2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
33 #include <trace/events/sched.h>
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 static unsigned int sched_nr_latency = 8;
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
96 * The exponential sliding window over which load is averaged for shares
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 #ifdef CONFIG_CFS_BANDWIDTH
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
111 * default: 5 msec, units: microseconds
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
141 * This idea comes from the SD scheduler of Con Kolivas:
143 static int get_update_sysctl_factor(void)
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
152 case SCHED_TUNABLESCALING_LINEAR:
155 case SCHED_TUNABLESCALING_LOG:
157 factor = 1 + ilog2(cpus);
164 static void update_sysctl(void)
166 unsigned int factor = get_update_sysctl_factor();
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
176 void sched_init_granularity(void)
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
184 # define WMULT_CONST (1UL << 32)
187 #define WMULT_SHIFT 32
190 * Shift right and round:
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
195 * delta *= weight / lw
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
211 tmp = (u64)delta_exec;
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
221 lw->inv_weight = WMULT_CONST / w;
225 * Check whether we'd overflow the 64-bit multiplication:
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
237 const struct sched_class fair_sched_class;
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
243 #ifdef CONFIG_FAIR_GROUP_SCHED
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
254 static inline struct task_struct *task_of(struct sched_entity *se)
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
259 return container_of(se, struct task_struct, se);
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
288 if (!cfs_rq->on_list) {
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
322 /* Do the two (enqueued) entities belong to the same group ? */
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
326 if (se->cfs_rq == pse->cfs_rq)
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
342 for_each_sched_entity(se)
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
351 int se_depth, pse_depth;
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
364 while (se_depth > pse_depth) {
366 *se = parent_entity(*se);
369 while (pse_depth > se_depth) {
371 *pse = parent_entity(*pse);
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
382 static inline struct task_struct *task_of(struct sched_entity *se)
384 return container_of(se, struct task_struct, se);
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
389 return container_of(cfs_rq, struct rq, cfs);
392 #define entity_is_task(se) 1
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
399 return &task_rq(p)->cfs;
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
454 s64 delta = (s64)(vruntime - max_vruntime);
456 max_vruntime = vruntime;
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
463 s64 delta = (s64)(vruntime - min_vruntime);
465 min_vruntime = vruntime;
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
473 return (s64)(a->vruntime - b->vruntime) < 0;
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
478 u64 vruntime = cfs_rq->min_vruntime;
481 vruntime = cfs_rq->curr->vruntime;
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
489 vruntime = se->vruntime;
491 vruntime = min_vruntime(vruntime, se->vruntime);
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
503 * Enqueue an entity into the rb-tree:
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
513 * Find the right place in the rbtree:
517 entry = rb_entry(parent, struct sched_entity, run_node);
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
525 link = &parent->rb_right;
531 * Maintain a cache of leftmost tree entries (it is frequently
535 cfs_rq->rb_leftmost = &se->run_node;
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
555 struct rb_node *left = cfs_rq->rb_leftmost;
560 return rb_entry(left, struct sched_entity, run_node);
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
565 struct rb_node *next = rb_next(&se->run_node);
570 return rb_entry(next, struct sched_entity, run_node);
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
581 return rb_entry(last, struct sched_entity, run_node);
584 /**************************************************************
585 * Scheduling class statistics methods:
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
625 * The idea is to set a period in which each task runs once.
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
630 * p = (nr <= nl) ? l : l*nr/nl
632 static u64 __sched_period(unsigned long nr_running)
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
662 if (unlikely(!se->on_rq)) {
665 update_load_add(&lw, se->load.weight);
668 slice = calc_delta_mine(slice, se->load.weight, load);
674 * We calculate the vruntime slice of a to-be-inserted task.
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
684 static inline void __update_task_entity_contrib(struct sched_entity *se);
686 /* Give new task start runnable values to heavy its load in infant time */
687 void init_task_runnable_average(struct task_struct *p)
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
698 void init_task_runnable_average(struct task_struct *p)
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
708 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
711 unsigned long delta_exec_weighted;
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
716 curr->sum_exec_runtime += delta_exec;
717 schedstat_add(cfs_rq, exec_clock, delta_exec);
718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
720 curr->vruntime += delta_exec_weighted;
721 update_min_vruntime(cfs_rq);
724 static void update_curr(struct cfs_rq *cfs_rq)
726 struct sched_entity *curr = cfs_rq->curr;
727 u64 now = rq_clock_task(rq_of(cfs_rq));
728 unsigned long delta_exec;
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
738 delta_exec = (unsigned long)(now - curr->exec_start);
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
749 cpuacct_charge(curtask, delta_exec);
750 account_group_exec_runtime(curtask, delta_exec);
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
757 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
763 * Task is being enqueued - update stats:
765 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
771 if (se != cfs_rq->curr)
772 update_stats_wait_start(cfs_rq, se);
776 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
783 #ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
789 schedstat_set(se->statistics.wait_start, 0);
793 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 * Mark the end of the wait period if dequeueing a
799 if (se != cfs_rq->curr)
800 update_stats_wait_end(cfs_rq, se);
804 * We are picking a new current task - update its stats:
807 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
810 * We are starting a new run period:
812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
815 /**************************************************
816 * Scheduling class queueing methods:
819 #ifdef CONFIG_NUMA_BALANCING
821 * numa task sample period in ms
823 unsigned int sysctl_numa_balancing_scan_period_min = 100;
824 unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
825 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
827 /* Portion of address space to scan in MB */
828 unsigned int sysctl_numa_balancing_scan_size = 256;
830 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
831 unsigned int sysctl_numa_balancing_scan_delay = 1000;
833 static void task_numa_placement(struct task_struct *p)
837 if (!p->mm) /* for example, ksmd faulting in a user's mm */
839 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
840 if (p->numa_scan_seq == seq)
842 p->numa_scan_seq = seq;
844 /* FIXME: Scheduling placement policy hints go here */
848 * Got a PROT_NONE fault for a page on @node.
850 void task_numa_fault(int node, int pages, bool migrated)
852 struct task_struct *p = current;
854 if (!sched_feat_numa(NUMA))
857 /* FIXME: Allocate task-specific structure for placement policy here */
860 * If pages are properly placed (did not migrate) then scan slower.
861 * This is reset periodically in case of phase changes
864 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
865 p->numa_scan_period + jiffies_to_msecs(10));
867 task_numa_placement(p);
870 static void reset_ptenuma_scan(struct task_struct *p)
872 ACCESS_ONCE(p->mm->numa_scan_seq)++;
873 p->mm->numa_scan_offset = 0;
877 * The expensive part of numa migration is done from task_work context.
878 * Triggered from task_tick_numa().
880 void task_numa_work(struct callback_head *work)
882 unsigned long migrate, next_scan, now = jiffies;
883 struct task_struct *p = current;
884 struct mm_struct *mm = p->mm;
885 struct vm_area_struct *vma;
886 unsigned long start, end;
889 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
891 work->next = work; /* protect against double add */
893 * Who cares about NUMA placement when they're dying.
895 * NOTE: make sure not to dereference p->mm before this check,
896 * exit_task_work() happens _after_ exit_mm() so we could be called
897 * without p->mm even though we still had it when we enqueued this
900 if (p->flags & PF_EXITING)
904 * We do not care about task placement until a task runs on a node
905 * other than the first one used by the address space. This is
906 * largely because migrations are driven by what CPU the task
907 * is running on. If it's never scheduled on another node, it'll
908 * not migrate so why bother trapping the fault.
910 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
911 mm->first_nid = numa_node_id();
912 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
913 /* Are we running on a new node yet? */
914 if (numa_node_id() == mm->first_nid &&
915 !sched_feat_numa(NUMA_FORCE))
918 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
922 * Reset the scan period if enough time has gone by. Objective is that
923 * scanning will be reduced if pages are properly placed. As tasks
924 * can enter different phases this needs to be re-examined. Lacking
925 * proper tracking of reference behaviour, this blunt hammer is used.
927 migrate = mm->numa_next_reset;
928 if (time_after(now, migrate)) {
929 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
930 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
931 xchg(&mm->numa_next_reset, next_scan);
935 * Enforce maximal scan/migration frequency..
937 migrate = mm->numa_next_scan;
938 if (time_before(now, migrate))
941 if (p->numa_scan_period == 0)
942 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
944 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
945 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
949 * Do not set pte_numa if the current running node is rate-limited.
950 * This loses statistics on the fault but if we are unwilling to
951 * migrate to this node, it is less likely we can do useful work
953 if (migrate_ratelimited(numa_node_id()))
956 start = mm->numa_scan_offset;
957 pages = sysctl_numa_balancing_scan_size;
958 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
962 down_read(&mm->mmap_sem);
963 vma = find_vma(mm, start);
965 reset_ptenuma_scan(p);
969 for (; vma; vma = vma->vm_next) {
970 if (!vma_migratable(vma))
973 /* Skip small VMAs. They are not likely to be of relevance */
974 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
978 start = max(start, vma->vm_start);
979 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
980 end = min(end, vma->vm_end);
981 pages -= change_prot_numa(vma, start, end);
986 } while (end != vma->vm_end);
991 * It is possible to reach the end of the VMA list but the last few VMAs are
992 * not guaranteed to the vma_migratable. If they are not, we would find the
993 * !migratable VMA on the next scan but not reset the scanner to the start
997 mm->numa_scan_offset = start;
999 reset_ptenuma_scan(p);
1000 up_read(&mm->mmap_sem);
1004 * Drive the periodic memory faults..
1006 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1008 struct callback_head *work = &curr->numa_work;
1012 * We don't care about NUMA placement if we don't have memory.
1014 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1018 * Using runtime rather than walltime has the dual advantage that
1019 * we (mostly) drive the selection from busy threads and that the
1020 * task needs to have done some actual work before we bother with
1023 now = curr->se.sum_exec_runtime;
1024 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1026 if (now - curr->node_stamp > period) {
1027 if (!curr->node_stamp)
1028 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
1029 curr->node_stamp = now;
1031 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1032 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1033 task_work_add(curr, work, true);
1038 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1041 #endif /* CONFIG_NUMA_BALANCING */
1044 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1046 update_load_add(&cfs_rq->load, se->load.weight);
1047 if (!parent_entity(se))
1048 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1050 if (entity_is_task(se))
1051 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1053 cfs_rq->nr_running++;
1057 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1059 update_load_sub(&cfs_rq->load, se->load.weight);
1060 if (!parent_entity(se))
1061 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1062 if (entity_is_task(se))
1063 list_del_init(&se->group_node);
1064 cfs_rq->nr_running--;
1067 #ifdef CONFIG_FAIR_GROUP_SCHED
1069 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1074 * Use this CPU's actual weight instead of the last load_contribution
1075 * to gain a more accurate current total weight. See
1076 * update_cfs_rq_load_contribution().
1078 tg_weight = atomic_long_read(&tg->load_avg);
1079 tg_weight -= cfs_rq->tg_load_contrib;
1080 tg_weight += cfs_rq->load.weight;
1085 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1087 long tg_weight, load, shares;
1089 tg_weight = calc_tg_weight(tg, cfs_rq);
1090 load = cfs_rq->load.weight;
1092 shares = (tg->shares * load);
1094 shares /= tg_weight;
1096 if (shares < MIN_SHARES)
1097 shares = MIN_SHARES;
1098 if (shares > tg->shares)
1099 shares = tg->shares;
1103 # else /* CONFIG_SMP */
1104 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1108 # endif /* CONFIG_SMP */
1109 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1110 unsigned long weight)
1113 /* commit outstanding execution time */
1114 if (cfs_rq->curr == se)
1115 update_curr(cfs_rq);
1116 account_entity_dequeue(cfs_rq, se);
1119 update_load_set(&se->load, weight);
1122 account_entity_enqueue(cfs_rq, se);
1125 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1127 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1129 struct task_group *tg;
1130 struct sched_entity *se;
1134 se = tg->se[cpu_of(rq_of(cfs_rq))];
1135 if (!se || throttled_hierarchy(cfs_rq))
1138 if (likely(se->load.weight == tg->shares))
1141 shares = calc_cfs_shares(cfs_rq, tg);
1143 reweight_entity(cfs_rq_of(se), se, shares);
1145 #else /* CONFIG_FAIR_GROUP_SCHED */
1146 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1149 #endif /* CONFIG_FAIR_GROUP_SCHED */
1153 * We choose a half-life close to 1 scheduling period.
1154 * Note: The tables below are dependent on this value.
1156 #define LOAD_AVG_PERIOD 32
1157 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1158 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1160 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1161 static const u32 runnable_avg_yN_inv[] = {
1162 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1163 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1164 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1165 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1166 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1167 0x85aac367, 0x82cd8698,
1171 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1172 * over-estimates when re-combining.
1174 static const u32 runnable_avg_yN_sum[] = {
1175 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1176 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1177 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1182 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1184 static __always_inline u64 decay_load(u64 val, u64 n)
1186 unsigned int local_n;
1190 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1193 /* after bounds checking we can collapse to 32-bit */
1197 * As y^PERIOD = 1/2, we can combine
1198 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1199 * With a look-up table which covers k^n (n<PERIOD)
1201 * To achieve constant time decay_load.
1203 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1204 val >>= local_n / LOAD_AVG_PERIOD;
1205 local_n %= LOAD_AVG_PERIOD;
1208 val *= runnable_avg_yN_inv[local_n];
1209 /* We don't use SRR here since we always want to round down. */
1214 * For updates fully spanning n periods, the contribution to runnable
1215 * average will be: \Sum 1024*y^n
1217 * We can compute this reasonably efficiently by combining:
1218 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1220 static u32 __compute_runnable_contrib(u64 n)
1224 if (likely(n <= LOAD_AVG_PERIOD))
1225 return runnable_avg_yN_sum[n];
1226 else if (unlikely(n >= LOAD_AVG_MAX_N))
1227 return LOAD_AVG_MAX;
1229 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1231 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1232 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1234 n -= LOAD_AVG_PERIOD;
1235 } while (n > LOAD_AVG_PERIOD);
1237 contrib = decay_load(contrib, n);
1238 return contrib + runnable_avg_yN_sum[n];
1242 * We can represent the historical contribution to runnable average as the
1243 * coefficients of a geometric series. To do this we sub-divide our runnable
1244 * history into segments of approximately 1ms (1024us); label the segment that
1245 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1247 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1249 * (now) (~1ms ago) (~2ms ago)
1251 * Let u_i denote the fraction of p_i that the entity was runnable.
1253 * We then designate the fractions u_i as our co-efficients, yielding the
1254 * following representation of historical load:
1255 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1257 * We choose y based on the with of a reasonably scheduling period, fixing:
1260 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1261 * approximately half as much as the contribution to load within the last ms
1264 * When a period "rolls over" and we have new u_0`, multiplying the previous
1265 * sum again by y is sufficient to update:
1266 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1267 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1269 static __always_inline int __update_entity_runnable_avg(u64 now,
1270 struct sched_avg *sa,
1274 u32 runnable_contrib;
1275 int delta_w, decayed = 0;
1277 delta = now - sa->last_runnable_update;
1279 * This should only happen when time goes backwards, which it
1280 * unfortunately does during sched clock init when we swap over to TSC.
1282 if ((s64)delta < 0) {
1283 sa->last_runnable_update = now;
1288 * Use 1024ns as the unit of measurement since it's a reasonable
1289 * approximation of 1us and fast to compute.
1294 sa->last_runnable_update = now;
1296 /* delta_w is the amount already accumulated against our next period */
1297 delta_w = sa->runnable_avg_period % 1024;
1298 if (delta + delta_w >= 1024) {
1299 /* period roll-over */
1303 * Now that we know we're crossing a period boundary, figure
1304 * out how much from delta we need to complete the current
1305 * period and accrue it.
1307 delta_w = 1024 - delta_w;
1309 sa->runnable_avg_sum += delta_w;
1310 sa->runnable_avg_period += delta_w;
1314 /* Figure out how many additional periods this update spans */
1315 periods = delta / 1024;
1318 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1320 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1323 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1324 runnable_contrib = __compute_runnable_contrib(periods);
1326 sa->runnable_avg_sum += runnable_contrib;
1327 sa->runnable_avg_period += runnable_contrib;
1330 /* Remainder of delta accrued against u_0` */
1332 sa->runnable_avg_sum += delta;
1333 sa->runnable_avg_period += delta;
1338 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1339 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1341 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1342 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1344 decays -= se->avg.decay_count;
1348 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1349 se->avg.decay_count = 0;
1354 #ifdef CONFIG_FAIR_GROUP_SCHED
1355 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1358 struct task_group *tg = cfs_rq->tg;
1361 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1362 tg_contrib -= cfs_rq->tg_load_contrib;
1364 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1365 atomic_long_add(tg_contrib, &tg->load_avg);
1366 cfs_rq->tg_load_contrib += tg_contrib;
1371 * Aggregate cfs_rq runnable averages into an equivalent task_group
1372 * representation for computing load contributions.
1374 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1375 struct cfs_rq *cfs_rq)
1377 struct task_group *tg = cfs_rq->tg;
1380 /* The fraction of a cpu used by this cfs_rq */
1381 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1382 sa->runnable_avg_period + 1);
1383 contrib -= cfs_rq->tg_runnable_contrib;
1385 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1386 atomic_add(contrib, &tg->runnable_avg);
1387 cfs_rq->tg_runnable_contrib += contrib;
1391 static inline void __update_group_entity_contrib(struct sched_entity *se)
1393 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1394 struct task_group *tg = cfs_rq->tg;
1399 contrib = cfs_rq->tg_load_contrib * tg->shares;
1400 se->avg.load_avg_contrib = div_u64(contrib,
1401 atomic_long_read(&tg->load_avg) + 1);
1404 * For group entities we need to compute a correction term in the case
1405 * that they are consuming <1 cpu so that we would contribute the same
1406 * load as a task of equal weight.
1408 * Explicitly co-ordinating this measurement would be expensive, but
1409 * fortunately the sum of each cpus contribution forms a usable
1410 * lower-bound on the true value.
1412 * Consider the aggregate of 2 contributions. Either they are disjoint
1413 * (and the sum represents true value) or they are disjoint and we are
1414 * understating by the aggregate of their overlap.
1416 * Extending this to N cpus, for a given overlap, the maximum amount we
1417 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1418 * cpus that overlap for this interval and w_i is the interval width.
1420 * On a small machine; the first term is well-bounded which bounds the
1421 * total error since w_i is a subset of the period. Whereas on a
1422 * larger machine, while this first term can be larger, if w_i is the
1423 * of consequential size guaranteed to see n_i*w_i quickly converge to
1424 * our upper bound of 1-cpu.
1426 runnable_avg = atomic_read(&tg->runnable_avg);
1427 if (runnable_avg < NICE_0_LOAD) {
1428 se->avg.load_avg_contrib *= runnable_avg;
1429 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1433 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1434 int force_update) {}
1435 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1436 struct cfs_rq *cfs_rq) {}
1437 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1440 static inline void __update_task_entity_contrib(struct sched_entity *se)
1444 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1445 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1446 contrib /= (se->avg.runnable_avg_period + 1);
1447 se->avg.load_avg_contrib = scale_load(contrib);
1450 /* Compute the current contribution to load_avg by se, return any delta */
1451 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1453 long old_contrib = se->avg.load_avg_contrib;
1455 if (entity_is_task(se)) {
1456 __update_task_entity_contrib(se);
1458 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1459 __update_group_entity_contrib(se);
1462 return se->avg.load_avg_contrib - old_contrib;
1465 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1468 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1469 cfs_rq->blocked_load_avg -= load_contrib;
1471 cfs_rq->blocked_load_avg = 0;
1474 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1476 /* Update a sched_entity's runnable average */
1477 static inline void update_entity_load_avg(struct sched_entity *se,
1480 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1485 * For a group entity we need to use their owned cfs_rq_clock_task() in
1486 * case they are the parent of a throttled hierarchy.
1488 if (entity_is_task(se))
1489 now = cfs_rq_clock_task(cfs_rq);
1491 now = cfs_rq_clock_task(group_cfs_rq(se));
1493 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1496 contrib_delta = __update_entity_load_avg_contrib(se);
1502 cfs_rq->runnable_load_avg += contrib_delta;
1504 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1508 * Decay the load contributed by all blocked children and account this so that
1509 * their contribution may appropriately discounted when they wake up.
1511 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1513 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1516 decays = now - cfs_rq->last_decay;
1517 if (!decays && !force_update)
1520 if (atomic_long_read(&cfs_rq->removed_load)) {
1521 unsigned long removed_load;
1522 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
1523 subtract_blocked_load_contrib(cfs_rq, removed_load);
1527 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1529 atomic64_add(decays, &cfs_rq->decay_counter);
1530 cfs_rq->last_decay = now;
1533 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1536 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1538 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
1539 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1542 /* Add the load generated by se into cfs_rq's child load-average */
1543 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1544 struct sched_entity *se,
1548 * We track migrations using entity decay_count <= 0, on a wake-up
1549 * migration we use a negative decay count to track the remote decays
1550 * accumulated while sleeping.
1552 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1553 * are seen by enqueue_entity_load_avg() as a migration with an already
1554 * constructed load_avg_contrib.
1556 if (unlikely(se->avg.decay_count <= 0)) {
1557 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
1558 if (se->avg.decay_count) {
1560 * In a wake-up migration we have to approximate the
1561 * time sleeping. This is because we can't synchronize
1562 * clock_task between the two cpus, and it is not
1563 * guaranteed to be read-safe. Instead, we can
1564 * approximate this using our carried decays, which are
1565 * explicitly atomically readable.
1567 se->avg.last_runnable_update -= (-se->avg.decay_count)
1569 update_entity_load_avg(se, 0);
1570 /* Indicate that we're now synchronized and on-rq */
1571 se->avg.decay_count = 0;
1576 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1577 * would have made count negative); we must be careful to avoid
1578 * double-accounting blocked time after synchronizing decays.
1580 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1584 /* migrated tasks did not contribute to our blocked load */
1586 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1587 update_entity_load_avg(se, 0);
1590 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1591 /* we force update consideration on load-balancer moves */
1592 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1596 * Remove se's load from this cfs_rq child load-average, if the entity is
1597 * transitioning to a blocked state we track its projected decay using
1600 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1601 struct sched_entity *se,
1604 update_entity_load_avg(se, 1);
1605 /* we force update consideration on load-balancer moves */
1606 update_cfs_rq_blocked_load(cfs_rq, !sleep);
1608 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1610 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1611 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1612 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1616 * Update the rq's load with the elapsed running time before entering
1617 * idle. if the last scheduled task is not a CFS task, idle_enter will
1618 * be the only way to update the runnable statistic.
1620 void idle_enter_fair(struct rq *this_rq)
1622 update_rq_runnable_avg(this_rq, 1);
1626 * Update the rq's load with the elapsed idle time before a task is
1627 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1628 * be the only way to update the runnable statistic.
1630 void idle_exit_fair(struct rq *this_rq)
1632 update_rq_runnable_avg(this_rq, 0);
1636 static inline void update_entity_load_avg(struct sched_entity *se,
1637 int update_cfs_rq) {}
1638 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1639 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1640 struct sched_entity *se,
1642 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1643 struct sched_entity *se,
1645 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1646 int force_update) {}
1649 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1651 #ifdef CONFIG_SCHEDSTATS
1652 struct task_struct *tsk = NULL;
1654 if (entity_is_task(se))
1657 if (se->statistics.sleep_start) {
1658 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
1663 if (unlikely(delta > se->statistics.sleep_max))
1664 se->statistics.sleep_max = delta;
1666 se->statistics.sleep_start = 0;
1667 se->statistics.sum_sleep_runtime += delta;
1670 account_scheduler_latency(tsk, delta >> 10, 1);
1671 trace_sched_stat_sleep(tsk, delta);
1674 if (se->statistics.block_start) {
1675 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
1680 if (unlikely(delta > se->statistics.block_max))
1681 se->statistics.block_max = delta;
1683 se->statistics.block_start = 0;
1684 se->statistics.sum_sleep_runtime += delta;
1687 if (tsk->in_iowait) {
1688 se->statistics.iowait_sum += delta;
1689 se->statistics.iowait_count++;
1690 trace_sched_stat_iowait(tsk, delta);
1693 trace_sched_stat_blocked(tsk, delta);
1696 * Blocking time is in units of nanosecs, so shift by
1697 * 20 to get a milliseconds-range estimation of the
1698 * amount of time that the task spent sleeping:
1700 if (unlikely(prof_on == SLEEP_PROFILING)) {
1701 profile_hits(SLEEP_PROFILING,
1702 (void *)get_wchan(tsk),
1705 account_scheduler_latency(tsk, delta >> 10, 0);
1711 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1713 #ifdef CONFIG_SCHED_DEBUG
1714 s64 d = se->vruntime - cfs_rq->min_vruntime;
1719 if (d > 3*sysctl_sched_latency)
1720 schedstat_inc(cfs_rq, nr_spread_over);
1725 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1727 u64 vruntime = cfs_rq->min_vruntime;
1730 * The 'current' period is already promised to the current tasks,
1731 * however the extra weight of the new task will slow them down a
1732 * little, place the new task so that it fits in the slot that
1733 * stays open at the end.
1735 if (initial && sched_feat(START_DEBIT))
1736 vruntime += sched_vslice(cfs_rq, se);
1738 /* sleeps up to a single latency don't count. */
1740 unsigned long thresh = sysctl_sched_latency;
1743 * Halve their sleep time's effect, to allow
1744 * for a gentler effect of sleepers:
1746 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1752 /* ensure we never gain time by being placed backwards. */
1753 se->vruntime = max_vruntime(se->vruntime, vruntime);
1756 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1759 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1762 * Update the normalized vruntime before updating min_vruntime
1763 * through calling update_curr().
1765 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1766 se->vruntime += cfs_rq->min_vruntime;
1769 * Update run-time statistics of the 'current'.
1771 update_curr(cfs_rq);
1772 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1773 account_entity_enqueue(cfs_rq, se);
1774 update_cfs_shares(cfs_rq);
1776 if (flags & ENQUEUE_WAKEUP) {
1777 place_entity(cfs_rq, se, 0);
1778 enqueue_sleeper(cfs_rq, se);
1781 update_stats_enqueue(cfs_rq, se);
1782 check_spread(cfs_rq, se);
1783 if (se != cfs_rq->curr)
1784 __enqueue_entity(cfs_rq, se);
1787 if (cfs_rq->nr_running == 1) {
1788 list_add_leaf_cfs_rq(cfs_rq);
1789 check_enqueue_throttle(cfs_rq);
1793 static void __clear_buddies_last(struct sched_entity *se)
1795 for_each_sched_entity(se) {
1796 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1797 if (cfs_rq->last == se)
1798 cfs_rq->last = NULL;
1804 static void __clear_buddies_next(struct sched_entity *se)
1806 for_each_sched_entity(se) {
1807 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1808 if (cfs_rq->next == se)
1809 cfs_rq->next = NULL;
1815 static void __clear_buddies_skip(struct sched_entity *se)
1817 for_each_sched_entity(se) {
1818 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1819 if (cfs_rq->skip == se)
1820 cfs_rq->skip = NULL;
1826 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1828 if (cfs_rq->last == se)
1829 __clear_buddies_last(se);
1831 if (cfs_rq->next == se)
1832 __clear_buddies_next(se);
1834 if (cfs_rq->skip == se)
1835 __clear_buddies_skip(se);
1838 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1841 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1844 * Update run-time statistics of the 'current'.
1846 update_curr(cfs_rq);
1847 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1849 update_stats_dequeue(cfs_rq, se);
1850 if (flags & DEQUEUE_SLEEP) {
1851 #ifdef CONFIG_SCHEDSTATS
1852 if (entity_is_task(se)) {
1853 struct task_struct *tsk = task_of(se);
1855 if (tsk->state & TASK_INTERRUPTIBLE)
1856 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
1857 if (tsk->state & TASK_UNINTERRUPTIBLE)
1858 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
1863 clear_buddies(cfs_rq, se);
1865 if (se != cfs_rq->curr)
1866 __dequeue_entity(cfs_rq, se);
1868 account_entity_dequeue(cfs_rq, se);
1871 * Normalize the entity after updating the min_vruntime because the
1872 * update can refer to the ->curr item and we need to reflect this
1873 * movement in our normalized position.
1875 if (!(flags & DEQUEUE_SLEEP))
1876 se->vruntime -= cfs_rq->min_vruntime;
1878 /* return excess runtime on last dequeue */
1879 return_cfs_rq_runtime(cfs_rq);
1881 update_min_vruntime(cfs_rq);
1882 update_cfs_shares(cfs_rq);
1886 * Preempt the current task with a newly woken task if needed:
1889 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1891 unsigned long ideal_runtime, delta_exec;
1892 struct sched_entity *se;
1895 ideal_runtime = sched_slice(cfs_rq, curr);
1896 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1897 if (delta_exec > ideal_runtime) {
1898 resched_task(rq_of(cfs_rq)->curr);
1900 * The current task ran long enough, ensure it doesn't get
1901 * re-elected due to buddy favours.
1903 clear_buddies(cfs_rq, curr);
1908 * Ensure that a task that missed wakeup preemption by a
1909 * narrow margin doesn't have to wait for a full slice.
1910 * This also mitigates buddy induced latencies under load.
1912 if (delta_exec < sysctl_sched_min_granularity)
1915 se = __pick_first_entity(cfs_rq);
1916 delta = curr->vruntime - se->vruntime;
1921 if (delta > ideal_runtime)
1922 resched_task(rq_of(cfs_rq)->curr);
1926 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1928 /* 'current' is not kept within the tree. */
1931 * Any task has to be enqueued before it get to execute on
1932 * a CPU. So account for the time it spent waiting on the
1935 update_stats_wait_end(cfs_rq, se);
1936 __dequeue_entity(cfs_rq, se);
1939 update_stats_curr_start(cfs_rq, se);
1941 #ifdef CONFIG_SCHEDSTATS
1943 * Track our maximum slice length, if the CPU's load is at
1944 * least twice that of our own weight (i.e. dont track it
1945 * when there are only lesser-weight tasks around):
1947 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1948 se->statistics.slice_max = max(se->statistics.slice_max,
1949 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1952 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1956 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1959 * Pick the next process, keeping these things in mind, in this order:
1960 * 1) keep things fair between processes/task groups
1961 * 2) pick the "next" process, since someone really wants that to run
1962 * 3) pick the "last" process, for cache locality
1963 * 4) do not run the "skip" process, if something else is available
1965 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1967 struct sched_entity *se = __pick_first_entity(cfs_rq);
1968 struct sched_entity *left = se;
1971 * Avoid running the skip buddy, if running something else can
1972 * be done without getting too unfair.
1974 if (cfs_rq->skip == se) {
1975 struct sched_entity *second = __pick_next_entity(se);
1976 if (second && wakeup_preempt_entity(second, left) < 1)
1981 * Prefer last buddy, try to return the CPU to a preempted task.
1983 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1987 * Someone really wants this to run. If it's not unfair, run it.
1989 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1992 clear_buddies(cfs_rq, se);
1997 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1999 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2002 * If still on the runqueue then deactivate_task()
2003 * was not called and update_curr() has to be done:
2006 update_curr(cfs_rq);
2008 /* throttle cfs_rqs exceeding runtime */
2009 check_cfs_rq_runtime(cfs_rq);
2011 check_spread(cfs_rq, prev);
2013 update_stats_wait_start(cfs_rq, prev);
2014 /* Put 'current' back into the tree. */
2015 __enqueue_entity(cfs_rq, prev);
2016 /* in !on_rq case, update occurred at dequeue */
2017 update_entity_load_avg(prev, 1);
2019 cfs_rq->curr = NULL;
2023 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2026 * Update run-time statistics of the 'current'.
2028 update_curr(cfs_rq);
2031 * Ensure that runnable average is periodically updated.
2033 update_entity_load_avg(curr, 1);
2034 update_cfs_rq_blocked_load(cfs_rq, 1);
2036 #ifdef CONFIG_SCHED_HRTICK
2038 * queued ticks are scheduled to match the slice, so don't bother
2039 * validating it and just reschedule.
2042 resched_task(rq_of(cfs_rq)->curr);
2046 * don't let the period tick interfere with the hrtick preemption
2048 if (!sched_feat(DOUBLE_TICK) &&
2049 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2053 if (cfs_rq->nr_running > 1)
2054 check_preempt_tick(cfs_rq, curr);
2058 /**************************************************
2059 * CFS bandwidth control machinery
2062 #ifdef CONFIG_CFS_BANDWIDTH
2064 #ifdef HAVE_JUMP_LABEL
2065 static struct static_key __cfs_bandwidth_used;
2067 static inline bool cfs_bandwidth_used(void)
2069 return static_key_false(&__cfs_bandwidth_used);
2072 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2074 /* only need to count groups transitioning between enabled/!enabled */
2075 if (enabled && !was_enabled)
2076 static_key_slow_inc(&__cfs_bandwidth_used);
2077 else if (!enabled && was_enabled)
2078 static_key_slow_dec(&__cfs_bandwidth_used);
2080 #else /* HAVE_JUMP_LABEL */
2081 static bool cfs_bandwidth_used(void)
2086 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2087 #endif /* HAVE_JUMP_LABEL */
2090 * default period for cfs group bandwidth.
2091 * default: 0.1s, units: nanoseconds
2093 static inline u64 default_cfs_period(void)
2095 return 100000000ULL;
2098 static inline u64 sched_cfs_bandwidth_slice(void)
2100 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2104 * Replenish runtime according to assigned quota and update expiration time.
2105 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2106 * additional synchronization around rq->lock.
2108 * requires cfs_b->lock
2110 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2114 if (cfs_b->quota == RUNTIME_INF)
2117 now = sched_clock_cpu(smp_processor_id());
2118 cfs_b->runtime = cfs_b->quota;
2119 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2122 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2124 return &tg->cfs_bandwidth;
2127 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2128 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2130 if (unlikely(cfs_rq->throttle_count))
2131 return cfs_rq->throttled_clock_task;
2133 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2136 /* returns 0 on failure to allocate runtime */
2137 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2139 struct task_group *tg = cfs_rq->tg;
2140 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2141 u64 amount = 0, min_amount, expires;
2143 /* note: this is a positive sum as runtime_remaining <= 0 */
2144 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2146 raw_spin_lock(&cfs_b->lock);
2147 if (cfs_b->quota == RUNTIME_INF)
2148 amount = min_amount;
2151 * If the bandwidth pool has become inactive, then at least one
2152 * period must have elapsed since the last consumption.
2153 * Refresh the global state and ensure bandwidth timer becomes
2156 if (!cfs_b->timer_active) {
2157 __refill_cfs_bandwidth_runtime(cfs_b);
2158 __start_cfs_bandwidth(cfs_b);
2161 if (cfs_b->runtime > 0) {
2162 amount = min(cfs_b->runtime, min_amount);
2163 cfs_b->runtime -= amount;
2167 expires = cfs_b->runtime_expires;
2168 raw_spin_unlock(&cfs_b->lock);
2170 cfs_rq->runtime_remaining += amount;
2172 * we may have advanced our local expiration to account for allowed
2173 * spread between our sched_clock and the one on which runtime was
2176 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2177 cfs_rq->runtime_expires = expires;
2179 return cfs_rq->runtime_remaining > 0;
2183 * Note: This depends on the synchronization provided by sched_clock and the
2184 * fact that rq->clock snapshots this value.
2186 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2188 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2190 /* if the deadline is ahead of our clock, nothing to do */
2191 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2194 if (cfs_rq->runtime_remaining < 0)
2198 * If the local deadline has passed we have to consider the
2199 * possibility that our sched_clock is 'fast' and the global deadline
2200 * has not truly expired.
2202 * Fortunately we can check determine whether this the case by checking
2203 * whether the global deadline has advanced.
2206 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2207 /* extend local deadline, drift is bounded above by 2 ticks */
2208 cfs_rq->runtime_expires += TICK_NSEC;
2210 /* global deadline is ahead, expiration has passed */
2211 cfs_rq->runtime_remaining = 0;
2215 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2216 unsigned long delta_exec)
2218 /* dock delta_exec before expiring quota (as it could span periods) */
2219 cfs_rq->runtime_remaining -= delta_exec;
2220 expire_cfs_rq_runtime(cfs_rq);
2222 if (likely(cfs_rq->runtime_remaining > 0))
2226 * if we're unable to extend our runtime we resched so that the active
2227 * hierarchy can be throttled
2229 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2230 resched_task(rq_of(cfs_rq)->curr);
2233 static __always_inline
2234 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2236 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2239 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2242 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2244 return cfs_bandwidth_used() && cfs_rq->throttled;
2247 /* check whether cfs_rq, or any parent, is throttled */
2248 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2250 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2254 * Ensure that neither of the group entities corresponding to src_cpu or
2255 * dest_cpu are members of a throttled hierarchy when performing group
2256 * load-balance operations.
2258 static inline int throttled_lb_pair(struct task_group *tg,
2259 int src_cpu, int dest_cpu)
2261 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2263 src_cfs_rq = tg->cfs_rq[src_cpu];
2264 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2266 return throttled_hierarchy(src_cfs_rq) ||
2267 throttled_hierarchy(dest_cfs_rq);
2270 /* updated child weight may affect parent so we have to do this bottom up */
2271 static int tg_unthrottle_up(struct task_group *tg, void *data)
2273 struct rq *rq = data;
2274 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2276 cfs_rq->throttle_count--;
2278 if (!cfs_rq->throttle_count) {
2279 /* adjust cfs_rq_clock_task() */
2280 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2281 cfs_rq->throttled_clock_task;
2288 static int tg_throttle_down(struct task_group *tg, void *data)
2290 struct rq *rq = data;
2291 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2293 /* group is entering throttled state, stop time */
2294 if (!cfs_rq->throttle_count)
2295 cfs_rq->throttled_clock_task = rq_clock_task(rq);
2296 cfs_rq->throttle_count++;
2301 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2303 struct rq *rq = rq_of(cfs_rq);
2304 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2305 struct sched_entity *se;
2306 long task_delta, dequeue = 1;
2308 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2310 /* freeze hierarchy runnable averages while throttled */
2312 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2315 task_delta = cfs_rq->h_nr_running;
2316 for_each_sched_entity(se) {
2317 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2318 /* throttled entity or throttle-on-deactivate */
2323 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2324 qcfs_rq->h_nr_running -= task_delta;
2326 if (qcfs_rq->load.weight)
2331 rq->nr_running -= task_delta;
2333 cfs_rq->throttled = 1;
2334 cfs_rq->throttled_clock = rq_clock(rq);
2335 raw_spin_lock(&cfs_b->lock);
2336 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2337 raw_spin_unlock(&cfs_b->lock);
2340 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2342 struct rq *rq = rq_of(cfs_rq);
2343 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2344 struct sched_entity *se;
2348 se = cfs_rq->tg->se[cpu_of(rq)];
2350 cfs_rq->throttled = 0;
2352 update_rq_clock(rq);
2354 raw_spin_lock(&cfs_b->lock);
2355 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
2356 list_del_rcu(&cfs_rq->throttled_list);
2357 raw_spin_unlock(&cfs_b->lock);
2359 /* update hierarchical throttle state */
2360 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2362 if (!cfs_rq->load.weight)
2365 task_delta = cfs_rq->h_nr_running;
2366 for_each_sched_entity(se) {
2370 cfs_rq = cfs_rq_of(se);
2372 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2373 cfs_rq->h_nr_running += task_delta;
2375 if (cfs_rq_throttled(cfs_rq))
2380 rq->nr_running += task_delta;
2382 /* determine whether we need to wake up potentially idle cpu */
2383 if (rq->curr == rq->idle && rq->cfs.nr_running)
2384 resched_task(rq->curr);
2387 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2388 u64 remaining, u64 expires)
2390 struct cfs_rq *cfs_rq;
2391 u64 runtime = remaining;
2394 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2396 struct rq *rq = rq_of(cfs_rq);
2398 raw_spin_lock(&rq->lock);
2399 if (!cfs_rq_throttled(cfs_rq))
2402 runtime = -cfs_rq->runtime_remaining + 1;
2403 if (runtime > remaining)
2404 runtime = remaining;
2405 remaining -= runtime;
2407 cfs_rq->runtime_remaining += runtime;
2408 cfs_rq->runtime_expires = expires;
2410 /* we check whether we're throttled above */
2411 if (cfs_rq->runtime_remaining > 0)
2412 unthrottle_cfs_rq(cfs_rq);
2415 raw_spin_unlock(&rq->lock);
2426 * Responsible for refilling a task_group's bandwidth and unthrottling its
2427 * cfs_rqs as appropriate. If there has been no activity within the last
2428 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2429 * used to track this state.
2431 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2433 u64 runtime, runtime_expires;
2434 int idle = 1, throttled;
2436 raw_spin_lock(&cfs_b->lock);
2437 /* no need to continue the timer with no bandwidth constraint */
2438 if (cfs_b->quota == RUNTIME_INF)
2441 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2442 /* idle depends on !throttled (for the case of a large deficit) */
2443 idle = cfs_b->idle && !throttled;
2444 cfs_b->nr_periods += overrun;
2446 /* if we're going inactive then everything else can be deferred */
2450 __refill_cfs_bandwidth_runtime(cfs_b);
2453 /* mark as potentially idle for the upcoming period */
2458 /* account preceding periods in which throttling occurred */
2459 cfs_b->nr_throttled += overrun;
2462 * There are throttled entities so we must first use the new bandwidth
2463 * to unthrottle them before making it generally available. This
2464 * ensures that all existing debts will be paid before a new cfs_rq is
2467 runtime = cfs_b->runtime;
2468 runtime_expires = cfs_b->runtime_expires;
2472 * This check is repeated as we are holding onto the new bandwidth
2473 * while we unthrottle. This can potentially race with an unthrottled
2474 * group trying to acquire new bandwidth from the global pool.
2476 while (throttled && runtime > 0) {
2477 raw_spin_unlock(&cfs_b->lock);
2478 /* we can't nest cfs_b->lock while distributing bandwidth */
2479 runtime = distribute_cfs_runtime(cfs_b, runtime,
2481 raw_spin_lock(&cfs_b->lock);
2483 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2486 /* return (any) remaining runtime */
2487 cfs_b->runtime = runtime;
2489 * While we are ensured activity in the period following an
2490 * unthrottle, this also covers the case in which the new bandwidth is
2491 * insufficient to cover the existing bandwidth deficit. (Forcing the
2492 * timer to remain active while there are any throttled entities.)
2497 cfs_b->timer_active = 0;
2498 raw_spin_unlock(&cfs_b->lock);
2503 /* a cfs_rq won't donate quota below this amount */
2504 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2505 /* minimum remaining period time to redistribute slack quota */
2506 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2507 /* how long we wait to gather additional slack before distributing */
2508 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2510 /* are we near the end of the current quota period? */
2511 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2513 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2516 /* if the call-back is running a quota refresh is already occurring */
2517 if (hrtimer_callback_running(refresh_timer))
2520 /* is a quota refresh about to occur? */
2521 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2522 if (remaining < min_expire)
2528 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2530 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2532 /* if there's a quota refresh soon don't bother with slack */
2533 if (runtime_refresh_within(cfs_b, min_left))
2536 start_bandwidth_timer(&cfs_b->slack_timer,
2537 ns_to_ktime(cfs_bandwidth_slack_period));
2540 /* we know any runtime found here is valid as update_curr() precedes return */
2541 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2543 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2544 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2546 if (slack_runtime <= 0)
2549 raw_spin_lock(&cfs_b->lock);
2550 if (cfs_b->quota != RUNTIME_INF &&
2551 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2552 cfs_b->runtime += slack_runtime;
2554 /* we are under rq->lock, defer unthrottling using a timer */
2555 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2556 !list_empty(&cfs_b->throttled_cfs_rq))
2557 start_cfs_slack_bandwidth(cfs_b);
2559 raw_spin_unlock(&cfs_b->lock);
2561 /* even if it's not valid for return we don't want to try again */
2562 cfs_rq->runtime_remaining -= slack_runtime;
2565 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2567 if (!cfs_bandwidth_used())
2570 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2573 __return_cfs_rq_runtime(cfs_rq);
2577 * This is done with a timer (instead of inline with bandwidth return) since
2578 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2580 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2582 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2585 /* confirm we're still not at a refresh boundary */
2586 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2589 raw_spin_lock(&cfs_b->lock);
2590 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2591 runtime = cfs_b->runtime;
2594 expires = cfs_b->runtime_expires;
2595 raw_spin_unlock(&cfs_b->lock);
2600 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2602 raw_spin_lock(&cfs_b->lock);
2603 if (expires == cfs_b->runtime_expires)
2604 cfs_b->runtime = runtime;
2605 raw_spin_unlock(&cfs_b->lock);
2609 * When a group wakes up we want to make sure that its quota is not already
2610 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2611 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2613 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2615 if (!cfs_bandwidth_used())
2618 /* an active group must be handled by the update_curr()->put() path */
2619 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2622 /* ensure the group is not already throttled */
2623 if (cfs_rq_throttled(cfs_rq))
2626 /* update runtime allocation */
2627 account_cfs_rq_runtime(cfs_rq, 0);
2628 if (cfs_rq->runtime_remaining <= 0)
2629 throttle_cfs_rq(cfs_rq);
2632 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2633 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2635 if (!cfs_bandwidth_used())
2638 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2642 * it's possible for a throttled entity to be forced into a running
2643 * state (e.g. set_curr_task), in this case we're finished.
2645 if (cfs_rq_throttled(cfs_rq))
2648 throttle_cfs_rq(cfs_rq);
2651 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2653 struct cfs_bandwidth *cfs_b =
2654 container_of(timer, struct cfs_bandwidth, slack_timer);
2655 do_sched_cfs_slack_timer(cfs_b);
2657 return HRTIMER_NORESTART;
2660 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2662 struct cfs_bandwidth *cfs_b =
2663 container_of(timer, struct cfs_bandwidth, period_timer);
2669 now = hrtimer_cb_get_time(timer);
2670 overrun = hrtimer_forward(timer, now, cfs_b->period);
2675 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2678 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2681 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2683 raw_spin_lock_init(&cfs_b->lock);
2685 cfs_b->quota = RUNTIME_INF;
2686 cfs_b->period = ns_to_ktime(default_cfs_period());
2688 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2689 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2690 cfs_b->period_timer.function = sched_cfs_period_timer;
2691 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2692 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2695 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2697 cfs_rq->runtime_enabled = 0;
2698 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2701 /* requires cfs_b->lock, may release to reprogram timer */
2702 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2705 * The timer may be active because we're trying to set a new bandwidth
2706 * period or because we're racing with the tear-down path
2707 * (timer_active==0 becomes visible before the hrtimer call-back
2708 * terminates). In either case we ensure that it's re-programmed
2710 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2711 raw_spin_unlock(&cfs_b->lock);
2712 /* ensure cfs_b->lock is available while we wait */
2713 hrtimer_cancel(&cfs_b->period_timer);
2715 raw_spin_lock(&cfs_b->lock);
2716 /* if someone else restarted the timer then we're done */
2717 if (cfs_b->timer_active)
2721 cfs_b->timer_active = 1;
2722 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2725 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2727 hrtimer_cancel(&cfs_b->period_timer);
2728 hrtimer_cancel(&cfs_b->slack_timer);
2731 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2733 struct cfs_rq *cfs_rq;
2735 for_each_leaf_cfs_rq(rq, cfs_rq) {
2736 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2738 if (!cfs_rq->runtime_enabled)
2742 * clock_task is not advancing so we just need to make sure
2743 * there's some valid quota amount
2745 cfs_rq->runtime_remaining = cfs_b->quota;
2746 if (cfs_rq_throttled(cfs_rq))
2747 unthrottle_cfs_rq(cfs_rq);
2751 #else /* CONFIG_CFS_BANDWIDTH */
2752 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2754 return rq_clock_task(rq_of(cfs_rq));
2757 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2758 unsigned long delta_exec) {}
2759 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2760 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2761 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2763 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2768 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2773 static inline int throttled_lb_pair(struct task_group *tg,
2774 int src_cpu, int dest_cpu)
2779 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2781 #ifdef CONFIG_FAIR_GROUP_SCHED
2782 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2785 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2789 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2790 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2792 #endif /* CONFIG_CFS_BANDWIDTH */
2794 /**************************************************
2795 * CFS operations on tasks:
2798 #ifdef CONFIG_SCHED_HRTICK
2799 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2801 struct sched_entity *se = &p->se;
2802 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2804 WARN_ON(task_rq(p) != rq);
2806 if (cfs_rq->nr_running > 1) {
2807 u64 slice = sched_slice(cfs_rq, se);
2808 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2809 s64 delta = slice - ran;
2818 * Don't schedule slices shorter than 10000ns, that just
2819 * doesn't make sense. Rely on vruntime for fairness.
2822 delta = max_t(s64, 10000LL, delta);
2824 hrtick_start(rq, delta);
2829 * called from enqueue/dequeue and updates the hrtick when the
2830 * current task is from our class and nr_running is low enough
2833 static void hrtick_update(struct rq *rq)
2835 struct task_struct *curr = rq->curr;
2837 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2840 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2841 hrtick_start_fair(rq, curr);
2843 #else /* !CONFIG_SCHED_HRTICK */
2845 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2849 static inline void hrtick_update(struct rq *rq)
2855 * The enqueue_task method is called before nr_running is
2856 * increased. Here we update the fair scheduling stats and
2857 * then put the task into the rbtree:
2860 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2862 struct cfs_rq *cfs_rq;
2863 struct sched_entity *se = &p->se;
2865 for_each_sched_entity(se) {
2868 cfs_rq = cfs_rq_of(se);
2869 enqueue_entity(cfs_rq, se, flags);
2872 * end evaluation on encountering a throttled cfs_rq
2874 * note: in the case of encountering a throttled cfs_rq we will
2875 * post the final h_nr_running increment below.
2877 if (cfs_rq_throttled(cfs_rq))
2879 cfs_rq->h_nr_running++;
2881 flags = ENQUEUE_WAKEUP;
2884 for_each_sched_entity(se) {
2885 cfs_rq = cfs_rq_of(se);
2886 cfs_rq->h_nr_running++;
2888 if (cfs_rq_throttled(cfs_rq))
2891 update_cfs_shares(cfs_rq);
2892 update_entity_load_avg(se, 1);
2896 update_rq_runnable_avg(rq, rq->nr_running);
2902 static void set_next_buddy(struct sched_entity *se);
2905 * The dequeue_task method is called before nr_running is
2906 * decreased. We remove the task from the rbtree and
2907 * update the fair scheduling stats:
2909 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2911 struct cfs_rq *cfs_rq;
2912 struct sched_entity *se = &p->se;
2913 int task_sleep = flags & DEQUEUE_SLEEP;
2915 for_each_sched_entity(se) {
2916 cfs_rq = cfs_rq_of(se);
2917 dequeue_entity(cfs_rq, se, flags);
2920 * end evaluation on encountering a throttled cfs_rq
2922 * note: in the case of encountering a throttled cfs_rq we will
2923 * post the final h_nr_running decrement below.
2925 if (cfs_rq_throttled(cfs_rq))
2927 cfs_rq->h_nr_running--;
2929 /* Don't dequeue parent if it has other entities besides us */
2930 if (cfs_rq->load.weight) {
2932 * Bias pick_next to pick a task from this cfs_rq, as
2933 * p is sleeping when it is within its sched_slice.
2935 if (task_sleep && parent_entity(se))
2936 set_next_buddy(parent_entity(se));
2938 /* avoid re-evaluating load for this entity */
2939 se = parent_entity(se);
2942 flags |= DEQUEUE_SLEEP;
2945 for_each_sched_entity(se) {
2946 cfs_rq = cfs_rq_of(se);
2947 cfs_rq->h_nr_running--;
2949 if (cfs_rq_throttled(cfs_rq))
2952 update_cfs_shares(cfs_rq);
2953 update_entity_load_avg(se, 1);
2958 update_rq_runnable_avg(rq, 1);
2964 /* Used instead of source_load when we know the type == 0 */
2965 static unsigned long weighted_cpuload(const int cpu)
2967 return cpu_rq(cpu)->cfs.runnable_load_avg;
2971 * Return a low guess at the load of a migration-source cpu weighted
2972 * according to the scheduling class and "nice" value.
2974 * We want to under-estimate the load of migration sources, to
2975 * balance conservatively.
2977 static unsigned long source_load(int cpu, int type)
2979 struct rq *rq = cpu_rq(cpu);
2980 unsigned long total = weighted_cpuload(cpu);
2982 if (type == 0 || !sched_feat(LB_BIAS))
2985 return min(rq->cpu_load[type-1], total);
2989 * Return a high guess at the load of a migration-target cpu weighted
2990 * according to the scheduling class and "nice" value.
2992 static unsigned long target_load(int cpu, int type)
2994 struct rq *rq = cpu_rq(cpu);
2995 unsigned long total = weighted_cpuload(cpu);
2997 if (type == 0 || !sched_feat(LB_BIAS))
3000 return max(rq->cpu_load[type-1], total);
3003 static unsigned long power_of(int cpu)
3005 return cpu_rq(cpu)->cpu_power;
3008 static unsigned long cpu_avg_load_per_task(int cpu)
3010 struct rq *rq = cpu_rq(cpu);
3011 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3012 unsigned long load_avg = rq->cfs.runnable_load_avg;
3015 return load_avg / nr_running;
3021 static void task_waking_fair(struct task_struct *p)
3023 struct sched_entity *se = &p->se;
3024 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3027 #ifndef CONFIG_64BIT
3028 u64 min_vruntime_copy;
3031 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3033 min_vruntime = cfs_rq->min_vruntime;
3034 } while (min_vruntime != min_vruntime_copy);
3036 min_vruntime = cfs_rq->min_vruntime;
3039 se->vruntime -= min_vruntime;
3042 #ifdef CONFIG_FAIR_GROUP_SCHED
3044 * effective_load() calculates the load change as seen from the root_task_group
3046 * Adding load to a group doesn't make a group heavier, but can cause movement
3047 * of group shares between cpus. Assuming the shares were perfectly aligned one
3048 * can calculate the shift in shares.
3050 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3051 * on this @cpu and results in a total addition (subtraction) of @wg to the
3052 * total group weight.
3054 * Given a runqueue weight distribution (rw_i) we can compute a shares
3055 * distribution (s_i) using:
3057 * s_i = rw_i / \Sum rw_j (1)
3059 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3060 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3061 * shares distribution (s_i):
3063 * rw_i = { 2, 4, 1, 0 }
3064 * s_i = { 2/7, 4/7, 1/7, 0 }
3066 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3067 * task used to run on and the CPU the waker is running on), we need to
3068 * compute the effect of waking a task on either CPU and, in case of a sync
3069 * wakeup, compute the effect of the current task going to sleep.
3071 * So for a change of @wl to the local @cpu with an overall group weight change
3072 * of @wl we can compute the new shares distribution (s'_i) using:
3074 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3076 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3077 * differences in waking a task to CPU 0. The additional task changes the
3078 * weight and shares distributions like:
3080 * rw'_i = { 3, 4, 1, 0 }
3081 * s'_i = { 3/8, 4/8, 1/8, 0 }
3083 * We can then compute the difference in effective weight by using:
3085 * dw_i = S * (s'_i - s_i) (3)
3087 * Where 'S' is the group weight as seen by its parent.
3089 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3090 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3091 * 4/7) times the weight of the group.
3093 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3095 struct sched_entity *se = tg->se[cpu];
3097 if (!tg->parent) /* the trivial, non-cgroup case */
3100 for_each_sched_entity(se) {
3106 * W = @wg + \Sum rw_j
3108 W = wg + calc_tg_weight(tg, se->my_q);
3113 w = se->my_q->load.weight + wl;
3116 * wl = S * s'_i; see (2)
3119 wl = (w * tg->shares) / W;
3124 * Per the above, wl is the new se->load.weight value; since
3125 * those are clipped to [MIN_SHARES, ...) do so now. See
3126 * calc_cfs_shares().
3128 if (wl < MIN_SHARES)
3132 * wl = dw_i = S * (s'_i - s_i); see (3)
3134 wl -= se->load.weight;
3137 * Recursively apply this logic to all parent groups to compute
3138 * the final effective load change on the root group. Since
3139 * only the @tg group gets extra weight, all parent groups can
3140 * only redistribute existing shares. @wl is the shift in shares
3141 * resulting from this level per the above.
3150 static inline unsigned long effective_load(struct task_group *tg, int cpu,
3151 unsigned long wl, unsigned long wg)
3158 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3160 s64 this_load, load;
3161 int idx, this_cpu, prev_cpu;
3162 unsigned long tl_per_task;
3163 struct task_group *tg;
3164 unsigned long weight;
3168 this_cpu = smp_processor_id();
3169 prev_cpu = task_cpu(p);
3170 load = source_load(prev_cpu, idx);
3171 this_load = target_load(this_cpu, idx);
3174 * If sync wakeup then subtract the (maximum possible)
3175 * effect of the currently running task from the load
3176 * of the current CPU:
3179 tg = task_group(current);
3180 weight = current->se.load.weight;
3182 this_load += effective_load(tg, this_cpu, -weight, -weight);
3183 load += effective_load(tg, prev_cpu, 0, -weight);
3187 weight = p->se.load.weight;
3190 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3191 * due to the sync cause above having dropped this_load to 0, we'll
3192 * always have an imbalance, but there's really nothing you can do
3193 * about that, so that's good too.
3195 * Otherwise check if either cpus are near enough in load to allow this
3196 * task to be woken on this_cpu.
3198 if (this_load > 0) {
3199 s64 this_eff_load, prev_eff_load;
3201 this_eff_load = 100;
3202 this_eff_load *= power_of(prev_cpu);
3203 this_eff_load *= this_load +
3204 effective_load(tg, this_cpu, weight, weight);
3206 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3207 prev_eff_load *= power_of(this_cpu);
3208 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3210 balanced = this_eff_load <= prev_eff_load;
3215 * If the currently running task will sleep within
3216 * a reasonable amount of time then attract this newly
3219 if (sync && balanced)
3222 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3223 tl_per_task = cpu_avg_load_per_task(this_cpu);
3226 (this_load <= load &&
3227 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3229 * This domain has SD_WAKE_AFFINE and
3230 * p is cache cold in this domain, and
3231 * there is no bad imbalance.
3233 schedstat_inc(sd, ttwu_move_affine);
3234 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3242 * find_idlest_group finds and returns the least busy CPU group within the
3245 static struct sched_group *
3246 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3247 int this_cpu, int load_idx)
3249 struct sched_group *idlest = NULL, *group = sd->groups;
3250 unsigned long min_load = ULONG_MAX, this_load = 0;
3251 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3254 unsigned long load, avg_load;
3258 /* Skip over this group if it has no CPUs allowed */
3259 if (!cpumask_intersects(sched_group_cpus(group),
3260 tsk_cpus_allowed(p)))
3263 local_group = cpumask_test_cpu(this_cpu,
3264 sched_group_cpus(group));
3266 /* Tally up the load of all CPUs in the group */
3269 for_each_cpu(i, sched_group_cpus(group)) {
3270 /* Bias balancing toward cpus of our domain */
3272 load = source_load(i, load_idx);
3274 load = target_load(i, load_idx);
3279 /* Adjust by relative CPU power of the group */
3280 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3283 this_load = avg_load;
3284 } else if (avg_load < min_load) {
3285 min_load = avg_load;
3288 } while (group = group->next, group != sd->groups);
3290 if (!idlest || 100*this_load < imbalance*min_load)
3296 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3299 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3301 unsigned long load, min_load = ULONG_MAX;
3305 /* Traverse only the allowed CPUs */
3306 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3307 load = weighted_cpuload(i);
3309 if (load < min_load || (load == min_load && i == this_cpu)) {
3319 * Try and locate an idle CPU in the sched_domain.
3321 static int select_idle_sibling(struct task_struct *p, int target)
3323 struct sched_domain *sd;
3324 struct sched_group *sg;
3325 int i = task_cpu(p);
3327 if (idle_cpu(target))
3331 * If the prevous cpu is cache affine and idle, don't be stupid.
3333 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3337 * Otherwise, iterate the domains and find an elegible idle cpu.
3339 sd = rcu_dereference(per_cpu(sd_llc, target));
3340 for_each_lower_domain(sd) {
3343 if (!cpumask_intersects(sched_group_cpus(sg),
3344 tsk_cpus_allowed(p)))
3347 for_each_cpu(i, sched_group_cpus(sg)) {
3348 if (i == target || !idle_cpu(i))
3352 target = cpumask_first_and(sched_group_cpus(sg),
3353 tsk_cpus_allowed(p));
3357 } while (sg != sd->groups);
3364 * sched_balance_self: balance the current task (running on cpu) in domains
3365 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3368 * Balance, ie. select the least loaded group.
3370 * Returns the target CPU number, or the same CPU if no balancing is needed.
3372 * preempt must be disabled.
3375 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3377 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3378 int cpu = smp_processor_id();
3379 int prev_cpu = task_cpu(p);
3381 int want_affine = 0;
3382 int sync = wake_flags & WF_SYNC;
3384 if (p->nr_cpus_allowed == 1)
3387 if (sd_flag & SD_BALANCE_WAKE) {
3388 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3394 for_each_domain(cpu, tmp) {
3395 if (!(tmp->flags & SD_LOAD_BALANCE))
3399 * If both cpu and prev_cpu are part of this domain,
3400 * cpu is a valid SD_WAKE_AFFINE target.
3402 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3403 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3408 if (tmp->flags & sd_flag)
3413 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3416 new_cpu = select_idle_sibling(p, prev_cpu);
3421 int load_idx = sd->forkexec_idx;
3422 struct sched_group *group;
3425 if (!(sd->flags & sd_flag)) {
3430 if (sd_flag & SD_BALANCE_WAKE)
3431 load_idx = sd->wake_idx;
3433 group = find_idlest_group(sd, p, cpu, load_idx);
3439 new_cpu = find_idlest_cpu(group, p, cpu);
3440 if (new_cpu == -1 || new_cpu == cpu) {
3441 /* Now try balancing at a lower domain level of cpu */
3446 /* Now try balancing at a lower domain level of new_cpu */
3448 weight = sd->span_weight;
3450 for_each_domain(cpu, tmp) {
3451 if (weight <= tmp->span_weight)
3453 if (tmp->flags & sd_flag)
3456 /* while loop will break here if sd == NULL */
3465 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3466 * cfs_rq_of(p) references at time of call are still valid and identify the
3467 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3468 * other assumptions, including the state of rq->lock, should be made.
3471 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3473 struct sched_entity *se = &p->se;
3474 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3477 * Load tracking: accumulate removed load so that it can be processed
3478 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3479 * to blocked load iff they have a positive decay-count. It can never
3480 * be negative here since on-rq tasks have decay-count == 0.
3482 if (se->avg.decay_count) {
3483 se->avg.decay_count = -__synchronize_entity_decay(se);
3484 atomic_long_add(se->avg.load_avg_contrib,
3485 &cfs_rq->removed_load);
3488 #endif /* CONFIG_SMP */
3490 static unsigned long
3491 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3493 unsigned long gran = sysctl_sched_wakeup_granularity;
3496 * Since its curr running now, convert the gran from real-time
3497 * to virtual-time in his units.
3499 * By using 'se' instead of 'curr' we penalize light tasks, so
3500 * they get preempted easier. That is, if 'se' < 'curr' then
3501 * the resulting gran will be larger, therefore penalizing the
3502 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3503 * be smaller, again penalizing the lighter task.
3505 * This is especially important for buddies when the leftmost
3506 * task is higher priority than the buddy.
3508 return calc_delta_fair(gran, se);
3512 * Should 'se' preempt 'curr'.
3526 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3528 s64 gran, vdiff = curr->vruntime - se->vruntime;
3533 gran = wakeup_gran(curr, se);
3540 static void set_last_buddy(struct sched_entity *se)
3542 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3545 for_each_sched_entity(se)
3546 cfs_rq_of(se)->last = se;
3549 static void set_next_buddy(struct sched_entity *se)
3551 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3554 for_each_sched_entity(se)
3555 cfs_rq_of(se)->next = se;
3558 static void set_skip_buddy(struct sched_entity *se)
3560 for_each_sched_entity(se)
3561 cfs_rq_of(se)->skip = se;
3565 * Preempt the current task with a newly woken task if needed:
3567 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3569 struct task_struct *curr = rq->curr;
3570 struct sched_entity *se = &curr->se, *pse = &p->se;
3571 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3572 int scale = cfs_rq->nr_running >= sched_nr_latency;
3573 int next_buddy_marked = 0;
3575 if (unlikely(se == pse))
3579 * This is possible from callers such as move_task(), in which we
3580 * unconditionally check_prempt_curr() after an enqueue (which may have
3581 * lead to a throttle). This both saves work and prevents false
3582 * next-buddy nomination below.
3584 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3587 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3588 set_next_buddy(pse);
3589 next_buddy_marked = 1;
3593 * We can come here with TIF_NEED_RESCHED already set from new task
3596 * Note: this also catches the edge-case of curr being in a throttled
3597 * group (e.g. via set_curr_task), since update_curr() (in the
3598 * enqueue of curr) will have resulted in resched being set. This
3599 * prevents us from potentially nominating it as a false LAST_BUDDY
3602 if (test_tsk_need_resched(curr))
3605 /* Idle tasks are by definition preempted by non-idle tasks. */
3606 if (unlikely(curr->policy == SCHED_IDLE) &&
3607 likely(p->policy != SCHED_IDLE))
3611 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3612 * is driven by the tick):
3614 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3617 find_matching_se(&se, &pse);
3618 update_curr(cfs_rq_of(se));
3620 if (wakeup_preempt_entity(se, pse) == 1) {
3622 * Bias pick_next to pick the sched entity that is
3623 * triggering this preemption.
3625 if (!next_buddy_marked)
3626 set_next_buddy(pse);
3635 * Only set the backward buddy when the current task is still
3636 * on the rq. This can happen when a wakeup gets interleaved
3637 * with schedule on the ->pre_schedule() or idle_balance()
3638 * point, either of which can * drop the rq lock.
3640 * Also, during early boot the idle thread is in the fair class,
3641 * for obvious reasons its a bad idea to schedule back to it.
3643 if (unlikely(!se->on_rq || curr == rq->idle))
3646 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3650 static struct task_struct *pick_next_task_fair(struct rq *rq)
3652 struct task_struct *p;
3653 struct cfs_rq *cfs_rq = &rq->cfs;
3654 struct sched_entity *se;
3656 if (!cfs_rq->nr_running)
3660 se = pick_next_entity(cfs_rq);
3661 set_next_entity(cfs_rq, se);
3662 cfs_rq = group_cfs_rq(se);
3666 if (hrtick_enabled(rq))
3667 hrtick_start_fair(rq, p);
3673 * Account for a descheduled task:
3675 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3677 struct sched_entity *se = &prev->se;
3678 struct cfs_rq *cfs_rq;
3680 for_each_sched_entity(se) {
3681 cfs_rq = cfs_rq_of(se);
3682 put_prev_entity(cfs_rq, se);
3687 * sched_yield() is very simple
3689 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3691 static void yield_task_fair(struct rq *rq)
3693 struct task_struct *curr = rq->curr;
3694 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3695 struct sched_entity *se = &curr->se;
3698 * Are we the only task in the tree?
3700 if (unlikely(rq->nr_running == 1))
3703 clear_buddies(cfs_rq, se);
3705 if (curr->policy != SCHED_BATCH) {
3706 update_rq_clock(rq);
3708 * Update run-time statistics of the 'current'.
3710 update_curr(cfs_rq);
3712 * Tell update_rq_clock() that we've just updated,
3713 * so we don't do microscopic update in schedule()
3714 * and double the fastpath cost.
3716 rq->skip_clock_update = 1;
3722 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3724 struct sched_entity *se = &p->se;
3726 /* throttled hierarchies are not runnable */
3727 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3730 /* Tell the scheduler that we'd really like pse to run next. */
3733 yield_task_fair(rq);
3739 /**************************************************
3740 * Fair scheduling class load-balancing methods.
3744 * The purpose of load-balancing is to achieve the same basic fairness the
3745 * per-cpu scheduler provides, namely provide a proportional amount of compute
3746 * time to each task. This is expressed in the following equation:
3748 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3750 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3751 * W_i,0 is defined as:
3753 * W_i,0 = \Sum_j w_i,j (2)
3755 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3756 * is derived from the nice value as per prio_to_weight[].
3758 * The weight average is an exponential decay average of the instantaneous
3761 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3763 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3764 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3765 * can also include other factors [XXX].
3767 * To achieve this balance we define a measure of imbalance which follows
3768 * directly from (1):
3770 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3772 * We them move tasks around to minimize the imbalance. In the continuous
3773 * function space it is obvious this converges, in the discrete case we get
3774 * a few fun cases generally called infeasible weight scenarios.
3777 * - infeasible weights;
3778 * - local vs global optima in the discrete case. ]
3783 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3784 * for all i,j solution, we create a tree of cpus that follows the hardware
3785 * topology where each level pairs two lower groups (or better). This results
3786 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3787 * tree to only the first of the previous level and we decrease the frequency
3788 * of load-balance at each level inv. proportional to the number of cpus in
3794 * \Sum { --- * --- * 2^i } = O(n) (5)
3796 * `- size of each group
3797 * | | `- number of cpus doing load-balance
3799 * `- sum over all levels
3801 * Coupled with a limit on how many tasks we can migrate every balance pass,
3802 * this makes (5) the runtime complexity of the balancer.
3804 * An important property here is that each CPU is still (indirectly) connected
3805 * to every other cpu in at most O(log n) steps:
3807 * The adjacency matrix of the resulting graph is given by:
3810 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3813 * And you'll find that:
3815 * A^(log_2 n)_i,j != 0 for all i,j (7)
3817 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3818 * The task movement gives a factor of O(m), giving a convergence complexity
3821 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3826 * In order to avoid CPUs going idle while there's still work to do, new idle
3827 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3828 * tree itself instead of relying on other CPUs to bring it work.
3830 * This adds some complexity to both (5) and (8) but it reduces the total idle
3838 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3841 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3846 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3848 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3850 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3853 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3854 * rewrite all of this once again.]
3857 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3859 #define LBF_ALL_PINNED 0x01
3860 #define LBF_NEED_BREAK 0x02
3861 #define LBF_SOME_PINNED 0x04
3864 struct sched_domain *sd;
3872 struct cpumask *dst_grpmask;
3874 enum cpu_idle_type idle;
3876 /* The set of CPUs under consideration for load-balancing */
3877 struct cpumask *cpus;
3882 unsigned int loop_break;
3883 unsigned int loop_max;
3887 * move_task - move a task from one runqueue to another runqueue.
3888 * Both runqueues must be locked.
3890 static void move_task(struct task_struct *p, struct lb_env *env)
3892 deactivate_task(env->src_rq, p, 0);
3893 set_task_cpu(p, env->dst_cpu);
3894 activate_task(env->dst_rq, p, 0);
3895 check_preempt_curr(env->dst_rq, p, 0);
3899 * Is this task likely cache-hot:
3902 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3906 if (p->sched_class != &fair_sched_class)
3909 if (unlikely(p->policy == SCHED_IDLE))
3913 * Buddy candidates are cache hot:
3915 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3916 (&p->se == cfs_rq_of(&p->se)->next ||
3917 &p->se == cfs_rq_of(&p->se)->last))
3920 if (sysctl_sched_migration_cost == -1)
3922 if (sysctl_sched_migration_cost == 0)
3925 delta = now - p->se.exec_start;
3927 return delta < (s64)sysctl_sched_migration_cost;
3931 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3934 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3936 int tsk_cache_hot = 0;
3938 * We do not migrate tasks that are:
3939 * 1) throttled_lb_pair, or
3940 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3941 * 3) running (obviously), or
3942 * 4) are cache-hot on their current CPU.
3944 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3947 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3950 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3953 * Remember if this task can be migrated to any other cpu in
3954 * our sched_group. We may want to revisit it if we couldn't
3955 * meet load balance goals by pulling other tasks on src_cpu.
3957 * Also avoid computing new_dst_cpu if we have already computed
3958 * one in current iteration.
3960 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3963 /* Prevent to re-select dst_cpu via env's cpus */
3964 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3965 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3966 env->flags |= LBF_SOME_PINNED;
3967 env->new_dst_cpu = cpu;
3975 /* Record that we found atleast one task that could run on dst_cpu */
3976 env->flags &= ~LBF_ALL_PINNED;
3978 if (task_running(env->src_rq, p)) {
3979 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3984 * Aggressive migration if:
3985 * 1) task is cache cold, or
3986 * 2) too many balance attempts have failed.
3989 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
3990 if (!tsk_cache_hot ||
3991 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3993 if (tsk_cache_hot) {
3994 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3995 schedstat_inc(p, se.statistics.nr_forced_migrations);
4001 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4006 * move_one_task tries to move exactly one task from busiest to this_rq, as
4007 * part of active balancing operations within "domain".
4008 * Returns 1 if successful and 0 otherwise.
4010 * Called with both runqueues locked.
4012 static int move_one_task(struct lb_env *env)
4014 struct task_struct *p, *n;
4016 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4017 if (!can_migrate_task(p, env))
4022 * Right now, this is only the second place move_task()
4023 * is called, so we can safely collect move_task()
4024 * stats here rather than inside move_task().
4026 schedstat_inc(env->sd, lb_gained[env->idle]);
4032 static unsigned long task_h_load(struct task_struct *p);
4034 static const unsigned int sched_nr_migrate_break = 32;
4037 * move_tasks tries to move up to imbalance weighted load from busiest to
4038 * this_rq, as part of a balancing operation within domain "sd".
4039 * Returns 1 if successful and 0 otherwise.
4041 * Called with both runqueues locked.
4043 static int move_tasks(struct lb_env *env)
4045 struct list_head *tasks = &env->src_rq->cfs_tasks;
4046 struct task_struct *p;
4050 if (env->imbalance <= 0)
4053 while (!list_empty(tasks)) {
4054 p = list_first_entry(tasks, struct task_struct, se.group_node);
4057 /* We've more or less seen every task there is, call it quits */
4058 if (env->loop > env->loop_max)
4061 /* take a breather every nr_migrate tasks */
4062 if (env->loop > env->loop_break) {
4063 env->loop_break += sched_nr_migrate_break;
4064 env->flags |= LBF_NEED_BREAK;
4068 if (!can_migrate_task(p, env))
4071 load = task_h_load(p);
4073 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4076 if ((load / 2) > env->imbalance)
4081 env->imbalance -= load;
4083 #ifdef CONFIG_PREEMPT
4085 * NEWIDLE balancing is a source of latency, so preemptible
4086 * kernels will stop after the first task is pulled to minimize
4087 * the critical section.
4089 if (env->idle == CPU_NEWLY_IDLE)
4094 * We only want to steal up to the prescribed amount of
4097 if (env->imbalance <= 0)
4102 list_move_tail(&p->se.group_node, tasks);
4106 * Right now, this is one of only two places move_task() is called,
4107 * so we can safely collect move_task() stats here rather than
4108 * inside move_task().
4110 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4115 #ifdef CONFIG_FAIR_GROUP_SCHED
4117 * update tg->load_weight by folding this cpu's load_avg
4119 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4121 struct sched_entity *se = tg->se[cpu];
4122 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4124 /* throttled entities do not contribute to load */
4125 if (throttled_hierarchy(cfs_rq))
4128 update_cfs_rq_blocked_load(cfs_rq, 1);
4131 update_entity_load_avg(se, 1);
4133 * We pivot on our runnable average having decayed to zero for
4134 * list removal. This generally implies that all our children
4135 * have also been removed (modulo rounding error or bandwidth
4136 * control); however, such cases are rare and we can fix these
4139 * TODO: fix up out-of-order children on enqueue.
4141 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4142 list_del_leaf_cfs_rq(cfs_rq);
4144 struct rq *rq = rq_of(cfs_rq);
4145 update_rq_runnable_avg(rq, rq->nr_running);
4149 static void update_blocked_averages(int cpu)
4151 struct rq *rq = cpu_rq(cpu);
4152 struct cfs_rq *cfs_rq;
4153 unsigned long flags;
4155 raw_spin_lock_irqsave(&rq->lock, flags);
4156 update_rq_clock(rq);
4158 * Iterates the task_group tree in a bottom up fashion, see
4159 * list_add_leaf_cfs_rq() for details.
4161 for_each_leaf_cfs_rq(rq, cfs_rq) {
4163 * Note: We may want to consider periodically releasing
4164 * rq->lock about these updates so that creating many task
4165 * groups does not result in continually extending hold time.
4167 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4170 raw_spin_unlock_irqrestore(&rq->lock, flags);
4174 * Compute the cpu's hierarchical load factor for each task group.
4175 * This needs to be done in a top-down fashion because the load of a child
4176 * group is a fraction of its parents load.
4178 static int tg_load_down(struct task_group *tg, void *data)
4181 long cpu = (long)data;
4184 load = cpu_rq(cpu)->avg.load_avg_contrib;
4186 load = tg->parent->cfs_rq[cpu]->h_load;
4187 load = div64_ul(load * tg->se[cpu]->avg.load_avg_contrib,
4188 tg->parent->cfs_rq[cpu]->runnable_load_avg + 1);
4191 tg->cfs_rq[cpu]->h_load = load;
4196 static void update_h_load(long cpu)
4198 struct rq *rq = cpu_rq(cpu);
4199 unsigned long now = jiffies;
4201 if (rq->h_load_throttle == now)
4204 rq->h_load_throttle = now;
4207 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4211 static unsigned long task_h_load(struct task_struct *p)
4213 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4215 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4216 cfs_rq->runnable_load_avg + 1);
4219 static inline void update_blocked_averages(int cpu)
4223 static inline void update_h_load(long cpu)
4227 static unsigned long task_h_load(struct task_struct *p)
4229 return p->se.avg.load_avg_contrib;
4233 /********** Helpers for find_busiest_group ************************/
4235 * sd_lb_stats - Structure to store the statistics of a sched_domain
4236 * during load balancing.
4238 struct sd_lb_stats {
4239 struct sched_group *busiest; /* Busiest group in this sd */
4240 struct sched_group *this; /* Local group in this sd */
4241 unsigned long total_load; /* Total load of all groups in sd */
4242 unsigned long total_pwr; /* Total power of all groups in sd */
4243 unsigned long avg_load; /* Average load across all groups in sd */
4245 /** Statistics of this group */
4246 unsigned long this_load;
4247 unsigned long this_load_per_task;
4248 unsigned long this_nr_running;
4249 unsigned long this_has_capacity;
4250 unsigned int this_idle_cpus;
4252 /* Statistics of the busiest group */
4253 unsigned int busiest_idle_cpus;
4254 unsigned long max_load;
4255 unsigned long busiest_load_per_task;
4256 unsigned long busiest_nr_running;
4257 unsigned long busiest_group_capacity;
4258 unsigned long busiest_has_capacity;
4259 unsigned int busiest_group_weight;
4261 int group_imb; /* Is there imbalance in this sd */
4265 * sg_lb_stats - stats of a sched_group required for load_balancing
4267 struct sg_lb_stats {
4268 unsigned long avg_load; /*Avg load across the CPUs of the group */
4269 unsigned long group_load; /* Total load over the CPUs of the group */
4270 unsigned long sum_nr_running; /* Nr tasks running in the group */
4271 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4272 unsigned long group_capacity;
4273 unsigned long idle_cpus;
4274 unsigned long group_weight;
4275 int group_imb; /* Is there an imbalance in the group ? */
4276 int group_has_capacity; /* Is there extra capacity in the group? */
4280 * get_sd_load_idx - Obtain the load index for a given sched domain.
4281 * @sd: The sched_domain whose load_idx is to be obtained.
4282 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4284 static inline int get_sd_load_idx(struct sched_domain *sd,
4285 enum cpu_idle_type idle)
4291 load_idx = sd->busy_idx;
4294 case CPU_NEWLY_IDLE:
4295 load_idx = sd->newidle_idx;
4298 load_idx = sd->idle_idx;
4305 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4307 return SCHED_POWER_SCALE;
4310 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4312 return default_scale_freq_power(sd, cpu);
4315 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4317 unsigned long weight = sd->span_weight;
4318 unsigned long smt_gain = sd->smt_gain;
4325 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4327 return default_scale_smt_power(sd, cpu);
4330 static unsigned long scale_rt_power(int cpu)
4332 struct rq *rq = cpu_rq(cpu);
4333 u64 total, available, age_stamp, avg;
4336 * Since we're reading these variables without serialization make sure
4337 * we read them once before doing sanity checks on them.
4339 age_stamp = ACCESS_ONCE(rq->age_stamp);
4340 avg = ACCESS_ONCE(rq->rt_avg);
4342 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
4344 if (unlikely(total < avg)) {
4345 /* Ensures that power won't end up being negative */
4348 available = total - avg;
4351 if (unlikely((s64)total < SCHED_POWER_SCALE))
4352 total = SCHED_POWER_SCALE;
4354 total >>= SCHED_POWER_SHIFT;
4356 return div_u64(available, total);
4359 static void update_cpu_power(struct sched_domain *sd, int cpu)
4361 unsigned long weight = sd->span_weight;
4362 unsigned long power = SCHED_POWER_SCALE;
4363 struct sched_group *sdg = sd->groups;
4365 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4366 if (sched_feat(ARCH_POWER))
4367 power *= arch_scale_smt_power(sd, cpu);
4369 power *= default_scale_smt_power(sd, cpu);
4371 power >>= SCHED_POWER_SHIFT;
4374 sdg->sgp->power_orig = power;
4376 if (sched_feat(ARCH_POWER))
4377 power *= arch_scale_freq_power(sd, cpu);
4379 power *= default_scale_freq_power(sd, cpu);
4381 power >>= SCHED_POWER_SHIFT;
4383 power *= scale_rt_power(cpu);
4384 power >>= SCHED_POWER_SHIFT;
4389 cpu_rq(cpu)->cpu_power = power;
4390 sdg->sgp->power = power;
4393 void update_group_power(struct sched_domain *sd, int cpu)
4395 struct sched_domain *child = sd->child;
4396 struct sched_group *group, *sdg = sd->groups;
4397 unsigned long power;
4398 unsigned long interval;
4400 interval = msecs_to_jiffies(sd->balance_interval);
4401 interval = clamp(interval, 1UL, max_load_balance_interval);
4402 sdg->sgp->next_update = jiffies + interval;
4405 update_cpu_power(sd, cpu);
4411 if (child->flags & SD_OVERLAP) {
4413 * SD_OVERLAP domains cannot assume that child groups
4414 * span the current group.
4417 for_each_cpu(cpu, sched_group_cpus(sdg))
4418 power += power_of(cpu);
4421 * !SD_OVERLAP domains can assume that child groups
4422 * span the current group.
4425 group = child->groups;
4427 power += group->sgp->power;
4428 group = group->next;
4429 } while (group != child->groups);
4432 sdg->sgp->power_orig = sdg->sgp->power = power;
4436 * Try and fix up capacity for tiny siblings, this is needed when
4437 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4438 * which on its own isn't powerful enough.
4440 * See update_sd_pick_busiest() and check_asym_packing().
4443 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4446 * Only siblings can have significantly less than SCHED_POWER_SCALE
4448 if (!(sd->flags & SD_SHARE_CPUPOWER))
4452 * If ~90% of the cpu_power is still there, we're good.
4454 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4461 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4462 * @env: The load balancing environment.
4463 * @group: sched_group whose statistics are to be updated.
4464 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4465 * @local_group: Does group contain this_cpu.
4466 * @balance: Should we balance.
4467 * @sgs: variable to hold the statistics for this group.
4469 static inline void update_sg_lb_stats(struct lb_env *env,
4470 struct sched_group *group, int load_idx,
4471 int local_group, int *balance, struct sg_lb_stats *sgs)
4473 unsigned long nr_running, max_nr_running, min_nr_running;
4474 unsigned long load, max_cpu_load, min_cpu_load;
4475 unsigned int balance_cpu = -1, first_idle_cpu = 0;
4476 unsigned long avg_load_per_task = 0;
4480 balance_cpu = group_balance_cpu(group);
4482 /* Tally up the load of all CPUs in the group */
4484 min_cpu_load = ~0UL;
4486 min_nr_running = ~0UL;
4488 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4489 struct rq *rq = cpu_rq(i);
4491 nr_running = rq->nr_running;
4493 /* Bias balancing toward cpus of our domain */
4495 if (idle_cpu(i) && !first_idle_cpu &&
4496 cpumask_test_cpu(i, sched_group_mask(group))) {
4501 load = target_load(i, load_idx);
4503 load = source_load(i, load_idx);
4504 if (load > max_cpu_load)
4505 max_cpu_load = load;
4506 if (min_cpu_load > load)
4507 min_cpu_load = load;
4509 if (nr_running > max_nr_running)
4510 max_nr_running = nr_running;
4511 if (min_nr_running > nr_running)
4512 min_nr_running = nr_running;
4515 sgs->group_load += load;
4516 sgs->sum_nr_running += nr_running;
4517 sgs->sum_weighted_load += weighted_cpuload(i);
4523 * First idle cpu or the first cpu(busiest) in this sched group
4524 * is eligible for doing load balancing at this and above
4525 * domains. In the newly idle case, we will allow all the cpu's
4526 * to do the newly idle load balance.
4529 if (env->idle != CPU_NEWLY_IDLE) {
4530 if (balance_cpu != env->dst_cpu) {
4534 update_group_power(env->sd, env->dst_cpu);
4535 } else if (time_after_eq(jiffies, group->sgp->next_update))
4536 update_group_power(env->sd, env->dst_cpu);
4539 /* Adjust by relative CPU power of the group */
4540 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4543 * Consider the group unbalanced when the imbalance is larger
4544 * than the average weight of a task.
4546 * APZ: with cgroup the avg task weight can vary wildly and
4547 * might not be a suitable number - should we keep a
4548 * normalized nr_running number somewhere that negates
4551 if (sgs->sum_nr_running)
4552 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4554 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4555 (max_nr_running - min_nr_running) > 1)
4558 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4560 if (!sgs->group_capacity)
4561 sgs->group_capacity = fix_small_capacity(env->sd, group);
4562 sgs->group_weight = group->group_weight;
4564 if (sgs->group_capacity > sgs->sum_nr_running)
4565 sgs->group_has_capacity = 1;
4569 * update_sd_pick_busiest - return 1 on busiest group
4570 * @env: The load balancing environment.
4571 * @sds: sched_domain statistics
4572 * @sg: sched_group candidate to be checked for being the busiest
4573 * @sgs: sched_group statistics
4575 * Determine if @sg is a busier group than the previously selected
4578 static bool update_sd_pick_busiest(struct lb_env *env,
4579 struct sd_lb_stats *sds,
4580 struct sched_group *sg,
4581 struct sg_lb_stats *sgs)
4583 if (sgs->avg_load <= sds->max_load)
4586 if (sgs->sum_nr_running > sgs->group_capacity)
4593 * ASYM_PACKING needs to move all the work to the lowest
4594 * numbered CPUs in the group, therefore mark all groups
4595 * higher than ourself as busy.
4597 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4598 env->dst_cpu < group_first_cpu(sg)) {
4602 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4610 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4611 * @env: The load balancing environment.
4612 * @balance: Should we balance.
4613 * @sds: variable to hold the statistics for this sched_domain.
4615 static inline void update_sd_lb_stats(struct lb_env *env,
4616 int *balance, struct sd_lb_stats *sds)
4618 struct sched_domain *child = env->sd->child;
4619 struct sched_group *sg = env->sd->groups;
4620 struct sg_lb_stats sgs;
4621 int load_idx, prefer_sibling = 0;
4623 if (child && child->flags & SD_PREFER_SIBLING)
4626 load_idx = get_sd_load_idx(env->sd, env->idle);
4631 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4632 memset(&sgs, 0, sizeof(sgs));
4633 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4635 if (local_group && !(*balance))
4638 sds->total_load += sgs.group_load;
4639 sds->total_pwr += sg->sgp->power;
4642 * In case the child domain prefers tasks go to siblings
4643 * first, lower the sg capacity to one so that we'll try
4644 * and move all the excess tasks away. We lower the capacity
4645 * of a group only if the local group has the capacity to fit
4646 * these excess tasks, i.e. nr_running < group_capacity. The
4647 * extra check prevents the case where you always pull from the
4648 * heaviest group when it is already under-utilized (possible
4649 * with a large weight task outweighs the tasks on the system).
4651 if (prefer_sibling && !local_group && sds->this_has_capacity)
4652 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4655 sds->this_load = sgs.avg_load;
4657 sds->this_nr_running = sgs.sum_nr_running;
4658 sds->this_load_per_task = sgs.sum_weighted_load;
4659 sds->this_has_capacity = sgs.group_has_capacity;
4660 sds->this_idle_cpus = sgs.idle_cpus;
4661 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4662 sds->max_load = sgs.avg_load;
4664 sds->busiest_nr_running = sgs.sum_nr_running;
4665 sds->busiest_idle_cpus = sgs.idle_cpus;
4666 sds->busiest_group_capacity = sgs.group_capacity;
4667 sds->busiest_load_per_task = sgs.sum_weighted_load;
4668 sds->busiest_has_capacity = sgs.group_has_capacity;
4669 sds->busiest_group_weight = sgs.group_weight;
4670 sds->group_imb = sgs.group_imb;
4674 } while (sg != env->sd->groups);
4678 * check_asym_packing - Check to see if the group is packed into the
4681 * This is primarily intended to used at the sibling level. Some
4682 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4683 * case of POWER7, it can move to lower SMT modes only when higher
4684 * threads are idle. When in lower SMT modes, the threads will
4685 * perform better since they share less core resources. Hence when we
4686 * have idle threads, we want them to be the higher ones.
4688 * This packing function is run on idle threads. It checks to see if
4689 * the busiest CPU in this domain (core in the P7 case) has a higher
4690 * CPU number than the packing function is being run on. Here we are
4691 * assuming lower CPU number will be equivalent to lower a SMT thread
4694 * Returns 1 when packing is required and a task should be moved to
4695 * this CPU. The amount of the imbalance is returned in *imbalance.
4697 * @env: The load balancing environment.
4698 * @sds: Statistics of the sched_domain which is to be packed
4700 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4704 if (!(env->sd->flags & SD_ASYM_PACKING))
4710 busiest_cpu = group_first_cpu(sds->busiest);
4711 if (env->dst_cpu > busiest_cpu)
4714 env->imbalance = DIV_ROUND_CLOSEST(
4715 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4721 * fix_small_imbalance - Calculate the minor imbalance that exists
4722 * amongst the groups of a sched_domain, during
4724 * @env: The load balancing environment.
4725 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4728 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4730 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4731 unsigned int imbn = 2;
4732 unsigned long scaled_busy_load_per_task;
4734 if (sds->this_nr_running) {
4735 sds->this_load_per_task /= sds->this_nr_running;
4736 if (sds->busiest_load_per_task >
4737 sds->this_load_per_task)
4740 sds->this_load_per_task =
4741 cpu_avg_load_per_task(env->dst_cpu);
4744 scaled_busy_load_per_task = sds->busiest_load_per_task
4745 * SCHED_POWER_SCALE;
4746 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4748 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4749 (scaled_busy_load_per_task * imbn)) {
4750 env->imbalance = sds->busiest_load_per_task;
4755 * OK, we don't have enough imbalance to justify moving tasks,
4756 * however we may be able to increase total CPU power used by
4760 pwr_now += sds->busiest->sgp->power *
4761 min(sds->busiest_load_per_task, sds->max_load);
4762 pwr_now += sds->this->sgp->power *
4763 min(sds->this_load_per_task, sds->this_load);
4764 pwr_now /= SCHED_POWER_SCALE;
4766 /* Amount of load we'd subtract */
4767 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4768 sds->busiest->sgp->power;
4769 if (sds->max_load > tmp)
4770 pwr_move += sds->busiest->sgp->power *
4771 min(sds->busiest_load_per_task, sds->max_load - tmp);
4773 /* Amount of load we'd add */
4774 if (sds->max_load * sds->busiest->sgp->power <
4775 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4776 tmp = (sds->max_load * sds->busiest->sgp->power) /
4777 sds->this->sgp->power;
4779 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4780 sds->this->sgp->power;
4781 pwr_move += sds->this->sgp->power *
4782 min(sds->this_load_per_task, sds->this_load + tmp);
4783 pwr_move /= SCHED_POWER_SCALE;
4785 /* Move if we gain throughput */
4786 if (pwr_move > pwr_now)
4787 env->imbalance = sds->busiest_load_per_task;
4791 * calculate_imbalance - Calculate the amount of imbalance present within the
4792 * groups of a given sched_domain during load balance.
4793 * @env: load balance environment
4794 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4796 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4798 unsigned long max_pull, load_above_capacity = ~0UL;
4800 sds->busiest_load_per_task /= sds->busiest_nr_running;
4801 if (sds->group_imb) {
4802 sds->busiest_load_per_task =
4803 min(sds->busiest_load_per_task, sds->avg_load);
4807 * In the presence of smp nice balancing, certain scenarios can have
4808 * max load less than avg load(as we skip the groups at or below
4809 * its cpu_power, while calculating max_load..)
4811 if (sds->max_load < sds->avg_load) {
4813 return fix_small_imbalance(env, sds);
4816 if (!sds->group_imb) {
4818 * Don't want to pull so many tasks that a group would go idle.
4820 load_above_capacity = (sds->busiest_nr_running -
4821 sds->busiest_group_capacity);
4823 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4825 load_above_capacity /= sds->busiest->sgp->power;
4829 * We're trying to get all the cpus to the average_load, so we don't
4830 * want to push ourselves above the average load, nor do we wish to
4831 * reduce the max loaded cpu below the average load. At the same time,
4832 * we also don't want to reduce the group load below the group capacity
4833 * (so that we can implement power-savings policies etc). Thus we look
4834 * for the minimum possible imbalance.
4835 * Be careful of negative numbers as they'll appear as very large values
4836 * with unsigned longs.
4838 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4840 /* How much load to actually move to equalise the imbalance */
4841 env->imbalance = min(max_pull * sds->busiest->sgp->power,
4842 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4843 / SCHED_POWER_SCALE;
4846 * if *imbalance is less than the average load per runnable task
4847 * there is no guarantee that any tasks will be moved so we'll have
4848 * a think about bumping its value to force at least one task to be
4851 if (env->imbalance < sds->busiest_load_per_task)
4852 return fix_small_imbalance(env, sds);
4856 /******* find_busiest_group() helpers end here *********************/
4859 * find_busiest_group - Returns the busiest group within the sched_domain
4860 * if there is an imbalance. If there isn't an imbalance, and
4861 * the user has opted for power-savings, it returns a group whose
4862 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4863 * such a group exists.
4865 * Also calculates the amount of weighted load which should be moved
4866 * to restore balance.
4868 * @env: The load balancing environment.
4869 * @balance: Pointer to a variable indicating if this_cpu
4870 * is the appropriate cpu to perform load balancing at this_level.
4872 * Returns: - the busiest group if imbalance exists.
4873 * - If no imbalance and user has opted for power-savings balance,
4874 * return the least loaded group whose CPUs can be
4875 * put to idle by rebalancing its tasks onto our group.
4877 static struct sched_group *
4878 find_busiest_group(struct lb_env *env, int *balance)
4880 struct sd_lb_stats sds;
4882 memset(&sds, 0, sizeof(sds));
4885 * Compute the various statistics relavent for load balancing at
4888 update_sd_lb_stats(env, balance, &sds);
4891 * this_cpu is not the appropriate cpu to perform load balancing at
4897 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4898 check_asym_packing(env, &sds))
4901 /* There is no busy sibling group to pull tasks from */
4902 if (!sds.busiest || sds.busiest_nr_running == 0)
4905 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4908 * If the busiest group is imbalanced the below checks don't
4909 * work because they assumes all things are equal, which typically
4910 * isn't true due to cpus_allowed constraints and the like.
4915 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4916 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4917 !sds.busiest_has_capacity)
4921 * If the local group is more busy than the selected busiest group
4922 * don't try and pull any tasks.
4924 if (sds.this_load >= sds.max_load)
4928 * Don't pull any tasks if this group is already above the domain
4931 if (sds.this_load >= sds.avg_load)
4934 if (env->idle == CPU_IDLE) {
4936 * This cpu is idle. If the busiest group load doesn't
4937 * have more tasks than the number of available cpu's and
4938 * there is no imbalance between this and busiest group
4939 * wrt to idle cpu's, it is balanced.
4941 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4942 sds.busiest_nr_running <= sds.busiest_group_weight)
4946 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4947 * imbalance_pct to be conservative.
4949 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4954 /* Looks like there is an imbalance. Compute it */
4955 calculate_imbalance(env, &sds);
4965 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4967 static struct rq *find_busiest_queue(struct lb_env *env,
4968 struct sched_group *group)
4970 struct rq *busiest = NULL, *rq;
4971 unsigned long max_load = 0;
4974 for_each_cpu(i, sched_group_cpus(group)) {
4975 unsigned long power = power_of(i);
4976 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4981 capacity = fix_small_capacity(env->sd, group);
4983 if (!cpumask_test_cpu(i, env->cpus))
4987 wl = weighted_cpuload(i);
4990 * When comparing with imbalance, use weighted_cpuload()
4991 * which is not scaled with the cpu power.
4993 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4997 * For the load comparisons with the other cpu's, consider
4998 * the weighted_cpuload() scaled with the cpu power, so that
4999 * the load can be moved away from the cpu that is potentially
5000 * running at a lower capacity.
5002 wl = (wl * SCHED_POWER_SCALE) / power;
5004 if (wl > max_load) {
5014 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5015 * so long as it is large enough.
5017 #define MAX_PINNED_INTERVAL 512
5019 /* Working cpumask for load_balance and load_balance_newidle. */
5020 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5022 static int need_active_balance(struct lb_env *env)
5024 struct sched_domain *sd = env->sd;
5026 if (env->idle == CPU_NEWLY_IDLE) {
5029 * ASYM_PACKING needs to force migrate tasks from busy but
5030 * higher numbered CPUs in order to pack all tasks in the
5031 * lowest numbered CPUs.
5033 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5037 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5040 static int active_load_balance_cpu_stop(void *data);
5043 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5044 * tasks if there is an imbalance.
5046 static int load_balance(int this_cpu, struct rq *this_rq,
5047 struct sched_domain *sd, enum cpu_idle_type idle,
5050 int ld_moved, cur_ld_moved, active_balance = 0;
5051 struct sched_group *group;
5053 unsigned long flags;
5054 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5056 struct lb_env env = {
5058 .dst_cpu = this_cpu,
5060 .dst_grpmask = sched_group_cpus(sd->groups),
5062 .loop_break = sched_nr_migrate_break,
5067 * For NEWLY_IDLE load_balancing, we don't need to consider
5068 * other cpus in our group
5070 if (idle == CPU_NEWLY_IDLE)
5071 env.dst_grpmask = NULL;
5073 cpumask_copy(cpus, cpu_active_mask);
5075 schedstat_inc(sd, lb_count[idle]);
5078 group = find_busiest_group(&env, balance);
5084 schedstat_inc(sd, lb_nobusyg[idle]);
5088 busiest = find_busiest_queue(&env, group);
5090 schedstat_inc(sd, lb_nobusyq[idle]);
5094 BUG_ON(busiest == env.dst_rq);
5096 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5099 if (busiest->nr_running > 1) {
5101 * Attempt to move tasks. If find_busiest_group has found
5102 * an imbalance but busiest->nr_running <= 1, the group is
5103 * still unbalanced. ld_moved simply stays zero, so it is
5104 * correctly treated as an imbalance.
5106 env.flags |= LBF_ALL_PINNED;
5107 env.src_cpu = busiest->cpu;
5108 env.src_rq = busiest;
5109 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5111 update_h_load(env.src_cpu);
5113 local_irq_save(flags);
5114 double_rq_lock(env.dst_rq, busiest);
5117 * cur_ld_moved - load moved in current iteration
5118 * ld_moved - cumulative load moved across iterations
5120 cur_ld_moved = move_tasks(&env);
5121 ld_moved += cur_ld_moved;
5122 double_rq_unlock(env.dst_rq, busiest);
5123 local_irq_restore(flags);
5126 * some other cpu did the load balance for us.
5128 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5129 resched_cpu(env.dst_cpu);
5131 if (env.flags & LBF_NEED_BREAK) {
5132 env.flags &= ~LBF_NEED_BREAK;
5137 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5138 * us and move them to an alternate dst_cpu in our sched_group
5139 * where they can run. The upper limit on how many times we
5140 * iterate on same src_cpu is dependent on number of cpus in our
5143 * This changes load balance semantics a bit on who can move
5144 * load to a given_cpu. In addition to the given_cpu itself
5145 * (or a ilb_cpu acting on its behalf where given_cpu is
5146 * nohz-idle), we now have balance_cpu in a position to move
5147 * load to given_cpu. In rare situations, this may cause
5148 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5149 * _independently_ and at _same_ time to move some load to
5150 * given_cpu) causing exceess load to be moved to given_cpu.
5151 * This however should not happen so much in practice and
5152 * moreover subsequent load balance cycles should correct the
5153 * excess load moved.
5155 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5157 env.dst_rq = cpu_rq(env.new_dst_cpu);
5158 env.dst_cpu = env.new_dst_cpu;
5159 env.flags &= ~LBF_SOME_PINNED;
5161 env.loop_break = sched_nr_migrate_break;
5163 /* Prevent to re-select dst_cpu via env's cpus */
5164 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5167 * Go back to "more_balance" rather than "redo" since we
5168 * need to continue with same src_cpu.
5173 /* All tasks on this runqueue were pinned by CPU affinity */
5174 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5175 cpumask_clear_cpu(cpu_of(busiest), cpus);
5176 if (!cpumask_empty(cpus)) {
5178 env.loop_break = sched_nr_migrate_break;
5186 schedstat_inc(sd, lb_failed[idle]);
5188 * Increment the failure counter only on periodic balance.
5189 * We do not want newidle balance, which can be very
5190 * frequent, pollute the failure counter causing
5191 * excessive cache_hot migrations and active balances.
5193 if (idle != CPU_NEWLY_IDLE)
5194 sd->nr_balance_failed++;
5196 if (need_active_balance(&env)) {
5197 raw_spin_lock_irqsave(&busiest->lock, flags);
5199 /* don't kick the active_load_balance_cpu_stop,
5200 * if the curr task on busiest cpu can't be
5203 if (!cpumask_test_cpu(this_cpu,
5204 tsk_cpus_allowed(busiest->curr))) {
5205 raw_spin_unlock_irqrestore(&busiest->lock,
5207 env.flags |= LBF_ALL_PINNED;
5208 goto out_one_pinned;
5212 * ->active_balance synchronizes accesses to
5213 * ->active_balance_work. Once set, it's cleared
5214 * only after active load balance is finished.
5216 if (!busiest->active_balance) {
5217 busiest->active_balance = 1;
5218 busiest->push_cpu = this_cpu;
5221 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5223 if (active_balance) {
5224 stop_one_cpu_nowait(cpu_of(busiest),
5225 active_load_balance_cpu_stop, busiest,
5226 &busiest->active_balance_work);
5230 * We've kicked active balancing, reset the failure
5233 sd->nr_balance_failed = sd->cache_nice_tries+1;
5236 sd->nr_balance_failed = 0;
5238 if (likely(!active_balance)) {
5239 /* We were unbalanced, so reset the balancing interval */
5240 sd->balance_interval = sd->min_interval;
5243 * If we've begun active balancing, start to back off. This
5244 * case may not be covered by the all_pinned logic if there
5245 * is only 1 task on the busy runqueue (because we don't call
5248 if (sd->balance_interval < sd->max_interval)
5249 sd->balance_interval *= 2;
5255 schedstat_inc(sd, lb_balanced[idle]);
5257 sd->nr_balance_failed = 0;
5260 /* tune up the balancing interval */
5261 if (((env.flags & LBF_ALL_PINNED) &&
5262 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5263 (sd->balance_interval < sd->max_interval))
5264 sd->balance_interval *= 2;
5272 * idle_balance is called by schedule() if this_cpu is about to become
5273 * idle. Attempts to pull tasks from other CPUs.
5275 void idle_balance(int this_cpu, struct rq *this_rq)
5277 struct sched_domain *sd;
5278 int pulled_task = 0;
5279 unsigned long next_balance = jiffies + HZ;
5281 this_rq->idle_stamp = rq_clock(this_rq);
5283 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5287 * Drop the rq->lock, but keep IRQ/preempt disabled.
5289 raw_spin_unlock(&this_rq->lock);
5291 update_blocked_averages(this_cpu);
5293 for_each_domain(this_cpu, sd) {
5294 unsigned long interval;
5297 if (!(sd->flags & SD_LOAD_BALANCE))
5300 if (sd->flags & SD_BALANCE_NEWIDLE) {
5301 /* If we've pulled tasks over stop searching: */
5302 pulled_task = load_balance(this_cpu, this_rq,
5303 sd, CPU_NEWLY_IDLE, &balance);
5306 interval = msecs_to_jiffies(sd->balance_interval);
5307 if (time_after(next_balance, sd->last_balance + interval))
5308 next_balance = sd->last_balance + interval;
5310 this_rq->idle_stamp = 0;
5316 raw_spin_lock(&this_rq->lock);
5318 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5320 * We are going idle. next_balance may be set based on
5321 * a busy processor. So reset next_balance.
5323 this_rq->next_balance = next_balance;
5328 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5329 * running tasks off the busiest CPU onto idle CPUs. It requires at
5330 * least 1 task to be running on each physical CPU where possible, and
5331 * avoids physical / logical imbalances.
5333 static int active_load_balance_cpu_stop(void *data)
5335 struct rq *busiest_rq = data;
5336 int busiest_cpu = cpu_of(busiest_rq);
5337 int target_cpu = busiest_rq->push_cpu;
5338 struct rq *target_rq = cpu_rq(target_cpu);
5339 struct sched_domain *sd;
5341 raw_spin_lock_irq(&busiest_rq->lock);
5343 /* make sure the requested cpu hasn't gone down in the meantime */
5344 if (unlikely(busiest_cpu != smp_processor_id() ||
5345 !busiest_rq->active_balance))
5348 /* Is there any task to move? */
5349 if (busiest_rq->nr_running <= 1)
5353 * This condition is "impossible", if it occurs
5354 * we need to fix it. Originally reported by
5355 * Bjorn Helgaas on a 128-cpu setup.
5357 BUG_ON(busiest_rq == target_rq);
5359 /* move a task from busiest_rq to target_rq */
5360 double_lock_balance(busiest_rq, target_rq);
5362 /* Search for an sd spanning us and the target CPU. */
5364 for_each_domain(target_cpu, sd) {
5365 if ((sd->flags & SD_LOAD_BALANCE) &&
5366 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5371 struct lb_env env = {
5373 .dst_cpu = target_cpu,
5374 .dst_rq = target_rq,
5375 .src_cpu = busiest_rq->cpu,
5376 .src_rq = busiest_rq,
5380 schedstat_inc(sd, alb_count);
5382 if (move_one_task(&env))
5383 schedstat_inc(sd, alb_pushed);
5385 schedstat_inc(sd, alb_failed);
5388 double_unlock_balance(busiest_rq, target_rq);
5390 busiest_rq->active_balance = 0;
5391 raw_spin_unlock_irq(&busiest_rq->lock);
5395 #ifdef CONFIG_NO_HZ_COMMON
5397 * idle load balancing details
5398 * - When one of the busy CPUs notice that there may be an idle rebalancing
5399 * needed, they will kick the idle load balancer, which then does idle
5400 * load balancing for all the idle CPUs.
5403 cpumask_var_t idle_cpus_mask;
5405 unsigned long next_balance; /* in jiffy units */
5406 } nohz ____cacheline_aligned;
5408 static inline int find_new_ilb(int call_cpu)
5410 int ilb = cpumask_first(nohz.idle_cpus_mask);
5412 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5419 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5420 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5421 * CPU (if there is one).
5423 static void nohz_balancer_kick(int cpu)
5427 nohz.next_balance++;
5429 ilb_cpu = find_new_ilb(cpu);
5431 if (ilb_cpu >= nr_cpu_ids)
5434 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5437 * Use smp_send_reschedule() instead of resched_cpu().
5438 * This way we generate a sched IPI on the target cpu which
5439 * is idle. And the softirq performing nohz idle load balance
5440 * will be run before returning from the IPI.
5442 smp_send_reschedule(ilb_cpu);
5446 static inline void nohz_balance_exit_idle(int cpu)
5448 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5449 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5450 atomic_dec(&nohz.nr_cpus);
5451 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5455 static inline void set_cpu_sd_state_busy(void)
5457 struct sched_domain *sd;
5460 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5462 if (!sd || !sd->nohz_idle)
5466 for (; sd; sd = sd->parent)
5467 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5472 void set_cpu_sd_state_idle(void)
5474 struct sched_domain *sd;
5477 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5479 if (!sd || sd->nohz_idle)
5483 for (; sd; sd = sd->parent)
5484 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5490 * This routine will record that the cpu is going idle with tick stopped.
5491 * This info will be used in performing idle load balancing in the future.
5493 void nohz_balance_enter_idle(int cpu)
5496 * If this cpu is going down, then nothing needs to be done.
5498 if (!cpu_active(cpu))
5501 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5504 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5505 atomic_inc(&nohz.nr_cpus);
5506 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5509 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5510 unsigned long action, void *hcpu)
5512 switch (action & ~CPU_TASKS_FROZEN) {
5514 nohz_balance_exit_idle(smp_processor_id());
5522 static DEFINE_SPINLOCK(balancing);
5525 * Scale the max load_balance interval with the number of CPUs in the system.
5526 * This trades load-balance latency on larger machines for less cross talk.
5528 void update_max_interval(void)
5530 max_load_balance_interval = HZ*num_online_cpus()/10;
5534 * It checks each scheduling domain to see if it is due to be balanced,
5535 * and initiates a balancing operation if so.
5537 * Balancing parameters are set up in init_sched_domains.
5539 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5542 struct rq *rq = cpu_rq(cpu);
5543 unsigned long interval;
5544 struct sched_domain *sd;
5545 /* Earliest time when we have to do rebalance again */
5546 unsigned long next_balance = jiffies + 60*HZ;
5547 int update_next_balance = 0;
5550 update_blocked_averages(cpu);
5553 for_each_domain(cpu, sd) {
5554 if (!(sd->flags & SD_LOAD_BALANCE))
5557 interval = sd->balance_interval;
5558 if (idle != CPU_IDLE)
5559 interval *= sd->busy_factor;
5561 /* scale ms to jiffies */
5562 interval = msecs_to_jiffies(interval);
5563 interval = clamp(interval, 1UL, max_load_balance_interval);
5565 need_serialize = sd->flags & SD_SERIALIZE;
5567 if (need_serialize) {
5568 if (!spin_trylock(&balancing))
5572 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5573 if (load_balance(cpu, rq, sd, idle, &balance)) {
5575 * The LBF_SOME_PINNED logic could have changed
5576 * env->dst_cpu, so we can't know our idle
5577 * state even if we migrated tasks. Update it.
5579 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
5581 sd->last_balance = jiffies;
5584 spin_unlock(&balancing);
5586 if (time_after(next_balance, sd->last_balance + interval)) {
5587 next_balance = sd->last_balance + interval;
5588 update_next_balance = 1;
5592 * Stop the load balance at this level. There is another
5593 * CPU in our sched group which is doing load balancing more
5602 * next_balance will be updated only when there is a need.
5603 * When the cpu is attached to null domain for ex, it will not be
5606 if (likely(update_next_balance))
5607 rq->next_balance = next_balance;
5610 #ifdef CONFIG_NO_HZ_COMMON
5612 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5613 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5615 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5617 struct rq *this_rq = cpu_rq(this_cpu);
5621 if (idle != CPU_IDLE ||
5622 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5625 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5626 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5630 * If this cpu gets work to do, stop the load balancing
5631 * work being done for other cpus. Next load
5632 * balancing owner will pick it up.
5637 rq = cpu_rq(balance_cpu);
5639 raw_spin_lock_irq(&rq->lock);
5640 update_rq_clock(rq);
5641 update_idle_cpu_load(rq);
5642 raw_spin_unlock_irq(&rq->lock);
5644 rebalance_domains(balance_cpu, CPU_IDLE);
5646 if (time_after(this_rq->next_balance, rq->next_balance))
5647 this_rq->next_balance = rq->next_balance;
5649 nohz.next_balance = this_rq->next_balance;
5651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5655 * Current heuristic for kicking the idle load balancer in the presence
5656 * of an idle cpu is the system.
5657 * - This rq has more than one task.
5658 * - At any scheduler domain level, this cpu's scheduler group has multiple
5659 * busy cpu's exceeding the group's power.
5660 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5661 * domain span are idle.
5663 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5665 unsigned long now = jiffies;
5666 struct sched_domain *sd;
5668 if (unlikely(idle_cpu(cpu)))
5672 * We may be recently in ticked or tickless idle mode. At the first
5673 * busy tick after returning from idle, we will update the busy stats.
5675 set_cpu_sd_state_busy();
5676 nohz_balance_exit_idle(cpu);
5679 * None are in tickless mode and hence no need for NOHZ idle load
5682 if (likely(!atomic_read(&nohz.nr_cpus)))
5685 if (time_before(now, nohz.next_balance))
5688 if (rq->nr_running >= 2)
5692 for_each_domain(cpu, sd) {
5693 struct sched_group *sg = sd->groups;
5694 struct sched_group_power *sgp = sg->sgp;
5695 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5697 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5698 goto need_kick_unlock;
5700 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5701 && (cpumask_first_and(nohz.idle_cpus_mask,
5702 sched_domain_span(sd)) < cpu))
5703 goto need_kick_unlock;
5705 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5717 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5721 * run_rebalance_domains is triggered when needed from the scheduler tick.
5722 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5724 static void run_rebalance_domains(struct softirq_action *h)
5726 int this_cpu = smp_processor_id();
5727 struct rq *this_rq = cpu_rq(this_cpu);
5728 enum cpu_idle_type idle = this_rq->idle_balance ?
5729 CPU_IDLE : CPU_NOT_IDLE;
5731 rebalance_domains(this_cpu, idle);
5734 * If this cpu has a pending nohz_balance_kick, then do the
5735 * balancing on behalf of the other idle cpus whose ticks are
5738 nohz_idle_balance(this_cpu, idle);
5741 static inline int on_null_domain(int cpu)
5743 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5747 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5749 void trigger_load_balance(struct rq *rq, int cpu)
5751 /* Don't need to rebalance while attached to NULL domain */
5752 if (time_after_eq(jiffies, rq->next_balance) &&
5753 likely(!on_null_domain(cpu)))
5754 raise_softirq(SCHED_SOFTIRQ);
5755 #ifdef CONFIG_NO_HZ_COMMON
5756 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5757 nohz_balancer_kick(cpu);
5761 static void rq_online_fair(struct rq *rq)
5766 static void rq_offline_fair(struct rq *rq)
5770 /* Ensure any throttled groups are reachable by pick_next_task */
5771 unthrottle_offline_cfs_rqs(rq);
5774 #endif /* CONFIG_SMP */
5777 * scheduler tick hitting a task of our scheduling class:
5779 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5781 struct cfs_rq *cfs_rq;
5782 struct sched_entity *se = &curr->se;
5784 for_each_sched_entity(se) {
5785 cfs_rq = cfs_rq_of(se);
5786 entity_tick(cfs_rq, se, queued);
5789 if (sched_feat_numa(NUMA))
5790 task_tick_numa(rq, curr);
5792 update_rq_runnable_avg(rq, 1);
5796 * called on fork with the child task as argument from the parent's context
5797 * - child not yet on the tasklist
5798 * - preemption disabled
5800 static void task_fork_fair(struct task_struct *p)
5802 struct cfs_rq *cfs_rq;
5803 struct sched_entity *se = &p->se, *curr;
5804 int this_cpu = smp_processor_id();
5805 struct rq *rq = this_rq();
5806 unsigned long flags;
5808 raw_spin_lock_irqsave(&rq->lock, flags);
5810 update_rq_clock(rq);
5812 cfs_rq = task_cfs_rq(current);
5813 curr = cfs_rq->curr;
5815 if (unlikely(task_cpu(p) != this_cpu)) {
5817 __set_task_cpu(p, this_cpu);
5821 update_curr(cfs_rq);
5824 se->vruntime = curr->vruntime;
5825 place_entity(cfs_rq, se, 1);
5827 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5829 * Upon rescheduling, sched_class::put_prev_task() will place
5830 * 'current' within the tree based on its new key value.
5832 swap(curr->vruntime, se->vruntime);
5833 resched_task(rq->curr);
5836 se->vruntime -= cfs_rq->min_vruntime;
5838 raw_spin_unlock_irqrestore(&rq->lock, flags);
5842 * Priority of the task has changed. Check to see if we preempt
5846 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5852 * Reschedule if we are currently running on this runqueue and
5853 * our priority decreased, or if we are not currently running on
5854 * this runqueue and our priority is higher than the current's
5856 if (rq->curr == p) {
5857 if (p->prio > oldprio)
5858 resched_task(rq->curr);
5860 check_preempt_curr(rq, p, 0);
5863 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5865 struct sched_entity *se = &p->se;
5866 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5869 * Ensure the task's vruntime is normalized, so that when its
5870 * switched back to the fair class the enqueue_entity(.flags=0) will
5871 * do the right thing.
5873 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5874 * have normalized the vruntime, if it was !on_rq, then only when
5875 * the task is sleeping will it still have non-normalized vruntime.
5877 if (!se->on_rq && p->state != TASK_RUNNING) {
5879 * Fix up our vruntime so that the current sleep doesn't
5880 * cause 'unlimited' sleep bonus.
5882 place_entity(cfs_rq, se, 0);
5883 se->vruntime -= cfs_rq->min_vruntime;
5888 * Remove our load from contribution when we leave sched_fair
5889 * and ensure we don't carry in an old decay_count if we
5892 if (p->se.avg.decay_count) {
5893 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5894 __synchronize_entity_decay(&p->se);
5895 subtract_blocked_load_contrib(cfs_rq,
5896 p->se.avg.load_avg_contrib);
5902 * We switched to the sched_fair class.
5904 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5910 * We were most likely switched from sched_rt, so
5911 * kick off the schedule if running, otherwise just see
5912 * if we can still preempt the current task.
5915 resched_task(rq->curr);
5917 check_preempt_curr(rq, p, 0);
5920 /* Account for a task changing its policy or group.
5922 * This routine is mostly called to set cfs_rq->curr field when a task
5923 * migrates between groups/classes.
5925 static void set_curr_task_fair(struct rq *rq)
5927 struct sched_entity *se = &rq->curr->se;
5929 for_each_sched_entity(se) {
5930 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5932 set_next_entity(cfs_rq, se);
5933 /* ensure bandwidth has been allocated on our new cfs_rq */
5934 account_cfs_rq_runtime(cfs_rq, 0);
5938 void init_cfs_rq(struct cfs_rq *cfs_rq)
5940 cfs_rq->tasks_timeline = RB_ROOT;
5941 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5942 #ifndef CONFIG_64BIT
5943 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5946 atomic64_set(&cfs_rq->decay_counter, 1);
5947 atomic_long_set(&cfs_rq->removed_load, 0);
5951 #ifdef CONFIG_FAIR_GROUP_SCHED
5952 static void task_move_group_fair(struct task_struct *p, int on_rq)
5954 struct cfs_rq *cfs_rq;
5956 * If the task was not on the rq at the time of this cgroup movement
5957 * it must have been asleep, sleeping tasks keep their ->vruntime
5958 * absolute on their old rq until wakeup (needed for the fair sleeper
5959 * bonus in place_entity()).
5961 * If it was on the rq, we've just 'preempted' it, which does convert
5962 * ->vruntime to a relative base.
5964 * Make sure both cases convert their relative position when migrating
5965 * to another cgroup's rq. This does somewhat interfere with the
5966 * fair sleeper stuff for the first placement, but who cares.
5969 * When !on_rq, vruntime of the task has usually NOT been normalized.
5970 * But there are some cases where it has already been normalized:
5972 * - Moving a forked child which is waiting for being woken up by
5973 * wake_up_new_task().
5974 * - Moving a task which has been woken up by try_to_wake_up() and
5975 * waiting for actually being woken up by sched_ttwu_pending().
5977 * To prevent boost or penalty in the new cfs_rq caused by delta
5978 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5980 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5984 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5985 set_task_rq(p, task_cpu(p));
5987 cfs_rq = cfs_rq_of(&p->se);
5988 p->se.vruntime += cfs_rq->min_vruntime;
5991 * migrate_task_rq_fair() will have removed our previous
5992 * contribution, but we must synchronize for ongoing future
5995 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5996 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6001 void free_fair_sched_group(struct task_group *tg)
6005 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6007 for_each_possible_cpu(i) {
6009 kfree(tg->cfs_rq[i]);
6018 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6020 struct cfs_rq *cfs_rq;
6021 struct sched_entity *se;
6024 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6027 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6031 tg->shares = NICE_0_LOAD;
6033 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6035 for_each_possible_cpu(i) {
6036 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6037 GFP_KERNEL, cpu_to_node(i));
6041 se = kzalloc_node(sizeof(struct sched_entity),
6042 GFP_KERNEL, cpu_to_node(i));
6046 init_cfs_rq(cfs_rq);
6047 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6058 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6060 struct rq *rq = cpu_rq(cpu);
6061 unsigned long flags;
6064 * Only empty task groups can be destroyed; so we can speculatively
6065 * check on_list without danger of it being re-added.
6067 if (!tg->cfs_rq[cpu]->on_list)
6070 raw_spin_lock_irqsave(&rq->lock, flags);
6071 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6072 raw_spin_unlock_irqrestore(&rq->lock, flags);
6075 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6076 struct sched_entity *se, int cpu,
6077 struct sched_entity *parent)
6079 struct rq *rq = cpu_rq(cpu);
6083 init_cfs_rq_runtime(cfs_rq);
6085 tg->cfs_rq[cpu] = cfs_rq;
6088 /* se could be NULL for root_task_group */
6093 se->cfs_rq = &rq->cfs;
6095 se->cfs_rq = parent->my_q;
6098 update_load_set(&se->load, 0);
6099 se->parent = parent;
6102 static DEFINE_MUTEX(shares_mutex);
6104 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6107 unsigned long flags;
6110 * We can't change the weight of the root cgroup.
6115 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6117 mutex_lock(&shares_mutex);
6118 if (tg->shares == shares)
6121 tg->shares = shares;
6122 for_each_possible_cpu(i) {
6123 struct rq *rq = cpu_rq(i);
6124 struct sched_entity *se;
6127 /* Propagate contribution to hierarchy */
6128 raw_spin_lock_irqsave(&rq->lock, flags);
6130 /* Possible calls to update_curr() need rq clock */
6131 update_rq_clock(rq);
6132 for_each_sched_entity(se)
6133 update_cfs_shares(group_cfs_rq(se));
6134 raw_spin_unlock_irqrestore(&rq->lock, flags);
6138 mutex_unlock(&shares_mutex);
6141 #else /* CONFIG_FAIR_GROUP_SCHED */
6143 void free_fair_sched_group(struct task_group *tg) { }
6145 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6150 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6152 #endif /* CONFIG_FAIR_GROUP_SCHED */
6155 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6157 struct sched_entity *se = &task->se;
6158 unsigned int rr_interval = 0;
6161 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6164 if (rq->cfs.load.weight)
6165 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6171 * All the scheduling class methods:
6173 const struct sched_class fair_sched_class = {
6174 .next = &idle_sched_class,
6175 .enqueue_task = enqueue_task_fair,
6176 .dequeue_task = dequeue_task_fair,
6177 .yield_task = yield_task_fair,
6178 .yield_to_task = yield_to_task_fair,
6180 .check_preempt_curr = check_preempt_wakeup,
6182 .pick_next_task = pick_next_task_fair,
6183 .put_prev_task = put_prev_task_fair,
6186 .select_task_rq = select_task_rq_fair,
6187 .migrate_task_rq = migrate_task_rq_fair,
6189 .rq_online = rq_online_fair,
6190 .rq_offline = rq_offline_fair,
6192 .task_waking = task_waking_fair,
6195 .set_curr_task = set_curr_task_fair,
6196 .task_tick = task_tick_fair,
6197 .task_fork = task_fork_fair,
6199 .prio_changed = prio_changed_fair,
6200 .switched_from = switched_from_fair,
6201 .switched_to = switched_to_fair,
6203 .get_rr_interval = get_rr_interval_fair,
6205 #ifdef CONFIG_FAIR_GROUP_SCHED
6206 .task_move_group = task_move_group_fair,
6210 #ifdef CONFIG_SCHED_DEBUG
6211 void print_cfs_stats(struct seq_file *m, int cpu)
6213 struct cfs_rq *cfs_rq;
6216 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6217 print_cfs_rq(m, cpu, cfs_rq);
6222 __init void init_sched_fair_class(void)
6225 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6227 #ifdef CONFIG_NO_HZ_COMMON
6228 nohz.next_balance = jiffies;
6229 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6230 cpu_notifier(sched_ilb_notifier, 0);