7f7e7cdcb472d21c47ab226bbffeb17700b0f3b5
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9
10 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
11
12 struct rt_bandwidth def_rt_bandwidth;
13
14 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
15 {
16         struct rt_bandwidth *rt_b =
17                 container_of(timer, struct rt_bandwidth, rt_period_timer);
18         ktime_t now;
19         int overrun;
20         int idle = 0;
21
22         for (;;) {
23                 now = hrtimer_cb_get_time(timer);
24                 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
25
26                 if (!overrun)
27                         break;
28
29                 idle = do_sched_rt_period_timer(rt_b, overrun);
30         }
31
32         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
33 }
34
35 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
36 {
37         rt_b->rt_period = ns_to_ktime(period);
38         rt_b->rt_runtime = runtime;
39
40         raw_spin_lock_init(&rt_b->rt_runtime_lock);
41
42         hrtimer_init(&rt_b->rt_period_timer,
43                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
44         rt_b->rt_period_timer.function = sched_rt_period_timer;
45 }
46
47 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
48 {
49         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
50                 return;
51
52         if (hrtimer_active(&rt_b->rt_period_timer))
53                 return;
54
55         raw_spin_lock(&rt_b->rt_runtime_lock);
56         start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
57         raw_spin_unlock(&rt_b->rt_runtime_lock);
58 }
59
60 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
61 {
62         struct rt_prio_array *array;
63         int i;
64
65         array = &rt_rq->active;
66         for (i = 0; i < MAX_RT_PRIO; i++) {
67                 INIT_LIST_HEAD(array->queue + i);
68                 __clear_bit(i, array->bitmap);
69         }
70         /* delimiter for bitsearch: */
71         __set_bit(MAX_RT_PRIO, array->bitmap);
72
73 #if defined CONFIG_SMP
74         rt_rq->highest_prio.curr = MAX_RT_PRIO;
75         rt_rq->highest_prio.next = MAX_RT_PRIO;
76         rt_rq->rt_nr_migratory = 0;
77         rt_rq->overloaded = 0;
78         plist_head_init(&rt_rq->pushable_tasks);
79 #endif
80
81         rt_rq->rt_time = 0;
82         rt_rq->rt_throttled = 0;
83         rt_rq->rt_runtime = 0;
84         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
85 }
86
87 #ifdef CONFIG_RT_GROUP_SCHED
88 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
89 {
90         hrtimer_cancel(&rt_b->rt_period_timer);
91 }
92
93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
94
95 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
96 {
97 #ifdef CONFIG_SCHED_DEBUG
98         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
99 #endif
100         return container_of(rt_se, struct task_struct, rt);
101 }
102
103 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
104 {
105         return rt_rq->rq;
106 }
107
108 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
109 {
110         return rt_se->rt_rq;
111 }
112
113 void free_rt_sched_group(struct task_group *tg)
114 {
115         int i;
116
117         if (tg->rt_se)
118                 destroy_rt_bandwidth(&tg->rt_bandwidth);
119
120         for_each_possible_cpu(i) {
121                 if (tg->rt_rq)
122                         kfree(tg->rt_rq[i]);
123                 if (tg->rt_se)
124                         kfree(tg->rt_se[i]);
125         }
126
127         kfree(tg->rt_rq);
128         kfree(tg->rt_se);
129 }
130
131 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
132                 struct sched_rt_entity *rt_se, int cpu,
133                 struct sched_rt_entity *parent)
134 {
135         struct rq *rq = cpu_rq(cpu);
136
137         rt_rq->highest_prio.curr = MAX_RT_PRIO;
138         rt_rq->rt_nr_boosted = 0;
139         rt_rq->rq = rq;
140         rt_rq->tg = tg;
141
142         tg->rt_rq[cpu] = rt_rq;
143         tg->rt_se[cpu] = rt_se;
144
145         if (!rt_se)
146                 return;
147
148         if (!parent)
149                 rt_se->rt_rq = &rq->rt;
150         else
151                 rt_se->rt_rq = parent->my_q;
152
153         rt_se->my_q = rt_rq;
154         rt_se->parent = parent;
155         INIT_LIST_HEAD(&rt_se->run_list);
156 }
157
158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
159 {
160         struct rt_rq *rt_rq;
161         struct sched_rt_entity *rt_se;
162         int i;
163
164         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
165         if (!tg->rt_rq)
166                 goto err;
167         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
168         if (!tg->rt_se)
169                 goto err;
170
171         init_rt_bandwidth(&tg->rt_bandwidth,
172                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
173
174         for_each_possible_cpu(i) {
175                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
176                                      GFP_KERNEL, cpu_to_node(i));
177                 if (!rt_rq)
178                         goto err;
179
180                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
181                                      GFP_KERNEL, cpu_to_node(i));
182                 if (!rt_se)
183                         goto err_free_rq;
184
185                 init_rt_rq(rt_rq, cpu_rq(i));
186                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
187                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
188         }
189
190         return 1;
191
192 err_free_rq:
193         kfree(rt_rq);
194 err:
195         return 0;
196 }
197
198 #else /* CONFIG_RT_GROUP_SCHED */
199
200 #define rt_entity_is_task(rt_se) (1)
201
202 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
203 {
204         return container_of(rt_se, struct task_struct, rt);
205 }
206
207 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
208 {
209         return container_of(rt_rq, struct rq, rt);
210 }
211
212 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
213 {
214         struct task_struct *p = rt_task_of(rt_se);
215         struct rq *rq = task_rq(p);
216
217         return &rq->rt;
218 }
219
220 void free_rt_sched_group(struct task_group *tg) { }
221
222 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
223 {
224         return 1;
225 }
226 #endif /* CONFIG_RT_GROUP_SCHED */
227
228 #ifdef CONFIG_SMP
229
230 static inline int rt_overloaded(struct rq *rq)
231 {
232         return atomic_read(&rq->rd->rto_count);
233 }
234
235 static inline void rt_set_overload(struct rq *rq)
236 {
237         if (!rq->online)
238                 return;
239
240         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
241         /*
242          * Make sure the mask is visible before we set
243          * the overload count. That is checked to determine
244          * if we should look at the mask. It would be a shame
245          * if we looked at the mask, but the mask was not
246          * updated yet.
247          */
248         wmb();
249         atomic_inc(&rq->rd->rto_count);
250 }
251
252 static inline void rt_clear_overload(struct rq *rq)
253 {
254         if (!rq->online)
255                 return;
256
257         /* the order here really doesn't matter */
258         atomic_dec(&rq->rd->rto_count);
259         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
260 }
261
262 static void update_rt_migration(struct rt_rq *rt_rq)
263 {
264         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
265                 if (!rt_rq->overloaded) {
266                         rt_set_overload(rq_of_rt_rq(rt_rq));
267                         rt_rq->overloaded = 1;
268                 }
269         } else if (rt_rq->overloaded) {
270                 rt_clear_overload(rq_of_rt_rq(rt_rq));
271                 rt_rq->overloaded = 0;
272         }
273 }
274
275 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
276 {
277         if (!rt_entity_is_task(rt_se))
278                 return;
279
280         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
281
282         rt_rq->rt_nr_total++;
283         if (rt_se->nr_cpus_allowed > 1)
284                 rt_rq->rt_nr_migratory++;
285
286         update_rt_migration(rt_rq);
287 }
288
289 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
290 {
291         if (!rt_entity_is_task(rt_se))
292                 return;
293
294         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
295
296         rt_rq->rt_nr_total--;
297         if (rt_se->nr_cpus_allowed > 1)
298                 rt_rq->rt_nr_migratory--;
299
300         update_rt_migration(rt_rq);
301 }
302
303 static inline int has_pushable_tasks(struct rq *rq)
304 {
305         return !plist_head_empty(&rq->rt.pushable_tasks);
306 }
307
308 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
309 {
310         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
311         plist_node_init(&p->pushable_tasks, p->prio);
312         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
313
314         /* Update the highest prio pushable task */
315         if (p->prio < rq->rt.highest_prio.next)
316                 rq->rt.highest_prio.next = p->prio;
317 }
318
319 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
320 {
321         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
322
323         /* Update the new highest prio pushable task */
324         if (has_pushable_tasks(rq)) {
325                 p = plist_first_entry(&rq->rt.pushable_tasks,
326                                       struct task_struct, pushable_tasks);
327                 rq->rt.highest_prio.next = p->prio;
328         } else
329                 rq->rt.highest_prio.next = MAX_RT_PRIO;
330 }
331
332 #else
333
334 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
335 {
336 }
337
338 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
339 {
340 }
341
342 static inline
343 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
344 {
345 }
346
347 static inline
348 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
349 {
350 }
351
352 #endif /* CONFIG_SMP */
353
354 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
355 {
356         return !list_empty(&rt_se->run_list);
357 }
358
359 #ifdef CONFIG_RT_GROUP_SCHED
360
361 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
362 {
363         if (!rt_rq->tg)
364                 return RUNTIME_INF;
365
366         return rt_rq->rt_runtime;
367 }
368
369 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
370 {
371         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
372 }
373
374 typedef struct task_group *rt_rq_iter_t;
375
376 static inline struct task_group *next_task_group(struct task_group *tg)
377 {
378         do {
379                 tg = list_entry_rcu(tg->list.next,
380                         typeof(struct task_group), list);
381         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
382
383         if (&tg->list == &task_groups)
384                 tg = NULL;
385
386         return tg;
387 }
388
389 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
390         for (iter = container_of(&task_groups, typeof(*iter), list);    \
391                 (iter = next_task_group(iter)) &&                       \
392                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
393
394 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
395 {
396         list_add_rcu(&rt_rq->leaf_rt_rq_list,
397                         &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
398 }
399
400 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
401 {
402         list_del_rcu(&rt_rq->leaf_rt_rq_list);
403 }
404
405 #define for_each_leaf_rt_rq(rt_rq, rq) \
406         list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
407
408 #define for_each_sched_rt_entity(rt_se) \
409         for (; rt_se; rt_se = rt_se->parent)
410
411 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
412 {
413         return rt_se->my_q;
414 }
415
416 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
417 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
418
419 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
420 {
421         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
422         struct sched_rt_entity *rt_se;
423
424         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
425
426         rt_se = rt_rq->tg->rt_se[cpu];
427
428         if (rt_rq->rt_nr_running) {
429                 if (rt_se && !on_rt_rq(rt_se))
430                         enqueue_rt_entity(rt_se, false);
431                 if (rt_rq->highest_prio.curr < curr->prio)
432                         resched_task(curr);
433         }
434 }
435
436 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
437 {
438         struct sched_rt_entity *rt_se;
439         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
440
441         rt_se = rt_rq->tg->rt_se[cpu];
442
443         if (rt_se && on_rt_rq(rt_se))
444                 dequeue_rt_entity(rt_se);
445 }
446
447 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
448 {
449         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
450 }
451
452 static int rt_se_boosted(struct sched_rt_entity *rt_se)
453 {
454         struct rt_rq *rt_rq = group_rt_rq(rt_se);
455         struct task_struct *p;
456
457         if (rt_rq)
458                 return !!rt_rq->rt_nr_boosted;
459
460         p = rt_task_of(rt_se);
461         return p->prio != p->normal_prio;
462 }
463
464 #ifdef CONFIG_SMP
465 static inline const struct cpumask *sched_rt_period_mask(void)
466 {
467         return cpu_rq(smp_processor_id())->rd->span;
468 }
469 #else
470 static inline const struct cpumask *sched_rt_period_mask(void)
471 {
472         return cpu_online_mask;
473 }
474 #endif
475
476 static inline
477 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
478 {
479         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
480 }
481
482 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
483 {
484         return &rt_rq->tg->rt_bandwidth;
485 }
486
487 #else /* !CONFIG_RT_GROUP_SCHED */
488
489 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
490 {
491         return rt_rq->rt_runtime;
492 }
493
494 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
495 {
496         return ktime_to_ns(def_rt_bandwidth.rt_period);
497 }
498
499 typedef struct rt_rq *rt_rq_iter_t;
500
501 #define for_each_rt_rq(rt_rq, iter, rq) \
502         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
503
504 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
505 {
506 }
507
508 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
509 {
510 }
511
512 #define for_each_leaf_rt_rq(rt_rq, rq) \
513         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
514
515 #define for_each_sched_rt_entity(rt_se) \
516         for (; rt_se; rt_se = NULL)
517
518 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
519 {
520         return NULL;
521 }
522
523 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
524 {
525         if (rt_rq->rt_nr_running)
526                 resched_task(rq_of_rt_rq(rt_rq)->curr);
527 }
528
529 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
530 {
531 }
532
533 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
534 {
535         return rt_rq->rt_throttled;
536 }
537
538 static inline const struct cpumask *sched_rt_period_mask(void)
539 {
540         return cpu_online_mask;
541 }
542
543 static inline
544 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
545 {
546         return &cpu_rq(cpu)->rt;
547 }
548
549 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
550 {
551         return &def_rt_bandwidth;
552 }
553
554 #endif /* CONFIG_RT_GROUP_SCHED */
555
556 #ifdef CONFIG_SMP
557 /*
558  * We ran out of runtime, see if we can borrow some from our neighbours.
559  */
560 static int do_balance_runtime(struct rt_rq *rt_rq)
561 {
562         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
563         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
564         int i, weight, more = 0;
565         u64 rt_period;
566
567         weight = cpumask_weight(rd->span);
568
569         raw_spin_lock(&rt_b->rt_runtime_lock);
570         rt_period = ktime_to_ns(rt_b->rt_period);
571         for_each_cpu(i, rd->span) {
572                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
573                 s64 diff;
574
575                 if (iter == rt_rq)
576                         continue;
577
578                 raw_spin_lock(&iter->rt_runtime_lock);
579                 /*
580                  * Either all rqs have inf runtime and there's nothing to steal
581                  * or __disable_runtime() below sets a specific rq to inf to
582                  * indicate its been disabled and disalow stealing.
583                  */
584                 if (iter->rt_runtime == RUNTIME_INF)
585                         goto next;
586
587                 /*
588                  * From runqueues with spare time, take 1/n part of their
589                  * spare time, but no more than our period.
590                  */
591                 diff = iter->rt_runtime - iter->rt_time;
592                 if (diff > 0) {
593                         diff = div_u64((u64)diff, weight);
594                         if (rt_rq->rt_runtime + diff > rt_period)
595                                 diff = rt_period - rt_rq->rt_runtime;
596                         iter->rt_runtime -= diff;
597                         rt_rq->rt_runtime += diff;
598                         more = 1;
599                         if (rt_rq->rt_runtime == rt_period) {
600                                 raw_spin_unlock(&iter->rt_runtime_lock);
601                                 break;
602                         }
603                 }
604 next:
605                 raw_spin_unlock(&iter->rt_runtime_lock);
606         }
607         raw_spin_unlock(&rt_b->rt_runtime_lock);
608
609         return more;
610 }
611
612 /*
613  * Ensure this RQ takes back all the runtime it lend to its neighbours.
614  */
615 static void __disable_runtime(struct rq *rq)
616 {
617         struct root_domain *rd = rq->rd;
618         rt_rq_iter_t iter;
619         struct rt_rq *rt_rq;
620
621         if (unlikely(!scheduler_running))
622                 return;
623
624         for_each_rt_rq(rt_rq, iter, rq) {
625                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
626                 s64 want;
627                 int i;
628
629                 raw_spin_lock(&rt_b->rt_runtime_lock);
630                 raw_spin_lock(&rt_rq->rt_runtime_lock);
631                 /*
632                  * Either we're all inf and nobody needs to borrow, or we're
633                  * already disabled and thus have nothing to do, or we have
634                  * exactly the right amount of runtime to take out.
635                  */
636                 if (rt_rq->rt_runtime == RUNTIME_INF ||
637                                 rt_rq->rt_runtime == rt_b->rt_runtime)
638                         goto balanced;
639                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
640
641                 /*
642                  * Calculate the difference between what we started out with
643                  * and what we current have, that's the amount of runtime
644                  * we lend and now have to reclaim.
645                  */
646                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
647
648                 /*
649                  * Greedy reclaim, take back as much as we can.
650                  */
651                 for_each_cpu(i, rd->span) {
652                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
653                         s64 diff;
654
655                         /*
656                          * Can't reclaim from ourselves or disabled runqueues.
657                          */
658                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
659                                 continue;
660
661                         raw_spin_lock(&iter->rt_runtime_lock);
662                         if (want > 0) {
663                                 diff = min_t(s64, iter->rt_runtime, want);
664                                 iter->rt_runtime -= diff;
665                                 want -= diff;
666                         } else {
667                                 iter->rt_runtime -= want;
668                                 want -= want;
669                         }
670                         raw_spin_unlock(&iter->rt_runtime_lock);
671
672                         if (!want)
673                                 break;
674                 }
675
676                 raw_spin_lock(&rt_rq->rt_runtime_lock);
677                 /*
678                  * We cannot be left wanting - that would mean some runtime
679                  * leaked out of the system.
680                  */
681                 BUG_ON(want);
682 balanced:
683                 /*
684                  * Disable all the borrow logic by pretending we have inf
685                  * runtime - in which case borrowing doesn't make sense.
686                  */
687                 rt_rq->rt_runtime = RUNTIME_INF;
688                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
689                 raw_spin_unlock(&rt_b->rt_runtime_lock);
690         }
691 }
692
693 static void disable_runtime(struct rq *rq)
694 {
695         unsigned long flags;
696
697         raw_spin_lock_irqsave(&rq->lock, flags);
698         __disable_runtime(rq);
699         raw_spin_unlock_irqrestore(&rq->lock, flags);
700 }
701
702 static void __enable_runtime(struct rq *rq)
703 {
704         rt_rq_iter_t iter;
705         struct rt_rq *rt_rq;
706
707         if (unlikely(!scheduler_running))
708                 return;
709
710         /*
711          * Reset each runqueue's bandwidth settings
712          */
713         for_each_rt_rq(rt_rq, iter, rq) {
714                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
715
716                 raw_spin_lock(&rt_b->rt_runtime_lock);
717                 raw_spin_lock(&rt_rq->rt_runtime_lock);
718                 rt_rq->rt_runtime = rt_b->rt_runtime;
719                 rt_rq->rt_time = 0;
720                 rt_rq->rt_throttled = 0;
721                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
722                 raw_spin_unlock(&rt_b->rt_runtime_lock);
723         }
724 }
725
726 static void enable_runtime(struct rq *rq)
727 {
728         unsigned long flags;
729
730         raw_spin_lock_irqsave(&rq->lock, flags);
731         __enable_runtime(rq);
732         raw_spin_unlock_irqrestore(&rq->lock, flags);
733 }
734
735 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
736 {
737         int cpu = (int)(long)hcpu;
738
739         switch (action) {
740         case CPU_DOWN_PREPARE:
741         case CPU_DOWN_PREPARE_FROZEN:
742                 disable_runtime(cpu_rq(cpu));
743                 return NOTIFY_OK;
744
745         case CPU_DOWN_FAILED:
746         case CPU_DOWN_FAILED_FROZEN:
747         case CPU_ONLINE:
748         case CPU_ONLINE_FROZEN:
749                 enable_runtime(cpu_rq(cpu));
750                 return NOTIFY_OK;
751
752         default:
753                 return NOTIFY_DONE;
754         }
755 }
756
757 static int balance_runtime(struct rt_rq *rt_rq)
758 {
759         int more = 0;
760
761         if (!sched_feat(RT_RUNTIME_SHARE))
762                 return more;
763
764         if (rt_rq->rt_time > rt_rq->rt_runtime) {
765                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
766                 more = do_balance_runtime(rt_rq);
767                 raw_spin_lock(&rt_rq->rt_runtime_lock);
768         }
769
770         return more;
771 }
772 #else /* !CONFIG_SMP */
773 static inline int balance_runtime(struct rt_rq *rt_rq)
774 {
775         return 0;
776 }
777 #endif /* CONFIG_SMP */
778
779 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
780 {
781         int i, idle = 1, throttled = 0;
782         const struct cpumask *span;
783
784         span = sched_rt_period_mask();
785         for_each_cpu(i, span) {
786                 int enqueue = 0;
787                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
788                 struct rq *rq = rq_of_rt_rq(rt_rq);
789
790                 raw_spin_lock(&rq->lock);
791                 if (rt_rq->rt_time) {
792                         u64 runtime;
793
794                         raw_spin_lock(&rt_rq->rt_runtime_lock);
795                         if (rt_rq->rt_throttled)
796                                 balance_runtime(rt_rq);
797                         runtime = rt_rq->rt_runtime;
798                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
799                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
800                                 rt_rq->rt_throttled = 0;
801                                 enqueue = 1;
802
803                                 /*
804                                  * Force a clock update if the CPU was idle,
805                                  * lest wakeup -> unthrottle time accumulate.
806                                  */
807                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
808                                         rq->skip_clock_update = -1;
809                         }
810                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
811                                 idle = 0;
812                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
813                 } else if (rt_rq->rt_nr_running) {
814                         idle = 0;
815                         if (!rt_rq_throttled(rt_rq))
816                                 enqueue = 1;
817                 }
818                 if (rt_rq->rt_throttled)
819                         throttled = 1;
820
821                 if (enqueue)
822                         sched_rt_rq_enqueue(rt_rq);
823                 raw_spin_unlock(&rq->lock);
824         }
825
826         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
827                 return 1;
828
829         return idle;
830 }
831
832 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
833 {
834 #ifdef CONFIG_RT_GROUP_SCHED
835         struct rt_rq *rt_rq = group_rt_rq(rt_se);
836
837         if (rt_rq)
838                 return rt_rq->highest_prio.curr;
839 #endif
840
841         return rt_task_of(rt_se)->prio;
842 }
843
844 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
845 {
846         u64 runtime = sched_rt_runtime(rt_rq);
847
848         if (rt_rq->rt_throttled)
849                 return rt_rq_throttled(rt_rq);
850
851         if (runtime >= sched_rt_period(rt_rq))
852                 return 0;
853
854         balance_runtime(rt_rq);
855         runtime = sched_rt_runtime(rt_rq);
856         if (runtime == RUNTIME_INF)
857                 return 0;
858
859         if (rt_rq->rt_time > runtime) {
860                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
861
862                 /*
863                  * Don't actually throttle groups that have no runtime assigned
864                  * but accrue some time due to boosting.
865                  */
866                 if (likely(rt_b->rt_runtime)) {
867                         rt_rq->rt_throttled = 1;
868                         printk_once(KERN_WARNING "sched: RT throttling activated\n");
869                 } else {
870                         /*
871                          * In case we did anyway, make it go away,
872                          * replenishment is a joke, since it will replenish us
873                          * with exactly 0 ns.
874                          */
875                         rt_rq->rt_time = 0;
876                 }
877
878                 if (rt_rq_throttled(rt_rq)) {
879                         sched_rt_rq_dequeue(rt_rq);
880                         return 1;
881                 }
882         }
883
884         return 0;
885 }
886
887 /*
888  * Update the current task's runtime statistics. Skip current tasks that
889  * are not in our scheduling class.
890  */
891 static void update_curr_rt(struct rq *rq)
892 {
893         struct task_struct *curr = rq->curr;
894         struct sched_rt_entity *rt_se = &curr->rt;
895         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
896         u64 delta_exec;
897
898         if (curr->sched_class != &rt_sched_class)
899                 return;
900
901         delta_exec = rq->clock_task - curr->se.exec_start;
902         if (unlikely((s64)delta_exec < 0))
903                 delta_exec = 0;
904
905         schedstat_set(curr->se.statistics.exec_max,
906                       max(curr->se.statistics.exec_max, delta_exec));
907
908         curr->se.sum_exec_runtime += delta_exec;
909         account_group_exec_runtime(curr, delta_exec);
910
911         curr->se.exec_start = rq->clock_task;
912         cpuacct_charge(curr, delta_exec);
913
914         sched_rt_avg_update(rq, delta_exec);
915
916         if (!rt_bandwidth_enabled())
917                 return;
918
919         for_each_sched_rt_entity(rt_se) {
920                 rt_rq = rt_rq_of_se(rt_se);
921
922                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
923                         raw_spin_lock(&rt_rq->rt_runtime_lock);
924                         rt_rq->rt_time += delta_exec;
925                         if (sched_rt_runtime_exceeded(rt_rq))
926                                 resched_task(curr);
927                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
928                 }
929         }
930 }
931
932 #if defined CONFIG_SMP
933
934 static void
935 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
936 {
937         struct rq *rq = rq_of_rt_rq(rt_rq);
938
939         if (rq->online && prio < prev_prio)
940                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
941 }
942
943 static void
944 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
945 {
946         struct rq *rq = rq_of_rt_rq(rt_rq);
947
948         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
949                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
950 }
951
952 #else /* CONFIG_SMP */
953
954 static inline
955 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
956 static inline
957 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
958
959 #endif /* CONFIG_SMP */
960
961 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
962 static void
963 inc_rt_prio(struct rt_rq *rt_rq, int prio)
964 {
965         int prev_prio = rt_rq->highest_prio.curr;
966
967         if (prio < prev_prio)
968                 rt_rq->highest_prio.curr = prio;
969
970         inc_rt_prio_smp(rt_rq, prio, prev_prio);
971 }
972
973 static void
974 dec_rt_prio(struct rt_rq *rt_rq, int prio)
975 {
976         int prev_prio = rt_rq->highest_prio.curr;
977
978         if (rt_rq->rt_nr_running) {
979
980                 WARN_ON(prio < prev_prio);
981
982                 /*
983                  * This may have been our highest task, and therefore
984                  * we may have some recomputation to do
985                  */
986                 if (prio == prev_prio) {
987                         struct rt_prio_array *array = &rt_rq->active;
988
989                         rt_rq->highest_prio.curr =
990                                 sched_find_first_bit(array->bitmap);
991                 }
992
993         } else
994                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
995
996         dec_rt_prio_smp(rt_rq, prio, prev_prio);
997 }
998
999 #else
1000
1001 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1002 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1003
1004 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1005
1006 #ifdef CONFIG_RT_GROUP_SCHED
1007
1008 static void
1009 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1010 {
1011         if (rt_se_boosted(rt_se))
1012                 rt_rq->rt_nr_boosted++;
1013
1014         if (rt_rq->tg)
1015                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1016 }
1017
1018 static void
1019 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1020 {
1021         if (rt_se_boosted(rt_se))
1022                 rt_rq->rt_nr_boosted--;
1023
1024         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1025 }
1026
1027 #else /* CONFIG_RT_GROUP_SCHED */
1028
1029 static void
1030 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1031 {
1032         start_rt_bandwidth(&def_rt_bandwidth);
1033 }
1034
1035 static inline
1036 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1037
1038 #endif /* CONFIG_RT_GROUP_SCHED */
1039
1040 static inline
1041 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1042 {
1043         int prio = rt_se_prio(rt_se);
1044
1045         WARN_ON(!rt_prio(prio));
1046         rt_rq->rt_nr_running++;
1047
1048         inc_rt_prio(rt_rq, prio);
1049         inc_rt_migration(rt_se, rt_rq);
1050         inc_rt_group(rt_se, rt_rq);
1051 }
1052
1053 static inline
1054 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1055 {
1056         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1057         WARN_ON(!rt_rq->rt_nr_running);
1058         rt_rq->rt_nr_running--;
1059
1060         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1061         dec_rt_migration(rt_se, rt_rq);
1062         dec_rt_group(rt_se, rt_rq);
1063 }
1064
1065 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1066 {
1067         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1068         struct rt_prio_array *array = &rt_rq->active;
1069         struct rt_rq *group_rq = group_rt_rq(rt_se);
1070         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1071
1072         /*
1073          * Don't enqueue the group if its throttled, or when empty.
1074          * The latter is a consequence of the former when a child group
1075          * get throttled and the current group doesn't have any other
1076          * active members.
1077          */
1078         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1079                 return;
1080
1081         if (!rt_rq->rt_nr_running)
1082                 list_add_leaf_rt_rq(rt_rq);
1083
1084         if (head)
1085                 list_add(&rt_se->run_list, queue);
1086         else
1087                 list_add_tail(&rt_se->run_list, queue);
1088         __set_bit(rt_se_prio(rt_se), array->bitmap);
1089
1090         inc_rt_tasks(rt_se, rt_rq);
1091 }
1092
1093 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1094 {
1095         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1096         struct rt_prio_array *array = &rt_rq->active;
1097
1098         list_del_init(&rt_se->run_list);
1099         if (list_empty(array->queue + rt_se_prio(rt_se)))
1100                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1101
1102         dec_rt_tasks(rt_se, rt_rq);
1103         if (!rt_rq->rt_nr_running)
1104                 list_del_leaf_rt_rq(rt_rq);
1105 }
1106
1107 /*
1108  * Because the prio of an upper entry depends on the lower
1109  * entries, we must remove entries top - down.
1110  */
1111 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1112 {
1113         struct sched_rt_entity *back = NULL;
1114
1115         for_each_sched_rt_entity(rt_se) {
1116                 rt_se->back = back;
1117                 back = rt_se;
1118         }
1119
1120         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1121                 if (on_rt_rq(rt_se))
1122                         __dequeue_rt_entity(rt_se);
1123         }
1124 }
1125
1126 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1127 {
1128         dequeue_rt_stack(rt_se);
1129         for_each_sched_rt_entity(rt_se)
1130                 __enqueue_rt_entity(rt_se, head);
1131 }
1132
1133 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1134 {
1135         dequeue_rt_stack(rt_se);
1136
1137         for_each_sched_rt_entity(rt_se) {
1138                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1139
1140                 if (rt_rq && rt_rq->rt_nr_running)
1141                         __enqueue_rt_entity(rt_se, false);
1142         }
1143 }
1144
1145 /*
1146  * Adding/removing a task to/from a priority array:
1147  */
1148 static void
1149 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1150 {
1151         struct sched_rt_entity *rt_se = &p->rt;
1152
1153         if (flags & ENQUEUE_WAKEUP)
1154                 rt_se->timeout = 0;
1155
1156         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1157
1158         if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
1159                 enqueue_pushable_task(rq, p);
1160
1161         inc_nr_running(rq);
1162 }
1163
1164 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1165 {
1166         struct sched_rt_entity *rt_se = &p->rt;
1167
1168         update_curr_rt(rq);
1169         dequeue_rt_entity(rt_se);
1170
1171         dequeue_pushable_task(rq, p);
1172
1173         dec_nr_running(rq);
1174 }
1175
1176 /*
1177  * Put task to the head or the end of the run list without the overhead of
1178  * dequeue followed by enqueue.
1179  */
1180 static void
1181 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1182 {
1183         if (on_rt_rq(rt_se)) {
1184                 struct rt_prio_array *array = &rt_rq->active;
1185                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1186
1187                 if (head)
1188                         list_move(&rt_se->run_list, queue);
1189                 else
1190                         list_move_tail(&rt_se->run_list, queue);
1191         }
1192 }
1193
1194 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1195 {
1196         struct sched_rt_entity *rt_se = &p->rt;
1197         struct rt_rq *rt_rq;
1198
1199         for_each_sched_rt_entity(rt_se) {
1200                 rt_rq = rt_rq_of_se(rt_se);
1201                 requeue_rt_entity(rt_rq, rt_se, head);
1202         }
1203 }
1204
1205 static void yield_task_rt(struct rq *rq)
1206 {
1207         requeue_task_rt(rq, rq->curr, 0);
1208 }
1209
1210 #ifdef CONFIG_SMP
1211 static int find_lowest_rq(struct task_struct *task);
1212
1213 static int
1214 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1215 {
1216         struct task_struct *curr;
1217         struct rq *rq;
1218         int cpu;
1219
1220         cpu = task_cpu(p);
1221
1222         if (p->rt.nr_cpus_allowed == 1)
1223                 goto out;
1224
1225         /* For anything but wake ups, just return the task_cpu */
1226         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1227                 goto out;
1228
1229         rq = cpu_rq(cpu);
1230
1231         rcu_read_lock();
1232         curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1233
1234         /*
1235          * If the current task on @p's runqueue is an RT task, then
1236          * try to see if we can wake this RT task up on another
1237          * runqueue. Otherwise simply start this RT task
1238          * on its current runqueue.
1239          *
1240          * We want to avoid overloading runqueues. If the woken
1241          * task is a higher priority, then it will stay on this CPU
1242          * and the lower prio task should be moved to another CPU.
1243          * Even though this will probably make the lower prio task
1244          * lose its cache, we do not want to bounce a higher task
1245          * around just because it gave up its CPU, perhaps for a
1246          * lock?
1247          *
1248          * For equal prio tasks, we just let the scheduler sort it out.
1249          *
1250          * Otherwise, just let it ride on the affined RQ and the
1251          * post-schedule router will push the preempted task away
1252          *
1253          * This test is optimistic, if we get it wrong the load-balancer
1254          * will have to sort it out.
1255          */
1256         if (curr && unlikely(rt_task(curr)) &&
1257             (curr->rt.nr_cpus_allowed < 2 ||
1258              curr->prio <= p->prio) &&
1259             (p->rt.nr_cpus_allowed > 1)) {
1260                 int target = find_lowest_rq(p);
1261
1262                 if (target != -1)
1263                         cpu = target;
1264         }
1265         rcu_read_unlock();
1266
1267 out:
1268         return cpu;
1269 }
1270
1271 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1272 {
1273         if (rq->curr->rt.nr_cpus_allowed == 1)
1274                 return;
1275
1276         if (p->rt.nr_cpus_allowed != 1
1277             && cpupri_find(&rq->rd->cpupri, p, NULL))
1278                 return;
1279
1280         if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1281                 return;
1282
1283         /*
1284          * There appears to be other cpus that can accept
1285          * current and none to run 'p', so lets reschedule
1286          * to try and push current away:
1287          */
1288         requeue_task_rt(rq, p, 1);
1289         resched_task(rq->curr);
1290 }
1291
1292 #endif /* CONFIG_SMP */
1293
1294 /*
1295  * Preempt the current task with a newly woken task if needed:
1296  */
1297 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1298 {
1299         if (p->prio < rq->curr->prio) {
1300                 resched_task(rq->curr);
1301                 return;
1302         }
1303
1304 #ifdef CONFIG_SMP
1305         /*
1306          * If:
1307          *
1308          * - the newly woken task is of equal priority to the current task
1309          * - the newly woken task is non-migratable while current is migratable
1310          * - current will be preempted on the next reschedule
1311          *
1312          * we should check to see if current can readily move to a different
1313          * cpu.  If so, we will reschedule to allow the push logic to try
1314          * to move current somewhere else, making room for our non-migratable
1315          * task.
1316          */
1317         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1318                 check_preempt_equal_prio(rq, p);
1319 #endif
1320 }
1321
1322 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1323                                                    struct rt_rq *rt_rq)
1324 {
1325         struct rt_prio_array *array = &rt_rq->active;
1326         struct sched_rt_entity *next = NULL;
1327         struct list_head *queue;
1328         int idx;
1329
1330         idx = sched_find_first_bit(array->bitmap);
1331         BUG_ON(idx >= MAX_RT_PRIO);
1332
1333         queue = array->queue + idx;
1334         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1335
1336         return next;
1337 }
1338
1339 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1340 {
1341         struct sched_rt_entity *rt_se;
1342         struct task_struct *p;
1343         struct rt_rq *rt_rq;
1344
1345         rt_rq = &rq->rt;
1346
1347         if (!rt_rq->rt_nr_running)
1348                 return NULL;
1349
1350         if (rt_rq_throttled(rt_rq))
1351                 return NULL;
1352
1353         do {
1354                 rt_se = pick_next_rt_entity(rq, rt_rq);
1355                 BUG_ON(!rt_se);
1356                 rt_rq = group_rt_rq(rt_se);
1357         } while (rt_rq);
1358
1359         p = rt_task_of(rt_se);
1360         p->se.exec_start = rq->clock_task;
1361
1362         return p;
1363 }
1364
1365 static struct task_struct *pick_next_task_rt(struct rq *rq)
1366 {
1367         struct task_struct *p = _pick_next_task_rt(rq);
1368
1369         /* The running task is never eligible for pushing */
1370         if (p)
1371                 dequeue_pushable_task(rq, p);
1372
1373 #ifdef CONFIG_SMP
1374         /*
1375          * We detect this state here so that we can avoid taking the RQ
1376          * lock again later if there is no need to push
1377          */
1378         rq->post_schedule = has_pushable_tasks(rq);
1379 #endif
1380
1381         return p;
1382 }
1383
1384 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1385 {
1386         update_curr_rt(rq);
1387
1388         /*
1389          * The previous task needs to be made eligible for pushing
1390          * if it is still active
1391          */
1392         if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1393                 enqueue_pushable_task(rq, p);
1394 }
1395
1396 #ifdef CONFIG_SMP
1397
1398 /* Only try algorithms three times */
1399 #define RT_MAX_TRIES 3
1400
1401 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1402 {
1403         if (!task_running(rq, p) &&
1404             (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1405             (p->rt.nr_cpus_allowed > 1))
1406                 return 1;
1407         return 0;
1408 }
1409
1410 /* Return the second highest RT task, NULL otherwise */
1411 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1412 {
1413         struct task_struct *next = NULL;
1414         struct sched_rt_entity *rt_se;
1415         struct rt_prio_array *array;
1416         struct rt_rq *rt_rq;
1417         int idx;
1418
1419         for_each_leaf_rt_rq(rt_rq, rq) {
1420                 array = &rt_rq->active;
1421                 idx = sched_find_first_bit(array->bitmap);
1422 next_idx:
1423                 if (idx >= MAX_RT_PRIO)
1424                         continue;
1425                 if (next && next->prio < idx)
1426                         continue;
1427                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1428                         struct task_struct *p;
1429
1430                         if (!rt_entity_is_task(rt_se))
1431                                 continue;
1432
1433                         p = rt_task_of(rt_se);
1434                         if (pick_rt_task(rq, p, cpu)) {
1435                                 next = p;
1436                                 break;
1437                         }
1438                 }
1439                 if (!next) {
1440                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1441                         goto next_idx;
1442                 }
1443         }
1444
1445         return next;
1446 }
1447
1448 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1449
1450 static int find_lowest_rq(struct task_struct *task)
1451 {
1452         struct sched_domain *sd;
1453         struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1454         int this_cpu = smp_processor_id();
1455         int cpu      = task_cpu(task);
1456
1457         /* Make sure the mask is initialized first */
1458         if (unlikely(!lowest_mask))
1459                 return -1;
1460
1461         if (task->rt.nr_cpus_allowed == 1)
1462                 return -1; /* No other targets possible */
1463
1464         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1465                 return -1; /* No targets found */
1466
1467         /*
1468          * At this point we have built a mask of cpus representing the
1469          * lowest priority tasks in the system.  Now we want to elect
1470          * the best one based on our affinity and topology.
1471          *
1472          * We prioritize the last cpu that the task executed on since
1473          * it is most likely cache-hot in that location.
1474          */
1475         if (cpumask_test_cpu(cpu, lowest_mask))
1476                 return cpu;
1477
1478         /*
1479          * Otherwise, we consult the sched_domains span maps to figure
1480          * out which cpu is logically closest to our hot cache data.
1481          */
1482         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1483                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1484
1485         rcu_read_lock();
1486         for_each_domain(cpu, sd) {
1487                 if (sd->flags & SD_WAKE_AFFINE) {
1488                         int best_cpu;
1489
1490                         /*
1491                          * "this_cpu" is cheaper to preempt than a
1492                          * remote processor.
1493                          */
1494                         if (this_cpu != -1 &&
1495                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1496                                 rcu_read_unlock();
1497                                 return this_cpu;
1498                         }
1499
1500                         best_cpu = cpumask_first_and(lowest_mask,
1501                                                      sched_domain_span(sd));
1502                         if (best_cpu < nr_cpu_ids) {
1503                                 rcu_read_unlock();
1504                                 return best_cpu;
1505                         }
1506                 }
1507         }
1508         rcu_read_unlock();
1509
1510         /*
1511          * And finally, if there were no matches within the domains
1512          * just give the caller *something* to work with from the compatible
1513          * locations.
1514          */
1515         if (this_cpu != -1)
1516                 return this_cpu;
1517
1518         cpu = cpumask_any(lowest_mask);
1519         if (cpu < nr_cpu_ids)
1520                 return cpu;
1521         return -1;
1522 }
1523
1524 /* Will lock the rq it finds */
1525 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1526 {
1527         struct rq *lowest_rq = NULL;
1528         int tries;
1529         int cpu;
1530
1531         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1532                 cpu = find_lowest_rq(task);
1533
1534                 if ((cpu == -1) || (cpu == rq->cpu))
1535                         break;
1536
1537                 lowest_rq = cpu_rq(cpu);
1538
1539                 /* if the prio of this runqueue changed, try again */
1540                 if (double_lock_balance(rq, lowest_rq)) {
1541                         /*
1542                          * We had to unlock the run queue. In
1543                          * the mean time, task could have
1544                          * migrated already or had its affinity changed.
1545                          * Also make sure that it wasn't scheduled on its rq.
1546                          */
1547                         if (unlikely(task_rq(task) != rq ||
1548                                      !cpumask_test_cpu(lowest_rq->cpu,
1549                                                        tsk_cpus_allowed(task)) ||
1550                                      task_running(rq, task) ||
1551                                      !task->on_rq)) {
1552
1553                                 raw_spin_unlock(&lowest_rq->lock);
1554                                 lowest_rq = NULL;
1555                                 break;
1556                         }
1557                 }
1558
1559                 /* If this rq is still suitable use it. */
1560                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1561                         break;
1562
1563                 /* try again */
1564                 double_unlock_balance(rq, lowest_rq);
1565                 lowest_rq = NULL;
1566         }
1567
1568         return lowest_rq;
1569 }
1570
1571 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1572 {
1573         struct task_struct *p;
1574
1575         if (!has_pushable_tasks(rq))
1576                 return NULL;
1577
1578         p = plist_first_entry(&rq->rt.pushable_tasks,
1579                               struct task_struct, pushable_tasks);
1580
1581         BUG_ON(rq->cpu != task_cpu(p));
1582         BUG_ON(task_current(rq, p));
1583         BUG_ON(p->rt.nr_cpus_allowed <= 1);
1584
1585         BUG_ON(!p->on_rq);
1586         BUG_ON(!rt_task(p));
1587
1588         return p;
1589 }
1590
1591 /*
1592  * If the current CPU has more than one RT task, see if the non
1593  * running task can migrate over to a CPU that is running a task
1594  * of lesser priority.
1595  */
1596 static int push_rt_task(struct rq *rq)
1597 {
1598         struct task_struct *next_task;
1599         struct rq *lowest_rq;
1600         int ret = 0;
1601
1602         if (!rq->rt.overloaded)
1603                 return 0;
1604
1605         next_task = pick_next_pushable_task(rq);
1606         if (!next_task)
1607                 return 0;
1608
1609 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1610        if (unlikely(task_running(rq, next_task)))
1611                return 0;
1612 #endif
1613
1614 retry:
1615         if (unlikely(next_task == rq->curr)) {
1616                 WARN_ON(1);
1617                 return 0;
1618         }
1619
1620         /*
1621          * It's possible that the next_task slipped in of
1622          * higher priority than current. If that's the case
1623          * just reschedule current.
1624          */
1625         if (unlikely(next_task->prio < rq->curr->prio)) {
1626                 resched_task(rq->curr);
1627                 return 0;
1628         }
1629
1630         /* We might release rq lock */
1631         get_task_struct(next_task);
1632
1633         /* find_lock_lowest_rq locks the rq if found */
1634         lowest_rq = find_lock_lowest_rq(next_task, rq);
1635         if (!lowest_rq) {
1636                 struct task_struct *task;
1637                 /*
1638                  * find_lock_lowest_rq releases rq->lock
1639                  * so it is possible that next_task has migrated.
1640                  *
1641                  * We need to make sure that the task is still on the same
1642                  * run-queue and is also still the next task eligible for
1643                  * pushing.
1644                  */
1645                 task = pick_next_pushable_task(rq);
1646                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1647                         /*
1648                          * The task hasn't migrated, and is still the next
1649                          * eligible task, but we failed to find a run-queue
1650                          * to push it to.  Do not retry in this case, since
1651                          * other cpus will pull from us when ready.
1652                          */
1653                         goto out;
1654                 }
1655
1656                 if (!task)
1657                         /* No more tasks, just exit */
1658                         goto out;
1659
1660                 /*
1661                  * Something has shifted, try again.
1662                  */
1663                 put_task_struct(next_task);
1664                 next_task = task;
1665                 goto retry;
1666         }
1667
1668         deactivate_task(rq, next_task, 0);
1669         set_task_cpu(next_task, lowest_rq->cpu);
1670         activate_task(lowest_rq, next_task, 0);
1671         ret = 1;
1672
1673         resched_task(lowest_rq->curr);
1674
1675         double_unlock_balance(rq, lowest_rq);
1676
1677 out:
1678         put_task_struct(next_task);
1679
1680         return ret;
1681 }
1682
1683 static void push_rt_tasks(struct rq *rq)
1684 {
1685         /* push_rt_task will return true if it moved an RT */
1686         while (push_rt_task(rq))
1687                 ;
1688 }
1689
1690 static int pull_rt_task(struct rq *this_rq)
1691 {
1692         int this_cpu = this_rq->cpu, ret = 0, cpu;
1693         struct task_struct *p;
1694         struct rq *src_rq;
1695
1696         if (likely(!rt_overloaded(this_rq)))
1697                 return 0;
1698
1699         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1700                 if (this_cpu == cpu)
1701                         continue;
1702
1703                 src_rq = cpu_rq(cpu);
1704
1705                 /*
1706                  * Don't bother taking the src_rq->lock if the next highest
1707                  * task is known to be lower-priority than our current task.
1708                  * This may look racy, but if this value is about to go
1709                  * logically higher, the src_rq will push this task away.
1710                  * And if its going logically lower, we do not care
1711                  */
1712                 if (src_rq->rt.highest_prio.next >=
1713                     this_rq->rt.highest_prio.curr)
1714                         continue;
1715
1716                 /*
1717                  * We can potentially drop this_rq's lock in
1718                  * double_lock_balance, and another CPU could
1719                  * alter this_rq
1720                  */
1721                 double_lock_balance(this_rq, src_rq);
1722
1723                 /*
1724                  * Are there still pullable RT tasks?
1725                  */
1726                 if (src_rq->rt.rt_nr_running <= 1)
1727                         goto skip;
1728
1729                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1730
1731                 /*
1732                  * Do we have an RT task that preempts
1733                  * the to-be-scheduled task?
1734                  */
1735                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1736                         WARN_ON(p == src_rq->curr);
1737                         WARN_ON(!p->on_rq);
1738
1739                         /*
1740                          * There's a chance that p is higher in priority
1741                          * than what's currently running on its cpu.
1742                          * This is just that p is wakeing up and hasn't
1743                          * had a chance to schedule. We only pull
1744                          * p if it is lower in priority than the
1745                          * current task on the run queue
1746                          */
1747                         if (p->prio < src_rq->curr->prio)
1748                                 goto skip;
1749
1750                         ret = 1;
1751
1752                         deactivate_task(src_rq, p, 0);
1753                         set_task_cpu(p, this_cpu);
1754                         activate_task(this_rq, p, 0);
1755                         /*
1756                          * We continue with the search, just in
1757                          * case there's an even higher prio task
1758                          * in another runqueue. (low likelihood
1759                          * but possible)
1760                          */
1761                 }
1762 skip:
1763                 double_unlock_balance(this_rq, src_rq);
1764         }
1765
1766         return ret;
1767 }
1768
1769 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1770 {
1771         /* Try to pull RT tasks here if we lower this rq's prio */
1772         if (rq->rt.highest_prio.curr > prev->prio)
1773                 pull_rt_task(rq);
1774 }
1775
1776 static void post_schedule_rt(struct rq *rq)
1777 {
1778         push_rt_tasks(rq);
1779 }
1780
1781 /*
1782  * If we are not running and we are not going to reschedule soon, we should
1783  * try to push tasks away now
1784  */
1785 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1786 {
1787         if (!task_running(rq, p) &&
1788             !test_tsk_need_resched(rq->curr) &&
1789             has_pushable_tasks(rq) &&
1790             p->rt.nr_cpus_allowed > 1 &&
1791             rt_task(rq->curr) &&
1792             (rq->curr->rt.nr_cpus_allowed < 2 ||
1793              rq->curr->prio <= p->prio))
1794                 push_rt_tasks(rq);
1795 }
1796
1797 static void set_cpus_allowed_rt(struct task_struct *p,
1798                                 const struct cpumask *new_mask)
1799 {
1800         int weight = cpumask_weight(new_mask);
1801
1802         BUG_ON(!rt_task(p));
1803
1804         /*
1805          * Update the migration status of the RQ if we have an RT task
1806          * which is running AND changing its weight value.
1807          */
1808         if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1809                 struct rq *rq = task_rq(p);
1810
1811                 if (!task_current(rq, p)) {
1812                         /*
1813                          * Make sure we dequeue this task from the pushable list
1814                          * before going further.  It will either remain off of
1815                          * the list because we are no longer pushable, or it
1816                          * will be requeued.
1817                          */
1818                         if (p->rt.nr_cpus_allowed > 1)
1819                                 dequeue_pushable_task(rq, p);
1820
1821                         /*
1822                          * Requeue if our weight is changing and still > 1
1823                          */
1824                         if (weight > 1)
1825                                 enqueue_pushable_task(rq, p);
1826
1827                 }
1828
1829                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1830                         rq->rt.rt_nr_migratory++;
1831                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1832                         BUG_ON(!rq->rt.rt_nr_migratory);
1833                         rq->rt.rt_nr_migratory--;
1834                 }
1835
1836                 update_rt_migration(&rq->rt);
1837         }
1838 }
1839
1840 /* Assumes rq->lock is held */
1841 static void rq_online_rt(struct rq *rq)
1842 {
1843         if (rq->rt.overloaded)
1844                 rt_set_overload(rq);
1845
1846         __enable_runtime(rq);
1847
1848         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1849 }
1850
1851 /* Assumes rq->lock is held */
1852 static void rq_offline_rt(struct rq *rq)
1853 {
1854         if (rq->rt.overloaded)
1855                 rt_clear_overload(rq);
1856
1857         __disable_runtime(rq);
1858
1859         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1860 }
1861
1862 /*
1863  * When switch from the rt queue, we bring ourselves to a position
1864  * that we might want to pull RT tasks from other runqueues.
1865  */
1866 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1867 {
1868         /*
1869          * If there are other RT tasks then we will reschedule
1870          * and the scheduling of the other RT tasks will handle
1871          * the balancing. But if we are the last RT task
1872          * we may need to handle the pulling of RT tasks
1873          * now.
1874          */
1875         if (p->on_rq && !rq->rt.rt_nr_running)
1876                 pull_rt_task(rq);
1877 }
1878
1879 void init_sched_rt_class(void)
1880 {
1881         unsigned int i;
1882
1883         for_each_possible_cpu(i) {
1884                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1885                                         GFP_KERNEL, cpu_to_node(i));
1886         }
1887 }
1888 #endif /* CONFIG_SMP */
1889
1890 /*
1891  * When switching a task to RT, we may overload the runqueue
1892  * with RT tasks. In this case we try to push them off to
1893  * other runqueues.
1894  */
1895 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1896 {
1897         int check_resched = 1;
1898
1899         /*
1900          * If we are already running, then there's nothing
1901          * that needs to be done. But if we are not running
1902          * we may need to preempt the current running task.
1903          * If that current running task is also an RT task
1904          * then see if we can move to another run queue.
1905          */
1906         if (p->on_rq && rq->curr != p) {
1907 #ifdef CONFIG_SMP
1908                 if (rq->rt.overloaded && push_rt_task(rq) &&
1909                     /* Don't resched if we changed runqueues */
1910                     rq != task_rq(p))
1911                         check_resched = 0;
1912 #endif /* CONFIG_SMP */
1913                 if (check_resched && p->prio < rq->curr->prio)
1914                         resched_task(rq->curr);
1915         }
1916 }
1917
1918 /*
1919  * Priority of the task has changed. This may cause
1920  * us to initiate a push or pull.
1921  */
1922 static void
1923 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1924 {
1925         if (!p->on_rq)
1926                 return;
1927
1928         if (rq->curr == p) {
1929 #ifdef CONFIG_SMP
1930                 /*
1931                  * If our priority decreases while running, we
1932                  * may need to pull tasks to this runqueue.
1933                  */
1934                 if (oldprio < p->prio)
1935                         pull_rt_task(rq);
1936                 /*
1937                  * If there's a higher priority task waiting to run
1938                  * then reschedule. Note, the above pull_rt_task
1939                  * can release the rq lock and p could migrate.
1940                  * Only reschedule if p is still on the same runqueue.
1941                  */
1942                 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1943                         resched_task(p);
1944 #else
1945                 /* For UP simply resched on drop of prio */
1946                 if (oldprio < p->prio)
1947                         resched_task(p);
1948 #endif /* CONFIG_SMP */
1949         } else {
1950                 /*
1951                  * This task is not running, but if it is
1952                  * greater than the current running task
1953                  * then reschedule.
1954                  */
1955                 if (p->prio < rq->curr->prio)
1956                         resched_task(rq->curr);
1957         }
1958 }
1959
1960 static void watchdog(struct rq *rq, struct task_struct *p)
1961 {
1962         unsigned long soft, hard;
1963
1964         /* max may change after cur was read, this will be fixed next tick */
1965         soft = task_rlimit(p, RLIMIT_RTTIME);
1966         hard = task_rlimit_max(p, RLIMIT_RTTIME);
1967
1968         if (soft != RLIM_INFINITY) {
1969                 unsigned long next;
1970
1971                 p->rt.timeout++;
1972                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1973                 if (p->rt.timeout > next)
1974                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1975         }
1976 }
1977
1978 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1979 {
1980         update_curr_rt(rq);
1981
1982         watchdog(rq, p);
1983
1984         /*
1985          * RR tasks need a special form of timeslice management.
1986          * FIFO tasks have no timeslices.
1987          */
1988         if (p->policy != SCHED_RR)
1989                 return;
1990
1991         if (--p->rt.time_slice)
1992                 return;
1993
1994         p->rt.time_slice = RR_TIMESLICE;
1995
1996         /*
1997          * Requeue to the end of queue if we are not the only element
1998          * on the queue:
1999          */
2000         if (p->rt.run_list.prev != p->rt.run_list.next) {
2001                 requeue_task_rt(rq, p, 0);
2002                 set_tsk_need_resched(p);
2003         }
2004 }
2005
2006 static void set_curr_task_rt(struct rq *rq)
2007 {
2008         struct task_struct *p = rq->curr;
2009
2010         p->se.exec_start = rq->clock_task;
2011
2012         /* The running task is never eligible for pushing */
2013         dequeue_pushable_task(rq, p);
2014 }
2015
2016 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2017 {
2018         /*
2019          * Time slice is 0 for SCHED_FIFO tasks
2020          */
2021         if (task->policy == SCHED_RR)
2022                 return RR_TIMESLICE;
2023         else
2024                 return 0;
2025 }
2026
2027 const struct sched_class rt_sched_class = {
2028         .next                   = &fair_sched_class,
2029         .enqueue_task           = enqueue_task_rt,
2030         .dequeue_task           = dequeue_task_rt,
2031         .yield_task             = yield_task_rt,
2032
2033         .check_preempt_curr     = check_preempt_curr_rt,
2034
2035         .pick_next_task         = pick_next_task_rt,
2036         .put_prev_task          = put_prev_task_rt,
2037
2038 #ifdef CONFIG_SMP
2039         .select_task_rq         = select_task_rq_rt,
2040
2041         .set_cpus_allowed       = set_cpus_allowed_rt,
2042         .rq_online              = rq_online_rt,
2043         .rq_offline             = rq_offline_rt,
2044         .pre_schedule           = pre_schedule_rt,
2045         .post_schedule          = post_schedule_rt,
2046         .task_woken             = task_woken_rt,
2047         .switched_from          = switched_from_rt,
2048 #endif
2049
2050         .set_curr_task          = set_curr_task_rt,
2051         .task_tick              = task_tick_rt,
2052
2053         .get_rr_interval        = get_rr_interval_rt,
2054
2055         .prio_changed           = prio_changed_rt,
2056         .switched_to            = switched_to_rt,
2057 };
2058
2059 #ifdef CONFIG_SCHED_DEBUG
2060 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2061
2062 void print_rt_stats(struct seq_file *m, int cpu)
2063 {
2064         rt_rq_iter_t iter;
2065         struct rt_rq *rt_rq;
2066
2067         rcu_read_lock();
2068         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2069                 print_rt_rq(m, cpu, rt_rq);
2070         rcu_read_unlock();
2071 }
2072 #endif /* CONFIG_SCHED_DEBUG */