drm: virtio_gpu: add support for ARGB8888 primary plane
[platform/kernel/linux-rpi.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime = MAX_BW;
14
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17 struct rt_bandwidth def_rt_bandwidth;
18
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21         struct rt_bandwidth *rt_b =
22                 container_of(timer, struct rt_bandwidth, rt_period_timer);
23         int idle = 0;
24         int overrun;
25
26         raw_spin_lock(&rt_b->rt_runtime_lock);
27         for (;;) {
28                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29                 if (!overrun)
30                         break;
31
32                 raw_spin_unlock(&rt_b->rt_runtime_lock);
33                 idle = do_sched_rt_period_timer(rt_b, overrun);
34                 raw_spin_lock(&rt_b->rt_runtime_lock);
35         }
36         if (idle)
37                 rt_b->rt_period_active = 0;
38         raw_spin_unlock(&rt_b->rt_runtime_lock);
39
40         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45         rt_b->rt_period = ns_to_ktime(period);
46         rt_b->rt_runtime = runtime;
47
48         raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
51                      HRTIMER_MODE_REL_HARD);
52         rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54
55 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57         raw_spin_lock(&rt_b->rt_runtime_lock);
58         if (!rt_b->rt_period_active) {
59                 rt_b->rt_period_active = 1;
60                 /*
61                  * SCHED_DEADLINE updates the bandwidth, as a run away
62                  * RT task with a DL task could hog a CPU. But DL does
63                  * not reset the period. If a deadline task was running
64                  * without an RT task running, it can cause RT tasks to
65                  * throttle when they start up. Kick the timer right away
66                  * to update the period.
67                  */
68                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
69                 hrtimer_start_expires(&rt_b->rt_period_timer,
70                                       HRTIMER_MODE_ABS_PINNED_HARD);
71         }
72         raw_spin_unlock(&rt_b->rt_runtime_lock);
73 }
74
75 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
76 {
77         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
78                 return;
79
80         do_start_rt_bandwidth(rt_b);
81 }
82
83 void init_rt_rq(struct rt_rq *rt_rq)
84 {
85         struct rt_prio_array *array;
86         int i;
87
88         array = &rt_rq->active;
89         for (i = 0; i < MAX_RT_PRIO; i++) {
90                 INIT_LIST_HEAD(array->queue + i);
91                 __clear_bit(i, array->bitmap);
92         }
93         /* delimiter for bitsearch: */
94         __set_bit(MAX_RT_PRIO, array->bitmap);
95
96 #if defined CONFIG_SMP
97         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
98         rt_rq->highest_prio.next = MAX_RT_PRIO-1;
99         rt_rq->rt_nr_migratory = 0;
100         rt_rq->overloaded = 0;
101         plist_head_init(&rt_rq->pushable_tasks);
102 #endif /* CONFIG_SMP */
103         /* We start is dequeued state, because no RT tasks are queued */
104         rt_rq->rt_queued = 0;
105
106         rt_rq->rt_time = 0;
107         rt_rq->rt_throttled = 0;
108         rt_rq->rt_runtime = 0;
109         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
110 }
111
112 #ifdef CONFIG_RT_GROUP_SCHED
113 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
114 {
115         hrtimer_cancel(&rt_b->rt_period_timer);
116 }
117
118 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
119
120 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
121 {
122 #ifdef CONFIG_SCHED_DEBUG
123         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
124 #endif
125         return container_of(rt_se, struct task_struct, rt);
126 }
127
128 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
129 {
130         return rt_rq->rq;
131 }
132
133 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
134 {
135         return rt_se->rt_rq;
136 }
137
138 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
139 {
140         struct rt_rq *rt_rq = rt_se->rt_rq;
141
142         return rt_rq->rq;
143 }
144
145 void unregister_rt_sched_group(struct task_group *tg)
146 {
147         if (tg->rt_se)
148                 destroy_rt_bandwidth(&tg->rt_bandwidth);
149
150 }
151
152 void free_rt_sched_group(struct task_group *tg)
153 {
154         int i;
155
156         for_each_possible_cpu(i) {
157                 if (tg->rt_rq)
158                         kfree(tg->rt_rq[i]);
159                 if (tg->rt_se)
160                         kfree(tg->rt_se[i]);
161         }
162
163         kfree(tg->rt_rq);
164         kfree(tg->rt_se);
165 }
166
167 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
168                 struct sched_rt_entity *rt_se, int cpu,
169                 struct sched_rt_entity *parent)
170 {
171         struct rq *rq = cpu_rq(cpu);
172
173         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
174         rt_rq->rt_nr_boosted = 0;
175         rt_rq->rq = rq;
176         rt_rq->tg = tg;
177
178         tg->rt_rq[cpu] = rt_rq;
179         tg->rt_se[cpu] = rt_se;
180
181         if (!rt_se)
182                 return;
183
184         if (!parent)
185                 rt_se->rt_rq = &rq->rt;
186         else
187                 rt_se->rt_rq = parent->my_q;
188
189         rt_se->my_q = rt_rq;
190         rt_se->parent = parent;
191         INIT_LIST_HEAD(&rt_se->run_list);
192 }
193
194 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
195 {
196         struct rt_rq *rt_rq;
197         struct sched_rt_entity *rt_se;
198         int i;
199
200         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
201         if (!tg->rt_rq)
202                 goto err;
203         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
204         if (!tg->rt_se)
205                 goto err;
206
207         init_rt_bandwidth(&tg->rt_bandwidth,
208                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
209
210         for_each_possible_cpu(i) {
211                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
212                                      GFP_KERNEL, cpu_to_node(i));
213                 if (!rt_rq)
214                         goto err;
215
216                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
217                                      GFP_KERNEL, cpu_to_node(i));
218                 if (!rt_se)
219                         goto err_free_rq;
220
221                 init_rt_rq(rt_rq);
222                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
223                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
224         }
225
226         return 1;
227
228 err_free_rq:
229         kfree(rt_rq);
230 err:
231         return 0;
232 }
233
234 #else /* CONFIG_RT_GROUP_SCHED */
235
236 #define rt_entity_is_task(rt_se) (1)
237
238 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
239 {
240         return container_of(rt_se, struct task_struct, rt);
241 }
242
243 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
244 {
245         return container_of(rt_rq, struct rq, rt);
246 }
247
248 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
249 {
250         struct task_struct *p = rt_task_of(rt_se);
251
252         return task_rq(p);
253 }
254
255 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
256 {
257         struct rq *rq = rq_of_rt_se(rt_se);
258
259         return &rq->rt;
260 }
261
262 void unregister_rt_sched_group(struct task_group *tg) { }
263
264 void free_rt_sched_group(struct task_group *tg) { }
265
266 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
267 {
268         return 1;
269 }
270 #endif /* CONFIG_RT_GROUP_SCHED */
271
272 #ifdef CONFIG_SMP
273
274 static void pull_rt_task(struct rq *this_rq);
275
276 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
277 {
278         /* Try to pull RT tasks here if we lower this rq's prio */
279         return rq->online && rq->rt.highest_prio.curr > prev->prio;
280 }
281
282 static inline int rt_overloaded(struct rq *rq)
283 {
284         return atomic_read(&rq->rd->rto_count);
285 }
286
287 static inline void rt_set_overload(struct rq *rq)
288 {
289         if (!rq->online)
290                 return;
291
292         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
293         /*
294          * Make sure the mask is visible before we set
295          * the overload count. That is checked to determine
296          * if we should look at the mask. It would be a shame
297          * if we looked at the mask, but the mask was not
298          * updated yet.
299          *
300          * Matched by the barrier in pull_rt_task().
301          */
302         smp_wmb();
303         atomic_inc(&rq->rd->rto_count);
304 }
305
306 static inline void rt_clear_overload(struct rq *rq)
307 {
308         if (!rq->online)
309                 return;
310
311         /* the order here really doesn't matter */
312         atomic_dec(&rq->rd->rto_count);
313         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
314 }
315
316 static void update_rt_migration(struct rt_rq *rt_rq)
317 {
318         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
319                 if (!rt_rq->overloaded) {
320                         rt_set_overload(rq_of_rt_rq(rt_rq));
321                         rt_rq->overloaded = 1;
322                 }
323         } else if (rt_rq->overloaded) {
324                 rt_clear_overload(rq_of_rt_rq(rt_rq));
325                 rt_rq->overloaded = 0;
326         }
327 }
328
329 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
330 {
331         struct task_struct *p;
332
333         if (!rt_entity_is_task(rt_se))
334                 return;
335
336         p = rt_task_of(rt_se);
337         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
338
339         rt_rq->rt_nr_total++;
340         if (p->nr_cpus_allowed > 1)
341                 rt_rq->rt_nr_migratory++;
342
343         update_rt_migration(rt_rq);
344 }
345
346 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
347 {
348         struct task_struct *p;
349
350         if (!rt_entity_is_task(rt_se))
351                 return;
352
353         p = rt_task_of(rt_se);
354         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
355
356         rt_rq->rt_nr_total--;
357         if (p->nr_cpus_allowed > 1)
358                 rt_rq->rt_nr_migratory--;
359
360         update_rt_migration(rt_rq);
361 }
362
363 static inline int has_pushable_tasks(struct rq *rq)
364 {
365         return !plist_head_empty(&rq->rt.pushable_tasks);
366 }
367
368 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
369 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
370
371 static void push_rt_tasks(struct rq *);
372 static void pull_rt_task(struct rq *);
373
374 static inline void rt_queue_push_tasks(struct rq *rq)
375 {
376         if (!has_pushable_tasks(rq))
377                 return;
378
379         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
380 }
381
382 static inline void rt_queue_pull_task(struct rq *rq)
383 {
384         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
385 }
386
387 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
388 {
389         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390         plist_node_init(&p->pushable_tasks, p->prio);
391         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
392
393         /* Update the highest prio pushable task */
394         if (p->prio < rq->rt.highest_prio.next)
395                 rq->rt.highest_prio.next = p->prio;
396 }
397
398 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
399 {
400         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
401
402         /* Update the new highest prio pushable task */
403         if (has_pushable_tasks(rq)) {
404                 p = plist_first_entry(&rq->rt.pushable_tasks,
405                                       struct task_struct, pushable_tasks);
406                 rq->rt.highest_prio.next = p->prio;
407         } else {
408                 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
409         }
410 }
411
412 #else
413
414 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
415 {
416 }
417
418 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
419 {
420 }
421
422 static inline
423 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
424 {
425 }
426
427 static inline
428 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
429 {
430 }
431
432 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
433 {
434         return false;
435 }
436
437 static inline void pull_rt_task(struct rq *this_rq)
438 {
439 }
440
441 static inline void rt_queue_push_tasks(struct rq *rq)
442 {
443 }
444 #endif /* CONFIG_SMP */
445
446 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
447 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
448
449 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
450 {
451         return rt_se->on_rq;
452 }
453
454 #ifdef CONFIG_UCLAMP_TASK
455 /*
456  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
457  * settings.
458  *
459  * This check is only important for heterogeneous systems where uclamp_min value
460  * is higher than the capacity of a @cpu. For non-heterogeneous system this
461  * function will always return true.
462  *
463  * The function will return true if the capacity of the @cpu is >= the
464  * uclamp_min and false otherwise.
465  *
466  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
467  * > uclamp_max.
468  */
469 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
470 {
471         unsigned int min_cap;
472         unsigned int max_cap;
473         unsigned int cpu_cap;
474
475         /* Only heterogeneous systems can benefit from this check */
476         if (!sched_asym_cpucap_active())
477                 return true;
478
479         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
480         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
481
482         cpu_cap = capacity_orig_of(cpu);
483
484         return cpu_cap >= min(min_cap, max_cap);
485 }
486 #else
487 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
488 {
489         return true;
490 }
491 #endif
492
493 #ifdef CONFIG_RT_GROUP_SCHED
494
495 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
496 {
497         if (!rt_rq->tg)
498                 return RUNTIME_INF;
499
500         return rt_rq->rt_runtime;
501 }
502
503 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
504 {
505         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
506 }
507
508 typedef struct task_group *rt_rq_iter_t;
509
510 static inline struct task_group *next_task_group(struct task_group *tg)
511 {
512         do {
513                 tg = list_entry_rcu(tg->list.next,
514                         typeof(struct task_group), list);
515         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
516
517         if (&tg->list == &task_groups)
518                 tg = NULL;
519
520         return tg;
521 }
522
523 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
524         for (iter = container_of(&task_groups, typeof(*iter), list);    \
525                 (iter = next_task_group(iter)) &&                       \
526                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
527
528 #define for_each_sched_rt_entity(rt_se) \
529         for (; rt_se; rt_se = rt_se->parent)
530
531 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
532 {
533         return rt_se->my_q;
534 }
535
536 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
537 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
538
539 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
540 {
541         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
542         struct rq *rq = rq_of_rt_rq(rt_rq);
543         struct sched_rt_entity *rt_se;
544
545         int cpu = cpu_of(rq);
546
547         rt_se = rt_rq->tg->rt_se[cpu];
548
549         if (rt_rq->rt_nr_running) {
550                 if (!rt_se)
551                         enqueue_top_rt_rq(rt_rq);
552                 else if (!on_rt_rq(rt_se))
553                         enqueue_rt_entity(rt_se, 0);
554
555                 if (rt_rq->highest_prio.curr < curr->prio)
556                         resched_curr(rq);
557         }
558 }
559
560 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
561 {
562         struct sched_rt_entity *rt_se;
563         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
564
565         rt_se = rt_rq->tg->rt_se[cpu];
566
567         if (!rt_se) {
568                 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
569                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
570                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
571         }
572         else if (on_rt_rq(rt_se))
573                 dequeue_rt_entity(rt_se, 0);
574 }
575
576 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
577 {
578         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
579 }
580
581 static int rt_se_boosted(struct sched_rt_entity *rt_se)
582 {
583         struct rt_rq *rt_rq = group_rt_rq(rt_se);
584         struct task_struct *p;
585
586         if (rt_rq)
587                 return !!rt_rq->rt_nr_boosted;
588
589         p = rt_task_of(rt_se);
590         return p->prio != p->normal_prio;
591 }
592
593 #ifdef CONFIG_SMP
594 static inline const struct cpumask *sched_rt_period_mask(void)
595 {
596         return this_rq()->rd->span;
597 }
598 #else
599 static inline const struct cpumask *sched_rt_period_mask(void)
600 {
601         return cpu_online_mask;
602 }
603 #endif
604
605 static inline
606 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
607 {
608         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
609 }
610
611 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
612 {
613         return &rt_rq->tg->rt_bandwidth;
614 }
615
616 #else /* !CONFIG_RT_GROUP_SCHED */
617
618 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
619 {
620         return rt_rq->rt_runtime;
621 }
622
623 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
624 {
625         return ktime_to_ns(def_rt_bandwidth.rt_period);
626 }
627
628 typedef struct rt_rq *rt_rq_iter_t;
629
630 #define for_each_rt_rq(rt_rq, iter, rq) \
631         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
632
633 #define for_each_sched_rt_entity(rt_se) \
634         for (; rt_se; rt_se = NULL)
635
636 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
637 {
638         return NULL;
639 }
640
641 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
642 {
643         struct rq *rq = rq_of_rt_rq(rt_rq);
644
645         if (!rt_rq->rt_nr_running)
646                 return;
647
648         enqueue_top_rt_rq(rt_rq);
649         resched_curr(rq);
650 }
651
652 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
653 {
654         dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
655 }
656
657 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
658 {
659         return rt_rq->rt_throttled;
660 }
661
662 static inline const struct cpumask *sched_rt_period_mask(void)
663 {
664         return cpu_online_mask;
665 }
666
667 static inline
668 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
669 {
670         return &cpu_rq(cpu)->rt;
671 }
672
673 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
674 {
675         return &def_rt_bandwidth;
676 }
677
678 #endif /* CONFIG_RT_GROUP_SCHED */
679
680 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
681 {
682         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
683
684         return (hrtimer_active(&rt_b->rt_period_timer) ||
685                 rt_rq->rt_time < rt_b->rt_runtime);
686 }
687
688 #ifdef CONFIG_SMP
689 /*
690  * We ran out of runtime, see if we can borrow some from our neighbours.
691  */
692 static void do_balance_runtime(struct rt_rq *rt_rq)
693 {
694         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
695         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
696         int i, weight;
697         u64 rt_period;
698
699         weight = cpumask_weight(rd->span);
700
701         raw_spin_lock(&rt_b->rt_runtime_lock);
702         rt_period = ktime_to_ns(rt_b->rt_period);
703         for_each_cpu(i, rd->span) {
704                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
705                 s64 diff;
706
707                 if (iter == rt_rq)
708                         continue;
709
710                 raw_spin_lock(&iter->rt_runtime_lock);
711                 /*
712                  * Either all rqs have inf runtime and there's nothing to steal
713                  * or __disable_runtime() below sets a specific rq to inf to
714                  * indicate its been disabled and disallow stealing.
715                  */
716                 if (iter->rt_runtime == RUNTIME_INF)
717                         goto next;
718
719                 /*
720                  * From runqueues with spare time, take 1/n part of their
721                  * spare time, but no more than our period.
722                  */
723                 diff = iter->rt_runtime - iter->rt_time;
724                 if (diff > 0) {
725                         diff = div_u64((u64)diff, weight);
726                         if (rt_rq->rt_runtime + diff > rt_period)
727                                 diff = rt_period - rt_rq->rt_runtime;
728                         iter->rt_runtime -= diff;
729                         rt_rq->rt_runtime += diff;
730                         if (rt_rq->rt_runtime == rt_period) {
731                                 raw_spin_unlock(&iter->rt_runtime_lock);
732                                 break;
733                         }
734                 }
735 next:
736                 raw_spin_unlock(&iter->rt_runtime_lock);
737         }
738         raw_spin_unlock(&rt_b->rt_runtime_lock);
739 }
740
741 /*
742  * Ensure this RQ takes back all the runtime it lend to its neighbours.
743  */
744 static void __disable_runtime(struct rq *rq)
745 {
746         struct root_domain *rd = rq->rd;
747         rt_rq_iter_t iter;
748         struct rt_rq *rt_rq;
749
750         if (unlikely(!scheduler_running))
751                 return;
752
753         for_each_rt_rq(rt_rq, iter, rq) {
754                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
755                 s64 want;
756                 int i;
757
758                 raw_spin_lock(&rt_b->rt_runtime_lock);
759                 raw_spin_lock(&rt_rq->rt_runtime_lock);
760                 /*
761                  * Either we're all inf and nobody needs to borrow, or we're
762                  * already disabled and thus have nothing to do, or we have
763                  * exactly the right amount of runtime to take out.
764                  */
765                 if (rt_rq->rt_runtime == RUNTIME_INF ||
766                                 rt_rq->rt_runtime == rt_b->rt_runtime)
767                         goto balanced;
768                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
769
770                 /*
771                  * Calculate the difference between what we started out with
772                  * and what we current have, that's the amount of runtime
773                  * we lend and now have to reclaim.
774                  */
775                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
776
777                 /*
778                  * Greedy reclaim, take back as much as we can.
779                  */
780                 for_each_cpu(i, rd->span) {
781                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
782                         s64 diff;
783
784                         /*
785                          * Can't reclaim from ourselves or disabled runqueues.
786                          */
787                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
788                                 continue;
789
790                         raw_spin_lock(&iter->rt_runtime_lock);
791                         if (want > 0) {
792                                 diff = min_t(s64, iter->rt_runtime, want);
793                                 iter->rt_runtime -= diff;
794                                 want -= diff;
795                         } else {
796                                 iter->rt_runtime -= want;
797                                 want -= want;
798                         }
799                         raw_spin_unlock(&iter->rt_runtime_lock);
800
801                         if (!want)
802                                 break;
803                 }
804
805                 raw_spin_lock(&rt_rq->rt_runtime_lock);
806                 /*
807                  * We cannot be left wanting - that would mean some runtime
808                  * leaked out of the system.
809                  */
810                 BUG_ON(want);
811 balanced:
812                 /*
813                  * Disable all the borrow logic by pretending we have inf
814                  * runtime - in which case borrowing doesn't make sense.
815                  */
816                 rt_rq->rt_runtime = RUNTIME_INF;
817                 rt_rq->rt_throttled = 0;
818                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
819                 raw_spin_unlock(&rt_b->rt_runtime_lock);
820
821                 /* Make rt_rq available for pick_next_task() */
822                 sched_rt_rq_enqueue(rt_rq);
823         }
824 }
825
826 static void __enable_runtime(struct rq *rq)
827 {
828         rt_rq_iter_t iter;
829         struct rt_rq *rt_rq;
830
831         if (unlikely(!scheduler_running))
832                 return;
833
834         /*
835          * Reset each runqueue's bandwidth settings
836          */
837         for_each_rt_rq(rt_rq, iter, rq) {
838                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
839
840                 raw_spin_lock(&rt_b->rt_runtime_lock);
841                 raw_spin_lock(&rt_rq->rt_runtime_lock);
842                 rt_rq->rt_runtime = rt_b->rt_runtime;
843                 rt_rq->rt_time = 0;
844                 rt_rq->rt_throttled = 0;
845                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
846                 raw_spin_unlock(&rt_b->rt_runtime_lock);
847         }
848 }
849
850 static void balance_runtime(struct rt_rq *rt_rq)
851 {
852         if (!sched_feat(RT_RUNTIME_SHARE))
853                 return;
854
855         if (rt_rq->rt_time > rt_rq->rt_runtime) {
856                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
857                 do_balance_runtime(rt_rq);
858                 raw_spin_lock(&rt_rq->rt_runtime_lock);
859         }
860 }
861 #else /* !CONFIG_SMP */
862 static inline void balance_runtime(struct rt_rq *rt_rq) {}
863 #endif /* CONFIG_SMP */
864
865 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
866 {
867         int i, idle = 1, throttled = 0;
868         const struct cpumask *span;
869
870         span = sched_rt_period_mask();
871 #ifdef CONFIG_RT_GROUP_SCHED
872         /*
873          * FIXME: isolated CPUs should really leave the root task group,
874          * whether they are isolcpus or were isolated via cpusets, lest
875          * the timer run on a CPU which does not service all runqueues,
876          * potentially leaving other CPUs indefinitely throttled.  If
877          * isolation is really required, the user will turn the throttle
878          * off to kill the perturbations it causes anyway.  Meanwhile,
879          * this maintains functionality for boot and/or troubleshooting.
880          */
881         if (rt_b == &root_task_group.rt_bandwidth)
882                 span = cpu_online_mask;
883 #endif
884         for_each_cpu(i, span) {
885                 int enqueue = 0;
886                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
887                 struct rq *rq = rq_of_rt_rq(rt_rq);
888                 struct rq_flags rf;
889                 int skip;
890
891                 /*
892                  * When span == cpu_online_mask, taking each rq->lock
893                  * can be time-consuming. Try to avoid it when possible.
894                  */
895                 raw_spin_lock(&rt_rq->rt_runtime_lock);
896                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
897                         rt_rq->rt_runtime = rt_b->rt_runtime;
898                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
899                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
900                 if (skip)
901                         continue;
902
903                 rq_lock(rq, &rf);
904                 update_rq_clock(rq);
905
906                 if (rt_rq->rt_time) {
907                         u64 runtime;
908
909                         raw_spin_lock(&rt_rq->rt_runtime_lock);
910                         if (rt_rq->rt_throttled)
911                                 balance_runtime(rt_rq);
912                         runtime = rt_rq->rt_runtime;
913                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
914                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
915                                 rt_rq->rt_throttled = 0;
916                                 enqueue = 1;
917
918                                 /*
919                                  * When we're idle and a woken (rt) task is
920                                  * throttled check_preempt_curr() will set
921                                  * skip_update and the time between the wakeup
922                                  * and this unthrottle will get accounted as
923                                  * 'runtime'.
924                                  */
925                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
926                                         rq_clock_cancel_skipupdate(rq);
927                         }
928                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
929                                 idle = 0;
930                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
931                 } else if (rt_rq->rt_nr_running) {
932                         idle = 0;
933                         if (!rt_rq_throttled(rt_rq))
934                                 enqueue = 1;
935                 }
936                 if (rt_rq->rt_throttled)
937                         throttled = 1;
938
939                 if (enqueue)
940                         sched_rt_rq_enqueue(rt_rq);
941                 rq_unlock(rq, &rf);
942         }
943
944         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
945                 return 1;
946
947         return idle;
948 }
949
950 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
951 {
952 #ifdef CONFIG_RT_GROUP_SCHED
953         struct rt_rq *rt_rq = group_rt_rq(rt_se);
954
955         if (rt_rq)
956                 return rt_rq->highest_prio.curr;
957 #endif
958
959         return rt_task_of(rt_se)->prio;
960 }
961
962 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
963 {
964         u64 runtime = sched_rt_runtime(rt_rq);
965
966         if (rt_rq->rt_throttled)
967                 return rt_rq_throttled(rt_rq);
968
969         if (runtime >= sched_rt_period(rt_rq))
970                 return 0;
971
972         balance_runtime(rt_rq);
973         runtime = sched_rt_runtime(rt_rq);
974         if (runtime == RUNTIME_INF)
975                 return 0;
976
977         if (rt_rq->rt_time > runtime) {
978                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
979
980                 /*
981                  * Don't actually throttle groups that have no runtime assigned
982                  * but accrue some time due to boosting.
983                  */
984                 if (likely(rt_b->rt_runtime)) {
985                         rt_rq->rt_throttled = 1;
986                         printk_deferred_once("sched: RT throttling activated\n");
987                 } else {
988                         /*
989                          * In case we did anyway, make it go away,
990                          * replenishment is a joke, since it will replenish us
991                          * with exactly 0 ns.
992                          */
993                         rt_rq->rt_time = 0;
994                 }
995
996                 if (rt_rq_throttled(rt_rq)) {
997                         sched_rt_rq_dequeue(rt_rq);
998                         return 1;
999                 }
1000         }
1001
1002         return 0;
1003 }
1004
1005 /*
1006  * Update the current task's runtime statistics. Skip current tasks that
1007  * are not in our scheduling class.
1008  */
1009 static void update_curr_rt(struct rq *rq)
1010 {
1011         struct task_struct *curr = rq->curr;
1012         struct sched_rt_entity *rt_se = &curr->rt;
1013         u64 delta_exec;
1014         u64 now;
1015
1016         if (curr->sched_class != &rt_sched_class)
1017                 return;
1018
1019         now = rq_clock_task(rq);
1020         delta_exec = now - curr->se.exec_start;
1021         if (unlikely((s64)delta_exec <= 0))
1022                 return;
1023
1024         schedstat_set(curr->se.statistics.exec_max,
1025                       max(curr->se.statistics.exec_max, delta_exec));
1026
1027         curr->se.sum_exec_runtime += delta_exec;
1028         account_group_exec_runtime(curr, delta_exec);
1029
1030         curr->se.exec_start = now;
1031         cgroup_account_cputime(curr, delta_exec);
1032
1033         if (!rt_bandwidth_enabled())
1034                 return;
1035
1036         for_each_sched_rt_entity(rt_se) {
1037                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1038                 int exceeded;
1039
1040                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1041                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1042                         rt_rq->rt_time += delta_exec;
1043                         exceeded = sched_rt_runtime_exceeded(rt_rq);
1044                         if (exceeded)
1045                                 resched_curr(rq);
1046                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1047                         if (exceeded)
1048                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1049                 }
1050         }
1051 }
1052
1053 static void
1054 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1055 {
1056         struct rq *rq = rq_of_rt_rq(rt_rq);
1057
1058         BUG_ON(&rq->rt != rt_rq);
1059
1060         if (!rt_rq->rt_queued)
1061                 return;
1062
1063         BUG_ON(!rq->nr_running);
1064
1065         sub_nr_running(rq, count);
1066         rt_rq->rt_queued = 0;
1067
1068 }
1069
1070 static void
1071 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1072 {
1073         struct rq *rq = rq_of_rt_rq(rt_rq);
1074
1075         BUG_ON(&rq->rt != rt_rq);
1076
1077         if (rt_rq->rt_queued)
1078                 return;
1079
1080         if (rt_rq_throttled(rt_rq))
1081                 return;
1082
1083         if (rt_rq->rt_nr_running) {
1084                 add_nr_running(rq, rt_rq->rt_nr_running);
1085                 rt_rq->rt_queued = 1;
1086         }
1087
1088         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1089         cpufreq_update_util(rq, 0);
1090 }
1091
1092 #if defined CONFIG_SMP
1093
1094 static void
1095 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1096 {
1097         struct rq *rq = rq_of_rt_rq(rt_rq);
1098
1099 #ifdef CONFIG_RT_GROUP_SCHED
1100         /*
1101          * Change rq's cpupri only if rt_rq is the top queue.
1102          */
1103         if (&rq->rt != rt_rq)
1104                 return;
1105 #endif
1106         if (rq->online && prio < prev_prio)
1107                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1108 }
1109
1110 static void
1111 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1112 {
1113         struct rq *rq = rq_of_rt_rq(rt_rq);
1114
1115 #ifdef CONFIG_RT_GROUP_SCHED
1116         /*
1117          * Change rq's cpupri only if rt_rq is the top queue.
1118          */
1119         if (&rq->rt != rt_rq)
1120                 return;
1121 #endif
1122         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1123                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1124 }
1125
1126 #else /* CONFIG_SMP */
1127
1128 static inline
1129 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1130 static inline
1131 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1132
1133 #endif /* CONFIG_SMP */
1134
1135 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1136 static void
1137 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1138 {
1139         int prev_prio = rt_rq->highest_prio.curr;
1140
1141         if (prio < prev_prio)
1142                 rt_rq->highest_prio.curr = prio;
1143
1144         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1145 }
1146
1147 static void
1148 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1149 {
1150         int prev_prio = rt_rq->highest_prio.curr;
1151
1152         if (rt_rq->rt_nr_running) {
1153
1154                 WARN_ON(prio < prev_prio);
1155
1156                 /*
1157                  * This may have been our highest task, and therefore
1158                  * we may have some recomputation to do
1159                  */
1160                 if (prio == prev_prio) {
1161                         struct rt_prio_array *array = &rt_rq->active;
1162
1163                         rt_rq->highest_prio.curr =
1164                                 sched_find_first_bit(array->bitmap);
1165                 }
1166
1167         } else {
1168                 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1169         }
1170
1171         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1172 }
1173
1174 #else
1175
1176 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1177 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1178
1179 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1180
1181 #ifdef CONFIG_RT_GROUP_SCHED
1182
1183 static void
1184 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1185 {
1186         if (rt_se_boosted(rt_se))
1187                 rt_rq->rt_nr_boosted++;
1188
1189         if (rt_rq->tg)
1190                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1191 }
1192
1193 static void
1194 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1195 {
1196         if (rt_se_boosted(rt_se))
1197                 rt_rq->rt_nr_boosted--;
1198
1199         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1200 }
1201
1202 #else /* CONFIG_RT_GROUP_SCHED */
1203
1204 static void
1205 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1206 {
1207         start_rt_bandwidth(&def_rt_bandwidth);
1208 }
1209
1210 static inline
1211 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1212
1213 #endif /* CONFIG_RT_GROUP_SCHED */
1214
1215 static inline
1216 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1217 {
1218         struct rt_rq *group_rq = group_rt_rq(rt_se);
1219
1220         if (group_rq)
1221                 return group_rq->rt_nr_running;
1222         else
1223                 return 1;
1224 }
1225
1226 static inline
1227 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1228 {
1229         struct rt_rq *group_rq = group_rt_rq(rt_se);
1230         struct task_struct *tsk;
1231
1232         if (group_rq)
1233                 return group_rq->rr_nr_running;
1234
1235         tsk = rt_task_of(rt_se);
1236
1237         return (tsk->policy == SCHED_RR) ? 1 : 0;
1238 }
1239
1240 static inline
1241 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1242 {
1243         int prio = rt_se_prio(rt_se);
1244
1245         WARN_ON(!rt_prio(prio));
1246         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1247         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1248
1249         inc_rt_prio(rt_rq, prio);
1250         inc_rt_migration(rt_se, rt_rq);
1251         inc_rt_group(rt_se, rt_rq);
1252 }
1253
1254 static inline
1255 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1256 {
1257         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1258         WARN_ON(!rt_rq->rt_nr_running);
1259         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1260         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1261
1262         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1263         dec_rt_migration(rt_se, rt_rq);
1264         dec_rt_group(rt_se, rt_rq);
1265 }
1266
1267 /*
1268  * Change rt_se->run_list location unless SAVE && !MOVE
1269  *
1270  * assumes ENQUEUE/DEQUEUE flags match
1271  */
1272 static inline bool move_entity(unsigned int flags)
1273 {
1274         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1275                 return false;
1276
1277         return true;
1278 }
1279
1280 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1281 {
1282         list_del_init(&rt_se->run_list);
1283
1284         if (list_empty(array->queue + rt_se_prio(rt_se)))
1285                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1286
1287         rt_se->on_list = 0;
1288 }
1289
1290 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1291 {
1292         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1293         struct rt_prio_array *array = &rt_rq->active;
1294         struct rt_rq *group_rq = group_rt_rq(rt_se);
1295         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1296
1297         /*
1298          * Don't enqueue the group if its throttled, or when empty.
1299          * The latter is a consequence of the former when a child group
1300          * get throttled and the current group doesn't have any other
1301          * active members.
1302          */
1303         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1304                 if (rt_se->on_list)
1305                         __delist_rt_entity(rt_se, array);
1306                 return;
1307         }
1308
1309         if (move_entity(flags)) {
1310                 WARN_ON_ONCE(rt_se->on_list);
1311                 if (flags & ENQUEUE_HEAD)
1312                         list_add(&rt_se->run_list, queue);
1313                 else
1314                         list_add_tail(&rt_se->run_list, queue);
1315
1316                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1317                 rt_se->on_list = 1;
1318         }
1319         rt_se->on_rq = 1;
1320
1321         inc_rt_tasks(rt_se, rt_rq);
1322 }
1323
1324 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1325 {
1326         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1327         struct rt_prio_array *array = &rt_rq->active;
1328
1329         if (move_entity(flags)) {
1330                 WARN_ON_ONCE(!rt_se->on_list);
1331                 __delist_rt_entity(rt_se, array);
1332         }
1333         rt_se->on_rq = 0;
1334
1335         dec_rt_tasks(rt_se, rt_rq);
1336 }
1337
1338 /*
1339  * Because the prio of an upper entry depends on the lower
1340  * entries, we must remove entries top - down.
1341  */
1342 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1343 {
1344         struct sched_rt_entity *back = NULL;
1345         unsigned int rt_nr_running;
1346
1347         for_each_sched_rt_entity(rt_se) {
1348                 rt_se->back = back;
1349                 back = rt_se;
1350         }
1351
1352         rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1353
1354         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1355                 if (on_rt_rq(rt_se))
1356                         __dequeue_rt_entity(rt_se, flags);
1357         }
1358
1359         dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1360 }
1361
1362 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1363 {
1364         struct rq *rq = rq_of_rt_se(rt_se);
1365
1366         dequeue_rt_stack(rt_se, flags);
1367         for_each_sched_rt_entity(rt_se)
1368                 __enqueue_rt_entity(rt_se, flags);
1369         enqueue_top_rt_rq(&rq->rt);
1370 }
1371
1372 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1373 {
1374         struct rq *rq = rq_of_rt_se(rt_se);
1375
1376         dequeue_rt_stack(rt_se, flags);
1377
1378         for_each_sched_rt_entity(rt_se) {
1379                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1380
1381                 if (rt_rq && rt_rq->rt_nr_running)
1382                         __enqueue_rt_entity(rt_se, flags);
1383         }
1384         enqueue_top_rt_rq(&rq->rt);
1385 }
1386
1387 /*
1388  * Adding/removing a task to/from a priority array:
1389  */
1390 static void
1391 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1392 {
1393         struct sched_rt_entity *rt_se = &p->rt;
1394
1395         if (flags & ENQUEUE_WAKEUP)
1396                 rt_se->timeout = 0;
1397
1398         enqueue_rt_entity(rt_se, flags);
1399
1400         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1401                 enqueue_pushable_task(rq, p);
1402 }
1403
1404 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1405 {
1406         struct sched_rt_entity *rt_se = &p->rt;
1407
1408         update_curr_rt(rq);
1409         dequeue_rt_entity(rt_se, flags);
1410
1411         dequeue_pushable_task(rq, p);
1412 }
1413
1414 /*
1415  * Put task to the head or the end of the run list without the overhead of
1416  * dequeue followed by enqueue.
1417  */
1418 static void
1419 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1420 {
1421         if (on_rt_rq(rt_se)) {
1422                 struct rt_prio_array *array = &rt_rq->active;
1423                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1424
1425                 if (head)
1426                         list_move(&rt_se->run_list, queue);
1427                 else
1428                         list_move_tail(&rt_se->run_list, queue);
1429         }
1430 }
1431
1432 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1433 {
1434         struct sched_rt_entity *rt_se = &p->rt;
1435         struct rt_rq *rt_rq;
1436
1437         for_each_sched_rt_entity(rt_se) {
1438                 rt_rq = rt_rq_of_se(rt_se);
1439                 requeue_rt_entity(rt_rq, rt_se, head);
1440         }
1441 }
1442
1443 static void yield_task_rt(struct rq *rq)
1444 {
1445         requeue_task_rt(rq, rq->curr, 0);
1446 }
1447
1448 #ifdef CONFIG_SMP
1449 static int find_lowest_rq(struct task_struct *task);
1450
1451 static int
1452 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1453 {
1454         struct task_struct *curr;
1455         struct rq *rq;
1456         bool test;
1457
1458         /* For anything but wake ups, just return the task_cpu */
1459         if (!(flags & (WF_TTWU | WF_FORK)))
1460                 goto out;
1461
1462         rq = cpu_rq(cpu);
1463
1464         rcu_read_lock();
1465         curr = READ_ONCE(rq->curr); /* unlocked access */
1466
1467         /*
1468          * If the current task on @p's runqueue is an RT task, then
1469          * try to see if we can wake this RT task up on another
1470          * runqueue. Otherwise simply start this RT task
1471          * on its current runqueue.
1472          *
1473          * We want to avoid overloading runqueues. If the woken
1474          * task is a higher priority, then it will stay on this CPU
1475          * and the lower prio task should be moved to another CPU.
1476          * Even though this will probably make the lower prio task
1477          * lose its cache, we do not want to bounce a higher task
1478          * around just because it gave up its CPU, perhaps for a
1479          * lock?
1480          *
1481          * For equal prio tasks, we just let the scheduler sort it out.
1482          *
1483          * Otherwise, just let it ride on the affined RQ and the
1484          * post-schedule router will push the preempted task away
1485          *
1486          * This test is optimistic, if we get it wrong the load-balancer
1487          * will have to sort it out.
1488          *
1489          * We take into account the capacity of the CPU to ensure it fits the
1490          * requirement of the task - which is only important on heterogeneous
1491          * systems like big.LITTLE.
1492          */
1493         test = curr &&
1494                unlikely(rt_task(curr)) &&
1495                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1496
1497         if (test || !rt_task_fits_capacity(p, cpu)) {
1498                 int target = find_lowest_rq(p);
1499
1500                 /*
1501                  * Bail out if we were forcing a migration to find a better
1502                  * fitting CPU but our search failed.
1503                  */
1504                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1505                         goto out_unlock;
1506
1507                 /*
1508                  * Don't bother moving it if the destination CPU is
1509                  * not running a lower priority task.
1510                  */
1511                 if (target != -1 &&
1512                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1513                         cpu = target;
1514         }
1515
1516 out_unlock:
1517         rcu_read_unlock();
1518
1519 out:
1520         return cpu;
1521 }
1522
1523 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1524 {
1525         /*
1526          * Current can't be migrated, useless to reschedule,
1527          * let's hope p can move out.
1528          */
1529         if (rq->curr->nr_cpus_allowed == 1 ||
1530             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1531                 return;
1532
1533         /*
1534          * p is migratable, so let's not schedule it and
1535          * see if it is pushed or pulled somewhere else.
1536          */
1537         if (p->nr_cpus_allowed != 1 &&
1538             cpupri_find(&rq->rd->cpupri, p, NULL))
1539                 return;
1540
1541         /*
1542          * There appear to be other CPUs that can accept
1543          * the current task but none can run 'p', so lets reschedule
1544          * to try and push the current task away:
1545          */
1546         requeue_task_rt(rq, p, 1);
1547         resched_curr(rq);
1548 }
1549
1550 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1551 {
1552         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1553                 /*
1554                  * This is OK, because current is on_cpu, which avoids it being
1555                  * picked for load-balance and preemption/IRQs are still
1556                  * disabled avoiding further scheduler activity on it and we've
1557                  * not yet started the picking loop.
1558                  */
1559                 rq_unpin_lock(rq, rf);
1560                 pull_rt_task(rq);
1561                 rq_repin_lock(rq, rf);
1562         }
1563
1564         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1565 }
1566 #endif /* CONFIG_SMP */
1567
1568 /*
1569  * Preempt the current task with a newly woken task if needed:
1570  */
1571 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1572 {
1573         if (p->prio < rq->curr->prio) {
1574                 resched_curr(rq);
1575                 return;
1576         }
1577
1578 #ifdef CONFIG_SMP
1579         /*
1580          * If:
1581          *
1582          * - the newly woken task is of equal priority to the current task
1583          * - the newly woken task is non-migratable while current is migratable
1584          * - current will be preempted on the next reschedule
1585          *
1586          * we should check to see if current can readily move to a different
1587          * cpu.  If so, we will reschedule to allow the push logic to try
1588          * to move current somewhere else, making room for our non-migratable
1589          * task.
1590          */
1591         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1592                 check_preempt_equal_prio(rq, p);
1593 #endif
1594 }
1595
1596 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1597 {
1598         p->se.exec_start = rq_clock_task(rq);
1599
1600         /* The running task is never eligible for pushing */
1601         dequeue_pushable_task(rq, p);
1602
1603         if (!first)
1604                 return;
1605
1606         /*
1607          * If prev task was rt, put_prev_task() has already updated the
1608          * utilization. We only care of the case where we start to schedule a
1609          * rt task
1610          */
1611         if (rq->curr->sched_class != &rt_sched_class)
1612                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1613
1614         rt_queue_push_tasks(rq);
1615 }
1616
1617 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1618                                                    struct rt_rq *rt_rq)
1619 {
1620         struct rt_prio_array *array = &rt_rq->active;
1621         struct sched_rt_entity *next = NULL;
1622         struct list_head *queue;
1623         int idx;
1624
1625         idx = sched_find_first_bit(array->bitmap);
1626         BUG_ON(idx >= MAX_RT_PRIO);
1627
1628         queue = array->queue + idx;
1629         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1630
1631         return next;
1632 }
1633
1634 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1635 {
1636         struct sched_rt_entity *rt_se;
1637         struct rt_rq *rt_rq  = &rq->rt;
1638
1639         do {
1640                 rt_se = pick_next_rt_entity(rq, rt_rq);
1641                 BUG_ON(!rt_se);
1642                 rt_rq = group_rt_rq(rt_se);
1643         } while (rt_rq);
1644
1645         return rt_task_of(rt_se);
1646 }
1647
1648 static struct task_struct *pick_task_rt(struct rq *rq)
1649 {
1650         struct task_struct *p;
1651
1652         if (!sched_rt_runnable(rq))
1653                 return NULL;
1654
1655         p = _pick_next_task_rt(rq);
1656
1657         return p;
1658 }
1659
1660 static struct task_struct *pick_next_task_rt(struct rq *rq)
1661 {
1662         struct task_struct *p = pick_task_rt(rq);
1663
1664         if (p)
1665                 set_next_task_rt(rq, p, true);
1666
1667         return p;
1668 }
1669
1670 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1671 {
1672         update_curr_rt(rq);
1673
1674         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1675
1676         /*
1677          * The previous task needs to be made eligible for pushing
1678          * if it is still active
1679          */
1680         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1681                 enqueue_pushable_task(rq, p);
1682 }
1683
1684 #ifdef CONFIG_SMP
1685
1686 /* Only try algorithms three times */
1687 #define RT_MAX_TRIES 3
1688
1689 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1690 {
1691         if (!task_running(rq, p) &&
1692             cpumask_test_cpu(cpu, &p->cpus_mask))
1693                 return 1;
1694
1695         return 0;
1696 }
1697
1698 /*
1699  * Return the highest pushable rq's task, which is suitable to be executed
1700  * on the CPU, NULL otherwise
1701  */
1702 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1703 {
1704         struct plist_head *head = &rq->rt.pushable_tasks;
1705         struct task_struct *p;
1706
1707         if (!has_pushable_tasks(rq))
1708                 return NULL;
1709
1710         plist_for_each_entry(p, head, pushable_tasks) {
1711                 if (pick_rt_task(rq, p, cpu))
1712                         return p;
1713         }
1714
1715         return NULL;
1716 }
1717
1718 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1719
1720 static int find_lowest_rq(struct task_struct *task)
1721 {
1722         struct sched_domain *sd;
1723         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1724         int this_cpu = smp_processor_id();
1725         int cpu      = task_cpu(task);
1726         int ret;
1727
1728         /* Make sure the mask is initialized first */
1729         if (unlikely(!lowest_mask))
1730                 return -1;
1731
1732         if (task->nr_cpus_allowed == 1)
1733                 return -1; /* No other targets possible */
1734
1735         /*
1736          * If we're on asym system ensure we consider the different capacities
1737          * of the CPUs when searching for the lowest_mask.
1738          */
1739         if (sched_asym_cpucap_active()) {
1740
1741                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1742                                           task, lowest_mask,
1743                                           rt_task_fits_capacity);
1744         } else {
1745
1746                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1747                                   task, lowest_mask);
1748         }
1749
1750         if (!ret)
1751                 return -1; /* No targets found */
1752
1753         /*
1754          * At this point we have built a mask of CPUs representing the
1755          * lowest priority tasks in the system.  Now we want to elect
1756          * the best one based on our affinity and topology.
1757          *
1758          * We prioritize the last CPU that the task executed on since
1759          * it is most likely cache-hot in that location.
1760          */
1761         if (cpumask_test_cpu(cpu, lowest_mask))
1762                 return cpu;
1763
1764         /*
1765          * Otherwise, we consult the sched_domains span maps to figure
1766          * out which CPU is logically closest to our hot cache data.
1767          */
1768         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1769                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1770
1771         rcu_read_lock();
1772         for_each_domain(cpu, sd) {
1773                 if (sd->flags & SD_WAKE_AFFINE) {
1774                         int best_cpu;
1775
1776                         /*
1777                          * "this_cpu" is cheaper to preempt than a
1778                          * remote processor.
1779                          */
1780                         if (this_cpu != -1 &&
1781                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1782                                 rcu_read_unlock();
1783                                 return this_cpu;
1784                         }
1785
1786                         best_cpu = cpumask_any_and_distribute(lowest_mask,
1787                                                               sched_domain_span(sd));
1788                         if (best_cpu < nr_cpu_ids) {
1789                                 rcu_read_unlock();
1790                                 return best_cpu;
1791                         }
1792                 }
1793         }
1794         rcu_read_unlock();
1795
1796         /*
1797          * And finally, if there were no matches within the domains
1798          * just give the caller *something* to work with from the compatible
1799          * locations.
1800          */
1801         if (this_cpu != -1)
1802                 return this_cpu;
1803
1804         cpu = cpumask_any_distribute(lowest_mask);
1805         if (cpu < nr_cpu_ids)
1806                 return cpu;
1807
1808         return -1;
1809 }
1810
1811 /* Will lock the rq it finds */
1812 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1813 {
1814         struct rq *lowest_rq = NULL;
1815         int tries;
1816         int cpu;
1817
1818         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1819                 cpu = find_lowest_rq(task);
1820
1821                 if ((cpu == -1) || (cpu == rq->cpu))
1822                         break;
1823
1824                 lowest_rq = cpu_rq(cpu);
1825
1826                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1827                         /*
1828                          * Target rq has tasks of equal or higher priority,
1829                          * retrying does not release any lock and is unlikely
1830                          * to yield a different result.
1831                          */
1832                         lowest_rq = NULL;
1833                         break;
1834                 }
1835
1836                 /* if the prio of this runqueue changed, try again */
1837                 if (double_lock_balance(rq, lowest_rq)) {
1838                         /*
1839                          * We had to unlock the run queue. In
1840                          * the mean time, task could have
1841                          * migrated already or had its affinity changed.
1842                          * Also make sure that it wasn't scheduled on its rq.
1843                          */
1844                         if (unlikely(task_rq(task) != rq ||
1845                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1846                                      task_running(rq, task) ||
1847                                      !rt_task(task) ||
1848                                      !task_on_rq_queued(task))) {
1849
1850                                 double_unlock_balance(rq, lowest_rq);
1851                                 lowest_rq = NULL;
1852                                 break;
1853                         }
1854                 }
1855
1856                 /* If this rq is still suitable use it. */
1857                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1858                         break;
1859
1860                 /* try again */
1861                 double_unlock_balance(rq, lowest_rq);
1862                 lowest_rq = NULL;
1863         }
1864
1865         return lowest_rq;
1866 }
1867
1868 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1869 {
1870         struct task_struct *p;
1871
1872         if (!has_pushable_tasks(rq))
1873                 return NULL;
1874
1875         p = plist_first_entry(&rq->rt.pushable_tasks,
1876                               struct task_struct, pushable_tasks);
1877
1878         BUG_ON(rq->cpu != task_cpu(p));
1879         BUG_ON(task_current(rq, p));
1880         BUG_ON(p->nr_cpus_allowed <= 1);
1881
1882         BUG_ON(!task_on_rq_queued(p));
1883         BUG_ON(!rt_task(p));
1884
1885         return p;
1886 }
1887
1888 /*
1889  * If the current CPU has more than one RT task, see if the non
1890  * running task can migrate over to a CPU that is running a task
1891  * of lesser priority.
1892  */
1893 static int push_rt_task(struct rq *rq, bool pull)
1894 {
1895         struct task_struct *next_task;
1896         struct rq *lowest_rq;
1897         int ret = 0;
1898
1899         if (!rq->rt.overloaded)
1900                 return 0;
1901
1902         next_task = pick_next_pushable_task(rq);
1903         if (!next_task)
1904                 return 0;
1905
1906 retry:
1907         /*
1908          * It's possible that the next_task slipped in of
1909          * higher priority than current. If that's the case
1910          * just reschedule current.
1911          */
1912         if (unlikely(next_task->prio < rq->curr->prio)) {
1913                 resched_curr(rq);
1914                 return 0;
1915         }
1916
1917         if (is_migration_disabled(next_task)) {
1918                 struct task_struct *push_task = NULL;
1919                 int cpu;
1920
1921                 if (!pull || rq->push_busy)
1922                         return 0;
1923
1924                 /*
1925                  * Invoking find_lowest_rq() on anything but an RT task doesn't
1926                  * make sense. Per the above priority check, curr has to
1927                  * be of higher priority than next_task, so no need to
1928                  * reschedule when bailing out.
1929                  *
1930                  * Note that the stoppers are masqueraded as SCHED_FIFO
1931                  * (cf. sched_set_stop_task()), so we can't rely on rt_task().
1932                  */
1933                 if (rq->curr->sched_class != &rt_sched_class)
1934                         return 0;
1935
1936                 cpu = find_lowest_rq(rq->curr);
1937                 if (cpu == -1 || cpu == rq->cpu)
1938                         return 0;
1939
1940                 /*
1941                  * Given we found a CPU with lower priority than @next_task,
1942                  * therefore it should be running. However we cannot migrate it
1943                  * to this other CPU, instead attempt to push the current
1944                  * running task on this CPU away.
1945                  */
1946                 push_task = get_push_task(rq);
1947                 if (push_task) {
1948                         raw_spin_rq_unlock(rq);
1949                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
1950                                             push_task, &rq->push_work);
1951                         raw_spin_rq_lock(rq);
1952                 }
1953
1954                 return 0;
1955         }
1956
1957         if (WARN_ON(next_task == rq->curr))
1958                 return 0;
1959
1960         /* We might release rq lock */
1961         get_task_struct(next_task);
1962
1963         /* find_lock_lowest_rq locks the rq if found */
1964         lowest_rq = find_lock_lowest_rq(next_task, rq);
1965         if (!lowest_rq) {
1966                 struct task_struct *task;
1967                 /*
1968                  * find_lock_lowest_rq releases rq->lock
1969                  * so it is possible that next_task has migrated.
1970                  *
1971                  * We need to make sure that the task is still on the same
1972                  * run-queue and is also still the next task eligible for
1973                  * pushing.
1974                  */
1975                 task = pick_next_pushable_task(rq);
1976                 if (task == next_task) {
1977                         /*
1978                          * The task hasn't migrated, and is still the next
1979                          * eligible task, but we failed to find a run-queue
1980                          * to push it to.  Do not retry in this case, since
1981                          * other CPUs will pull from us when ready.
1982                          */
1983                         goto out;
1984                 }
1985
1986                 if (!task)
1987                         /* No more tasks, just exit */
1988                         goto out;
1989
1990                 /*
1991                  * Something has shifted, try again.
1992                  */
1993                 put_task_struct(next_task);
1994                 next_task = task;
1995                 goto retry;
1996         }
1997
1998         deactivate_task(rq, next_task, 0);
1999         set_task_cpu(next_task, lowest_rq->cpu);
2000         activate_task(lowest_rq, next_task, 0);
2001         resched_curr(lowest_rq);
2002         ret = 1;
2003
2004         double_unlock_balance(rq, lowest_rq);
2005 out:
2006         put_task_struct(next_task);
2007
2008         return ret;
2009 }
2010
2011 static void push_rt_tasks(struct rq *rq)
2012 {
2013         /* push_rt_task will return true if it moved an RT */
2014         while (push_rt_task(rq, false))
2015                 ;
2016 }
2017
2018 #ifdef HAVE_RT_PUSH_IPI
2019
2020 /*
2021  * When a high priority task schedules out from a CPU and a lower priority
2022  * task is scheduled in, a check is made to see if there's any RT tasks
2023  * on other CPUs that are waiting to run because a higher priority RT task
2024  * is currently running on its CPU. In this case, the CPU with multiple RT
2025  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2026  * up that may be able to run one of its non-running queued RT tasks.
2027  *
2028  * All CPUs with overloaded RT tasks need to be notified as there is currently
2029  * no way to know which of these CPUs have the highest priority task waiting
2030  * to run. Instead of trying to take a spinlock on each of these CPUs,
2031  * which has shown to cause large latency when done on machines with many
2032  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2033  * RT tasks waiting to run.
2034  *
2035  * Just sending an IPI to each of the CPUs is also an issue, as on large
2036  * count CPU machines, this can cause an IPI storm on a CPU, especially
2037  * if its the only CPU with multiple RT tasks queued, and a large number
2038  * of CPUs scheduling a lower priority task at the same time.
2039  *
2040  * Each root domain has its own irq work function that can iterate over
2041  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2042  * task must be checked if there's one or many CPUs that are lowering
2043  * their priority, there's a single irq work iterator that will try to
2044  * push off RT tasks that are waiting to run.
2045  *
2046  * When a CPU schedules a lower priority task, it will kick off the
2047  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2048  * As it only takes the first CPU that schedules a lower priority task
2049  * to start the process, the rto_start variable is incremented and if
2050  * the atomic result is one, then that CPU will try to take the rto_lock.
2051  * This prevents high contention on the lock as the process handles all
2052  * CPUs scheduling lower priority tasks.
2053  *
2054  * All CPUs that are scheduling a lower priority task will increment the
2055  * rt_loop_next variable. This will make sure that the irq work iterator
2056  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2057  * priority task, even if the iterator is in the middle of a scan. Incrementing
2058  * the rt_loop_next will cause the iterator to perform another scan.
2059  *
2060  */
2061 static int rto_next_cpu(struct root_domain *rd)
2062 {
2063         int next;
2064         int cpu;
2065
2066         /*
2067          * When starting the IPI RT pushing, the rto_cpu is set to -1,
2068          * rt_next_cpu() will simply return the first CPU found in
2069          * the rto_mask.
2070          *
2071          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2072          * will return the next CPU found in the rto_mask.
2073          *
2074          * If there are no more CPUs left in the rto_mask, then a check is made
2075          * against rto_loop and rto_loop_next. rto_loop is only updated with
2076          * the rto_lock held, but any CPU may increment the rto_loop_next
2077          * without any locking.
2078          */
2079         for (;;) {
2080
2081                 /* When rto_cpu is -1 this acts like cpumask_first() */
2082                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2083
2084                 rd->rto_cpu = cpu;
2085
2086                 if (cpu < nr_cpu_ids)
2087                         return cpu;
2088
2089                 rd->rto_cpu = -1;
2090
2091                 /*
2092                  * ACQUIRE ensures we see the @rto_mask changes
2093                  * made prior to the @next value observed.
2094                  *
2095                  * Matches WMB in rt_set_overload().
2096                  */
2097                 next = atomic_read_acquire(&rd->rto_loop_next);
2098
2099                 if (rd->rto_loop == next)
2100                         break;
2101
2102                 rd->rto_loop = next;
2103         }
2104
2105         return -1;
2106 }
2107
2108 static inline bool rto_start_trylock(atomic_t *v)
2109 {
2110         return !atomic_cmpxchg_acquire(v, 0, 1);
2111 }
2112
2113 static inline void rto_start_unlock(atomic_t *v)
2114 {
2115         atomic_set_release(v, 0);
2116 }
2117
2118 static void tell_cpu_to_push(struct rq *rq)
2119 {
2120         int cpu = -1;
2121
2122         /* Keep the loop going if the IPI is currently active */
2123         atomic_inc(&rq->rd->rto_loop_next);
2124
2125         /* Only one CPU can initiate a loop at a time */
2126         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2127                 return;
2128
2129         raw_spin_lock(&rq->rd->rto_lock);
2130
2131         /*
2132          * The rto_cpu is updated under the lock, if it has a valid CPU
2133          * then the IPI is still running and will continue due to the
2134          * update to loop_next, and nothing needs to be done here.
2135          * Otherwise it is finishing up and an ipi needs to be sent.
2136          */
2137         if (rq->rd->rto_cpu < 0)
2138                 cpu = rto_next_cpu(rq->rd);
2139
2140         raw_spin_unlock(&rq->rd->rto_lock);
2141
2142         rto_start_unlock(&rq->rd->rto_loop_start);
2143
2144         if (cpu >= 0) {
2145                 /* Make sure the rd does not get freed while pushing */
2146                 sched_get_rd(rq->rd);
2147                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2148         }
2149 }
2150
2151 /* Called from hardirq context */
2152 void rto_push_irq_work_func(struct irq_work *work)
2153 {
2154         struct root_domain *rd =
2155                 container_of(work, struct root_domain, rto_push_work);
2156         struct rq *rq;
2157         int cpu;
2158
2159         rq = this_rq();
2160
2161         /*
2162          * We do not need to grab the lock to check for has_pushable_tasks.
2163          * When it gets updated, a check is made if a push is possible.
2164          */
2165         if (has_pushable_tasks(rq)) {
2166                 raw_spin_rq_lock(rq);
2167                 while (push_rt_task(rq, true))
2168                         ;
2169                 raw_spin_rq_unlock(rq);
2170         }
2171
2172         raw_spin_lock(&rd->rto_lock);
2173
2174         /* Pass the IPI to the next rt overloaded queue */
2175         cpu = rto_next_cpu(rd);
2176
2177         raw_spin_unlock(&rd->rto_lock);
2178
2179         if (cpu < 0) {
2180                 sched_put_rd(rd);
2181                 return;
2182         }
2183
2184         /* Try the next RT overloaded CPU */
2185         irq_work_queue_on(&rd->rto_push_work, cpu);
2186 }
2187 #endif /* HAVE_RT_PUSH_IPI */
2188
2189 static void pull_rt_task(struct rq *this_rq)
2190 {
2191         int this_cpu = this_rq->cpu, cpu;
2192         bool resched = false;
2193         struct task_struct *p, *push_task;
2194         struct rq *src_rq;
2195         int rt_overload_count = rt_overloaded(this_rq);
2196
2197         if (likely(!rt_overload_count))
2198                 return;
2199
2200         /*
2201          * Match the barrier from rt_set_overloaded; this guarantees that if we
2202          * see overloaded we must also see the rto_mask bit.
2203          */
2204         smp_rmb();
2205
2206         /* If we are the only overloaded CPU do nothing */
2207         if (rt_overload_count == 1 &&
2208             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2209                 return;
2210
2211 #ifdef HAVE_RT_PUSH_IPI
2212         if (sched_feat(RT_PUSH_IPI)) {
2213                 tell_cpu_to_push(this_rq);
2214                 return;
2215         }
2216 #endif
2217
2218         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2219                 if (this_cpu == cpu)
2220                         continue;
2221
2222                 src_rq = cpu_rq(cpu);
2223
2224                 /*
2225                  * Don't bother taking the src_rq->lock if the next highest
2226                  * task is known to be lower-priority than our current task.
2227                  * This may look racy, but if this value is about to go
2228                  * logically higher, the src_rq will push this task away.
2229                  * And if its going logically lower, we do not care
2230                  */
2231                 if (src_rq->rt.highest_prio.next >=
2232                     this_rq->rt.highest_prio.curr)
2233                         continue;
2234
2235                 /*
2236                  * We can potentially drop this_rq's lock in
2237                  * double_lock_balance, and another CPU could
2238                  * alter this_rq
2239                  */
2240                 push_task = NULL;
2241                 double_lock_balance(this_rq, src_rq);
2242
2243                 /*
2244                  * We can pull only a task, which is pushable
2245                  * on its rq, and no others.
2246                  */
2247                 p = pick_highest_pushable_task(src_rq, this_cpu);
2248
2249                 /*
2250                  * Do we have an RT task that preempts
2251                  * the to-be-scheduled task?
2252                  */
2253                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2254                         WARN_ON(p == src_rq->curr);
2255                         WARN_ON(!task_on_rq_queued(p));
2256
2257                         /*
2258                          * There's a chance that p is higher in priority
2259                          * than what's currently running on its CPU.
2260                          * This is just that p is waking up and hasn't
2261                          * had a chance to schedule. We only pull
2262                          * p if it is lower in priority than the
2263                          * current task on the run queue
2264                          */
2265                         if (p->prio < src_rq->curr->prio)
2266                                 goto skip;
2267
2268                         if (is_migration_disabled(p)) {
2269                                 push_task = get_push_task(src_rq);
2270                         } else {
2271                                 deactivate_task(src_rq, p, 0);
2272                                 set_task_cpu(p, this_cpu);
2273                                 activate_task(this_rq, p, 0);
2274                                 resched = true;
2275                         }
2276                         /*
2277                          * We continue with the search, just in
2278                          * case there's an even higher prio task
2279                          * in another runqueue. (low likelihood
2280                          * but possible)
2281                          */
2282                 }
2283 skip:
2284                 double_unlock_balance(this_rq, src_rq);
2285
2286                 if (push_task) {
2287                         raw_spin_rq_unlock(this_rq);
2288                         stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2289                                             push_task, &src_rq->push_work);
2290                         raw_spin_rq_lock(this_rq);
2291                 }
2292         }
2293
2294         if (resched)
2295                 resched_curr(this_rq);
2296 }
2297
2298 /*
2299  * If we are not running and we are not going to reschedule soon, we should
2300  * try to push tasks away now
2301  */
2302 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2303 {
2304         bool need_to_push = !task_running(rq, p) &&
2305                             !test_tsk_need_resched(rq->curr) &&
2306                             p->nr_cpus_allowed > 1 &&
2307                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2308                             (rq->curr->nr_cpus_allowed < 2 ||
2309                              rq->curr->prio <= p->prio);
2310
2311         if (need_to_push)
2312                 push_rt_tasks(rq);
2313 }
2314
2315 /* Assumes rq->lock is held */
2316 static void rq_online_rt(struct rq *rq)
2317 {
2318         if (rq->rt.overloaded)
2319                 rt_set_overload(rq);
2320
2321         __enable_runtime(rq);
2322
2323         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2324 }
2325
2326 /* Assumes rq->lock is held */
2327 static void rq_offline_rt(struct rq *rq)
2328 {
2329         if (rq->rt.overloaded)
2330                 rt_clear_overload(rq);
2331
2332         __disable_runtime(rq);
2333
2334         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2335 }
2336
2337 /*
2338  * When switch from the rt queue, we bring ourselves to a position
2339  * that we might want to pull RT tasks from other runqueues.
2340  */
2341 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2342 {
2343         /*
2344          * If there are other RT tasks then we will reschedule
2345          * and the scheduling of the other RT tasks will handle
2346          * the balancing. But if we are the last RT task
2347          * we may need to handle the pulling of RT tasks
2348          * now.
2349          */
2350         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2351                 return;
2352
2353         rt_queue_pull_task(rq);
2354 }
2355
2356 void __init init_sched_rt_class(void)
2357 {
2358         unsigned int i;
2359
2360         for_each_possible_cpu(i) {
2361                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2362                                         GFP_KERNEL, cpu_to_node(i));
2363         }
2364 }
2365 #endif /* CONFIG_SMP */
2366
2367 /*
2368  * When switching a task to RT, we may overload the runqueue
2369  * with RT tasks. In this case we try to push them off to
2370  * other runqueues.
2371  */
2372 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2373 {
2374         /*
2375          * If we are running, update the avg_rt tracking, as the running time
2376          * will now on be accounted into the latter.
2377          */
2378         if (task_current(rq, p)) {
2379                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2380                 return;
2381         }
2382
2383         /*
2384          * If we are not running we may need to preempt the current
2385          * running task. If that current running task is also an RT task
2386          * then see if we can move to another run queue.
2387          */
2388         if (task_on_rq_queued(p)) {
2389 #ifdef CONFIG_SMP
2390                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2391                         rt_queue_push_tasks(rq);
2392 #endif /* CONFIG_SMP */
2393                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2394                         resched_curr(rq);
2395         }
2396 }
2397
2398 /*
2399  * Priority of the task has changed. This may cause
2400  * us to initiate a push or pull.
2401  */
2402 static void
2403 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2404 {
2405         if (!task_on_rq_queued(p))
2406                 return;
2407
2408         if (task_current(rq, p)) {
2409 #ifdef CONFIG_SMP
2410                 /*
2411                  * If our priority decreases while running, we
2412                  * may need to pull tasks to this runqueue.
2413                  */
2414                 if (oldprio < p->prio)
2415                         rt_queue_pull_task(rq);
2416
2417                 /*
2418                  * If there's a higher priority task waiting to run
2419                  * then reschedule.
2420                  */
2421                 if (p->prio > rq->rt.highest_prio.curr)
2422                         resched_curr(rq);
2423 #else
2424                 /* For UP simply resched on drop of prio */
2425                 if (oldprio < p->prio)
2426                         resched_curr(rq);
2427 #endif /* CONFIG_SMP */
2428         } else {
2429                 /*
2430                  * This task is not running, but if it is
2431                  * greater than the current running task
2432                  * then reschedule.
2433                  */
2434                 if (p->prio < rq->curr->prio)
2435                         resched_curr(rq);
2436         }
2437 }
2438
2439 #ifdef CONFIG_POSIX_TIMERS
2440 static void watchdog(struct rq *rq, struct task_struct *p)
2441 {
2442         unsigned long soft, hard;
2443
2444         /* max may change after cur was read, this will be fixed next tick */
2445         soft = task_rlimit(p, RLIMIT_RTTIME);
2446         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2447
2448         if (soft != RLIM_INFINITY) {
2449                 unsigned long next;
2450
2451                 if (p->rt.watchdog_stamp != jiffies) {
2452                         p->rt.timeout++;
2453                         p->rt.watchdog_stamp = jiffies;
2454                 }
2455
2456                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2457                 if (p->rt.timeout > next) {
2458                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2459                                                     p->se.sum_exec_runtime);
2460                 }
2461         }
2462 }
2463 #else
2464 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2465 #endif
2466
2467 /*
2468  * scheduler tick hitting a task of our scheduling class.
2469  *
2470  * NOTE: This function can be called remotely by the tick offload that
2471  * goes along full dynticks. Therefore no local assumption can be made
2472  * and everything must be accessed through the @rq and @curr passed in
2473  * parameters.
2474  */
2475 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2476 {
2477         struct sched_rt_entity *rt_se = &p->rt;
2478
2479         update_curr_rt(rq);
2480         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2481
2482         watchdog(rq, p);
2483
2484         /*
2485          * RR tasks need a special form of timeslice management.
2486          * FIFO tasks have no timeslices.
2487          */
2488         if (p->policy != SCHED_RR)
2489                 return;
2490
2491         if (--p->rt.time_slice)
2492                 return;
2493
2494         p->rt.time_slice = sched_rr_timeslice;
2495
2496         /*
2497          * Requeue to the end of queue if we (and all of our ancestors) are not
2498          * the only element on the queue
2499          */
2500         for_each_sched_rt_entity(rt_se) {
2501                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2502                         requeue_task_rt(rq, p, 0);
2503                         resched_curr(rq);
2504                         return;
2505                 }
2506         }
2507 }
2508
2509 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2510 {
2511         /*
2512          * Time slice is 0 for SCHED_FIFO tasks
2513          */
2514         if (task->policy == SCHED_RR)
2515                 return sched_rr_timeslice;
2516         else
2517                 return 0;
2518 }
2519
2520 DEFINE_SCHED_CLASS(rt) = {
2521
2522         .enqueue_task           = enqueue_task_rt,
2523         .dequeue_task           = dequeue_task_rt,
2524         .yield_task             = yield_task_rt,
2525
2526         .check_preempt_curr     = check_preempt_curr_rt,
2527
2528         .pick_next_task         = pick_next_task_rt,
2529         .put_prev_task          = put_prev_task_rt,
2530         .set_next_task          = set_next_task_rt,
2531
2532 #ifdef CONFIG_SMP
2533         .balance                = balance_rt,
2534         .pick_task              = pick_task_rt,
2535         .select_task_rq         = select_task_rq_rt,
2536         .set_cpus_allowed       = set_cpus_allowed_common,
2537         .rq_online              = rq_online_rt,
2538         .rq_offline             = rq_offline_rt,
2539         .task_woken             = task_woken_rt,
2540         .switched_from          = switched_from_rt,
2541         .find_lock_rq           = find_lock_lowest_rq,
2542 #endif
2543
2544         .task_tick              = task_tick_rt,
2545
2546         .get_rr_interval        = get_rr_interval_rt,
2547
2548         .prio_changed           = prio_changed_rt,
2549         .switched_to            = switched_to_rt,
2550
2551         .update_curr            = update_curr_rt,
2552
2553 #ifdef CONFIG_UCLAMP_TASK
2554         .uclamp_enabled         = 1,
2555 #endif
2556 };
2557
2558 #ifdef CONFIG_RT_GROUP_SCHED
2559 /*
2560  * Ensure that the real time constraints are schedulable.
2561  */
2562 static DEFINE_MUTEX(rt_constraints_mutex);
2563
2564 static inline int tg_has_rt_tasks(struct task_group *tg)
2565 {
2566         struct task_struct *task;
2567         struct css_task_iter it;
2568         int ret = 0;
2569
2570         /*
2571          * Autogroups do not have RT tasks; see autogroup_create().
2572          */
2573         if (task_group_is_autogroup(tg))
2574                 return 0;
2575
2576         css_task_iter_start(&tg->css, 0, &it);
2577         while (!ret && (task = css_task_iter_next(&it)))
2578                 ret |= rt_task(task);
2579         css_task_iter_end(&it);
2580
2581         return ret;
2582 }
2583
2584 struct rt_schedulable_data {
2585         struct task_group *tg;
2586         u64 rt_period;
2587         u64 rt_runtime;
2588 };
2589
2590 static int tg_rt_schedulable(struct task_group *tg, void *data)
2591 {
2592         struct rt_schedulable_data *d = data;
2593         struct task_group *child;
2594         unsigned long total, sum = 0;
2595         u64 period, runtime;
2596
2597         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2598         runtime = tg->rt_bandwidth.rt_runtime;
2599
2600         if (tg == d->tg) {
2601                 period = d->rt_period;
2602                 runtime = d->rt_runtime;
2603         }
2604
2605         /*
2606          * Cannot have more runtime than the period.
2607          */
2608         if (runtime > period && runtime != RUNTIME_INF)
2609                 return -EINVAL;
2610
2611         /*
2612          * Ensure we don't starve existing RT tasks if runtime turns zero.
2613          */
2614         if (rt_bandwidth_enabled() && !runtime &&
2615             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2616                 return -EBUSY;
2617
2618         total = to_ratio(period, runtime);
2619
2620         /*
2621          * Nobody can have more than the global setting allows.
2622          */
2623         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2624                 return -EINVAL;
2625
2626         /*
2627          * The sum of our children's runtime should not exceed our own.
2628          */
2629         list_for_each_entry_rcu(child, &tg->children, siblings) {
2630                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2631                 runtime = child->rt_bandwidth.rt_runtime;
2632
2633                 if (child == d->tg) {
2634                         period = d->rt_period;
2635                         runtime = d->rt_runtime;
2636                 }
2637
2638                 sum += to_ratio(period, runtime);
2639         }
2640
2641         if (sum > total)
2642                 return -EINVAL;
2643
2644         return 0;
2645 }
2646
2647 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2648 {
2649         int ret;
2650
2651         struct rt_schedulable_data data = {
2652                 .tg = tg,
2653                 .rt_period = period,
2654                 .rt_runtime = runtime,
2655         };
2656
2657         rcu_read_lock();
2658         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2659         rcu_read_unlock();
2660
2661         return ret;
2662 }
2663
2664 static int tg_set_rt_bandwidth(struct task_group *tg,
2665                 u64 rt_period, u64 rt_runtime)
2666 {
2667         int i, err = 0;
2668
2669         /*
2670          * Disallowing the root group RT runtime is BAD, it would disallow the
2671          * kernel creating (and or operating) RT threads.
2672          */
2673         if (tg == &root_task_group && rt_runtime == 0)
2674                 return -EINVAL;
2675
2676         /* No period doesn't make any sense. */
2677         if (rt_period == 0)
2678                 return -EINVAL;
2679
2680         /*
2681          * Bound quota to defend quota against overflow during bandwidth shift.
2682          */
2683         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2684                 return -EINVAL;
2685
2686         mutex_lock(&rt_constraints_mutex);
2687         err = __rt_schedulable(tg, rt_period, rt_runtime);
2688         if (err)
2689                 goto unlock;
2690
2691         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2692         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2693         tg->rt_bandwidth.rt_runtime = rt_runtime;
2694
2695         for_each_possible_cpu(i) {
2696                 struct rt_rq *rt_rq = tg->rt_rq[i];
2697
2698                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2699                 rt_rq->rt_runtime = rt_runtime;
2700                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2701         }
2702         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2703 unlock:
2704         mutex_unlock(&rt_constraints_mutex);
2705
2706         return err;
2707 }
2708
2709 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2710 {
2711         u64 rt_runtime, rt_period;
2712
2713         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2714         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2715         if (rt_runtime_us < 0)
2716                 rt_runtime = RUNTIME_INF;
2717         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2718                 return -EINVAL;
2719
2720         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2721 }
2722
2723 long sched_group_rt_runtime(struct task_group *tg)
2724 {
2725         u64 rt_runtime_us;
2726
2727         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2728                 return -1;
2729
2730         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2731         do_div(rt_runtime_us, NSEC_PER_USEC);
2732         return rt_runtime_us;
2733 }
2734
2735 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2736 {
2737         u64 rt_runtime, rt_period;
2738
2739         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2740                 return -EINVAL;
2741
2742         rt_period = rt_period_us * NSEC_PER_USEC;
2743         rt_runtime = tg->rt_bandwidth.rt_runtime;
2744
2745         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2746 }
2747
2748 long sched_group_rt_period(struct task_group *tg)
2749 {
2750         u64 rt_period_us;
2751
2752         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2753         do_div(rt_period_us, NSEC_PER_USEC);
2754         return rt_period_us;
2755 }
2756
2757 static int sched_rt_global_constraints(void)
2758 {
2759         int ret = 0;
2760
2761         mutex_lock(&rt_constraints_mutex);
2762         ret = __rt_schedulable(NULL, 0, 0);
2763         mutex_unlock(&rt_constraints_mutex);
2764
2765         return ret;
2766 }
2767
2768 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2769 {
2770         /* Don't accept realtime tasks when there is no way for them to run */
2771         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2772                 return 0;
2773
2774         return 1;
2775 }
2776
2777 #else /* !CONFIG_RT_GROUP_SCHED */
2778 static int sched_rt_global_constraints(void)
2779 {
2780         unsigned long flags;
2781         int i;
2782
2783         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2784         for_each_possible_cpu(i) {
2785                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2786
2787                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2788                 rt_rq->rt_runtime = global_rt_runtime();
2789                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2790         }
2791         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2792
2793         return 0;
2794 }
2795 #endif /* CONFIG_RT_GROUP_SCHED */
2796
2797 static int sched_rt_global_validate(void)
2798 {
2799         if (sysctl_sched_rt_period <= 0)
2800                 return -EINVAL;
2801
2802         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2803                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2804                  ((u64)sysctl_sched_rt_runtime *
2805                         NSEC_PER_USEC > max_rt_runtime)))
2806                 return -EINVAL;
2807
2808         return 0;
2809 }
2810
2811 static void sched_rt_do_global(void)
2812 {
2813         unsigned long flags;
2814
2815         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2816         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2817         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2818         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2819 }
2820
2821 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2822                 size_t *lenp, loff_t *ppos)
2823 {
2824         int old_period, old_runtime;
2825         static DEFINE_MUTEX(mutex);
2826         int ret;
2827
2828         mutex_lock(&mutex);
2829         old_period = sysctl_sched_rt_period;
2830         old_runtime = sysctl_sched_rt_runtime;
2831
2832         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2833
2834         if (!ret && write) {
2835                 ret = sched_rt_global_validate();
2836                 if (ret)
2837                         goto undo;
2838
2839                 ret = sched_dl_global_validate();
2840                 if (ret)
2841                         goto undo;
2842
2843                 ret = sched_rt_global_constraints();
2844                 if (ret)
2845                         goto undo;
2846
2847                 sched_rt_do_global();
2848                 sched_dl_do_global();
2849         }
2850         if (0) {
2851 undo:
2852                 sysctl_sched_rt_period = old_period;
2853                 sysctl_sched_rt_runtime = old_runtime;
2854         }
2855         mutex_unlock(&mutex);
2856
2857         return ret;
2858 }
2859
2860 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2861                 size_t *lenp, loff_t *ppos)
2862 {
2863         int ret;
2864         static DEFINE_MUTEX(mutex);
2865
2866         mutex_lock(&mutex);
2867         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2868         /*
2869          * Make sure that internally we keep jiffies.
2870          * Also, writing zero resets the timeslice to default:
2871          */
2872         if (!ret && write) {
2873                 sched_rr_timeslice =
2874                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2875                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2876         }
2877         mutex_unlock(&mutex);
2878
2879         return ret;
2880 }
2881
2882 #ifdef CONFIG_SCHED_DEBUG
2883 void print_rt_stats(struct seq_file *m, int cpu)
2884 {
2885         rt_rq_iter_t iter;
2886         struct rt_rq *rt_rq;
2887
2888         rcu_read_lock();
2889         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2890                 print_rt_rq(m, cpu, rt_rq);
2891         rcu_read_unlock();
2892 }
2893 #endif /* CONFIG_SCHED_DEBUG */