2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
34 #include <trace/events/sched.h>
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
75 static unsigned int sched_nr_latency = 8;
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
97 * The exponential sliding window over which load is averaged for shares
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
103 #ifdef CONFIG_CFS_BANDWIDTH
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
112 * default: 5 msec, units: microseconds
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
142 * This idea comes from the SD scheduler of Con Kolivas:
144 static int get_update_sysctl_factor(void)
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
153 case SCHED_TUNABLESCALING_LINEAR:
156 case SCHED_TUNABLESCALING_LOG:
158 factor = 1 + ilog2(cpus);
165 static void update_sysctl(void)
167 unsigned int factor = get_update_sysctl_factor();
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
177 void sched_init_granularity(void)
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
185 static void __update_inv_weight(struct load_weight *lw)
189 if (likely(lw->inv_weight))
192 w = scale_load_down(lw->weight);
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
199 lw->inv_weight = WMULT_CONST / w;
203 * delta_exec * weight / lw.weight
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
219 __update_inv_weight(lw);
221 if (unlikely(fact >> 32)) {
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
236 return mul_u64_u32_shr(delta_exec, fact, shift);
240 const struct sched_class fair_sched_class;
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
246 #ifdef CONFIG_FAIR_GROUP_SCHED
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
257 static inline struct task_struct *task_of(struct sched_entity *se)
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
262 return container_of(se, struct task_struct, se);
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291 if (!cfs_rq->on_list) {
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
308 /* We should have no load, but we need to update last_decay. */
309 update_cfs_rq_blocked_load(cfs_rq, 0);
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
329 if (se->cfs_rq == pse->cfs_rq)
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
343 int se_depth, pse_depth;
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
352 /* First walk up until both entities are at same depth */
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
356 while (se_depth > pse_depth) {
358 *se = parent_entity(*se);
361 while (pse_depth > se_depth) {
363 *pse = parent_entity(*pse);
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
372 #else /* !CONFIG_FAIR_GROUP_SCHED */
374 static inline struct task_struct *task_of(struct sched_entity *se)
376 return container_of(se, struct task_struct, se);
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
381 return container_of(cfs_rq, struct rq, cfs);
384 #define entity_is_task(se) 1
386 #define for_each_sched_entity(se) \
387 for (; se; se = NULL)
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
391 return &task_rq(p)->cfs;
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
429 #endif /* CONFIG_FAIR_GROUP_SCHED */
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
434 /**************************************************************
435 * Scheduling class tree data structure manipulation methods:
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
440 s64 delta = (s64)(vruntime - max_vruntime);
442 max_vruntime = vruntime;
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
449 s64 delta = (s64)(vruntime - min_vruntime);
451 min_vruntime = vruntime;
456 static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
459 return (s64)(a->vruntime - b->vruntime) < 0;
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
464 u64 vruntime = cfs_rq->min_vruntime;
467 vruntime = cfs_rq->curr->vruntime;
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
475 vruntime = se->vruntime;
477 vruntime = min_vruntime(vruntime, se->vruntime);
480 /* ensure we never gain time by being placed backwards. */
481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
489 * Enqueue an entity into the rb-tree:
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
499 * Find the right place in the rbtree:
503 entry = rb_entry(parent, struct sched_entity, run_node);
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
508 if (entity_before(se, entry)) {
509 link = &parent->rb_left;
511 link = &parent->rb_right;
517 * Maintain a cache of leftmost tree entries (it is frequently
521 cfs_rq->rb_leftmost = &se->run_node;
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
541 struct rb_node *left = cfs_rq->rb_leftmost;
546 return rb_entry(left, struct sched_entity, run_node);
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
551 struct rb_node *next = rb_next(&se->run_node);
556 return rb_entry(next, struct sched_entity, run_node);
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
567 return rb_entry(last, struct sched_entity, run_node);
570 /**************************************************************
571 * Scheduling class statistics methods:
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 void __user *buffer, size_t *lenp,
578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 int factor = get_update_sysctl_factor();
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
587 #define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
603 if (unlikely(se->load.weight != NICE_0_LOAD))
604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
610 * The idea is to set a period in which each task runs once.
612 * When there are too many tasks (sched_nr_latency) we have to stretch
613 * this period because otherwise the slices get too small.
615 * p = (nr <= nl) ? l : l*nr/nl
617 static u64 __sched_period(unsigned long nr_running)
619 u64 period = sysctl_sched_latency;
620 unsigned long nr_latency = sched_nr_latency;
622 if (unlikely(nr_running > nr_latency)) {
623 period = sysctl_sched_min_granularity;
624 period *= nr_running;
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
640 for_each_sched_entity(se) {
641 struct load_weight *load;
642 struct load_weight lw;
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
647 if (unlikely(!se->on_rq)) {
650 update_load_add(&lw, se->load.weight);
653 slice = __calc_delta(slice, se->load.weight, load);
659 * We calculate the vruntime slice of a to-be-inserted task.
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
674 /* Give new task start runnable values to heavy its load in infant time */
675 void init_task_runnable_average(struct task_struct *p)
679 p->se.avg.decay_count = 0;
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = slice;
682 p->se.avg.runnable_avg_period = slice;
683 __update_task_entity_contrib(&p->se);
686 void init_task_runnable_average(struct task_struct *p)
692 * Update the current task's runtime statistics.
694 static void update_curr(struct cfs_rq *cfs_rq)
696 struct sched_entity *curr = cfs_rq->curr;
697 u64 now = rq_clock_task(rq_of(cfs_rq));
703 delta_exec = now - curr->exec_start;
704 if (unlikely((s64)delta_exec <= 0))
707 curr->exec_start = now;
709 schedstat_set(curr->statistics.exec_max,
710 max(delta_exec, curr->statistics.exec_max));
712 curr->sum_exec_runtime += delta_exec;
713 schedstat_add(cfs_rq, exec_clock, delta_exec);
715 curr->vruntime += calc_delta_fair(delta_exec, curr);
716 update_min_vruntime(cfs_rq);
718 if (entity_is_task(curr)) {
719 struct task_struct *curtask = task_of(curr);
721 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
722 cpuacct_charge(curtask, delta_exec);
723 account_group_exec_runtime(curtask, delta_exec);
726 account_cfs_rq_runtime(cfs_rq, delta_exec);
730 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
732 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
736 * Task is being enqueued - update stats:
738 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
741 * Are we enqueueing a waiting task? (for current tasks
742 * a dequeue/enqueue event is a NOP)
744 if (se != cfs_rq->curr)
745 update_stats_wait_start(cfs_rq, se);
749 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
751 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
752 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
753 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
754 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
755 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
756 #ifdef CONFIG_SCHEDSTATS
757 if (entity_is_task(se)) {
758 trace_sched_stat_wait(task_of(se),
759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
762 schedstat_set(se->statistics.wait_start, 0);
766 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
769 * Mark the end of the wait period if dequeueing a
772 if (se != cfs_rq->curr)
773 update_stats_wait_end(cfs_rq, se);
777 * We are picking a new current task - update its stats:
780 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
783 * We are starting a new run period:
785 se->exec_start = rq_clock_task(rq_of(cfs_rq));
788 /**************************************************
789 * Scheduling class queueing methods:
792 #ifdef CONFIG_NUMA_BALANCING
794 * Approximate time to scan a full NUMA task in ms. The task scan period is
795 * calculated based on the tasks virtual memory size and
796 * numa_balancing_scan_size.
798 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
799 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
801 /* Portion of address space to scan in MB */
802 unsigned int sysctl_numa_balancing_scan_size = 256;
804 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
805 unsigned int sysctl_numa_balancing_scan_delay = 1000;
807 static unsigned int task_nr_scan_windows(struct task_struct *p)
809 unsigned long rss = 0;
810 unsigned long nr_scan_pages;
813 * Calculations based on RSS as non-present and empty pages are skipped
814 * by the PTE scanner and NUMA hinting faults should be trapped based
817 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
818 rss = get_mm_rss(p->mm);
822 rss = round_up(rss, nr_scan_pages);
823 return rss / nr_scan_pages;
826 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
827 #define MAX_SCAN_WINDOW 2560
829 static unsigned int task_scan_min(struct task_struct *p)
831 unsigned int scan, floor;
832 unsigned int windows = 1;
834 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
835 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
836 floor = 1000 / windows;
838 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
839 return max_t(unsigned int, floor, scan);
842 static unsigned int task_scan_max(struct task_struct *p)
844 unsigned int smin = task_scan_min(p);
847 /* Watch for min being lower than max due to floor calculations */
848 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
849 return max(smin, smax);
852 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
854 rq->nr_numa_running += (p->numa_preferred_nid != -1);
855 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
858 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
860 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
861 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
867 spinlock_t lock; /* nr_tasks, tasks */
870 struct list_head task_list;
873 nodemask_t active_nodes;
874 unsigned long total_faults;
876 * Faults_cpu is used to decide whether memory should move
877 * towards the CPU. As a consequence, these stats are weighted
878 * more by CPU use than by memory faults.
880 unsigned long *faults_cpu;
881 unsigned long faults[0];
884 /* Shared or private faults. */
885 #define NR_NUMA_HINT_FAULT_TYPES 2
887 /* Memory and CPU locality */
888 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
890 /* Averaged statistics, and temporary buffers. */
891 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
893 pid_t task_numa_group_id(struct task_struct *p)
895 return p->numa_group ? p->numa_group->gid : 0;
898 static inline int task_faults_idx(int nid, int priv)
900 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
903 static inline unsigned long task_faults(struct task_struct *p, int nid)
905 if (!p->numa_faults_memory)
908 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
909 p->numa_faults_memory[task_faults_idx(nid, 1)];
912 static inline unsigned long group_faults(struct task_struct *p, int nid)
917 return p->numa_group->faults[task_faults_idx(nid, 0)] +
918 p->numa_group->faults[task_faults_idx(nid, 1)];
921 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
923 return group->faults_cpu[task_faults_idx(nid, 0)] +
924 group->faults_cpu[task_faults_idx(nid, 1)];
928 * These return the fraction of accesses done by a particular task, or
929 * task group, on a particular numa node. The group weight is given a
930 * larger multiplier, in order to group tasks together that are almost
931 * evenly spread out between numa nodes.
933 static inline unsigned long task_weight(struct task_struct *p, int nid)
935 unsigned long total_faults;
937 if (!p->numa_faults_memory)
940 total_faults = p->total_numa_faults;
945 return 1000 * task_faults(p, nid) / total_faults;
948 static inline unsigned long group_weight(struct task_struct *p, int nid)
950 if (!p->numa_group || !p->numa_group->total_faults)
953 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
956 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
957 int src_nid, int dst_cpu)
959 struct numa_group *ng = p->numa_group;
960 int dst_nid = cpu_to_node(dst_cpu);
961 int last_cpupid, this_cpupid;
963 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
966 * Multi-stage node selection is used in conjunction with a periodic
967 * migration fault to build a temporal task<->page relation. By using
968 * a two-stage filter we remove short/unlikely relations.
970 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
971 * a task's usage of a particular page (n_p) per total usage of this
972 * page (n_t) (in a given time-span) to a probability.
974 * Our periodic faults will sample this probability and getting the
975 * same result twice in a row, given these samples are fully
976 * independent, is then given by P(n)^2, provided our sample period
977 * is sufficiently short compared to the usage pattern.
979 * This quadric squishes small probabilities, making it less likely we
980 * act on an unlikely task<->page relation.
982 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
983 if (!cpupid_pid_unset(last_cpupid) &&
984 cpupid_to_nid(last_cpupid) != dst_nid)
987 /* Always allow migrate on private faults */
988 if (cpupid_match_pid(p, last_cpupid))
991 /* A shared fault, but p->numa_group has not been set up yet. */
996 * Do not migrate if the destination is not a node that
997 * is actively used by this numa group.
999 if (!node_isset(dst_nid, ng->active_nodes))
1003 * Source is a node that is not actively used by this
1004 * numa group, while the destination is. Migrate.
1006 if (!node_isset(src_nid, ng->active_nodes))
1010 * Both source and destination are nodes in active
1011 * use by this numa group. Maximize memory bandwidth
1012 * by migrating from more heavily used groups, to less
1013 * heavily used ones, spreading the load around.
1014 * Use a 1/4 hysteresis to avoid spurious page movement.
1016 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1019 static unsigned long weighted_cpuload(const int cpu);
1020 static unsigned long source_load(int cpu, int type);
1021 static unsigned long target_load(int cpu, int type);
1022 static unsigned long capacity_of(int cpu);
1023 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1025 /* Cached statistics for all CPUs within a node */
1027 unsigned long nr_running;
1030 /* Total compute capacity of CPUs on a node */
1031 unsigned long compute_capacity;
1033 /* Approximate capacity in terms of runnable tasks on a node */
1034 unsigned long task_capacity;
1035 int has_free_capacity;
1039 * XXX borrowed from update_sg_lb_stats
1041 static void update_numa_stats(struct numa_stats *ns, int nid)
1043 int smt, cpu, cpus = 0;
1044 unsigned long capacity;
1046 memset(ns, 0, sizeof(*ns));
1047 for_each_cpu(cpu, cpumask_of_node(nid)) {
1048 struct rq *rq = cpu_rq(cpu);
1050 ns->nr_running += rq->nr_running;
1051 ns->load += weighted_cpuload(cpu);
1052 ns->compute_capacity += capacity_of(cpu);
1058 * If we raced with hotplug and there are no CPUs left in our mask
1059 * the @ns structure is NULL'ed and task_numa_compare() will
1060 * not find this node attractive.
1062 * We'll either bail at !has_free_capacity, or we'll detect a huge
1063 * imbalance and bail there.
1068 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1069 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1070 capacity = cpus / smt; /* cores */
1072 ns->task_capacity = min_t(unsigned, capacity,
1073 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1074 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1077 struct task_numa_env {
1078 struct task_struct *p;
1080 int src_cpu, src_nid;
1081 int dst_cpu, dst_nid;
1083 struct numa_stats src_stats, dst_stats;
1087 struct task_struct *best_task;
1092 static void task_numa_assign(struct task_numa_env *env,
1093 struct task_struct *p, long imp)
1096 put_task_struct(env->best_task);
1101 env->best_imp = imp;
1102 env->best_cpu = env->dst_cpu;
1105 static bool load_too_imbalanced(long src_load, long dst_load,
1106 struct task_numa_env *env)
1109 long orig_src_load, orig_dst_load;
1110 long src_capacity, dst_capacity;
1113 * The load is corrected for the CPU capacity available on each node.
1116 * ------------ vs ---------
1117 * src_capacity dst_capacity
1119 src_capacity = env->src_stats.compute_capacity;
1120 dst_capacity = env->dst_stats.compute_capacity;
1122 /* We care about the slope of the imbalance, not the direction. */
1123 if (dst_load < src_load)
1124 swap(dst_load, src_load);
1126 /* Is the difference below the threshold? */
1127 imb = dst_load * src_capacity * 100 -
1128 src_load * dst_capacity * env->imbalance_pct;
1133 * The imbalance is above the allowed threshold.
1134 * Compare it with the old imbalance.
1136 orig_src_load = env->src_stats.load;
1137 orig_dst_load = env->dst_stats.load;
1139 if (orig_dst_load < orig_src_load)
1140 swap(orig_dst_load, orig_src_load);
1142 old_imb = orig_dst_load * src_capacity * 100 -
1143 orig_src_load * dst_capacity * env->imbalance_pct;
1145 /* Would this change make things worse? */
1146 return (imb > old_imb);
1150 * This checks if the overall compute and NUMA accesses of the system would
1151 * be improved if the source tasks was migrated to the target dst_cpu taking
1152 * into account that it might be best if task running on the dst_cpu should
1153 * be exchanged with the source task
1155 static void task_numa_compare(struct task_numa_env *env,
1156 long taskimp, long groupimp)
1158 struct rq *src_rq = cpu_rq(env->src_cpu);
1159 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1160 struct task_struct *cur;
1161 long src_load, dst_load;
1163 long imp = env->p->numa_group ? groupimp : taskimp;
1167 cur = ACCESS_ONCE(dst_rq->curr);
1168 if (cur->pid == 0) /* idle */
1172 * "imp" is the fault differential for the source task between the
1173 * source and destination node. Calculate the total differential for
1174 * the source task and potential destination task. The more negative
1175 * the value is, the more rmeote accesses that would be expected to
1176 * be incurred if the tasks were swapped.
1179 /* Skip this swap candidate if cannot move to the source cpu */
1180 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1184 * If dst and source tasks are in the same NUMA group, or not
1185 * in any group then look only at task weights.
1187 if (cur->numa_group == env->p->numa_group) {
1188 imp = taskimp + task_weight(cur, env->src_nid) -
1189 task_weight(cur, env->dst_nid);
1191 * Add some hysteresis to prevent swapping the
1192 * tasks within a group over tiny differences.
1194 if (cur->numa_group)
1198 * Compare the group weights. If a task is all by
1199 * itself (not part of a group), use the task weight
1202 if (cur->numa_group)
1203 imp += group_weight(cur, env->src_nid) -
1204 group_weight(cur, env->dst_nid);
1206 imp += task_weight(cur, env->src_nid) -
1207 task_weight(cur, env->dst_nid);
1211 if (imp <= env->best_imp && moveimp <= env->best_imp)
1215 /* Is there capacity at our destination? */
1216 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1217 !env->dst_stats.has_free_capacity)
1223 /* Balance doesn't matter much if we're running a task per cpu */
1224 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1225 dst_rq->nr_running == 1)
1229 * In the overloaded case, try and keep the load balanced.
1232 load = task_h_load(env->p);
1233 dst_load = env->dst_stats.load + load;
1234 src_load = env->src_stats.load - load;
1236 if (moveimp > imp && moveimp > env->best_imp) {
1238 * If the improvement from just moving env->p direction is
1239 * better than swapping tasks around, check if a move is
1240 * possible. Store a slightly smaller score than moveimp,
1241 * so an actually idle CPU will win.
1243 if (!load_too_imbalanced(src_load, dst_load, env)) {
1250 if (imp <= env->best_imp)
1254 load = task_h_load(cur);
1259 if (load_too_imbalanced(src_load, dst_load, env))
1263 * One idle CPU per node is evaluated for a task numa move.
1264 * Call select_idle_sibling to maybe find a better one.
1267 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1270 task_numa_assign(env, cur, imp);
1275 static void task_numa_find_cpu(struct task_numa_env *env,
1276 long taskimp, long groupimp)
1280 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1281 /* Skip this CPU if the source task cannot migrate */
1282 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1286 task_numa_compare(env, taskimp, groupimp);
1290 static int task_numa_migrate(struct task_struct *p)
1292 struct task_numa_env env = {
1295 .src_cpu = task_cpu(p),
1296 .src_nid = task_node(p),
1298 .imbalance_pct = 112,
1304 struct sched_domain *sd;
1305 unsigned long taskweight, groupweight;
1307 long taskimp, groupimp;
1310 * Pick the lowest SD_NUMA domain, as that would have the smallest
1311 * imbalance and would be the first to start moving tasks about.
1313 * And we want to avoid any moving of tasks about, as that would create
1314 * random movement of tasks -- counter the numa conditions we're trying
1318 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1320 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1324 * Cpusets can break the scheduler domain tree into smaller
1325 * balance domains, some of which do not cross NUMA boundaries.
1326 * Tasks that are "trapped" in such domains cannot be migrated
1327 * elsewhere, so there is no point in (re)trying.
1329 if (unlikely(!sd)) {
1330 p->numa_preferred_nid = task_node(p);
1334 taskweight = task_weight(p, env.src_nid);
1335 groupweight = group_weight(p, env.src_nid);
1336 update_numa_stats(&env.src_stats, env.src_nid);
1337 env.dst_nid = p->numa_preferred_nid;
1338 taskimp = task_weight(p, env.dst_nid) - taskweight;
1339 groupimp = group_weight(p, env.dst_nid) - groupweight;
1340 update_numa_stats(&env.dst_stats, env.dst_nid);
1342 /* Try to find a spot on the preferred nid. */
1343 task_numa_find_cpu(&env, taskimp, groupimp);
1345 /* No space available on the preferred nid. Look elsewhere. */
1346 if (env.best_cpu == -1) {
1347 for_each_online_node(nid) {
1348 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1351 /* Only consider nodes where both task and groups benefit */
1352 taskimp = task_weight(p, nid) - taskweight;
1353 groupimp = group_weight(p, nid) - groupweight;
1354 if (taskimp < 0 && groupimp < 0)
1358 update_numa_stats(&env.dst_stats, env.dst_nid);
1359 task_numa_find_cpu(&env, taskimp, groupimp);
1364 * If the task is part of a workload that spans multiple NUMA nodes,
1365 * and is migrating into one of the workload's active nodes, remember
1366 * this node as the task's preferred numa node, so the workload can
1368 * A task that migrated to a second choice node will be better off
1369 * trying for a better one later. Do not set the preferred node here.
1371 if (p->numa_group) {
1372 if (env.best_cpu == -1)
1377 if (node_isset(nid, p->numa_group->active_nodes))
1378 sched_setnuma(p, env.dst_nid);
1381 /* No better CPU than the current one was found. */
1382 if (env.best_cpu == -1)
1386 * Reset the scan period if the task is being rescheduled on an
1387 * alternative node to recheck if the tasks is now properly placed.
1389 p->numa_scan_period = task_scan_min(p);
1391 if (env.best_task == NULL) {
1392 ret = migrate_task_to(p, env.best_cpu);
1394 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1398 ret = migrate_swap(p, env.best_task);
1400 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1401 put_task_struct(env.best_task);
1405 /* Attempt to migrate a task to a CPU on the preferred node. */
1406 static void numa_migrate_preferred(struct task_struct *p)
1408 unsigned long interval = HZ;
1410 /* This task has no NUMA fault statistics yet */
1411 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1414 /* Periodically retry migrating the task to the preferred node */
1415 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1416 p->numa_migrate_retry = jiffies + interval;
1418 /* Success if task is already running on preferred CPU */
1419 if (task_node(p) == p->numa_preferred_nid)
1422 /* Otherwise, try migrate to a CPU on the preferred node */
1423 task_numa_migrate(p);
1427 * Find the nodes on which the workload is actively running. We do this by
1428 * tracking the nodes from which NUMA hinting faults are triggered. This can
1429 * be different from the set of nodes where the workload's memory is currently
1432 * The bitmask is used to make smarter decisions on when to do NUMA page
1433 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1434 * are added when they cause over 6/16 of the maximum number of faults, but
1435 * only removed when they drop below 3/16.
1437 static void update_numa_active_node_mask(struct numa_group *numa_group)
1439 unsigned long faults, max_faults = 0;
1442 for_each_online_node(nid) {
1443 faults = group_faults_cpu(numa_group, nid);
1444 if (faults > max_faults)
1445 max_faults = faults;
1448 for_each_online_node(nid) {
1449 faults = group_faults_cpu(numa_group, nid);
1450 if (!node_isset(nid, numa_group->active_nodes)) {
1451 if (faults > max_faults * 6 / 16)
1452 node_set(nid, numa_group->active_nodes);
1453 } else if (faults < max_faults * 3 / 16)
1454 node_clear(nid, numa_group->active_nodes);
1459 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1460 * increments. The more local the fault statistics are, the higher the scan
1461 * period will be for the next scan window. If local/(local+remote) ratio is
1462 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1463 * the scan period will decrease. Aim for 70% local accesses.
1465 #define NUMA_PERIOD_SLOTS 10
1466 #define NUMA_PERIOD_THRESHOLD 7
1469 * Increase the scan period (slow down scanning) if the majority of
1470 * our memory is already on our local node, or if the majority of
1471 * the page accesses are shared with other processes.
1472 * Otherwise, decrease the scan period.
1474 static void update_task_scan_period(struct task_struct *p,
1475 unsigned long shared, unsigned long private)
1477 unsigned int period_slot;
1481 unsigned long remote = p->numa_faults_locality[0];
1482 unsigned long local = p->numa_faults_locality[1];
1485 * If there were no record hinting faults then either the task is
1486 * completely idle or all activity is areas that are not of interest
1487 * to automatic numa balancing. Scan slower
1489 if (local + shared == 0) {
1490 p->numa_scan_period = min(p->numa_scan_period_max,
1491 p->numa_scan_period << 1);
1493 p->mm->numa_next_scan = jiffies +
1494 msecs_to_jiffies(p->numa_scan_period);
1500 * Prepare to scale scan period relative to the current period.
1501 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1502 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1503 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1505 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1506 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1507 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1508 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1511 diff = slot * period_slot;
1513 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1516 * Scale scan rate increases based on sharing. There is an
1517 * inverse relationship between the degree of sharing and
1518 * the adjustment made to the scanning period. Broadly
1519 * speaking the intent is that there is little point
1520 * scanning faster if shared accesses dominate as it may
1521 * simply bounce migrations uselessly
1523 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1524 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1527 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1528 task_scan_min(p), task_scan_max(p));
1529 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1533 * Get the fraction of time the task has been running since the last
1534 * NUMA placement cycle. The scheduler keeps similar statistics, but
1535 * decays those on a 32ms period, which is orders of magnitude off
1536 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1537 * stats only if the task is so new there are no NUMA statistics yet.
1539 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1541 u64 runtime, delta, now;
1542 /* Use the start of this time slice to avoid calculations. */
1543 now = p->se.exec_start;
1544 runtime = p->se.sum_exec_runtime;
1546 if (p->last_task_numa_placement) {
1547 delta = runtime - p->last_sum_exec_runtime;
1548 *period = now - p->last_task_numa_placement;
1550 delta = p->se.avg.runnable_avg_sum;
1551 *period = p->se.avg.runnable_avg_period;
1554 p->last_sum_exec_runtime = runtime;
1555 p->last_task_numa_placement = now;
1560 static void task_numa_placement(struct task_struct *p)
1562 int seq, nid, max_nid = -1, max_group_nid = -1;
1563 unsigned long max_faults = 0, max_group_faults = 0;
1564 unsigned long fault_types[2] = { 0, 0 };
1565 unsigned long total_faults;
1566 u64 runtime, period;
1567 spinlock_t *group_lock = NULL;
1569 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1570 if (p->numa_scan_seq == seq)
1572 p->numa_scan_seq = seq;
1573 p->numa_scan_period_max = task_scan_max(p);
1575 total_faults = p->numa_faults_locality[0] +
1576 p->numa_faults_locality[1];
1577 runtime = numa_get_avg_runtime(p, &period);
1579 /* If the task is part of a group prevent parallel updates to group stats */
1580 if (p->numa_group) {
1581 group_lock = &p->numa_group->lock;
1582 spin_lock_irq(group_lock);
1585 /* Find the node with the highest number of faults */
1586 for_each_online_node(nid) {
1587 unsigned long faults = 0, group_faults = 0;
1590 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1591 long diff, f_diff, f_weight;
1593 i = task_faults_idx(nid, priv);
1595 /* Decay existing window, copy faults since last scan */
1596 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1597 fault_types[priv] += p->numa_faults_buffer_memory[i];
1598 p->numa_faults_buffer_memory[i] = 0;
1601 * Normalize the faults_from, so all tasks in a group
1602 * count according to CPU use, instead of by the raw
1603 * number of faults. Tasks with little runtime have
1604 * little over-all impact on throughput, and thus their
1605 * faults are less important.
1607 f_weight = div64_u64(runtime << 16, period + 1);
1608 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1610 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1611 p->numa_faults_buffer_cpu[i] = 0;
1613 p->numa_faults_memory[i] += diff;
1614 p->numa_faults_cpu[i] += f_diff;
1615 faults += p->numa_faults_memory[i];
1616 p->total_numa_faults += diff;
1617 if (p->numa_group) {
1618 /* safe because we can only change our own group */
1619 p->numa_group->faults[i] += diff;
1620 p->numa_group->faults_cpu[i] += f_diff;
1621 p->numa_group->total_faults += diff;
1622 group_faults += p->numa_group->faults[i];
1626 if (faults > max_faults) {
1627 max_faults = faults;
1631 if (group_faults > max_group_faults) {
1632 max_group_faults = group_faults;
1633 max_group_nid = nid;
1637 update_task_scan_period(p, fault_types[0], fault_types[1]);
1639 if (p->numa_group) {
1640 update_numa_active_node_mask(p->numa_group);
1641 spin_unlock_irq(group_lock);
1642 max_nid = max_group_nid;
1646 /* Set the new preferred node */
1647 if (max_nid != p->numa_preferred_nid)
1648 sched_setnuma(p, max_nid);
1650 if (task_node(p) != p->numa_preferred_nid)
1651 numa_migrate_preferred(p);
1655 static inline int get_numa_group(struct numa_group *grp)
1657 return atomic_inc_not_zero(&grp->refcount);
1660 static inline void put_numa_group(struct numa_group *grp)
1662 if (atomic_dec_and_test(&grp->refcount))
1663 kfree_rcu(grp, rcu);
1666 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1669 struct numa_group *grp, *my_grp;
1670 struct task_struct *tsk;
1672 int cpu = cpupid_to_cpu(cpupid);
1675 if (unlikely(!p->numa_group)) {
1676 unsigned int size = sizeof(struct numa_group) +
1677 4*nr_node_ids*sizeof(unsigned long);
1679 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1683 atomic_set(&grp->refcount, 1);
1684 spin_lock_init(&grp->lock);
1685 INIT_LIST_HEAD(&grp->task_list);
1687 /* Second half of the array tracks nids where faults happen */
1688 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1691 node_set(task_node(current), grp->active_nodes);
1693 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1694 grp->faults[i] = p->numa_faults_memory[i];
1696 grp->total_faults = p->total_numa_faults;
1698 list_add(&p->numa_entry, &grp->task_list);
1700 rcu_assign_pointer(p->numa_group, grp);
1704 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1706 if (!cpupid_match_pid(tsk, cpupid))
1709 grp = rcu_dereference(tsk->numa_group);
1713 my_grp = p->numa_group;
1718 * Only join the other group if its bigger; if we're the bigger group,
1719 * the other task will join us.
1721 if (my_grp->nr_tasks > grp->nr_tasks)
1725 * Tie-break on the grp address.
1727 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1730 /* Always join threads in the same process. */
1731 if (tsk->mm == current->mm)
1734 /* Simple filter to avoid false positives due to PID collisions */
1735 if (flags & TNF_SHARED)
1738 /* Update priv based on whether false sharing was detected */
1741 if (join && !get_numa_group(grp))
1749 BUG_ON(irqs_disabled());
1750 double_lock_irq(&my_grp->lock, &grp->lock);
1752 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1753 my_grp->faults[i] -= p->numa_faults_memory[i];
1754 grp->faults[i] += p->numa_faults_memory[i];
1756 my_grp->total_faults -= p->total_numa_faults;
1757 grp->total_faults += p->total_numa_faults;
1759 list_move(&p->numa_entry, &grp->task_list);
1763 spin_unlock(&my_grp->lock);
1764 spin_unlock_irq(&grp->lock);
1766 rcu_assign_pointer(p->numa_group, grp);
1768 put_numa_group(my_grp);
1776 void task_numa_free(struct task_struct *p)
1778 struct numa_group *grp = p->numa_group;
1779 void *numa_faults = p->numa_faults_memory;
1780 unsigned long flags;
1784 spin_lock_irqsave(&grp->lock, flags);
1785 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1786 grp->faults[i] -= p->numa_faults_memory[i];
1787 grp->total_faults -= p->total_numa_faults;
1789 list_del(&p->numa_entry);
1791 spin_unlock_irqrestore(&grp->lock, flags);
1792 RCU_INIT_POINTER(p->numa_group, NULL);
1793 put_numa_group(grp);
1796 p->numa_faults_memory = NULL;
1797 p->numa_faults_buffer_memory = NULL;
1798 p->numa_faults_cpu= NULL;
1799 p->numa_faults_buffer_cpu = NULL;
1804 * Got a PROT_NONE fault for a page on @node.
1806 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1808 struct task_struct *p = current;
1809 bool migrated = flags & TNF_MIGRATED;
1810 int cpu_node = task_node(current);
1811 int local = !!(flags & TNF_FAULT_LOCAL);
1814 if (!numabalancing_enabled)
1817 /* for example, ksmd faulting in a user's mm */
1821 /* Allocate buffer to track faults on a per-node basis */
1822 if (unlikely(!p->numa_faults_memory)) {
1823 int size = sizeof(*p->numa_faults_memory) *
1824 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1826 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1827 if (!p->numa_faults_memory)
1830 BUG_ON(p->numa_faults_buffer_memory);
1832 * The averaged statistics, shared & private, memory & cpu,
1833 * occupy the first half of the array. The second half of the
1834 * array is for current counters, which are averaged into the
1835 * first set by task_numa_placement.
1837 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1838 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1839 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1840 p->total_numa_faults = 0;
1841 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1845 * First accesses are treated as private, otherwise consider accesses
1846 * to be private if the accessing pid has not changed
1848 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1851 priv = cpupid_match_pid(p, last_cpupid);
1852 if (!priv && !(flags & TNF_NO_GROUP))
1853 task_numa_group(p, last_cpupid, flags, &priv);
1857 * If a workload spans multiple NUMA nodes, a shared fault that
1858 * occurs wholly within the set of nodes that the workload is
1859 * actively using should be counted as local. This allows the
1860 * scan rate to slow down when a workload has settled down.
1862 if (!priv && !local && p->numa_group &&
1863 node_isset(cpu_node, p->numa_group->active_nodes) &&
1864 node_isset(mem_node, p->numa_group->active_nodes))
1867 task_numa_placement(p);
1870 * Retry task to preferred node migration periodically, in case it
1871 * case it previously failed, or the scheduler moved us.
1873 if (time_after(jiffies, p->numa_migrate_retry))
1874 numa_migrate_preferred(p);
1877 p->numa_pages_migrated += pages;
1879 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1880 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1881 p->numa_faults_locality[local] += pages;
1884 static void reset_ptenuma_scan(struct task_struct *p)
1886 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1887 p->mm->numa_scan_offset = 0;
1891 * The expensive part of numa migration is done from task_work context.
1892 * Triggered from task_tick_numa().
1894 void task_numa_work(struct callback_head *work)
1896 unsigned long migrate, next_scan, now = jiffies;
1897 struct task_struct *p = current;
1898 struct mm_struct *mm = p->mm;
1899 struct vm_area_struct *vma;
1900 unsigned long start, end;
1901 unsigned long nr_pte_updates = 0;
1904 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1906 work->next = work; /* protect against double add */
1908 * Who cares about NUMA placement when they're dying.
1910 * NOTE: make sure not to dereference p->mm before this check,
1911 * exit_task_work() happens _after_ exit_mm() so we could be called
1912 * without p->mm even though we still had it when we enqueued this
1915 if (p->flags & PF_EXITING)
1918 if (!mm->numa_next_scan) {
1919 mm->numa_next_scan = now +
1920 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1924 * Enforce maximal scan/migration frequency..
1926 migrate = mm->numa_next_scan;
1927 if (time_before(now, migrate))
1930 if (p->numa_scan_period == 0) {
1931 p->numa_scan_period_max = task_scan_max(p);
1932 p->numa_scan_period = task_scan_min(p);
1935 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1936 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1940 * Delay this task enough that another task of this mm will likely win
1941 * the next time around.
1943 p->node_stamp += 2 * TICK_NSEC;
1945 start = mm->numa_scan_offset;
1946 pages = sysctl_numa_balancing_scan_size;
1947 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1951 down_read(&mm->mmap_sem);
1952 vma = find_vma(mm, start);
1954 reset_ptenuma_scan(p);
1958 for (; vma; vma = vma->vm_next) {
1959 if (!vma_migratable(vma) || !vma_policy_mof(vma))
1963 * Shared library pages mapped by multiple processes are not
1964 * migrated as it is expected they are cache replicated. Avoid
1965 * hinting faults in read-only file-backed mappings or the vdso
1966 * as migrating the pages will be of marginal benefit.
1969 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1973 * Skip inaccessible VMAs to avoid any confusion between
1974 * PROT_NONE and NUMA hinting ptes
1976 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1980 start = max(start, vma->vm_start);
1981 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1982 end = min(end, vma->vm_end);
1983 nr_pte_updates += change_prot_numa(vma, start, end);
1986 * Scan sysctl_numa_balancing_scan_size but ensure that
1987 * at least one PTE is updated so that unused virtual
1988 * address space is quickly skipped.
1991 pages -= (end - start) >> PAGE_SHIFT;
1998 } while (end != vma->vm_end);
2003 * It is possible to reach the end of the VMA list but the last few
2004 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2005 * would find the !migratable VMA on the next scan but not reset the
2006 * scanner to the start so check it now.
2009 mm->numa_scan_offset = start;
2011 reset_ptenuma_scan(p);
2012 up_read(&mm->mmap_sem);
2016 * Drive the periodic memory faults..
2018 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2020 struct callback_head *work = &curr->numa_work;
2024 * We don't care about NUMA placement if we don't have memory.
2026 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2030 * Using runtime rather than walltime has the dual advantage that
2031 * we (mostly) drive the selection from busy threads and that the
2032 * task needs to have done some actual work before we bother with
2035 now = curr->se.sum_exec_runtime;
2036 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2038 if (now - curr->node_stamp > period) {
2039 if (!curr->node_stamp)
2040 curr->numa_scan_period = task_scan_min(curr);
2041 curr->node_stamp += period;
2043 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2044 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2045 task_work_add(curr, work, true);
2050 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2054 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2058 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2061 #endif /* CONFIG_NUMA_BALANCING */
2064 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2066 update_load_add(&cfs_rq->load, se->load.weight);
2067 if (!parent_entity(se))
2068 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2070 if (entity_is_task(se)) {
2071 struct rq *rq = rq_of(cfs_rq);
2073 account_numa_enqueue(rq, task_of(se));
2074 list_add(&se->group_node, &rq->cfs_tasks);
2077 cfs_rq->nr_running++;
2081 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2083 update_load_sub(&cfs_rq->load, se->load.weight);
2084 if (!parent_entity(se))
2085 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2086 if (entity_is_task(se)) {
2087 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2088 list_del_init(&se->group_node);
2090 cfs_rq->nr_running--;
2093 #ifdef CONFIG_FAIR_GROUP_SCHED
2095 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2100 * Use this CPU's actual weight instead of the last load_contribution
2101 * to gain a more accurate current total weight. See
2102 * update_cfs_rq_load_contribution().
2104 tg_weight = atomic_long_read(&tg->load_avg);
2105 tg_weight -= cfs_rq->tg_load_contrib;
2106 tg_weight += cfs_rq->load.weight;
2111 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2113 long tg_weight, load, shares;
2115 tg_weight = calc_tg_weight(tg, cfs_rq);
2116 load = cfs_rq->load.weight;
2118 shares = (tg->shares * load);
2120 shares /= tg_weight;
2122 if (shares < MIN_SHARES)
2123 shares = MIN_SHARES;
2124 if (shares > tg->shares)
2125 shares = tg->shares;
2129 # else /* CONFIG_SMP */
2130 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2134 # endif /* CONFIG_SMP */
2135 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2136 unsigned long weight)
2139 /* commit outstanding execution time */
2140 if (cfs_rq->curr == se)
2141 update_curr(cfs_rq);
2142 account_entity_dequeue(cfs_rq, se);
2145 update_load_set(&se->load, weight);
2148 account_entity_enqueue(cfs_rq, se);
2151 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2153 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2155 struct task_group *tg;
2156 struct sched_entity *se;
2160 se = tg->se[cpu_of(rq_of(cfs_rq))];
2161 if (!se || throttled_hierarchy(cfs_rq))
2164 if (likely(se->load.weight == tg->shares))
2167 shares = calc_cfs_shares(cfs_rq, tg);
2169 reweight_entity(cfs_rq_of(se), se, shares);
2171 #else /* CONFIG_FAIR_GROUP_SCHED */
2172 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2175 #endif /* CONFIG_FAIR_GROUP_SCHED */
2179 * We choose a half-life close to 1 scheduling period.
2180 * Note: The tables below are dependent on this value.
2182 #define LOAD_AVG_PERIOD 32
2183 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2184 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2186 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2187 static const u32 runnable_avg_yN_inv[] = {
2188 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2189 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2190 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2191 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2192 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2193 0x85aac367, 0x82cd8698,
2197 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2198 * over-estimates when re-combining.
2200 static const u32 runnable_avg_yN_sum[] = {
2201 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2202 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2203 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2208 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2210 static __always_inline u64 decay_load(u64 val, u64 n)
2212 unsigned int local_n;
2216 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2219 /* after bounds checking we can collapse to 32-bit */
2223 * As y^PERIOD = 1/2, we can combine
2224 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2225 * With a look-up table which covers y^n (n<PERIOD)
2227 * To achieve constant time decay_load.
2229 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2230 val >>= local_n / LOAD_AVG_PERIOD;
2231 local_n %= LOAD_AVG_PERIOD;
2234 val *= runnable_avg_yN_inv[local_n];
2235 /* We don't use SRR here since we always want to round down. */
2240 * For updates fully spanning n periods, the contribution to runnable
2241 * average will be: \Sum 1024*y^n
2243 * We can compute this reasonably efficiently by combining:
2244 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2246 static u32 __compute_runnable_contrib(u64 n)
2250 if (likely(n <= LOAD_AVG_PERIOD))
2251 return runnable_avg_yN_sum[n];
2252 else if (unlikely(n >= LOAD_AVG_MAX_N))
2253 return LOAD_AVG_MAX;
2255 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2257 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2258 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2260 n -= LOAD_AVG_PERIOD;
2261 } while (n > LOAD_AVG_PERIOD);
2263 contrib = decay_load(contrib, n);
2264 return contrib + runnable_avg_yN_sum[n];
2268 * We can represent the historical contribution to runnable average as the
2269 * coefficients of a geometric series. To do this we sub-divide our runnable
2270 * history into segments of approximately 1ms (1024us); label the segment that
2271 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2273 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2275 * (now) (~1ms ago) (~2ms ago)
2277 * Let u_i denote the fraction of p_i that the entity was runnable.
2279 * We then designate the fractions u_i as our co-efficients, yielding the
2280 * following representation of historical load:
2281 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2283 * We choose y based on the with of a reasonably scheduling period, fixing:
2286 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2287 * approximately half as much as the contribution to load within the last ms
2290 * When a period "rolls over" and we have new u_0`, multiplying the previous
2291 * sum again by y is sufficient to update:
2292 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2293 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2295 static __always_inline int __update_entity_runnable_avg(u64 now,
2296 struct sched_avg *sa,
2300 u32 runnable_contrib;
2301 int delta_w, decayed = 0;
2303 delta = now - sa->last_runnable_update;
2305 * This should only happen when time goes backwards, which it
2306 * unfortunately does during sched clock init when we swap over to TSC.
2308 if ((s64)delta < 0) {
2309 sa->last_runnable_update = now;
2314 * Use 1024ns as the unit of measurement since it's a reasonable
2315 * approximation of 1us and fast to compute.
2320 sa->last_runnable_update = now;
2322 /* delta_w is the amount already accumulated against our next period */
2323 delta_w = sa->runnable_avg_period % 1024;
2324 if (delta + delta_w >= 1024) {
2325 /* period roll-over */
2329 * Now that we know we're crossing a period boundary, figure
2330 * out how much from delta we need to complete the current
2331 * period and accrue it.
2333 delta_w = 1024 - delta_w;
2335 sa->runnable_avg_sum += delta_w;
2336 sa->runnable_avg_period += delta_w;
2340 /* Figure out how many additional periods this update spans */
2341 periods = delta / 1024;
2344 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2346 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2349 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2350 runnable_contrib = __compute_runnable_contrib(periods);
2352 sa->runnable_avg_sum += runnable_contrib;
2353 sa->runnable_avg_period += runnable_contrib;
2356 /* Remainder of delta accrued against u_0` */
2358 sa->runnable_avg_sum += delta;
2359 sa->runnable_avg_period += delta;
2364 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2365 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2367 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2368 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2370 decays -= se->avg.decay_count;
2374 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2375 se->avg.decay_count = 0;
2380 #ifdef CONFIG_FAIR_GROUP_SCHED
2381 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2384 struct task_group *tg = cfs_rq->tg;
2387 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2388 tg_contrib -= cfs_rq->tg_load_contrib;
2393 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2394 atomic_long_add(tg_contrib, &tg->load_avg);
2395 cfs_rq->tg_load_contrib += tg_contrib;
2400 * Aggregate cfs_rq runnable averages into an equivalent task_group
2401 * representation for computing load contributions.
2403 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2404 struct cfs_rq *cfs_rq)
2406 struct task_group *tg = cfs_rq->tg;
2409 /* The fraction of a cpu used by this cfs_rq */
2410 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2411 sa->runnable_avg_period + 1);
2412 contrib -= cfs_rq->tg_runnable_contrib;
2414 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2415 atomic_add(contrib, &tg->runnable_avg);
2416 cfs_rq->tg_runnable_contrib += contrib;
2420 static inline void __update_group_entity_contrib(struct sched_entity *se)
2422 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2423 struct task_group *tg = cfs_rq->tg;
2428 contrib = cfs_rq->tg_load_contrib * tg->shares;
2429 se->avg.load_avg_contrib = div_u64(contrib,
2430 atomic_long_read(&tg->load_avg) + 1);
2433 * For group entities we need to compute a correction term in the case
2434 * that they are consuming <1 cpu so that we would contribute the same
2435 * load as a task of equal weight.
2437 * Explicitly co-ordinating this measurement would be expensive, but
2438 * fortunately the sum of each cpus contribution forms a usable
2439 * lower-bound on the true value.
2441 * Consider the aggregate of 2 contributions. Either they are disjoint
2442 * (and the sum represents true value) or they are disjoint and we are
2443 * understating by the aggregate of their overlap.
2445 * Extending this to N cpus, for a given overlap, the maximum amount we
2446 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2447 * cpus that overlap for this interval and w_i is the interval width.
2449 * On a small machine; the first term is well-bounded which bounds the
2450 * total error since w_i is a subset of the period. Whereas on a
2451 * larger machine, while this first term can be larger, if w_i is the
2452 * of consequential size guaranteed to see n_i*w_i quickly converge to
2453 * our upper bound of 1-cpu.
2455 runnable_avg = atomic_read(&tg->runnable_avg);
2456 if (runnable_avg < NICE_0_LOAD) {
2457 se->avg.load_avg_contrib *= runnable_avg;
2458 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2462 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2464 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2465 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2467 #else /* CONFIG_FAIR_GROUP_SCHED */
2468 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2469 int force_update) {}
2470 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2471 struct cfs_rq *cfs_rq) {}
2472 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2473 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2474 #endif /* CONFIG_FAIR_GROUP_SCHED */
2476 static inline void __update_task_entity_contrib(struct sched_entity *se)
2480 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2481 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2482 contrib /= (se->avg.runnable_avg_period + 1);
2483 se->avg.load_avg_contrib = scale_load(contrib);
2486 /* Compute the current contribution to load_avg by se, return any delta */
2487 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2489 long old_contrib = se->avg.load_avg_contrib;
2491 if (entity_is_task(se)) {
2492 __update_task_entity_contrib(se);
2494 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2495 __update_group_entity_contrib(se);
2498 return se->avg.load_avg_contrib - old_contrib;
2501 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2504 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2505 cfs_rq->blocked_load_avg -= load_contrib;
2507 cfs_rq->blocked_load_avg = 0;
2510 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2512 /* Update a sched_entity's runnable average */
2513 static inline void update_entity_load_avg(struct sched_entity *se,
2516 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2521 * For a group entity we need to use their owned cfs_rq_clock_task() in
2522 * case they are the parent of a throttled hierarchy.
2524 if (entity_is_task(se))
2525 now = cfs_rq_clock_task(cfs_rq);
2527 now = cfs_rq_clock_task(group_cfs_rq(se));
2529 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2532 contrib_delta = __update_entity_load_avg_contrib(se);
2538 cfs_rq->runnable_load_avg += contrib_delta;
2540 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2544 * Decay the load contributed by all blocked children and account this so that
2545 * their contribution may appropriately discounted when they wake up.
2547 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2549 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2552 decays = now - cfs_rq->last_decay;
2553 if (!decays && !force_update)
2556 if (atomic_long_read(&cfs_rq->removed_load)) {
2557 unsigned long removed_load;
2558 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2559 subtract_blocked_load_contrib(cfs_rq, removed_load);
2563 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2565 atomic64_add(decays, &cfs_rq->decay_counter);
2566 cfs_rq->last_decay = now;
2569 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2572 /* Add the load generated by se into cfs_rq's child load-average */
2573 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2574 struct sched_entity *se,
2578 * We track migrations using entity decay_count <= 0, on a wake-up
2579 * migration we use a negative decay count to track the remote decays
2580 * accumulated while sleeping.
2582 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2583 * are seen by enqueue_entity_load_avg() as a migration with an already
2584 * constructed load_avg_contrib.
2586 if (unlikely(se->avg.decay_count <= 0)) {
2587 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2588 if (se->avg.decay_count) {
2590 * In a wake-up migration we have to approximate the
2591 * time sleeping. This is because we can't synchronize
2592 * clock_task between the two cpus, and it is not
2593 * guaranteed to be read-safe. Instead, we can
2594 * approximate this using our carried decays, which are
2595 * explicitly atomically readable.
2597 se->avg.last_runnable_update -= (-se->avg.decay_count)
2599 update_entity_load_avg(se, 0);
2600 /* Indicate that we're now synchronized and on-rq */
2601 se->avg.decay_count = 0;
2605 __synchronize_entity_decay(se);
2608 /* migrated tasks did not contribute to our blocked load */
2610 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2611 update_entity_load_avg(se, 0);
2614 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2615 /* we force update consideration on load-balancer moves */
2616 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2620 * Remove se's load from this cfs_rq child load-average, if the entity is
2621 * transitioning to a blocked state we track its projected decay using
2624 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2625 struct sched_entity *se,
2628 update_entity_load_avg(se, 1);
2629 /* we force update consideration on load-balancer moves */
2630 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2632 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2634 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2635 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2636 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2640 * Update the rq's load with the elapsed running time before entering
2641 * idle. if the last scheduled task is not a CFS task, idle_enter will
2642 * be the only way to update the runnable statistic.
2644 void idle_enter_fair(struct rq *this_rq)
2646 update_rq_runnable_avg(this_rq, 1);
2650 * Update the rq's load with the elapsed idle time before a task is
2651 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2652 * be the only way to update the runnable statistic.
2654 void idle_exit_fair(struct rq *this_rq)
2656 update_rq_runnable_avg(this_rq, 0);
2659 static int idle_balance(struct rq *this_rq);
2661 #else /* CONFIG_SMP */
2663 static inline void update_entity_load_avg(struct sched_entity *se,
2664 int update_cfs_rq) {}
2665 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2666 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2667 struct sched_entity *se,
2669 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2670 struct sched_entity *se,
2672 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2673 int force_update) {}
2675 static inline int idle_balance(struct rq *rq)
2680 #endif /* CONFIG_SMP */
2682 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2684 #ifdef CONFIG_SCHEDSTATS
2685 struct task_struct *tsk = NULL;
2687 if (entity_is_task(se))
2690 if (se->statistics.sleep_start) {
2691 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2696 if (unlikely(delta > se->statistics.sleep_max))
2697 se->statistics.sleep_max = delta;
2699 se->statistics.sleep_start = 0;
2700 se->statistics.sum_sleep_runtime += delta;
2703 account_scheduler_latency(tsk, delta >> 10, 1);
2704 trace_sched_stat_sleep(tsk, delta);
2707 if (se->statistics.block_start) {
2708 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2713 if (unlikely(delta > se->statistics.block_max))
2714 se->statistics.block_max = delta;
2716 se->statistics.block_start = 0;
2717 se->statistics.sum_sleep_runtime += delta;
2720 if (tsk->in_iowait) {
2721 se->statistics.iowait_sum += delta;
2722 se->statistics.iowait_count++;
2723 trace_sched_stat_iowait(tsk, delta);
2726 trace_sched_stat_blocked(tsk, delta);
2729 * Blocking time is in units of nanosecs, so shift by
2730 * 20 to get a milliseconds-range estimation of the
2731 * amount of time that the task spent sleeping:
2733 if (unlikely(prof_on == SLEEP_PROFILING)) {
2734 profile_hits(SLEEP_PROFILING,
2735 (void *)get_wchan(tsk),
2738 account_scheduler_latency(tsk, delta >> 10, 0);
2744 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2746 #ifdef CONFIG_SCHED_DEBUG
2747 s64 d = se->vruntime - cfs_rq->min_vruntime;
2752 if (d > 3*sysctl_sched_latency)
2753 schedstat_inc(cfs_rq, nr_spread_over);
2758 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2760 u64 vruntime = cfs_rq->min_vruntime;
2763 * The 'current' period is already promised to the current tasks,
2764 * however the extra weight of the new task will slow them down a
2765 * little, place the new task so that it fits in the slot that
2766 * stays open at the end.
2768 if (initial && sched_feat(START_DEBIT))
2769 vruntime += sched_vslice(cfs_rq, se);
2771 /* sleeps up to a single latency don't count. */
2773 unsigned long thresh = sysctl_sched_latency;
2776 * Halve their sleep time's effect, to allow
2777 * for a gentler effect of sleepers:
2779 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2785 /* ensure we never gain time by being placed backwards. */
2786 se->vruntime = max_vruntime(se->vruntime, vruntime);
2789 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2792 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2795 * Update the normalized vruntime before updating min_vruntime
2796 * through calling update_curr().
2798 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2799 se->vruntime += cfs_rq->min_vruntime;
2802 * Update run-time statistics of the 'current'.
2804 update_curr(cfs_rq);
2805 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2806 account_entity_enqueue(cfs_rq, se);
2807 update_cfs_shares(cfs_rq);
2809 if (flags & ENQUEUE_WAKEUP) {
2810 place_entity(cfs_rq, se, 0);
2811 enqueue_sleeper(cfs_rq, se);
2814 update_stats_enqueue(cfs_rq, se);
2815 check_spread(cfs_rq, se);
2816 if (se != cfs_rq->curr)
2817 __enqueue_entity(cfs_rq, se);
2820 if (cfs_rq->nr_running == 1) {
2821 list_add_leaf_cfs_rq(cfs_rq);
2822 check_enqueue_throttle(cfs_rq);
2826 static void __clear_buddies_last(struct sched_entity *se)
2828 for_each_sched_entity(se) {
2829 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2830 if (cfs_rq->last != se)
2833 cfs_rq->last = NULL;
2837 static void __clear_buddies_next(struct sched_entity *se)
2839 for_each_sched_entity(se) {
2840 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2841 if (cfs_rq->next != se)
2844 cfs_rq->next = NULL;
2848 static void __clear_buddies_skip(struct sched_entity *se)
2850 for_each_sched_entity(se) {
2851 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2852 if (cfs_rq->skip != se)
2855 cfs_rq->skip = NULL;
2859 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2861 if (cfs_rq->last == se)
2862 __clear_buddies_last(se);
2864 if (cfs_rq->next == se)
2865 __clear_buddies_next(se);
2867 if (cfs_rq->skip == se)
2868 __clear_buddies_skip(se);
2871 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2874 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2877 * Update run-time statistics of the 'current'.
2879 update_curr(cfs_rq);
2880 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2882 update_stats_dequeue(cfs_rq, se);
2883 if (flags & DEQUEUE_SLEEP) {
2884 #ifdef CONFIG_SCHEDSTATS
2885 if (entity_is_task(se)) {
2886 struct task_struct *tsk = task_of(se);
2888 if (tsk->state & TASK_INTERRUPTIBLE)
2889 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2890 if (tsk->state & TASK_UNINTERRUPTIBLE)
2891 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2896 clear_buddies(cfs_rq, se);
2898 if (se != cfs_rq->curr)
2899 __dequeue_entity(cfs_rq, se);
2901 account_entity_dequeue(cfs_rq, se);
2904 * Normalize the entity after updating the min_vruntime because the
2905 * update can refer to the ->curr item and we need to reflect this
2906 * movement in our normalized position.
2908 if (!(flags & DEQUEUE_SLEEP))
2909 se->vruntime -= cfs_rq->min_vruntime;
2911 /* return excess runtime on last dequeue */
2912 return_cfs_rq_runtime(cfs_rq);
2914 update_min_vruntime(cfs_rq);
2915 update_cfs_shares(cfs_rq);
2919 * Preempt the current task with a newly woken task if needed:
2922 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2924 unsigned long ideal_runtime, delta_exec;
2925 struct sched_entity *se;
2928 ideal_runtime = sched_slice(cfs_rq, curr);
2929 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2930 if (delta_exec > ideal_runtime) {
2931 resched_curr(rq_of(cfs_rq));
2933 * The current task ran long enough, ensure it doesn't get
2934 * re-elected due to buddy favours.
2936 clear_buddies(cfs_rq, curr);
2941 * Ensure that a task that missed wakeup preemption by a
2942 * narrow margin doesn't have to wait for a full slice.
2943 * This also mitigates buddy induced latencies under load.
2945 if (delta_exec < sysctl_sched_min_granularity)
2948 se = __pick_first_entity(cfs_rq);
2949 delta = curr->vruntime - se->vruntime;
2954 if (delta > ideal_runtime)
2955 resched_curr(rq_of(cfs_rq));
2959 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2961 /* 'current' is not kept within the tree. */
2964 * Any task has to be enqueued before it get to execute on
2965 * a CPU. So account for the time it spent waiting on the
2968 update_stats_wait_end(cfs_rq, se);
2969 __dequeue_entity(cfs_rq, se);
2972 update_stats_curr_start(cfs_rq, se);
2974 #ifdef CONFIG_SCHEDSTATS
2976 * Track our maximum slice length, if the CPU's load is at
2977 * least twice that of our own weight (i.e. dont track it
2978 * when there are only lesser-weight tasks around):
2980 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2981 se->statistics.slice_max = max(se->statistics.slice_max,
2982 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2985 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2989 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2992 * Pick the next process, keeping these things in mind, in this order:
2993 * 1) keep things fair between processes/task groups
2994 * 2) pick the "next" process, since someone really wants that to run
2995 * 3) pick the "last" process, for cache locality
2996 * 4) do not run the "skip" process, if something else is available
2998 static struct sched_entity *
2999 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3001 struct sched_entity *left = __pick_first_entity(cfs_rq);
3002 struct sched_entity *se;
3005 * If curr is set we have to see if its left of the leftmost entity
3006 * still in the tree, provided there was anything in the tree at all.
3008 if (!left || (curr && entity_before(curr, left)))
3011 se = left; /* ideally we run the leftmost entity */
3014 * Avoid running the skip buddy, if running something else can
3015 * be done without getting too unfair.
3017 if (cfs_rq->skip == se) {
3018 struct sched_entity *second;
3021 second = __pick_first_entity(cfs_rq);
3023 second = __pick_next_entity(se);
3024 if (!second || (curr && entity_before(curr, second)))
3028 if (second && wakeup_preempt_entity(second, left) < 1)
3033 * Prefer last buddy, try to return the CPU to a preempted task.
3035 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3039 * Someone really wants this to run. If it's not unfair, run it.
3041 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3044 clear_buddies(cfs_rq, se);
3049 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3051 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3054 * If still on the runqueue then deactivate_task()
3055 * was not called and update_curr() has to be done:
3058 update_curr(cfs_rq);
3060 /* throttle cfs_rqs exceeding runtime */
3061 check_cfs_rq_runtime(cfs_rq);
3063 check_spread(cfs_rq, prev);
3065 update_stats_wait_start(cfs_rq, prev);
3066 /* Put 'current' back into the tree. */
3067 __enqueue_entity(cfs_rq, prev);
3068 /* in !on_rq case, update occurred at dequeue */
3069 update_entity_load_avg(prev, 1);
3071 cfs_rq->curr = NULL;
3075 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3078 * Update run-time statistics of the 'current'.
3080 update_curr(cfs_rq);
3083 * Ensure that runnable average is periodically updated.
3085 update_entity_load_avg(curr, 1);
3086 update_cfs_rq_blocked_load(cfs_rq, 1);
3087 update_cfs_shares(cfs_rq);
3089 #ifdef CONFIG_SCHED_HRTICK
3091 * queued ticks are scheduled to match the slice, so don't bother
3092 * validating it and just reschedule.
3095 resched_curr(rq_of(cfs_rq));
3099 * don't let the period tick interfere with the hrtick preemption
3101 if (!sched_feat(DOUBLE_TICK) &&
3102 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3106 if (cfs_rq->nr_running > 1)
3107 check_preempt_tick(cfs_rq, curr);
3111 /**************************************************
3112 * CFS bandwidth control machinery
3115 #ifdef CONFIG_CFS_BANDWIDTH
3117 #ifdef HAVE_JUMP_LABEL
3118 static struct static_key __cfs_bandwidth_used;
3120 static inline bool cfs_bandwidth_used(void)
3122 return static_key_false(&__cfs_bandwidth_used);
3125 void cfs_bandwidth_usage_inc(void)
3127 static_key_slow_inc(&__cfs_bandwidth_used);
3130 void cfs_bandwidth_usage_dec(void)
3132 static_key_slow_dec(&__cfs_bandwidth_used);
3134 #else /* HAVE_JUMP_LABEL */
3135 static bool cfs_bandwidth_used(void)
3140 void cfs_bandwidth_usage_inc(void) {}
3141 void cfs_bandwidth_usage_dec(void) {}
3142 #endif /* HAVE_JUMP_LABEL */
3145 * default period for cfs group bandwidth.
3146 * default: 0.1s, units: nanoseconds
3148 static inline u64 default_cfs_period(void)
3150 return 100000000ULL;
3153 static inline u64 sched_cfs_bandwidth_slice(void)
3155 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3159 * Replenish runtime according to assigned quota and update expiration time.
3160 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3161 * additional synchronization around rq->lock.
3163 * requires cfs_b->lock
3165 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3169 if (cfs_b->quota == RUNTIME_INF)
3172 now = sched_clock_cpu(smp_processor_id());
3173 cfs_b->runtime = cfs_b->quota;
3174 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3177 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3179 return &tg->cfs_bandwidth;
3182 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3183 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3185 if (unlikely(cfs_rq->throttle_count))
3186 return cfs_rq->throttled_clock_task;
3188 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3191 /* returns 0 on failure to allocate runtime */
3192 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3194 struct task_group *tg = cfs_rq->tg;
3195 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3196 u64 amount = 0, min_amount, expires;
3198 /* note: this is a positive sum as runtime_remaining <= 0 */
3199 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3201 raw_spin_lock(&cfs_b->lock);
3202 if (cfs_b->quota == RUNTIME_INF)
3203 amount = min_amount;
3206 * If the bandwidth pool has become inactive, then at least one
3207 * period must have elapsed since the last consumption.
3208 * Refresh the global state and ensure bandwidth timer becomes
3211 if (!cfs_b->timer_active) {
3212 __refill_cfs_bandwidth_runtime(cfs_b);
3213 __start_cfs_bandwidth(cfs_b, false);
3216 if (cfs_b->runtime > 0) {
3217 amount = min(cfs_b->runtime, min_amount);
3218 cfs_b->runtime -= amount;
3222 expires = cfs_b->runtime_expires;
3223 raw_spin_unlock(&cfs_b->lock);
3225 cfs_rq->runtime_remaining += amount;
3227 * we may have advanced our local expiration to account for allowed
3228 * spread between our sched_clock and the one on which runtime was
3231 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3232 cfs_rq->runtime_expires = expires;
3234 return cfs_rq->runtime_remaining > 0;
3238 * Note: This depends on the synchronization provided by sched_clock and the
3239 * fact that rq->clock snapshots this value.
3241 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3243 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3245 /* if the deadline is ahead of our clock, nothing to do */
3246 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3249 if (cfs_rq->runtime_remaining < 0)
3253 * If the local deadline has passed we have to consider the
3254 * possibility that our sched_clock is 'fast' and the global deadline
3255 * has not truly expired.
3257 * Fortunately we can check determine whether this the case by checking
3258 * whether the global deadline has advanced. It is valid to compare
3259 * cfs_b->runtime_expires without any locks since we only care about
3260 * exact equality, so a partial write will still work.
3263 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3264 /* extend local deadline, drift is bounded above by 2 ticks */
3265 cfs_rq->runtime_expires += TICK_NSEC;
3267 /* global deadline is ahead, expiration has passed */
3268 cfs_rq->runtime_remaining = 0;
3272 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3274 /* dock delta_exec before expiring quota (as it could span periods) */
3275 cfs_rq->runtime_remaining -= delta_exec;
3276 expire_cfs_rq_runtime(cfs_rq);
3278 if (likely(cfs_rq->runtime_remaining > 0))
3282 * if we're unable to extend our runtime we resched so that the active
3283 * hierarchy can be throttled
3285 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3286 resched_curr(rq_of(cfs_rq));
3289 static __always_inline
3290 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3292 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3295 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3298 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3300 return cfs_bandwidth_used() && cfs_rq->throttled;
3303 /* check whether cfs_rq, or any parent, is throttled */
3304 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3306 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3310 * Ensure that neither of the group entities corresponding to src_cpu or
3311 * dest_cpu are members of a throttled hierarchy when performing group
3312 * load-balance operations.
3314 static inline int throttled_lb_pair(struct task_group *tg,
3315 int src_cpu, int dest_cpu)
3317 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3319 src_cfs_rq = tg->cfs_rq[src_cpu];
3320 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3322 return throttled_hierarchy(src_cfs_rq) ||
3323 throttled_hierarchy(dest_cfs_rq);
3326 /* updated child weight may affect parent so we have to do this bottom up */
3327 static int tg_unthrottle_up(struct task_group *tg, void *data)
3329 struct rq *rq = data;
3330 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3332 cfs_rq->throttle_count--;
3334 if (!cfs_rq->throttle_count) {
3335 /* adjust cfs_rq_clock_task() */
3336 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3337 cfs_rq->throttled_clock_task;
3344 static int tg_throttle_down(struct task_group *tg, void *data)
3346 struct rq *rq = data;
3347 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3349 /* group is entering throttled state, stop time */
3350 if (!cfs_rq->throttle_count)
3351 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3352 cfs_rq->throttle_count++;
3357 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3359 struct rq *rq = rq_of(cfs_rq);
3360 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3361 struct sched_entity *se;
3362 long task_delta, dequeue = 1;
3364 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3366 /* freeze hierarchy runnable averages while throttled */
3368 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3371 task_delta = cfs_rq->h_nr_running;
3372 for_each_sched_entity(se) {
3373 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3374 /* throttled entity or throttle-on-deactivate */
3379 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3380 qcfs_rq->h_nr_running -= task_delta;
3382 if (qcfs_rq->load.weight)
3387 sub_nr_running(rq, task_delta);
3389 cfs_rq->throttled = 1;
3390 cfs_rq->throttled_clock = rq_clock(rq);
3391 raw_spin_lock(&cfs_b->lock);
3393 * Add to the _head_ of the list, so that an already-started
3394 * distribute_cfs_runtime will not see us
3396 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3397 if (!cfs_b->timer_active)
3398 __start_cfs_bandwidth(cfs_b, false);
3399 raw_spin_unlock(&cfs_b->lock);
3402 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3404 struct rq *rq = rq_of(cfs_rq);
3405 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3406 struct sched_entity *se;
3410 se = cfs_rq->tg->se[cpu_of(rq)];
3412 cfs_rq->throttled = 0;
3414 update_rq_clock(rq);
3416 raw_spin_lock(&cfs_b->lock);
3417 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3418 list_del_rcu(&cfs_rq->throttled_list);
3419 raw_spin_unlock(&cfs_b->lock);
3421 /* update hierarchical throttle state */
3422 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3424 if (!cfs_rq->load.weight)
3427 task_delta = cfs_rq->h_nr_running;
3428 for_each_sched_entity(se) {
3432 cfs_rq = cfs_rq_of(se);
3434 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3435 cfs_rq->h_nr_running += task_delta;
3437 if (cfs_rq_throttled(cfs_rq))
3442 add_nr_running(rq, task_delta);
3444 /* determine whether we need to wake up potentially idle cpu */
3445 if (rq->curr == rq->idle && rq->cfs.nr_running)
3449 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3450 u64 remaining, u64 expires)
3452 struct cfs_rq *cfs_rq;
3454 u64 starting_runtime = remaining;
3457 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3459 struct rq *rq = rq_of(cfs_rq);
3461 raw_spin_lock(&rq->lock);
3462 if (!cfs_rq_throttled(cfs_rq))
3465 runtime = -cfs_rq->runtime_remaining + 1;
3466 if (runtime > remaining)
3467 runtime = remaining;
3468 remaining -= runtime;
3470 cfs_rq->runtime_remaining += runtime;
3471 cfs_rq->runtime_expires = expires;
3473 /* we check whether we're throttled above */
3474 if (cfs_rq->runtime_remaining > 0)
3475 unthrottle_cfs_rq(cfs_rq);
3478 raw_spin_unlock(&rq->lock);
3485 return starting_runtime - remaining;
3489 * Responsible for refilling a task_group's bandwidth and unthrottling its
3490 * cfs_rqs as appropriate. If there has been no activity within the last
3491 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3492 * used to track this state.
3494 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3496 u64 runtime, runtime_expires;
3499 /* no need to continue the timer with no bandwidth constraint */
3500 if (cfs_b->quota == RUNTIME_INF)
3501 goto out_deactivate;
3503 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3504 cfs_b->nr_periods += overrun;
3507 * idle depends on !throttled (for the case of a large deficit), and if
3508 * we're going inactive then everything else can be deferred
3510 if (cfs_b->idle && !throttled)
3511 goto out_deactivate;
3514 * if we have relooped after returning idle once, we need to update our
3515 * status as actually running, so that other cpus doing
3516 * __start_cfs_bandwidth will stop trying to cancel us.
3518 cfs_b->timer_active = 1;
3520 __refill_cfs_bandwidth_runtime(cfs_b);
3523 /* mark as potentially idle for the upcoming period */
3528 /* account preceding periods in which throttling occurred */
3529 cfs_b->nr_throttled += overrun;
3531 runtime_expires = cfs_b->runtime_expires;
3534 * This check is repeated as we are holding onto the new bandwidth while
3535 * we unthrottle. This can potentially race with an unthrottled group
3536 * trying to acquire new bandwidth from the global pool. This can result
3537 * in us over-using our runtime if it is all used during this loop, but
3538 * only by limited amounts in that extreme case.
3540 while (throttled && cfs_b->runtime > 0) {
3541 runtime = cfs_b->runtime;
3542 raw_spin_unlock(&cfs_b->lock);
3543 /* we can't nest cfs_b->lock while distributing bandwidth */
3544 runtime = distribute_cfs_runtime(cfs_b, runtime,
3546 raw_spin_lock(&cfs_b->lock);
3548 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3550 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3554 * While we are ensured activity in the period following an
3555 * unthrottle, this also covers the case in which the new bandwidth is
3556 * insufficient to cover the existing bandwidth deficit. (Forcing the
3557 * timer to remain active while there are any throttled entities.)
3564 cfs_b->timer_active = 0;
3568 /* a cfs_rq won't donate quota below this amount */
3569 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3570 /* minimum remaining period time to redistribute slack quota */
3571 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3572 /* how long we wait to gather additional slack before distributing */
3573 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3576 * Are we near the end of the current quota period?
3578 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3579 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3580 * migrate_hrtimers, base is never cleared, so we are fine.
3582 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3584 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3587 /* if the call-back is running a quota refresh is already occurring */
3588 if (hrtimer_callback_running(refresh_timer))
3591 /* is a quota refresh about to occur? */
3592 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3593 if (remaining < min_expire)
3599 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3601 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3603 /* if there's a quota refresh soon don't bother with slack */
3604 if (runtime_refresh_within(cfs_b, min_left))
3607 start_bandwidth_timer(&cfs_b->slack_timer,
3608 ns_to_ktime(cfs_bandwidth_slack_period));
3611 /* we know any runtime found here is valid as update_curr() precedes return */
3612 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3614 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3615 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3617 if (slack_runtime <= 0)
3620 raw_spin_lock(&cfs_b->lock);
3621 if (cfs_b->quota != RUNTIME_INF &&
3622 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3623 cfs_b->runtime += slack_runtime;
3625 /* we are under rq->lock, defer unthrottling using a timer */
3626 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3627 !list_empty(&cfs_b->throttled_cfs_rq))
3628 start_cfs_slack_bandwidth(cfs_b);
3630 raw_spin_unlock(&cfs_b->lock);
3632 /* even if it's not valid for return we don't want to try again */
3633 cfs_rq->runtime_remaining -= slack_runtime;
3636 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3638 if (!cfs_bandwidth_used())
3641 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3644 __return_cfs_rq_runtime(cfs_rq);
3648 * This is done with a timer (instead of inline with bandwidth return) since
3649 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3651 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3653 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3656 /* confirm we're still not at a refresh boundary */
3657 raw_spin_lock(&cfs_b->lock);
3658 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3659 raw_spin_unlock(&cfs_b->lock);
3663 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3664 runtime = cfs_b->runtime;
3666 expires = cfs_b->runtime_expires;
3667 raw_spin_unlock(&cfs_b->lock);
3672 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3674 raw_spin_lock(&cfs_b->lock);
3675 if (expires == cfs_b->runtime_expires)
3676 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3677 raw_spin_unlock(&cfs_b->lock);
3681 * When a group wakes up we want to make sure that its quota is not already
3682 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3683 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3685 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3687 if (!cfs_bandwidth_used())
3690 /* an active group must be handled by the update_curr()->put() path */
3691 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3694 /* ensure the group is not already throttled */
3695 if (cfs_rq_throttled(cfs_rq))
3698 /* update runtime allocation */
3699 account_cfs_rq_runtime(cfs_rq, 0);
3700 if (cfs_rq->runtime_remaining <= 0)
3701 throttle_cfs_rq(cfs_rq);
3704 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3705 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3707 if (!cfs_bandwidth_used())
3710 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3714 * it's possible for a throttled entity to be forced into a running
3715 * state (e.g. set_curr_task), in this case we're finished.
3717 if (cfs_rq_throttled(cfs_rq))
3720 throttle_cfs_rq(cfs_rq);
3724 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3726 struct cfs_bandwidth *cfs_b =
3727 container_of(timer, struct cfs_bandwidth, slack_timer);
3728 do_sched_cfs_slack_timer(cfs_b);
3730 return HRTIMER_NORESTART;
3733 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3735 struct cfs_bandwidth *cfs_b =
3736 container_of(timer, struct cfs_bandwidth, period_timer);
3741 raw_spin_lock(&cfs_b->lock);
3743 now = hrtimer_cb_get_time(timer);
3744 overrun = hrtimer_forward(timer, now, cfs_b->period);
3749 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3751 raw_spin_unlock(&cfs_b->lock);
3753 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3756 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3758 raw_spin_lock_init(&cfs_b->lock);
3760 cfs_b->quota = RUNTIME_INF;
3761 cfs_b->period = ns_to_ktime(default_cfs_period());
3763 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3764 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3765 cfs_b->period_timer.function = sched_cfs_period_timer;
3766 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3767 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3770 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3772 cfs_rq->runtime_enabled = 0;
3773 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3776 /* requires cfs_b->lock, may release to reprogram timer */
3777 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3780 * The timer may be active because we're trying to set a new bandwidth
3781 * period or because we're racing with the tear-down path
3782 * (timer_active==0 becomes visible before the hrtimer call-back
3783 * terminates). In either case we ensure that it's re-programmed
3785 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3786 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3787 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3788 raw_spin_unlock(&cfs_b->lock);
3790 raw_spin_lock(&cfs_b->lock);
3791 /* if someone else restarted the timer then we're done */
3792 if (!force && cfs_b->timer_active)
3796 cfs_b->timer_active = 1;
3797 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3800 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3802 hrtimer_cancel(&cfs_b->period_timer);
3803 hrtimer_cancel(&cfs_b->slack_timer);
3806 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3808 struct cfs_rq *cfs_rq;
3810 for_each_leaf_cfs_rq(rq, cfs_rq) {
3811 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3813 raw_spin_lock(&cfs_b->lock);
3814 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3815 raw_spin_unlock(&cfs_b->lock);
3819 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3821 struct cfs_rq *cfs_rq;
3823 for_each_leaf_cfs_rq(rq, cfs_rq) {
3824 if (!cfs_rq->runtime_enabled)
3828 * clock_task is not advancing so we just need to make sure
3829 * there's some valid quota amount
3831 cfs_rq->runtime_remaining = 1;
3833 * Offline rq is schedulable till cpu is completely disabled
3834 * in take_cpu_down(), so we prevent new cfs throttling here.
3836 cfs_rq->runtime_enabled = 0;
3838 if (cfs_rq_throttled(cfs_rq))
3839 unthrottle_cfs_rq(cfs_rq);
3843 #else /* CONFIG_CFS_BANDWIDTH */
3844 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3846 return rq_clock_task(rq_of(cfs_rq));
3849 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3850 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3851 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3852 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3854 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3859 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3864 static inline int throttled_lb_pair(struct task_group *tg,
3865 int src_cpu, int dest_cpu)
3870 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3872 #ifdef CONFIG_FAIR_GROUP_SCHED
3873 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3876 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3880 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3881 static inline void update_runtime_enabled(struct rq *rq) {}
3882 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3884 #endif /* CONFIG_CFS_BANDWIDTH */
3886 /**************************************************
3887 * CFS operations on tasks:
3890 #ifdef CONFIG_SCHED_HRTICK
3891 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3893 struct sched_entity *se = &p->se;
3894 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3896 WARN_ON(task_rq(p) != rq);
3898 if (cfs_rq->nr_running > 1) {
3899 u64 slice = sched_slice(cfs_rq, se);
3900 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3901 s64 delta = slice - ran;
3908 hrtick_start(rq, delta);
3913 * called from enqueue/dequeue and updates the hrtick when the
3914 * current task is from our class and nr_running is low enough
3917 static void hrtick_update(struct rq *rq)
3919 struct task_struct *curr = rq->curr;
3921 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3924 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3925 hrtick_start_fair(rq, curr);
3927 #else /* !CONFIG_SCHED_HRTICK */
3929 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3933 static inline void hrtick_update(struct rq *rq)
3939 * The enqueue_task method is called before nr_running is
3940 * increased. Here we update the fair scheduling stats and
3941 * then put the task into the rbtree:
3944 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3946 struct cfs_rq *cfs_rq;
3947 struct sched_entity *se = &p->se;
3949 for_each_sched_entity(se) {
3952 cfs_rq = cfs_rq_of(se);
3953 enqueue_entity(cfs_rq, se, flags);
3956 * end evaluation on encountering a throttled cfs_rq
3958 * note: in the case of encountering a throttled cfs_rq we will
3959 * post the final h_nr_running increment below.
3961 if (cfs_rq_throttled(cfs_rq))
3963 cfs_rq->h_nr_running++;
3965 flags = ENQUEUE_WAKEUP;
3968 for_each_sched_entity(se) {
3969 cfs_rq = cfs_rq_of(se);
3970 cfs_rq->h_nr_running++;
3972 if (cfs_rq_throttled(cfs_rq))
3975 update_cfs_shares(cfs_rq);
3976 update_entity_load_avg(se, 1);
3980 update_rq_runnable_avg(rq, rq->nr_running);
3981 add_nr_running(rq, 1);
3986 static void set_next_buddy(struct sched_entity *se);
3989 * The dequeue_task method is called before nr_running is
3990 * decreased. We remove the task from the rbtree and
3991 * update the fair scheduling stats:
3993 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3995 struct cfs_rq *cfs_rq;
3996 struct sched_entity *se = &p->se;
3997 int task_sleep = flags & DEQUEUE_SLEEP;
3999 for_each_sched_entity(se) {
4000 cfs_rq = cfs_rq_of(se);
4001 dequeue_entity(cfs_rq, se, flags);
4004 * end evaluation on encountering a throttled cfs_rq
4006 * note: in the case of encountering a throttled cfs_rq we will
4007 * post the final h_nr_running decrement below.
4009 if (cfs_rq_throttled(cfs_rq))
4011 cfs_rq->h_nr_running--;
4013 /* Don't dequeue parent if it has other entities besides us */
4014 if (cfs_rq->load.weight) {
4016 * Bias pick_next to pick a task from this cfs_rq, as
4017 * p is sleeping when it is within its sched_slice.
4019 if (task_sleep && parent_entity(se))
4020 set_next_buddy(parent_entity(se));
4022 /* avoid re-evaluating load for this entity */
4023 se = parent_entity(se);
4026 flags |= DEQUEUE_SLEEP;
4029 for_each_sched_entity(se) {
4030 cfs_rq = cfs_rq_of(se);
4031 cfs_rq->h_nr_running--;
4033 if (cfs_rq_throttled(cfs_rq))
4036 update_cfs_shares(cfs_rq);
4037 update_entity_load_avg(se, 1);
4041 sub_nr_running(rq, 1);
4042 update_rq_runnable_avg(rq, 1);
4048 /* Used instead of source_load when we know the type == 0 */
4049 static unsigned long weighted_cpuload(const int cpu)
4051 return cpu_rq(cpu)->cfs.runnable_load_avg;
4055 * Return a low guess at the load of a migration-source cpu weighted
4056 * according to the scheduling class and "nice" value.
4058 * We want to under-estimate the load of migration sources, to
4059 * balance conservatively.
4061 static unsigned long source_load(int cpu, int type)
4063 struct rq *rq = cpu_rq(cpu);
4064 unsigned long total = weighted_cpuload(cpu);
4066 if (type == 0 || !sched_feat(LB_BIAS))
4069 return min(rq->cpu_load[type-1], total);
4073 * Return a high guess at the load of a migration-target cpu weighted
4074 * according to the scheduling class and "nice" value.
4076 static unsigned long target_load(int cpu, int type)
4078 struct rq *rq = cpu_rq(cpu);
4079 unsigned long total = weighted_cpuload(cpu);
4081 if (type == 0 || !sched_feat(LB_BIAS))
4084 return max(rq->cpu_load[type-1], total);
4087 static unsigned long capacity_of(int cpu)
4089 return cpu_rq(cpu)->cpu_capacity;
4092 static unsigned long cpu_avg_load_per_task(int cpu)
4094 struct rq *rq = cpu_rq(cpu);
4095 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4096 unsigned long load_avg = rq->cfs.runnable_load_avg;
4099 return load_avg / nr_running;
4104 static void record_wakee(struct task_struct *p)
4107 * Rough decay (wiping) for cost saving, don't worry
4108 * about the boundary, really active task won't care
4111 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4112 current->wakee_flips >>= 1;
4113 current->wakee_flip_decay_ts = jiffies;
4116 if (current->last_wakee != p) {
4117 current->last_wakee = p;
4118 current->wakee_flips++;
4122 static void task_waking_fair(struct task_struct *p)
4124 struct sched_entity *se = &p->se;
4125 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4128 #ifndef CONFIG_64BIT
4129 u64 min_vruntime_copy;
4132 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4134 min_vruntime = cfs_rq->min_vruntime;
4135 } while (min_vruntime != min_vruntime_copy);
4137 min_vruntime = cfs_rq->min_vruntime;
4140 se->vruntime -= min_vruntime;
4144 #ifdef CONFIG_FAIR_GROUP_SCHED
4146 * effective_load() calculates the load change as seen from the root_task_group
4148 * Adding load to a group doesn't make a group heavier, but can cause movement
4149 * of group shares between cpus. Assuming the shares were perfectly aligned one
4150 * can calculate the shift in shares.
4152 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4153 * on this @cpu and results in a total addition (subtraction) of @wg to the
4154 * total group weight.
4156 * Given a runqueue weight distribution (rw_i) we can compute a shares
4157 * distribution (s_i) using:
4159 * s_i = rw_i / \Sum rw_j (1)
4161 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4162 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4163 * shares distribution (s_i):
4165 * rw_i = { 2, 4, 1, 0 }
4166 * s_i = { 2/7, 4/7, 1/7, 0 }
4168 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4169 * task used to run on and the CPU the waker is running on), we need to
4170 * compute the effect of waking a task on either CPU and, in case of a sync
4171 * wakeup, compute the effect of the current task going to sleep.
4173 * So for a change of @wl to the local @cpu with an overall group weight change
4174 * of @wl we can compute the new shares distribution (s'_i) using:
4176 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4178 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4179 * differences in waking a task to CPU 0. The additional task changes the
4180 * weight and shares distributions like:
4182 * rw'_i = { 3, 4, 1, 0 }
4183 * s'_i = { 3/8, 4/8, 1/8, 0 }
4185 * We can then compute the difference in effective weight by using:
4187 * dw_i = S * (s'_i - s_i) (3)
4189 * Where 'S' is the group weight as seen by its parent.
4191 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4192 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4193 * 4/7) times the weight of the group.
4195 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4197 struct sched_entity *se = tg->se[cpu];
4199 if (!tg->parent) /* the trivial, non-cgroup case */
4202 for_each_sched_entity(se) {
4208 * W = @wg + \Sum rw_j
4210 W = wg + calc_tg_weight(tg, se->my_q);
4215 w = se->my_q->load.weight + wl;
4218 * wl = S * s'_i; see (2)
4221 wl = (w * tg->shares) / W;
4226 * Per the above, wl is the new se->load.weight value; since
4227 * those are clipped to [MIN_SHARES, ...) do so now. See
4228 * calc_cfs_shares().
4230 if (wl < MIN_SHARES)
4234 * wl = dw_i = S * (s'_i - s_i); see (3)
4236 wl -= se->load.weight;
4239 * Recursively apply this logic to all parent groups to compute
4240 * the final effective load change on the root group. Since
4241 * only the @tg group gets extra weight, all parent groups can
4242 * only redistribute existing shares. @wl is the shift in shares
4243 * resulting from this level per the above.
4252 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4259 static int wake_wide(struct task_struct *p)
4261 int factor = this_cpu_read(sd_llc_size);
4264 * Yeah, it's the switching-frequency, could means many wakee or
4265 * rapidly switch, use factor here will just help to automatically
4266 * adjust the loose-degree, so bigger node will lead to more pull.
4268 if (p->wakee_flips > factor) {
4270 * wakee is somewhat hot, it needs certain amount of cpu
4271 * resource, so if waker is far more hot, prefer to leave
4274 if (current->wakee_flips > (factor * p->wakee_flips))
4281 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4283 s64 this_load, load;
4284 s64 this_eff_load, prev_eff_load;
4285 int idx, this_cpu, prev_cpu;
4286 struct task_group *tg;
4287 unsigned long weight;
4291 * If we wake multiple tasks be careful to not bounce
4292 * ourselves around too much.
4298 this_cpu = smp_processor_id();
4299 prev_cpu = task_cpu(p);
4300 load = source_load(prev_cpu, idx);
4301 this_load = target_load(this_cpu, idx);
4304 * If sync wakeup then subtract the (maximum possible)
4305 * effect of the currently running task from the load
4306 * of the current CPU:
4309 tg = task_group(current);
4310 weight = current->se.load.weight;
4312 this_load += effective_load(tg, this_cpu, -weight, -weight);
4313 load += effective_load(tg, prev_cpu, 0, -weight);
4317 weight = p->se.load.weight;
4320 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4321 * due to the sync cause above having dropped this_load to 0, we'll
4322 * always have an imbalance, but there's really nothing you can do
4323 * about that, so that's good too.
4325 * Otherwise check if either cpus are near enough in load to allow this
4326 * task to be woken on this_cpu.
4328 this_eff_load = 100;
4329 this_eff_load *= capacity_of(prev_cpu);
4331 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4332 prev_eff_load *= capacity_of(this_cpu);
4334 if (this_load > 0) {
4335 this_eff_load *= this_load +
4336 effective_load(tg, this_cpu, weight, weight);
4338 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4341 balanced = this_eff_load <= prev_eff_load;
4343 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4348 schedstat_inc(sd, ttwu_move_affine);
4349 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4355 * find_idlest_group finds and returns the least busy CPU group within the
4358 static struct sched_group *
4359 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4360 int this_cpu, int sd_flag)
4362 struct sched_group *idlest = NULL, *group = sd->groups;
4363 unsigned long min_load = ULONG_MAX, this_load = 0;
4364 int load_idx = sd->forkexec_idx;
4365 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4367 if (sd_flag & SD_BALANCE_WAKE)
4368 load_idx = sd->wake_idx;
4371 unsigned long load, avg_load;
4375 /* Skip over this group if it has no CPUs allowed */
4376 if (!cpumask_intersects(sched_group_cpus(group),
4377 tsk_cpus_allowed(p)))
4380 local_group = cpumask_test_cpu(this_cpu,
4381 sched_group_cpus(group));
4383 /* Tally up the load of all CPUs in the group */
4386 for_each_cpu(i, sched_group_cpus(group)) {
4387 /* Bias balancing toward cpus of our domain */
4389 load = source_load(i, load_idx);
4391 load = target_load(i, load_idx);
4396 /* Adjust by relative CPU capacity of the group */
4397 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4400 this_load = avg_load;
4401 } else if (avg_load < min_load) {
4402 min_load = avg_load;
4405 } while (group = group->next, group != sd->groups);
4407 if (!idlest || 100*this_load < imbalance*min_load)
4413 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4416 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4418 unsigned long load, min_load = ULONG_MAX;
4419 unsigned int min_exit_latency = UINT_MAX;
4420 u64 latest_idle_timestamp = 0;
4421 int least_loaded_cpu = this_cpu;
4422 int shallowest_idle_cpu = -1;
4425 /* Traverse only the allowed CPUs */
4426 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4428 struct rq *rq = cpu_rq(i);
4429 struct cpuidle_state *idle = idle_get_state(rq);
4430 if (idle && idle->exit_latency < min_exit_latency) {
4432 * We give priority to a CPU whose idle state
4433 * has the smallest exit latency irrespective
4434 * of any idle timestamp.
4436 min_exit_latency = idle->exit_latency;
4437 latest_idle_timestamp = rq->idle_stamp;
4438 shallowest_idle_cpu = i;
4439 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4440 rq->idle_stamp > latest_idle_timestamp) {
4442 * If equal or no active idle state, then
4443 * the most recently idled CPU might have
4446 latest_idle_timestamp = rq->idle_stamp;
4447 shallowest_idle_cpu = i;
4450 load = weighted_cpuload(i);
4451 if (load < min_load || (load == min_load && i == this_cpu)) {
4453 least_loaded_cpu = i;
4458 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4462 * Try and locate an idle CPU in the sched_domain.
4464 static int select_idle_sibling(struct task_struct *p, int target)
4466 struct sched_domain *sd;
4467 struct sched_group *sg;
4468 int i = task_cpu(p);
4470 if (idle_cpu(target))
4474 * If the prevous cpu is cache affine and idle, don't be stupid.
4476 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4480 * Otherwise, iterate the domains and find an elegible idle cpu.
4482 sd = rcu_dereference(per_cpu(sd_llc, target));
4483 for_each_lower_domain(sd) {
4486 if (!cpumask_intersects(sched_group_cpus(sg),
4487 tsk_cpus_allowed(p)))
4490 for_each_cpu(i, sched_group_cpus(sg)) {
4491 if (i == target || !idle_cpu(i))
4495 target = cpumask_first_and(sched_group_cpus(sg),
4496 tsk_cpus_allowed(p));
4500 } while (sg != sd->groups);
4507 * select_task_rq_fair: Select target runqueue for the waking task in domains
4508 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4509 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4511 * Balances load by selecting the idlest cpu in the idlest group, or under
4512 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4514 * Returns the target cpu number.
4516 * preempt must be disabled.
4519 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4521 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4522 int cpu = smp_processor_id();
4524 int want_affine = 0;
4525 int sync = wake_flags & WF_SYNC;
4527 if (p->nr_cpus_allowed == 1)
4530 if (sd_flag & SD_BALANCE_WAKE)
4531 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4534 for_each_domain(cpu, tmp) {
4535 if (!(tmp->flags & SD_LOAD_BALANCE))
4539 * If both cpu and prev_cpu are part of this domain,
4540 * cpu is a valid SD_WAKE_AFFINE target.
4542 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4543 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4548 if (tmp->flags & sd_flag)
4552 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4555 if (sd_flag & SD_BALANCE_WAKE) {
4556 new_cpu = select_idle_sibling(p, prev_cpu);
4561 struct sched_group *group;
4564 if (!(sd->flags & sd_flag)) {
4569 group = find_idlest_group(sd, p, cpu, sd_flag);
4575 new_cpu = find_idlest_cpu(group, p, cpu);
4576 if (new_cpu == -1 || new_cpu == cpu) {
4577 /* Now try balancing at a lower domain level of cpu */
4582 /* Now try balancing at a lower domain level of new_cpu */
4584 weight = sd->span_weight;
4586 for_each_domain(cpu, tmp) {
4587 if (weight <= tmp->span_weight)
4589 if (tmp->flags & sd_flag)
4592 /* while loop will break here if sd == NULL */
4601 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4602 * cfs_rq_of(p) references at time of call are still valid and identify the
4603 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4604 * other assumptions, including the state of rq->lock, should be made.
4607 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4609 struct sched_entity *se = &p->se;
4610 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4613 * Load tracking: accumulate removed load so that it can be processed
4614 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4615 * to blocked load iff they have a positive decay-count. It can never
4616 * be negative here since on-rq tasks have decay-count == 0.
4618 if (se->avg.decay_count) {
4619 se->avg.decay_count = -__synchronize_entity_decay(se);
4620 atomic_long_add(se->avg.load_avg_contrib,
4621 &cfs_rq->removed_load);
4624 /* We have migrated, no longer consider this task hot */
4627 #endif /* CONFIG_SMP */
4629 static unsigned long
4630 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4632 unsigned long gran = sysctl_sched_wakeup_granularity;
4635 * Since its curr running now, convert the gran from real-time
4636 * to virtual-time in his units.
4638 * By using 'se' instead of 'curr' we penalize light tasks, so
4639 * they get preempted easier. That is, if 'se' < 'curr' then
4640 * the resulting gran will be larger, therefore penalizing the
4641 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4642 * be smaller, again penalizing the lighter task.
4644 * This is especially important for buddies when the leftmost
4645 * task is higher priority than the buddy.
4647 return calc_delta_fair(gran, se);
4651 * Should 'se' preempt 'curr'.
4665 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4667 s64 gran, vdiff = curr->vruntime - se->vruntime;
4672 gran = wakeup_gran(curr, se);
4679 static void set_last_buddy(struct sched_entity *se)
4681 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4684 for_each_sched_entity(se)
4685 cfs_rq_of(se)->last = se;
4688 static void set_next_buddy(struct sched_entity *se)
4690 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4693 for_each_sched_entity(se)
4694 cfs_rq_of(se)->next = se;
4697 static void set_skip_buddy(struct sched_entity *se)
4699 for_each_sched_entity(se)
4700 cfs_rq_of(se)->skip = se;
4704 * Preempt the current task with a newly woken task if needed:
4706 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4708 struct task_struct *curr = rq->curr;
4709 struct sched_entity *se = &curr->se, *pse = &p->se;
4710 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4711 int scale = cfs_rq->nr_running >= sched_nr_latency;
4712 int next_buddy_marked = 0;
4714 if (unlikely(se == pse))
4718 * This is possible from callers such as attach_tasks(), in which we
4719 * unconditionally check_prempt_curr() after an enqueue (which may have
4720 * lead to a throttle). This both saves work and prevents false
4721 * next-buddy nomination below.
4723 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4726 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4727 set_next_buddy(pse);
4728 next_buddy_marked = 1;
4732 * We can come here with TIF_NEED_RESCHED already set from new task
4735 * Note: this also catches the edge-case of curr being in a throttled
4736 * group (e.g. via set_curr_task), since update_curr() (in the
4737 * enqueue of curr) will have resulted in resched being set. This
4738 * prevents us from potentially nominating it as a false LAST_BUDDY
4741 if (test_tsk_need_resched(curr))
4744 /* Idle tasks are by definition preempted by non-idle tasks. */
4745 if (unlikely(curr->policy == SCHED_IDLE) &&
4746 likely(p->policy != SCHED_IDLE))
4750 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4751 * is driven by the tick):
4753 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4756 find_matching_se(&se, &pse);
4757 update_curr(cfs_rq_of(se));
4759 if (wakeup_preempt_entity(se, pse) == 1) {
4761 * Bias pick_next to pick the sched entity that is
4762 * triggering this preemption.
4764 if (!next_buddy_marked)
4765 set_next_buddy(pse);
4774 * Only set the backward buddy when the current task is still
4775 * on the rq. This can happen when a wakeup gets interleaved
4776 * with schedule on the ->pre_schedule() or idle_balance()
4777 * point, either of which can * drop the rq lock.
4779 * Also, during early boot the idle thread is in the fair class,
4780 * for obvious reasons its a bad idea to schedule back to it.
4782 if (unlikely(!se->on_rq || curr == rq->idle))
4785 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4789 static struct task_struct *
4790 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4792 struct cfs_rq *cfs_rq = &rq->cfs;
4793 struct sched_entity *se;
4794 struct task_struct *p;
4798 #ifdef CONFIG_FAIR_GROUP_SCHED
4799 if (!cfs_rq->nr_running)
4802 if (prev->sched_class != &fair_sched_class)
4806 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4807 * likely that a next task is from the same cgroup as the current.
4809 * Therefore attempt to avoid putting and setting the entire cgroup
4810 * hierarchy, only change the part that actually changes.
4814 struct sched_entity *curr = cfs_rq->curr;
4817 * Since we got here without doing put_prev_entity() we also
4818 * have to consider cfs_rq->curr. If it is still a runnable
4819 * entity, update_curr() will update its vruntime, otherwise
4820 * forget we've ever seen it.
4822 if (curr && curr->on_rq)
4823 update_curr(cfs_rq);
4828 * This call to check_cfs_rq_runtime() will do the throttle and
4829 * dequeue its entity in the parent(s). Therefore the 'simple'
4830 * nr_running test will indeed be correct.
4832 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4835 se = pick_next_entity(cfs_rq, curr);
4836 cfs_rq = group_cfs_rq(se);
4842 * Since we haven't yet done put_prev_entity and if the selected task
4843 * is a different task than we started out with, try and touch the
4844 * least amount of cfs_rqs.
4847 struct sched_entity *pse = &prev->se;
4849 while (!(cfs_rq = is_same_group(se, pse))) {
4850 int se_depth = se->depth;
4851 int pse_depth = pse->depth;
4853 if (se_depth <= pse_depth) {
4854 put_prev_entity(cfs_rq_of(pse), pse);
4855 pse = parent_entity(pse);
4857 if (se_depth >= pse_depth) {
4858 set_next_entity(cfs_rq_of(se), se);
4859 se = parent_entity(se);
4863 put_prev_entity(cfs_rq, pse);
4864 set_next_entity(cfs_rq, se);
4867 if (hrtick_enabled(rq))
4868 hrtick_start_fair(rq, p);
4875 if (!cfs_rq->nr_running)
4878 put_prev_task(rq, prev);
4881 se = pick_next_entity(cfs_rq, NULL);
4882 set_next_entity(cfs_rq, se);
4883 cfs_rq = group_cfs_rq(se);
4888 if (hrtick_enabled(rq))
4889 hrtick_start_fair(rq, p);
4894 new_tasks = idle_balance(rq);
4896 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4897 * possible for any higher priority task to appear. In that case we
4898 * must re-start the pick_next_entity() loop.
4910 * Account for a descheduled task:
4912 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4914 struct sched_entity *se = &prev->se;
4915 struct cfs_rq *cfs_rq;
4917 for_each_sched_entity(se) {
4918 cfs_rq = cfs_rq_of(se);
4919 put_prev_entity(cfs_rq, se);
4924 * sched_yield() is very simple
4926 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4928 static void yield_task_fair(struct rq *rq)
4930 struct task_struct *curr = rq->curr;
4931 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4932 struct sched_entity *se = &curr->se;
4935 * Are we the only task in the tree?
4937 if (unlikely(rq->nr_running == 1))
4940 clear_buddies(cfs_rq, se);
4942 if (curr->policy != SCHED_BATCH) {
4943 update_rq_clock(rq);
4945 * Update run-time statistics of the 'current'.
4947 update_curr(cfs_rq);
4949 * Tell update_rq_clock() that we've just updated,
4950 * so we don't do microscopic update in schedule()
4951 * and double the fastpath cost.
4953 rq->skip_clock_update = 1;
4959 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4961 struct sched_entity *se = &p->se;
4963 /* throttled hierarchies are not runnable */
4964 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4967 /* Tell the scheduler that we'd really like pse to run next. */
4970 yield_task_fair(rq);
4976 /**************************************************
4977 * Fair scheduling class load-balancing methods.
4981 * The purpose of load-balancing is to achieve the same basic fairness the
4982 * per-cpu scheduler provides, namely provide a proportional amount of compute
4983 * time to each task. This is expressed in the following equation:
4985 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4987 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4988 * W_i,0 is defined as:
4990 * W_i,0 = \Sum_j w_i,j (2)
4992 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4993 * is derived from the nice value as per prio_to_weight[].
4995 * The weight average is an exponential decay average of the instantaneous
4998 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5000 * C_i is the compute capacity of cpu i, typically it is the
5001 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5002 * can also include other factors [XXX].
5004 * To achieve this balance we define a measure of imbalance which follows
5005 * directly from (1):
5007 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5009 * We them move tasks around to minimize the imbalance. In the continuous
5010 * function space it is obvious this converges, in the discrete case we get
5011 * a few fun cases generally called infeasible weight scenarios.
5014 * - infeasible weights;
5015 * - local vs global optima in the discrete case. ]
5020 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5021 * for all i,j solution, we create a tree of cpus that follows the hardware
5022 * topology where each level pairs two lower groups (or better). This results
5023 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5024 * tree to only the first of the previous level and we decrease the frequency
5025 * of load-balance at each level inv. proportional to the number of cpus in
5031 * \Sum { --- * --- * 2^i } = O(n) (5)
5033 * `- size of each group
5034 * | | `- number of cpus doing load-balance
5036 * `- sum over all levels
5038 * Coupled with a limit on how many tasks we can migrate every balance pass,
5039 * this makes (5) the runtime complexity of the balancer.
5041 * An important property here is that each CPU is still (indirectly) connected
5042 * to every other cpu in at most O(log n) steps:
5044 * The adjacency matrix of the resulting graph is given by:
5047 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5050 * And you'll find that:
5052 * A^(log_2 n)_i,j != 0 for all i,j (7)
5054 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5055 * The task movement gives a factor of O(m), giving a convergence complexity
5058 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5063 * In order to avoid CPUs going idle while there's still work to do, new idle
5064 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5065 * tree itself instead of relying on other CPUs to bring it work.
5067 * This adds some complexity to both (5) and (8) but it reduces the total idle
5075 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5078 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5083 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5085 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5087 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5090 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5091 * rewrite all of this once again.]
5094 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5096 enum fbq_type { regular, remote, all };
5098 #define LBF_ALL_PINNED 0x01
5099 #define LBF_NEED_BREAK 0x02
5100 #define LBF_DST_PINNED 0x04
5101 #define LBF_SOME_PINNED 0x08
5104 struct sched_domain *sd;
5112 struct cpumask *dst_grpmask;
5114 enum cpu_idle_type idle;
5116 /* The set of CPUs under consideration for load-balancing */
5117 struct cpumask *cpus;
5122 unsigned int loop_break;
5123 unsigned int loop_max;
5125 enum fbq_type fbq_type;
5126 struct list_head tasks;
5130 * Is this task likely cache-hot:
5132 static int task_hot(struct task_struct *p, struct lb_env *env)
5136 lockdep_assert_held(&env->src_rq->lock);
5138 if (p->sched_class != &fair_sched_class)
5141 if (unlikely(p->policy == SCHED_IDLE))
5145 * Buddy candidates are cache hot:
5147 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5148 (&p->se == cfs_rq_of(&p->se)->next ||
5149 &p->se == cfs_rq_of(&p->se)->last))
5152 if (sysctl_sched_migration_cost == -1)
5154 if (sysctl_sched_migration_cost == 0)
5157 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5159 return delta < (s64)sysctl_sched_migration_cost;
5162 #ifdef CONFIG_NUMA_BALANCING
5163 /* Returns true if the destination node has incurred more faults */
5164 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5166 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5167 int src_nid, dst_nid;
5169 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5170 !(env->sd->flags & SD_NUMA)) {
5174 src_nid = cpu_to_node(env->src_cpu);
5175 dst_nid = cpu_to_node(env->dst_cpu);
5177 if (src_nid == dst_nid)
5181 /* Task is already in the group's interleave set. */
5182 if (node_isset(src_nid, numa_group->active_nodes))
5185 /* Task is moving into the group's interleave set. */
5186 if (node_isset(dst_nid, numa_group->active_nodes))
5189 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5192 /* Encourage migration to the preferred node. */
5193 if (dst_nid == p->numa_preferred_nid)
5196 return task_faults(p, dst_nid) > task_faults(p, src_nid);
5200 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5202 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5203 int src_nid, dst_nid;
5205 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5208 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5211 src_nid = cpu_to_node(env->src_cpu);
5212 dst_nid = cpu_to_node(env->dst_cpu);
5214 if (src_nid == dst_nid)
5218 /* Task is moving within/into the group's interleave set. */
5219 if (node_isset(dst_nid, numa_group->active_nodes))
5222 /* Task is moving out of the group's interleave set. */
5223 if (node_isset(src_nid, numa_group->active_nodes))
5226 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5229 /* Migrating away from the preferred node is always bad. */
5230 if (src_nid == p->numa_preferred_nid)
5233 return task_faults(p, dst_nid) < task_faults(p, src_nid);
5237 static inline bool migrate_improves_locality(struct task_struct *p,
5243 static inline bool migrate_degrades_locality(struct task_struct *p,
5251 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5254 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5256 int tsk_cache_hot = 0;
5258 lockdep_assert_held(&env->src_rq->lock);
5261 * We do not migrate tasks that are:
5262 * 1) throttled_lb_pair, or
5263 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5264 * 3) running (obviously), or
5265 * 4) are cache-hot on their current CPU.
5267 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5270 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5273 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5275 env->flags |= LBF_SOME_PINNED;
5278 * Remember if this task can be migrated to any other cpu in
5279 * our sched_group. We may want to revisit it if we couldn't
5280 * meet load balance goals by pulling other tasks on src_cpu.
5282 * Also avoid computing new_dst_cpu if we have already computed
5283 * one in current iteration.
5285 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5288 /* Prevent to re-select dst_cpu via env's cpus */
5289 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5290 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5291 env->flags |= LBF_DST_PINNED;
5292 env->new_dst_cpu = cpu;
5300 /* Record that we found atleast one task that could run on dst_cpu */
5301 env->flags &= ~LBF_ALL_PINNED;
5303 if (task_running(env->src_rq, p)) {
5304 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5309 * Aggressive migration if:
5310 * 1) destination numa is preferred
5311 * 2) task is cache cold, or
5312 * 3) too many balance attempts have failed.
5314 tsk_cache_hot = task_hot(p, env);
5316 tsk_cache_hot = migrate_degrades_locality(p, env);
5318 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5319 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5320 if (tsk_cache_hot) {
5321 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5322 schedstat_inc(p, se.statistics.nr_forced_migrations);
5327 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5332 * detach_task() -- detach the task for the migration specified in env
5334 static void detach_task(struct task_struct *p, struct lb_env *env)
5336 lockdep_assert_held(&env->src_rq->lock);
5338 deactivate_task(env->src_rq, p, 0);
5339 p->on_rq = TASK_ON_RQ_MIGRATING;
5340 set_task_cpu(p, env->dst_cpu);
5344 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5345 * part of active balancing operations within "domain".
5347 * Returns a task if successful and NULL otherwise.
5349 static struct task_struct *detach_one_task(struct lb_env *env)
5351 struct task_struct *p, *n;
5353 lockdep_assert_held(&env->src_rq->lock);
5355 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5356 if (!can_migrate_task(p, env))
5359 detach_task(p, env);
5362 * Right now, this is only the second place where
5363 * lb_gained[env->idle] is updated (other is detach_tasks)
5364 * so we can safely collect stats here rather than
5365 * inside detach_tasks().
5367 schedstat_inc(env->sd, lb_gained[env->idle]);
5373 static const unsigned int sched_nr_migrate_break = 32;
5376 * detach_tasks() -- tries to detach up to imbalance weighted load from
5377 * busiest_rq, as part of a balancing operation within domain "sd".
5379 * Returns number of detached tasks if successful and 0 otherwise.
5381 static int detach_tasks(struct lb_env *env)
5383 struct list_head *tasks = &env->src_rq->cfs_tasks;
5384 struct task_struct *p;
5388 lockdep_assert_held(&env->src_rq->lock);
5390 if (env->imbalance <= 0)
5393 while (!list_empty(tasks)) {
5394 p = list_first_entry(tasks, struct task_struct, se.group_node);
5397 /* We've more or less seen every task there is, call it quits */
5398 if (env->loop > env->loop_max)
5401 /* take a breather every nr_migrate tasks */
5402 if (env->loop > env->loop_break) {
5403 env->loop_break += sched_nr_migrate_break;
5404 env->flags |= LBF_NEED_BREAK;
5408 if (!can_migrate_task(p, env))
5411 load = task_h_load(p);
5413 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5416 if ((load / 2) > env->imbalance)
5419 detach_task(p, env);
5420 list_add(&p->se.group_node, &env->tasks);
5423 env->imbalance -= load;
5425 #ifdef CONFIG_PREEMPT
5427 * NEWIDLE balancing is a source of latency, so preemptible
5428 * kernels will stop after the first task is detached to minimize
5429 * the critical section.
5431 if (env->idle == CPU_NEWLY_IDLE)
5436 * We only want to steal up to the prescribed amount of
5439 if (env->imbalance <= 0)
5444 list_move_tail(&p->se.group_node, tasks);
5448 * Right now, this is one of only two places we collect this stat
5449 * so we can safely collect detach_one_task() stats here rather
5450 * than inside detach_one_task().
5452 schedstat_add(env->sd, lb_gained[env->idle], detached);
5458 * attach_task() -- attach the task detached by detach_task() to its new rq.
5460 static void attach_task(struct rq *rq, struct task_struct *p)
5462 lockdep_assert_held(&rq->lock);
5464 BUG_ON(task_rq(p) != rq);
5465 p->on_rq = TASK_ON_RQ_QUEUED;
5466 activate_task(rq, p, 0);
5467 check_preempt_curr(rq, p, 0);
5471 * attach_one_task() -- attaches the task returned from detach_one_task() to
5474 static void attach_one_task(struct rq *rq, struct task_struct *p)
5476 raw_spin_lock(&rq->lock);
5478 raw_spin_unlock(&rq->lock);
5482 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5485 static void attach_tasks(struct lb_env *env)
5487 struct list_head *tasks = &env->tasks;
5488 struct task_struct *p;
5490 raw_spin_lock(&env->dst_rq->lock);
5492 while (!list_empty(tasks)) {
5493 p = list_first_entry(tasks, struct task_struct, se.group_node);
5494 list_del_init(&p->se.group_node);
5496 attach_task(env->dst_rq, p);
5499 raw_spin_unlock(&env->dst_rq->lock);
5502 #ifdef CONFIG_FAIR_GROUP_SCHED
5504 * update tg->load_weight by folding this cpu's load_avg
5506 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5508 struct sched_entity *se = tg->se[cpu];
5509 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5511 /* throttled entities do not contribute to load */
5512 if (throttled_hierarchy(cfs_rq))
5515 update_cfs_rq_blocked_load(cfs_rq, 1);
5518 update_entity_load_avg(se, 1);
5520 * We pivot on our runnable average having decayed to zero for
5521 * list removal. This generally implies that all our children
5522 * have also been removed (modulo rounding error or bandwidth
5523 * control); however, such cases are rare and we can fix these
5526 * TODO: fix up out-of-order children on enqueue.
5528 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5529 list_del_leaf_cfs_rq(cfs_rq);
5531 struct rq *rq = rq_of(cfs_rq);
5532 update_rq_runnable_avg(rq, rq->nr_running);
5536 static void update_blocked_averages(int cpu)
5538 struct rq *rq = cpu_rq(cpu);
5539 struct cfs_rq *cfs_rq;
5540 unsigned long flags;
5542 raw_spin_lock_irqsave(&rq->lock, flags);
5543 update_rq_clock(rq);
5545 * Iterates the task_group tree in a bottom up fashion, see
5546 * list_add_leaf_cfs_rq() for details.
5548 for_each_leaf_cfs_rq(rq, cfs_rq) {
5550 * Note: We may want to consider periodically releasing
5551 * rq->lock about these updates so that creating many task
5552 * groups does not result in continually extending hold time.
5554 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5557 raw_spin_unlock_irqrestore(&rq->lock, flags);
5561 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5562 * This needs to be done in a top-down fashion because the load of a child
5563 * group is a fraction of its parents load.
5565 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5567 struct rq *rq = rq_of(cfs_rq);
5568 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5569 unsigned long now = jiffies;
5572 if (cfs_rq->last_h_load_update == now)
5575 cfs_rq->h_load_next = NULL;
5576 for_each_sched_entity(se) {
5577 cfs_rq = cfs_rq_of(se);
5578 cfs_rq->h_load_next = se;
5579 if (cfs_rq->last_h_load_update == now)
5584 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5585 cfs_rq->last_h_load_update = now;
5588 while ((se = cfs_rq->h_load_next) != NULL) {
5589 load = cfs_rq->h_load;
5590 load = div64_ul(load * se->avg.load_avg_contrib,
5591 cfs_rq->runnable_load_avg + 1);
5592 cfs_rq = group_cfs_rq(se);
5593 cfs_rq->h_load = load;
5594 cfs_rq->last_h_load_update = now;
5598 static unsigned long task_h_load(struct task_struct *p)
5600 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5602 update_cfs_rq_h_load(cfs_rq);
5603 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5604 cfs_rq->runnable_load_avg + 1);
5607 static inline void update_blocked_averages(int cpu)
5611 static unsigned long task_h_load(struct task_struct *p)
5613 return p->se.avg.load_avg_contrib;
5617 /********** Helpers for find_busiest_group ************************/
5626 * sg_lb_stats - stats of a sched_group required for load_balancing
5628 struct sg_lb_stats {
5629 unsigned long avg_load; /*Avg load across the CPUs of the group */
5630 unsigned long group_load; /* Total load over the CPUs of the group */
5631 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5632 unsigned long load_per_task;
5633 unsigned long group_capacity;
5634 unsigned int sum_nr_running; /* Nr tasks running in the group */
5635 unsigned int group_capacity_factor;
5636 unsigned int idle_cpus;
5637 unsigned int group_weight;
5638 enum group_type group_type;
5639 int group_has_free_capacity;
5640 #ifdef CONFIG_NUMA_BALANCING
5641 unsigned int nr_numa_running;
5642 unsigned int nr_preferred_running;
5647 * sd_lb_stats - Structure to store the statistics of a sched_domain
5648 * during load balancing.
5650 struct sd_lb_stats {
5651 struct sched_group *busiest; /* Busiest group in this sd */
5652 struct sched_group *local; /* Local group in this sd */
5653 unsigned long total_load; /* Total load of all groups in sd */
5654 unsigned long total_capacity; /* Total capacity of all groups in sd */
5655 unsigned long avg_load; /* Average load across all groups in sd */
5657 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5658 struct sg_lb_stats local_stat; /* Statistics of the local group */
5661 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5664 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5665 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5666 * We must however clear busiest_stat::avg_load because
5667 * update_sd_pick_busiest() reads this before assignment.
5669 *sds = (struct sd_lb_stats){
5673 .total_capacity = 0UL,
5676 .sum_nr_running = 0,
5677 .group_type = group_other,
5683 * get_sd_load_idx - Obtain the load index for a given sched domain.
5684 * @sd: The sched_domain whose load_idx is to be obtained.
5685 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5687 * Return: The load index.
5689 static inline int get_sd_load_idx(struct sched_domain *sd,
5690 enum cpu_idle_type idle)
5696 load_idx = sd->busy_idx;
5699 case CPU_NEWLY_IDLE:
5700 load_idx = sd->newidle_idx;
5703 load_idx = sd->idle_idx;
5710 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5712 return SCHED_CAPACITY_SCALE;
5715 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5717 return default_scale_capacity(sd, cpu);
5720 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5722 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5723 return sd->smt_gain / sd->span_weight;
5725 return SCHED_CAPACITY_SCALE;
5728 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5730 return default_scale_cpu_capacity(sd, cpu);
5733 static unsigned long scale_rt_capacity(int cpu)
5735 struct rq *rq = cpu_rq(cpu);
5736 u64 total, available, age_stamp, avg;
5740 * Since we're reading these variables without serialization make sure
5741 * we read them once before doing sanity checks on them.
5743 age_stamp = ACCESS_ONCE(rq->age_stamp);
5744 avg = ACCESS_ONCE(rq->rt_avg);
5746 delta = rq_clock(rq) - age_stamp;
5747 if (unlikely(delta < 0))
5750 total = sched_avg_period() + delta;
5752 if (unlikely(total < avg)) {
5753 /* Ensures that capacity won't end up being negative */
5756 available = total - avg;
5759 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5760 total = SCHED_CAPACITY_SCALE;
5762 total >>= SCHED_CAPACITY_SHIFT;
5764 return div_u64(available, total);
5767 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5769 unsigned long capacity = SCHED_CAPACITY_SCALE;
5770 struct sched_group *sdg = sd->groups;
5772 if (sched_feat(ARCH_CAPACITY))
5773 capacity *= arch_scale_cpu_capacity(sd, cpu);
5775 capacity *= default_scale_cpu_capacity(sd, cpu);
5777 capacity >>= SCHED_CAPACITY_SHIFT;
5779 sdg->sgc->capacity_orig = capacity;
5781 if (sched_feat(ARCH_CAPACITY))
5782 capacity *= arch_scale_freq_capacity(sd, cpu);
5784 capacity *= default_scale_capacity(sd, cpu);
5786 capacity >>= SCHED_CAPACITY_SHIFT;
5788 capacity *= scale_rt_capacity(cpu);
5789 capacity >>= SCHED_CAPACITY_SHIFT;
5794 cpu_rq(cpu)->cpu_capacity = capacity;
5795 sdg->sgc->capacity = capacity;
5798 void update_group_capacity(struct sched_domain *sd, int cpu)
5800 struct sched_domain *child = sd->child;
5801 struct sched_group *group, *sdg = sd->groups;
5802 unsigned long capacity, capacity_orig;
5803 unsigned long interval;
5805 interval = msecs_to_jiffies(sd->balance_interval);
5806 interval = clamp(interval, 1UL, max_load_balance_interval);
5807 sdg->sgc->next_update = jiffies + interval;
5810 update_cpu_capacity(sd, cpu);
5814 capacity_orig = capacity = 0;
5816 if (child->flags & SD_OVERLAP) {
5818 * SD_OVERLAP domains cannot assume that child groups
5819 * span the current group.
5822 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5823 struct sched_group_capacity *sgc;
5824 struct rq *rq = cpu_rq(cpu);
5827 * build_sched_domains() -> init_sched_groups_capacity()
5828 * gets here before we've attached the domains to the
5831 * Use capacity_of(), which is set irrespective of domains
5832 * in update_cpu_capacity().
5834 * This avoids capacity/capacity_orig from being 0 and
5835 * causing divide-by-zero issues on boot.
5837 * Runtime updates will correct capacity_orig.
5839 if (unlikely(!rq->sd)) {
5840 capacity_orig += capacity_of(cpu);
5841 capacity += capacity_of(cpu);
5845 sgc = rq->sd->groups->sgc;
5846 capacity_orig += sgc->capacity_orig;
5847 capacity += sgc->capacity;
5851 * !SD_OVERLAP domains can assume that child groups
5852 * span the current group.
5855 group = child->groups;
5857 capacity_orig += group->sgc->capacity_orig;
5858 capacity += group->sgc->capacity;
5859 group = group->next;
5860 } while (group != child->groups);
5863 sdg->sgc->capacity_orig = capacity_orig;
5864 sdg->sgc->capacity = capacity;
5868 * Try and fix up capacity for tiny siblings, this is needed when
5869 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5870 * which on its own isn't powerful enough.
5872 * See update_sd_pick_busiest() and check_asym_packing().
5875 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5878 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5880 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5884 * If ~90% of the cpu_capacity is still there, we're good.
5886 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5893 * Group imbalance indicates (and tries to solve) the problem where balancing
5894 * groups is inadequate due to tsk_cpus_allowed() constraints.
5896 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5897 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5900 * { 0 1 2 3 } { 4 5 6 7 }
5903 * If we were to balance group-wise we'd place two tasks in the first group and
5904 * two tasks in the second group. Clearly this is undesired as it will overload
5905 * cpu 3 and leave one of the cpus in the second group unused.
5907 * The current solution to this issue is detecting the skew in the first group
5908 * by noticing the lower domain failed to reach balance and had difficulty
5909 * moving tasks due to affinity constraints.
5911 * When this is so detected; this group becomes a candidate for busiest; see
5912 * update_sd_pick_busiest(). And calculate_imbalance() and
5913 * find_busiest_group() avoid some of the usual balance conditions to allow it
5914 * to create an effective group imbalance.
5916 * This is a somewhat tricky proposition since the next run might not find the
5917 * group imbalance and decide the groups need to be balanced again. A most
5918 * subtle and fragile situation.
5921 static inline int sg_imbalanced(struct sched_group *group)
5923 return group->sgc->imbalance;
5927 * Compute the group capacity factor.
5929 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5930 * first dividing out the smt factor and computing the actual number of cores
5931 * and limit unit capacity with that.
5933 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5935 unsigned int capacity_factor, smt, cpus;
5936 unsigned int capacity, capacity_orig;
5938 capacity = group->sgc->capacity;
5939 capacity_orig = group->sgc->capacity_orig;
5940 cpus = group->group_weight;
5942 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5943 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5944 capacity_factor = cpus / smt; /* cores */
5946 capacity_factor = min_t(unsigned,
5947 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5948 if (!capacity_factor)
5949 capacity_factor = fix_small_capacity(env->sd, group);
5951 return capacity_factor;
5954 static enum group_type
5955 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5957 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5958 return group_overloaded;
5960 if (sg_imbalanced(group))
5961 return group_imbalanced;
5967 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5968 * @env: The load balancing environment.
5969 * @group: sched_group whose statistics are to be updated.
5970 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5971 * @local_group: Does group contain this_cpu.
5972 * @sgs: variable to hold the statistics for this group.
5973 * @overload: Indicate more than one runnable task for any CPU.
5975 static inline void update_sg_lb_stats(struct lb_env *env,
5976 struct sched_group *group, int load_idx,
5977 int local_group, struct sg_lb_stats *sgs,
5983 memset(sgs, 0, sizeof(*sgs));
5985 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5986 struct rq *rq = cpu_rq(i);
5988 /* Bias balancing toward cpus of our domain */
5990 load = target_load(i, load_idx);
5992 load = source_load(i, load_idx);
5994 sgs->group_load += load;
5995 sgs->sum_nr_running += rq->cfs.h_nr_running;
5997 if (rq->nr_running > 1)
6000 #ifdef CONFIG_NUMA_BALANCING
6001 sgs->nr_numa_running += rq->nr_numa_running;
6002 sgs->nr_preferred_running += rq->nr_preferred_running;
6004 sgs->sum_weighted_load += weighted_cpuload(i);
6009 /* Adjust by relative CPU capacity of the group */
6010 sgs->group_capacity = group->sgc->capacity;
6011 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6013 if (sgs->sum_nr_running)
6014 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6016 sgs->group_weight = group->group_weight;
6017 sgs->group_capacity_factor = sg_capacity_factor(env, group);
6018 sgs->group_type = group_classify(group, sgs);
6020 if (sgs->group_capacity_factor > sgs->sum_nr_running)
6021 sgs->group_has_free_capacity = 1;
6025 * update_sd_pick_busiest - return 1 on busiest group
6026 * @env: The load balancing environment.
6027 * @sds: sched_domain statistics
6028 * @sg: sched_group candidate to be checked for being the busiest
6029 * @sgs: sched_group statistics
6031 * Determine if @sg is a busier group than the previously selected
6034 * Return: %true if @sg is a busier group than the previously selected
6035 * busiest group. %false otherwise.
6037 static bool update_sd_pick_busiest(struct lb_env *env,
6038 struct sd_lb_stats *sds,
6039 struct sched_group *sg,
6040 struct sg_lb_stats *sgs)
6042 struct sg_lb_stats *busiest = &sds->busiest_stat;
6044 if (sgs->group_type > busiest->group_type)
6047 if (sgs->group_type < busiest->group_type)
6050 if (sgs->avg_load <= busiest->avg_load)
6053 /* This is the busiest node in its class. */
6054 if (!(env->sd->flags & SD_ASYM_PACKING))
6058 * ASYM_PACKING needs to move all the work to the lowest
6059 * numbered CPUs in the group, therefore mark all groups
6060 * higher than ourself as busy.
6062 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6066 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6073 #ifdef CONFIG_NUMA_BALANCING
6074 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6076 if (sgs->sum_nr_running > sgs->nr_numa_running)
6078 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6083 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6085 if (rq->nr_running > rq->nr_numa_running)
6087 if (rq->nr_running > rq->nr_preferred_running)
6092 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6097 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6101 #endif /* CONFIG_NUMA_BALANCING */
6104 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6105 * @env: The load balancing environment.
6106 * @sds: variable to hold the statistics for this sched_domain.
6108 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6110 struct sched_domain *child = env->sd->child;
6111 struct sched_group *sg = env->sd->groups;
6112 struct sg_lb_stats tmp_sgs;
6113 int load_idx, prefer_sibling = 0;
6114 bool overload = false;
6116 if (child && child->flags & SD_PREFER_SIBLING)
6119 load_idx = get_sd_load_idx(env->sd, env->idle);
6122 struct sg_lb_stats *sgs = &tmp_sgs;
6125 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6128 sgs = &sds->local_stat;
6130 if (env->idle != CPU_NEWLY_IDLE ||
6131 time_after_eq(jiffies, sg->sgc->next_update))
6132 update_group_capacity(env->sd, env->dst_cpu);
6135 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6142 * In case the child domain prefers tasks go to siblings
6143 * first, lower the sg capacity factor to one so that we'll try
6144 * and move all the excess tasks away. We lower the capacity
6145 * of a group only if the local group has the capacity to fit
6146 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6147 * extra check prevents the case where you always pull from the
6148 * heaviest group when it is already under-utilized (possible
6149 * with a large weight task outweighs the tasks on the system).
6151 if (prefer_sibling && sds->local &&
6152 sds->local_stat.group_has_free_capacity)
6153 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6155 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6157 sds->busiest_stat = *sgs;
6161 /* Now, start updating sd_lb_stats */
6162 sds->total_load += sgs->group_load;
6163 sds->total_capacity += sgs->group_capacity;
6166 } while (sg != env->sd->groups);
6168 if (env->sd->flags & SD_NUMA)
6169 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6171 if (!env->sd->parent) {
6172 /* update overload indicator if we are at root domain */
6173 if (env->dst_rq->rd->overload != overload)
6174 env->dst_rq->rd->overload = overload;
6180 * check_asym_packing - Check to see if the group is packed into the
6183 * This is primarily intended to used at the sibling level. Some
6184 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6185 * case of POWER7, it can move to lower SMT modes only when higher
6186 * threads are idle. When in lower SMT modes, the threads will
6187 * perform better since they share less core resources. Hence when we
6188 * have idle threads, we want them to be the higher ones.
6190 * This packing function is run on idle threads. It checks to see if
6191 * the busiest CPU in this domain (core in the P7 case) has a higher
6192 * CPU number than the packing function is being run on. Here we are
6193 * assuming lower CPU number will be equivalent to lower a SMT thread
6196 * Return: 1 when packing is required and a task should be moved to
6197 * this CPU. The amount of the imbalance is returned in *imbalance.
6199 * @env: The load balancing environment.
6200 * @sds: Statistics of the sched_domain which is to be packed
6202 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6206 if (!(env->sd->flags & SD_ASYM_PACKING))
6212 busiest_cpu = group_first_cpu(sds->busiest);
6213 if (env->dst_cpu > busiest_cpu)
6216 env->imbalance = DIV_ROUND_CLOSEST(
6217 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6218 SCHED_CAPACITY_SCALE);
6224 * fix_small_imbalance - Calculate the minor imbalance that exists
6225 * amongst the groups of a sched_domain, during
6227 * @env: The load balancing environment.
6228 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6231 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6233 unsigned long tmp, capa_now = 0, capa_move = 0;
6234 unsigned int imbn = 2;
6235 unsigned long scaled_busy_load_per_task;
6236 struct sg_lb_stats *local, *busiest;
6238 local = &sds->local_stat;
6239 busiest = &sds->busiest_stat;
6241 if (!local->sum_nr_running)
6242 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6243 else if (busiest->load_per_task > local->load_per_task)
6246 scaled_busy_load_per_task =
6247 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6248 busiest->group_capacity;
6250 if (busiest->avg_load + scaled_busy_load_per_task >=
6251 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6252 env->imbalance = busiest->load_per_task;
6257 * OK, we don't have enough imbalance to justify moving tasks,
6258 * however we may be able to increase total CPU capacity used by
6262 capa_now += busiest->group_capacity *
6263 min(busiest->load_per_task, busiest->avg_load);
6264 capa_now += local->group_capacity *
6265 min(local->load_per_task, local->avg_load);
6266 capa_now /= SCHED_CAPACITY_SCALE;
6268 /* Amount of load we'd subtract */
6269 if (busiest->avg_load > scaled_busy_load_per_task) {
6270 capa_move += busiest->group_capacity *
6271 min(busiest->load_per_task,
6272 busiest->avg_load - scaled_busy_load_per_task);
6275 /* Amount of load we'd add */
6276 if (busiest->avg_load * busiest->group_capacity <
6277 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6278 tmp = (busiest->avg_load * busiest->group_capacity) /
6279 local->group_capacity;
6281 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6282 local->group_capacity;
6284 capa_move += local->group_capacity *
6285 min(local->load_per_task, local->avg_load + tmp);
6286 capa_move /= SCHED_CAPACITY_SCALE;
6288 /* Move if we gain throughput */
6289 if (capa_move > capa_now)
6290 env->imbalance = busiest->load_per_task;
6294 * calculate_imbalance - Calculate the amount of imbalance present within the
6295 * groups of a given sched_domain during load balance.
6296 * @env: load balance environment
6297 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6299 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6301 unsigned long max_pull, load_above_capacity = ~0UL;
6302 struct sg_lb_stats *local, *busiest;
6304 local = &sds->local_stat;
6305 busiest = &sds->busiest_stat;
6307 if (busiest->group_type == group_imbalanced) {
6309 * In the group_imb case we cannot rely on group-wide averages
6310 * to ensure cpu-load equilibrium, look at wider averages. XXX
6312 busiest->load_per_task =
6313 min(busiest->load_per_task, sds->avg_load);
6317 * In the presence of smp nice balancing, certain scenarios can have
6318 * max load less than avg load(as we skip the groups at or below
6319 * its cpu_capacity, while calculating max_load..)
6321 if (busiest->avg_load <= sds->avg_load ||
6322 local->avg_load >= sds->avg_load) {
6324 return fix_small_imbalance(env, sds);
6328 * If there aren't any idle cpus, avoid creating some.
6330 if (busiest->group_type == group_overloaded &&
6331 local->group_type == group_overloaded) {
6332 load_above_capacity =
6333 (busiest->sum_nr_running - busiest->group_capacity_factor);
6335 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6336 load_above_capacity /= busiest->group_capacity;
6340 * We're trying to get all the cpus to the average_load, so we don't
6341 * want to push ourselves above the average load, nor do we wish to
6342 * reduce the max loaded cpu below the average load. At the same time,
6343 * we also don't want to reduce the group load below the group capacity
6344 * (so that we can implement power-savings policies etc). Thus we look
6345 * for the minimum possible imbalance.
6347 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6349 /* How much load to actually move to equalise the imbalance */
6350 env->imbalance = min(
6351 max_pull * busiest->group_capacity,
6352 (sds->avg_load - local->avg_load) * local->group_capacity
6353 ) / SCHED_CAPACITY_SCALE;
6356 * if *imbalance is less than the average load per runnable task
6357 * there is no guarantee that any tasks will be moved so we'll have
6358 * a think about bumping its value to force at least one task to be
6361 if (env->imbalance < busiest->load_per_task)
6362 return fix_small_imbalance(env, sds);
6365 /******* find_busiest_group() helpers end here *********************/
6368 * find_busiest_group - Returns the busiest group within the sched_domain
6369 * if there is an imbalance. If there isn't an imbalance, and
6370 * the user has opted for power-savings, it returns a group whose
6371 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6372 * such a group exists.
6374 * Also calculates the amount of weighted load which should be moved
6375 * to restore balance.
6377 * @env: The load balancing environment.
6379 * Return: - The busiest group if imbalance exists.
6380 * - If no imbalance and user has opted for power-savings balance,
6381 * return the least loaded group whose CPUs can be
6382 * put to idle by rebalancing its tasks onto our group.
6384 static struct sched_group *find_busiest_group(struct lb_env *env)
6386 struct sg_lb_stats *local, *busiest;
6387 struct sd_lb_stats sds;
6389 init_sd_lb_stats(&sds);
6392 * Compute the various statistics relavent for load balancing at
6395 update_sd_lb_stats(env, &sds);
6396 local = &sds.local_stat;
6397 busiest = &sds.busiest_stat;
6399 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6400 check_asym_packing(env, &sds))
6403 /* There is no busy sibling group to pull tasks from */
6404 if (!sds.busiest || busiest->sum_nr_running == 0)
6407 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6408 / sds.total_capacity;
6411 * If the busiest group is imbalanced the below checks don't
6412 * work because they assume all things are equal, which typically
6413 * isn't true due to cpus_allowed constraints and the like.
6415 if (busiest->group_type == group_imbalanced)
6418 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6419 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6420 !busiest->group_has_free_capacity)
6424 * If the local group is busier than the selected busiest group
6425 * don't try and pull any tasks.
6427 if (local->avg_load >= busiest->avg_load)
6431 * Don't pull any tasks if this group is already above the domain
6434 if (local->avg_load >= sds.avg_load)
6437 if (env->idle == CPU_IDLE) {
6439 * This cpu is idle. If the busiest group is not overloaded
6440 * and there is no imbalance between this and busiest group
6441 * wrt idle cpus, it is balanced. The imbalance becomes
6442 * significant if the diff is greater than 1 otherwise we
6443 * might end up to just move the imbalance on another group
6445 if ((busiest->group_type != group_overloaded) &&
6446 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6450 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6451 * imbalance_pct to be conservative.
6453 if (100 * busiest->avg_load <=
6454 env->sd->imbalance_pct * local->avg_load)
6459 /* Looks like there is an imbalance. Compute it */
6460 calculate_imbalance(env, &sds);
6469 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6471 static struct rq *find_busiest_queue(struct lb_env *env,
6472 struct sched_group *group)
6474 struct rq *busiest = NULL, *rq;
6475 unsigned long busiest_load = 0, busiest_capacity = 1;
6478 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6479 unsigned long capacity, capacity_factor, wl;
6483 rt = fbq_classify_rq(rq);
6486 * We classify groups/runqueues into three groups:
6487 * - regular: there are !numa tasks
6488 * - remote: there are numa tasks that run on the 'wrong' node
6489 * - all: there is no distinction
6491 * In order to avoid migrating ideally placed numa tasks,
6492 * ignore those when there's better options.
6494 * If we ignore the actual busiest queue to migrate another
6495 * task, the next balance pass can still reduce the busiest
6496 * queue by moving tasks around inside the node.
6498 * If we cannot move enough load due to this classification
6499 * the next pass will adjust the group classification and
6500 * allow migration of more tasks.
6502 * Both cases only affect the total convergence complexity.
6504 if (rt > env->fbq_type)
6507 capacity = capacity_of(i);
6508 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6509 if (!capacity_factor)
6510 capacity_factor = fix_small_capacity(env->sd, group);
6512 wl = weighted_cpuload(i);
6515 * When comparing with imbalance, use weighted_cpuload()
6516 * which is not scaled with the cpu capacity.
6518 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6522 * For the load comparisons with the other cpu's, consider
6523 * the weighted_cpuload() scaled with the cpu capacity, so
6524 * that the load can be moved away from the cpu that is
6525 * potentially running at a lower capacity.
6527 * Thus we're looking for max(wl_i / capacity_i), crosswise
6528 * multiplication to rid ourselves of the division works out
6529 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6530 * our previous maximum.
6532 if (wl * busiest_capacity > busiest_load * capacity) {
6534 busiest_capacity = capacity;
6543 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6544 * so long as it is large enough.
6546 #define MAX_PINNED_INTERVAL 512
6548 /* Working cpumask for load_balance and load_balance_newidle. */
6549 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6551 static int need_active_balance(struct lb_env *env)
6553 struct sched_domain *sd = env->sd;
6555 if (env->idle == CPU_NEWLY_IDLE) {
6558 * ASYM_PACKING needs to force migrate tasks from busy but
6559 * higher numbered CPUs in order to pack all tasks in the
6560 * lowest numbered CPUs.
6562 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6566 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6569 static int active_load_balance_cpu_stop(void *data);
6571 static int should_we_balance(struct lb_env *env)
6573 struct sched_group *sg = env->sd->groups;
6574 struct cpumask *sg_cpus, *sg_mask;
6575 int cpu, balance_cpu = -1;
6578 * In the newly idle case, we will allow all the cpu's
6579 * to do the newly idle load balance.
6581 if (env->idle == CPU_NEWLY_IDLE)
6584 sg_cpus = sched_group_cpus(sg);
6585 sg_mask = sched_group_mask(sg);
6586 /* Try to find first idle cpu */
6587 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6588 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6595 if (balance_cpu == -1)
6596 balance_cpu = group_balance_cpu(sg);
6599 * First idle cpu or the first cpu(busiest) in this sched group
6600 * is eligible for doing load balancing at this and above domains.
6602 return balance_cpu == env->dst_cpu;
6606 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6607 * tasks if there is an imbalance.
6609 static int load_balance(int this_cpu, struct rq *this_rq,
6610 struct sched_domain *sd, enum cpu_idle_type idle,
6611 int *continue_balancing)
6613 int ld_moved, cur_ld_moved, active_balance = 0;
6614 struct sched_domain *sd_parent = sd->parent;
6615 struct sched_group *group;
6617 unsigned long flags;
6618 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6620 struct lb_env env = {
6622 .dst_cpu = this_cpu,
6624 .dst_grpmask = sched_group_cpus(sd->groups),
6626 .loop_break = sched_nr_migrate_break,
6629 .tasks = LIST_HEAD_INIT(env.tasks),
6633 * For NEWLY_IDLE load_balancing, we don't need to consider
6634 * other cpus in our group
6636 if (idle == CPU_NEWLY_IDLE)
6637 env.dst_grpmask = NULL;
6639 cpumask_copy(cpus, cpu_active_mask);
6641 schedstat_inc(sd, lb_count[idle]);
6644 if (!should_we_balance(&env)) {
6645 *continue_balancing = 0;
6649 group = find_busiest_group(&env);
6651 schedstat_inc(sd, lb_nobusyg[idle]);
6655 busiest = find_busiest_queue(&env, group);
6657 schedstat_inc(sd, lb_nobusyq[idle]);
6661 BUG_ON(busiest == env.dst_rq);
6663 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6666 if (busiest->nr_running > 1) {
6668 * Attempt to move tasks. If find_busiest_group has found
6669 * an imbalance but busiest->nr_running <= 1, the group is
6670 * still unbalanced. ld_moved simply stays zero, so it is
6671 * correctly treated as an imbalance.
6673 env.flags |= LBF_ALL_PINNED;
6674 env.src_cpu = busiest->cpu;
6675 env.src_rq = busiest;
6676 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6679 raw_spin_lock_irqsave(&busiest->lock, flags);
6682 * cur_ld_moved - load moved in current iteration
6683 * ld_moved - cumulative load moved across iterations
6685 cur_ld_moved = detach_tasks(&env);
6688 * We've detached some tasks from busiest_rq. Every
6689 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6690 * unlock busiest->lock, and we are able to be sure
6691 * that nobody can manipulate the tasks in parallel.
6692 * See task_rq_lock() family for the details.
6695 raw_spin_unlock(&busiest->lock);
6699 ld_moved += cur_ld_moved;
6702 local_irq_restore(flags);
6704 if (env.flags & LBF_NEED_BREAK) {
6705 env.flags &= ~LBF_NEED_BREAK;
6710 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6711 * us and move them to an alternate dst_cpu in our sched_group
6712 * where they can run. The upper limit on how many times we
6713 * iterate on same src_cpu is dependent on number of cpus in our
6716 * This changes load balance semantics a bit on who can move
6717 * load to a given_cpu. In addition to the given_cpu itself
6718 * (or a ilb_cpu acting on its behalf where given_cpu is
6719 * nohz-idle), we now have balance_cpu in a position to move
6720 * load to given_cpu. In rare situations, this may cause
6721 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6722 * _independently_ and at _same_ time to move some load to
6723 * given_cpu) causing exceess load to be moved to given_cpu.
6724 * This however should not happen so much in practice and
6725 * moreover subsequent load balance cycles should correct the
6726 * excess load moved.
6728 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6730 /* Prevent to re-select dst_cpu via env's cpus */
6731 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6733 env.dst_rq = cpu_rq(env.new_dst_cpu);
6734 env.dst_cpu = env.new_dst_cpu;
6735 env.flags &= ~LBF_DST_PINNED;
6737 env.loop_break = sched_nr_migrate_break;
6740 * Go back to "more_balance" rather than "redo" since we
6741 * need to continue with same src_cpu.
6747 * We failed to reach balance because of affinity.
6750 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6752 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6753 *group_imbalance = 1;
6756 /* All tasks on this runqueue were pinned by CPU affinity */
6757 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6758 cpumask_clear_cpu(cpu_of(busiest), cpus);
6759 if (!cpumask_empty(cpus)) {
6761 env.loop_break = sched_nr_migrate_break;
6764 goto out_all_pinned;
6769 schedstat_inc(sd, lb_failed[idle]);
6771 * Increment the failure counter only on periodic balance.
6772 * We do not want newidle balance, which can be very
6773 * frequent, pollute the failure counter causing
6774 * excessive cache_hot migrations and active balances.
6776 if (idle != CPU_NEWLY_IDLE)
6777 sd->nr_balance_failed++;
6779 if (need_active_balance(&env)) {
6780 raw_spin_lock_irqsave(&busiest->lock, flags);
6782 /* don't kick the active_load_balance_cpu_stop,
6783 * if the curr task on busiest cpu can't be
6786 if (!cpumask_test_cpu(this_cpu,
6787 tsk_cpus_allowed(busiest->curr))) {
6788 raw_spin_unlock_irqrestore(&busiest->lock,
6790 env.flags |= LBF_ALL_PINNED;
6791 goto out_one_pinned;
6795 * ->active_balance synchronizes accesses to
6796 * ->active_balance_work. Once set, it's cleared
6797 * only after active load balance is finished.
6799 if (!busiest->active_balance) {
6800 busiest->active_balance = 1;
6801 busiest->push_cpu = this_cpu;
6804 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6806 if (active_balance) {
6807 stop_one_cpu_nowait(cpu_of(busiest),
6808 active_load_balance_cpu_stop, busiest,
6809 &busiest->active_balance_work);
6813 * We've kicked active balancing, reset the failure
6816 sd->nr_balance_failed = sd->cache_nice_tries+1;
6819 sd->nr_balance_failed = 0;
6821 if (likely(!active_balance)) {
6822 /* We were unbalanced, so reset the balancing interval */
6823 sd->balance_interval = sd->min_interval;
6826 * If we've begun active balancing, start to back off. This
6827 * case may not be covered by the all_pinned logic if there
6828 * is only 1 task on the busy runqueue (because we don't call
6831 if (sd->balance_interval < sd->max_interval)
6832 sd->balance_interval *= 2;
6839 * We reach balance although we may have faced some affinity
6840 * constraints. Clear the imbalance flag if it was set.
6843 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6845 if (*group_imbalance)
6846 *group_imbalance = 0;
6851 * We reach balance because all tasks are pinned at this level so
6852 * we can't migrate them. Let the imbalance flag set so parent level
6853 * can try to migrate them.
6855 schedstat_inc(sd, lb_balanced[idle]);
6857 sd->nr_balance_failed = 0;
6860 /* tune up the balancing interval */
6861 if (((env.flags & LBF_ALL_PINNED) &&
6862 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6863 (sd->balance_interval < sd->max_interval))
6864 sd->balance_interval *= 2;
6871 static inline unsigned long
6872 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6874 unsigned long interval = sd->balance_interval;
6877 interval *= sd->busy_factor;
6879 /* scale ms to jiffies */
6880 interval = msecs_to_jiffies(interval);
6881 interval = clamp(interval, 1UL, max_load_balance_interval);
6887 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6889 unsigned long interval, next;
6891 interval = get_sd_balance_interval(sd, cpu_busy);
6892 next = sd->last_balance + interval;
6894 if (time_after(*next_balance, next))
6895 *next_balance = next;
6899 * idle_balance is called by schedule() if this_cpu is about to become
6900 * idle. Attempts to pull tasks from other CPUs.
6902 static int idle_balance(struct rq *this_rq)
6904 unsigned long next_balance = jiffies + HZ;
6905 int this_cpu = this_rq->cpu;
6906 struct sched_domain *sd;
6907 int pulled_task = 0;
6910 idle_enter_fair(this_rq);
6913 * We must set idle_stamp _before_ calling idle_balance(), such that we
6914 * measure the duration of idle_balance() as idle time.
6916 this_rq->idle_stamp = rq_clock(this_rq);
6918 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6919 !this_rq->rd->overload) {
6921 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6923 update_next_balance(sd, 0, &next_balance);
6930 * Drop the rq->lock, but keep IRQ/preempt disabled.
6932 raw_spin_unlock(&this_rq->lock);
6934 update_blocked_averages(this_cpu);
6936 for_each_domain(this_cpu, sd) {
6937 int continue_balancing = 1;
6938 u64 t0, domain_cost;
6940 if (!(sd->flags & SD_LOAD_BALANCE))
6943 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6944 update_next_balance(sd, 0, &next_balance);
6948 if (sd->flags & SD_BALANCE_NEWIDLE) {
6949 t0 = sched_clock_cpu(this_cpu);
6951 pulled_task = load_balance(this_cpu, this_rq,
6953 &continue_balancing);
6955 domain_cost = sched_clock_cpu(this_cpu) - t0;
6956 if (domain_cost > sd->max_newidle_lb_cost)
6957 sd->max_newidle_lb_cost = domain_cost;
6959 curr_cost += domain_cost;
6962 update_next_balance(sd, 0, &next_balance);
6965 * Stop searching for tasks to pull if there are
6966 * now runnable tasks on this rq.
6968 if (pulled_task || this_rq->nr_running > 0)
6973 raw_spin_lock(&this_rq->lock);
6975 if (curr_cost > this_rq->max_idle_balance_cost)
6976 this_rq->max_idle_balance_cost = curr_cost;
6979 * While browsing the domains, we released the rq lock, a task could
6980 * have been enqueued in the meantime. Since we're not going idle,
6981 * pretend we pulled a task.
6983 if (this_rq->cfs.h_nr_running && !pulled_task)
6987 /* Move the next balance forward */
6988 if (time_after(this_rq->next_balance, next_balance))
6989 this_rq->next_balance = next_balance;
6991 /* Is there a task of a high priority class? */
6992 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6996 idle_exit_fair(this_rq);
6997 this_rq->idle_stamp = 0;
7004 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7005 * running tasks off the busiest CPU onto idle CPUs. It requires at
7006 * least 1 task to be running on each physical CPU where possible, and
7007 * avoids physical / logical imbalances.
7009 static int active_load_balance_cpu_stop(void *data)
7011 struct rq *busiest_rq = data;
7012 int busiest_cpu = cpu_of(busiest_rq);
7013 int target_cpu = busiest_rq->push_cpu;
7014 struct rq *target_rq = cpu_rq(target_cpu);
7015 struct sched_domain *sd;
7016 struct task_struct *p = NULL;
7018 raw_spin_lock_irq(&busiest_rq->lock);
7020 /* make sure the requested cpu hasn't gone down in the meantime */
7021 if (unlikely(busiest_cpu != smp_processor_id() ||
7022 !busiest_rq->active_balance))
7025 /* Is there any task to move? */
7026 if (busiest_rq->nr_running <= 1)
7030 * This condition is "impossible", if it occurs
7031 * we need to fix it. Originally reported by
7032 * Bjorn Helgaas on a 128-cpu setup.
7034 BUG_ON(busiest_rq == target_rq);
7036 /* Search for an sd spanning us and the target CPU. */
7038 for_each_domain(target_cpu, sd) {
7039 if ((sd->flags & SD_LOAD_BALANCE) &&
7040 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7045 struct lb_env env = {
7047 .dst_cpu = target_cpu,
7048 .dst_rq = target_rq,
7049 .src_cpu = busiest_rq->cpu,
7050 .src_rq = busiest_rq,
7054 schedstat_inc(sd, alb_count);
7056 p = detach_one_task(&env);
7058 schedstat_inc(sd, alb_pushed);
7060 schedstat_inc(sd, alb_failed);
7064 busiest_rq->active_balance = 0;
7065 raw_spin_unlock(&busiest_rq->lock);
7068 attach_one_task(target_rq, p);
7075 static inline int on_null_domain(struct rq *rq)
7077 return unlikely(!rcu_dereference_sched(rq->sd));
7080 #ifdef CONFIG_NO_HZ_COMMON
7082 * idle load balancing details
7083 * - When one of the busy CPUs notice that there may be an idle rebalancing
7084 * needed, they will kick the idle load balancer, which then does idle
7085 * load balancing for all the idle CPUs.
7088 cpumask_var_t idle_cpus_mask;
7090 unsigned long next_balance; /* in jiffy units */
7091 } nohz ____cacheline_aligned;
7093 static inline int find_new_ilb(void)
7095 int ilb = cpumask_first(nohz.idle_cpus_mask);
7097 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7104 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7105 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7106 * CPU (if there is one).
7108 static void nohz_balancer_kick(void)
7112 nohz.next_balance++;
7114 ilb_cpu = find_new_ilb();
7116 if (ilb_cpu >= nr_cpu_ids)
7119 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7122 * Use smp_send_reschedule() instead of resched_cpu().
7123 * This way we generate a sched IPI on the target cpu which
7124 * is idle. And the softirq performing nohz idle load balance
7125 * will be run before returning from the IPI.
7127 smp_send_reschedule(ilb_cpu);
7131 static inline void nohz_balance_exit_idle(int cpu)
7133 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7135 * Completely isolated CPUs don't ever set, so we must test.
7137 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7138 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7139 atomic_dec(&nohz.nr_cpus);
7141 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7145 static inline void set_cpu_sd_state_busy(void)
7147 struct sched_domain *sd;
7148 int cpu = smp_processor_id();
7151 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7153 if (!sd || !sd->nohz_idle)
7157 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7162 void set_cpu_sd_state_idle(void)
7164 struct sched_domain *sd;
7165 int cpu = smp_processor_id();
7168 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7170 if (!sd || sd->nohz_idle)
7174 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7180 * This routine will record that the cpu is going idle with tick stopped.
7181 * This info will be used in performing idle load balancing in the future.
7183 void nohz_balance_enter_idle(int cpu)
7186 * If this cpu is going down, then nothing needs to be done.
7188 if (!cpu_active(cpu))
7191 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7195 * If we're a completely isolated CPU, we don't play.
7197 if (on_null_domain(cpu_rq(cpu)))
7200 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7201 atomic_inc(&nohz.nr_cpus);
7202 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7205 static int sched_ilb_notifier(struct notifier_block *nfb,
7206 unsigned long action, void *hcpu)
7208 switch (action & ~CPU_TASKS_FROZEN) {
7210 nohz_balance_exit_idle(smp_processor_id());
7218 static DEFINE_SPINLOCK(balancing);
7221 * Scale the max load_balance interval with the number of CPUs in the system.
7222 * This trades load-balance latency on larger machines for less cross talk.
7224 void update_max_interval(void)
7226 max_load_balance_interval = HZ*num_online_cpus()/10;
7230 * It checks each scheduling domain to see if it is due to be balanced,
7231 * and initiates a balancing operation if so.
7233 * Balancing parameters are set up in init_sched_domains.
7235 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7237 int continue_balancing = 1;
7239 unsigned long interval;
7240 struct sched_domain *sd;
7241 /* Earliest time when we have to do rebalance again */
7242 unsigned long next_balance = jiffies + 60*HZ;
7243 int update_next_balance = 0;
7244 int need_serialize, need_decay = 0;
7247 update_blocked_averages(cpu);
7250 for_each_domain(cpu, sd) {
7252 * Decay the newidle max times here because this is a regular
7253 * visit to all the domains. Decay ~1% per second.
7255 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7256 sd->max_newidle_lb_cost =
7257 (sd->max_newidle_lb_cost * 253) / 256;
7258 sd->next_decay_max_lb_cost = jiffies + HZ;
7261 max_cost += sd->max_newidle_lb_cost;
7263 if (!(sd->flags & SD_LOAD_BALANCE))
7267 * Stop the load balance at this level. There is another
7268 * CPU in our sched group which is doing load balancing more
7271 if (!continue_balancing) {
7277 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7279 need_serialize = sd->flags & SD_SERIALIZE;
7280 if (need_serialize) {
7281 if (!spin_trylock(&balancing))
7285 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7286 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7288 * The LBF_DST_PINNED logic could have changed
7289 * env->dst_cpu, so we can't know our idle
7290 * state even if we migrated tasks. Update it.
7292 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7294 sd->last_balance = jiffies;
7295 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7298 spin_unlock(&balancing);
7300 if (time_after(next_balance, sd->last_balance + interval)) {
7301 next_balance = sd->last_balance + interval;
7302 update_next_balance = 1;
7307 * Ensure the rq-wide value also decays but keep it at a
7308 * reasonable floor to avoid funnies with rq->avg_idle.
7310 rq->max_idle_balance_cost =
7311 max((u64)sysctl_sched_migration_cost, max_cost);
7316 * next_balance will be updated only when there is a need.
7317 * When the cpu is attached to null domain for ex, it will not be
7320 if (likely(update_next_balance))
7321 rq->next_balance = next_balance;
7324 #ifdef CONFIG_NO_HZ_COMMON
7326 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7327 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7329 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7331 int this_cpu = this_rq->cpu;
7335 if (idle != CPU_IDLE ||
7336 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7339 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7340 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7344 * If this cpu gets work to do, stop the load balancing
7345 * work being done for other cpus. Next load
7346 * balancing owner will pick it up.
7351 rq = cpu_rq(balance_cpu);
7354 * If time for next balance is due,
7357 if (time_after_eq(jiffies, rq->next_balance)) {
7358 raw_spin_lock_irq(&rq->lock);
7359 update_rq_clock(rq);
7360 update_idle_cpu_load(rq);
7361 raw_spin_unlock_irq(&rq->lock);
7362 rebalance_domains(rq, CPU_IDLE);
7365 if (time_after(this_rq->next_balance, rq->next_balance))
7366 this_rq->next_balance = rq->next_balance;
7368 nohz.next_balance = this_rq->next_balance;
7370 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7374 * Current heuristic for kicking the idle load balancer in the presence
7375 * of an idle cpu is the system.
7376 * - This rq has more than one task.
7377 * - At any scheduler domain level, this cpu's scheduler group has multiple
7378 * busy cpu's exceeding the group's capacity.
7379 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7380 * domain span are idle.
7382 static inline int nohz_kick_needed(struct rq *rq)
7384 unsigned long now = jiffies;
7385 struct sched_domain *sd;
7386 struct sched_group_capacity *sgc;
7387 int nr_busy, cpu = rq->cpu;
7389 if (unlikely(rq->idle_balance))
7393 * We may be recently in ticked or tickless idle mode. At the first
7394 * busy tick after returning from idle, we will update the busy stats.
7396 set_cpu_sd_state_busy();
7397 nohz_balance_exit_idle(cpu);
7400 * None are in tickless mode and hence no need for NOHZ idle load
7403 if (likely(!atomic_read(&nohz.nr_cpus)))
7406 if (time_before(now, nohz.next_balance))
7409 if (rq->nr_running >= 2)
7413 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7416 sgc = sd->groups->sgc;
7417 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7420 goto need_kick_unlock;
7423 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7425 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7426 sched_domain_span(sd)) < cpu))
7427 goto need_kick_unlock;
7438 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7442 * run_rebalance_domains is triggered when needed from the scheduler tick.
7443 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7445 static void run_rebalance_domains(struct softirq_action *h)
7447 struct rq *this_rq = this_rq();
7448 enum cpu_idle_type idle = this_rq->idle_balance ?
7449 CPU_IDLE : CPU_NOT_IDLE;
7451 rebalance_domains(this_rq, idle);
7454 * If this cpu has a pending nohz_balance_kick, then do the
7455 * balancing on behalf of the other idle cpus whose ticks are
7458 nohz_idle_balance(this_rq, idle);
7462 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7464 void trigger_load_balance(struct rq *rq)
7466 /* Don't need to rebalance while attached to NULL domain */
7467 if (unlikely(on_null_domain(rq)))
7470 if (time_after_eq(jiffies, rq->next_balance))
7471 raise_softirq(SCHED_SOFTIRQ);
7472 #ifdef CONFIG_NO_HZ_COMMON
7473 if (nohz_kick_needed(rq))
7474 nohz_balancer_kick();
7478 static void rq_online_fair(struct rq *rq)
7482 update_runtime_enabled(rq);
7485 static void rq_offline_fair(struct rq *rq)
7489 /* Ensure any throttled groups are reachable by pick_next_task */
7490 unthrottle_offline_cfs_rqs(rq);
7493 #endif /* CONFIG_SMP */
7496 * scheduler tick hitting a task of our scheduling class:
7498 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7500 struct cfs_rq *cfs_rq;
7501 struct sched_entity *se = &curr->se;
7503 for_each_sched_entity(se) {
7504 cfs_rq = cfs_rq_of(se);
7505 entity_tick(cfs_rq, se, queued);
7508 if (numabalancing_enabled)
7509 task_tick_numa(rq, curr);
7511 update_rq_runnable_avg(rq, 1);
7515 * called on fork with the child task as argument from the parent's context
7516 * - child not yet on the tasklist
7517 * - preemption disabled
7519 static void task_fork_fair(struct task_struct *p)
7521 struct cfs_rq *cfs_rq;
7522 struct sched_entity *se = &p->se, *curr;
7523 int this_cpu = smp_processor_id();
7524 struct rq *rq = this_rq();
7525 unsigned long flags;
7527 raw_spin_lock_irqsave(&rq->lock, flags);
7529 update_rq_clock(rq);
7531 cfs_rq = task_cfs_rq(current);
7532 curr = cfs_rq->curr;
7535 * Not only the cpu but also the task_group of the parent might have
7536 * been changed after parent->se.parent,cfs_rq were copied to
7537 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7538 * of child point to valid ones.
7541 __set_task_cpu(p, this_cpu);
7544 update_curr(cfs_rq);
7547 se->vruntime = curr->vruntime;
7548 place_entity(cfs_rq, se, 1);
7550 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7552 * Upon rescheduling, sched_class::put_prev_task() will place
7553 * 'current' within the tree based on its new key value.
7555 swap(curr->vruntime, se->vruntime);
7559 se->vruntime -= cfs_rq->min_vruntime;
7561 raw_spin_unlock_irqrestore(&rq->lock, flags);
7565 * Priority of the task has changed. Check to see if we preempt
7569 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7571 if (!task_on_rq_queued(p))
7575 * Reschedule if we are currently running on this runqueue and
7576 * our priority decreased, or if we are not currently running on
7577 * this runqueue and our priority is higher than the current's
7579 if (rq->curr == p) {
7580 if (p->prio > oldprio)
7583 check_preempt_curr(rq, p, 0);
7586 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7588 struct sched_entity *se = &p->se;
7589 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7592 * Ensure the task's vruntime is normalized, so that when it's
7593 * switched back to the fair class the enqueue_entity(.flags=0) will
7594 * do the right thing.
7596 * If it's queued, then the dequeue_entity(.flags=0) will already
7597 * have normalized the vruntime, if it's !queued, then only when
7598 * the task is sleeping will it still have non-normalized vruntime.
7600 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7602 * Fix up our vruntime so that the current sleep doesn't
7603 * cause 'unlimited' sleep bonus.
7605 place_entity(cfs_rq, se, 0);
7606 se->vruntime -= cfs_rq->min_vruntime;
7611 * Remove our load from contribution when we leave sched_fair
7612 * and ensure we don't carry in an old decay_count if we
7615 if (se->avg.decay_count) {
7616 __synchronize_entity_decay(se);
7617 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7623 * We switched to the sched_fair class.
7625 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7627 #ifdef CONFIG_FAIR_GROUP_SCHED
7628 struct sched_entity *se = &p->se;
7630 * Since the real-depth could have been changed (only FAIR
7631 * class maintain depth value), reset depth properly.
7633 se->depth = se->parent ? se->parent->depth + 1 : 0;
7635 if (!task_on_rq_queued(p))
7639 * We were most likely switched from sched_rt, so
7640 * kick off the schedule if running, otherwise just see
7641 * if we can still preempt the current task.
7646 check_preempt_curr(rq, p, 0);
7649 /* Account for a task changing its policy or group.
7651 * This routine is mostly called to set cfs_rq->curr field when a task
7652 * migrates between groups/classes.
7654 static void set_curr_task_fair(struct rq *rq)
7656 struct sched_entity *se = &rq->curr->se;
7658 for_each_sched_entity(se) {
7659 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7661 set_next_entity(cfs_rq, se);
7662 /* ensure bandwidth has been allocated on our new cfs_rq */
7663 account_cfs_rq_runtime(cfs_rq, 0);
7667 void init_cfs_rq(struct cfs_rq *cfs_rq)
7669 cfs_rq->tasks_timeline = RB_ROOT;
7670 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7671 #ifndef CONFIG_64BIT
7672 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7675 atomic64_set(&cfs_rq->decay_counter, 1);
7676 atomic_long_set(&cfs_rq->removed_load, 0);
7680 #ifdef CONFIG_FAIR_GROUP_SCHED
7681 static void task_move_group_fair(struct task_struct *p, int queued)
7683 struct sched_entity *se = &p->se;
7684 struct cfs_rq *cfs_rq;
7687 * If the task was not on the rq at the time of this cgroup movement
7688 * it must have been asleep, sleeping tasks keep their ->vruntime
7689 * absolute on their old rq until wakeup (needed for the fair sleeper
7690 * bonus in place_entity()).
7692 * If it was on the rq, we've just 'preempted' it, which does convert
7693 * ->vruntime to a relative base.
7695 * Make sure both cases convert their relative position when migrating
7696 * to another cgroup's rq. This does somewhat interfere with the
7697 * fair sleeper stuff for the first placement, but who cares.
7700 * When !queued, vruntime of the task has usually NOT been normalized.
7701 * But there are some cases where it has already been normalized:
7703 * - Moving a forked child which is waiting for being woken up by
7704 * wake_up_new_task().
7705 * - Moving a task which has been woken up by try_to_wake_up() and
7706 * waiting for actually being woken up by sched_ttwu_pending().
7708 * To prevent boost or penalty in the new cfs_rq caused by delta
7709 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7711 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7715 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7716 set_task_rq(p, task_cpu(p));
7717 se->depth = se->parent ? se->parent->depth + 1 : 0;
7719 cfs_rq = cfs_rq_of(se);
7720 se->vruntime += cfs_rq->min_vruntime;
7723 * migrate_task_rq_fair() will have removed our previous
7724 * contribution, but we must synchronize for ongoing future
7727 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7728 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7733 void free_fair_sched_group(struct task_group *tg)
7737 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7739 for_each_possible_cpu(i) {
7741 kfree(tg->cfs_rq[i]);
7750 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7752 struct cfs_rq *cfs_rq;
7753 struct sched_entity *se;
7756 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7759 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7763 tg->shares = NICE_0_LOAD;
7765 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7767 for_each_possible_cpu(i) {
7768 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7769 GFP_KERNEL, cpu_to_node(i));
7773 se = kzalloc_node(sizeof(struct sched_entity),
7774 GFP_KERNEL, cpu_to_node(i));
7778 init_cfs_rq(cfs_rq);
7779 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7790 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7792 struct rq *rq = cpu_rq(cpu);
7793 unsigned long flags;
7796 * Only empty task groups can be destroyed; so we can speculatively
7797 * check on_list without danger of it being re-added.
7799 if (!tg->cfs_rq[cpu]->on_list)
7802 raw_spin_lock_irqsave(&rq->lock, flags);
7803 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7804 raw_spin_unlock_irqrestore(&rq->lock, flags);
7807 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7808 struct sched_entity *se, int cpu,
7809 struct sched_entity *parent)
7811 struct rq *rq = cpu_rq(cpu);
7815 init_cfs_rq_runtime(cfs_rq);
7817 tg->cfs_rq[cpu] = cfs_rq;
7820 /* se could be NULL for root_task_group */
7825 se->cfs_rq = &rq->cfs;
7828 se->cfs_rq = parent->my_q;
7829 se->depth = parent->depth + 1;
7833 /* guarantee group entities always have weight */
7834 update_load_set(&se->load, NICE_0_LOAD);
7835 se->parent = parent;
7838 static DEFINE_MUTEX(shares_mutex);
7840 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7843 unsigned long flags;
7846 * We can't change the weight of the root cgroup.
7851 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7853 mutex_lock(&shares_mutex);
7854 if (tg->shares == shares)
7857 tg->shares = shares;
7858 for_each_possible_cpu(i) {
7859 struct rq *rq = cpu_rq(i);
7860 struct sched_entity *se;
7863 /* Propagate contribution to hierarchy */
7864 raw_spin_lock_irqsave(&rq->lock, flags);
7866 /* Possible calls to update_curr() need rq clock */
7867 update_rq_clock(rq);
7868 for_each_sched_entity(se)
7869 update_cfs_shares(group_cfs_rq(se));
7870 raw_spin_unlock_irqrestore(&rq->lock, flags);
7874 mutex_unlock(&shares_mutex);
7877 #else /* CONFIG_FAIR_GROUP_SCHED */
7879 void free_fair_sched_group(struct task_group *tg) { }
7881 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7886 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7888 #endif /* CONFIG_FAIR_GROUP_SCHED */
7891 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7893 struct sched_entity *se = &task->se;
7894 unsigned int rr_interval = 0;
7897 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7900 if (rq->cfs.load.weight)
7901 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7907 * All the scheduling class methods:
7909 const struct sched_class fair_sched_class = {
7910 .next = &idle_sched_class,
7911 .enqueue_task = enqueue_task_fair,
7912 .dequeue_task = dequeue_task_fair,
7913 .yield_task = yield_task_fair,
7914 .yield_to_task = yield_to_task_fair,
7916 .check_preempt_curr = check_preempt_wakeup,
7918 .pick_next_task = pick_next_task_fair,
7919 .put_prev_task = put_prev_task_fair,
7922 .select_task_rq = select_task_rq_fair,
7923 .migrate_task_rq = migrate_task_rq_fair,
7925 .rq_online = rq_online_fair,
7926 .rq_offline = rq_offline_fair,
7928 .task_waking = task_waking_fair,
7931 .set_curr_task = set_curr_task_fair,
7932 .task_tick = task_tick_fair,
7933 .task_fork = task_fork_fair,
7935 .prio_changed = prio_changed_fair,
7936 .switched_from = switched_from_fair,
7937 .switched_to = switched_to_fair,
7939 .get_rr_interval = get_rr_interval_fair,
7941 #ifdef CONFIG_FAIR_GROUP_SCHED
7942 .task_move_group = task_move_group_fair,
7946 #ifdef CONFIG_SCHED_DEBUG
7947 void print_cfs_stats(struct seq_file *m, int cpu)
7949 struct cfs_rq *cfs_rq;
7952 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7953 print_cfs_rq(m, cpu, cfs_rq);
7958 __init void init_sched_fair_class(void)
7961 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7963 #ifdef CONFIG_NO_HZ_COMMON
7964 nohz.next_balance = jiffies;
7965 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7966 cpu_notifier(sched_ilb_notifier, 0);