0a11f44adee57abb00c02dbb9d037ac02343c168
[platform/kernel/linux-starfive.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12
13 struct rt_bandwidth def_rt_bandwidth;
14
15 /*
16  * period over which we measure -rt task CPU usage in us.
17  * default: 1s
18  */
19 unsigned int sysctl_sched_rt_period = 1000000;
20
21 /*
22  * part of the period that we allow rt tasks to run in us.
23  * default: 0.95s
24  */
25 int sysctl_sched_rt_runtime = 950000;
26
27 #ifdef CONFIG_SYSCTL
28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30                 size_t *lenp, loff_t *ppos);
31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32                 size_t *lenp, loff_t *ppos);
33 static struct ctl_table sched_rt_sysctls[] = {
34         {
35                 .procname       = "sched_rt_period_us",
36                 .data           = &sysctl_sched_rt_period,
37                 .maxlen         = sizeof(unsigned int),
38                 .mode           = 0644,
39                 .proc_handler   = sched_rt_handler,
40         },
41         {
42                 .procname       = "sched_rt_runtime_us",
43                 .data           = &sysctl_sched_rt_runtime,
44                 .maxlen         = sizeof(int),
45                 .mode           = 0644,
46                 .proc_handler   = sched_rt_handler,
47         },
48         {
49                 .procname       = "sched_rr_timeslice_ms",
50                 .data           = &sysctl_sched_rr_timeslice,
51                 .maxlen         = sizeof(int),
52                 .mode           = 0644,
53                 .proc_handler   = sched_rr_handler,
54         },
55         {}
56 };
57
58 static int __init sched_rt_sysctl_init(void)
59 {
60         register_sysctl_init("kernel", sched_rt_sysctls);
61         return 0;
62 }
63 late_initcall(sched_rt_sysctl_init);
64 #endif
65
66 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
67 {
68         struct rt_bandwidth *rt_b =
69                 container_of(timer, struct rt_bandwidth, rt_period_timer);
70         int idle = 0;
71         int overrun;
72
73         raw_spin_lock(&rt_b->rt_runtime_lock);
74         for (;;) {
75                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
76                 if (!overrun)
77                         break;
78
79                 raw_spin_unlock(&rt_b->rt_runtime_lock);
80                 idle = do_sched_rt_period_timer(rt_b, overrun);
81                 raw_spin_lock(&rt_b->rt_runtime_lock);
82         }
83         if (idle)
84                 rt_b->rt_period_active = 0;
85         raw_spin_unlock(&rt_b->rt_runtime_lock);
86
87         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
88 }
89
90 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
91 {
92         rt_b->rt_period = ns_to_ktime(period);
93         rt_b->rt_runtime = runtime;
94
95         raw_spin_lock_init(&rt_b->rt_runtime_lock);
96
97         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
98                      HRTIMER_MODE_REL_HARD);
99         rt_b->rt_period_timer.function = sched_rt_period_timer;
100 }
101
102 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
103 {
104         raw_spin_lock(&rt_b->rt_runtime_lock);
105         if (!rt_b->rt_period_active) {
106                 rt_b->rt_period_active = 1;
107                 /*
108                  * SCHED_DEADLINE updates the bandwidth, as a run away
109                  * RT task with a DL task could hog a CPU. But DL does
110                  * not reset the period. If a deadline task was running
111                  * without an RT task running, it can cause RT tasks to
112                  * throttle when they start up. Kick the timer right away
113                  * to update the period.
114                  */
115                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
116                 hrtimer_start_expires(&rt_b->rt_period_timer,
117                                       HRTIMER_MODE_ABS_PINNED_HARD);
118         }
119         raw_spin_unlock(&rt_b->rt_runtime_lock);
120 }
121
122 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
123 {
124         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
125                 return;
126
127         do_start_rt_bandwidth(rt_b);
128 }
129
130 void init_rt_rq(struct rt_rq *rt_rq)
131 {
132         struct rt_prio_array *array;
133         int i;
134
135         array = &rt_rq->active;
136         for (i = 0; i < MAX_RT_PRIO; i++) {
137                 INIT_LIST_HEAD(array->queue + i);
138                 __clear_bit(i, array->bitmap);
139         }
140         /* delimiter for bitsearch: */
141         __set_bit(MAX_RT_PRIO, array->bitmap);
142
143 #if defined CONFIG_SMP
144         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
145         rt_rq->highest_prio.next = MAX_RT_PRIO-1;
146         rt_rq->rt_nr_migratory = 0;
147         rt_rq->overloaded = 0;
148         plist_head_init(&rt_rq->pushable_tasks);
149 #endif /* CONFIG_SMP */
150         /* We start is dequeued state, because no RT tasks are queued */
151         rt_rq->rt_queued = 0;
152
153         rt_rq->rt_time = 0;
154         rt_rq->rt_throttled = 0;
155         rt_rq->rt_runtime = 0;
156         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
157 }
158
159 #ifdef CONFIG_RT_GROUP_SCHED
160 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
161 {
162         hrtimer_cancel(&rt_b->rt_period_timer);
163 }
164
165 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
166
167 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
168 {
169 #ifdef CONFIG_SCHED_DEBUG
170         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
171 #endif
172         return container_of(rt_se, struct task_struct, rt);
173 }
174
175 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
176 {
177         return rt_rq->rq;
178 }
179
180 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
181 {
182         return rt_se->rt_rq;
183 }
184
185 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
186 {
187         struct rt_rq *rt_rq = rt_se->rt_rq;
188
189         return rt_rq->rq;
190 }
191
192 void unregister_rt_sched_group(struct task_group *tg)
193 {
194         if (tg->rt_se)
195                 destroy_rt_bandwidth(&tg->rt_bandwidth);
196
197 }
198
199 void free_rt_sched_group(struct task_group *tg)
200 {
201         int i;
202
203         for_each_possible_cpu(i) {
204                 if (tg->rt_rq)
205                         kfree(tg->rt_rq[i]);
206                 if (tg->rt_se)
207                         kfree(tg->rt_se[i]);
208         }
209
210         kfree(tg->rt_rq);
211         kfree(tg->rt_se);
212 }
213
214 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
215                 struct sched_rt_entity *rt_se, int cpu,
216                 struct sched_rt_entity *parent)
217 {
218         struct rq *rq = cpu_rq(cpu);
219
220         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
221         rt_rq->rt_nr_boosted = 0;
222         rt_rq->rq = rq;
223         rt_rq->tg = tg;
224
225         tg->rt_rq[cpu] = rt_rq;
226         tg->rt_se[cpu] = rt_se;
227
228         if (!rt_se)
229                 return;
230
231         if (!parent)
232                 rt_se->rt_rq = &rq->rt;
233         else
234                 rt_se->rt_rq = parent->my_q;
235
236         rt_se->my_q = rt_rq;
237         rt_se->parent = parent;
238         INIT_LIST_HEAD(&rt_se->run_list);
239 }
240
241 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
242 {
243         struct rt_rq *rt_rq;
244         struct sched_rt_entity *rt_se;
245         int i;
246
247         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
248         if (!tg->rt_rq)
249                 goto err;
250         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
251         if (!tg->rt_se)
252                 goto err;
253
254         init_rt_bandwidth(&tg->rt_bandwidth,
255                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
256
257         for_each_possible_cpu(i) {
258                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
259                                      GFP_KERNEL, cpu_to_node(i));
260                 if (!rt_rq)
261                         goto err;
262
263                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
264                                      GFP_KERNEL, cpu_to_node(i));
265                 if (!rt_se)
266                         goto err_free_rq;
267
268                 init_rt_rq(rt_rq);
269                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
270                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
271         }
272
273         return 1;
274
275 err_free_rq:
276         kfree(rt_rq);
277 err:
278         return 0;
279 }
280
281 #else /* CONFIG_RT_GROUP_SCHED */
282
283 #define rt_entity_is_task(rt_se) (1)
284
285 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
286 {
287         return container_of(rt_se, struct task_struct, rt);
288 }
289
290 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
291 {
292         return container_of(rt_rq, struct rq, rt);
293 }
294
295 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
296 {
297         struct task_struct *p = rt_task_of(rt_se);
298
299         return task_rq(p);
300 }
301
302 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
303 {
304         struct rq *rq = rq_of_rt_se(rt_se);
305
306         return &rq->rt;
307 }
308
309 void unregister_rt_sched_group(struct task_group *tg) { }
310
311 void free_rt_sched_group(struct task_group *tg) { }
312
313 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
314 {
315         return 1;
316 }
317 #endif /* CONFIG_RT_GROUP_SCHED */
318
319 #ifdef CONFIG_SMP
320
321 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
322 {
323         /* Try to pull RT tasks here if we lower this rq's prio */
324         return rq->online && rq->rt.highest_prio.curr > prev->prio;
325 }
326
327 static inline int rt_overloaded(struct rq *rq)
328 {
329         return atomic_read(&rq->rd->rto_count);
330 }
331
332 static inline void rt_set_overload(struct rq *rq)
333 {
334         if (!rq->online)
335                 return;
336
337         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
338         /*
339          * Make sure the mask is visible before we set
340          * the overload count. That is checked to determine
341          * if we should look at the mask. It would be a shame
342          * if we looked at the mask, but the mask was not
343          * updated yet.
344          *
345          * Matched by the barrier in pull_rt_task().
346          */
347         smp_wmb();
348         atomic_inc(&rq->rd->rto_count);
349 }
350
351 static inline void rt_clear_overload(struct rq *rq)
352 {
353         if (!rq->online)
354                 return;
355
356         /* the order here really doesn't matter */
357         atomic_dec(&rq->rd->rto_count);
358         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
359 }
360
361 static void update_rt_migration(struct rt_rq *rt_rq)
362 {
363         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
364                 if (!rt_rq->overloaded) {
365                         rt_set_overload(rq_of_rt_rq(rt_rq));
366                         rt_rq->overloaded = 1;
367                 }
368         } else if (rt_rq->overloaded) {
369                 rt_clear_overload(rq_of_rt_rq(rt_rq));
370                 rt_rq->overloaded = 0;
371         }
372 }
373
374 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
375 {
376         struct task_struct *p;
377
378         if (!rt_entity_is_task(rt_se))
379                 return;
380
381         p = rt_task_of(rt_se);
382         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
383
384         rt_rq->rt_nr_total++;
385         if (p->nr_cpus_allowed > 1)
386                 rt_rq->rt_nr_migratory++;
387
388         update_rt_migration(rt_rq);
389 }
390
391 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
392 {
393         struct task_struct *p;
394
395         if (!rt_entity_is_task(rt_se))
396                 return;
397
398         p = rt_task_of(rt_se);
399         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
400
401         rt_rq->rt_nr_total--;
402         if (p->nr_cpus_allowed > 1)
403                 rt_rq->rt_nr_migratory--;
404
405         update_rt_migration(rt_rq);
406 }
407
408 static inline int has_pushable_tasks(struct rq *rq)
409 {
410         return !plist_head_empty(&rq->rt.pushable_tasks);
411 }
412
413 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
414 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
415
416 static void push_rt_tasks(struct rq *);
417 static void pull_rt_task(struct rq *);
418
419 static inline void rt_queue_push_tasks(struct rq *rq)
420 {
421         if (!has_pushable_tasks(rq))
422                 return;
423
424         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
425 }
426
427 static inline void rt_queue_pull_task(struct rq *rq)
428 {
429         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
430 }
431
432 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
433 {
434         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
435         plist_node_init(&p->pushable_tasks, p->prio);
436         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
437
438         /* Update the highest prio pushable task */
439         if (p->prio < rq->rt.highest_prio.next)
440                 rq->rt.highest_prio.next = p->prio;
441 }
442
443 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
444 {
445         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
446
447         /* Update the new highest prio pushable task */
448         if (has_pushable_tasks(rq)) {
449                 p = plist_first_entry(&rq->rt.pushable_tasks,
450                                       struct task_struct, pushable_tasks);
451                 rq->rt.highest_prio.next = p->prio;
452         } else {
453                 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
454         }
455 }
456
457 #else
458
459 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
460 {
461 }
462
463 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
464 {
465 }
466
467 static inline
468 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
469 {
470 }
471
472 static inline
473 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
474 {
475 }
476
477 static inline void rt_queue_push_tasks(struct rq *rq)
478 {
479 }
480 #endif /* CONFIG_SMP */
481
482 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
483 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
484
485 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
486 {
487         return rt_se->on_rq;
488 }
489
490 #ifdef CONFIG_UCLAMP_TASK
491 /*
492  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
493  * settings.
494  *
495  * This check is only important for heterogeneous systems where uclamp_min value
496  * is higher than the capacity of a @cpu. For non-heterogeneous system this
497  * function will always return true.
498  *
499  * The function will return true if the capacity of the @cpu is >= the
500  * uclamp_min and false otherwise.
501  *
502  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
503  * > uclamp_max.
504  */
505 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
506 {
507         unsigned int min_cap;
508         unsigned int max_cap;
509         unsigned int cpu_cap;
510
511         /* Only heterogeneous systems can benefit from this check */
512         if (!sched_asym_cpucap_active())
513                 return true;
514
515         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
516         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
517
518         cpu_cap = capacity_orig_of(cpu);
519
520         return cpu_cap >= min(min_cap, max_cap);
521 }
522 #else
523 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
524 {
525         return true;
526 }
527 #endif
528
529 #ifdef CONFIG_RT_GROUP_SCHED
530
531 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
532 {
533         if (!rt_rq->tg)
534                 return RUNTIME_INF;
535
536         return rt_rq->rt_runtime;
537 }
538
539 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
540 {
541         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
542 }
543
544 typedef struct task_group *rt_rq_iter_t;
545
546 static inline struct task_group *next_task_group(struct task_group *tg)
547 {
548         do {
549                 tg = list_entry_rcu(tg->list.next,
550                         typeof(struct task_group), list);
551         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
552
553         if (&tg->list == &task_groups)
554                 tg = NULL;
555
556         return tg;
557 }
558
559 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
560         for (iter = container_of(&task_groups, typeof(*iter), list);    \
561                 (iter = next_task_group(iter)) &&                       \
562                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
563
564 #define for_each_sched_rt_entity(rt_se) \
565         for (; rt_se; rt_se = rt_se->parent)
566
567 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
568 {
569         return rt_se->my_q;
570 }
571
572 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
573 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
574
575 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
576 {
577         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
578         struct rq *rq = rq_of_rt_rq(rt_rq);
579         struct sched_rt_entity *rt_se;
580
581         int cpu = cpu_of(rq);
582
583         rt_se = rt_rq->tg->rt_se[cpu];
584
585         if (rt_rq->rt_nr_running) {
586                 if (!rt_se)
587                         enqueue_top_rt_rq(rt_rq);
588                 else if (!on_rt_rq(rt_se))
589                         enqueue_rt_entity(rt_se, 0);
590
591                 if (rt_rq->highest_prio.curr < curr->prio)
592                         resched_curr(rq);
593         }
594 }
595
596 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
597 {
598         struct sched_rt_entity *rt_se;
599         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
600
601         rt_se = rt_rq->tg->rt_se[cpu];
602
603         if (!rt_se) {
604                 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
605                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
606                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
607         }
608         else if (on_rt_rq(rt_se))
609                 dequeue_rt_entity(rt_se, 0);
610 }
611
612 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
613 {
614         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
615 }
616
617 static int rt_se_boosted(struct sched_rt_entity *rt_se)
618 {
619         struct rt_rq *rt_rq = group_rt_rq(rt_se);
620         struct task_struct *p;
621
622         if (rt_rq)
623                 return !!rt_rq->rt_nr_boosted;
624
625         p = rt_task_of(rt_se);
626         return p->prio != p->normal_prio;
627 }
628
629 #ifdef CONFIG_SMP
630 static inline const struct cpumask *sched_rt_period_mask(void)
631 {
632         return this_rq()->rd->span;
633 }
634 #else
635 static inline const struct cpumask *sched_rt_period_mask(void)
636 {
637         return cpu_online_mask;
638 }
639 #endif
640
641 static inline
642 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
643 {
644         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
645 }
646
647 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
648 {
649         return &rt_rq->tg->rt_bandwidth;
650 }
651
652 #else /* !CONFIG_RT_GROUP_SCHED */
653
654 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
655 {
656         return rt_rq->rt_runtime;
657 }
658
659 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
660 {
661         return ktime_to_ns(def_rt_bandwidth.rt_period);
662 }
663
664 typedef struct rt_rq *rt_rq_iter_t;
665
666 #define for_each_rt_rq(rt_rq, iter, rq) \
667         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
668
669 #define for_each_sched_rt_entity(rt_se) \
670         for (; rt_se; rt_se = NULL)
671
672 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
673 {
674         return NULL;
675 }
676
677 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
678 {
679         struct rq *rq = rq_of_rt_rq(rt_rq);
680
681         if (!rt_rq->rt_nr_running)
682                 return;
683
684         enqueue_top_rt_rq(rt_rq);
685         resched_curr(rq);
686 }
687
688 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
689 {
690         dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
691 }
692
693 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
694 {
695         return rt_rq->rt_throttled;
696 }
697
698 static inline const struct cpumask *sched_rt_period_mask(void)
699 {
700         return cpu_online_mask;
701 }
702
703 static inline
704 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
705 {
706         return &cpu_rq(cpu)->rt;
707 }
708
709 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
710 {
711         return &def_rt_bandwidth;
712 }
713
714 #endif /* CONFIG_RT_GROUP_SCHED */
715
716 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
717 {
718         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
719
720         return (hrtimer_active(&rt_b->rt_period_timer) ||
721                 rt_rq->rt_time < rt_b->rt_runtime);
722 }
723
724 #ifdef CONFIG_SMP
725 /*
726  * We ran out of runtime, see if we can borrow some from our neighbours.
727  */
728 static void do_balance_runtime(struct rt_rq *rt_rq)
729 {
730         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
731         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
732         int i, weight;
733         u64 rt_period;
734
735         weight = cpumask_weight(rd->span);
736
737         raw_spin_lock(&rt_b->rt_runtime_lock);
738         rt_period = ktime_to_ns(rt_b->rt_period);
739         for_each_cpu(i, rd->span) {
740                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
741                 s64 diff;
742
743                 if (iter == rt_rq)
744                         continue;
745
746                 raw_spin_lock(&iter->rt_runtime_lock);
747                 /*
748                  * Either all rqs have inf runtime and there's nothing to steal
749                  * or __disable_runtime() below sets a specific rq to inf to
750                  * indicate its been disabled and disallow stealing.
751                  */
752                 if (iter->rt_runtime == RUNTIME_INF)
753                         goto next;
754
755                 /*
756                  * From runqueues with spare time, take 1/n part of their
757                  * spare time, but no more than our period.
758                  */
759                 diff = iter->rt_runtime - iter->rt_time;
760                 if (diff > 0) {
761                         diff = div_u64((u64)diff, weight);
762                         if (rt_rq->rt_runtime + diff > rt_period)
763                                 diff = rt_period - rt_rq->rt_runtime;
764                         iter->rt_runtime -= diff;
765                         rt_rq->rt_runtime += diff;
766                         if (rt_rq->rt_runtime == rt_period) {
767                                 raw_spin_unlock(&iter->rt_runtime_lock);
768                                 break;
769                         }
770                 }
771 next:
772                 raw_spin_unlock(&iter->rt_runtime_lock);
773         }
774         raw_spin_unlock(&rt_b->rt_runtime_lock);
775 }
776
777 /*
778  * Ensure this RQ takes back all the runtime it lend to its neighbours.
779  */
780 static void __disable_runtime(struct rq *rq)
781 {
782         struct root_domain *rd = rq->rd;
783         rt_rq_iter_t iter;
784         struct rt_rq *rt_rq;
785
786         if (unlikely(!scheduler_running))
787                 return;
788
789         for_each_rt_rq(rt_rq, iter, rq) {
790                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
791                 s64 want;
792                 int i;
793
794                 raw_spin_lock(&rt_b->rt_runtime_lock);
795                 raw_spin_lock(&rt_rq->rt_runtime_lock);
796                 /*
797                  * Either we're all inf and nobody needs to borrow, or we're
798                  * already disabled and thus have nothing to do, or we have
799                  * exactly the right amount of runtime to take out.
800                  */
801                 if (rt_rq->rt_runtime == RUNTIME_INF ||
802                                 rt_rq->rt_runtime == rt_b->rt_runtime)
803                         goto balanced;
804                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805
806                 /*
807                  * Calculate the difference between what we started out with
808                  * and what we current have, that's the amount of runtime
809                  * we lend and now have to reclaim.
810                  */
811                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
812
813                 /*
814                  * Greedy reclaim, take back as much as we can.
815                  */
816                 for_each_cpu(i, rd->span) {
817                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
818                         s64 diff;
819
820                         /*
821                          * Can't reclaim from ourselves or disabled runqueues.
822                          */
823                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
824                                 continue;
825
826                         raw_spin_lock(&iter->rt_runtime_lock);
827                         if (want > 0) {
828                                 diff = min_t(s64, iter->rt_runtime, want);
829                                 iter->rt_runtime -= diff;
830                                 want -= diff;
831                         } else {
832                                 iter->rt_runtime -= want;
833                                 want -= want;
834                         }
835                         raw_spin_unlock(&iter->rt_runtime_lock);
836
837                         if (!want)
838                                 break;
839                 }
840
841                 raw_spin_lock(&rt_rq->rt_runtime_lock);
842                 /*
843                  * We cannot be left wanting - that would mean some runtime
844                  * leaked out of the system.
845                  */
846                 WARN_ON_ONCE(want);
847 balanced:
848                 /*
849                  * Disable all the borrow logic by pretending we have inf
850                  * runtime - in which case borrowing doesn't make sense.
851                  */
852                 rt_rq->rt_runtime = RUNTIME_INF;
853                 rt_rq->rt_throttled = 0;
854                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
855                 raw_spin_unlock(&rt_b->rt_runtime_lock);
856
857                 /* Make rt_rq available for pick_next_task() */
858                 sched_rt_rq_enqueue(rt_rq);
859         }
860 }
861
862 static void __enable_runtime(struct rq *rq)
863 {
864         rt_rq_iter_t iter;
865         struct rt_rq *rt_rq;
866
867         if (unlikely(!scheduler_running))
868                 return;
869
870         /*
871          * Reset each runqueue's bandwidth settings
872          */
873         for_each_rt_rq(rt_rq, iter, rq) {
874                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
875
876                 raw_spin_lock(&rt_b->rt_runtime_lock);
877                 raw_spin_lock(&rt_rq->rt_runtime_lock);
878                 rt_rq->rt_runtime = rt_b->rt_runtime;
879                 rt_rq->rt_time = 0;
880                 rt_rq->rt_throttled = 0;
881                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
882                 raw_spin_unlock(&rt_b->rt_runtime_lock);
883         }
884 }
885
886 static void balance_runtime(struct rt_rq *rt_rq)
887 {
888         if (!sched_feat(RT_RUNTIME_SHARE))
889                 return;
890
891         if (rt_rq->rt_time > rt_rq->rt_runtime) {
892                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
893                 do_balance_runtime(rt_rq);
894                 raw_spin_lock(&rt_rq->rt_runtime_lock);
895         }
896 }
897 #else /* !CONFIG_SMP */
898 static inline void balance_runtime(struct rt_rq *rt_rq) {}
899 #endif /* CONFIG_SMP */
900
901 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
902 {
903         int i, idle = 1, throttled = 0;
904         const struct cpumask *span;
905
906         span = sched_rt_period_mask();
907 #ifdef CONFIG_RT_GROUP_SCHED
908         /*
909          * FIXME: isolated CPUs should really leave the root task group,
910          * whether they are isolcpus or were isolated via cpusets, lest
911          * the timer run on a CPU which does not service all runqueues,
912          * potentially leaving other CPUs indefinitely throttled.  If
913          * isolation is really required, the user will turn the throttle
914          * off to kill the perturbations it causes anyway.  Meanwhile,
915          * this maintains functionality for boot and/or troubleshooting.
916          */
917         if (rt_b == &root_task_group.rt_bandwidth)
918                 span = cpu_online_mask;
919 #endif
920         for_each_cpu(i, span) {
921                 int enqueue = 0;
922                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
923                 struct rq *rq = rq_of_rt_rq(rt_rq);
924                 struct rq_flags rf;
925                 int skip;
926
927                 /*
928                  * When span == cpu_online_mask, taking each rq->lock
929                  * can be time-consuming. Try to avoid it when possible.
930                  */
931                 raw_spin_lock(&rt_rq->rt_runtime_lock);
932                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
933                         rt_rq->rt_runtime = rt_b->rt_runtime;
934                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
935                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
936                 if (skip)
937                         continue;
938
939                 rq_lock(rq, &rf);
940                 update_rq_clock(rq);
941
942                 if (rt_rq->rt_time) {
943                         u64 runtime;
944
945                         raw_spin_lock(&rt_rq->rt_runtime_lock);
946                         if (rt_rq->rt_throttled)
947                                 balance_runtime(rt_rq);
948                         runtime = rt_rq->rt_runtime;
949                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
950                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
951                                 rt_rq->rt_throttled = 0;
952                                 enqueue = 1;
953
954                                 /*
955                                  * When we're idle and a woken (rt) task is
956                                  * throttled check_preempt_curr() will set
957                                  * skip_update and the time between the wakeup
958                                  * and this unthrottle will get accounted as
959                                  * 'runtime'.
960                                  */
961                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
962                                         rq_clock_cancel_skipupdate(rq);
963                         }
964                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
965                                 idle = 0;
966                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
967                 } else if (rt_rq->rt_nr_running) {
968                         idle = 0;
969                         if (!rt_rq_throttled(rt_rq))
970                                 enqueue = 1;
971                 }
972                 if (rt_rq->rt_throttled)
973                         throttled = 1;
974
975                 if (enqueue)
976                         sched_rt_rq_enqueue(rt_rq);
977                 rq_unlock(rq, &rf);
978         }
979
980         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
981                 return 1;
982
983         return idle;
984 }
985
986 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
987 {
988 #ifdef CONFIG_RT_GROUP_SCHED
989         struct rt_rq *rt_rq = group_rt_rq(rt_se);
990
991         if (rt_rq)
992                 return rt_rq->highest_prio.curr;
993 #endif
994
995         return rt_task_of(rt_se)->prio;
996 }
997
998 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
999 {
1000         u64 runtime = sched_rt_runtime(rt_rq);
1001
1002         if (rt_rq->rt_throttled)
1003                 return rt_rq_throttled(rt_rq);
1004
1005         if (runtime >= sched_rt_period(rt_rq))
1006                 return 0;
1007
1008         balance_runtime(rt_rq);
1009         runtime = sched_rt_runtime(rt_rq);
1010         if (runtime == RUNTIME_INF)
1011                 return 0;
1012
1013         if (rt_rq->rt_time > runtime) {
1014                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1015
1016                 /*
1017                  * Don't actually throttle groups that have no runtime assigned
1018                  * but accrue some time due to boosting.
1019                  */
1020                 if (likely(rt_b->rt_runtime)) {
1021                         rt_rq->rt_throttled = 1;
1022                         printk_deferred_once("sched: RT throttling activated\n");
1023                 } else {
1024                         /*
1025                          * In case we did anyway, make it go away,
1026                          * replenishment is a joke, since it will replenish us
1027                          * with exactly 0 ns.
1028                          */
1029                         rt_rq->rt_time = 0;
1030                 }
1031
1032                 if (rt_rq_throttled(rt_rq)) {
1033                         sched_rt_rq_dequeue(rt_rq);
1034                         return 1;
1035                 }
1036         }
1037
1038         return 0;
1039 }
1040
1041 /*
1042  * Update the current task's runtime statistics. Skip current tasks that
1043  * are not in our scheduling class.
1044  */
1045 static void update_curr_rt(struct rq *rq)
1046 {
1047         struct task_struct *curr = rq->curr;
1048         struct sched_rt_entity *rt_se = &curr->rt;
1049         u64 delta_exec;
1050         u64 now;
1051
1052         if (curr->sched_class != &rt_sched_class)
1053                 return;
1054
1055         now = rq_clock_task(rq);
1056         delta_exec = now - curr->se.exec_start;
1057         if (unlikely((s64)delta_exec <= 0))
1058                 return;
1059
1060         schedstat_set(curr->stats.exec_max,
1061                       max(curr->stats.exec_max, delta_exec));
1062
1063         trace_sched_stat_runtime(curr, delta_exec, 0);
1064
1065         update_current_exec_runtime(curr, now, delta_exec);
1066
1067         if (!rt_bandwidth_enabled())
1068                 return;
1069
1070         for_each_sched_rt_entity(rt_se) {
1071                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1072                 int exceeded;
1073
1074                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1075                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1076                         rt_rq->rt_time += delta_exec;
1077                         exceeded = sched_rt_runtime_exceeded(rt_rq);
1078                         if (exceeded)
1079                                 resched_curr(rq);
1080                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1081                         if (exceeded)
1082                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1083                 }
1084         }
1085 }
1086
1087 static void
1088 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1089 {
1090         struct rq *rq = rq_of_rt_rq(rt_rq);
1091
1092         BUG_ON(&rq->rt != rt_rq);
1093
1094         if (!rt_rq->rt_queued)
1095                 return;
1096
1097         BUG_ON(!rq->nr_running);
1098
1099         sub_nr_running(rq, count);
1100         rt_rq->rt_queued = 0;
1101
1102 }
1103
1104 static void
1105 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1106 {
1107         struct rq *rq = rq_of_rt_rq(rt_rq);
1108
1109         BUG_ON(&rq->rt != rt_rq);
1110
1111         if (rt_rq->rt_queued)
1112                 return;
1113
1114         if (rt_rq_throttled(rt_rq))
1115                 return;
1116
1117         if (rt_rq->rt_nr_running) {
1118                 add_nr_running(rq, rt_rq->rt_nr_running);
1119                 rt_rq->rt_queued = 1;
1120         }
1121
1122         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1123         cpufreq_update_util(rq, 0);
1124 }
1125
1126 #if defined CONFIG_SMP
1127
1128 static void
1129 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1130 {
1131         struct rq *rq = rq_of_rt_rq(rt_rq);
1132
1133 #ifdef CONFIG_RT_GROUP_SCHED
1134         /*
1135          * Change rq's cpupri only if rt_rq is the top queue.
1136          */
1137         if (&rq->rt != rt_rq)
1138                 return;
1139 #endif
1140         if (rq->online && prio < prev_prio)
1141                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1142 }
1143
1144 static void
1145 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1146 {
1147         struct rq *rq = rq_of_rt_rq(rt_rq);
1148
1149 #ifdef CONFIG_RT_GROUP_SCHED
1150         /*
1151          * Change rq's cpupri only if rt_rq is the top queue.
1152          */
1153         if (&rq->rt != rt_rq)
1154                 return;
1155 #endif
1156         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1157                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1158 }
1159
1160 #else /* CONFIG_SMP */
1161
1162 static inline
1163 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1164 static inline
1165 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1166
1167 #endif /* CONFIG_SMP */
1168
1169 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1170 static void
1171 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1172 {
1173         int prev_prio = rt_rq->highest_prio.curr;
1174
1175         if (prio < prev_prio)
1176                 rt_rq->highest_prio.curr = prio;
1177
1178         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1179 }
1180
1181 static void
1182 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1183 {
1184         int prev_prio = rt_rq->highest_prio.curr;
1185
1186         if (rt_rq->rt_nr_running) {
1187
1188                 WARN_ON(prio < prev_prio);
1189
1190                 /*
1191                  * This may have been our highest task, and therefore
1192                  * we may have some recomputation to do
1193                  */
1194                 if (prio == prev_prio) {
1195                         struct rt_prio_array *array = &rt_rq->active;
1196
1197                         rt_rq->highest_prio.curr =
1198                                 sched_find_first_bit(array->bitmap);
1199                 }
1200
1201         } else {
1202                 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1203         }
1204
1205         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1206 }
1207
1208 #else
1209
1210 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1211 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1212
1213 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1214
1215 #ifdef CONFIG_RT_GROUP_SCHED
1216
1217 static void
1218 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1219 {
1220         if (rt_se_boosted(rt_se))
1221                 rt_rq->rt_nr_boosted++;
1222
1223         if (rt_rq->tg)
1224                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1225 }
1226
1227 static void
1228 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1229 {
1230         if (rt_se_boosted(rt_se))
1231                 rt_rq->rt_nr_boosted--;
1232
1233         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1234 }
1235
1236 #else /* CONFIG_RT_GROUP_SCHED */
1237
1238 static void
1239 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1240 {
1241         start_rt_bandwidth(&def_rt_bandwidth);
1242 }
1243
1244 static inline
1245 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1246
1247 #endif /* CONFIG_RT_GROUP_SCHED */
1248
1249 static inline
1250 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1251 {
1252         struct rt_rq *group_rq = group_rt_rq(rt_se);
1253
1254         if (group_rq)
1255                 return group_rq->rt_nr_running;
1256         else
1257                 return 1;
1258 }
1259
1260 static inline
1261 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1262 {
1263         struct rt_rq *group_rq = group_rt_rq(rt_se);
1264         struct task_struct *tsk;
1265
1266         if (group_rq)
1267                 return group_rq->rr_nr_running;
1268
1269         tsk = rt_task_of(rt_se);
1270
1271         return (tsk->policy == SCHED_RR) ? 1 : 0;
1272 }
1273
1274 static inline
1275 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1276 {
1277         int prio = rt_se_prio(rt_se);
1278
1279         WARN_ON(!rt_prio(prio));
1280         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1281         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1282
1283         inc_rt_prio(rt_rq, prio);
1284         inc_rt_migration(rt_se, rt_rq);
1285         inc_rt_group(rt_se, rt_rq);
1286 }
1287
1288 static inline
1289 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1290 {
1291         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1292         WARN_ON(!rt_rq->rt_nr_running);
1293         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1294         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1295
1296         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1297         dec_rt_migration(rt_se, rt_rq);
1298         dec_rt_group(rt_se, rt_rq);
1299 }
1300
1301 /*
1302  * Change rt_se->run_list location unless SAVE && !MOVE
1303  *
1304  * assumes ENQUEUE/DEQUEUE flags match
1305  */
1306 static inline bool move_entity(unsigned int flags)
1307 {
1308         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1309                 return false;
1310
1311         return true;
1312 }
1313
1314 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1315 {
1316         list_del_init(&rt_se->run_list);
1317
1318         if (list_empty(array->queue + rt_se_prio(rt_se)))
1319                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1320
1321         rt_se->on_list = 0;
1322 }
1323
1324 static inline struct sched_statistics *
1325 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1326 {
1327 #ifdef CONFIG_RT_GROUP_SCHED
1328         /* schedstats is not supported for rt group. */
1329         if (!rt_entity_is_task(rt_se))
1330                 return NULL;
1331 #endif
1332
1333         return &rt_task_of(rt_se)->stats;
1334 }
1335
1336 static inline void
1337 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1338 {
1339         struct sched_statistics *stats;
1340         struct task_struct *p = NULL;
1341
1342         if (!schedstat_enabled())
1343                 return;
1344
1345         if (rt_entity_is_task(rt_se))
1346                 p = rt_task_of(rt_se);
1347
1348         stats = __schedstats_from_rt_se(rt_se);
1349         if (!stats)
1350                 return;
1351
1352         __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1353 }
1354
1355 static inline void
1356 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1357 {
1358         struct sched_statistics *stats;
1359         struct task_struct *p = NULL;
1360
1361         if (!schedstat_enabled())
1362                 return;
1363
1364         if (rt_entity_is_task(rt_se))
1365                 p = rt_task_of(rt_se);
1366
1367         stats = __schedstats_from_rt_se(rt_se);
1368         if (!stats)
1369                 return;
1370
1371         __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1372 }
1373
1374 static inline void
1375 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1376                         int flags)
1377 {
1378         if (!schedstat_enabled())
1379                 return;
1380
1381         if (flags & ENQUEUE_WAKEUP)
1382                 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1383 }
1384
1385 static inline void
1386 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1387 {
1388         struct sched_statistics *stats;
1389         struct task_struct *p = NULL;
1390
1391         if (!schedstat_enabled())
1392                 return;
1393
1394         if (rt_entity_is_task(rt_se))
1395                 p = rt_task_of(rt_se);
1396
1397         stats = __schedstats_from_rt_se(rt_se);
1398         if (!stats)
1399                 return;
1400
1401         __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1402 }
1403
1404 static inline void
1405 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1406                         int flags)
1407 {
1408         struct task_struct *p = NULL;
1409
1410         if (!schedstat_enabled())
1411                 return;
1412
1413         if (rt_entity_is_task(rt_se))
1414                 p = rt_task_of(rt_se);
1415
1416         if ((flags & DEQUEUE_SLEEP) && p) {
1417                 unsigned int state;
1418
1419                 state = READ_ONCE(p->__state);
1420                 if (state & TASK_INTERRUPTIBLE)
1421                         __schedstat_set(p->stats.sleep_start,
1422                                         rq_clock(rq_of_rt_rq(rt_rq)));
1423
1424                 if (state & TASK_UNINTERRUPTIBLE)
1425                         __schedstat_set(p->stats.block_start,
1426                                         rq_clock(rq_of_rt_rq(rt_rq)));
1427         }
1428 }
1429
1430 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1431 {
1432         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1433         struct rt_prio_array *array = &rt_rq->active;
1434         struct rt_rq *group_rq = group_rt_rq(rt_se);
1435         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1436
1437         /*
1438          * Don't enqueue the group if its throttled, or when empty.
1439          * The latter is a consequence of the former when a child group
1440          * get throttled and the current group doesn't have any other
1441          * active members.
1442          */
1443         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1444                 if (rt_se->on_list)
1445                         __delist_rt_entity(rt_se, array);
1446                 return;
1447         }
1448
1449         if (move_entity(flags)) {
1450                 WARN_ON_ONCE(rt_se->on_list);
1451                 if (flags & ENQUEUE_HEAD)
1452                         list_add(&rt_se->run_list, queue);
1453                 else
1454                         list_add_tail(&rt_se->run_list, queue);
1455
1456                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1457                 rt_se->on_list = 1;
1458         }
1459         rt_se->on_rq = 1;
1460
1461         inc_rt_tasks(rt_se, rt_rq);
1462 }
1463
1464 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1465 {
1466         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1467         struct rt_prio_array *array = &rt_rq->active;
1468
1469         if (move_entity(flags)) {
1470                 WARN_ON_ONCE(!rt_se->on_list);
1471                 __delist_rt_entity(rt_se, array);
1472         }
1473         rt_se->on_rq = 0;
1474
1475         dec_rt_tasks(rt_se, rt_rq);
1476 }
1477
1478 /*
1479  * Because the prio of an upper entry depends on the lower
1480  * entries, we must remove entries top - down.
1481  */
1482 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1483 {
1484         struct sched_rt_entity *back = NULL;
1485         unsigned int rt_nr_running;
1486
1487         for_each_sched_rt_entity(rt_se) {
1488                 rt_se->back = back;
1489                 back = rt_se;
1490         }
1491
1492         rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1493
1494         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1495                 if (on_rt_rq(rt_se))
1496                         __dequeue_rt_entity(rt_se, flags);
1497         }
1498
1499         dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1500 }
1501
1502 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1503 {
1504         struct rq *rq = rq_of_rt_se(rt_se);
1505
1506         update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1507
1508         dequeue_rt_stack(rt_se, flags);
1509         for_each_sched_rt_entity(rt_se)
1510                 __enqueue_rt_entity(rt_se, flags);
1511         enqueue_top_rt_rq(&rq->rt);
1512 }
1513
1514 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1515 {
1516         struct rq *rq = rq_of_rt_se(rt_se);
1517
1518         update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1519
1520         dequeue_rt_stack(rt_se, flags);
1521
1522         for_each_sched_rt_entity(rt_se) {
1523                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1524
1525                 if (rt_rq && rt_rq->rt_nr_running)
1526                         __enqueue_rt_entity(rt_se, flags);
1527         }
1528         enqueue_top_rt_rq(&rq->rt);
1529 }
1530
1531 /*
1532  * Adding/removing a task to/from a priority array:
1533  */
1534 static void
1535 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1536 {
1537         struct sched_rt_entity *rt_se = &p->rt;
1538
1539         if (flags & ENQUEUE_WAKEUP)
1540                 rt_se->timeout = 0;
1541
1542         check_schedstat_required();
1543         update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1544
1545         enqueue_rt_entity(rt_se, flags);
1546
1547         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1548                 enqueue_pushable_task(rq, p);
1549 }
1550
1551 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1552 {
1553         struct sched_rt_entity *rt_se = &p->rt;
1554
1555         update_curr_rt(rq);
1556         dequeue_rt_entity(rt_se, flags);
1557
1558         dequeue_pushable_task(rq, p);
1559 }
1560
1561 /*
1562  * Put task to the head or the end of the run list without the overhead of
1563  * dequeue followed by enqueue.
1564  */
1565 static void
1566 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1567 {
1568         if (on_rt_rq(rt_se)) {
1569                 struct rt_prio_array *array = &rt_rq->active;
1570                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1571
1572                 if (head)
1573                         list_move(&rt_se->run_list, queue);
1574                 else
1575                         list_move_tail(&rt_se->run_list, queue);
1576         }
1577 }
1578
1579 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1580 {
1581         struct sched_rt_entity *rt_se = &p->rt;
1582         struct rt_rq *rt_rq;
1583
1584         for_each_sched_rt_entity(rt_se) {
1585                 rt_rq = rt_rq_of_se(rt_se);
1586                 requeue_rt_entity(rt_rq, rt_se, head);
1587         }
1588 }
1589
1590 static void yield_task_rt(struct rq *rq)
1591 {
1592         requeue_task_rt(rq, rq->curr, 0);
1593 }
1594
1595 #ifdef CONFIG_SMP
1596 static int find_lowest_rq(struct task_struct *task);
1597
1598 static int
1599 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1600 {
1601         struct task_struct *curr;
1602         struct rq *rq;
1603         bool test;
1604
1605         /* For anything but wake ups, just return the task_cpu */
1606         if (!(flags & (WF_TTWU | WF_FORK)))
1607                 goto out;
1608
1609         rq = cpu_rq(cpu);
1610
1611         rcu_read_lock();
1612         curr = READ_ONCE(rq->curr); /* unlocked access */
1613
1614         /*
1615          * If the current task on @p's runqueue is an RT task, then
1616          * try to see if we can wake this RT task up on another
1617          * runqueue. Otherwise simply start this RT task
1618          * on its current runqueue.
1619          *
1620          * We want to avoid overloading runqueues. If the woken
1621          * task is a higher priority, then it will stay on this CPU
1622          * and the lower prio task should be moved to another CPU.
1623          * Even though this will probably make the lower prio task
1624          * lose its cache, we do not want to bounce a higher task
1625          * around just because it gave up its CPU, perhaps for a
1626          * lock?
1627          *
1628          * For equal prio tasks, we just let the scheduler sort it out.
1629          *
1630          * Otherwise, just let it ride on the affined RQ and the
1631          * post-schedule router will push the preempted task away
1632          *
1633          * This test is optimistic, if we get it wrong the load-balancer
1634          * will have to sort it out.
1635          *
1636          * We take into account the capacity of the CPU to ensure it fits the
1637          * requirement of the task - which is only important on heterogeneous
1638          * systems like big.LITTLE.
1639          */
1640         test = curr &&
1641                unlikely(rt_task(curr)) &&
1642                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1643
1644         if (test || !rt_task_fits_capacity(p, cpu)) {
1645                 int target = find_lowest_rq(p);
1646
1647                 /*
1648                  * Bail out if we were forcing a migration to find a better
1649                  * fitting CPU but our search failed.
1650                  */
1651                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1652                         goto out_unlock;
1653
1654                 /*
1655                  * Don't bother moving it if the destination CPU is
1656                  * not running a lower priority task.
1657                  */
1658                 if (target != -1 &&
1659                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1660                         cpu = target;
1661         }
1662
1663 out_unlock:
1664         rcu_read_unlock();
1665
1666 out:
1667         return cpu;
1668 }
1669
1670 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1671 {
1672         /*
1673          * Current can't be migrated, useless to reschedule,
1674          * let's hope p can move out.
1675          */
1676         if (rq->curr->nr_cpus_allowed == 1 ||
1677             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1678                 return;
1679
1680         /*
1681          * p is migratable, so let's not schedule it and
1682          * see if it is pushed or pulled somewhere else.
1683          */
1684         if (p->nr_cpus_allowed != 1 &&
1685             cpupri_find(&rq->rd->cpupri, p, NULL))
1686                 return;
1687
1688         /*
1689          * There appear to be other CPUs that can accept
1690          * the current task but none can run 'p', so lets reschedule
1691          * to try and push the current task away:
1692          */
1693         requeue_task_rt(rq, p, 1);
1694         resched_curr(rq);
1695 }
1696
1697 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1698 {
1699         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1700                 /*
1701                  * This is OK, because current is on_cpu, which avoids it being
1702                  * picked for load-balance and preemption/IRQs are still
1703                  * disabled avoiding further scheduler activity on it and we've
1704                  * not yet started the picking loop.
1705                  */
1706                 rq_unpin_lock(rq, rf);
1707                 pull_rt_task(rq);
1708                 rq_repin_lock(rq, rf);
1709         }
1710
1711         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1712 }
1713 #endif /* CONFIG_SMP */
1714
1715 /*
1716  * Preempt the current task with a newly woken task if needed:
1717  */
1718 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1719 {
1720         if (p->prio < rq->curr->prio) {
1721                 resched_curr(rq);
1722                 return;
1723         }
1724
1725 #ifdef CONFIG_SMP
1726         /*
1727          * If:
1728          *
1729          * - the newly woken task is of equal priority to the current task
1730          * - the newly woken task is non-migratable while current is migratable
1731          * - current will be preempted on the next reschedule
1732          *
1733          * we should check to see if current can readily move to a different
1734          * cpu.  If so, we will reschedule to allow the push logic to try
1735          * to move current somewhere else, making room for our non-migratable
1736          * task.
1737          */
1738         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1739                 check_preempt_equal_prio(rq, p);
1740 #endif
1741 }
1742
1743 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1744 {
1745         struct sched_rt_entity *rt_se = &p->rt;
1746         struct rt_rq *rt_rq = &rq->rt;
1747
1748         p->se.exec_start = rq_clock_task(rq);
1749         if (on_rt_rq(&p->rt))
1750                 update_stats_wait_end_rt(rt_rq, rt_se);
1751
1752         /* The running task is never eligible for pushing */
1753         dequeue_pushable_task(rq, p);
1754
1755         if (!first)
1756                 return;
1757
1758         /*
1759          * If prev task was rt, put_prev_task() has already updated the
1760          * utilization. We only care of the case where we start to schedule a
1761          * rt task
1762          */
1763         if (rq->curr->sched_class != &rt_sched_class)
1764                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1765
1766         rt_queue_push_tasks(rq);
1767 }
1768
1769 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1770 {
1771         struct rt_prio_array *array = &rt_rq->active;
1772         struct sched_rt_entity *next = NULL;
1773         struct list_head *queue;
1774         int idx;
1775
1776         idx = sched_find_first_bit(array->bitmap);
1777         BUG_ON(idx >= MAX_RT_PRIO);
1778
1779         queue = array->queue + idx;
1780         if (SCHED_WARN_ON(list_empty(queue)))
1781                 return NULL;
1782         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1783
1784         return next;
1785 }
1786
1787 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1788 {
1789         struct sched_rt_entity *rt_se;
1790         struct rt_rq *rt_rq  = &rq->rt;
1791
1792         do {
1793                 rt_se = pick_next_rt_entity(rt_rq);
1794                 if (unlikely(!rt_se))
1795                         return NULL;
1796                 rt_rq = group_rt_rq(rt_se);
1797         } while (rt_rq);
1798
1799         return rt_task_of(rt_se);
1800 }
1801
1802 static struct task_struct *pick_task_rt(struct rq *rq)
1803 {
1804         struct task_struct *p;
1805
1806         if (!sched_rt_runnable(rq))
1807                 return NULL;
1808
1809         p = _pick_next_task_rt(rq);
1810
1811         return p;
1812 }
1813
1814 static struct task_struct *pick_next_task_rt(struct rq *rq)
1815 {
1816         struct task_struct *p = pick_task_rt(rq);
1817
1818         if (p)
1819                 set_next_task_rt(rq, p, true);
1820
1821         return p;
1822 }
1823
1824 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1825 {
1826         struct sched_rt_entity *rt_se = &p->rt;
1827         struct rt_rq *rt_rq = &rq->rt;
1828
1829         if (on_rt_rq(&p->rt))
1830                 update_stats_wait_start_rt(rt_rq, rt_se);
1831
1832         update_curr_rt(rq);
1833
1834         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1835
1836         /*
1837          * The previous task needs to be made eligible for pushing
1838          * if it is still active
1839          */
1840         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1841                 enqueue_pushable_task(rq, p);
1842 }
1843
1844 #ifdef CONFIG_SMP
1845
1846 /* Only try algorithms three times */
1847 #define RT_MAX_TRIES 3
1848
1849 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1850 {
1851         if (!task_on_cpu(rq, p) &&
1852             cpumask_test_cpu(cpu, &p->cpus_mask))
1853                 return 1;
1854
1855         return 0;
1856 }
1857
1858 /*
1859  * Return the highest pushable rq's task, which is suitable to be executed
1860  * on the CPU, NULL otherwise
1861  */
1862 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1863 {
1864         struct plist_head *head = &rq->rt.pushable_tasks;
1865         struct task_struct *p;
1866
1867         if (!has_pushable_tasks(rq))
1868                 return NULL;
1869
1870         plist_for_each_entry(p, head, pushable_tasks) {
1871                 if (pick_rt_task(rq, p, cpu))
1872                         return p;
1873         }
1874
1875         return NULL;
1876 }
1877
1878 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1879
1880 static int find_lowest_rq(struct task_struct *task)
1881 {
1882         struct sched_domain *sd;
1883         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1884         int this_cpu = smp_processor_id();
1885         int cpu      = task_cpu(task);
1886         int ret;
1887
1888         /* Make sure the mask is initialized first */
1889         if (unlikely(!lowest_mask))
1890                 return -1;
1891
1892         if (task->nr_cpus_allowed == 1)
1893                 return -1; /* No other targets possible */
1894
1895         /*
1896          * If we're on asym system ensure we consider the different capacities
1897          * of the CPUs when searching for the lowest_mask.
1898          */
1899         if (sched_asym_cpucap_active()) {
1900
1901                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1902                                           task, lowest_mask,
1903                                           rt_task_fits_capacity);
1904         } else {
1905
1906                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1907                                   task, lowest_mask);
1908         }
1909
1910         if (!ret)
1911                 return -1; /* No targets found */
1912
1913         /*
1914          * At this point we have built a mask of CPUs representing the
1915          * lowest priority tasks in the system.  Now we want to elect
1916          * the best one based on our affinity and topology.
1917          *
1918          * We prioritize the last CPU that the task executed on since
1919          * it is most likely cache-hot in that location.
1920          */
1921         if (cpumask_test_cpu(cpu, lowest_mask))
1922                 return cpu;
1923
1924         /*
1925          * Otherwise, we consult the sched_domains span maps to figure
1926          * out which CPU is logically closest to our hot cache data.
1927          */
1928         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1929                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1930
1931         rcu_read_lock();
1932         for_each_domain(cpu, sd) {
1933                 if (sd->flags & SD_WAKE_AFFINE) {
1934                         int best_cpu;
1935
1936                         /*
1937                          * "this_cpu" is cheaper to preempt than a
1938                          * remote processor.
1939                          */
1940                         if (this_cpu != -1 &&
1941                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1942                                 rcu_read_unlock();
1943                                 return this_cpu;
1944                         }
1945
1946                         best_cpu = cpumask_any_and_distribute(lowest_mask,
1947                                                               sched_domain_span(sd));
1948                         if (best_cpu < nr_cpu_ids) {
1949                                 rcu_read_unlock();
1950                                 return best_cpu;
1951                         }
1952                 }
1953         }
1954         rcu_read_unlock();
1955
1956         /*
1957          * And finally, if there were no matches within the domains
1958          * just give the caller *something* to work with from the compatible
1959          * locations.
1960          */
1961         if (this_cpu != -1)
1962                 return this_cpu;
1963
1964         cpu = cpumask_any_distribute(lowest_mask);
1965         if (cpu < nr_cpu_ids)
1966                 return cpu;
1967
1968         return -1;
1969 }
1970
1971 /* Will lock the rq it finds */
1972 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1973 {
1974         struct rq *lowest_rq = NULL;
1975         int tries;
1976         int cpu;
1977
1978         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1979                 cpu = find_lowest_rq(task);
1980
1981                 if ((cpu == -1) || (cpu == rq->cpu))
1982                         break;
1983
1984                 lowest_rq = cpu_rq(cpu);
1985
1986                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1987                         /*
1988                          * Target rq has tasks of equal or higher priority,
1989                          * retrying does not release any lock and is unlikely
1990                          * to yield a different result.
1991                          */
1992                         lowest_rq = NULL;
1993                         break;
1994                 }
1995
1996                 /* if the prio of this runqueue changed, try again */
1997                 if (double_lock_balance(rq, lowest_rq)) {
1998                         /*
1999                          * We had to unlock the run queue. In
2000                          * the mean time, task could have
2001                          * migrated already or had its affinity changed.
2002                          * Also make sure that it wasn't scheduled on its rq.
2003                          */
2004                         if (unlikely(task_rq(task) != rq ||
2005                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2006                                      task_on_cpu(rq, task) ||
2007                                      !rt_task(task) ||
2008                                      !task_on_rq_queued(task))) {
2009
2010                                 double_unlock_balance(rq, lowest_rq);
2011                                 lowest_rq = NULL;
2012                                 break;
2013                         }
2014                 }
2015
2016                 /* If this rq is still suitable use it. */
2017                 if (lowest_rq->rt.highest_prio.curr > task->prio)
2018                         break;
2019
2020                 /* try again */
2021                 double_unlock_balance(rq, lowest_rq);
2022                 lowest_rq = NULL;
2023         }
2024
2025         return lowest_rq;
2026 }
2027
2028 static struct task_struct *pick_next_pushable_task(struct rq *rq)
2029 {
2030         struct task_struct *p;
2031
2032         if (!has_pushable_tasks(rq))
2033                 return NULL;
2034
2035         p = plist_first_entry(&rq->rt.pushable_tasks,
2036                               struct task_struct, pushable_tasks);
2037
2038         BUG_ON(rq->cpu != task_cpu(p));
2039         BUG_ON(task_current(rq, p));
2040         BUG_ON(p->nr_cpus_allowed <= 1);
2041
2042         BUG_ON(!task_on_rq_queued(p));
2043         BUG_ON(!rt_task(p));
2044
2045         return p;
2046 }
2047
2048 /*
2049  * If the current CPU has more than one RT task, see if the non
2050  * running task can migrate over to a CPU that is running a task
2051  * of lesser priority.
2052  */
2053 static int push_rt_task(struct rq *rq, bool pull)
2054 {
2055         struct task_struct *next_task;
2056         struct rq *lowest_rq;
2057         int ret = 0;
2058
2059         if (!rq->rt.overloaded)
2060                 return 0;
2061
2062         next_task = pick_next_pushable_task(rq);
2063         if (!next_task)
2064                 return 0;
2065
2066 retry:
2067         /*
2068          * It's possible that the next_task slipped in of
2069          * higher priority than current. If that's the case
2070          * just reschedule current.
2071          */
2072         if (unlikely(next_task->prio < rq->curr->prio)) {
2073                 resched_curr(rq);
2074                 return 0;
2075         }
2076
2077         if (is_migration_disabled(next_task)) {
2078                 struct task_struct *push_task = NULL;
2079                 int cpu;
2080
2081                 if (!pull || rq->push_busy)
2082                         return 0;
2083
2084                 /*
2085                  * Invoking find_lowest_rq() on anything but an RT task doesn't
2086                  * make sense. Per the above priority check, curr has to
2087                  * be of higher priority than next_task, so no need to
2088                  * reschedule when bailing out.
2089                  *
2090                  * Note that the stoppers are masqueraded as SCHED_FIFO
2091                  * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2092                  */
2093                 if (rq->curr->sched_class != &rt_sched_class)
2094                         return 0;
2095
2096                 cpu = find_lowest_rq(rq->curr);
2097                 if (cpu == -1 || cpu == rq->cpu)
2098                         return 0;
2099
2100                 /*
2101                  * Given we found a CPU with lower priority than @next_task,
2102                  * therefore it should be running. However we cannot migrate it
2103                  * to this other CPU, instead attempt to push the current
2104                  * running task on this CPU away.
2105                  */
2106                 push_task = get_push_task(rq);
2107                 if (push_task) {
2108                         raw_spin_rq_unlock(rq);
2109                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2110                                             push_task, &rq->push_work);
2111                         raw_spin_rq_lock(rq);
2112                 }
2113
2114                 return 0;
2115         }
2116
2117         if (WARN_ON(next_task == rq->curr))
2118                 return 0;
2119
2120         /* We might release rq lock */
2121         get_task_struct(next_task);
2122
2123         /* find_lock_lowest_rq locks the rq if found */
2124         lowest_rq = find_lock_lowest_rq(next_task, rq);
2125         if (!lowest_rq) {
2126                 struct task_struct *task;
2127                 /*
2128                  * find_lock_lowest_rq releases rq->lock
2129                  * so it is possible that next_task has migrated.
2130                  *
2131                  * We need to make sure that the task is still on the same
2132                  * run-queue and is also still the next task eligible for
2133                  * pushing.
2134                  */
2135                 task = pick_next_pushable_task(rq);
2136                 if (task == next_task) {
2137                         /*
2138                          * The task hasn't migrated, and is still the next
2139                          * eligible task, but we failed to find a run-queue
2140                          * to push it to.  Do not retry in this case, since
2141                          * other CPUs will pull from us when ready.
2142                          */
2143                         goto out;
2144                 }
2145
2146                 if (!task)
2147                         /* No more tasks, just exit */
2148                         goto out;
2149
2150                 /*
2151                  * Something has shifted, try again.
2152                  */
2153                 put_task_struct(next_task);
2154                 next_task = task;
2155                 goto retry;
2156         }
2157
2158         deactivate_task(rq, next_task, 0);
2159         set_task_cpu(next_task, lowest_rq->cpu);
2160         activate_task(lowest_rq, next_task, 0);
2161         resched_curr(lowest_rq);
2162         ret = 1;
2163
2164         double_unlock_balance(rq, lowest_rq);
2165 out:
2166         put_task_struct(next_task);
2167
2168         return ret;
2169 }
2170
2171 static void push_rt_tasks(struct rq *rq)
2172 {
2173         /* push_rt_task will return true if it moved an RT */
2174         while (push_rt_task(rq, false))
2175                 ;
2176 }
2177
2178 #ifdef HAVE_RT_PUSH_IPI
2179
2180 /*
2181  * When a high priority task schedules out from a CPU and a lower priority
2182  * task is scheduled in, a check is made to see if there's any RT tasks
2183  * on other CPUs that are waiting to run because a higher priority RT task
2184  * is currently running on its CPU. In this case, the CPU with multiple RT
2185  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2186  * up that may be able to run one of its non-running queued RT tasks.
2187  *
2188  * All CPUs with overloaded RT tasks need to be notified as there is currently
2189  * no way to know which of these CPUs have the highest priority task waiting
2190  * to run. Instead of trying to take a spinlock on each of these CPUs,
2191  * which has shown to cause large latency when done on machines with many
2192  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2193  * RT tasks waiting to run.
2194  *
2195  * Just sending an IPI to each of the CPUs is also an issue, as on large
2196  * count CPU machines, this can cause an IPI storm on a CPU, especially
2197  * if its the only CPU with multiple RT tasks queued, and a large number
2198  * of CPUs scheduling a lower priority task at the same time.
2199  *
2200  * Each root domain has its own irq work function that can iterate over
2201  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2202  * task must be checked if there's one or many CPUs that are lowering
2203  * their priority, there's a single irq work iterator that will try to
2204  * push off RT tasks that are waiting to run.
2205  *
2206  * When a CPU schedules a lower priority task, it will kick off the
2207  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2208  * As it only takes the first CPU that schedules a lower priority task
2209  * to start the process, the rto_start variable is incremented and if
2210  * the atomic result is one, then that CPU will try to take the rto_lock.
2211  * This prevents high contention on the lock as the process handles all
2212  * CPUs scheduling lower priority tasks.
2213  *
2214  * All CPUs that are scheduling a lower priority task will increment the
2215  * rt_loop_next variable. This will make sure that the irq work iterator
2216  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2217  * priority task, even if the iterator is in the middle of a scan. Incrementing
2218  * the rt_loop_next will cause the iterator to perform another scan.
2219  *
2220  */
2221 static int rto_next_cpu(struct root_domain *rd)
2222 {
2223         int next;
2224         int cpu;
2225
2226         /*
2227          * When starting the IPI RT pushing, the rto_cpu is set to -1,
2228          * rt_next_cpu() will simply return the first CPU found in
2229          * the rto_mask.
2230          *
2231          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2232          * will return the next CPU found in the rto_mask.
2233          *
2234          * If there are no more CPUs left in the rto_mask, then a check is made
2235          * against rto_loop and rto_loop_next. rto_loop is only updated with
2236          * the rto_lock held, but any CPU may increment the rto_loop_next
2237          * without any locking.
2238          */
2239         for (;;) {
2240
2241                 /* When rto_cpu is -1 this acts like cpumask_first() */
2242                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2243
2244                 rd->rto_cpu = cpu;
2245
2246                 if (cpu < nr_cpu_ids)
2247                         return cpu;
2248
2249                 rd->rto_cpu = -1;
2250
2251                 /*
2252                  * ACQUIRE ensures we see the @rto_mask changes
2253                  * made prior to the @next value observed.
2254                  *
2255                  * Matches WMB in rt_set_overload().
2256                  */
2257                 next = atomic_read_acquire(&rd->rto_loop_next);
2258
2259                 if (rd->rto_loop == next)
2260                         break;
2261
2262                 rd->rto_loop = next;
2263         }
2264
2265         return -1;
2266 }
2267
2268 static inline bool rto_start_trylock(atomic_t *v)
2269 {
2270         return !atomic_cmpxchg_acquire(v, 0, 1);
2271 }
2272
2273 static inline void rto_start_unlock(atomic_t *v)
2274 {
2275         atomic_set_release(v, 0);
2276 }
2277
2278 static void tell_cpu_to_push(struct rq *rq)
2279 {
2280         int cpu = -1;
2281
2282         /* Keep the loop going if the IPI is currently active */
2283         atomic_inc(&rq->rd->rto_loop_next);
2284
2285         /* Only one CPU can initiate a loop at a time */
2286         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2287                 return;
2288
2289         raw_spin_lock(&rq->rd->rto_lock);
2290
2291         /*
2292          * The rto_cpu is updated under the lock, if it has a valid CPU
2293          * then the IPI is still running and will continue due to the
2294          * update to loop_next, and nothing needs to be done here.
2295          * Otherwise it is finishing up and an ipi needs to be sent.
2296          */
2297         if (rq->rd->rto_cpu < 0)
2298                 cpu = rto_next_cpu(rq->rd);
2299
2300         raw_spin_unlock(&rq->rd->rto_lock);
2301
2302         rto_start_unlock(&rq->rd->rto_loop_start);
2303
2304         if (cpu >= 0) {
2305                 /* Make sure the rd does not get freed while pushing */
2306                 sched_get_rd(rq->rd);
2307                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2308         }
2309 }
2310
2311 /* Called from hardirq context */
2312 void rto_push_irq_work_func(struct irq_work *work)
2313 {
2314         struct root_domain *rd =
2315                 container_of(work, struct root_domain, rto_push_work);
2316         struct rq *rq;
2317         int cpu;
2318
2319         rq = this_rq();
2320
2321         /*
2322          * We do not need to grab the lock to check for has_pushable_tasks.
2323          * When it gets updated, a check is made if a push is possible.
2324          */
2325         if (has_pushable_tasks(rq)) {
2326                 raw_spin_rq_lock(rq);
2327                 while (push_rt_task(rq, true))
2328                         ;
2329                 raw_spin_rq_unlock(rq);
2330         }
2331
2332         raw_spin_lock(&rd->rto_lock);
2333
2334         /* Pass the IPI to the next rt overloaded queue */
2335         cpu = rto_next_cpu(rd);
2336
2337         raw_spin_unlock(&rd->rto_lock);
2338
2339         if (cpu < 0) {
2340                 sched_put_rd(rd);
2341                 return;
2342         }
2343
2344         /* Try the next RT overloaded CPU */
2345         irq_work_queue_on(&rd->rto_push_work, cpu);
2346 }
2347 #endif /* HAVE_RT_PUSH_IPI */
2348
2349 static void pull_rt_task(struct rq *this_rq)
2350 {
2351         int this_cpu = this_rq->cpu, cpu;
2352         bool resched = false;
2353         struct task_struct *p, *push_task;
2354         struct rq *src_rq;
2355         int rt_overload_count = rt_overloaded(this_rq);
2356
2357         if (likely(!rt_overload_count))
2358                 return;
2359
2360         /*
2361          * Match the barrier from rt_set_overloaded; this guarantees that if we
2362          * see overloaded we must also see the rto_mask bit.
2363          */
2364         smp_rmb();
2365
2366         /* If we are the only overloaded CPU do nothing */
2367         if (rt_overload_count == 1 &&
2368             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2369                 return;
2370
2371 #ifdef HAVE_RT_PUSH_IPI
2372         if (sched_feat(RT_PUSH_IPI)) {
2373                 tell_cpu_to_push(this_rq);
2374                 return;
2375         }
2376 #endif
2377
2378         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2379                 if (this_cpu == cpu)
2380                         continue;
2381
2382                 src_rq = cpu_rq(cpu);
2383
2384                 /*
2385                  * Don't bother taking the src_rq->lock if the next highest
2386                  * task is known to be lower-priority than our current task.
2387                  * This may look racy, but if this value is about to go
2388                  * logically higher, the src_rq will push this task away.
2389                  * And if its going logically lower, we do not care
2390                  */
2391                 if (src_rq->rt.highest_prio.next >=
2392                     this_rq->rt.highest_prio.curr)
2393                         continue;
2394
2395                 /*
2396                  * We can potentially drop this_rq's lock in
2397                  * double_lock_balance, and another CPU could
2398                  * alter this_rq
2399                  */
2400                 push_task = NULL;
2401                 double_lock_balance(this_rq, src_rq);
2402
2403                 /*
2404                  * We can pull only a task, which is pushable
2405                  * on its rq, and no others.
2406                  */
2407                 p = pick_highest_pushable_task(src_rq, this_cpu);
2408
2409                 /*
2410                  * Do we have an RT task that preempts
2411                  * the to-be-scheduled task?
2412                  */
2413                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2414                         WARN_ON(p == src_rq->curr);
2415                         WARN_ON(!task_on_rq_queued(p));
2416
2417                         /*
2418                          * There's a chance that p is higher in priority
2419                          * than what's currently running on its CPU.
2420                          * This is just that p is waking up and hasn't
2421                          * had a chance to schedule. We only pull
2422                          * p if it is lower in priority than the
2423                          * current task on the run queue
2424                          */
2425                         if (p->prio < src_rq->curr->prio)
2426                                 goto skip;
2427
2428                         if (is_migration_disabled(p)) {
2429                                 push_task = get_push_task(src_rq);
2430                         } else {
2431                                 deactivate_task(src_rq, p, 0);
2432                                 set_task_cpu(p, this_cpu);
2433                                 activate_task(this_rq, p, 0);
2434                                 resched = true;
2435                         }
2436                         /*
2437                          * We continue with the search, just in
2438                          * case there's an even higher prio task
2439                          * in another runqueue. (low likelihood
2440                          * but possible)
2441                          */
2442                 }
2443 skip:
2444                 double_unlock_balance(this_rq, src_rq);
2445
2446                 if (push_task) {
2447                         raw_spin_rq_unlock(this_rq);
2448                         stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2449                                             push_task, &src_rq->push_work);
2450                         raw_spin_rq_lock(this_rq);
2451                 }
2452         }
2453
2454         if (resched)
2455                 resched_curr(this_rq);
2456 }
2457
2458 /*
2459  * If we are not running and we are not going to reschedule soon, we should
2460  * try to push tasks away now
2461  */
2462 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2463 {
2464         bool need_to_push = !task_on_cpu(rq, p) &&
2465                             !test_tsk_need_resched(rq->curr) &&
2466                             p->nr_cpus_allowed > 1 &&
2467                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2468                             (rq->curr->nr_cpus_allowed < 2 ||
2469                              rq->curr->prio <= p->prio);
2470
2471         if (need_to_push)
2472                 push_rt_tasks(rq);
2473 }
2474
2475 /* Assumes rq->lock is held */
2476 static void rq_online_rt(struct rq *rq)
2477 {
2478         if (rq->rt.overloaded)
2479                 rt_set_overload(rq);
2480
2481         __enable_runtime(rq);
2482
2483         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2484 }
2485
2486 /* Assumes rq->lock is held */
2487 static void rq_offline_rt(struct rq *rq)
2488 {
2489         if (rq->rt.overloaded)
2490                 rt_clear_overload(rq);
2491
2492         __disable_runtime(rq);
2493
2494         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2495 }
2496
2497 /*
2498  * When switch from the rt queue, we bring ourselves to a position
2499  * that we might want to pull RT tasks from other runqueues.
2500  */
2501 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2502 {
2503         /*
2504          * If there are other RT tasks then we will reschedule
2505          * and the scheduling of the other RT tasks will handle
2506          * the balancing. But if we are the last RT task
2507          * we may need to handle the pulling of RT tasks
2508          * now.
2509          */
2510         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2511                 return;
2512
2513         rt_queue_pull_task(rq);
2514 }
2515
2516 void __init init_sched_rt_class(void)
2517 {
2518         unsigned int i;
2519
2520         for_each_possible_cpu(i) {
2521                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2522                                         GFP_KERNEL, cpu_to_node(i));
2523         }
2524 }
2525 #endif /* CONFIG_SMP */
2526
2527 /*
2528  * When switching a task to RT, we may overload the runqueue
2529  * with RT tasks. In this case we try to push them off to
2530  * other runqueues.
2531  */
2532 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2533 {
2534         /*
2535          * If we are running, update the avg_rt tracking, as the running time
2536          * will now on be accounted into the latter.
2537          */
2538         if (task_current(rq, p)) {
2539                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2540                 return;
2541         }
2542
2543         /*
2544          * If we are not running we may need to preempt the current
2545          * running task. If that current running task is also an RT task
2546          * then see if we can move to another run queue.
2547          */
2548         if (task_on_rq_queued(p)) {
2549 #ifdef CONFIG_SMP
2550                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2551                         rt_queue_push_tasks(rq);
2552 #endif /* CONFIG_SMP */
2553                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2554                         resched_curr(rq);
2555         }
2556 }
2557
2558 /*
2559  * Priority of the task has changed. This may cause
2560  * us to initiate a push or pull.
2561  */
2562 static void
2563 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2564 {
2565         if (!task_on_rq_queued(p))
2566                 return;
2567
2568         if (task_current(rq, p)) {
2569 #ifdef CONFIG_SMP
2570                 /*
2571                  * If our priority decreases while running, we
2572                  * may need to pull tasks to this runqueue.
2573                  */
2574                 if (oldprio < p->prio)
2575                         rt_queue_pull_task(rq);
2576
2577                 /*
2578                  * If there's a higher priority task waiting to run
2579                  * then reschedule.
2580                  */
2581                 if (p->prio > rq->rt.highest_prio.curr)
2582                         resched_curr(rq);
2583 #else
2584                 /* For UP simply resched on drop of prio */
2585                 if (oldprio < p->prio)
2586                         resched_curr(rq);
2587 #endif /* CONFIG_SMP */
2588         } else {
2589                 /*
2590                  * This task is not running, but if it is
2591                  * greater than the current running task
2592                  * then reschedule.
2593                  */
2594                 if (p->prio < rq->curr->prio)
2595                         resched_curr(rq);
2596         }
2597 }
2598
2599 #ifdef CONFIG_POSIX_TIMERS
2600 static void watchdog(struct rq *rq, struct task_struct *p)
2601 {
2602         unsigned long soft, hard;
2603
2604         /* max may change after cur was read, this will be fixed next tick */
2605         soft = task_rlimit(p, RLIMIT_RTTIME);
2606         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2607
2608         if (soft != RLIM_INFINITY) {
2609                 unsigned long next;
2610
2611                 if (p->rt.watchdog_stamp != jiffies) {
2612                         p->rt.timeout++;
2613                         p->rt.watchdog_stamp = jiffies;
2614                 }
2615
2616                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2617                 if (p->rt.timeout > next) {
2618                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2619                                                     p->se.sum_exec_runtime);
2620                 }
2621         }
2622 }
2623 #else
2624 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2625 #endif
2626
2627 /*
2628  * scheduler tick hitting a task of our scheduling class.
2629  *
2630  * NOTE: This function can be called remotely by the tick offload that
2631  * goes along full dynticks. Therefore no local assumption can be made
2632  * and everything must be accessed through the @rq and @curr passed in
2633  * parameters.
2634  */
2635 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2636 {
2637         struct sched_rt_entity *rt_se = &p->rt;
2638
2639         update_curr_rt(rq);
2640         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2641
2642         watchdog(rq, p);
2643
2644         /*
2645          * RR tasks need a special form of timeslice management.
2646          * FIFO tasks have no timeslices.
2647          */
2648         if (p->policy != SCHED_RR)
2649                 return;
2650
2651         if (--p->rt.time_slice)
2652                 return;
2653
2654         p->rt.time_slice = sched_rr_timeslice;
2655
2656         /*
2657          * Requeue to the end of queue if we (and all of our ancestors) are not
2658          * the only element on the queue
2659          */
2660         for_each_sched_rt_entity(rt_se) {
2661                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2662                         requeue_task_rt(rq, p, 0);
2663                         resched_curr(rq);
2664                         return;
2665                 }
2666         }
2667 }
2668
2669 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2670 {
2671         /*
2672          * Time slice is 0 for SCHED_FIFO tasks
2673          */
2674         if (task->policy == SCHED_RR)
2675                 return sched_rr_timeslice;
2676         else
2677                 return 0;
2678 }
2679
2680 DEFINE_SCHED_CLASS(rt) = {
2681
2682         .enqueue_task           = enqueue_task_rt,
2683         .dequeue_task           = dequeue_task_rt,
2684         .yield_task             = yield_task_rt,
2685
2686         .check_preempt_curr     = check_preempt_curr_rt,
2687
2688         .pick_next_task         = pick_next_task_rt,
2689         .put_prev_task          = put_prev_task_rt,
2690         .set_next_task          = set_next_task_rt,
2691
2692 #ifdef CONFIG_SMP
2693         .balance                = balance_rt,
2694         .pick_task              = pick_task_rt,
2695         .select_task_rq         = select_task_rq_rt,
2696         .set_cpus_allowed       = set_cpus_allowed_common,
2697         .rq_online              = rq_online_rt,
2698         .rq_offline             = rq_offline_rt,
2699         .task_woken             = task_woken_rt,
2700         .switched_from          = switched_from_rt,
2701         .find_lock_rq           = find_lock_lowest_rq,
2702 #endif
2703
2704         .task_tick              = task_tick_rt,
2705
2706         .get_rr_interval        = get_rr_interval_rt,
2707
2708         .prio_changed           = prio_changed_rt,
2709         .switched_to            = switched_to_rt,
2710
2711         .update_curr            = update_curr_rt,
2712
2713 #ifdef CONFIG_UCLAMP_TASK
2714         .uclamp_enabled         = 1,
2715 #endif
2716 };
2717
2718 #ifdef CONFIG_RT_GROUP_SCHED
2719 /*
2720  * Ensure that the real time constraints are schedulable.
2721  */
2722 static DEFINE_MUTEX(rt_constraints_mutex);
2723
2724 static inline int tg_has_rt_tasks(struct task_group *tg)
2725 {
2726         struct task_struct *task;
2727         struct css_task_iter it;
2728         int ret = 0;
2729
2730         /*
2731          * Autogroups do not have RT tasks; see autogroup_create().
2732          */
2733         if (task_group_is_autogroup(tg))
2734                 return 0;
2735
2736         css_task_iter_start(&tg->css, 0, &it);
2737         while (!ret && (task = css_task_iter_next(&it)))
2738                 ret |= rt_task(task);
2739         css_task_iter_end(&it);
2740
2741         return ret;
2742 }
2743
2744 struct rt_schedulable_data {
2745         struct task_group *tg;
2746         u64 rt_period;
2747         u64 rt_runtime;
2748 };
2749
2750 static int tg_rt_schedulable(struct task_group *tg, void *data)
2751 {
2752         struct rt_schedulable_data *d = data;
2753         struct task_group *child;
2754         unsigned long total, sum = 0;
2755         u64 period, runtime;
2756
2757         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2758         runtime = tg->rt_bandwidth.rt_runtime;
2759
2760         if (tg == d->tg) {
2761                 period = d->rt_period;
2762                 runtime = d->rt_runtime;
2763         }
2764
2765         /*
2766          * Cannot have more runtime than the period.
2767          */
2768         if (runtime > period && runtime != RUNTIME_INF)
2769                 return -EINVAL;
2770
2771         /*
2772          * Ensure we don't starve existing RT tasks if runtime turns zero.
2773          */
2774         if (rt_bandwidth_enabled() && !runtime &&
2775             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2776                 return -EBUSY;
2777
2778         total = to_ratio(period, runtime);
2779
2780         /*
2781          * Nobody can have more than the global setting allows.
2782          */
2783         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2784                 return -EINVAL;
2785
2786         /*
2787          * The sum of our children's runtime should not exceed our own.
2788          */
2789         list_for_each_entry_rcu(child, &tg->children, siblings) {
2790                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2791                 runtime = child->rt_bandwidth.rt_runtime;
2792
2793                 if (child == d->tg) {
2794                         period = d->rt_period;
2795                         runtime = d->rt_runtime;
2796                 }
2797
2798                 sum += to_ratio(period, runtime);
2799         }
2800
2801         if (sum > total)
2802                 return -EINVAL;
2803
2804         return 0;
2805 }
2806
2807 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2808 {
2809         int ret;
2810
2811         struct rt_schedulable_data data = {
2812                 .tg = tg,
2813                 .rt_period = period,
2814                 .rt_runtime = runtime,
2815         };
2816
2817         rcu_read_lock();
2818         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2819         rcu_read_unlock();
2820
2821         return ret;
2822 }
2823
2824 static int tg_set_rt_bandwidth(struct task_group *tg,
2825                 u64 rt_period, u64 rt_runtime)
2826 {
2827         int i, err = 0;
2828
2829         /*
2830          * Disallowing the root group RT runtime is BAD, it would disallow the
2831          * kernel creating (and or operating) RT threads.
2832          */
2833         if (tg == &root_task_group && rt_runtime == 0)
2834                 return -EINVAL;
2835
2836         /* No period doesn't make any sense. */
2837         if (rt_period == 0)
2838                 return -EINVAL;
2839
2840         /*
2841          * Bound quota to defend quota against overflow during bandwidth shift.
2842          */
2843         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2844                 return -EINVAL;
2845
2846         mutex_lock(&rt_constraints_mutex);
2847         err = __rt_schedulable(tg, rt_period, rt_runtime);
2848         if (err)
2849                 goto unlock;
2850
2851         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2852         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2853         tg->rt_bandwidth.rt_runtime = rt_runtime;
2854
2855         for_each_possible_cpu(i) {
2856                 struct rt_rq *rt_rq = tg->rt_rq[i];
2857
2858                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2859                 rt_rq->rt_runtime = rt_runtime;
2860                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2861         }
2862         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2863 unlock:
2864         mutex_unlock(&rt_constraints_mutex);
2865
2866         return err;
2867 }
2868
2869 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2870 {
2871         u64 rt_runtime, rt_period;
2872
2873         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2874         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2875         if (rt_runtime_us < 0)
2876                 rt_runtime = RUNTIME_INF;
2877         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2878                 return -EINVAL;
2879
2880         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2881 }
2882
2883 long sched_group_rt_runtime(struct task_group *tg)
2884 {
2885         u64 rt_runtime_us;
2886
2887         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2888                 return -1;
2889
2890         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2891         do_div(rt_runtime_us, NSEC_PER_USEC);
2892         return rt_runtime_us;
2893 }
2894
2895 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2896 {
2897         u64 rt_runtime, rt_period;
2898
2899         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2900                 return -EINVAL;
2901
2902         rt_period = rt_period_us * NSEC_PER_USEC;
2903         rt_runtime = tg->rt_bandwidth.rt_runtime;
2904
2905         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2906 }
2907
2908 long sched_group_rt_period(struct task_group *tg)
2909 {
2910         u64 rt_period_us;
2911
2912         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2913         do_div(rt_period_us, NSEC_PER_USEC);
2914         return rt_period_us;
2915 }
2916
2917 #ifdef CONFIG_SYSCTL
2918 static int sched_rt_global_constraints(void)
2919 {
2920         int ret = 0;
2921
2922         mutex_lock(&rt_constraints_mutex);
2923         ret = __rt_schedulable(NULL, 0, 0);
2924         mutex_unlock(&rt_constraints_mutex);
2925
2926         return ret;
2927 }
2928 #endif /* CONFIG_SYSCTL */
2929
2930 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2931 {
2932         /* Don't accept realtime tasks when there is no way for them to run */
2933         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2934                 return 0;
2935
2936         return 1;
2937 }
2938
2939 #else /* !CONFIG_RT_GROUP_SCHED */
2940
2941 #ifdef CONFIG_SYSCTL
2942 static int sched_rt_global_constraints(void)
2943 {
2944         unsigned long flags;
2945         int i;
2946
2947         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2948         for_each_possible_cpu(i) {
2949                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2950
2951                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2952                 rt_rq->rt_runtime = global_rt_runtime();
2953                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2954         }
2955         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2956
2957         return 0;
2958 }
2959 #endif /* CONFIG_SYSCTL */
2960 #endif /* CONFIG_RT_GROUP_SCHED */
2961
2962 #ifdef CONFIG_SYSCTL
2963 static int sched_rt_global_validate(void)
2964 {
2965         if (sysctl_sched_rt_period <= 0)
2966                 return -EINVAL;
2967
2968         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2969                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2970                  ((u64)sysctl_sched_rt_runtime *
2971                         NSEC_PER_USEC > max_rt_runtime)))
2972                 return -EINVAL;
2973
2974         return 0;
2975 }
2976
2977 static void sched_rt_do_global(void)
2978 {
2979         unsigned long flags;
2980
2981         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2982         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2983         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2984         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2985 }
2986
2987 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2988                 size_t *lenp, loff_t *ppos)
2989 {
2990         int old_period, old_runtime;
2991         static DEFINE_MUTEX(mutex);
2992         int ret;
2993
2994         mutex_lock(&mutex);
2995         old_period = sysctl_sched_rt_period;
2996         old_runtime = sysctl_sched_rt_runtime;
2997
2998         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2999
3000         if (!ret && write) {
3001                 ret = sched_rt_global_validate();
3002                 if (ret)
3003                         goto undo;
3004
3005                 ret = sched_dl_global_validate();
3006                 if (ret)
3007                         goto undo;
3008
3009                 ret = sched_rt_global_constraints();
3010                 if (ret)
3011                         goto undo;
3012
3013                 sched_rt_do_global();
3014                 sched_dl_do_global();
3015         }
3016         if (0) {
3017 undo:
3018                 sysctl_sched_rt_period = old_period;
3019                 sysctl_sched_rt_runtime = old_runtime;
3020         }
3021         mutex_unlock(&mutex);
3022
3023         return ret;
3024 }
3025
3026 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3027                 size_t *lenp, loff_t *ppos)
3028 {
3029         int ret;
3030         static DEFINE_MUTEX(mutex);
3031
3032         mutex_lock(&mutex);
3033         ret = proc_dointvec(table, write, buffer, lenp, ppos);
3034         /*
3035          * Make sure that internally we keep jiffies.
3036          * Also, writing zero resets the timeslice to default:
3037          */
3038         if (!ret && write) {
3039                 sched_rr_timeslice =
3040                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3041                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
3042         }
3043         mutex_unlock(&mutex);
3044
3045         return ret;
3046 }
3047 #endif /* CONFIG_SYSCTL */
3048
3049 #ifdef CONFIG_SCHED_DEBUG
3050 void print_rt_stats(struct seq_file *m, int cpu)
3051 {
3052         rt_rq_iter_t iter;
3053         struct rt_rq *rt_rq;
3054
3055         rcu_read_lock();
3056         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3057                 print_rt_rq(m, cpu, rt_rq);
3058         rcu_read_unlock();
3059 }
3060 #endif /* CONFIG_SCHED_DEBUG */