return -EINVAL;
2800
2801         return 0;
2802 }
2803
2804 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2805 {
2806         int ret;
2807
2808         struct rt_schedulable_data data = {
2809                 .tg = tg,
2810                 .rt_period = period,
2811                 .rt_runtime = runtime,
2812         };
2813
2814         rcu_read_lock();
2815         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2816         rcu_read_unlock();
2817
2818         return ret;
2819 }
2820
2821 static int tg_set_rt_bandwidth(struct task_group *tg,
2822                 u64 rt_period, u64 rt_runtime)
2823 {
2824         int i, err = 0;
2825
2826         /*
2827          * Disallowing the root group RT runtime is BAD, it would disallow the
2828          * kernel creating (and or operating) RT threads.
2829          */
2830         if (tg == &root_task_group && rt_runtime == 0)
2831                 return -EINVAL;
2832
2833         /* No period doesn't make any sense. */
2834         if (rt_period == 0)
2835                 return -EINVAL;
2836
2837         /*
2838          * Bound quota to defend quota against overflow during bandwidth shift.
2839          */
2840         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2841                 return -EINVAL;
2842
2843         mutex_lock(&rt_constraints_mutex);
2844         err = __rt_schedulable(tg, rt_period, rt_runtime);
2845         if (err)
2846                 goto unlock;
2847
2848         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2849         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2850         tg->rt_bandwidth.rt_runtime = rt_runtime;
2851
2852         for_each_possible_cpu(i) {
2853                 struct rt_rq *rt_rq = tg->rt_rq[i];
2854
2855                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2856                 rt_rq->rt_runtime = rt_runtime;
2857                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2858         }
2859         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2860 unlock:
2861         mutex_unlock(&rt_constraints_mutex);
2862
2863         return err;
2864 }
2865
2866 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2867 {
2868         u64 rt_runtime, rt_period;
2869
2870         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2871         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2872         if (rt_runtime_us < 0)
2873                 rt_runtime = RUNTIME_INF;
2874         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2875                 return -EINVAL;
2876
2877         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2878 }
2879
2880 long sched_group_rt_runtime(struct task_group *tg)
2881 {
2882         u64 rt_runtime_us;
2883
2884         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2885                 return -1;
2886
2887         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2888         do_div(rt_runtime_us, NSEC_PER_USEC);
2889         return rt_runtime_us;
2890 }
2891
2892 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2893 {
2894         u64 rt_runtime, rt_period;
2895
2896         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2897                 return -EINVAL;
2898
2899         rt_period = rt_period_us * NSEC_PER_USEC;
2900         rt_runtime = tg->rt_bandwidth.rt_runtime;
2901
2902         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2903 }
2904
2905 long sched_group_rt_period(struct task_group *tg)
2906 {
2907         u64 rt_period_us;
2908
2909         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2910         do_div(rt_period_us, NSEC_PER_USEC);
2911         return rt_period_us;
2912 }
2913
2914 #ifdef CONFIG_SYSCTL
2915 static int sched_rt_global_constraints(void)
2916 {
2917         int ret = 0;
2918
2919         mutex_lock(&rt_constraints_mutex);
2920         ret = __rt_schedulable(NULL, 0, 0);
2921         mutex_unlock(&rt_constraints_mutex);
2922
2923         return ret;
2924 }
2925 #endif /* CONFIG_SYSCTL */
2926
2927 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2928 {
2929         /* Don't accept realtime tasks when there is no way for them to run */
2930         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2931                 return 0;
2932
2933         return 1;
2934 }
2935
2936 #else /* !CONFIG_RT_GROUP_SCHED */
2937
2938 #ifdef CONFIG_SYSCTL
2939 static int sched_rt_global_constraints(void)
2940 {
2941         unsigned long flags;
2942         int i;
2943
2944         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2945         for_each_possible_cpu(i) {
2946                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2947
2948                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2949                 rt_rq->rt_runtime = global_rt_runtime();
2950                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2951         }
2952         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2953
2954         return 0;
2955 }
2956 #endif /* CONFIG_SYSCTL */
2957 #endif /* CONFIG_RT_GROUP_SCHED */
2958
2959 #ifdef CONFIG_SYSCTL
2960 static int sched_rt_global_validate(void)
2961 {
2962         if (sysctl_sched_rt_period <= 0)
2963                 return -EINVAL;
2964
2965         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2966                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2967                  ((u64)sysctl_sched_rt_runtime *
2968                         NSEC_PER_USEC > max_rt_runtime)))
2969                 return -EINVAL;
2970
2971         return 0;
2972 }
2973
2974 static void sched_rt_do_global(void)
2975 {
2976         unsigned long flags;
2977
2978         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2979         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2980         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2981         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2982 }
2983
2984 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2985                 size_t *lenp, loff_t *ppos)
2986 {
2987         int old_period, old_runtime;
2988         static DEFINE_MUTEX(mutex);
2989         int ret;
2990
2991         mutex_lock(&mutex);
2992         old_period = sysctl_sched_rt_period;
2993         old_runtime = sysctl_sched_rt_runtime;
2994
2995         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2996
2997         if (!ret && write) {
2998                 ret = sched_rt_global_validate();
2999                 if (ret)
3000                         goto undo;
3001
3002                 ret = sched_dl_global_validate();
3003                 if (ret)
3004                         goto undo;
3005
3006                 ret = sched_rt_global_constraints();
3007                 if (ret)
3008                         goto undo;
3009
3010                 sched_rt_do_global();
3011                 sched_dl_do_global();
3012         }
3013         if (0) {
3014 undo:
3015                 sysctl_sched_rt_period = old_period;
3016                 sysctl_sched_rt_runtime = old_runtime;
3017         }
3018         mutex_unlock(&mutex);
3019
3020         return ret;
3021 }
3022
3023 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3024                 size_t *lenp, loff_t *ppos)
3025 {
3026         int ret;
3027         static DEFINE_MUTEX(mutex);
3028
3029         mutex_lock(&mutex);
3030         ret = proc_dointvec(table, write, buffer, lenp, ppos);
3031         /*
3032          * Make sure that internally we keep jiffies.
3033          * Also, writing zero resets the timeslice to default:
3034          */
3035         if (!ret && write) {
3036                 sched_rr_timeslice =
3037                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3038                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
3039         }
3040         mutex_unlock(&mutex);
3041
3042         return ret;
3043 }
3044 #endif /* CONFIG_SYSCTL */
3045
3046 #ifdef CONFIG_SCHED_DEBUG
3047 void print_rt_stats(struct seq_file *m, int cpu)
3048 {
3049         rt_rq_iter_t iter;
3050         struct rt_rq *rt_rq;
3051
3052         rcu_read_lock();
3053         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3054                 print_rt_rq(m, cpu, rt_rq);
3055         rcu_read_unlock();
3056 }
3057 #endif /* CONFIG_SCHED_DEBUG */