2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
33 #include <trace/events/sched.h>
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 static unsigned int sched_nr_latency = 8;
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
96 * The exponential sliding window over which load is averaged for shares
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 #ifdef CONFIG_CFS_BANDWIDTH
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
111 * default: 5 msec, units: microseconds
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
141 * This idea comes from the SD scheduler of Con Kolivas:
143 static int get_update_sysctl_factor(void)
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
152 case SCHED_TUNABLESCALING_LINEAR:
155 case SCHED_TUNABLESCALING_LOG:
157 factor = 1 + ilog2(cpus);
164 static void update_sysctl(void)
166 unsigned int factor = get_update_sysctl_factor();
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
176 void sched_init_granularity(void)
181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32
184 static void __update_inv_weight(struct load_weight *lw)
188 if (likely(lw->inv_weight))
191 w = scale_load_down(lw->weight);
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
198 lw->inv_weight = WMULT_CONST / w;
202 * delta_exec * weight / lw.weight
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
218 __update_inv_weight(lw);
220 if (unlikely(fact >> 32)) {
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
235 return mul_u64_u32_shr(delta_exec, fact, shift);
239 const struct sched_class fair_sched_class;
241 /**************************************************************
242 * CFS operations on generic schedulable entities:
245 #ifdef CONFIG_FAIR_GROUP_SCHED
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q)
256 static inline struct task_struct *task_of(struct sched_entity *se)
258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
261 return container_of(se, struct task_struct, se);
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 if (!cfs_rq->on_list) {
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 /* Do the two (enqueued) entities belong to the same group ? */
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 if (se->cfs_rq == pse->cfs_rq)
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
339 /* return depth at which a sched entity is present in the hierarchy */
340 static inline int depth_se(struct sched_entity *se)
344 for_each_sched_entity(se)
351 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
353 int se_depth, pse_depth;
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
366 while (se_depth > pse_depth) {
368 *se = parent_entity(*se);
371 while (pse_depth > se_depth) {
373 *pse = parent_entity(*pse);
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
382 #else /* !CONFIG_FAIR_GROUP_SCHED */
384 static inline struct task_struct *task_of(struct sched_entity *se)
386 return container_of(se, struct task_struct, se);
389 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
391 return container_of(cfs_rq, struct rq, cfs);
394 #define entity_is_task(se) 1
396 #define for_each_sched_entity(se) \
397 for (; se; se = NULL)
399 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
401 return &task_rq(p)->cfs;
404 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
412 /* runqueue "owned" by this group */
413 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
418 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
422 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
426 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
430 is_same_group(struct sched_entity *se, struct sched_entity *pse)
435 static inline struct sched_entity *parent_entity(struct sched_entity *se)
441 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
445 #endif /* CONFIG_FAIR_GROUP_SCHED */
447 static __always_inline
448 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
450 /**************************************************************
451 * Scheduling class tree data structure manipulation methods:
454 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
456 s64 delta = (s64)(vruntime - max_vruntime);
458 max_vruntime = vruntime;
463 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
465 s64 delta = (s64)(vruntime - min_vruntime);
467 min_vruntime = vruntime;
472 static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
475 return (s64)(a->vruntime - b->vruntime) < 0;
478 static void update_min_vruntime(struct cfs_rq *cfs_rq)
480 u64 vruntime = cfs_rq->min_vruntime;
483 vruntime = cfs_rq->curr->vruntime;
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
491 vruntime = se->vruntime;
493 vruntime = min_vruntime(vruntime, se->vruntime);
496 /* ensure we never gain time by being placed backwards. */
497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
505 * Enqueue an entity into the rb-tree:
507 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
515 * Find the right place in the rbtree:
519 entry = rb_entry(parent, struct sched_entity, run_node);
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
524 if (entity_before(se, entry)) {
525 link = &parent->rb_left;
527 link = &parent->rb_right;
533 * Maintain a cache of leftmost tree entries (it is frequently
537 cfs_rq->rb_leftmost = &se->run_node;
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
543 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
555 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
557 struct rb_node *left = cfs_rq->rb_leftmost;
562 return rb_entry(left, struct sched_entity, run_node);
565 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
567 struct rb_node *next = rb_next(&se->run_node);
572 return rb_entry(next, struct sched_entity, run_node);
575 #ifdef CONFIG_SCHED_DEBUG
576 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
583 return rb_entry(last, struct sched_entity, run_node);
586 /**************************************************************
587 * Scheduling class statistics methods:
590 int sched_proc_update_handler(struct ctl_table *table, int write,
591 void __user *buffer, size_t *lenp,
594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
595 int factor = get_update_sysctl_factor();
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
603 #define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
617 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
619 if (unlikely(se->load.weight != NICE_0_LOAD))
620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
626 * The idea is to set a period in which each task runs once.
628 * When there are too many tasks (sched_nr_latency) we have to stretch
629 * this period because otherwise the slices get too small.
631 * p = (nr <= nl) ? l : l*nr/nl
633 static u64 __sched_period(unsigned long nr_running)
635 u64 period = sysctl_sched_latency;
636 unsigned long nr_latency = sched_nr_latency;
638 if (unlikely(nr_running > nr_latency)) {
639 period = sysctl_sched_min_granularity;
640 period *= nr_running;
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
652 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
656 for_each_sched_entity(se) {
657 struct load_weight *load;
658 struct load_weight lw;
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
663 if (unlikely(!se->on_rq)) {
666 update_load_add(&lw, se->load.weight);
669 slice = __calc_delta(slice, se->load.weight, load);
675 * We calculate the vruntime slice of a to-be-inserted task.
679 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
685 static unsigned long task_h_load(struct task_struct *p);
687 static inline void __update_task_entity_contrib(struct sched_entity *se);
689 /* Give new task start runnable values to heavy its load in infant time */
690 void init_task_runnable_average(struct task_struct *p)
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
701 void init_task_runnable_average(struct task_struct *p)
707 * Update the current task's runtime statistics.
709 static void update_curr(struct cfs_rq *cfs_rq)
711 struct sched_entity *curr = cfs_rq->curr;
712 u64 now = rq_clock_task(rq_of(cfs_rq));
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
722 curr->exec_start = now;
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
737 cpuacct_charge(curtask, delta_exec);
738 account_group_exec_runtime(curtask, delta_exec);
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
745 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
751 * Task is being enqueued - update stats:
753 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
759 if (se != cfs_rq->curr)
760 update_stats_wait_start(cfs_rq, se);
764 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 #ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
777 schedstat_set(se->statistics.wait_start, 0);
781 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
784 * Mark the end of the wait period if dequeueing a
787 if (se != cfs_rq->curr)
788 update_stats_wait_end(cfs_rq, se);
792 * We are picking a new current task - update its stats:
795 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
798 * We are starting a new run period:
800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
803 /**************************************************
804 * Scheduling class queueing methods:
807 #ifdef CONFIG_NUMA_BALANCING
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
813 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
816 /* Portion of address space to scan in MB */
817 unsigned int sysctl_numa_balancing_scan_size = 256;
819 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820 unsigned int sysctl_numa_balancing_scan_delay = 1000;
823 * After skipping a page migration on a shared page, skip N more numa page
824 * migrations unconditionally. This reduces the number of NUMA migrations
825 * in shared memory workloads, and has the effect of pulling tasks towards
826 * where their memory lives, over pulling the memory towards the task.
828 unsigned int sysctl_numa_balancing_migrate_deferred = 16;
830 static unsigned int task_nr_scan_windows(struct task_struct *p)
832 unsigned long rss = 0;
833 unsigned long nr_scan_pages;
836 * Calculations based on RSS as non-present and empty pages are skipped
837 * by the PTE scanner and NUMA hinting faults should be trapped based
840 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
841 rss = get_mm_rss(p->mm);
845 rss = round_up(rss, nr_scan_pages);
846 return rss / nr_scan_pages;
849 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
850 #define MAX_SCAN_WINDOW 2560
852 static unsigned int task_scan_min(struct task_struct *p)
854 unsigned int scan, floor;
855 unsigned int windows = 1;
857 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
858 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
859 floor = 1000 / windows;
861 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
862 return max_t(unsigned int, floor, scan);
865 static unsigned int task_scan_max(struct task_struct *p)
867 unsigned int smin = task_scan_min(p);
870 /* Watch for min being lower than max due to floor calculations */
871 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
872 return max(smin, smax);
875 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
877 rq->nr_numa_running += (p->numa_preferred_nid != -1);
878 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
881 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
883 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
884 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
890 spinlock_t lock; /* nr_tasks, tasks */
893 struct list_head task_list;
896 unsigned long total_faults;
897 unsigned long faults[0];
900 pid_t task_numa_group_id(struct task_struct *p)
902 return p->numa_group ? p->numa_group->gid : 0;
905 static inline int task_faults_idx(int nid, int priv)
907 return 2 * nid + priv;
910 static inline unsigned long task_faults(struct task_struct *p, int nid)
915 return p->numa_faults[task_faults_idx(nid, 0)] +
916 p->numa_faults[task_faults_idx(nid, 1)];
919 static inline unsigned long group_faults(struct task_struct *p, int nid)
924 return p->numa_group->faults[task_faults_idx(nid, 0)] +
925 p->numa_group->faults[task_faults_idx(nid, 1)];
929 * These return the fraction of accesses done by a particular task, or
930 * task group, on a particular numa node. The group weight is given a
931 * larger multiplier, in order to group tasks together that are almost
932 * evenly spread out between numa nodes.
934 static inline unsigned long task_weight(struct task_struct *p, int nid)
936 unsigned long total_faults;
941 total_faults = p->total_numa_faults;
946 return 1000 * task_faults(p, nid) / total_faults;
949 static inline unsigned long group_weight(struct task_struct *p, int nid)
951 if (!p->numa_group || !p->numa_group->total_faults)
954 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
957 static unsigned long weighted_cpuload(const int cpu);
958 static unsigned long source_load(int cpu, int type);
959 static unsigned long target_load(int cpu, int type);
960 static unsigned long power_of(int cpu);
961 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
963 /* Cached statistics for all CPUs within a node */
965 unsigned long nr_running;
968 /* Total compute capacity of CPUs on a node */
971 /* Approximate capacity in terms of runnable tasks on a node */
972 unsigned long capacity;
977 * XXX borrowed from update_sg_lb_stats
979 static void update_numa_stats(struct numa_stats *ns, int nid)
983 memset(ns, 0, sizeof(*ns));
984 for_each_cpu(cpu, cpumask_of_node(nid)) {
985 struct rq *rq = cpu_rq(cpu);
987 ns->nr_running += rq->nr_running;
988 ns->load += weighted_cpuload(cpu);
989 ns->power += power_of(cpu);
995 * If we raced with hotplug and there are no CPUs left in our mask
996 * the @ns structure is NULL'ed and task_numa_compare() will
997 * not find this node attractive.
999 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1005 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1006 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1007 ns->has_capacity = (ns->nr_running < ns->capacity);
1010 struct task_numa_env {
1011 struct task_struct *p;
1013 int src_cpu, src_nid;
1014 int dst_cpu, dst_nid;
1016 struct numa_stats src_stats, dst_stats;
1020 struct task_struct *best_task;
1025 static void task_numa_assign(struct task_numa_env *env,
1026 struct task_struct *p, long imp)
1029 put_task_struct(env->best_task);
1034 env->best_imp = imp;
1035 env->best_cpu = env->dst_cpu;
1039 * This checks if the overall compute and NUMA accesses of the system would
1040 * be improved if the source tasks was migrated to the target dst_cpu taking
1041 * into account that it might be best if task running on the dst_cpu should
1042 * be exchanged with the source task
1044 static void task_numa_compare(struct task_numa_env *env,
1045 long taskimp, long groupimp)
1047 struct rq *src_rq = cpu_rq(env->src_cpu);
1048 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1049 struct task_struct *cur;
1050 long dst_load, src_load;
1052 long imp = (groupimp > 0) ? groupimp : taskimp;
1055 cur = ACCESS_ONCE(dst_rq->curr);
1056 if (cur->pid == 0) /* idle */
1060 * "imp" is the fault differential for the source task between the
1061 * source and destination node. Calculate the total differential for
1062 * the source task and potential destination task. The more negative
1063 * the value is, the more rmeote accesses that would be expected to
1064 * be incurred if the tasks were swapped.
1067 /* Skip this swap candidate if cannot move to the source cpu */
1068 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1072 * If dst and source tasks are in the same NUMA group, or not
1073 * in any group then look only at task weights.
1075 if (cur->numa_group == env->p->numa_group) {
1076 imp = taskimp + task_weight(cur, env->src_nid) -
1077 task_weight(cur, env->dst_nid);
1079 * Add some hysteresis to prevent swapping the
1080 * tasks within a group over tiny differences.
1082 if (cur->numa_group)
1086 * Compare the group weights. If a task is all by
1087 * itself (not part of a group), use the task weight
1090 if (env->p->numa_group)
1095 if (cur->numa_group)
1096 imp += group_weight(cur, env->src_nid) -
1097 group_weight(cur, env->dst_nid);
1099 imp += task_weight(cur, env->src_nid) -
1100 task_weight(cur, env->dst_nid);
1104 if (imp < env->best_imp)
1108 /* Is there capacity at our destination? */
1109 if (env->src_stats.has_capacity &&
1110 !env->dst_stats.has_capacity)
1116 /* Balance doesn't matter much if we're running a task per cpu */
1117 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1121 * In the overloaded case, try and keep the load balanced.
1124 dst_load = env->dst_stats.load;
1125 src_load = env->src_stats.load;
1127 /* XXX missing power terms */
1128 load = task_h_load(env->p);
1133 load = task_h_load(cur);
1138 /* make src_load the smaller */
1139 if (dst_load < src_load)
1140 swap(dst_load, src_load);
1142 if (src_load * env->imbalance_pct < dst_load * 100)
1146 task_numa_assign(env, cur, imp);
1151 static void task_numa_find_cpu(struct task_numa_env *env,
1152 long taskimp, long groupimp)
1156 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1157 /* Skip this CPU if the source task cannot migrate */
1158 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1162 task_numa_compare(env, taskimp, groupimp);
1166 static int task_numa_migrate(struct task_struct *p)
1168 struct task_numa_env env = {
1171 .src_cpu = task_cpu(p),
1172 .src_nid = task_node(p),
1174 .imbalance_pct = 112,
1180 struct sched_domain *sd;
1181 unsigned long taskweight, groupweight;
1183 long taskimp, groupimp;
1186 * Pick the lowest SD_NUMA domain, as that would have the smallest
1187 * imbalance and would be the first to start moving tasks about.
1189 * And we want to avoid any moving of tasks about, as that would create
1190 * random movement of tasks -- counter the numa conditions we're trying
1194 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1196 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1200 * Cpusets can break the scheduler domain tree into smaller
1201 * balance domains, some of which do not cross NUMA boundaries.
1202 * Tasks that are "trapped" in such domains cannot be migrated
1203 * elsewhere, so there is no point in (re)trying.
1205 if (unlikely(!sd)) {
1206 p->numa_preferred_nid = task_node(p);
1210 taskweight = task_weight(p, env.src_nid);
1211 groupweight = group_weight(p, env.src_nid);
1212 update_numa_stats(&env.src_stats, env.src_nid);
1213 env.dst_nid = p->numa_preferred_nid;
1214 taskimp = task_weight(p, env.dst_nid) - taskweight;
1215 groupimp = group_weight(p, env.dst_nid) - groupweight;
1216 update_numa_stats(&env.dst_stats, env.dst_nid);
1218 /* If the preferred nid has capacity, try to use it. */
1219 if (env.dst_stats.has_capacity)
1220 task_numa_find_cpu(&env, taskimp, groupimp);
1222 /* No space available on the preferred nid. Look elsewhere. */
1223 if (env.best_cpu == -1) {
1224 for_each_online_node(nid) {
1225 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1228 /* Only consider nodes where both task and groups benefit */
1229 taskimp = task_weight(p, nid) - taskweight;
1230 groupimp = group_weight(p, nid) - groupweight;
1231 if (taskimp < 0 && groupimp < 0)
1235 update_numa_stats(&env.dst_stats, env.dst_nid);
1236 task_numa_find_cpu(&env, taskimp, groupimp);
1240 /* No better CPU than the current one was found. */
1241 if (env.best_cpu == -1)
1244 sched_setnuma(p, env.dst_nid);
1247 * Reset the scan period if the task is being rescheduled on an
1248 * alternative node to recheck if the tasks is now properly placed.
1250 p->numa_scan_period = task_scan_min(p);
1252 if (env.best_task == NULL) {
1253 ret = migrate_task_to(p, env.best_cpu);
1255 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1259 ret = migrate_swap(p, env.best_task);
1261 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1262 put_task_struct(env.best_task);
1266 /* Attempt to migrate a task to a CPU on the preferred node. */
1267 static void numa_migrate_preferred(struct task_struct *p)
1269 /* This task has no NUMA fault statistics yet */
1270 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1273 /* Periodically retry migrating the task to the preferred node */
1274 p->numa_migrate_retry = jiffies + HZ;
1276 /* Success if task is already running on preferred CPU */
1277 if (task_node(p) == p->numa_preferred_nid)
1280 /* Otherwise, try migrate to a CPU on the preferred node */
1281 task_numa_migrate(p);
1285 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1286 * increments. The more local the fault statistics are, the higher the scan
1287 * period will be for the next scan window. If local/remote ratio is below
1288 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1289 * scan period will decrease
1291 #define NUMA_PERIOD_SLOTS 10
1292 #define NUMA_PERIOD_THRESHOLD 3
1295 * Increase the scan period (slow down scanning) if the majority of
1296 * our memory is already on our local node, or if the majority of
1297 * the page accesses are shared with other processes.
1298 * Otherwise, decrease the scan period.
1300 static void update_task_scan_period(struct task_struct *p,
1301 unsigned long shared, unsigned long private)
1303 unsigned int period_slot;
1307 unsigned long remote = p->numa_faults_locality[0];
1308 unsigned long local = p->numa_faults_locality[1];
1311 * If there were no record hinting faults then either the task is
1312 * completely idle or all activity is areas that are not of interest
1313 * to automatic numa balancing. Scan slower
1315 if (local + shared == 0) {
1316 p->numa_scan_period = min(p->numa_scan_period_max,
1317 p->numa_scan_period << 1);
1319 p->mm->numa_next_scan = jiffies +
1320 msecs_to_jiffies(p->numa_scan_period);
1326 * Prepare to scale scan period relative to the current period.
1327 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1328 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1329 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1331 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1332 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1333 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1334 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1337 diff = slot * period_slot;
1339 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1342 * Scale scan rate increases based on sharing. There is an
1343 * inverse relationship between the degree of sharing and
1344 * the adjustment made to the scanning period. Broadly
1345 * speaking the intent is that there is little point
1346 * scanning faster if shared accesses dominate as it may
1347 * simply bounce migrations uselessly
1349 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1350 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1353 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1354 task_scan_min(p), task_scan_max(p));
1355 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1358 static void task_numa_placement(struct task_struct *p)
1360 int seq, nid, max_nid = -1, max_group_nid = -1;
1361 unsigned long max_faults = 0, max_group_faults = 0;
1362 unsigned long fault_types[2] = { 0, 0 };
1363 spinlock_t *group_lock = NULL;
1365 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1366 if (p->numa_scan_seq == seq)
1368 p->numa_scan_seq = seq;
1369 p->numa_scan_period_max = task_scan_max(p);
1371 /* If the task is part of a group prevent parallel updates to group stats */
1372 if (p->numa_group) {
1373 group_lock = &p->numa_group->lock;
1374 spin_lock(group_lock);
1377 /* Find the node with the highest number of faults */
1378 for_each_online_node(nid) {
1379 unsigned long faults = 0, group_faults = 0;
1382 for (priv = 0; priv < 2; priv++) {
1385 i = task_faults_idx(nid, priv);
1386 diff = -p->numa_faults[i];
1388 /* Decay existing window, copy faults since last scan */
1389 p->numa_faults[i] >>= 1;
1390 p->numa_faults[i] += p->numa_faults_buffer[i];
1391 fault_types[priv] += p->numa_faults_buffer[i];
1392 p->numa_faults_buffer[i] = 0;
1394 faults += p->numa_faults[i];
1395 diff += p->numa_faults[i];
1396 p->total_numa_faults += diff;
1397 if (p->numa_group) {
1398 /* safe because we can only change our own group */
1399 p->numa_group->faults[i] += diff;
1400 p->numa_group->total_faults += diff;
1401 group_faults += p->numa_group->faults[i];
1405 if (faults > max_faults) {
1406 max_faults = faults;
1410 if (group_faults > max_group_faults) {
1411 max_group_faults = group_faults;
1412 max_group_nid = nid;
1416 update_task_scan_period(p, fault_types[0], fault_types[1]);
1418 if (p->numa_group) {
1420 * If the preferred task and group nids are different,
1421 * iterate over the nodes again to find the best place.
1423 if (max_nid != max_group_nid) {
1424 unsigned long weight, max_weight = 0;
1426 for_each_online_node(nid) {
1427 weight = task_weight(p, nid) + group_weight(p, nid);
1428 if (weight > max_weight) {
1429 max_weight = weight;
1435 spin_unlock(group_lock);
1438 /* Preferred node as the node with the most faults */
1439 if (max_faults && max_nid != p->numa_preferred_nid) {
1440 /* Update the preferred nid and migrate task if possible */
1441 sched_setnuma(p, max_nid);
1442 numa_migrate_preferred(p);
1446 static inline int get_numa_group(struct numa_group *grp)
1448 return atomic_inc_not_zero(&grp->refcount);
1451 static inline void put_numa_group(struct numa_group *grp)
1453 if (atomic_dec_and_test(&grp->refcount))
1454 kfree_rcu(grp, rcu);
1457 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1460 struct numa_group *grp, *my_grp;
1461 struct task_struct *tsk;
1463 int cpu = cpupid_to_cpu(cpupid);
1466 if (unlikely(!p->numa_group)) {
1467 unsigned int size = sizeof(struct numa_group) +
1468 2*nr_node_ids*sizeof(unsigned long);
1470 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1474 atomic_set(&grp->refcount, 1);
1475 spin_lock_init(&grp->lock);
1476 INIT_LIST_HEAD(&grp->task_list);
1479 for (i = 0; i < 2*nr_node_ids; i++)
1480 grp->faults[i] = p->numa_faults[i];
1482 grp->total_faults = p->total_numa_faults;
1484 list_add(&p->numa_entry, &grp->task_list);
1486 rcu_assign_pointer(p->numa_group, grp);
1490 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1492 if (!cpupid_match_pid(tsk, cpupid))
1495 grp = rcu_dereference(tsk->numa_group);
1499 my_grp = p->numa_group;
1504 * Only join the other group if its bigger; if we're the bigger group,
1505 * the other task will join us.
1507 if (my_grp->nr_tasks > grp->nr_tasks)
1511 * Tie-break on the grp address.
1513 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1516 /* Always join threads in the same process. */
1517 if (tsk->mm == current->mm)
1520 /* Simple filter to avoid false positives due to PID collisions */
1521 if (flags & TNF_SHARED)
1524 /* Update priv based on whether false sharing was detected */
1527 if (join && !get_numa_group(grp))
1535 double_lock(&my_grp->lock, &grp->lock);
1537 for (i = 0; i < 2*nr_node_ids; i++) {
1538 my_grp->faults[i] -= p->numa_faults[i];
1539 grp->faults[i] += p->numa_faults[i];
1541 my_grp->total_faults -= p->total_numa_faults;
1542 grp->total_faults += p->total_numa_faults;
1544 list_move(&p->numa_entry, &grp->task_list);
1548 spin_unlock(&my_grp->lock);
1549 spin_unlock(&grp->lock);
1551 rcu_assign_pointer(p->numa_group, grp);
1553 put_numa_group(my_grp);
1561 void task_numa_free(struct task_struct *p)
1563 struct numa_group *grp = p->numa_group;
1565 void *numa_faults = p->numa_faults;
1568 spin_lock(&grp->lock);
1569 for (i = 0; i < 2*nr_node_ids; i++)
1570 grp->faults[i] -= p->numa_faults[i];
1571 grp->total_faults -= p->total_numa_faults;
1573 list_del(&p->numa_entry);
1575 spin_unlock(&grp->lock);
1576 rcu_assign_pointer(p->numa_group, NULL);
1577 put_numa_group(grp);
1580 p->numa_faults = NULL;
1581 p->numa_faults_buffer = NULL;
1586 * Got a PROT_NONE fault for a page on @node.
1588 void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1590 struct task_struct *p = current;
1591 bool migrated = flags & TNF_MIGRATED;
1594 if (!numabalancing_enabled)
1597 /* for example, ksmd faulting in a user's mm */
1601 /* Do not worry about placement if exiting */
1602 if (p->state == TASK_DEAD)
1605 /* Allocate buffer to track faults on a per-node basis */
1606 if (unlikely(!p->numa_faults)) {
1607 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1609 /* numa_faults and numa_faults_buffer share the allocation */
1610 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1611 if (!p->numa_faults)
1614 BUG_ON(p->numa_faults_buffer);
1615 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1616 p->total_numa_faults = 0;
1617 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1621 * First accesses are treated as private, otherwise consider accesses
1622 * to be private if the accessing pid has not changed
1624 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1627 priv = cpupid_match_pid(p, last_cpupid);
1628 if (!priv && !(flags & TNF_NO_GROUP))
1629 task_numa_group(p, last_cpupid, flags, &priv);
1632 task_numa_placement(p);
1635 * Retry task to preferred node migration periodically, in case it
1636 * case it previously failed, or the scheduler moved us.
1638 if (time_after(jiffies, p->numa_migrate_retry))
1639 numa_migrate_preferred(p);
1642 p->numa_pages_migrated += pages;
1644 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1645 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1648 static void reset_ptenuma_scan(struct task_struct *p)
1650 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1651 p->mm->numa_scan_offset = 0;
1655 * The expensive part of numa migration is done from task_work context.
1656 * Triggered from task_tick_numa().
1658 void task_numa_work(struct callback_head *work)
1660 unsigned long migrate, next_scan, now = jiffies;
1661 struct task_struct *p = current;
1662 struct mm_struct *mm = p->mm;
1663 struct vm_area_struct *vma;
1664 unsigned long start, end;
1665 unsigned long nr_pte_updates = 0;
1668 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1670 work->next = work; /* protect against double add */
1672 * Who cares about NUMA placement when they're dying.
1674 * NOTE: make sure not to dereference p->mm before this check,
1675 * exit_task_work() happens _after_ exit_mm() so we could be called
1676 * without p->mm even though we still had it when we enqueued this
1679 if (p->flags & PF_EXITING)
1682 if (!mm->numa_next_scan) {
1683 mm->numa_next_scan = now +
1684 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1688 * Enforce maximal scan/migration frequency..
1690 migrate = mm->numa_next_scan;
1691 if (time_before(now, migrate))
1694 if (p->numa_scan_period == 0) {
1695 p->numa_scan_period_max = task_scan_max(p);
1696 p->numa_scan_period = task_scan_min(p);
1699 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1700 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1704 * Delay this task enough that another task of this mm will likely win
1705 * the next time around.
1707 p->node_stamp += 2 * TICK_NSEC;
1709 start = mm->numa_scan_offset;
1710 pages = sysctl_numa_balancing_scan_size;
1711 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1715 down_read(&mm->mmap_sem);
1716 vma = find_vma(mm, start);
1718 reset_ptenuma_scan(p);
1722 for (; vma; vma = vma->vm_next) {
1723 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1727 * Shared library pages mapped by multiple processes are not
1728 * migrated as it is expected they are cache replicated. Avoid
1729 * hinting faults in read-only file-backed mappings or the vdso
1730 * as migrating the pages will be of marginal benefit.
1733 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1737 * Skip inaccessible VMAs to avoid any confusion between
1738 * PROT_NONE and NUMA hinting ptes
1740 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1744 start = max(start, vma->vm_start);
1745 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1746 end = min(end, vma->vm_end);
1747 nr_pte_updates += change_prot_numa(vma, start, end);
1750 * Scan sysctl_numa_balancing_scan_size but ensure that
1751 * at least one PTE is updated so that unused virtual
1752 * address space is quickly skipped.
1755 pages -= (end - start) >> PAGE_SHIFT;
1762 } while (end != vma->vm_end);
1767 * It is possible to reach the end of the VMA list but the last few
1768 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1769 * would find the !migratable VMA on the next scan but not reset the
1770 * scanner to the start so check it now.
1773 mm->numa_scan_offset = start;
1775 reset_ptenuma_scan(p);
1776 up_read(&mm->mmap_sem);
1780 * Drive the periodic memory faults..
1782 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1784 struct callback_head *work = &curr->numa_work;
1788 * We don't care about NUMA placement if we don't have memory.
1790 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1794 * Using runtime rather than walltime has the dual advantage that
1795 * we (mostly) drive the selection from busy threads and that the
1796 * task needs to have done some actual work before we bother with
1799 now = curr->se.sum_exec_runtime;
1800 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1802 if (now - curr->node_stamp > period) {
1803 if (!curr->node_stamp)
1804 curr->numa_scan_period = task_scan_min(curr);
1805 curr->node_stamp += period;
1807 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1808 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1809 task_work_add(curr, work, true);
1814 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1818 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1822 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1825 #endif /* CONFIG_NUMA_BALANCING */
1828 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1830 update_load_add(&cfs_rq->load, se->load.weight);
1831 if (!parent_entity(se))
1832 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1834 if (entity_is_task(se)) {
1835 struct rq *rq = rq_of(cfs_rq);
1837 account_numa_enqueue(rq, task_of(se));
1838 list_add(&se->group_node, &rq->cfs_tasks);
1841 cfs_rq->nr_running++;
1845 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1847 update_load_sub(&cfs_rq->load, se->load.weight);
1848 if (!parent_entity(se))
1849 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1850 if (entity_is_task(se)) {
1851 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1852 list_del_init(&se->group_node);
1854 cfs_rq->nr_running--;
1857 #ifdef CONFIG_FAIR_GROUP_SCHED
1859 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1864 * Use this CPU's actual weight instead of the last load_contribution
1865 * to gain a more accurate current total weight. See
1866 * update_cfs_rq_load_contribution().
1868 tg_weight = atomic_long_read(&tg->load_avg);
1869 tg_weight -= cfs_rq->tg_load_contrib;
1870 tg_weight += cfs_rq->load.weight;
1875 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1877 long tg_weight, load, shares;
1879 tg_weight = calc_tg_weight(tg, cfs_rq);
1880 load = cfs_rq->load.weight;
1882 shares = (tg->shares * load);
1884 shares /= tg_weight;
1886 if (shares < MIN_SHARES)
1887 shares = MIN_SHARES;
1888 if (shares > tg->shares)
1889 shares = tg->shares;
1893 # else /* CONFIG_SMP */
1894 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1898 # endif /* CONFIG_SMP */
1899 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1900 unsigned long weight)
1903 /* commit outstanding execution time */
1904 if (cfs_rq->curr == se)
1905 update_curr(cfs_rq);
1906 account_entity_dequeue(cfs_rq, se);
1909 update_load_set(&se->load, weight);
1912 account_entity_enqueue(cfs_rq, se);
1915 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1917 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1919 struct task_group *tg;
1920 struct sched_entity *se;
1924 se = tg->se[cpu_of(rq_of(cfs_rq))];
1925 if (!se || throttled_hierarchy(cfs_rq))
1928 if (likely(se->load.weight == tg->shares))
1931 shares = calc_cfs_shares(cfs_rq, tg);
1933 reweight_entity(cfs_rq_of(se), se, shares);
1935 #else /* CONFIG_FAIR_GROUP_SCHED */
1936 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1939 #endif /* CONFIG_FAIR_GROUP_SCHED */
1943 * We choose a half-life close to 1 scheduling period.
1944 * Note: The tables below are dependent on this value.
1946 #define LOAD_AVG_PERIOD 32
1947 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1948 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1950 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1951 static const u32 runnable_avg_yN_inv[] = {
1952 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1953 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1954 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1955 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1956 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1957 0x85aac367, 0x82cd8698,
1961 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1962 * over-estimates when re-combining.
1964 static const u32 runnable_avg_yN_sum[] = {
1965 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1966 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1967 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1972 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1974 static __always_inline u64 decay_load(u64 val, u64 n)
1976 unsigned int local_n;
1980 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1983 /* after bounds checking we can collapse to 32-bit */
1987 * As y^PERIOD = 1/2, we can combine
1988 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1989 * With a look-up table which covers k^n (n<PERIOD)
1991 * To achieve constant time decay_load.
1993 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1994 val >>= local_n / LOAD_AVG_PERIOD;
1995 local_n %= LOAD_AVG_PERIOD;
1998 val *= runnable_avg_yN_inv[local_n];
1999 /* We don't use SRR here since we always want to round down. */
2004 * For updates fully spanning n periods, the contribution to runnable
2005 * average will be: \Sum 1024*y^n
2007 * We can compute this reasonably efficiently by combining:
2008 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2010 static u32 __compute_runnable_contrib(u64 n)
2014 if (likely(n <= LOAD_AVG_PERIOD))
2015 return runnable_avg_yN_sum[n];
2016 else if (unlikely(n >= LOAD_AVG_MAX_N))
2017 return LOAD_AVG_MAX;
2019 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2021 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2022 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2024 n -= LOAD_AVG_PERIOD;
2025 } while (n > LOAD_AVG_PERIOD);
2027 contrib = decay_load(contrib, n);
2028 return contrib + runnable_avg_yN_sum[n];
2032 * We can represent the historical contribution to runnable average as the
2033 * coefficients of a geometric series. To do this we sub-divide our runnable
2034 * history into segments of approximately 1ms (1024us); label the segment that
2035 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2037 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2039 * (now) (~1ms ago) (~2ms ago)
2041 * Let u_i denote the fraction of p_i that the entity was runnable.
2043 * We then designate the fractions u_i as our co-efficients, yielding the
2044 * following representation of historical load:
2045 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2047 * We choose y based on the with of a reasonably scheduling period, fixing:
2050 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2051 * approximately half as much as the contribution to load within the last ms
2054 * When a period "rolls over" and we have new u_0`, multiplying the previous
2055 * sum again by y is sufficient to update:
2056 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2057 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2059 static __always_inline int __update_entity_runnable_avg(u64 now,
2060 struct sched_avg *sa,
2064 u32 runnable_contrib;
2065 int delta_w, decayed = 0;
2067 delta = now - sa->last_runnable_update;
2069 * This should only happen when time goes backwards, which it
2070 * unfortunately does during sched clock init when we swap over to TSC.
2072 if ((s64)delta < 0) {
2073 sa->last_runnable_update = now;
2078 * Use 1024ns as the unit of measurement since it's a reasonable
2079 * approximation of 1us and fast to compute.
2084 sa->last_runnable_update = now;
2086 /* delta_w is the amount already accumulated against our next period */
2087 delta_w = sa->runnable_avg_period % 1024;
2088 if (delta + delta_w >= 1024) {
2089 /* period roll-over */
2093 * Now that we know we're crossing a period boundary, figure
2094 * out how much from delta we need to complete the current
2095 * period and accrue it.
2097 delta_w = 1024 - delta_w;
2099 sa->runnable_avg_sum += delta_w;
2100 sa->runnable_avg_period += delta_w;
2104 /* Figure out how many additional periods this update spans */
2105 periods = delta / 1024;
2108 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2110 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2113 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2114 runnable_contrib = __compute_runnable_contrib(periods);
2116 sa->runnable_avg_sum += runnable_contrib;
2117 sa->runnable_avg_period += runnable_contrib;
2120 /* Remainder of delta accrued against u_0` */
2122 sa->runnable_avg_sum += delta;
2123 sa->runnable_avg_period += delta;
2128 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2129 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2131 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2132 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2134 decays -= se->avg.decay_count;
2138 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2139 se->avg.decay_count = 0;
2144 #ifdef CONFIG_FAIR_GROUP_SCHED
2145 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2148 struct task_group *tg = cfs_rq->tg;
2151 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2152 tg_contrib -= cfs_rq->tg_load_contrib;
2154 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2155 atomic_long_add(tg_contrib, &tg->load_avg);
2156 cfs_rq->tg_load_contrib += tg_contrib;
2161 * Aggregate cfs_rq runnable averages into an equivalent task_group
2162 * representation for computing load contributions.
2164 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2165 struct cfs_rq *cfs_rq)
2167 struct task_group *tg = cfs_rq->tg;
2170 /* The fraction of a cpu used by this cfs_rq */
2171 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2172 sa->runnable_avg_period + 1);
2173 contrib -= cfs_rq->tg_runnable_contrib;
2175 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2176 atomic_add(contrib, &tg->runnable_avg);
2177 cfs_rq->tg_runnable_contrib += contrib;
2181 static inline void __update_group_entity_contrib(struct sched_entity *se)
2183 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2184 struct task_group *tg = cfs_rq->tg;
2189 contrib = cfs_rq->tg_load_contrib * tg->shares;
2190 se->avg.load_avg_contrib = div_u64(contrib,
2191 atomic_long_read(&tg->load_avg) + 1);
2194 * For group entities we need to compute a correction term in the case
2195 * that they are consuming <1 cpu so that we would contribute the same
2196 * load as a task of equal weight.
2198 * Explicitly co-ordinating this measurement would be expensive, but
2199 * fortunately the sum of each cpus contribution forms a usable
2200 * lower-bound on the true value.
2202 * Consider the aggregate of 2 contributions. Either they are disjoint
2203 * (and the sum represents true value) or they are disjoint and we are
2204 * understating by the aggregate of their overlap.
2206 * Extending this to N cpus, for a given overlap, the maximum amount we
2207 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2208 * cpus that overlap for this interval and w_i is the interval width.
2210 * On a small machine; the first term is well-bounded which bounds the
2211 * total error since w_i is a subset of the period. Whereas on a
2212 * larger machine, while this first term can be larger, if w_i is the
2213 * of consequential size guaranteed to see n_i*w_i quickly converge to
2214 * our upper bound of 1-cpu.
2216 runnable_avg = atomic_read(&tg->runnable_avg);
2217 if (runnable_avg < NICE_0_LOAD) {
2218 se->avg.load_avg_contrib *= runnable_avg;
2219 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2223 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2224 int force_update) {}
2225 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2226 struct cfs_rq *cfs_rq) {}
2227 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2230 static inline void __update_task_entity_contrib(struct sched_entity *se)
2234 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2235 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2236 contrib /= (se->avg.runnable_avg_period + 1);
2237 se->avg.load_avg_contrib = scale_load(contrib);
2240 /* Compute the current contribution to load_avg by se, return any delta */
2241 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2243 long old_contrib = se->avg.load_avg_contrib;
2245 if (entity_is_task(se)) {
2246 __update_task_entity_contrib(se);
2248 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2249 __update_group_entity_contrib(se);
2252 return se->avg.load_avg_contrib - old_contrib;
2255 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2258 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2259 cfs_rq->blocked_load_avg -= load_contrib;
2261 cfs_rq->blocked_load_avg = 0;
2264 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2266 /* Update a sched_entity's runnable average */
2267 static inline void update_entity_load_avg(struct sched_entity *se,
2270 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2275 * For a group entity we need to use their owned cfs_rq_clock_task() in
2276 * case they are the parent of a throttled hierarchy.
2278 if (entity_is_task(se))
2279 now = cfs_rq_clock_task(cfs_rq);
2281 now = cfs_rq_clock_task(group_cfs_rq(se));
2283 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2286 contrib_delta = __update_entity_load_avg_contrib(se);
2292 cfs_rq->runnable_load_avg += contrib_delta;
2294 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2298 * Decay the load contributed by all blocked children and account this so that
2299 * their contribution may appropriately discounted when they wake up.
2301 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2303 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2306 decays = now - cfs_rq->last_decay;
2307 if (!decays && !force_update)
2310 if (atomic_long_read(&cfs_rq->removed_load)) {
2311 unsigned long removed_load;
2312 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2313 subtract_blocked_load_contrib(cfs_rq, removed_load);
2317 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2319 atomic64_add(decays, &cfs_rq->decay_counter);
2320 cfs_rq->last_decay = now;
2323 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2326 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2328 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2329 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2332 /* Add the load generated by se into cfs_rq's child load-average */
2333 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2334 struct sched_entity *se,
2338 * We track migrations using entity decay_count <= 0, on a wake-up
2339 * migration we use a negative decay count to track the remote decays
2340 * accumulated while sleeping.
2342 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2343 * are seen by enqueue_entity_load_avg() as a migration with an already
2344 * constructed load_avg_contrib.
2346 if (unlikely(se->avg.decay_count <= 0)) {
2347 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2348 if (se->avg.decay_count) {
2350 * In a wake-up migration we have to approximate the
2351 * time sleeping. This is because we can't synchronize
2352 * clock_task between the two cpus, and it is not
2353 * guaranteed to be read-safe. Instead, we can
2354 * approximate this using our carried decays, which are
2355 * explicitly atomically readable.
2357 se->avg.last_runnable_update -= (-se->avg.decay_count)
2359 update_entity_load_avg(se, 0);
2360 /* Indicate that we're now synchronized and on-rq */
2361 se->avg.decay_count = 0;
2365 __synchronize_entity_decay(se);
2368 /* migrated tasks did not contribute to our blocked load */
2370 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2371 update_entity_load_avg(se, 0);
2374 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2375 /* we force update consideration on load-balancer moves */
2376 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2380 * Remove se's load from this cfs_rq child load-average, if the entity is
2381 * transitioning to a blocked state we track its projected decay using
2384 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2385 struct sched_entity *se,
2388 update_entity_load_avg(se, 1);
2389 /* we force update consideration on load-balancer moves */
2390 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2392 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2394 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2395 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2396 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2400 * Update the rq's load with the elapsed running time before entering
2401 * idle. if the last scheduled task is not a CFS task, idle_enter will
2402 * be the only way to update the runnable statistic.
2404 void idle_enter_fair(struct rq *this_rq)
2406 update_rq_runnable_avg(this_rq, 1);
2410 * Update the rq's load with the elapsed idle time before a task is
2411 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2412 * be the only way to update the runnable statistic.
2414 void idle_exit_fair(struct rq *this_rq)
2416 update_rq_runnable_avg(this_rq, 0);
2420 static inline void update_entity_load_avg(struct sched_entity *se,
2421 int update_cfs_rq) {}
2422 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2423 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2424 struct sched_entity *se,
2426 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2427 struct sched_entity *se,
2429 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2430 int force_update) {}
2433 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2435 #ifdef CONFIG_SCHEDSTATS
2436 struct task_struct *tsk = NULL;
2438 if (entity_is_task(se))
2441 if (se->statistics.sleep_start) {
2442 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2447 if (unlikely(delta > se->statistics.sleep_max))
2448 se->statistics.sleep_max = delta;
2450 se->statistics.sleep_start = 0;
2451 se->statistics.sum_sleep_runtime += delta;
2454 account_scheduler_latency(tsk, delta >> 10, 1);
2455 trace_sched_stat_sleep(tsk, delta);
2458 if (se->statistics.block_start) {
2459 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2464 if (unlikely(delta > se->statistics.block_max))
2465 se->statistics.block_max = delta;
2467 se->statistics.block_start = 0;
2468 se->statistics.sum_sleep_runtime += delta;
2471 if (tsk->in_iowait) {
2472 se->statistics.iowait_sum += delta;
2473 se->statistics.iowait_count++;
2474 trace_sched_stat_iowait(tsk, delta);
2477 trace_sched_stat_blocked(tsk, delta);
2480 * Blocking time is in units of nanosecs, so shift by
2481 * 20 to get a milliseconds-range estimation of the
2482 * amount of time that the task spent sleeping:
2484 if (unlikely(prof_on == SLEEP_PROFILING)) {
2485 profile_hits(SLEEP_PROFILING,
2486 (void *)get_wchan(tsk),
2489 account_scheduler_latency(tsk, delta >> 10, 0);
2495 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2497 #ifdef CONFIG_SCHED_DEBUG
2498 s64 d = se->vruntime - cfs_rq->min_vruntime;
2503 if (d > 3*sysctl_sched_latency)
2504 schedstat_inc(cfs_rq, nr_spread_over);
2509 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2511 u64 vruntime = cfs_rq->min_vruntime;
2514 * The 'current' period is already promised to the current tasks,
2515 * however the extra weight of the new task will slow them down a
2516 * little, place the new task so that it fits in the slot that
2517 * stays open at the end.
2519 if (initial && sched_feat(START_DEBIT))
2520 vruntime += sched_vslice(cfs_rq, se);
2522 /* sleeps up to a single latency don't count. */
2524 unsigned long thresh = sysctl_sched_latency;
2527 * Halve their sleep time's effect, to allow
2528 * for a gentler effect of sleepers:
2530 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2536 /* ensure we never gain time by being placed backwards. */
2537 se->vruntime = max_vruntime(se->vruntime, vruntime);
2540 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2543 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2546 * Update the normalized vruntime before updating min_vruntime
2547 * through calling update_curr().
2549 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2550 se->vruntime += cfs_rq->min_vruntime;
2553 * Update run-time statistics of the 'current'.
2555 update_curr(cfs_rq);
2556 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2557 account_entity_enqueue(cfs_rq, se);
2558 update_cfs_shares(cfs_rq);
2560 if (flags & ENQUEUE_WAKEUP) {
2561 place_entity(cfs_rq, se, 0);
2562 enqueue_sleeper(cfs_rq, se);
2565 update_stats_enqueue(cfs_rq, se);
2566 check_spread(cfs_rq, se);
2567 if (se != cfs_rq->curr)
2568 __enqueue_entity(cfs_rq, se);
2571 if (cfs_rq->nr_running == 1) {
2572 list_add_leaf_cfs_rq(cfs_rq);
2573 check_enqueue_throttle(cfs_rq);
2577 static void __clear_buddies_last(struct sched_entity *se)
2579 for_each_sched_entity(se) {
2580 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2581 if (cfs_rq->last == se)
2582 cfs_rq->last = NULL;
2588 static void __clear_buddies_next(struct sched_entity *se)
2590 for_each_sched_entity(se) {
2591 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2592 if (cfs_rq->next == se)
2593 cfs_rq->next = NULL;
2599 static void __clear_buddies_skip(struct sched_entity *se)
2601 for_each_sched_entity(se) {
2602 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2603 if (cfs_rq->skip == se)
2604 cfs_rq->skip = NULL;
2610 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2612 if (cfs_rq->last == se)
2613 __clear_buddies_last(se);
2615 if (cfs_rq->next == se)
2616 __clear_buddies_next(se);
2618 if (cfs_rq->skip == se)
2619 __clear_buddies_skip(se);
2622 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2625 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2628 * Update run-time statistics of the 'current'.
2630 update_curr(cfs_rq);
2631 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2633 update_stats_dequeue(cfs_rq, se);
2634 if (flags & DEQUEUE_SLEEP) {
2635 #ifdef CONFIG_SCHEDSTATS
2636 if (entity_is_task(se)) {
2637 struct task_struct *tsk = task_of(se);
2639 if (tsk->state & TASK_INTERRUPTIBLE)
2640 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2641 if (tsk->state & TASK_UNINTERRUPTIBLE)
2642 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2647 clear_buddies(cfs_rq, se);
2649 if (se != cfs_rq->curr)
2650 __dequeue_entity(cfs_rq, se);
2652 account_entity_dequeue(cfs_rq, se);
2655 * Normalize the entity after updating the min_vruntime because the
2656 * update can refer to the ->curr item and we need to reflect this
2657 * movement in our normalized position.
2659 if (!(flags & DEQUEUE_SLEEP))
2660 se->vruntime -= cfs_rq->min_vruntime;
2662 /* return excess runtime on last dequeue */
2663 return_cfs_rq_runtime(cfs_rq);
2665 update_min_vruntime(cfs_rq);
2666 update_cfs_shares(cfs_rq);
2670 * Preempt the current task with a newly woken task if needed:
2673 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2675 unsigned long ideal_runtime, delta_exec;
2676 struct sched_entity *se;
2679 ideal_runtime = sched_slice(cfs_rq, curr);
2680 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2681 if (delta_exec > ideal_runtime) {
2682 resched_task(rq_of(cfs_rq)->curr);
2684 * The current task ran long enough, ensure it doesn't get
2685 * re-elected due to buddy favours.
2687 clear_buddies(cfs_rq, curr);
2692 * Ensure that a task that missed wakeup preemption by a
2693 * narrow margin doesn't have to wait for a full slice.
2694 * This also mitigates buddy induced latencies under load.
2696 if (delta_exec < sysctl_sched_min_granularity)
2699 se = __pick_first_entity(cfs_rq);
2700 delta = curr->vruntime - se->vruntime;
2705 if (delta > ideal_runtime)
2706 resched_task(rq_of(cfs_rq)->curr);
2710 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2712 /* 'current' is not kept within the tree. */
2715 * Any task has to be enqueued before it get to execute on
2716 * a CPU. So account for the time it spent waiting on the
2719 update_stats_wait_end(cfs_rq, se);
2720 __dequeue_entity(cfs_rq, se);
2723 update_stats_curr_start(cfs_rq, se);
2725 #ifdef CONFIG_SCHEDSTATS
2727 * Track our maximum slice length, if the CPU's load is at
2728 * least twice that of our own weight (i.e. dont track it
2729 * when there are only lesser-weight tasks around):
2731 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2732 se->statistics.slice_max = max(se->statistics.slice_max,
2733 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2736 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2740 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2743 * Pick the next process, keeping these things in mind, in this order:
2744 * 1) keep things fair between processes/task groups
2745 * 2) pick the "next" process, since someone really wants that to run
2746 * 3) pick the "last" process, for cache locality
2747 * 4) do not run the "skip" process, if something else is available
2749 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2751 struct sched_entity *se = __pick_first_entity(cfs_rq);
2752 struct sched_entity *left = se;
2755 * Avoid running the skip buddy, if running something else can
2756 * be done without getting too unfair.
2758 if (cfs_rq->skip == se) {
2759 struct sched_entity *second = __pick_next_entity(se);
2760 if (second && wakeup_preempt_entity(second, left) < 1)
2765 * Prefer last buddy, try to return the CPU to a preempted task.
2767 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2771 * Someone really wants this to run. If it's not unfair, run it.
2773 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2776 clear_buddies(cfs_rq, se);
2781 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2783 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2786 * If still on the runqueue then deactivate_task()
2787 * was not called and update_curr() has to be done:
2790 update_curr(cfs_rq);
2792 /* throttle cfs_rqs exceeding runtime */
2793 check_cfs_rq_runtime(cfs_rq);
2795 check_spread(cfs_rq, prev);
2797 update_stats_wait_start(cfs_rq, prev);
2798 /* Put 'current' back into the tree. */
2799 __enqueue_entity(cfs_rq, prev);
2800 /* in !on_rq case, update occurred at dequeue */
2801 update_entity_load_avg(prev, 1);
2803 cfs_rq->curr = NULL;
2807 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2810 * Update run-time statistics of the 'current'.
2812 update_curr(cfs_rq);
2815 * Ensure that runnable average is periodically updated.
2817 update_entity_load_avg(curr, 1);
2818 update_cfs_rq_blocked_load(cfs_rq, 1);
2819 update_cfs_shares(cfs_rq);
2821 #ifdef CONFIG_SCHED_HRTICK
2823 * queued ticks are scheduled to match the slice, so don't bother
2824 * validating it and just reschedule.
2827 resched_task(rq_of(cfs_rq)->curr);
2831 * don't let the period tick interfere with the hrtick preemption
2833 if (!sched_feat(DOUBLE_TICK) &&
2834 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2838 if (cfs_rq->nr_running > 1)
2839 check_preempt_tick(cfs_rq, curr);
2843 /**************************************************
2844 * CFS bandwidth control machinery
2847 #ifdef CONFIG_CFS_BANDWIDTH
2849 #ifdef HAVE_JUMP_LABEL
2850 static struct static_key __cfs_bandwidth_used;
2852 static inline bool cfs_bandwidth_used(void)
2854 return static_key_false(&__cfs_bandwidth_used);
2857 void cfs_bandwidth_usage_inc(void)
2859 static_key_slow_inc(&__cfs_bandwidth_used);
2862 void cfs_bandwidth_usage_dec(void)
2864 static_key_slow_dec(&__cfs_bandwidth_used);
2866 #else /* HAVE_JUMP_LABEL */
2867 static bool cfs_bandwidth_used(void)
2872 void cfs_bandwidth_usage_inc(void) {}
2873 void cfs_bandwidth_usage_dec(void) {}
2874 #endif /* HAVE_JUMP_LABEL */
2877 * default period for cfs group bandwidth.
2878 * default: 0.1s, units: nanoseconds
2880 static inline u64 default_cfs_period(void)
2882 return 100000000ULL;
2885 static inline u64 sched_cfs_bandwidth_slice(void)
2887 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2891 * Replenish runtime according to assigned quota and update expiration time.
2892 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2893 * additional synchronization around rq->lock.
2895 * requires cfs_b->lock
2897 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2901 if (cfs_b->quota == RUNTIME_INF)
2904 now = sched_clock_cpu(smp_processor_id());
2905 cfs_b->runtime = cfs_b->quota;
2906 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2909 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2911 return &tg->cfs_bandwidth;
2914 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2915 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2917 if (unlikely(cfs_rq->throttle_count))
2918 return cfs_rq->throttled_clock_task;
2920 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2923 /* returns 0 on failure to allocate runtime */
2924 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2926 struct task_group *tg = cfs_rq->tg;
2927 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2928 u64 amount = 0, min_amount, expires;
2930 /* note: this is a positive sum as runtime_remaining <= 0 */
2931 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2933 raw_spin_lock(&cfs_b->lock);
2934 if (cfs_b->quota == RUNTIME_INF)
2935 amount = min_amount;
2938 * If the bandwidth pool has become inactive, then at least one
2939 * period must have elapsed since the last consumption.
2940 * Refresh the global state and ensure bandwidth timer becomes
2943 if (!cfs_b->timer_active) {
2944 __refill_cfs_bandwidth_runtime(cfs_b);
2945 __start_cfs_bandwidth(cfs_b);
2948 if (cfs_b->runtime > 0) {
2949 amount = min(cfs_b->runtime, min_amount);
2950 cfs_b->runtime -= amount;
2954 expires = cfs_b->runtime_expires;
2955 raw_spin_unlock(&cfs_b->lock);
2957 cfs_rq->runtime_remaining += amount;
2959 * we may have advanced our local expiration to account for allowed
2960 * spread between our sched_clock and the one on which runtime was
2963 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2964 cfs_rq->runtime_expires = expires;
2966 return cfs_rq->runtime_remaining > 0;
2970 * Note: This depends on the synchronization provided by sched_clock and the
2971 * fact that rq->clock snapshots this value.
2973 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2975 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2977 /* if the deadline is ahead of our clock, nothing to do */
2978 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2981 if (cfs_rq->runtime_remaining < 0)
2985 * If the local deadline has passed we have to consider the
2986 * possibility that our sched_clock is 'fast' and the global deadline
2987 * has not truly expired.
2989 * Fortunately we can check determine whether this the case by checking
2990 * whether the global deadline has advanced.
2993 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2994 /* extend local deadline, drift is bounded above by 2 ticks */
2995 cfs_rq->runtime_expires += TICK_NSEC;
2997 /* global deadline is ahead, expiration has passed */
2998 cfs_rq->runtime_remaining = 0;
3002 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3004 /* dock delta_exec before expiring quota (as it could span periods) */
3005 cfs_rq->runtime_remaining -= delta_exec;
3006 expire_cfs_rq_runtime(cfs_rq);
3008 if (likely(cfs_rq->runtime_remaining > 0))
3012 * if we're unable to extend our runtime we resched so that the active
3013 * hierarchy can be throttled
3015 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3016 resched_task(rq_of(cfs_rq)->curr);
3019 static __always_inline
3020 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3022 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3025 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3028 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3030 return cfs_bandwidth_used() && cfs_rq->throttled;
3033 /* check whether cfs_rq, or any parent, is throttled */
3034 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3036 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3040 * Ensure that neither of the group entities corresponding to src_cpu or
3041 * dest_cpu are members of a throttled hierarchy when performing group
3042 * load-balance operations.
3044 static inline int throttled_lb_pair(struct task_group *tg,
3045 int src_cpu, int dest_cpu)
3047 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3049 src_cfs_rq = tg->cfs_rq[src_cpu];
3050 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3052 return throttled_hierarchy(src_cfs_rq) ||
3053 throttled_hierarchy(dest_cfs_rq);
3056 /* updated child weight may affect parent so we have to do this bottom up */
3057 static int tg_unthrottle_up(struct task_group *tg, void *data)
3059 struct rq *rq = data;
3060 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3062 cfs_rq->throttle_count--;
3064 if (!cfs_rq->throttle_count) {
3065 /* adjust cfs_rq_clock_task() */
3066 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3067 cfs_rq->throttled_clock_task;
3074 static int tg_throttle_down(struct task_group *tg, void *data)
3076 struct rq *rq = data;
3077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3079 /* group is entering throttled state, stop time */
3080 if (!cfs_rq->throttle_count)
3081 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3082 cfs_rq->throttle_count++;
3087 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3089 struct rq *rq = rq_of(cfs_rq);
3090 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3091 struct sched_entity *se;
3092 long task_delta, dequeue = 1;
3094 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3096 /* freeze hierarchy runnable averages while throttled */
3098 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3101 task_delta = cfs_rq->h_nr_running;
3102 for_each_sched_entity(se) {
3103 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3104 /* throttled entity or throttle-on-deactivate */
3109 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3110 qcfs_rq->h_nr_running -= task_delta;
3112 if (qcfs_rq->load.weight)
3117 rq->nr_running -= task_delta;
3119 cfs_rq->throttled = 1;
3120 cfs_rq->throttled_clock = rq_clock(rq);
3121 raw_spin_lock(&cfs_b->lock);
3122 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3123 if (!cfs_b->timer_active)
3124 __start_cfs_bandwidth(cfs_b);
3125 raw_spin_unlock(&cfs_b->lock);
3128 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3130 struct rq *rq = rq_of(cfs_rq);
3131 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3132 struct sched_entity *se;
3136 se = cfs_rq->tg->se[cpu_of(rq)];
3138 cfs_rq->throttled = 0;
3140 update_rq_clock(rq);
3142 raw_spin_lock(&cfs_b->lock);
3143 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3144 list_del_rcu(&cfs_rq->throttled_list);
3145 raw_spin_unlock(&cfs_b->lock);
3147 /* update hierarchical throttle state */
3148 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3150 if (!cfs_rq->load.weight)
3153 task_delta = cfs_rq->h_nr_running;
3154 for_each_sched_entity(se) {
3158 cfs_rq = cfs_rq_of(se);
3160 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3161 cfs_rq->h_nr_running += task_delta;
3163 if (cfs_rq_throttled(cfs_rq))
3168 rq->nr_running += task_delta;
3170 /* determine whether we need to wake up potentially idle cpu */
3171 if (rq->curr == rq->idle && rq->cfs.nr_running)
3172 resched_task(rq->curr);
3175 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3176 u64 remaining, u64 expires)
3178 struct cfs_rq *cfs_rq;
3179 u64 runtime = remaining;
3182 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3184 struct rq *rq = rq_of(cfs_rq);
3186 raw_spin_lock(&rq->lock);
3187 if (!cfs_rq_throttled(cfs_rq))
3190 runtime = -cfs_rq->runtime_remaining + 1;
3191 if (runtime > remaining)
3192 runtime = remaining;
3193 remaining -= runtime;
3195 cfs_rq->runtime_remaining += runtime;
3196 cfs_rq->runtime_expires = expires;
3198 /* we check whether we're throttled above */
3199 if (cfs_rq->runtime_remaining > 0)
3200 unthrottle_cfs_rq(cfs_rq);
3203 raw_spin_unlock(&rq->lock);
3214 * Responsible for refilling a task_group's bandwidth and unthrottling its
3215 * cfs_rqs as appropriate. If there has been no activity within the last
3216 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3217 * used to track this state.
3219 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3221 u64 runtime, runtime_expires;
3222 int idle = 1, throttled;
3224 raw_spin_lock(&cfs_b->lock);
3225 /* no need to continue the timer with no bandwidth constraint */
3226 if (cfs_b->quota == RUNTIME_INF)
3229 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3230 /* idle depends on !throttled (for the case of a large deficit) */
3231 idle = cfs_b->idle && !throttled;
3232 cfs_b->nr_periods += overrun;
3234 /* if we're going inactive then everything else can be deferred */
3239 * if we have relooped after returning idle once, we need to update our
3240 * status as actually running, so that other cpus doing
3241 * __start_cfs_bandwidth will stop trying to cancel us.
3243 cfs_b->timer_active = 1;
3245 __refill_cfs_bandwidth_runtime(cfs_b);
3248 /* mark as potentially idle for the upcoming period */
3253 /* account preceding periods in which throttling occurred */
3254 cfs_b->nr_throttled += overrun;
3257 * There are throttled entities so we must first use the new bandwidth
3258 * to unthrottle them before making it generally available. This
3259 * ensures that all existing debts will be paid before a new cfs_rq is
3262 runtime = cfs_b->runtime;
3263 runtime_expires = cfs_b->runtime_expires;
3267 * This check is repeated as we are holding onto the new bandwidth
3268 * while we unthrottle. This can potentially race with an unthrottled
3269 * group trying to acquire new bandwidth from the global pool.
3271 while (throttled && runtime > 0) {
3272 raw_spin_unlock(&cfs_b->lock);
3273 /* we can't nest cfs_b->lock while distributing bandwidth */
3274 runtime = distribute_cfs_runtime(cfs_b, runtime,
3276 raw_spin_lock(&cfs_b->lock);
3278 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3281 /* return (any) remaining runtime */
3282 cfs_b->runtime = runtime;
3284 * While we are ensured activity in the period following an
3285 * unthrottle, this also covers the case in which the new bandwidth is
3286 * insufficient to cover the existing bandwidth deficit. (Forcing the
3287 * timer to remain active while there are any throttled entities.)
3292 cfs_b->timer_active = 0;
3293 raw_spin_unlock(&cfs_b->lock);
3298 /* a cfs_rq won't donate quota below this amount */
3299 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3300 /* minimum remaining period time to redistribute slack quota */
3301 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3302 /* how long we wait to gather additional slack before distributing */
3303 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3306 * Are we near the end of the current quota period?
3308 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3309 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3310 * migrate_hrtimers, base is never cleared, so we are fine.
3312 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3314 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3317 /* if the call-back is running a quota refresh is already occurring */
3318 if (hrtimer_callback_running(refresh_timer))
3321 /* is a quota refresh about to occur? */
3322 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3323 if (remaining < min_expire)
3329 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3331 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3333 /* if there's a quota refresh soon don't bother with slack */
3334 if (runtime_refresh_within(cfs_b, min_left))
3337 start_bandwidth_timer(&cfs_b->slack_timer,
3338 ns_to_ktime(cfs_bandwidth_slack_period));
3341 /* we know any runtime found here is valid as update_curr() precedes return */
3342 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3344 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3345 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3347 if (slack_runtime <= 0)
3350 raw_spin_lock(&cfs_b->lock);
3351 if (cfs_b->quota != RUNTIME_INF &&
3352 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3353 cfs_b->runtime += slack_runtime;
3355 /* we are under rq->lock, defer unthrottling using a timer */
3356 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3357 !list_empty(&cfs_b->throttled_cfs_rq))
3358 start_cfs_slack_bandwidth(cfs_b);
3360 raw_spin_unlock(&cfs_b->lock);
3362 /* even if it's not valid for return we don't want to try again */
3363 cfs_rq->runtime_remaining -= slack_runtime;
3366 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3368 if (!cfs_bandwidth_used())
3371 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3374 __return_cfs_rq_runtime(cfs_rq);
3378 * This is done with a timer (instead of inline with bandwidth return) since
3379 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3381 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3383 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3386 /* confirm we're still not at a refresh boundary */
3387 raw_spin_lock(&cfs_b->lock);
3388 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3389 raw_spin_unlock(&cfs_b->lock);
3393 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3394 runtime = cfs_b->runtime;
3397 expires = cfs_b->runtime_expires;
3398 raw_spin_unlock(&cfs_b->lock);
3403 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3405 raw_spin_lock(&cfs_b->lock);
3406 if (expires == cfs_b->runtime_expires)
3407 cfs_b->runtime = runtime;
3408 raw_spin_unlock(&cfs_b->lock);
3412 * When a group wakes up we want to make sure that its quota is not already
3413 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3414 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3416 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3418 if (!cfs_bandwidth_used())
3421 /* an active group must be handled by the update_curr()->put() path */
3422 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3425 /* ensure the group is not already throttled */
3426 if (cfs_rq_throttled(cfs_rq))
3429 /* update runtime allocation */
3430 account_cfs_rq_runtime(cfs_rq, 0);
3431 if (cfs_rq->runtime_remaining <= 0)
3432 throttle_cfs_rq(cfs_rq);
3435 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3436 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3438 if (!cfs_bandwidth_used())
3441 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3445 * it's possible for a throttled entity to be forced into a running
3446 * state (e.g. set_curr_task), in this case we're finished.
3448 if (cfs_rq_throttled(cfs_rq))
3451 throttle_cfs_rq(cfs_rq);
3454 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3456 struct cfs_bandwidth *cfs_b =
3457 container_of(timer, struct cfs_bandwidth, slack_timer);
3458 do_sched_cfs_slack_timer(cfs_b);
3460 return HRTIMER_NORESTART;
3463 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3465 struct cfs_bandwidth *cfs_b =
3466 container_of(timer, struct cfs_bandwidth, period_timer);
3472 now = hrtimer_cb_get_time(timer);
3473 overrun = hrtimer_forward(timer, now, cfs_b->period);
3478 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3481 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3484 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3486 raw_spin_lock_init(&cfs_b->lock);
3488 cfs_b->quota = RUNTIME_INF;
3489 cfs_b->period = ns_to_ktime(default_cfs_period());
3491 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3492 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3493 cfs_b->period_timer.function = sched_cfs_period_timer;
3494 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3495 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3498 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3500 cfs_rq->runtime_enabled = 0;
3501 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3504 /* requires cfs_b->lock, may release to reprogram timer */
3505 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3508 * The timer may be active because we're trying to set a new bandwidth
3509 * period or because we're racing with the tear-down path
3510 * (timer_active==0 becomes visible before the hrtimer call-back
3511 * terminates). In either case we ensure that it's re-programmed
3513 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3514 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3515 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3516 raw_spin_unlock(&cfs_b->lock);
3518 raw_spin_lock(&cfs_b->lock);
3519 /* if someone else restarted the timer then we're done */
3520 if (cfs_b->timer_active)
3524 cfs_b->timer_active = 1;
3525 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3528 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3530 hrtimer_cancel(&cfs_b->period_timer);
3531 hrtimer_cancel(&cfs_b->slack_timer);
3534 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3536 struct cfs_rq *cfs_rq;
3538 for_each_leaf_cfs_rq(rq, cfs_rq) {
3539 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3541 if (!cfs_rq->runtime_enabled)
3545 * clock_task is not advancing so we just need to make sure
3546 * there's some valid quota amount
3548 cfs_rq->runtime_remaining = cfs_b->quota;
3549 if (cfs_rq_throttled(cfs_rq))
3550 unthrottle_cfs_rq(cfs_rq);
3554 #else /* CONFIG_CFS_BANDWIDTH */
3555 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3557 return rq_clock_task(rq_of(cfs_rq));
3560 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3561 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3562 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3563 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3565 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3570 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3575 static inline int throttled_lb_pair(struct task_group *tg,
3576 int src_cpu, int dest_cpu)
3581 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3583 #ifdef CONFIG_FAIR_GROUP_SCHED
3584 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3587 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3591 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3592 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3594 #endif /* CONFIG_CFS_BANDWIDTH */
3596 /**************************************************
3597 * CFS operations on tasks:
3600 #ifdef CONFIG_SCHED_HRTICK
3601 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3603 struct sched_entity *se = &p->se;
3604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3606 WARN_ON(task_rq(p) != rq);
3608 if (cfs_rq->nr_running > 1) {
3609 u64 slice = sched_slice(cfs_rq, se);
3610 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3611 s64 delta = slice - ran;
3620 * Don't schedule slices shorter than 10000ns, that just
3621 * doesn't make sense. Rely on vruntime for fairness.
3624 delta = max_t(s64, 10000LL, delta);
3626 hrtick_start(rq, delta);
3631 * called from enqueue/dequeue and updates the hrtick when the
3632 * current task is from our class and nr_running is low enough
3635 static void hrtick_update(struct rq *rq)
3637 struct task_struct *curr = rq->curr;
3639 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3642 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3643 hrtick_start_fair(rq, curr);
3645 #else /* !CONFIG_SCHED_HRTICK */
3647 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3651 static inline void hrtick_update(struct rq *rq)
3657 * The enqueue_task method is called before nr_running is
3658 * increased. Here we update the fair scheduling stats and
3659 * then put the task into the rbtree:
3662 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3664 struct cfs_rq *cfs_rq;
3665 struct sched_entity *se = &p->se;
3667 for_each_sched_entity(se) {
3670 cfs_rq = cfs_rq_of(se);
3671 enqueue_entity(cfs_rq, se, flags);
3674 * end evaluation on encountering a throttled cfs_rq
3676 * note: in the case of encountering a throttled cfs_rq we will
3677 * post the final h_nr_running increment below.
3679 if (cfs_rq_throttled(cfs_rq))
3681 cfs_rq->h_nr_running++;
3683 flags = ENQUEUE_WAKEUP;
3686 for_each_sched_entity(se) {
3687 cfs_rq = cfs_rq_of(se);
3688 cfs_rq->h_nr_running++;
3690 if (cfs_rq_throttled(cfs_rq))
3693 update_cfs_shares(cfs_rq);
3694 update_entity_load_avg(se, 1);
3698 update_rq_runnable_avg(rq, rq->nr_running);
3704 static void set_next_buddy(struct sched_entity *se);
3707 * The dequeue_task method is called before nr_running is
3708 * decreased. We remove the task from the rbtree and
3709 * update the fair scheduling stats:
3711 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3713 struct cfs_rq *cfs_rq;
3714 struct sched_entity *se = &p->se;
3715 int task_sleep = flags & DEQUEUE_SLEEP;
3717 for_each_sched_entity(se) {
3718 cfs_rq = cfs_rq_of(se);
3719 dequeue_entity(cfs_rq, se, flags);
3722 * end evaluation on encountering a throttled cfs_rq
3724 * note: in the case of encountering a throttled cfs_rq we will
3725 * post the final h_nr_running decrement below.
3727 if (cfs_rq_throttled(cfs_rq))
3729 cfs_rq->h_nr_running--;
3731 /* Don't dequeue parent if it has other entities besides us */
3732 if (cfs_rq->load.weight) {
3734 * Bias pick_next to pick a task from this cfs_rq, as
3735 * p is sleeping when it is within its sched_slice.
3737 if (task_sleep && parent_entity(se))
3738 set_next_buddy(parent_entity(se));
3740 /* avoid re-evaluating load for this entity */
3741 se = parent_entity(se);
3744 flags |= DEQUEUE_SLEEP;
3747 for_each_sched_entity(se) {
3748 cfs_rq = cfs_rq_of(se);
3749 cfs_rq->h_nr_running--;
3751 if (cfs_rq_throttled(cfs_rq))
3754 update_cfs_shares(cfs_rq);
3755 update_entity_load_avg(se, 1);
3760 update_rq_runnable_avg(rq, 1);
3766 /* Used instead of source_load when we know the type == 0 */
3767 static unsigned long weighted_cpuload(const int cpu)
3769 return cpu_rq(cpu)->cfs.runnable_load_avg;
3773 * Return a low guess at the load of a migration-source cpu weighted
3774 * according to the scheduling class and "nice" value.
3776 * We want to under-estimate the load of migration sources, to
3777 * balance conservatively.
3779 static unsigned long source_load(int cpu, int type)
3781 struct rq *rq = cpu_rq(cpu);
3782 unsigned long total = weighted_cpuload(cpu);
3784 if (type == 0 || !sched_feat(LB_BIAS))
3787 return min(rq->cpu_load[type-1], total);
3791 * Return a high guess at the load of a migration-target cpu weighted
3792 * according to the scheduling class and "nice" value.
3794 static unsigned long target_load(int cpu, int type)
3796 struct rq *rq = cpu_rq(cpu);
3797 unsigned long total = weighted_cpuload(cpu);
3799 if (type == 0 || !sched_feat(LB_BIAS))
3802 return max(rq->cpu_load[type-1], total);
3805 static unsigned long power_of(int cpu)
3807 return cpu_rq(cpu)->cpu_power;
3810 static unsigned long cpu_avg_load_per_task(int cpu)
3812 struct rq *rq = cpu_rq(cpu);
3813 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3814 unsigned long load_avg = rq->cfs.runnable_load_avg;
3817 return load_avg / nr_running;
3822 static void record_wakee(struct task_struct *p)
3825 * Rough decay (wiping) for cost saving, don't worry
3826 * about the boundary, really active task won't care
3829 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3830 current->wakee_flips = 0;
3831 current->wakee_flip_decay_ts = jiffies;
3834 if (current->last_wakee != p) {
3835 current->last_wakee = p;
3836 current->wakee_flips++;
3840 static void task_waking_fair(struct task_struct *p)
3842 struct sched_entity *se = &p->se;
3843 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3846 #ifndef CONFIG_64BIT
3847 u64 min_vruntime_copy;
3850 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3852 min_vruntime = cfs_rq->min_vruntime;
3853 } while (min_vruntime != min_vruntime_copy);
3855 min_vruntime = cfs_rq->min_vruntime;
3858 se->vruntime -= min_vruntime;
3862 #ifdef CONFIG_FAIR_GROUP_SCHED
3864 * effective_load() calculates the load change as seen from the root_task_group
3866 * Adding load to a group doesn't make a group heavier, but can cause movement
3867 * of group shares between cpus. Assuming the shares were perfectly aligned one
3868 * can calculate the shift in shares.
3870 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3871 * on this @cpu and results in a total addition (subtraction) of @wg to the
3872 * total group weight.
3874 * Given a runqueue weight distribution (rw_i) we can compute a shares
3875 * distribution (s_i) using:
3877 * s_i = rw_i / \Sum rw_j (1)
3879 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3880 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3881 * shares distribution (s_i):
3883 * rw_i = { 2, 4, 1, 0 }
3884 * s_i = { 2/7, 4/7, 1/7, 0 }
3886 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3887 * task used to run on and the CPU the waker is running on), we need to
3888 * compute the effect of waking a task on either CPU and, in case of a sync
3889 * wakeup, compute the effect of the current task going to sleep.
3891 * So for a change of @wl to the local @cpu with an overall group weight change
3892 * of @wl we can compute the new shares distribution (s'_i) using:
3894 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3896 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3897 * differences in waking a task to CPU 0. The additional task changes the
3898 * weight and shares distributions like:
3900 * rw'_i = { 3, 4, 1, 0 }
3901 * s'_i = { 3/8, 4/8, 1/8, 0 }
3903 * We can then compute the difference in effective weight by using:
3905 * dw_i = S * (s'_i - s_i) (3)
3907 * Where 'S' is the group weight as seen by its parent.
3909 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3910 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3911 * 4/7) times the weight of the group.
3913 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3915 struct sched_entity *se = tg->se[cpu];
3917 if (!tg->parent) /* the trivial, non-cgroup case */
3920 for_each_sched_entity(se) {
3926 * W = @wg + \Sum rw_j
3928 W = wg + calc_tg_weight(tg, se->my_q);
3933 w = se->my_q->load.weight + wl;
3936 * wl = S * s'_i; see (2)
3939 wl = (w * tg->shares) / W;
3944 * Per the above, wl is the new se->load.weight value; since
3945 * those are clipped to [MIN_SHARES, ...) do so now. See
3946 * calc_cfs_shares().
3948 if (wl < MIN_SHARES)
3952 * wl = dw_i = S * (s'_i - s_i); see (3)
3954 wl -= se->load.weight;
3957 * Recursively apply this logic to all parent groups to compute
3958 * the final effective load change on the root group. Since
3959 * only the @tg group gets extra weight, all parent groups can
3960 * only redistribute existing shares. @wl is the shift in shares
3961 * resulting from this level per the above.
3970 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3977 static int wake_wide(struct task_struct *p)
3979 int factor = this_cpu_read(sd_llc_size);
3982 * Yeah, it's the switching-frequency, could means many wakee or
3983 * rapidly switch, use factor here will just help to automatically
3984 * adjust the loose-degree, so bigger node will lead to more pull.
3986 if (p->wakee_flips > factor) {
3988 * wakee is somewhat hot, it needs certain amount of cpu
3989 * resource, so if waker is far more hot, prefer to leave
3992 if (current->wakee_flips > (factor * p->wakee_flips))
3999 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4001 s64 this_load, load;
4002 int idx, this_cpu, prev_cpu;
4003 unsigned long tl_per_task;
4004 struct task_group *tg;
4005 unsigned long weight;
4009 * If we wake multiple tasks be careful to not bounce
4010 * ourselves around too much.
4016 this_cpu = smp_processor_id();
4017 prev_cpu = task_cpu(p);
4018 load = source_load(prev_cpu, idx);
4019 this_load = target_load(this_cpu, idx);
4022 * If sync wakeup then subtract the (maximum possible)
4023 * effect of the currently running task from the load
4024 * of the current CPU:
4027 tg = task_group(current);
4028 weight = current->se.load.weight;
4030 this_load += effective_load(tg, this_cpu, -weight, -weight);
4031 load += effective_load(tg, prev_cpu, 0, -weight);
4035 weight = p->se.load.weight;
4038 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4039 * due to the sync cause above having dropped this_load to 0, we'll
4040 * always have an imbalance, but there's really nothing you can do
4041 * about that, so that's good too.
4043 * Otherwise check if either cpus are near enough in load to allow this
4044 * task to be woken on this_cpu.
4046 if (this_load > 0) {
4047 s64 this_eff_load, prev_eff_load;
4049 this_eff_load = 100;
4050 this_eff_load *= power_of(prev_cpu);
4051 this_eff_load *= this_load +
4052 effective_load(tg, this_cpu, weight, weight);
4054 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4055 prev_eff_load *= power_of(this_cpu);
4056 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4058 balanced = this_eff_load <= prev_eff_load;
4063 * If the currently running task will sleep within
4064 * a reasonable amount of time then attract this newly
4067 if (sync && balanced)
4070 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4071 tl_per_task = cpu_avg_load_per_task(this_cpu);
4074 (this_load <= load &&
4075 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4077 * This domain has SD_WAKE_AFFINE and
4078 * p is cache cold in this domain, and
4079 * there is no bad imbalance.
4081 schedstat_inc(sd, ttwu_move_affine);
4082 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4090 * find_idlest_group finds and returns the least busy CPU group within the
4093 static struct sched_group *
4094 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4095 int this_cpu, int sd_flag)
4097 struct sched_group *idlest = NULL, *group = sd->groups;
4098 unsigned long min_load = ULONG_MAX, this_load = 0;
4099 int load_idx = sd->forkexec_idx;
4100 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4102 if (sd_flag & SD_BALANCE_WAKE)
4103 load_idx = sd->wake_idx;
4106 unsigned long load, avg_load;
4110 /* Skip over this group if it has no CPUs allowed */
4111 if (!cpumask_intersects(sched_group_cpus(group),
4112 tsk_cpus_allowed(p)))
4115 local_group = cpumask_test_cpu(this_cpu,
4116 sched_group_cpus(group));
4118 /* Tally up the load of all CPUs in the group */
4121 for_each_cpu(i, sched_group_cpus(group)) {
4122 /* Bias balancing toward cpus of our domain */
4124 load = source_load(i, load_idx);
4126 load = target_load(i, load_idx);
4131 /* Adjust by relative CPU power of the group */
4132 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4135 this_load = avg_load;
4136 } else if (avg_load < min_load) {
4137 min_load = avg_load;
4140 } while (group = group->next, group != sd->groups);
4142 if (!idlest || 100*this_load < imbalance*min_load)
4148 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4151 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4153 unsigned long load, min_load = ULONG_MAX;
4157 /* Traverse only the allowed CPUs */
4158 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4159 load = weighted_cpuload(i);
4161 if (load < min_load || (load == min_load && i == this_cpu)) {
4171 * Try and locate an idle CPU in the sched_domain.
4173 static int select_idle_sibling(struct task_struct *p, int target)
4175 struct sched_domain *sd;
4176 struct sched_group *sg;
4177 int i = task_cpu(p);
4179 if (idle_cpu(target))
4183 * If the prevous cpu is cache affine and idle, don't be stupid.
4185 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4189 * Otherwise, iterate the domains and find an elegible idle cpu.
4191 sd = rcu_dereference(per_cpu(sd_llc, target));
4192 for_each_lower_domain(sd) {
4195 if (!cpumask_intersects(sched_group_cpus(sg),
4196 tsk_cpus_allowed(p)))
4199 for_each_cpu(i, sched_group_cpus(sg)) {
4200 if (i == target || !idle_cpu(i))
4204 target = cpumask_first_and(sched_group_cpus(sg),
4205 tsk_cpus_allowed(p));
4209 } while (sg != sd->groups);
4216 * sched_balance_self: balance the current task (running on cpu) in domains
4217 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4220 * Balance, ie. select the least loaded group.
4222 * Returns the target CPU number, or the same CPU if no balancing is needed.
4224 * preempt must be disabled.
4227 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4229 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4230 int cpu = smp_processor_id();
4232 int want_affine = 0;
4233 int sync = wake_flags & WF_SYNC;
4235 if (p->nr_cpus_allowed == 1)
4238 if (sd_flag & SD_BALANCE_WAKE) {
4239 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4245 for_each_domain(cpu, tmp) {
4246 if (!(tmp->flags & SD_LOAD_BALANCE))
4250 * If both cpu and prev_cpu are part of this domain,
4251 * cpu is a valid SD_WAKE_AFFINE target.
4253 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4254 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4259 if (tmp->flags & sd_flag)
4264 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4267 new_cpu = select_idle_sibling(p, prev_cpu);
4272 struct sched_group *group;
4275 if (!(sd->flags & sd_flag)) {
4280 group = find_idlest_group(sd, p, cpu, sd_flag);
4286 new_cpu = find_idlest_cpu(group, p, cpu);
4287 if (new_cpu == -1 || new_cpu == cpu) {
4288 /* Now try balancing at a lower domain level of cpu */
4293 /* Now try balancing at a lower domain level of new_cpu */
4295 weight = sd->span_weight;
4297 for_each_domain(cpu, tmp) {
4298 if (weight <= tmp->span_weight)
4300 if (tmp->flags & sd_flag)
4303 /* while loop will break here if sd == NULL */
4312 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4313 * cfs_rq_of(p) references at time of call are still valid and identify the
4314 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4315 * other assumptions, including the state of rq->lock, should be made.
4318 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4320 struct sched_entity *se = &p->se;
4321 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4324 * Load tracking: accumulate removed load so that it can be processed
4325 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4326 * to blocked load iff they have a positive decay-count. It can never
4327 * be negative here since on-rq tasks have decay-count == 0.
4329 if (se->avg.decay_count) {
4330 se->avg.decay_count = -__synchronize_entity_decay(se);
4331 atomic_long_add(se->avg.load_avg_contrib,
4332 &cfs_rq->removed_load);
4335 #endif /* CONFIG_SMP */
4337 static unsigned long
4338 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4340 unsigned long gran = sysctl_sched_wakeup_granularity;
4343 * Since its curr running now, convert the gran from real-time
4344 * to virtual-time in his units.
4346 * By using 'se' instead of 'curr' we penalize light tasks, so
4347 * they get preempted easier. That is, if 'se' < 'curr' then
4348 * the resulting gran will be larger, therefore penalizing the
4349 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4350 * be smaller, again penalizing the lighter task.
4352 * This is especially important for buddies when the leftmost
4353 * task is higher priority than the buddy.
4355 return calc_delta_fair(gran, se);
4359 * Should 'se' preempt 'curr'.
4373 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4375 s64 gran, vdiff = curr->vruntime - se->vruntime;
4380 gran = wakeup_gran(curr, se);
4387 static void set_last_buddy(struct sched_entity *se)
4389 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4392 for_each_sched_entity(se)
4393 cfs_rq_of(se)->last = se;
4396 static void set_next_buddy(struct sched_entity *se)
4398 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4401 for_each_sched_entity(se)
4402 cfs_rq_of(se)->next = se;
4405 static void set_skip_buddy(struct sched_entity *se)
4407 for_each_sched_entity(se)
4408 cfs_rq_of(se)->skip = se;
4412 * Preempt the current task with a newly woken task if needed:
4414 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4416 struct task_struct *curr = rq->curr;
4417 struct sched_entity *se = &curr->se, *pse = &p->se;
4418 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4419 int scale = cfs_rq->nr_running >= sched_nr_latency;
4420 int next_buddy_marked = 0;
4422 if (unlikely(se == pse))
4426 * This is possible from callers such as move_task(), in which we
4427 * unconditionally check_prempt_curr() after an enqueue (which may have
4428 * lead to a throttle). This both saves work and prevents false
4429 * next-buddy nomination below.
4431 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4434 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4435 set_next_buddy(pse);
4436 next_buddy_marked = 1;
4440 * We can come here with TIF_NEED_RESCHED already set from new task
4443 * Note: this also catches the edge-case of curr being in a throttled
4444 * group (e.g. via set_curr_task), since update_curr() (in the
4445 * enqueue of curr) will have resulted in resched being set. This
4446 * prevents us from potentially nominating it as a false LAST_BUDDY
4449 if (test_tsk_need_resched(curr))
4452 /* Idle tasks are by definition preempted by non-idle tasks. */
4453 if (unlikely(curr->policy == SCHED_IDLE) &&
4454 likely(p->policy != SCHED_IDLE))
4458 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4459 * is driven by the tick):
4461 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4464 find_matching_se(&se, &pse);
4465 update_curr(cfs_rq_of(se));
4467 if (wakeup_preempt_entity(se, pse) == 1) {
4469 * Bias pick_next to pick the sched entity that is
4470 * triggering this preemption.
4472 if (!next_buddy_marked)
4473 set_next_buddy(pse);
4482 * Only set the backward buddy when the current task is still
4483 * on the rq. This can happen when a wakeup gets interleaved
4484 * with schedule on the ->pre_schedule() or idle_balance()
4485 * point, either of which can * drop the rq lock.
4487 * Also, during early boot the idle thread is in the fair class,
4488 * for obvious reasons its a bad idea to schedule back to it.
4490 if (unlikely(!se->on_rq || curr == rq->idle))
4493 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4497 static struct task_struct *pick_next_task_fair(struct rq *rq)
4499 struct task_struct *p;
4500 struct cfs_rq *cfs_rq = &rq->cfs;
4501 struct sched_entity *se;
4503 if (!cfs_rq->nr_running)
4507 se = pick_next_entity(cfs_rq);
4508 set_next_entity(cfs_rq, se);
4509 cfs_rq = group_cfs_rq(se);
4513 if (hrtick_enabled(rq))
4514 hrtick_start_fair(rq, p);
4520 * Account for a descheduled task:
4522 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4524 struct sched_entity *se = &prev->se;
4525 struct cfs_rq *cfs_rq;
4527 for_each_sched_entity(se) {
4528 cfs_rq = cfs_rq_of(se);
4529 put_prev_entity(cfs_rq, se);
4534 * sched_yield() is very simple
4536 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4538 static void yield_task_fair(struct rq *rq)
4540 struct task_struct *curr = rq->curr;
4541 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4542 struct sched_entity *se = &curr->se;
4545 * Are we the only task in the tree?
4547 if (unlikely(rq->nr_running == 1))
4550 clear_buddies(cfs_rq, se);
4552 if (curr->policy != SCHED_BATCH) {
4553 update_rq_clock(rq);
4555 * Update run-time statistics of the 'current'.
4557 update_curr(cfs_rq);
4559 * Tell update_rq_clock() that we've just updated,
4560 * so we don't do microscopic update in schedule()
4561 * and double the fastpath cost.
4563 rq->skip_clock_update = 1;
4569 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4571 struct sched_entity *se = &p->se;
4573 /* throttled hierarchies are not runnable */
4574 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4577 /* Tell the scheduler that we'd really like pse to run next. */
4580 yield_task_fair(rq);
4586 /**************************************************
4587 * Fair scheduling class load-balancing methods.
4591 * The purpose of load-balancing is to achieve the same basic fairness the
4592 * per-cpu scheduler provides, namely provide a proportional amount of compute
4593 * time to each task. This is expressed in the following equation:
4595 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4597 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4598 * W_i,0 is defined as:
4600 * W_i,0 = \Sum_j w_i,j (2)
4602 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4603 * is derived from the nice value as per prio_to_weight[].
4605 * The weight average is an exponential decay average of the instantaneous
4608 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4610 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4611 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4612 * can also include other factors [XXX].
4614 * To achieve this balance we define a measure of imbalance which follows
4615 * directly from (1):
4617 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4619 * We them move tasks around to minimize the imbalance. In the continuous
4620 * function space it is obvious this converges, in the discrete case we get
4621 * a few fun cases generally called infeasible weight scenarios.
4624 * - infeasible weights;
4625 * - local vs global optima in the discrete case. ]
4630 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4631 * for all i,j solution, we create a tree of cpus that follows the hardware
4632 * topology where each level pairs two lower groups (or better). This results
4633 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4634 * tree to only the first of the previous level and we decrease the frequency
4635 * of load-balance at each level inv. proportional to the number of cpus in
4641 * \Sum { --- * --- * 2^i } = O(n) (5)
4643 * `- size of each group
4644 * | | `- number of cpus doing load-balance
4646 * `- sum over all levels
4648 * Coupled with a limit on how many tasks we can migrate every balance pass,
4649 * this makes (5) the runtime complexity of the balancer.
4651 * An important property here is that each CPU is still (indirectly) connected
4652 * to every other cpu in at most O(log n) steps:
4654 * The adjacency matrix of the resulting graph is given by:
4657 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4660 * And you'll find that:
4662 * A^(log_2 n)_i,j != 0 for all i,j (7)
4664 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4665 * The task movement gives a factor of O(m), giving a convergence complexity
4668 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4673 * In order to avoid CPUs going idle while there's still work to do, new idle
4674 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4675 * tree itself instead of relying on other CPUs to bring it work.
4677 * This adds some complexity to both (5) and (8) but it reduces the total idle
4685 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4688 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4693 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4695 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4697 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4700 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4701 * rewrite all of this once again.]
4704 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4706 enum fbq_type { regular, remote, all };
4708 #define LBF_ALL_PINNED 0x01
4709 #define LBF_NEED_BREAK 0x02
4710 #define LBF_DST_PINNED 0x04
4711 #define LBF_SOME_PINNED 0x08
4714 struct sched_domain *sd;
4722 struct cpumask *dst_grpmask;
4724 enum cpu_idle_type idle;
4726 /* The set of CPUs under consideration for load-balancing */
4727 struct cpumask *cpus;
4732 unsigned int loop_break;
4733 unsigned int loop_max;
4735 enum fbq_type fbq_type;
4739 * move_task - move a task from one runqueue to another runqueue.
4740 * Both runqueues must be locked.
4742 static void move_task(struct task_struct *p, struct lb_env *env)
4744 deactivate_task(env->src_rq, p, 0);
4745 set_task_cpu(p, env->dst_cpu);
4746 activate_task(env->dst_rq, p, 0);
4747 check_preempt_curr(env->dst_rq, p, 0);
4751 * Is this task likely cache-hot:
4754 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4758 if (p->sched_class != &fair_sched_class)
4761 if (unlikely(p->policy == SCHED_IDLE))
4765 * Buddy candidates are cache hot:
4767 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4768 (&p->se == cfs_rq_of(&p->se)->next ||
4769 &p->se == cfs_rq_of(&p->se)->last))
4772 if (sysctl_sched_migration_cost == -1)
4774 if (sysctl_sched_migration_cost == 0)
4777 delta = now - p->se.exec_start;
4779 return delta < (s64)sysctl_sched_migration_cost;
4782 #ifdef CONFIG_NUMA_BALANCING
4783 /* Returns true if the destination node has incurred more faults */
4784 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4786 int src_nid, dst_nid;
4788 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4789 !(env->sd->flags & SD_NUMA)) {
4793 src_nid = cpu_to_node(env->src_cpu);
4794 dst_nid = cpu_to_node(env->dst_cpu);
4796 if (src_nid == dst_nid)
4799 /* Always encourage migration to the preferred node. */
4800 if (dst_nid == p->numa_preferred_nid)
4803 /* If both task and group weight improve, this move is a winner. */
4804 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4805 group_weight(p, dst_nid) > group_weight(p, src_nid))
4812 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4814 int src_nid, dst_nid;
4816 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4819 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4822 src_nid = cpu_to_node(env->src_cpu);
4823 dst_nid = cpu_to_node(env->dst_cpu);
4825 if (src_nid == dst_nid)
4828 /* Migrating away from the preferred node is always bad. */
4829 if (src_nid == p->numa_preferred_nid)
4832 /* If either task or group weight get worse, don't do it. */
4833 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4834 group_weight(p, dst_nid) < group_weight(p, src_nid))
4841 static inline bool migrate_improves_locality(struct task_struct *p,
4847 static inline bool migrate_degrades_locality(struct task_struct *p,
4855 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4858 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4860 int tsk_cache_hot = 0;
4862 * We do not migrate tasks that are:
4863 * 1) throttled_lb_pair, or
4864 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4865 * 3) running (obviously), or
4866 * 4) are cache-hot on their current CPU.
4868 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4871 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4874 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4876 env->flags |= LBF_SOME_PINNED;
4879 * Remember if this task can be migrated to any other cpu in
4880 * our sched_group. We may want to revisit it if we couldn't
4881 * meet load balance goals by pulling other tasks on src_cpu.
4883 * Also avoid computing new_dst_cpu if we have already computed
4884 * one in current iteration.
4886 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4889 /* Prevent to re-select dst_cpu via env's cpus */
4890 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4891 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4892 env->flags |= LBF_DST_PINNED;
4893 env->new_dst_cpu = cpu;
4901 /* Record that we found atleast one task that could run on dst_cpu */
4902 env->flags &= ~LBF_ALL_PINNED;
4904 if (task_running(env->src_rq, p)) {
4905 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4910 * Aggressive migration if:
4911 * 1) destination numa is preferred
4912 * 2) task is cache cold, or
4913 * 3) too many balance attempts have failed.
4915 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4917 tsk_cache_hot = migrate_degrades_locality(p, env);
4919 if (migrate_improves_locality(p, env)) {
4920 #ifdef CONFIG_SCHEDSTATS
4921 if (tsk_cache_hot) {
4922 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4923 schedstat_inc(p, se.statistics.nr_forced_migrations);
4929 if (!tsk_cache_hot ||
4930 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4932 if (tsk_cache_hot) {
4933 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4934 schedstat_inc(p, se.statistics.nr_forced_migrations);
4940 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4945 * move_one_task tries to move exactly one task from busiest to this_rq, as
4946 * part of active balancing operations within "domain".
4947 * Returns 1 if successful and 0 otherwise.
4949 * Called with both runqueues locked.
4951 static int move_one_task(struct lb_env *env)
4953 struct task_struct *p, *n;
4955 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4956 if (!can_migrate_task(p, env))
4961 * Right now, this is only the second place move_task()
4962 * is called, so we can safely collect move_task()
4963 * stats here rather than inside move_task().
4965 schedstat_inc(env->sd, lb_gained[env->idle]);
4971 static const unsigned int sched_nr_migrate_break = 32;
4974 * move_tasks tries to move up to imbalance weighted load from busiest to
4975 * this_rq, as part of a balancing operation within domain "sd".
4976 * Returns 1 if successful and 0 otherwise.
4978 * Called with both runqueues locked.
4980 static int move_tasks(struct lb_env *env)
4982 struct list_head *tasks = &env->src_rq->cfs_tasks;
4983 struct task_struct *p;
4987 if (env->imbalance <= 0)
4990 while (!list_empty(tasks)) {
4991 p = list_first_entry(tasks, struct task_struct, se.group_node);
4994 /* We've more or less seen every task there is, call it quits */
4995 if (env->loop > env->loop_max)
4998 /* take a breather every nr_migrate tasks */
4999 if (env->loop > env->loop_break) {
5000 env->loop_break += sched_nr_migrate_break;
5001 env->flags |= LBF_NEED_BREAK;
5005 if (!can_migrate_task(p, env))
5008 load = task_h_load(p);
5010 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5013 if ((load / 2) > env->imbalance)
5018 env->imbalance -= load;
5020 #ifdef CONFIG_PREEMPT
5022 * NEWIDLE balancing is a source of latency, so preemptible
5023 * kernels will stop after the first task is pulled to minimize
5024 * the critical section.
5026 if (env->idle == CPU_NEWLY_IDLE)
5031 * We only want to steal up to the prescribed amount of
5034 if (env->imbalance <= 0)
5039 list_move_tail(&p->se.group_node, tasks);
5043 * Right now, this is one of only two places move_task() is called,
5044 * so we can safely collect move_task() stats here rather than
5045 * inside move_task().
5047 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5052 #ifdef CONFIG_FAIR_GROUP_SCHED
5054 * update tg->load_weight by folding this cpu's load_avg
5056 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5058 struct sched_entity *se = tg->se[cpu];
5059 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5061 /* throttled entities do not contribute to load */
5062 if (throttled_hierarchy(cfs_rq))
5065 update_cfs_rq_blocked_load(cfs_rq, 1);
5068 update_entity_load_avg(se, 1);
5070 * We pivot on our runnable average having decayed to zero for
5071 * list removal. This generally implies that all our children
5072 * have also been removed (modulo rounding error or bandwidth
5073 * control); however, such cases are rare and we can fix these
5076 * TODO: fix up out-of-order children on enqueue.
5078 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5079 list_del_leaf_cfs_rq(cfs_rq);
5081 struct rq *rq = rq_of(cfs_rq);
5082 update_rq_runnable_avg(rq, rq->nr_running);
5086 static void update_blocked_averages(int cpu)
5088 struct rq *rq = cpu_rq(cpu);
5089 struct cfs_rq *cfs_rq;
5090 unsigned long flags;
5092 raw_spin_lock_irqsave(&rq->lock, flags);
5093 update_rq_clock(rq);
5095 * Iterates the task_group tree in a bottom up fashion, see
5096 * list_add_leaf_cfs_rq() for details.
5098 for_each_leaf_cfs_rq(rq, cfs_rq) {
5100 * Note: We may want to consider periodically releasing
5101 * rq->lock about these updates so that creating many task
5102 * groups does not result in continually extending hold time.
5104 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5107 raw_spin_unlock_irqrestore(&rq->lock, flags);
5111 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5112 * This needs to be done in a top-down fashion because the load of a child
5113 * group is a fraction of its parents load.
5115 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5117 struct rq *rq = rq_of(cfs_rq);
5118 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5119 unsigned long now = jiffies;
5122 if (cfs_rq->last_h_load_update == now)
5125 cfs_rq->h_load_next = NULL;
5126 for_each_sched_entity(se) {
5127 cfs_rq = cfs_rq_of(se);
5128 cfs_rq->h_load_next = se;
5129 if (cfs_rq->last_h_load_update == now)
5134 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5135 cfs_rq->last_h_load_update = now;
5138 while ((se = cfs_rq->h_load_next) != NULL) {
5139 load = cfs_rq->h_load;
5140 load = div64_ul(load * se->avg.load_avg_contrib,
5141 cfs_rq->runnable_load_avg + 1);
5142 cfs_rq = group_cfs_rq(se);
5143 cfs_rq->h_load = load;
5144 cfs_rq->last_h_load_update = now;
5148 static unsigned long task_h_load(struct task_struct *p)
5150 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5152 update_cfs_rq_h_load(cfs_rq);
5153 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5154 cfs_rq->runnable_load_avg + 1);
5157 static inline void update_blocked_averages(int cpu)
5161 static unsigned long task_h_load(struct task_struct *p)
5163 return p->se.avg.load_avg_contrib;
5167 /********** Helpers for find_busiest_group ************************/
5169 * sg_lb_stats - stats of a sched_group required for load_balancing
5171 struct sg_lb_stats {
5172 unsigned long avg_load; /*Avg load across the CPUs of the group */
5173 unsigned long group_load; /* Total load over the CPUs of the group */
5174 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5175 unsigned long load_per_task;
5176 unsigned long group_power;
5177 unsigned int sum_nr_running; /* Nr tasks running in the group */
5178 unsigned int group_capacity;
5179 unsigned int idle_cpus;
5180 unsigned int group_weight;
5181 int group_imb; /* Is there an imbalance in the group ? */
5182 int group_has_capacity; /* Is there extra capacity in the group? */
5183 #ifdef CONFIG_NUMA_BALANCING
5184 unsigned int nr_numa_running;
5185 unsigned int nr_preferred_running;
5190 * sd_lb_stats - Structure to store the statistics of a sched_domain
5191 * during load balancing.
5193 struct sd_lb_stats {
5194 struct sched_group *busiest; /* Busiest group in this sd */
5195 struct sched_group *local; /* Local group in this sd */
5196 unsigned long total_load; /* Total load of all groups in sd */
5197 unsigned long total_pwr; /* Total power of all groups in sd */
5198 unsigned long avg_load; /* Average load across all groups in sd */
5200 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5201 struct sg_lb_stats local_stat; /* Statistics of the local group */
5204 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5207 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5208 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5209 * We must however clear busiest_stat::avg_load because
5210 * update_sd_pick_busiest() reads this before assignment.
5212 *sds = (struct sd_lb_stats){
5224 * get_sd_load_idx - Obtain the load index for a given sched domain.
5225 * @sd: The sched_domain whose load_idx is to be obtained.
5226 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5228 * Return: The load index.
5230 static inline int get_sd_load_idx(struct sched_domain *sd,
5231 enum cpu_idle_type idle)
5237 load_idx = sd->busy_idx;
5240 case CPU_NEWLY_IDLE:
5241 load_idx = sd->newidle_idx;
5244 load_idx = sd->idle_idx;
5251 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5253 return SCHED_POWER_SCALE;
5256 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5258 return default_scale_freq_power(sd, cpu);
5261 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5263 unsigned long weight = sd->span_weight;
5264 unsigned long smt_gain = sd->smt_gain;
5271 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5273 return default_scale_smt_power(sd, cpu);
5276 static unsigned long scale_rt_power(int cpu)
5278 struct rq *rq = cpu_rq(cpu);
5279 u64 total, available, age_stamp, avg;
5282 * Since we're reading these variables without serialization make sure
5283 * we read them once before doing sanity checks on them.
5285 age_stamp = ACCESS_ONCE(rq->age_stamp);
5286 avg = ACCESS_ONCE(rq->rt_avg);
5288 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5290 if (unlikely(total < avg)) {
5291 /* Ensures that power won't end up being negative */
5294 available = total - avg;
5297 if (unlikely((s64)total < SCHED_POWER_SCALE))
5298 total = SCHED_POWER_SCALE;
5300 total >>= SCHED_POWER_SHIFT;
5302 return div_u64(available, total);
5305 static void update_cpu_power(struct sched_domain *sd, int cpu)
5307 unsigned long weight = sd->span_weight;
5308 unsigned long power = SCHED_POWER_SCALE;
5309 struct sched_group *sdg = sd->groups;
5311 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5312 if (sched_feat(ARCH_POWER))
5313 power *= arch_scale_smt_power(sd, cpu);
5315 power *= default_scale_smt_power(sd, cpu);
5317 power >>= SCHED_POWER_SHIFT;
5320 sdg->sgp->power_orig = power;
5322 if (sched_feat(ARCH_POWER))
5323 power *= arch_scale_freq_power(sd, cpu);
5325 power *= default_scale_freq_power(sd, cpu);
5327 power >>= SCHED_POWER_SHIFT;
5329 power *= scale_rt_power(cpu);
5330 power >>= SCHED_POWER_SHIFT;
5335 cpu_rq(cpu)->cpu_power = power;
5336 sdg->sgp->power = power;
5339 void update_group_power(struct sched_domain *sd, int cpu)
5341 struct sched_domain *child = sd->child;
5342 struct sched_group *group, *sdg = sd->groups;
5343 unsigned long power, power_orig;
5344 unsigned long interval;
5346 interval = msecs_to_jiffies(sd->balance_interval);
5347 interval = clamp(interval, 1UL, max_load_balance_interval);
5348 sdg->sgp->next_update = jiffies + interval;
5351 update_cpu_power(sd, cpu);
5355 power_orig = power = 0;
5357 if (child->flags & SD_OVERLAP) {
5359 * SD_OVERLAP domains cannot assume that child groups
5360 * span the current group.
5363 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5364 struct sched_group_power *sgp;
5365 struct rq *rq = cpu_rq(cpu);
5368 * build_sched_domains() -> init_sched_groups_power()
5369 * gets here before we've attached the domains to the
5372 * Use power_of(), which is set irrespective of domains
5373 * in update_cpu_power().
5375 * This avoids power/power_orig from being 0 and
5376 * causing divide-by-zero issues on boot.
5378 * Runtime updates will correct power_orig.
5380 if (unlikely(!rq->sd)) {
5381 power_orig += power_of(cpu);
5382 power += power_of(cpu);
5386 sgp = rq->sd->groups->sgp;
5387 power_orig += sgp->power_orig;
5388 power += sgp->power;
5392 * !SD_OVERLAP domains can assume that child groups
5393 * span the current group.
5396 group = child->groups;
5398 power_orig += group->sgp->power_orig;
5399 power += group->sgp->power;
5400 group = group->next;
5401 } while (group != child->groups);
5404 sdg->sgp->power_orig = power_orig;
5405 sdg->sgp->power = power;
5409 * Try and fix up capacity for tiny siblings, this is needed when
5410 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5411 * which on its own isn't powerful enough.
5413 * See update_sd_pick_busiest() and check_asym_packing().
5416 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5419 * Only siblings can have significantly less than SCHED_POWER_SCALE
5421 if (!(sd->flags & SD_SHARE_CPUPOWER))
5425 * If ~90% of the cpu_power is still there, we're good.
5427 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5434 * Group imbalance indicates (and tries to solve) the problem where balancing
5435 * groups is inadequate due to tsk_cpus_allowed() constraints.
5437 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5438 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5441 * { 0 1 2 3 } { 4 5 6 7 }
5444 * If we were to balance group-wise we'd place two tasks in the first group and
5445 * two tasks in the second group. Clearly this is undesired as it will overload
5446 * cpu 3 and leave one of the cpus in the second group unused.
5448 * The current solution to this issue is detecting the skew in the first group
5449 * by noticing the lower domain failed to reach balance and had difficulty
5450 * moving tasks due to affinity constraints.
5452 * When this is so detected; this group becomes a candidate for busiest; see
5453 * update_sd_pick_busiest(). And calculate_imbalance() and
5454 * find_busiest_group() avoid some of the usual balance conditions to allow it
5455 * to create an effective group imbalance.
5457 * This is a somewhat tricky proposition since the next run might not find the
5458 * group imbalance and decide the groups need to be balanced again. A most
5459 * subtle and fragile situation.
5462 static inline int sg_imbalanced(struct sched_group *group)
5464 return group->sgp->imbalance;
5468 * Compute the group capacity.
5470 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5471 * first dividing out the smt factor and computing the actual number of cores
5472 * and limit power unit capacity with that.
5474 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5476 unsigned int capacity, smt, cpus;
5477 unsigned int power, power_orig;
5479 power = group->sgp->power;
5480 power_orig = group->sgp->power_orig;
5481 cpus = group->group_weight;
5483 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5484 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5485 capacity = cpus / smt; /* cores */
5487 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5489 capacity = fix_small_capacity(env->sd, group);
5495 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5496 * @env: The load balancing environment.
5497 * @group: sched_group whose statistics are to be updated.
5498 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5499 * @local_group: Does group contain this_cpu.
5500 * @sgs: variable to hold the statistics for this group.
5502 static inline void update_sg_lb_stats(struct lb_env *env,
5503 struct sched_group *group, int load_idx,
5504 int local_group, struct sg_lb_stats *sgs)
5509 memset(sgs, 0, sizeof(*sgs));
5511 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5512 struct rq *rq = cpu_rq(i);
5514 /* Bias balancing toward cpus of our domain */
5516 load = target_load(i, load_idx);
5518 load = source_load(i, load_idx);
5520 sgs->group_load += load;
5521 sgs->sum_nr_running += rq->nr_running;
5522 #ifdef CONFIG_NUMA_BALANCING
5523 sgs->nr_numa_running += rq->nr_numa_running;
5524 sgs->nr_preferred_running += rq->nr_preferred_running;
5526 sgs->sum_weighted_load += weighted_cpuload(i);
5531 /* Adjust by relative CPU power of the group */
5532 sgs->group_power = group->sgp->power;
5533 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5535 if (sgs->sum_nr_running)
5536 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5538 sgs->group_weight = group->group_weight;
5540 sgs->group_imb = sg_imbalanced(group);
5541 sgs->group_capacity = sg_capacity(env, group);
5543 if (sgs->group_capacity > sgs->sum_nr_running)
5544 sgs->group_has_capacity = 1;
5548 * update_sd_pick_busiest - return 1 on busiest group
5549 * @env: The load balancing environment.
5550 * @sds: sched_domain statistics
5551 * @sg: sched_group candidate to be checked for being the busiest
5552 * @sgs: sched_group statistics
5554 * Determine if @sg is a busier group than the previously selected
5557 * Return: %true if @sg is a busier group than the previously selected
5558 * busiest group. %false otherwise.
5560 static bool update_sd_pick_busiest(struct lb_env *env,
5561 struct sd_lb_stats *sds,
5562 struct sched_group *sg,
5563 struct sg_lb_stats *sgs)
5565 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5568 if (sgs->sum_nr_running > sgs->group_capacity)
5575 * ASYM_PACKING needs to move all the work to the lowest
5576 * numbered CPUs in the group, therefore mark all groups
5577 * higher than ourself as busy.
5579 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5580 env->dst_cpu < group_first_cpu(sg)) {
5584 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5591 #ifdef CONFIG_NUMA_BALANCING
5592 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5594 if (sgs->sum_nr_running > sgs->nr_numa_running)
5596 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5601 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5603 if (rq->nr_running > rq->nr_numa_running)
5605 if (rq->nr_running > rq->nr_preferred_running)
5610 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5615 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5619 #endif /* CONFIG_NUMA_BALANCING */
5622 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5623 * @env: The load balancing environment.
5624 * @sds: variable to hold the statistics for this sched_domain.
5626 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5628 struct sched_domain *child = env->sd->child;
5629 struct sched_group *sg = env->sd->groups;
5630 struct sg_lb_stats tmp_sgs;
5631 int load_idx, prefer_sibling = 0;
5633 if (child && child->flags & SD_PREFER_SIBLING)
5636 load_idx = get_sd_load_idx(env->sd, env->idle);
5639 struct sg_lb_stats *sgs = &tmp_sgs;
5642 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5645 sgs = &sds->local_stat;
5647 if (env->idle != CPU_NEWLY_IDLE ||
5648 time_after_eq(jiffies, sg->sgp->next_update))
5649 update_group_power(env->sd, env->dst_cpu);
5652 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5658 * In case the child domain prefers tasks go to siblings
5659 * first, lower the sg capacity to one so that we'll try
5660 * and move all the excess tasks away. We lower the capacity
5661 * of a group only if the local group has the capacity to fit
5662 * these excess tasks, i.e. nr_running < group_capacity. The
5663 * extra check prevents the case where you always pull from the
5664 * heaviest group when it is already under-utilized (possible
5665 * with a large weight task outweighs the tasks on the system).
5667 if (prefer_sibling && sds->local &&
5668 sds->local_stat.group_has_capacity)
5669 sgs->group_capacity = min(sgs->group_capacity, 1U);
5671 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5673 sds->busiest_stat = *sgs;
5677 /* Now, start updating sd_lb_stats */
5678 sds->total_load += sgs->group_load;
5679 sds->total_pwr += sgs->group_power;
5682 } while (sg != env->sd->groups);
5684 if (env->sd->flags & SD_NUMA)
5685 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5689 * check_asym_packing - Check to see if the group is packed into the
5692 * This is primarily intended to used at the sibling level. Some
5693 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5694 * case of POWER7, it can move to lower SMT modes only when higher
5695 * threads are idle. When in lower SMT modes, the threads will
5696 * perform better since they share less core resources. Hence when we
5697 * have idle threads, we want them to be the higher ones.
5699 * This packing function is run on idle threads. It checks to see if
5700 * the busiest CPU in this domain (core in the P7 case) has a higher
5701 * CPU number than the packing function is being run on. Here we are
5702 * assuming lower CPU number will be equivalent to lower a SMT thread
5705 * Return: 1 when packing is required and a task should be moved to
5706 * this CPU. The amount of the imbalance is returned in *imbalance.
5708 * @env: The load balancing environment.
5709 * @sds: Statistics of the sched_domain which is to be packed
5711 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5715 if (!(env->sd->flags & SD_ASYM_PACKING))
5721 busiest_cpu = group_first_cpu(sds->busiest);
5722 if (env->dst_cpu > busiest_cpu)
5725 env->imbalance = DIV_ROUND_CLOSEST(
5726 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5733 * fix_small_imbalance - Calculate the minor imbalance that exists
5734 * amongst the groups of a sched_domain, during
5736 * @env: The load balancing environment.
5737 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5740 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5742 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5743 unsigned int imbn = 2;
5744 unsigned long scaled_busy_load_per_task;
5745 struct sg_lb_stats *local, *busiest;
5747 local = &sds->local_stat;
5748 busiest = &sds->busiest_stat;
5750 if (!local->sum_nr_running)
5751 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5752 else if (busiest->load_per_task > local->load_per_task)
5755 scaled_busy_load_per_task =
5756 (busiest->load_per_task * SCHED_POWER_SCALE) /
5757 busiest->group_power;
5759 if (busiest->avg_load + scaled_busy_load_per_task >=
5760 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5761 env->imbalance = busiest->load_per_task;
5766 * OK, we don't have enough imbalance to justify moving tasks,
5767 * however we may be able to increase total CPU power used by
5771 pwr_now += busiest->group_power *
5772 min(busiest->load_per_task, busiest->avg_load);
5773 pwr_now += local->group_power *
5774 min(local->load_per_task, local->avg_load);
5775 pwr_now /= SCHED_POWER_SCALE;
5777 /* Amount of load we'd subtract */
5778 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5779 busiest->group_power;
5780 if (busiest->avg_load > tmp) {
5781 pwr_move += busiest->group_power *
5782 min(busiest->load_per_task,
5783 busiest->avg_load - tmp);
5786 /* Amount of load we'd add */
5787 if (busiest->avg_load * busiest->group_power <
5788 busiest->load_per_task * SCHED_POWER_SCALE) {
5789 tmp = (busiest->avg_load * busiest->group_power) /
5792 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5795 pwr_move += local->group_power *
5796 min(local->load_per_task, local->avg_load + tmp);
5797 pwr_move /= SCHED_POWER_SCALE;
5799 /* Move if we gain throughput */
5800 if (pwr_move > pwr_now)
5801 env->imbalance = busiest->load_per_task;
5805 * calculate_imbalance - Calculate the amount of imbalance present within the
5806 * groups of a given sched_domain during load balance.
5807 * @env: load balance environment
5808 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5810 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5812 unsigned long max_pull, load_above_capacity = ~0UL;
5813 struct sg_lb_stats *local, *busiest;
5815 local = &sds->local_stat;
5816 busiest = &sds->busiest_stat;
5818 if (busiest->group_imb) {
5820 * In the group_imb case we cannot rely on group-wide averages
5821 * to ensure cpu-load equilibrium, look at wider averages. XXX
5823 busiest->load_per_task =
5824 min(busiest->load_per_task, sds->avg_load);
5828 * In the presence of smp nice balancing, certain scenarios can have
5829 * max load less than avg load(as we skip the groups at or below
5830 * its cpu_power, while calculating max_load..)
5832 if (busiest->avg_load <= sds->avg_load ||
5833 local->avg_load >= sds->avg_load) {
5835 return fix_small_imbalance(env, sds);
5838 if (!busiest->group_imb) {
5840 * Don't want to pull so many tasks that a group would go idle.
5841 * Except of course for the group_imb case, since then we might
5842 * have to drop below capacity to reach cpu-load equilibrium.
5844 load_above_capacity =
5845 (busiest->sum_nr_running - busiest->group_capacity);
5847 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5848 load_above_capacity /= busiest->group_power;
5852 * We're trying to get all the cpus to the average_load, so we don't
5853 * want to push ourselves above the average load, nor do we wish to
5854 * reduce the max loaded cpu below the average load. At the same time,
5855 * we also don't want to reduce the group load below the group capacity
5856 * (so that we can implement power-savings policies etc). Thus we look
5857 * for the minimum possible imbalance.
5859 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5861 /* How much load to actually move to equalise the imbalance */
5862 env->imbalance = min(
5863 max_pull * busiest->group_power,
5864 (sds->avg_load - local->avg_load) * local->group_power
5865 ) / SCHED_POWER_SCALE;
5868 * if *imbalance is less than the average load per runnable task
5869 * there is no guarantee that any tasks will be moved so we'll have
5870 * a think about bumping its value to force at least one task to be
5873 if (env->imbalance < busiest->load_per_task)
5874 return fix_small_imbalance(env, sds);
5877 /******* find_busiest_group() helpers end here *********************/
5880 * find_busiest_group - Returns the busiest group within the sched_domain
5881 * if there is an imbalance. If there isn't an imbalance, and
5882 * the user has opted for power-savings, it returns a group whose
5883 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5884 * such a group exists.
5886 * Also calculates the amount of weighted load which should be moved
5887 * to restore balance.
5889 * @env: The load balancing environment.
5891 * Return: - The busiest group if imbalance exists.
5892 * - If no imbalance and user has opted for power-savings balance,
5893 * return the least loaded group whose CPUs can be
5894 * put to idle by rebalancing its tasks onto our group.
5896 static struct sched_group *find_busiest_group(struct lb_env *env)
5898 struct sg_lb_stats *local, *busiest;
5899 struct sd_lb_stats sds;
5901 init_sd_lb_stats(&sds);
5904 * Compute the various statistics relavent for load balancing at
5907 update_sd_lb_stats(env, &sds);
5908 local = &sds.local_stat;
5909 busiest = &sds.busiest_stat;
5911 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5912 check_asym_packing(env, &sds))
5915 /* There is no busy sibling group to pull tasks from */
5916 if (!sds.busiest || busiest->sum_nr_running == 0)
5919 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5922 * If the busiest group is imbalanced the below checks don't
5923 * work because they assume all things are equal, which typically
5924 * isn't true due to cpus_allowed constraints and the like.
5926 if (busiest->group_imb)
5929 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5930 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5931 !busiest->group_has_capacity)
5935 * If the local group is more busy than the selected busiest group
5936 * don't try and pull any tasks.
5938 if (local->avg_load >= busiest->avg_load)
5942 * Don't pull any tasks if this group is already above the domain
5945 if (local->avg_load >= sds.avg_load)
5948 if (env->idle == CPU_IDLE) {
5950 * This cpu is idle. If the busiest group load doesn't
5951 * have more tasks than the number of available cpu's and
5952 * there is no imbalance between this and busiest group
5953 * wrt to idle cpu's, it is balanced.
5955 if ((local->idle_cpus < busiest->idle_cpus) &&
5956 busiest->sum_nr_running <= busiest->group_weight)
5960 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5961 * imbalance_pct to be conservative.
5963 if (100 * busiest->avg_load <=
5964 env->sd->imbalance_pct * local->avg_load)
5969 /* Looks like there is an imbalance. Compute it */
5970 calculate_imbalance(env, &sds);
5979 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5981 static struct rq *find_busiest_queue(struct lb_env *env,
5982 struct sched_group *group)
5984 struct rq *busiest = NULL, *rq;
5985 unsigned long busiest_load = 0, busiest_power = 1;
5988 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5989 unsigned long power, capacity, wl;
5993 rt = fbq_classify_rq(rq);
5996 * We classify groups/runqueues into three groups:
5997 * - regular: there are !numa tasks
5998 * - remote: there are numa tasks that run on the 'wrong' node
5999 * - all: there is no distinction
6001 * In order to avoid migrating ideally placed numa tasks,
6002 * ignore those when there's better options.
6004 * If we ignore the actual busiest queue to migrate another
6005 * task, the next balance pass can still reduce the busiest
6006 * queue by moving tasks around inside the node.
6008 * If we cannot move enough load due to this classification
6009 * the next pass will adjust the group classification and
6010 * allow migration of more tasks.
6012 * Both cases only affect the total convergence complexity.
6014 if (rt > env->fbq_type)
6017 power = power_of(i);
6018 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6020 capacity = fix_small_capacity(env->sd, group);
6022 wl = weighted_cpuload(i);
6025 * When comparing with imbalance, use weighted_cpuload()
6026 * which is not scaled with the cpu power.
6028 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6032 * For the load comparisons with the other cpu's, consider
6033 * the weighted_cpuload() scaled with the cpu power, so that
6034 * the load can be moved away from the cpu that is potentially
6035 * running at a lower capacity.
6037 * Thus we're looking for max(wl_i / power_i), crosswise
6038 * multiplication to rid ourselves of the division works out
6039 * to: wl_i * power_j > wl_j * power_i; where j is our
6042 if (wl * busiest_power > busiest_load * power) {
6044 busiest_power = power;
6053 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6054 * so long as it is large enough.
6056 #define MAX_PINNED_INTERVAL 512
6058 /* Working cpumask for load_balance and load_balance_newidle. */
6059 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6061 static int need_active_balance(struct lb_env *env)
6063 struct sched_domain *sd = env->sd;
6065 if (env->idle == CPU_NEWLY_IDLE) {
6068 * ASYM_PACKING needs to force migrate tasks from busy but
6069 * higher numbered CPUs in order to pack all tasks in the
6070 * lowest numbered CPUs.
6072 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6076 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6079 static int active_load_balance_cpu_stop(void *data);
6081 static int should_we_balance(struct lb_env *env)
6083 struct sched_group *sg = env->sd->groups;
6084 struct cpumask *sg_cpus, *sg_mask;
6085 int cpu, balance_cpu = -1;
6088 * In the newly idle case, we will allow all the cpu's
6089 * to do the newly idle load balance.
6091 if (env->idle == CPU_NEWLY_IDLE)
6094 sg_cpus = sched_group_cpus(sg);
6095 sg_mask = sched_group_mask(sg);
6096 /* Try to find first idle cpu */
6097 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6098 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6105 if (balance_cpu == -1)
6106 balance_cpu = group_balance_cpu(sg);
6109 * First idle cpu or the first cpu(busiest) in this sched group
6110 * is eligible for doing load balancing at this and above domains.
6112 return balance_cpu == env->dst_cpu;
6116 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6117 * tasks if there is an imbalance.
6119 static int load_balance(int this_cpu, struct rq *this_rq,
6120 struct sched_domain *sd, enum cpu_idle_type idle,
6121 int *continue_balancing)
6123 int ld_moved, cur_ld_moved, active_balance = 0;
6124 struct sched_domain *sd_parent = sd->parent;
6125 struct sched_group *group;
6127 unsigned long flags;
6128 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6130 struct lb_env env = {
6132 .dst_cpu = this_cpu,
6134 .dst_grpmask = sched_group_cpus(sd->groups),
6136 .loop_break = sched_nr_migrate_break,
6142 * For NEWLY_IDLE load_balancing, we don't need to consider
6143 * other cpus in our group
6145 if (idle == CPU_NEWLY_IDLE)
6146 env.dst_grpmask = NULL;
6148 cpumask_copy(cpus, cpu_active_mask);
6150 schedstat_inc(sd, lb_count[idle]);
6153 if (!should_we_balance(&env)) {
6154 *continue_balancing = 0;
6158 group = find_busiest_group(&env);
6160 schedstat_inc(sd, lb_nobusyg[idle]);
6164 busiest = find_busiest_queue(&env, group);
6166 schedstat_inc(sd, lb_nobusyq[idle]);
6170 BUG_ON(busiest == env.dst_rq);
6172 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6175 if (busiest->nr_running > 1) {
6177 * Attempt to move tasks. If find_busiest_group has found
6178 * an imbalance but busiest->nr_running <= 1, the group is
6179 * still unbalanced. ld_moved simply stays zero, so it is
6180 * correctly treated as an imbalance.
6182 env.flags |= LBF_ALL_PINNED;
6183 env.src_cpu = busiest->cpu;
6184 env.src_rq = busiest;
6185 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6188 local_irq_save(flags);
6189 double_rq_lock(env.dst_rq, busiest);
6192 * cur_ld_moved - load moved in current iteration
6193 * ld_moved - cumulative load moved across iterations
6195 cur_ld_moved = move_tasks(&env);
6196 ld_moved += cur_ld_moved;
6197 double_rq_unlock(env.dst_rq, busiest);
6198 local_irq_restore(flags);
6201 * some other cpu did the load balance for us.
6203 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6204 resched_cpu(env.dst_cpu);
6206 if (env.flags & LBF_NEED_BREAK) {
6207 env.flags &= ~LBF_NEED_BREAK;
6212 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6213 * us and move them to an alternate dst_cpu in our sched_group
6214 * where they can run. The upper limit on how many times we
6215 * iterate on same src_cpu is dependent on number of cpus in our
6218 * This changes load balance semantics a bit on who can move
6219 * load to a given_cpu. In addition to the given_cpu itself
6220 * (or a ilb_cpu acting on its behalf where given_cpu is
6221 * nohz-idle), we now have balance_cpu in a position to move
6222 * load to given_cpu. In rare situations, this may cause
6223 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6224 * _independently_ and at _same_ time to move some load to
6225 * given_cpu) causing exceess load to be moved to given_cpu.
6226 * This however should not happen so much in practice and
6227 * moreover subsequent load balance cycles should correct the
6228 * excess load moved.
6230 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6232 /* Prevent to re-select dst_cpu via env's cpus */
6233 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6235 env.dst_rq = cpu_rq(env.new_dst_cpu);
6236 env.dst_cpu = env.new_dst_cpu;
6237 env.flags &= ~LBF_DST_PINNED;
6239 env.loop_break = sched_nr_migrate_break;
6242 * Go back to "more_balance" rather than "redo" since we
6243 * need to continue with same src_cpu.
6249 * We failed to reach balance because of affinity.
6252 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6254 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6255 *group_imbalance = 1;
6256 } else if (*group_imbalance)
6257 *group_imbalance = 0;
6260 /* All tasks on this runqueue were pinned by CPU affinity */
6261 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6262 cpumask_clear_cpu(cpu_of(busiest), cpus);
6263 if (!cpumask_empty(cpus)) {
6265 env.loop_break = sched_nr_migrate_break;
6273 schedstat_inc(sd, lb_failed[idle]);
6275 * Increment the failure counter only on periodic balance.
6276 * We do not want newidle balance, which can be very
6277 * frequent, pollute the failure counter causing
6278 * excessive cache_hot migrations and active balances.
6280 if (idle != CPU_NEWLY_IDLE)
6281 sd->nr_balance_failed++;
6283 if (need_active_balance(&env)) {
6284 raw_spin_lock_irqsave(&busiest->lock, flags);
6286 /* don't kick the active_load_balance_cpu_stop,
6287 * if the curr task on busiest cpu can't be
6290 if (!cpumask_test_cpu(this_cpu,
6291 tsk_cpus_allowed(busiest->curr))) {
6292 raw_spin_unlock_irqrestore(&busiest->lock,
6294 env.flags |= LBF_ALL_PINNED;
6295 goto out_one_pinned;
6299 * ->active_balance synchronizes accesses to
6300 * ->active_balance_work. Once set, it's cleared
6301 * only after active load balance is finished.
6303 if (!busiest->active_balance) {
6304 busiest->active_balance = 1;
6305 busiest->push_cpu = this_cpu;
6308 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6310 if (active_balance) {
6311 stop_one_cpu_nowait(cpu_of(busiest),
6312 active_load_balance_cpu_stop, busiest,
6313 &busiest->active_balance_work);
6317 * We've kicked active balancing, reset the failure
6320 sd->nr_balance_failed = sd->cache_nice_tries+1;
6323 sd->nr_balance_failed = 0;
6325 if (likely(!active_balance)) {
6326 /* We were unbalanced, so reset the balancing interval */
6327 sd->balance_interval = sd->min_interval;
6330 * If we've begun active balancing, start to back off. This
6331 * case may not be covered by the all_pinned logic if there
6332 * is only 1 task on the busy runqueue (because we don't call
6335 if (sd->balance_interval < sd->max_interval)
6336 sd->balance_interval *= 2;
6342 schedstat_inc(sd, lb_balanced[idle]);
6344 sd->nr_balance_failed = 0;
6347 /* tune up the balancing interval */
6348 if (((env.flags & LBF_ALL_PINNED) &&
6349 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6350 (sd->balance_interval < sd->max_interval))
6351 sd->balance_interval *= 2;
6359 * idle_balance is called by schedule() if this_cpu is about to become
6360 * idle. Attempts to pull tasks from other CPUs.
6362 void idle_balance(int this_cpu, struct rq *this_rq)
6364 struct sched_domain *sd;
6365 int pulled_task = 0;
6366 unsigned long next_balance = jiffies + HZ;
6369 this_rq->idle_stamp = rq_clock(this_rq);
6371 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6375 * Drop the rq->lock, but keep IRQ/preempt disabled.
6377 raw_spin_unlock(&this_rq->lock);
6379 update_blocked_averages(this_cpu);
6381 for_each_domain(this_cpu, sd) {
6382 unsigned long interval;
6383 int continue_balancing = 1;
6384 u64 t0, domain_cost;
6386 if (!(sd->flags & SD_LOAD_BALANCE))
6389 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6392 if (sd->flags & SD_BALANCE_NEWIDLE) {
6393 t0 = sched_clock_cpu(this_cpu);
6395 /* If we've pulled tasks over stop searching: */
6396 pulled_task = load_balance(this_cpu, this_rq,
6398 &continue_balancing);
6400 domain_cost = sched_clock_cpu(this_cpu) - t0;
6401 if (domain_cost > sd->max_newidle_lb_cost)
6402 sd->max_newidle_lb_cost = domain_cost;
6404 curr_cost += domain_cost;
6407 interval = msecs_to_jiffies(sd->balance_interval);
6408 if (time_after(next_balance, sd->last_balance + interval))
6409 next_balance = sd->last_balance + interval;
6411 this_rq->idle_stamp = 0;
6417 raw_spin_lock(&this_rq->lock);
6419 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6421 * We are going idle. next_balance may be set based on
6422 * a busy processor. So reset next_balance.
6424 this_rq->next_balance = next_balance;
6427 if (curr_cost > this_rq->max_idle_balance_cost)
6428 this_rq->max_idle_balance_cost = curr_cost;
6432 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6433 * running tasks off the busiest CPU onto idle CPUs. It requires at
6434 * least 1 task to be running on each physical CPU where possible, and
6435 * avoids physical / logical imbalances.
6437 static int active_load_balance_cpu_stop(void *data)
6439 struct rq *busiest_rq = data;
6440 int busiest_cpu = cpu_of(busiest_rq);
6441 int target_cpu = busiest_rq->push_cpu;
6442 struct rq *target_rq = cpu_rq(target_cpu);
6443 struct sched_domain *sd;
6445 raw_spin_lock_irq(&busiest_rq->lock);
6447 /* make sure the requested cpu hasn't gone down in the meantime */
6448 if (unlikely(busiest_cpu != smp_processor_id() ||
6449 !busiest_rq->active_balance))
6452 /* Is there any task to move? */
6453 if (busiest_rq->nr_running <= 1)
6457 * This condition is "impossible", if it occurs
6458 * we need to fix it. Originally reported by
6459 * Bjorn Helgaas on a 128-cpu setup.
6461 BUG_ON(busiest_rq == target_rq);
6463 /* move a task from busiest_rq to target_rq */
6464 double_lock_balance(busiest_rq, target_rq);
6466 /* Search for an sd spanning us and the target CPU. */
6468 for_each_domain(target_cpu, sd) {
6469 if ((sd->flags & SD_LOAD_BALANCE) &&
6470 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6475 struct lb_env env = {
6477 .dst_cpu = target_cpu,
6478 .dst_rq = target_rq,
6479 .src_cpu = busiest_rq->cpu,
6480 .src_rq = busiest_rq,
6484 schedstat_inc(sd, alb_count);
6486 if (move_one_task(&env))
6487 schedstat_inc(sd, alb_pushed);
6489 schedstat_inc(sd, alb_failed);
6492 double_unlock_balance(busiest_rq, target_rq);
6494 busiest_rq->active_balance = 0;
6495 raw_spin_unlock_irq(&busiest_rq->lock);
6499 #ifdef CONFIG_NO_HZ_COMMON
6501 * idle load balancing details
6502 * - When one of the busy CPUs notice that there may be an idle rebalancing
6503 * needed, they will kick the idle load balancer, which then does idle
6504 * load balancing for all the idle CPUs.
6507 cpumask_var_t idle_cpus_mask;
6509 unsigned long next_balance; /* in jiffy units */
6510 } nohz ____cacheline_aligned;
6512 static inline int find_new_ilb(void)
6514 int ilb = cpumask_first(nohz.idle_cpus_mask);
6516 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6523 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6524 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6525 * CPU (if there is one).
6527 static void nohz_balancer_kick(void)
6531 nohz.next_balance++;
6533 ilb_cpu = find_new_ilb();
6535 if (ilb_cpu >= nr_cpu_ids)
6538 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6541 * Use smp_send_reschedule() instead of resched_cpu().
6542 * This way we generate a sched IPI on the target cpu which
6543 * is idle. And the softirq performing nohz idle load balance
6544 * will be run before returning from the IPI.
6546 smp_send_reschedule(ilb_cpu);
6550 static inline void nohz_balance_exit_idle(int cpu)
6552 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6553 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6554 atomic_dec(&nohz.nr_cpus);
6555 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6559 static inline void set_cpu_sd_state_busy(void)
6561 struct sched_domain *sd;
6562 int cpu = smp_processor_id();
6565 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6567 if (!sd || !sd->nohz_idle)
6571 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6576 void set_cpu_sd_state_idle(void)
6578 struct sched_domain *sd;
6579 int cpu = smp_processor_id();
6582 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6584 if (!sd || sd->nohz_idle)
6588 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6594 * This routine will record that the cpu is going idle with tick stopped.
6595 * This info will be used in performing idle load balancing in the future.
6597 void nohz_balance_enter_idle(int cpu)
6600 * If this cpu is going down, then nothing needs to be done.
6602 if (!cpu_active(cpu))
6605 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6608 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6609 atomic_inc(&nohz.nr_cpus);
6610 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6613 static int sched_ilb_notifier(struct notifier_block *nfb,
6614 unsigned long action, void *hcpu)
6616 switch (action & ~CPU_TASKS_FROZEN) {
6618 nohz_balance_exit_idle(smp_processor_id());
6626 static DEFINE_SPINLOCK(balancing);
6629 * Scale the max load_balance interval with the number of CPUs in the system.
6630 * This trades load-balance latency on larger machines for less cross talk.
6632 void update_max_interval(void)
6634 max_load_balance_interval = HZ*num_online_cpus()/10;
6638 * It checks each scheduling domain to see if it is due to be balanced,
6639 * and initiates a balancing operation if so.
6641 * Balancing parameters are set up in init_sched_domains.
6643 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6645 int continue_balancing = 1;
6647 unsigned long interval;
6648 struct sched_domain *sd;
6649 /* Earliest time when we have to do rebalance again */
6650 unsigned long next_balance = jiffies + 60*HZ;
6651 int update_next_balance = 0;
6652 int need_serialize, need_decay = 0;
6655 update_blocked_averages(cpu);
6658 for_each_domain(cpu, sd) {
6660 * Decay the newidle max times here because this is a regular
6661 * visit to all the domains. Decay ~1% per second.
6663 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6664 sd->max_newidle_lb_cost =
6665 (sd->max_newidle_lb_cost * 253) / 256;
6666 sd->next_decay_max_lb_cost = jiffies + HZ;
6669 max_cost += sd->max_newidle_lb_cost;
6671 if (!(sd->flags & SD_LOAD_BALANCE))
6675 * Stop the load balance at this level. There is another
6676 * CPU in our sched group which is doing load balancing more
6679 if (!continue_balancing) {
6685 interval = sd->balance_interval;
6686 if (idle != CPU_IDLE)
6687 interval *= sd->busy_factor;
6689 /* scale ms to jiffies */
6690 interval = msecs_to_jiffies(interval);
6691 interval = clamp(interval, 1UL, max_load_balance_interval);
6693 need_serialize = sd->flags & SD_SERIALIZE;
6695 if (need_serialize) {
6696 if (!spin_trylock(&balancing))
6700 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6701 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6703 * The LBF_DST_PINNED logic could have changed
6704 * env->dst_cpu, so we can't know our idle
6705 * state even if we migrated tasks. Update it.
6707 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6709 sd->last_balance = jiffies;
6712 spin_unlock(&balancing);
6714 if (time_after(next_balance, sd->last_balance + interval)) {
6715 next_balance = sd->last_balance + interval;
6716 update_next_balance = 1;
6721 * Ensure the rq-wide value also decays but keep it at a
6722 * reasonable floor to avoid funnies with rq->avg_idle.
6724 rq->max_idle_balance_cost =
6725 max((u64)sysctl_sched_migration_cost, max_cost);
6730 * next_balance will be updated only when there is a need.
6731 * When the cpu is attached to null domain for ex, it will not be
6734 if (likely(update_next_balance))
6735 rq->next_balance = next_balance;
6738 #ifdef CONFIG_NO_HZ_COMMON
6740 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6741 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6743 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
6745 int this_cpu = this_rq->cpu;
6749 if (idle != CPU_IDLE ||
6750 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6753 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6754 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6758 * If this cpu gets work to do, stop the load balancing
6759 * work being done for other cpus. Next load
6760 * balancing owner will pick it up.
6765 rq = cpu_rq(balance_cpu);
6767 raw_spin_lock_irq(&rq->lock);
6768 update_rq_clock(rq);
6769 update_idle_cpu_load(rq);
6770 raw_spin_unlock_irq(&rq->lock);
6772 rebalance_domains(rq, CPU_IDLE);
6774 if (time_after(this_rq->next_balance, rq->next_balance))
6775 this_rq->next_balance = rq->next_balance;
6777 nohz.next_balance = this_rq->next_balance;
6779 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6783 * Current heuristic for kicking the idle load balancer in the presence
6784 * of an idle cpu is the system.
6785 * - This rq has more than one task.
6786 * - At any scheduler domain level, this cpu's scheduler group has multiple
6787 * busy cpu's exceeding the group's power.
6788 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6789 * domain span are idle.
6791 static inline int nohz_kick_needed(struct rq *rq)
6793 unsigned long now = jiffies;
6794 struct sched_domain *sd;
6795 struct sched_group_power *sgp;
6796 int nr_busy, cpu = rq->cpu;
6798 if (unlikely(rq->idle_balance))
6802 * We may be recently in ticked or tickless idle mode. At the first
6803 * busy tick after returning from idle, we will update the busy stats.
6805 set_cpu_sd_state_busy();
6806 nohz_balance_exit_idle(cpu);
6809 * None are in tickless mode and hence no need for NOHZ idle load
6812 if (likely(!atomic_read(&nohz.nr_cpus)))
6815 if (time_before(now, nohz.next_balance))
6818 if (rq->nr_running >= 2)
6822 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6825 sgp = sd->groups->sgp;
6826 nr_busy = atomic_read(&sgp->nr_busy_cpus);
6829 goto need_kick_unlock;
6832 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6834 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6835 sched_domain_span(sd)) < cpu))
6836 goto need_kick_unlock;
6847 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
6851 * run_rebalance_domains is triggered when needed from the scheduler tick.
6852 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6854 static void run_rebalance_domains(struct softirq_action *h)
6856 struct rq *this_rq = this_rq();
6857 enum cpu_idle_type idle = this_rq->idle_balance ?
6858 CPU_IDLE : CPU_NOT_IDLE;
6860 rebalance_domains(this_rq, idle);
6863 * If this cpu has a pending nohz_balance_kick, then do the
6864 * balancing on behalf of the other idle cpus whose ticks are
6867 nohz_idle_balance(this_rq, idle);
6870 static inline int on_null_domain(struct rq *rq)
6872 return !rcu_dereference_sched(rq->sd);
6876 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6878 void trigger_load_balance(struct rq *rq)
6880 /* Don't need to rebalance while attached to NULL domain */
6881 if (unlikely(on_null_domain(rq)))
6884 if (time_after_eq(jiffies, rq->next_balance))
6885 raise_softirq(SCHED_SOFTIRQ);
6886 #ifdef CONFIG_NO_HZ_COMMON
6887 if (nohz_kick_needed(rq))
6888 nohz_balancer_kick();
6892 static void rq_online_fair(struct rq *rq)
6897 static void rq_offline_fair(struct rq *rq)
6901 /* Ensure any throttled groups are reachable by pick_next_task */
6902 unthrottle_offline_cfs_rqs(rq);
6905 #endif /* CONFIG_SMP */
6908 * scheduler tick hitting a task of our scheduling class:
6910 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6912 struct cfs_rq *cfs_rq;
6913 struct sched_entity *se = &curr->se;
6915 for_each_sched_entity(se) {
6916 cfs_rq = cfs_rq_of(se);
6917 entity_tick(cfs_rq, se, queued);
6920 if (numabalancing_enabled)
6921 task_tick_numa(rq, curr);
6923 update_rq_runnable_avg(rq, 1);
6927 * called on fork with the child task as argument from the parent's context
6928 * - child not yet on the tasklist
6929 * - preemption disabled
6931 static void task_fork_fair(struct task_struct *p)
6933 struct cfs_rq *cfs_rq;
6934 struct sched_entity *se = &p->se, *curr;
6935 int this_cpu = smp_processor_id();
6936 struct rq *rq = this_rq();
6937 unsigned long flags;
6939 raw_spin_lock_irqsave(&rq->lock, flags);
6941 update_rq_clock(rq);
6943 cfs_rq = task_cfs_rq(current);
6944 curr = cfs_rq->curr;
6947 * Not only the cpu but also the task_group of the parent might have
6948 * been changed after parent->se.parent,cfs_rq were copied to
6949 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6950 * of child point to valid ones.
6953 __set_task_cpu(p, this_cpu);
6956 update_curr(cfs_rq);
6959 se->vruntime = curr->vruntime;
6960 place_entity(cfs_rq, se, 1);
6962 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6964 * Upon rescheduling, sched_class::put_prev_task() will place
6965 * 'current' within the tree based on its new key value.
6967 swap(curr->vruntime, se->vruntime);
6968 resched_task(rq->curr);
6971 se->vruntime -= cfs_rq->min_vruntime;
6973 raw_spin_unlock_irqrestore(&rq->lock, flags);
6977 * Priority of the task has changed. Check to see if we preempt
6981 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6987 * Reschedule if we are currently running on this runqueue and
6988 * our priority decreased, or if we are not currently running on
6989 * this runqueue and our priority is higher than the current's
6991 if (rq->curr == p) {
6992 if (p->prio > oldprio)
6993 resched_task(rq->curr);
6995 check_preempt_curr(rq, p, 0);
6998 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7000 struct sched_entity *se = &p->se;
7001 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7004 * Ensure the task's vruntime is normalized, so that when it's
7005 * switched back to the fair class the enqueue_entity(.flags=0) will
7006 * do the right thing.
7008 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7009 * have normalized the vruntime, if it's !on_rq, then only when
7010 * the task is sleeping will it still have non-normalized vruntime.
7012 if (!p->on_rq && p->state != TASK_RUNNING) {
7014 * Fix up our vruntime so that the current sleep doesn't
7015 * cause 'unlimited' sleep bonus.
7017 place_entity(cfs_rq, se, 0);
7018 se->vruntime -= cfs_rq->min_vruntime;
7023 * Remove our load from contribution when we leave sched_fair
7024 * and ensure we don't carry in an old decay_count if we
7027 if (se->avg.decay_count) {
7028 __synchronize_entity_decay(se);
7029 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7035 * We switched to the sched_fair class.
7037 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7043 * We were most likely switched from sched_rt, so
7044 * kick off the schedule if running, otherwise just see
7045 * if we can still preempt the current task.
7048 resched_task(rq->curr);
7050 check_preempt_curr(rq, p, 0);
7053 /* Account for a task changing its policy or group.
7055 * This routine is mostly called to set cfs_rq->curr field when a task
7056 * migrates between groups/classes.
7058 static void set_curr_task_fair(struct rq *rq)
7060 struct sched_entity *se = &rq->curr->se;
7062 for_each_sched_entity(se) {
7063 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7065 set_next_entity(cfs_rq, se);
7066 /* ensure bandwidth has been allocated on our new cfs_rq */
7067 account_cfs_rq_runtime(cfs_rq, 0);
7071 void init_cfs_rq(struct cfs_rq *cfs_rq)
7073 cfs_rq->tasks_timeline = RB_ROOT;
7074 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7075 #ifndef CONFIG_64BIT
7076 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7079 atomic64_set(&cfs_rq->decay_counter, 1);
7080 atomic_long_set(&cfs_rq->removed_load, 0);
7084 #ifdef CONFIG_FAIR_GROUP_SCHED
7085 static void task_move_group_fair(struct task_struct *p, int on_rq)
7087 struct cfs_rq *cfs_rq;
7089 * If the task was not on the rq at the time of this cgroup movement
7090 * it must have been asleep, sleeping tasks keep their ->vruntime
7091 * absolute on their old rq until wakeup (needed for the fair sleeper
7092 * bonus in place_entity()).
7094 * If it was on the rq, we've just 'preempted' it, which does convert
7095 * ->vruntime to a relative base.
7097 * Make sure both cases convert their relative position when migrating
7098 * to another cgroup's rq. This does somewhat interfere with the
7099 * fair sleeper stuff for the first placement, but who cares.
7102 * When !on_rq, vruntime of the task has usually NOT been normalized.
7103 * But there are some cases where it has already been normalized:
7105 * - Moving a forked child which is waiting for being woken up by
7106 * wake_up_new_task().
7107 * - Moving a task which has been woken up by try_to_wake_up() and
7108 * waiting for actually being woken up by sched_ttwu_pending().
7110 * To prevent boost or penalty in the new cfs_rq caused by delta
7111 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7113 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7117 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7118 set_task_rq(p, task_cpu(p));
7120 cfs_rq = cfs_rq_of(&p->se);
7121 p->se.vruntime += cfs_rq->min_vruntime;
7124 * migrate_task_rq_fair() will have removed our previous
7125 * contribution, but we must synchronize for ongoing future
7128 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7129 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7134 void free_fair_sched_group(struct task_group *tg)
7138 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7140 for_each_possible_cpu(i) {
7142 kfree(tg->cfs_rq[i]);
7151 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7153 struct cfs_rq *cfs_rq;
7154 struct sched_entity *se;
7157 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7160 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7164 tg->shares = NICE_0_LOAD;
7166 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7168 for_each_possible_cpu(i) {
7169 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7170 GFP_KERNEL, cpu_to_node(i));
7174 se = kzalloc_node(sizeof(struct sched_entity),
7175 GFP_KERNEL, cpu_to_node(i));
7179 init_cfs_rq(cfs_rq);
7180 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7191 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7193 struct rq *rq = cpu_rq(cpu);
7194 unsigned long flags;
7197 * Only empty task groups can be destroyed; so we can speculatively
7198 * check on_list without danger of it being re-added.
7200 if (!tg->cfs_rq[cpu]->on_list)
7203 raw_spin_lock_irqsave(&rq->lock, flags);
7204 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7205 raw_spin_unlock_irqrestore(&rq->lock, flags);
7208 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7209 struct sched_entity *se, int cpu,
7210 struct sched_entity *parent)
7212 struct rq *rq = cpu_rq(cpu);
7216 init_cfs_rq_runtime(cfs_rq);
7218 tg->cfs_rq[cpu] = cfs_rq;
7221 /* se could be NULL for root_task_group */
7226 se->cfs_rq = &rq->cfs;
7228 se->cfs_rq = parent->my_q;
7231 /* guarantee group entities always have weight */
7232 update_load_set(&se->load, NICE_0_LOAD);
7233 se->parent = parent;
7236 static DEFINE_MUTEX(shares_mutex);
7238 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7241 unsigned long flags;
7244 * We can't change the weight of the root cgroup.
7249 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7251 mutex_lock(&shares_mutex);
7252 if (tg->shares == shares)
7255 tg->shares = shares;
7256 for_each_possible_cpu(i) {
7257 struct rq *rq = cpu_rq(i);
7258 struct sched_entity *se;
7261 /* Propagate contribution to hierarchy */
7262 raw_spin_lock_irqsave(&rq->lock, flags);
7264 /* Possible calls to update_curr() need rq clock */
7265 update_rq_clock(rq);
7266 for_each_sched_entity(se)
7267 update_cfs_shares(group_cfs_rq(se));
7268 raw_spin_unlock_irqrestore(&rq->lock, flags);
7272 mutex_unlock(&shares_mutex);
7275 #else /* CONFIG_FAIR_GROUP_SCHED */
7277 void free_fair_sched_group(struct task_group *tg) { }
7279 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7284 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7286 #endif /* CONFIG_FAIR_GROUP_SCHED */
7289 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7291 struct sched_entity *se = &task->se;
7292 unsigned int rr_interval = 0;
7295 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7298 if (rq->cfs.load.weight)
7299 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7305 * All the scheduling class methods:
7307 const struct sched_class fair_sched_class = {
7308 .next = &idle_sched_class,
7309 .enqueue_task = enqueue_task_fair,
7310 .dequeue_task = dequeue_task_fair,
7311 .yield_task = yield_task_fair,
7312 .yield_to_task = yield_to_task_fair,
7314 .check_preempt_curr = check_preempt_wakeup,
7316 .pick_next_task = pick_next_task_fair,
7317 .put_prev_task = put_prev_task_fair,
7320 .select_task_rq = select_task_rq_fair,
7321 .migrate_task_rq = migrate_task_rq_fair,
7323 .rq_online = rq_online_fair,
7324 .rq_offline = rq_offline_fair,
7326 .task_waking = task_waking_fair,
7329 .set_curr_task = set_curr_task_fair,
7330 .task_tick = task_tick_fair,
7331 .task_fork = task_fork_fair,
7333 .prio_changed = prio_changed_fair,
7334 .switched_from = switched_from_fair,
7335 .switched_to = switched_to_fair,
7337 .get_rr_interval = get_rr_interval_fair,
7339 #ifdef CONFIG_FAIR_GROUP_SCHED
7340 .task_move_group = task_move_group_fair,
7344 #ifdef CONFIG_SCHED_DEBUG
7345 void print_cfs_stats(struct seq_file *m, int cpu)
7347 struct cfs_rq *cfs_rq;
7350 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7351 print_cfs_rq(m, cpu, cfs_rq);
7356 __init void init_sched_fair_class(void)
7359 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7361 #ifdef CONFIG_NO_HZ_COMMON
7362 nohz.next_balance = jiffies;
7363 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7364 cpu_notifier(sched_ilb_notifier, 0);