1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
26 * Targeted preemption latency for CPU-bound tasks:
28 * NOTE: this latency value is not the same as the concept of
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 * Minimal preemption granularity for CPU-bound tasks:
57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
59 unsigned int sysctl_sched_min_granularity = 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
65 static unsigned int sched_nr_latency = 8;
68 * After fork, child runs first. If set to 0 (default) then
69 * parent will (try to) run first.
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 * SCHED_OTHER wake-up granularity.
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
102 * For asym packing, by default the lower numbered CPU has higher priority.
104 int __weak arch_asym_cpu_priority(int cpu)
110 * The margin used when comparing utilization with CPU capacity.
114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
117 * The margin used when comparing CPU capacities.
118 * is 'cap1' noticeably greater than 'cap2'
122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
125 #ifdef CONFIG_CFS_BANDWIDTH
127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
128 * each time a cfs_rq requests quota.
130 * Note: in the case that the slice exceeds the runtime remaining (either due
131 * to consumption or the quota being specified to be smaller than the slice)
132 * we will always only issue the remaining available time.
134 * (default: 5 msec, units: microseconds)
136 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
139 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
151 static inline void update_load_set(struct load_weight *lw, unsigned long w)
158 * Increase the granularity value when there are more CPUs,
159 * because with more CPUs the 'effective latency' as visible
160 * to users decreases. But the relationship is not linear,
161 * so pick a second-best guess by going with the log2 of the
164 * This idea comes from the SD scheduler of Con Kolivas:
166 static unsigned int get_update_sysctl_factor(void)
168 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
171 switch (sysctl_sched_tunable_scaling) {
172 case SCHED_TUNABLESCALING_NONE:
175 case SCHED_TUNABLESCALING_LINEAR:
178 case SCHED_TUNABLESCALING_LOG:
180 factor = 1 + ilog2(cpus);
187 static void update_sysctl(void)
189 unsigned int factor = get_update_sysctl_factor();
191 #define SET_SYSCTL(name) \
192 (sysctl_##name = (factor) * normalized_sysctl_##name)
193 SET_SYSCTL(sched_min_granularity);
194 SET_SYSCTL(sched_latency);
195 SET_SYSCTL(sched_wakeup_granularity);
199 void __init sched_init_granularity(void)
204 #define WMULT_CONST (~0U)
205 #define WMULT_SHIFT 32
207 static void __update_inv_weight(struct load_weight *lw)
211 if (likely(lw->inv_weight))
214 w = scale_load_down(lw->weight);
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
221 lw->inv_weight = WMULT_CONST / w;
225 * delta_exec * weight / lw.weight
227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
230 * we're guaranteed shift stays positive because inv_weight is guaranteed to
231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
234 * weight/lw.weight <= 1, and therefore our shift will also be positive.
236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
238 u64 fact = scale_load_down(weight);
239 u32 fact_hi = (u32)(fact >> 32);
240 int shift = WMULT_SHIFT;
243 __update_inv_weight(lw);
245 if (unlikely(fact_hi)) {
251 fact = mul_u32_u32(fact, lw->inv_weight);
253 fact_hi = (u32)(fact >> 32);
260 return mul_u64_u32_shr(delta_exec, fact, shift);
264 const struct sched_class fair_sched_class;
266 /**************************************************************
267 * CFS operations on generic schedulable entities:
270 #ifdef CONFIG_FAIR_GROUP_SCHED
272 /* Walk up scheduling entities hierarchy */
273 #define for_each_sched_entity(se) \
274 for (; se; se = se->parent)
276 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
281 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
282 autogroup_path(cfs_rq->tg, path, len);
283 else if (cfs_rq && cfs_rq->tg->css.cgroup)
284 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
286 strlcpy(path, "(null)", len);
289 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291 struct rq *rq = rq_of(cfs_rq);
292 int cpu = cpu_of(rq);
295 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
300 * Ensure we either appear before our parent (if already
301 * enqueued) or force our parent to appear after us when it is
302 * enqueued. The fact that we always enqueue bottom-up
303 * reduces this to two cases and a special case for the root
304 * cfs_rq. Furthermore, it also means that we will always reset
305 * tmp_alone_branch either when the branch is connected
306 * to a tree or when we reach the top of the tree
308 if (cfs_rq->tg->parent &&
309 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
311 * If parent is already on the list, we add the child
312 * just before. Thanks to circular linked property of
313 * the list, this means to put the child at the tail
314 * of the list that starts by parent.
316 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
317 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
319 * The branch is now connected to its tree so we can
320 * reset tmp_alone_branch to the beginning of the
323 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 if (!cfs_rq->tg->parent) {
329 * cfs rq without parent should be put
330 * at the tail of the list.
332 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
333 &rq->leaf_cfs_rq_list);
335 * We have reach the top of a tree so we can reset
336 * tmp_alone_branch to the beginning of the list.
338 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 * The parent has not already been added so we want to
344 * make sure that it will be put after us.
345 * tmp_alone_branch points to the begin of the branch
346 * where we will add parent.
348 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
350 * update tmp_alone_branch to points to the new begin
353 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
359 if (cfs_rq->on_list) {
360 struct rq *rq = rq_of(cfs_rq);
363 * With cfs_rq being unthrottled/throttled during an enqueue,
364 * it can happen the tmp_alone_branch points the a leaf that
365 * we finally want to del. In this case, tmp_alone_branch moves
366 * to the prev element but it will point to rq->leaf_cfs_rq_list
367 * at the end of the enqueue.
369 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
370 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
372 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
377 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
379 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382 /* Iterate thr' all leaf cfs_rq's on a runqueue */
383 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
384 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
387 /* Do the two (enqueued) entities belong to the same group ? */
388 static inline struct cfs_rq *
389 is_same_group(struct sched_entity *se, struct sched_entity *pse)
391 if (se->cfs_rq == pse->cfs_rq)
397 static inline struct sched_entity *parent_entity(struct sched_entity *se)
403 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
405 int se_depth, pse_depth;
408 * preemption test can be made between sibling entities who are in the
409 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
410 * both tasks until we find their ancestors who are siblings of common
414 /* First walk up until both entities are at same depth */
415 se_depth = (*se)->depth;
416 pse_depth = (*pse)->depth;
418 while (se_depth > pse_depth) {
420 *se = parent_entity(*se);
423 while (pse_depth > se_depth) {
425 *pse = parent_entity(*pse);
428 while (!is_same_group(*se, *pse)) {
429 *se = parent_entity(*se);
430 *pse = parent_entity(*pse);
434 static int tg_is_idle(struct task_group *tg)
439 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
441 return cfs_rq->idle > 0;
444 static int se_is_idle(struct sched_entity *se)
446 if (entity_is_task(se))
447 return task_has_idle_policy(task_of(se));
448 return cfs_rq_is_idle(group_cfs_rq(se));
451 #else /* !CONFIG_FAIR_GROUP_SCHED */
453 #define for_each_sched_entity(se) \
454 for (; se; se = NULL)
456 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
459 strlcpy(path, "(null)", len);
462 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
467 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
471 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
475 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
476 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
478 static inline struct sched_entity *parent_entity(struct sched_entity *se)
484 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
488 static inline int tg_is_idle(struct task_group *tg)
493 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
498 static int se_is_idle(struct sched_entity *se)
503 #endif /* CONFIG_FAIR_GROUP_SCHED */
505 static __always_inline
506 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
508 /**************************************************************
509 * Scheduling class tree data structure manipulation methods:
512 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
514 s64 delta = (s64)(vruntime - max_vruntime);
516 max_vruntime = vruntime;
521 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
523 s64 delta = (s64)(vruntime - min_vruntime);
525 min_vruntime = vruntime;
530 static inline bool entity_before(struct sched_entity *a,
531 struct sched_entity *b)
533 return (s64)(a->vruntime - b->vruntime) < 0;
536 #define __node_2_se(node) \
537 rb_entry((node), struct sched_entity, run_node)
539 static void update_min_vruntime(struct cfs_rq *cfs_rq)
541 struct sched_entity *curr = cfs_rq->curr;
542 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
544 u64 vruntime = cfs_rq->min_vruntime;
548 vruntime = curr->vruntime;
553 if (leftmost) { /* non-empty tree */
554 struct sched_entity *se = __node_2_se(leftmost);
557 vruntime = se->vruntime;
559 vruntime = min_vruntime(vruntime, se->vruntime);
562 /* ensure we never gain time by being placed backwards. */
563 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
566 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
570 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
572 return entity_before(__node_2_se(a), __node_2_se(b));
576 * Enqueue an entity into the rb-tree:
578 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
580 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
583 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
585 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
588 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
590 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
595 return __node_2_se(left);
598 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
600 struct rb_node *next = rb_next(&se->run_node);
605 return __node_2_se(next);
608 #ifdef CONFIG_SCHED_DEBUG
609 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
611 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
616 return __node_2_se(last);
619 /**************************************************************
620 * Scheduling class statistics methods:
623 int sched_update_scaling(void)
625 unsigned int factor = get_update_sysctl_factor();
627 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
628 sysctl_sched_min_granularity);
630 #define WRT_SYSCTL(name) \
631 (normalized_sysctl_##name = sysctl_##name / (factor))
632 WRT_SYSCTL(sched_min_granularity);
633 WRT_SYSCTL(sched_latency);
634 WRT_SYSCTL(sched_wakeup_granularity);
644 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
646 if (unlikely(se->load.weight != NICE_0_LOAD))
647 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
653 * The idea is to set a period in which each task runs once.
655 * When there are too many tasks (sched_nr_latency) we have to stretch
656 * this period because otherwise the slices get too small.
658 * p = (nr <= nl) ? l : l*nr/nl
660 static u64 __sched_period(unsigned long nr_running)
662 if (unlikely(nr_running > sched_nr_latency))
663 return nr_running * sysctl_sched_min_granularity;
665 return sysctl_sched_latency;
669 * We calculate the wall-time slice from the period by taking a part
670 * proportional to the weight.
674 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
676 unsigned int nr_running = cfs_rq->nr_running;
679 if (sched_feat(ALT_PERIOD))
680 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
682 slice = __sched_period(nr_running + !se->on_rq);
684 for_each_sched_entity(se) {
685 struct load_weight *load;
686 struct load_weight lw;
688 cfs_rq = cfs_rq_of(se);
689 load = &cfs_rq->load;
691 if (unlikely(!se->on_rq)) {
694 update_load_add(&lw, se->load.weight);
697 slice = __calc_delta(slice, se->load.weight, load);
700 if (sched_feat(BASE_SLICE))
701 slice = max(slice, (u64)sysctl_sched_min_granularity);
707 * We calculate the vruntime slice of a to-be-inserted task.
711 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
713 return calc_delta_fair(sched_slice(cfs_rq, se), se);
719 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
720 static unsigned long task_h_load(struct task_struct *p);
721 static unsigned long capacity_of(int cpu);
723 /* Give new sched_entity start runnable values to heavy its load in infant time */
724 void init_entity_runnable_average(struct sched_entity *se)
726 struct sched_avg *sa = &se->avg;
728 memset(sa, 0, sizeof(*sa));
731 * Tasks are initialized with full load to be seen as heavy tasks until
732 * they get a chance to stabilize to their real load level.
733 * Group entities are initialized with zero load to reflect the fact that
734 * nothing has been attached to the task group yet.
736 if (entity_is_task(se))
737 sa->load_avg = scale_load_down(se->load.weight);
739 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
742 static void attach_entity_cfs_rq(struct sched_entity *se);
745 * With new tasks being created, their initial util_avgs are extrapolated
746 * based on the cfs_rq's current util_avg:
748 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
750 * However, in many cases, the above util_avg does not give a desired
751 * value. Moreover, the sum of the util_avgs may be divergent, such
752 * as when the series is a harmonic series.
754 * To solve this problem, we also cap the util_avg of successive tasks to
755 * only 1/2 of the left utilization budget:
757 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
759 * where n denotes the nth task and cpu_scale the CPU capacity.
761 * For example, for a CPU with 1024 of capacity, a simplest series from
762 * the beginning would be like:
764 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
765 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
767 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
768 * if util_avg > util_avg_cap.
770 void post_init_entity_util_avg(struct task_struct *p)
772 struct sched_entity *se = &p->se;
773 struct cfs_rq *cfs_rq = cfs_rq_of(se);
774 struct sched_avg *sa = &se->avg;
775 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
776 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
779 if (cfs_rq->avg.util_avg != 0) {
780 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
781 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
783 if (sa->util_avg > cap)
790 sa->runnable_avg = sa->util_avg;
792 if (p->sched_class != &fair_sched_class) {
794 * For !fair tasks do:
796 update_cfs_rq_load_avg(now, cfs_rq);
797 attach_entity_load_avg(cfs_rq, se);
798 switched_from_fair(rq, p);
800 * such that the next switched_to_fair() has the
803 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
807 attach_entity_cfs_rq(se);
810 #else /* !CONFIG_SMP */
811 void init_entity_runnable_average(struct sched_entity *se)
814 void post_init_entity_util_avg(struct task_struct *p)
817 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
820 #endif /* CONFIG_SMP */
823 * Update the current task's runtime statistics.
825 static void update_curr(struct cfs_rq *cfs_rq)
827 struct sched_entity *curr = cfs_rq->curr;
828 u64 now = rq_clock_task(rq_of(cfs_rq));
834 delta_exec = now - curr->exec_start;
835 if (unlikely((s64)delta_exec <= 0))
838 curr->exec_start = now;
840 schedstat_set(curr->statistics.exec_max,
841 max(delta_exec, curr->statistics.exec_max));
843 curr->sum_exec_runtime += delta_exec;
844 schedstat_add(cfs_rq->exec_clock, delta_exec);
846 curr->vruntime += calc_delta_fair(delta_exec, curr);
847 update_min_vruntime(cfs_rq);
849 if (entity_is_task(curr)) {
850 struct task_struct *curtask = task_of(curr);
852 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
853 cgroup_account_cputime(curtask, delta_exec);
854 account_group_exec_runtime(curtask, delta_exec);
857 account_cfs_rq_runtime(cfs_rq, delta_exec);
860 static void update_curr_fair(struct rq *rq)
862 update_curr(cfs_rq_of(&rq->curr->se));
866 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
868 u64 wait_start, prev_wait_start;
870 if (!schedstat_enabled())
873 wait_start = rq_clock(rq_of(cfs_rq));
874 prev_wait_start = schedstat_val(se->statistics.wait_start);
876 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
877 likely(wait_start > prev_wait_start))
878 wait_start -= prev_wait_start;
880 __schedstat_set(se->statistics.wait_start, wait_start);
884 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
886 struct task_struct *p;
889 if (!schedstat_enabled())
893 * When the sched_schedstat changes from 0 to 1, some sched se
894 * maybe already in the runqueue, the se->statistics.wait_start
895 * will be 0.So it will let the delta wrong. We need to avoid this
898 if (unlikely(!schedstat_val(se->statistics.wait_start)))
901 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
903 if (entity_is_task(se)) {
905 if (task_on_rq_migrating(p)) {
907 * Preserve migrating task's wait time so wait_start
908 * time stamp can be adjusted to accumulate wait time
909 * prior to migration.
911 __schedstat_set(se->statistics.wait_start, delta);
914 trace_sched_stat_wait(p, delta);
917 __schedstat_set(se->statistics.wait_max,
918 max(schedstat_val(se->statistics.wait_max), delta));
919 __schedstat_inc(se->statistics.wait_count);
920 __schedstat_add(se->statistics.wait_sum, delta);
921 __schedstat_set(se->statistics.wait_start, 0);
925 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
927 struct task_struct *tsk = NULL;
928 u64 sleep_start, block_start;
930 if (!schedstat_enabled())
933 sleep_start = schedstat_val(se->statistics.sleep_start);
934 block_start = schedstat_val(se->statistics.block_start);
936 if (entity_is_task(se))
940 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
945 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
946 __schedstat_set(se->statistics.sleep_max, delta);
948 __schedstat_set(se->statistics.sleep_start, 0);
949 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
952 account_scheduler_latency(tsk, delta >> 10, 1);
953 trace_sched_stat_sleep(tsk, delta);
957 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
962 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
963 __schedstat_set(se->statistics.block_max, delta);
965 __schedstat_set(se->statistics.block_start, 0);
966 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
969 if (tsk->in_iowait) {
970 __schedstat_add(se->statistics.iowait_sum, delta);
971 __schedstat_inc(se->statistics.iowait_count);
972 trace_sched_stat_iowait(tsk, delta);
975 trace_sched_stat_blocked(tsk, delta);
978 * Blocking time is in units of nanosecs, so shift by
979 * 20 to get a milliseconds-range estimation of the
980 * amount of time that the task spent sleeping:
982 if (unlikely(prof_on == SLEEP_PROFILING)) {
983 profile_hits(SLEEP_PROFILING,
984 (void *)get_wchan(tsk),
987 account_scheduler_latency(tsk, delta >> 10, 0);
993 * Task is being enqueued - update stats:
996 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
998 if (!schedstat_enabled())
1002 * Are we enqueueing a waiting task? (for current tasks
1003 * a dequeue/enqueue event is a NOP)
1005 if (se != cfs_rq->curr)
1006 update_stats_wait_start(cfs_rq, se);
1008 if (flags & ENQUEUE_WAKEUP)
1009 update_stats_enqueue_sleeper(cfs_rq, se);
1013 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1016 if (!schedstat_enabled())
1020 * Mark the end of the wait period if dequeueing a
1023 if (se != cfs_rq->curr)
1024 update_stats_wait_end(cfs_rq, se);
1026 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1027 struct task_struct *tsk = task_of(se);
1030 /* XXX racy against TTWU */
1031 state = READ_ONCE(tsk->__state);
1032 if (state & TASK_INTERRUPTIBLE)
1033 __schedstat_set(se->statistics.sleep_start,
1034 rq_clock(rq_of(cfs_rq)));
1035 if (state & TASK_UNINTERRUPTIBLE)
1036 __schedstat_set(se->statistics.block_start,
1037 rq_clock(rq_of(cfs_rq)));
1042 * We are picking a new current task - update its stats:
1045 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1048 * We are starting a new run period:
1050 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1053 /**************************************************
1054 * Scheduling class queueing methods:
1057 #ifdef CONFIG_NUMA_BALANCING
1059 * Approximate time to scan a full NUMA task in ms. The task scan period is
1060 * calculated based on the tasks virtual memory size and
1061 * numa_balancing_scan_size.
1063 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1064 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1066 /* Portion of address space to scan in MB */
1067 unsigned int sysctl_numa_balancing_scan_size = 256;
1069 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1070 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1073 refcount_t refcount;
1075 spinlock_t lock; /* nr_tasks, tasks */
1080 struct rcu_head rcu;
1081 unsigned long total_faults;
1082 unsigned long max_faults_cpu;
1084 * Faults_cpu is used to decide whether memory should move
1085 * towards the CPU. As a consequence, these stats are weighted
1086 * more by CPU use than by memory faults.
1088 unsigned long *faults_cpu;
1089 unsigned long faults[];
1093 * For functions that can be called in multiple contexts that permit reading
1094 * ->numa_group (see struct task_struct for locking rules).
1096 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1098 return rcu_dereference_check(p->numa_group, p == current ||
1099 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1102 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1104 return rcu_dereference_protected(p->numa_group, p == current);
1107 static inline unsigned long group_faults_priv(struct numa_group *ng);
1108 static inline unsigned long group_faults_shared(struct numa_group *ng);
1110 static unsigned int task_nr_scan_windows(struct task_struct *p)
1112 unsigned long rss = 0;
1113 unsigned long nr_scan_pages;
1116 * Calculations based on RSS as non-present and empty pages are skipped
1117 * by the PTE scanner and NUMA hinting faults should be trapped based
1120 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1121 rss = get_mm_rss(p->mm);
1123 rss = nr_scan_pages;
1125 rss = round_up(rss, nr_scan_pages);
1126 return rss / nr_scan_pages;
1129 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1130 #define MAX_SCAN_WINDOW 2560
1132 static unsigned int task_scan_min(struct task_struct *p)
1134 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1135 unsigned int scan, floor;
1136 unsigned int windows = 1;
1138 if (scan_size < MAX_SCAN_WINDOW)
1139 windows = MAX_SCAN_WINDOW / scan_size;
1140 floor = 1000 / windows;
1142 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1143 return max_t(unsigned int, floor, scan);
1146 static unsigned int task_scan_start(struct task_struct *p)
1148 unsigned long smin = task_scan_min(p);
1149 unsigned long period = smin;
1150 struct numa_group *ng;
1152 /* Scale the maximum scan period with the amount of shared memory. */
1154 ng = rcu_dereference(p->numa_group);
1156 unsigned long shared = group_faults_shared(ng);
1157 unsigned long private = group_faults_priv(ng);
1159 period *= refcount_read(&ng->refcount);
1160 period *= shared + 1;
1161 period /= private + shared + 1;
1165 return max(smin, period);
1168 static unsigned int task_scan_max(struct task_struct *p)
1170 unsigned long smin = task_scan_min(p);
1172 struct numa_group *ng;
1174 /* Watch for min being lower than max due to floor calculations */
1175 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1177 /* Scale the maximum scan period with the amount of shared memory. */
1178 ng = deref_curr_numa_group(p);
1180 unsigned long shared = group_faults_shared(ng);
1181 unsigned long private = group_faults_priv(ng);
1182 unsigned long period = smax;
1184 period *= refcount_read(&ng->refcount);
1185 period *= shared + 1;
1186 period /= private + shared + 1;
1188 smax = max(smax, period);
1191 return max(smin, smax);
1194 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1196 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1197 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1200 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1202 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1203 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1206 /* Shared or private faults. */
1207 #define NR_NUMA_HINT_FAULT_TYPES 2
1209 /* Memory and CPU locality */
1210 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1212 /* Averaged statistics, and temporary buffers. */
1213 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1215 pid_t task_numa_group_id(struct task_struct *p)
1217 struct numa_group *ng;
1221 ng = rcu_dereference(p->numa_group);
1230 * The averaged statistics, shared & private, memory & CPU,
1231 * occupy the first half of the array. The second half of the
1232 * array is for current counters, which are averaged into the
1233 * first set by task_numa_placement.
1235 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1237 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1240 static inline unsigned long task_faults(struct task_struct *p, int nid)
1242 if (!p->numa_faults)
1245 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1246 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1249 static inline unsigned long group_faults(struct task_struct *p, int nid)
1251 struct numa_group *ng = deref_task_numa_group(p);
1256 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1257 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1260 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1262 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1263 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1266 static inline unsigned long group_faults_priv(struct numa_group *ng)
1268 unsigned long faults = 0;
1271 for_each_online_node(node) {
1272 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1278 static inline unsigned long group_faults_shared(struct numa_group *ng)
1280 unsigned long faults = 0;
1283 for_each_online_node(node) {
1284 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1291 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1292 * considered part of a numa group's pseudo-interleaving set. Migrations
1293 * between these nodes are slowed down, to allow things to settle down.
1295 #define ACTIVE_NODE_FRACTION 3
1297 static bool numa_is_active_node(int nid, struct numa_group *ng)
1299 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1302 /* Handle placement on systems where not all nodes are directly connected. */
1303 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1304 int maxdist, bool task)
1306 unsigned long score = 0;
1310 * All nodes are directly connected, and the same distance
1311 * from each other. No need for fancy placement algorithms.
1313 if (sched_numa_topology_type == NUMA_DIRECT)
1317 * This code is called for each node, introducing N^2 complexity,
1318 * which should be ok given the number of nodes rarely exceeds 8.
1320 for_each_online_node(node) {
1321 unsigned long faults;
1322 int dist = node_distance(nid, node);
1325 * The furthest away nodes in the system are not interesting
1326 * for placement; nid was already counted.
1328 if (dist == sched_max_numa_distance || node == nid)
1332 * On systems with a backplane NUMA topology, compare groups
1333 * of nodes, and move tasks towards the group with the most
1334 * memory accesses. When comparing two nodes at distance
1335 * "hoplimit", only nodes closer by than "hoplimit" are part
1336 * of each group. Skip other nodes.
1338 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1342 /* Add up the faults from nearby nodes. */
1344 faults = task_faults(p, node);
1346 faults = group_faults(p, node);
1349 * On systems with a glueless mesh NUMA topology, there are
1350 * no fixed "groups of nodes". Instead, nodes that are not
1351 * directly connected bounce traffic through intermediate
1352 * nodes; a numa_group can occupy any set of nodes.
1353 * The further away a node is, the less the faults count.
1354 * This seems to result in good task placement.
1356 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1357 faults *= (sched_max_numa_distance - dist);
1358 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1368 * These return the fraction of accesses done by a particular task, or
1369 * task group, on a particular numa node. The group weight is given a
1370 * larger multiplier, in order to group tasks together that are almost
1371 * evenly spread out between numa nodes.
1373 static inline unsigned long task_weight(struct task_struct *p, int nid,
1376 unsigned long faults, total_faults;
1378 if (!p->numa_faults)
1381 total_faults = p->total_numa_faults;
1386 faults = task_faults(p, nid);
1387 faults += score_nearby_nodes(p, nid, dist, true);
1389 return 1000 * faults / total_faults;
1392 static inline unsigned long group_weight(struct task_struct *p, int nid,
1395 struct numa_group *ng = deref_task_numa_group(p);
1396 unsigned long faults, total_faults;
1401 total_faults = ng->total_faults;
1406 faults = group_faults(p, nid);
1407 faults += score_nearby_nodes(p, nid, dist, false);
1409 return 1000 * faults / total_faults;
1412 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1413 int src_nid, int dst_cpu)
1415 struct numa_group *ng = deref_curr_numa_group(p);
1416 int dst_nid = cpu_to_node(dst_cpu);
1417 int last_cpupid, this_cpupid;
1419 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1420 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1423 * Allow first faults or private faults to migrate immediately early in
1424 * the lifetime of a task. The magic number 4 is based on waiting for
1425 * two full passes of the "multi-stage node selection" test that is
1428 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1429 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1433 * Multi-stage node selection is used in conjunction with a periodic
1434 * migration fault to build a temporal task<->page relation. By using
1435 * a two-stage filter we remove short/unlikely relations.
1437 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1438 * a task's usage of a particular page (n_p) per total usage of this
1439 * page (n_t) (in a given time-span) to a probability.
1441 * Our periodic faults will sample this probability and getting the
1442 * same result twice in a row, given these samples are fully
1443 * independent, is then given by P(n)^2, provided our sample period
1444 * is sufficiently short compared to the usage pattern.
1446 * This quadric squishes small probabilities, making it less likely we
1447 * act on an unlikely task<->page relation.
1449 if (!cpupid_pid_unset(last_cpupid) &&
1450 cpupid_to_nid(last_cpupid) != dst_nid)
1453 /* Always allow migrate on private faults */
1454 if (cpupid_match_pid(p, last_cpupid))
1457 /* A shared fault, but p->numa_group has not been set up yet. */
1462 * Destination node is much more heavily used than the source
1463 * node? Allow migration.
1465 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1466 ACTIVE_NODE_FRACTION)
1470 * Distribute memory according to CPU & memory use on each node,
1471 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1473 * faults_cpu(dst) 3 faults_cpu(src)
1474 * --------------- * - > ---------------
1475 * faults_mem(dst) 4 faults_mem(src)
1477 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1478 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1482 * 'numa_type' describes the node at the moment of load balancing.
1485 /* The node has spare capacity that can be used to run more tasks. */
1488 * The node is fully used and the tasks don't compete for more CPU
1489 * cycles. Nevertheless, some tasks might wait before running.
1493 * The node is overloaded and can't provide expected CPU cycles to all
1499 /* Cached statistics for all CPUs within a node */
1502 unsigned long runnable;
1504 /* Total compute capacity of CPUs on a node */
1505 unsigned long compute_capacity;
1506 unsigned int nr_running;
1507 unsigned int weight;
1508 enum numa_type node_type;
1512 static inline bool is_core_idle(int cpu)
1514 #ifdef CONFIG_SCHED_SMT
1517 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1521 if (!idle_cpu(sibling))
1529 struct task_numa_env {
1530 struct task_struct *p;
1532 int src_cpu, src_nid;
1533 int dst_cpu, dst_nid;
1535 struct numa_stats src_stats, dst_stats;
1540 struct task_struct *best_task;
1545 static unsigned long cpu_load(struct rq *rq);
1546 static unsigned long cpu_runnable(struct rq *rq);
1547 static unsigned long cpu_util(int cpu);
1548 static inline long adjust_numa_imbalance(int imbalance,
1549 int dst_running, int dst_weight);
1552 numa_type numa_classify(unsigned int imbalance_pct,
1553 struct numa_stats *ns)
1555 if ((ns->nr_running > ns->weight) &&
1556 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1557 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1558 return node_overloaded;
1560 if ((ns->nr_running < ns->weight) ||
1561 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1562 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1563 return node_has_spare;
1565 return node_fully_busy;
1568 #ifdef CONFIG_SCHED_SMT
1569 /* Forward declarations of select_idle_sibling helpers */
1570 static inline bool test_idle_cores(int cpu, bool def);
1571 static inline int numa_idle_core(int idle_core, int cpu)
1573 if (!static_branch_likely(&sched_smt_present) ||
1574 idle_core >= 0 || !test_idle_cores(cpu, false))
1578 * Prefer cores instead of packing HT siblings
1579 * and triggering future load balancing.
1581 if (is_core_idle(cpu))
1587 static inline int numa_idle_core(int idle_core, int cpu)
1594 * Gather all necessary information to make NUMA balancing placement
1595 * decisions that are compatible with standard load balancer. This
1596 * borrows code and logic from update_sg_lb_stats but sharing a
1597 * common implementation is impractical.
1599 static void update_numa_stats(struct task_numa_env *env,
1600 struct numa_stats *ns, int nid,
1603 int cpu, idle_core = -1;
1605 memset(ns, 0, sizeof(*ns));
1609 for_each_cpu(cpu, cpumask_of_node(nid)) {
1610 struct rq *rq = cpu_rq(cpu);
1612 ns->load += cpu_load(rq);
1613 ns->runnable += cpu_runnable(rq);
1614 ns->util += cpu_util(cpu);
1615 ns->nr_running += rq->cfs.h_nr_running;
1616 ns->compute_capacity += capacity_of(cpu);
1618 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1619 if (READ_ONCE(rq->numa_migrate_on) ||
1620 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1623 if (ns->idle_cpu == -1)
1626 idle_core = numa_idle_core(idle_core, cpu);
1631 ns->weight = cpumask_weight(cpumask_of_node(nid));
1633 ns->node_type = numa_classify(env->imbalance_pct, ns);
1636 ns->idle_cpu = idle_core;
1639 static void task_numa_assign(struct task_numa_env *env,
1640 struct task_struct *p, long imp)
1642 struct rq *rq = cpu_rq(env->dst_cpu);
1644 /* Check if run-queue part of active NUMA balance. */
1645 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1647 int start = env->dst_cpu;
1649 /* Find alternative idle CPU. */
1650 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1651 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1652 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1657 rq = cpu_rq(env->dst_cpu);
1658 if (!xchg(&rq->numa_migrate_on, 1))
1662 /* Failed to find an alternative idle CPU */
1668 * Clear previous best_cpu/rq numa-migrate flag, since task now
1669 * found a better CPU to move/swap.
1671 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1672 rq = cpu_rq(env->best_cpu);
1673 WRITE_ONCE(rq->numa_migrate_on, 0);
1677 put_task_struct(env->best_task);
1682 env->best_imp = imp;
1683 env->best_cpu = env->dst_cpu;
1686 static bool load_too_imbalanced(long src_load, long dst_load,
1687 struct task_numa_env *env)
1690 long orig_src_load, orig_dst_load;
1691 long src_capacity, dst_capacity;
1694 * The load is corrected for the CPU capacity available on each node.
1697 * ------------ vs ---------
1698 * src_capacity dst_capacity
1700 src_capacity = env->src_stats.compute_capacity;
1701 dst_capacity = env->dst_stats.compute_capacity;
1703 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1705 orig_src_load = env->src_stats.load;
1706 orig_dst_load = env->dst_stats.load;
1708 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1710 /* Would this change make things worse? */
1711 return (imb > old_imb);
1715 * Maximum NUMA importance can be 1998 (2*999);
1716 * SMALLIMP @ 30 would be close to 1998/64.
1717 * Used to deter task migration.
1722 * This checks if the overall compute and NUMA accesses of the system would
1723 * be improved if the source tasks was migrated to the target dst_cpu taking
1724 * into account that it might be best if task running on the dst_cpu should
1725 * be exchanged with the source task
1727 static bool task_numa_compare(struct task_numa_env *env,
1728 long taskimp, long groupimp, bool maymove)
1730 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1731 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1732 long imp = p_ng ? groupimp : taskimp;
1733 struct task_struct *cur;
1734 long src_load, dst_load;
1735 int dist = env->dist;
1738 bool stopsearch = false;
1740 if (READ_ONCE(dst_rq->numa_migrate_on))
1744 cur = rcu_dereference(dst_rq->curr);
1745 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1749 * Because we have preemption enabled we can get migrated around and
1750 * end try selecting ourselves (current == env->p) as a swap candidate.
1752 if (cur == env->p) {
1758 if (maymove && moveimp >= env->best_imp)
1764 /* Skip this swap candidate if cannot move to the source cpu. */
1765 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1769 * Skip this swap candidate if it is not moving to its preferred
1770 * node and the best task is.
1772 if (env->best_task &&
1773 env->best_task->numa_preferred_nid == env->src_nid &&
1774 cur->numa_preferred_nid != env->src_nid) {
1779 * "imp" is the fault differential for the source task between the
1780 * source and destination node. Calculate the total differential for
1781 * the source task and potential destination task. The more negative
1782 * the value is, the more remote accesses that would be expected to
1783 * be incurred if the tasks were swapped.
1785 * If dst and source tasks are in the same NUMA group, or not
1786 * in any group then look only at task weights.
1788 cur_ng = rcu_dereference(cur->numa_group);
1789 if (cur_ng == p_ng) {
1790 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1791 task_weight(cur, env->dst_nid, dist);
1793 * Add some hysteresis to prevent swapping the
1794 * tasks within a group over tiny differences.
1800 * Compare the group weights. If a task is all by itself
1801 * (not part of a group), use the task weight instead.
1804 imp += group_weight(cur, env->src_nid, dist) -
1805 group_weight(cur, env->dst_nid, dist);
1807 imp += task_weight(cur, env->src_nid, dist) -
1808 task_weight(cur, env->dst_nid, dist);
1811 /* Discourage picking a task already on its preferred node */
1812 if (cur->numa_preferred_nid == env->dst_nid)
1816 * Encourage picking a task that moves to its preferred node.
1817 * This potentially makes imp larger than it's maximum of
1818 * 1998 (see SMALLIMP and task_weight for why) but in this
1819 * case, it does not matter.
1821 if (cur->numa_preferred_nid == env->src_nid)
1824 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1831 * Prefer swapping with a task moving to its preferred node over a
1834 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1835 env->best_task->numa_preferred_nid != env->src_nid) {
1840 * If the NUMA importance is less than SMALLIMP,
1841 * task migration might only result in ping pong
1842 * of tasks and also hurt performance due to cache
1845 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1849 * In the overloaded case, try and keep the load balanced.
1851 load = task_h_load(env->p) - task_h_load(cur);
1855 dst_load = env->dst_stats.load + load;
1856 src_load = env->src_stats.load - load;
1858 if (load_too_imbalanced(src_load, dst_load, env))
1862 /* Evaluate an idle CPU for a task numa move. */
1864 int cpu = env->dst_stats.idle_cpu;
1866 /* Nothing cached so current CPU went idle since the search. */
1871 * If the CPU is no longer truly idle and the previous best CPU
1872 * is, keep using it.
1874 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1875 idle_cpu(env->best_cpu)) {
1876 cpu = env->best_cpu;
1882 task_numa_assign(env, cur, imp);
1885 * If a move to idle is allowed because there is capacity or load
1886 * balance improves then stop the search. While a better swap
1887 * candidate may exist, a search is not free.
1889 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1893 * If a swap candidate must be identified and the current best task
1894 * moves its preferred node then stop the search.
1896 if (!maymove && env->best_task &&
1897 env->best_task->numa_preferred_nid == env->src_nid) {
1906 static void task_numa_find_cpu(struct task_numa_env *env,
1907 long taskimp, long groupimp)
1909 bool maymove = false;
1913 * If dst node has spare capacity, then check if there is an
1914 * imbalance that would be overruled by the load balancer.
1916 if (env->dst_stats.node_type == node_has_spare) {
1917 unsigned int imbalance;
1918 int src_running, dst_running;
1921 * Would movement cause an imbalance? Note that if src has
1922 * more running tasks that the imbalance is ignored as the
1923 * move improves the imbalance from the perspective of the
1924 * CPU load balancer.
1926 src_running = env->src_stats.nr_running - 1;
1927 dst_running = env->dst_stats.nr_running + 1;
1928 imbalance = max(0, dst_running - src_running);
1929 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1930 env->dst_stats.weight);
1932 /* Use idle CPU if there is no imbalance */
1935 if (env->dst_stats.idle_cpu >= 0) {
1936 env->dst_cpu = env->dst_stats.idle_cpu;
1937 task_numa_assign(env, NULL, 0);
1942 long src_load, dst_load, load;
1944 * If the improvement from just moving env->p direction is better
1945 * than swapping tasks around, check if a move is possible.
1947 load = task_h_load(env->p);
1948 dst_load = env->dst_stats.load + load;
1949 src_load = env->src_stats.load - load;
1950 maymove = !load_too_imbalanced(src_load, dst_load, env);
1953 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1954 /* Skip this CPU if the source task cannot migrate */
1955 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1959 if (task_numa_compare(env, taskimp, groupimp, maymove))
1964 static int task_numa_migrate(struct task_struct *p)
1966 struct task_numa_env env = {
1969 .src_cpu = task_cpu(p),
1970 .src_nid = task_node(p),
1972 .imbalance_pct = 112,
1978 unsigned long taskweight, groupweight;
1979 struct sched_domain *sd;
1980 long taskimp, groupimp;
1981 struct numa_group *ng;
1986 * Pick the lowest SD_NUMA domain, as that would have the smallest
1987 * imbalance and would be the first to start moving tasks about.
1989 * And we want to avoid any moving of tasks about, as that would create
1990 * random movement of tasks -- counter the numa conditions we're trying
1994 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1996 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2000 * Cpusets can break the scheduler domain tree into smaller
2001 * balance domains, some of which do not cross NUMA boundaries.
2002 * Tasks that are "trapped" in such domains cannot be migrated
2003 * elsewhere, so there is no point in (re)trying.
2005 if (unlikely(!sd)) {
2006 sched_setnuma(p, task_node(p));
2010 env.dst_nid = p->numa_preferred_nid;
2011 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2012 taskweight = task_weight(p, env.src_nid, dist);
2013 groupweight = group_weight(p, env.src_nid, dist);
2014 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2015 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2016 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2017 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2019 /* Try to find a spot on the preferred nid. */
2020 task_numa_find_cpu(&env, taskimp, groupimp);
2023 * Look at other nodes in these cases:
2024 * - there is no space available on the preferred_nid
2025 * - the task is part of a numa_group that is interleaved across
2026 * multiple NUMA nodes; in order to better consolidate the group,
2027 * we need to check other locations.
2029 ng = deref_curr_numa_group(p);
2030 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2031 for_each_online_node(nid) {
2032 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2035 dist = node_distance(env.src_nid, env.dst_nid);
2036 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2038 taskweight = task_weight(p, env.src_nid, dist);
2039 groupweight = group_weight(p, env.src_nid, dist);
2042 /* Only consider nodes where both task and groups benefit */
2043 taskimp = task_weight(p, nid, dist) - taskweight;
2044 groupimp = group_weight(p, nid, dist) - groupweight;
2045 if (taskimp < 0 && groupimp < 0)
2050 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2051 task_numa_find_cpu(&env, taskimp, groupimp);
2056 * If the task is part of a workload that spans multiple NUMA nodes,
2057 * and is migrating into one of the workload's active nodes, remember
2058 * this node as the task's preferred numa node, so the workload can
2060 * A task that migrated to a second choice node will be better off
2061 * trying for a better one later. Do not set the preferred node here.
2064 if (env.best_cpu == -1)
2067 nid = cpu_to_node(env.best_cpu);
2069 if (nid != p->numa_preferred_nid)
2070 sched_setnuma(p, nid);
2073 /* No better CPU than the current one was found. */
2074 if (env.best_cpu == -1) {
2075 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2079 best_rq = cpu_rq(env.best_cpu);
2080 if (env.best_task == NULL) {
2081 ret = migrate_task_to(p, env.best_cpu);
2082 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2084 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2088 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2089 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2092 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2093 put_task_struct(env.best_task);
2097 /* Attempt to migrate a task to a CPU on the preferred node. */
2098 static void numa_migrate_preferred(struct task_struct *p)
2100 unsigned long interval = HZ;
2102 /* This task has no NUMA fault statistics yet */
2103 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2106 /* Periodically retry migrating the task to the preferred node */
2107 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2108 p->numa_migrate_retry = jiffies + interval;
2110 /* Success if task is already running on preferred CPU */
2111 if (task_node(p) == p->numa_preferred_nid)
2114 /* Otherwise, try migrate to a CPU on the preferred node */
2115 task_numa_migrate(p);
2119 * Find out how many nodes on the workload is actively running on. Do this by
2120 * tracking the nodes from which NUMA hinting faults are triggered. This can
2121 * be different from the set of nodes where the workload's memory is currently
2124 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2126 unsigned long faults, max_faults = 0;
2127 int nid, active_nodes = 0;
2129 for_each_online_node(nid) {
2130 faults = group_faults_cpu(numa_group, nid);
2131 if (faults > max_faults)
2132 max_faults = faults;
2135 for_each_online_node(nid) {
2136 faults = group_faults_cpu(numa_group, nid);
2137 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2141 numa_group->max_faults_cpu = max_faults;
2142 numa_group->active_nodes = active_nodes;
2146 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2147 * increments. The more local the fault statistics are, the higher the scan
2148 * period will be for the next scan window. If local/(local+remote) ratio is
2149 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2150 * the scan period will decrease. Aim for 70% local accesses.
2152 #define NUMA_PERIOD_SLOTS 10
2153 #define NUMA_PERIOD_THRESHOLD 7
2156 * Increase the scan period (slow down scanning) if the majority of
2157 * our memory is already on our local node, or if the majority of
2158 * the page accesses are shared with other processes.
2159 * Otherwise, decrease the scan period.
2161 static void update_task_scan_period(struct task_struct *p,
2162 unsigned long shared, unsigned long private)
2164 unsigned int period_slot;
2165 int lr_ratio, ps_ratio;
2168 unsigned long remote = p->numa_faults_locality[0];
2169 unsigned long local = p->numa_faults_locality[1];
2172 * If there were no record hinting faults then either the task is
2173 * completely idle or all activity is areas that are not of interest
2174 * to automatic numa balancing. Related to that, if there were failed
2175 * migration then it implies we are migrating too quickly or the local
2176 * node is overloaded. In either case, scan slower
2178 if (local + shared == 0 || p->numa_faults_locality[2]) {
2179 p->numa_scan_period = min(p->numa_scan_period_max,
2180 p->numa_scan_period << 1);
2182 p->mm->numa_next_scan = jiffies +
2183 msecs_to_jiffies(p->numa_scan_period);
2189 * Prepare to scale scan period relative to the current period.
2190 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2191 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2192 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2194 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2195 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2196 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2198 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2200 * Most memory accesses are local. There is no need to
2201 * do fast NUMA scanning, since memory is already local.
2203 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2206 diff = slot * period_slot;
2207 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2209 * Most memory accesses are shared with other tasks.
2210 * There is no point in continuing fast NUMA scanning,
2211 * since other tasks may just move the memory elsewhere.
2213 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2216 diff = slot * period_slot;
2219 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2220 * yet they are not on the local NUMA node. Speed up
2221 * NUMA scanning to get the memory moved over.
2223 int ratio = max(lr_ratio, ps_ratio);
2224 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2227 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2228 task_scan_min(p), task_scan_max(p));
2229 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2233 * Get the fraction of time the task has been running since the last
2234 * NUMA placement cycle. The scheduler keeps similar statistics, but
2235 * decays those on a 32ms period, which is orders of magnitude off
2236 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2237 * stats only if the task is so new there are no NUMA statistics yet.
2239 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2241 u64 runtime, delta, now;
2242 /* Use the start of this time slice to avoid calculations. */
2243 now = p->se.exec_start;
2244 runtime = p->se.sum_exec_runtime;
2246 if (p->last_task_numa_placement) {
2247 delta = runtime - p->last_sum_exec_runtime;
2248 *period = now - p->last_task_numa_placement;
2250 /* Avoid time going backwards, prevent potential divide error: */
2251 if (unlikely((s64)*period < 0))
2254 delta = p->se.avg.load_sum;
2255 *period = LOAD_AVG_MAX;
2258 p->last_sum_exec_runtime = runtime;
2259 p->last_task_numa_placement = now;
2265 * Determine the preferred nid for a task in a numa_group. This needs to
2266 * be done in a way that produces consistent results with group_weight,
2267 * otherwise workloads might not converge.
2269 static int preferred_group_nid(struct task_struct *p, int nid)
2274 /* Direct connections between all NUMA nodes. */
2275 if (sched_numa_topology_type == NUMA_DIRECT)
2279 * On a system with glueless mesh NUMA topology, group_weight
2280 * scores nodes according to the number of NUMA hinting faults on
2281 * both the node itself, and on nearby nodes.
2283 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2284 unsigned long score, max_score = 0;
2285 int node, max_node = nid;
2287 dist = sched_max_numa_distance;
2289 for_each_online_node(node) {
2290 score = group_weight(p, node, dist);
2291 if (score > max_score) {
2300 * Finding the preferred nid in a system with NUMA backplane
2301 * interconnect topology is more involved. The goal is to locate
2302 * tasks from numa_groups near each other in the system, and
2303 * untangle workloads from different sides of the system. This requires
2304 * searching down the hierarchy of node groups, recursively searching
2305 * inside the highest scoring group of nodes. The nodemask tricks
2306 * keep the complexity of the search down.
2308 nodes = node_online_map;
2309 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2310 unsigned long max_faults = 0;
2311 nodemask_t max_group = NODE_MASK_NONE;
2314 /* Are there nodes at this distance from each other? */
2315 if (!find_numa_distance(dist))
2318 for_each_node_mask(a, nodes) {
2319 unsigned long faults = 0;
2320 nodemask_t this_group;
2321 nodes_clear(this_group);
2323 /* Sum group's NUMA faults; includes a==b case. */
2324 for_each_node_mask(b, nodes) {
2325 if (node_distance(a, b) < dist) {
2326 faults += group_faults(p, b);
2327 node_set(b, this_group);
2328 node_clear(b, nodes);
2332 /* Remember the top group. */
2333 if (faults > max_faults) {
2334 max_faults = faults;
2335 max_group = this_group;
2337 * subtle: at the smallest distance there is
2338 * just one node left in each "group", the
2339 * winner is the preferred nid.
2344 /* Next round, evaluate the nodes within max_group. */
2352 static void task_numa_placement(struct task_struct *p)
2354 int seq, nid, max_nid = NUMA_NO_NODE;
2355 unsigned long max_faults = 0;
2356 unsigned long fault_types[2] = { 0, 0 };
2357 unsigned long total_faults;
2358 u64 runtime, period;
2359 spinlock_t *group_lock = NULL;
2360 struct numa_group *ng;
2363 * The p->mm->numa_scan_seq field gets updated without
2364 * exclusive access. Use READ_ONCE() here to ensure
2365 * that the field is read in a single access:
2367 seq = READ_ONCE(p->mm->numa_scan_seq);
2368 if (p->numa_scan_seq == seq)
2370 p->numa_scan_seq = seq;
2371 p->numa_scan_period_max = task_scan_max(p);
2373 total_faults = p->numa_faults_locality[0] +
2374 p->numa_faults_locality[1];
2375 runtime = numa_get_avg_runtime(p, &period);
2377 /* If the task is part of a group prevent parallel updates to group stats */
2378 ng = deref_curr_numa_group(p);
2380 group_lock = &ng->lock;
2381 spin_lock_irq(group_lock);
2384 /* Find the node with the highest number of faults */
2385 for_each_online_node(nid) {
2386 /* Keep track of the offsets in numa_faults array */
2387 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2388 unsigned long faults = 0, group_faults = 0;
2391 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2392 long diff, f_diff, f_weight;
2394 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2395 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2396 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2397 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2399 /* Decay existing window, copy faults since last scan */
2400 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2401 fault_types[priv] += p->numa_faults[membuf_idx];
2402 p->numa_faults[membuf_idx] = 0;
2405 * Normalize the faults_from, so all tasks in a group
2406 * count according to CPU use, instead of by the raw
2407 * number of faults. Tasks with little runtime have
2408 * little over-all impact on throughput, and thus their
2409 * faults are less important.
2411 f_weight = div64_u64(runtime << 16, period + 1);
2412 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2414 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2415 p->numa_faults[cpubuf_idx] = 0;
2417 p->numa_faults[mem_idx] += diff;
2418 p->numa_faults[cpu_idx] += f_diff;
2419 faults += p->numa_faults[mem_idx];
2420 p->total_numa_faults += diff;
2423 * safe because we can only change our own group
2425 * mem_idx represents the offset for a given
2426 * nid and priv in a specific region because it
2427 * is at the beginning of the numa_faults array.
2429 ng->faults[mem_idx] += diff;
2430 ng->faults_cpu[mem_idx] += f_diff;
2431 ng->total_faults += diff;
2432 group_faults += ng->faults[mem_idx];
2437 if (faults > max_faults) {
2438 max_faults = faults;
2441 } else if (group_faults > max_faults) {
2442 max_faults = group_faults;
2448 numa_group_count_active_nodes(ng);
2449 spin_unlock_irq(group_lock);
2450 max_nid = preferred_group_nid(p, max_nid);
2454 /* Set the new preferred node */
2455 if (max_nid != p->numa_preferred_nid)
2456 sched_setnuma(p, max_nid);
2459 update_task_scan_period(p, fault_types[0], fault_types[1]);
2462 static inline int get_numa_group(struct numa_group *grp)
2464 return refcount_inc_not_zero(&grp->refcount);
2467 static inline void put_numa_group(struct numa_group *grp)
2469 if (refcount_dec_and_test(&grp->refcount))
2470 kfree_rcu(grp, rcu);
2473 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2476 struct numa_group *grp, *my_grp;
2477 struct task_struct *tsk;
2479 int cpu = cpupid_to_cpu(cpupid);
2482 if (unlikely(!deref_curr_numa_group(p))) {
2483 unsigned int size = sizeof(struct numa_group) +
2484 4*nr_node_ids*sizeof(unsigned long);
2486 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2490 refcount_set(&grp->refcount, 1);
2491 grp->active_nodes = 1;
2492 grp->max_faults_cpu = 0;
2493 spin_lock_init(&grp->lock);
2495 /* Second half of the array tracks nids where faults happen */
2496 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2499 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2500 grp->faults[i] = p->numa_faults[i];
2502 grp->total_faults = p->total_numa_faults;
2505 rcu_assign_pointer(p->numa_group, grp);
2509 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2511 if (!cpupid_match_pid(tsk, cpupid))
2514 grp = rcu_dereference(tsk->numa_group);
2518 my_grp = deref_curr_numa_group(p);
2523 * Only join the other group if its bigger; if we're the bigger group,
2524 * the other task will join us.
2526 if (my_grp->nr_tasks > grp->nr_tasks)
2530 * Tie-break on the grp address.
2532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2535 /* Always join threads in the same process. */
2536 if (tsk->mm == current->mm)
2539 /* Simple filter to avoid false positives due to PID collisions */
2540 if (flags & TNF_SHARED)
2543 /* Update priv based on whether false sharing was detected */
2546 if (join && !get_numa_group(grp))
2554 BUG_ON(irqs_disabled());
2555 double_lock_irq(&my_grp->lock, &grp->lock);
2557 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2558 my_grp->faults[i] -= p->numa_faults[i];
2559 grp->faults[i] += p->numa_faults[i];
2561 my_grp->total_faults -= p->total_numa_faults;
2562 grp->total_faults += p->total_numa_faults;
2567 spin_unlock(&my_grp->lock);
2568 spin_unlock_irq(&grp->lock);
2570 rcu_assign_pointer(p->numa_group, grp);
2572 put_numa_group(my_grp);
2581 * Get rid of NUMA statistics associated with a task (either current or dead).
2582 * If @final is set, the task is dead and has reached refcount zero, so we can
2583 * safely free all relevant data structures. Otherwise, there might be
2584 * concurrent reads from places like load balancing and procfs, and we should
2585 * reset the data back to default state without freeing ->numa_faults.
2587 void task_numa_free(struct task_struct *p, bool final)
2589 /* safe: p either is current or is being freed by current */
2590 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2591 unsigned long *numa_faults = p->numa_faults;
2592 unsigned long flags;
2599 spin_lock_irqsave(&grp->lock, flags);
2600 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2601 grp->faults[i] -= p->numa_faults[i];
2602 grp->total_faults -= p->total_numa_faults;
2605 spin_unlock_irqrestore(&grp->lock, flags);
2606 RCU_INIT_POINTER(p->numa_group, NULL);
2607 put_numa_group(grp);
2611 p->numa_faults = NULL;
2614 p->total_numa_faults = 0;
2615 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2621 * Got a PROT_NONE fault for a page on @node.
2623 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2625 struct task_struct *p = current;
2626 bool migrated = flags & TNF_MIGRATED;
2627 int cpu_node = task_node(current);
2628 int local = !!(flags & TNF_FAULT_LOCAL);
2629 struct numa_group *ng;
2632 if (!static_branch_likely(&sched_numa_balancing))
2635 /* for example, ksmd faulting in a user's mm */
2639 /* Allocate buffer to track faults on a per-node basis */
2640 if (unlikely(!p->numa_faults)) {
2641 int size = sizeof(*p->numa_faults) *
2642 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2644 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2645 if (!p->numa_faults)
2648 p->total_numa_faults = 0;
2649 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2653 * First accesses are treated as private, otherwise consider accesses
2654 * to be private if the accessing pid has not changed
2656 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2659 priv = cpupid_match_pid(p, last_cpupid);
2660 if (!priv && !(flags & TNF_NO_GROUP))
2661 task_numa_group(p, last_cpupid, flags, &priv);
2665 * If a workload spans multiple NUMA nodes, a shared fault that
2666 * occurs wholly within the set of nodes that the workload is
2667 * actively using should be counted as local. This allows the
2668 * scan rate to slow down when a workload has settled down.
2670 ng = deref_curr_numa_group(p);
2671 if (!priv && !local && ng && ng->active_nodes > 1 &&
2672 numa_is_active_node(cpu_node, ng) &&
2673 numa_is_active_node(mem_node, ng))
2677 * Retry to migrate task to preferred node periodically, in case it
2678 * previously failed, or the scheduler moved us.
2680 if (time_after(jiffies, p->numa_migrate_retry)) {
2681 task_numa_placement(p);
2682 numa_migrate_preferred(p);
2686 p->numa_pages_migrated += pages;
2687 if (flags & TNF_MIGRATE_FAIL)
2688 p->numa_faults_locality[2] += pages;
2690 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2691 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2692 p->numa_faults_locality[local] += pages;
2695 static void reset_ptenuma_scan(struct task_struct *p)
2698 * We only did a read acquisition of the mmap sem, so
2699 * p->mm->numa_scan_seq is written to without exclusive access
2700 * and the update is not guaranteed to be atomic. That's not
2701 * much of an issue though, since this is just used for
2702 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2703 * expensive, to avoid any form of compiler optimizations:
2705 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2706 p->mm->numa_scan_offset = 0;
2710 * The expensive part of numa migration is done from task_work context.
2711 * Triggered from task_tick_numa().
2713 static void task_numa_work(struct callback_head *work)
2715 unsigned long migrate, next_scan, now = jiffies;
2716 struct task_struct *p = current;
2717 struct mm_struct *mm = p->mm;
2718 u64 runtime = p->se.sum_exec_runtime;
2719 struct vm_area_struct *vma;
2720 unsigned long start, end;
2721 unsigned long nr_pte_updates = 0;
2722 long pages, virtpages;
2724 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2728 * Who cares about NUMA placement when they're dying.
2730 * NOTE: make sure not to dereference p->mm before this check,
2731 * exit_task_work() happens _after_ exit_mm() so we could be called
2732 * without p->mm even though we still had it when we enqueued this
2735 if (p->flags & PF_EXITING)
2738 if (!mm->numa_next_scan) {
2739 mm->numa_next_scan = now +
2740 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2744 * Enforce maximal scan/migration frequency..
2746 migrate = mm->numa_next_scan;
2747 if (time_before(now, migrate))
2750 if (p->numa_scan_period == 0) {
2751 p->numa_scan_period_max = task_scan_max(p);
2752 p->numa_scan_period = task_scan_start(p);
2755 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2756 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2760 * Delay this task enough that another task of this mm will likely win
2761 * the next time around.
2763 p->node_stamp += 2 * TICK_NSEC;
2765 start = mm->numa_scan_offset;
2766 pages = sysctl_numa_balancing_scan_size;
2767 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2768 virtpages = pages * 8; /* Scan up to this much virtual space */
2773 if (!mmap_read_trylock(mm))
2775 vma = find_vma(mm, start);
2777 reset_ptenuma_scan(p);
2781 for (; vma; vma = vma->vm_next) {
2782 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2783 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2788 * Shared library pages mapped by multiple processes are not
2789 * migrated as it is expected they are cache replicated. Avoid
2790 * hinting faults in read-only file-backed mappings or the vdso
2791 * as migrating the pages will be of marginal benefit.
2794 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2798 * Skip inaccessible VMAs to avoid any confusion between
2799 * PROT_NONE and NUMA hinting ptes
2801 if (!vma_is_accessible(vma))
2805 start = max(start, vma->vm_start);
2806 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2807 end = min(end, vma->vm_end);
2808 nr_pte_updates = change_prot_numa(vma, start, end);
2811 * Try to scan sysctl_numa_balancing_size worth of
2812 * hpages that have at least one present PTE that
2813 * is not already pte-numa. If the VMA contains
2814 * areas that are unused or already full of prot_numa
2815 * PTEs, scan up to virtpages, to skip through those
2819 pages -= (end - start) >> PAGE_SHIFT;
2820 virtpages -= (end - start) >> PAGE_SHIFT;
2823 if (pages <= 0 || virtpages <= 0)
2827 } while (end != vma->vm_end);
2832 * It is possible to reach the end of the VMA list but the last few
2833 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2834 * would find the !migratable VMA on the next scan but not reset the
2835 * scanner to the start so check it now.
2838 mm->numa_scan_offset = start;
2840 reset_ptenuma_scan(p);
2841 mmap_read_unlock(mm);
2844 * Make sure tasks use at least 32x as much time to run other code
2845 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2846 * Usually update_task_scan_period slows down scanning enough; on an
2847 * overloaded system we need to limit overhead on a per task basis.
2849 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2850 u64 diff = p->se.sum_exec_runtime - runtime;
2851 p->node_stamp += 32 * diff;
2855 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2858 struct mm_struct *mm = p->mm;
2861 mm_users = atomic_read(&mm->mm_users);
2862 if (mm_users == 1) {
2863 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2864 mm->numa_scan_seq = 0;
2868 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2869 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2870 /* Protect against double add, see task_tick_numa and task_numa_work */
2871 p->numa_work.next = &p->numa_work;
2872 p->numa_faults = NULL;
2873 RCU_INIT_POINTER(p->numa_group, NULL);
2874 p->last_task_numa_placement = 0;
2875 p->last_sum_exec_runtime = 0;
2877 init_task_work(&p->numa_work, task_numa_work);
2879 /* New address space, reset the preferred nid */
2880 if (!(clone_flags & CLONE_VM)) {
2881 p->numa_preferred_nid = NUMA_NO_NODE;
2886 * New thread, keep existing numa_preferred_nid which should be copied
2887 * already by arch_dup_task_struct but stagger when scans start.
2892 delay = min_t(unsigned int, task_scan_max(current),
2893 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2894 delay += 2 * TICK_NSEC;
2895 p->node_stamp = delay;
2900 * Drive the periodic memory faults..
2902 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2904 struct callback_head *work = &curr->numa_work;
2908 * We don't care about NUMA placement if we don't have memory.
2910 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2914 * Using runtime rather than walltime has the dual advantage that
2915 * we (mostly) drive the selection from busy threads and that the
2916 * task needs to have done some actual work before we bother with
2919 now = curr->se.sum_exec_runtime;
2920 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2922 if (now > curr->node_stamp + period) {
2923 if (!curr->node_stamp)
2924 curr->numa_scan_period = task_scan_start(curr);
2925 curr->node_stamp += period;
2927 if (!time_before(jiffies, curr->mm->numa_next_scan))
2928 task_work_add(curr, work, TWA_RESUME);
2932 static void update_scan_period(struct task_struct *p, int new_cpu)
2934 int src_nid = cpu_to_node(task_cpu(p));
2935 int dst_nid = cpu_to_node(new_cpu);
2937 if (!static_branch_likely(&sched_numa_balancing))
2940 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2943 if (src_nid == dst_nid)
2947 * Allow resets if faults have been trapped before one scan
2948 * has completed. This is most likely due to a new task that
2949 * is pulled cross-node due to wakeups or load balancing.
2951 if (p->numa_scan_seq) {
2953 * Avoid scan adjustments if moving to the preferred
2954 * node or if the task was not previously running on
2955 * the preferred node.
2957 if (dst_nid == p->numa_preferred_nid ||
2958 (p->numa_preferred_nid != NUMA_NO_NODE &&
2959 src_nid != p->numa_preferred_nid))
2963 p->numa_scan_period = task_scan_start(p);
2967 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2971 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2975 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2979 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2983 #endif /* CONFIG_NUMA_BALANCING */
2986 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2988 update_load_add(&cfs_rq->load, se->load.weight);
2990 if (entity_is_task(se)) {
2991 struct rq *rq = rq_of(cfs_rq);
2993 account_numa_enqueue(rq, task_of(se));
2994 list_add(&se->group_node, &rq->cfs_tasks);
2997 cfs_rq->nr_running++;
3001 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3003 update_load_sub(&cfs_rq->load, se->load.weight);
3005 if (entity_is_task(se)) {
3006 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3007 list_del_init(&se->group_node);
3010 cfs_rq->nr_running--;
3014 * Signed add and clamp on underflow.
3016 * Explicitly do a load-store to ensure the intermediate value never hits
3017 * memory. This allows lockless observations without ever seeing the negative
3020 #define add_positive(_ptr, _val) do { \
3021 typeof(_ptr) ptr = (_ptr); \
3022 typeof(_val) val = (_val); \
3023 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3027 if (val < 0 && res > var) \
3030 WRITE_ONCE(*ptr, res); \
3034 * Unsigned subtract and clamp on underflow.
3036 * Explicitly do a load-store to ensure the intermediate value never hits
3037 * memory. This allows lockless observations without ever seeing the negative
3040 #define sub_positive(_ptr, _val) do { \
3041 typeof(_ptr) ptr = (_ptr); \
3042 typeof(*ptr) val = (_val); \
3043 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3047 WRITE_ONCE(*ptr, res); \
3051 * Remove and clamp on negative, from a local variable.
3053 * A variant of sub_positive(), which does not use explicit load-store
3054 * and is thus optimized for local variable updates.
3056 #define lsub_positive(_ptr, _val) do { \
3057 typeof(_ptr) ptr = (_ptr); \
3058 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3063 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3065 cfs_rq->avg.load_avg += se->avg.load_avg;
3066 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3070 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3072 u32 divider = get_pelt_divider(&se->avg);
3073 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3074 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3078 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3080 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3083 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3084 unsigned long weight)
3087 /* commit outstanding execution time */
3088 if (cfs_rq->curr == se)
3089 update_curr(cfs_rq);
3090 update_load_sub(&cfs_rq->load, se->load.weight);
3092 dequeue_load_avg(cfs_rq, se);
3094 update_load_set(&se->load, weight);
3098 u32 divider = get_pelt_divider(&se->avg);
3100 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3104 enqueue_load_avg(cfs_rq, se);
3106 update_load_add(&cfs_rq->load, se->load.weight);
3110 void reweight_task(struct task_struct *p, int prio)
3112 struct sched_entity *se = &p->se;
3113 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3114 struct load_weight *load = &se->load;
3115 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3117 reweight_entity(cfs_rq, se, weight);
3118 load->inv_weight = sched_prio_to_wmult[prio];
3121 #ifdef CONFIG_FAIR_GROUP_SCHED
3124 * All this does is approximate the hierarchical proportion which includes that
3125 * global sum we all love to hate.
3127 * That is, the weight of a group entity, is the proportional share of the
3128 * group weight based on the group runqueue weights. That is:
3130 * tg->weight * grq->load.weight
3131 * ge->load.weight = ----------------------------- (1)
3132 * \Sum grq->load.weight
3134 * Now, because computing that sum is prohibitively expensive to compute (been
3135 * there, done that) we approximate it with this average stuff. The average
3136 * moves slower and therefore the approximation is cheaper and more stable.
3138 * So instead of the above, we substitute:
3140 * grq->load.weight -> grq->avg.load_avg (2)
3142 * which yields the following:
3144 * tg->weight * grq->avg.load_avg
3145 * ge->load.weight = ------------------------------ (3)
3148 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3150 * That is shares_avg, and it is right (given the approximation (2)).
3152 * The problem with it is that because the average is slow -- it was designed
3153 * to be exactly that of course -- this leads to transients in boundary
3154 * conditions. In specific, the case where the group was idle and we start the
3155 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3156 * yielding bad latency etc..
3158 * Now, in that special case (1) reduces to:
3160 * tg->weight * grq->load.weight
3161 * ge->load.weight = ----------------------------- = tg->weight (4)
3164 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3166 * So what we do is modify our approximation (3) to approach (4) in the (near)
3171 * tg->weight * grq->load.weight
3172 * --------------------------------------------------- (5)
3173 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3175 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3176 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3179 * tg->weight * grq->load.weight
3180 * ge->load.weight = ----------------------------- (6)
3185 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3186 * max(grq->load.weight, grq->avg.load_avg)
3188 * And that is shares_weight and is icky. In the (near) UP case it approaches
3189 * (4) while in the normal case it approaches (3). It consistently
3190 * overestimates the ge->load.weight and therefore:
3192 * \Sum ge->load.weight >= tg->weight
3196 static long calc_group_shares(struct cfs_rq *cfs_rq)
3198 long tg_weight, tg_shares, load, shares;
3199 struct task_group *tg = cfs_rq->tg;
3201 tg_shares = READ_ONCE(tg->shares);
3203 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3205 tg_weight = atomic_long_read(&tg->load_avg);
3207 /* Ensure tg_weight >= load */
3208 tg_weight -= cfs_rq->tg_load_avg_contrib;
3211 shares = (tg_shares * load);
3213 shares /= tg_weight;
3216 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3217 * of a group with small tg->shares value. It is a floor value which is
3218 * assigned as a minimum load.weight to the sched_entity representing
3219 * the group on a CPU.
3221 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3222 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3223 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3224 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3227 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3229 #endif /* CONFIG_SMP */
3231 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3234 * Recomputes the group entity based on the current state of its group
3237 static void update_cfs_group(struct sched_entity *se)
3239 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3245 if (throttled_hierarchy(gcfs_rq))
3249 shares = READ_ONCE(gcfs_rq->tg->shares);
3251 if (likely(se->load.weight == shares))
3254 shares = calc_group_shares(gcfs_rq);
3257 reweight_entity(cfs_rq_of(se), se, shares);
3260 #else /* CONFIG_FAIR_GROUP_SCHED */
3261 static inline void update_cfs_group(struct sched_entity *se)
3264 #endif /* CONFIG_FAIR_GROUP_SCHED */
3266 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3268 struct rq *rq = rq_of(cfs_rq);
3270 if (&rq->cfs == cfs_rq) {
3272 * There are a few boundary cases this might miss but it should
3273 * get called often enough that that should (hopefully) not be
3276 * It will not get called when we go idle, because the idle
3277 * thread is a different class (!fair), nor will the utilization
3278 * number include things like RT tasks.
3280 * As is, the util number is not freq-invariant (we'd have to
3281 * implement arch_scale_freq_capacity() for that).
3285 cpufreq_update_util(rq, flags);
3290 #ifdef CONFIG_FAIR_GROUP_SCHED
3292 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3293 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3294 * bottom-up, we only have to test whether the cfs_rq before us on the list
3296 * If cfs_rq is not on the list, test whether a child needs its to be added to
3297 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3299 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3301 struct cfs_rq *prev_cfs_rq;
3302 struct list_head *prev;
3304 if (cfs_rq->on_list) {
3305 prev = cfs_rq->leaf_cfs_rq_list.prev;
3307 struct rq *rq = rq_of(cfs_rq);
3309 prev = rq->tmp_alone_branch;
3312 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3314 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3317 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3319 if (cfs_rq->load.weight)
3322 if (cfs_rq->avg.load_sum)
3325 if (cfs_rq->avg.util_sum)
3328 if (cfs_rq->avg.runnable_sum)
3331 if (child_cfs_rq_on_list(cfs_rq))
3335 * _avg must be null when _sum are null because _avg = _sum / divider
3336 * Make sure that rounding and/or propagation of PELT values never
3339 SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3340 cfs_rq->avg.util_avg ||
3341 cfs_rq->avg.runnable_avg);
3347 * update_tg_load_avg - update the tg's load avg
3348 * @cfs_rq: the cfs_rq whose avg changed
3350 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3351 * However, because tg->load_avg is a global value there are performance
3354 * In order to avoid having to look at the other cfs_rq's, we use a
3355 * differential update where we store the last value we propagated. This in
3356 * turn allows skipping updates if the differential is 'small'.
3358 * Updating tg's load_avg is necessary before update_cfs_share().
3360 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3362 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3365 * No need to update load_avg for root_task_group as it is not used.
3367 if (cfs_rq->tg == &root_task_group)
3370 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3371 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3372 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3377 * Called within set_task_rq() right before setting a task's CPU. The
3378 * caller only guarantees p->pi_lock is held; no other assumptions,
3379 * including the state of rq->lock, should be made.
3381 void set_task_rq_fair(struct sched_entity *se,
3382 struct cfs_rq *prev, struct cfs_rq *next)
3384 u64 p_last_update_time;
3385 u64 n_last_update_time;
3387 if (!sched_feat(ATTACH_AGE_LOAD))
3391 * We are supposed to update the task to "current" time, then its up to
3392 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3393 * getting what current time is, so simply throw away the out-of-date
3394 * time. This will result in the wakee task is less decayed, but giving
3395 * the wakee more load sounds not bad.
3397 if (!(se->avg.last_update_time && prev))
3400 #ifndef CONFIG_64BIT
3402 u64 p_last_update_time_copy;
3403 u64 n_last_update_time_copy;
3406 p_last_update_time_copy = prev->load_last_update_time_copy;
3407 n_last_update_time_copy = next->load_last_update_time_copy;
3411 p_last_update_time = prev->avg.last_update_time;
3412 n_last_update_time = next->avg.last_update_time;
3414 } while (p_last_update_time != p_last_update_time_copy ||
3415 n_last_update_time != n_last_update_time_copy);
3418 p_last_update_time = prev->avg.last_update_time;
3419 n_last_update_time = next->avg.last_update_time;
3421 __update_load_avg_blocked_se(p_last_update_time, se);
3422 se->avg.last_update_time = n_last_update_time;
3427 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3428 * propagate its contribution. The key to this propagation is the invariant
3429 * that for each group:
3431 * ge->avg == grq->avg (1)
3433 * _IFF_ we look at the pure running and runnable sums. Because they
3434 * represent the very same entity, just at different points in the hierarchy.
3436 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3437 * and simply copies the running/runnable sum over (but still wrong, because
3438 * the group entity and group rq do not have their PELT windows aligned).
3440 * However, update_tg_cfs_load() is more complex. So we have:
3442 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3444 * And since, like util, the runnable part should be directly transferable,
3445 * the following would _appear_ to be the straight forward approach:
3447 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3449 * And per (1) we have:
3451 * ge->avg.runnable_avg == grq->avg.runnable_avg
3455 * ge->load.weight * grq->avg.load_avg
3456 * ge->avg.load_avg = ----------------------------------- (4)
3459 * Except that is wrong!
3461 * Because while for entities historical weight is not important and we
3462 * really only care about our future and therefore can consider a pure
3463 * runnable sum, runqueues can NOT do this.
3465 * We specifically want runqueues to have a load_avg that includes
3466 * historical weights. Those represent the blocked load, the load we expect
3467 * to (shortly) return to us. This only works by keeping the weights as
3468 * integral part of the sum. We therefore cannot decompose as per (3).
3470 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3471 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3472 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3473 * runnable section of these tasks overlap (or not). If they were to perfectly
3474 * align the rq as a whole would be runnable 2/3 of the time. If however we
3475 * always have at least 1 runnable task, the rq as a whole is always runnable.
3477 * So we'll have to approximate.. :/
3479 * Given the constraint:
3481 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3483 * We can construct a rule that adds runnable to a rq by assuming minimal
3486 * On removal, we'll assume each task is equally runnable; which yields:
3488 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3490 * XXX: only do this for the part of runnable > running ?
3495 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3497 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3500 /* Nothing to update */
3505 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3506 * See ___update_load_avg() for details.
3508 divider = get_pelt_divider(&cfs_rq->avg);
3510 /* Set new sched_entity's utilization */
3511 se->avg.util_avg = gcfs_rq->avg.util_avg;
3512 se->avg.util_sum = se->avg.util_avg * divider;
3514 /* Update parent cfs_rq utilization */
3515 add_positive(&cfs_rq->avg.util_avg, delta);
3516 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3520 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3522 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3525 /* Nothing to update */
3530 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3531 * See ___update_load_avg() for details.
3533 divider = get_pelt_divider(&cfs_rq->avg);
3535 /* Set new sched_entity's runnable */
3536 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3537 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3539 /* Update parent cfs_rq runnable */
3540 add_positive(&cfs_rq->avg.runnable_avg, delta);
3541 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3545 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3547 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3548 unsigned long load_avg;
3555 gcfs_rq->prop_runnable_sum = 0;
3558 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3559 * See ___update_load_avg() for details.
3561 divider = get_pelt_divider(&cfs_rq->avg);
3563 if (runnable_sum >= 0) {
3565 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3566 * the CPU is saturated running == runnable.
3568 runnable_sum += se->avg.load_sum;
3569 runnable_sum = min_t(long, runnable_sum, divider);
3572 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3573 * assuming all tasks are equally runnable.
3575 if (scale_load_down(gcfs_rq->load.weight)) {
3576 load_sum = div_s64(gcfs_rq->avg.load_sum,
3577 scale_load_down(gcfs_rq->load.weight));
3580 /* But make sure to not inflate se's runnable */
3581 runnable_sum = min(se->avg.load_sum, load_sum);
3585 * runnable_sum can't be lower than running_sum
3586 * Rescale running sum to be in the same range as runnable sum
3587 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3588 * runnable_sum is in [0 : LOAD_AVG_MAX]
3590 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3591 runnable_sum = max(runnable_sum, running_sum);
3593 load_sum = (s64)se_weight(se) * runnable_sum;
3594 load_avg = div_s64(load_sum, divider);
3596 se->avg.load_sum = runnable_sum;
3598 delta = load_avg - se->avg.load_avg;
3602 se->avg.load_avg = load_avg;
3604 add_positive(&cfs_rq->avg.load_avg, delta);
3605 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3608 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3610 cfs_rq->propagate = 1;
3611 cfs_rq->prop_runnable_sum += runnable_sum;
3614 /* Update task and its cfs_rq load average */
3615 static inline int propagate_entity_load_avg(struct sched_entity *se)
3617 struct cfs_rq *cfs_rq, *gcfs_rq;
3619 if (entity_is_task(se))
3622 gcfs_rq = group_cfs_rq(se);
3623 if (!gcfs_rq->propagate)
3626 gcfs_rq->propagate = 0;
3628 cfs_rq = cfs_rq_of(se);
3630 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3632 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3633 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3634 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3636 trace_pelt_cfs_tp(cfs_rq);
3637 trace_pelt_se_tp(se);
3643 * Check if we need to update the load and the utilization of a blocked
3646 static inline bool skip_blocked_update(struct sched_entity *se)
3648 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3651 * If sched_entity still have not zero load or utilization, we have to
3654 if (se->avg.load_avg || se->avg.util_avg)
3658 * If there is a pending propagation, we have to update the load and
3659 * the utilization of the sched_entity:
3661 if (gcfs_rq->propagate)
3665 * Otherwise, the load and the utilization of the sched_entity is
3666 * already zero and there is no pending propagation, so it will be a
3667 * waste of time to try to decay it:
3672 #else /* CONFIG_FAIR_GROUP_SCHED */
3674 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3676 static inline int propagate_entity_load_avg(struct sched_entity *se)
3681 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3683 #endif /* CONFIG_FAIR_GROUP_SCHED */
3686 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3687 * @now: current time, as per cfs_rq_clock_pelt()
3688 * @cfs_rq: cfs_rq to update
3690 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3691 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3692 * post_init_entity_util_avg().
3694 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3696 * Returns true if the load decayed or we removed load.
3698 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3699 * call update_tg_load_avg() when this function returns true.
3702 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3704 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3705 struct sched_avg *sa = &cfs_rq->avg;
3708 if (cfs_rq->removed.nr) {
3710 u32 divider = get_pelt_divider(&cfs_rq->avg);
3712 raw_spin_lock(&cfs_rq->removed.lock);
3713 swap(cfs_rq->removed.util_avg, removed_util);
3714 swap(cfs_rq->removed.load_avg, removed_load);
3715 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3716 cfs_rq->removed.nr = 0;
3717 raw_spin_unlock(&cfs_rq->removed.lock);
3720 sub_positive(&sa->load_avg, r);
3721 sa->load_sum = sa->load_avg * divider;
3724 sub_positive(&sa->util_avg, r);
3725 sa->util_sum = sa->util_avg * divider;
3727 r = removed_runnable;
3728 sub_positive(&sa->runnable_avg, r);
3729 sa->runnable_sum = sa->runnable_avg * divider;
3732 * removed_runnable is the unweighted version of removed_load so we
3733 * can use it to estimate removed_load_sum.
3735 add_tg_cfs_propagate(cfs_rq,
3736 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3741 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3743 #ifndef CONFIG_64BIT
3745 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3752 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3753 * @cfs_rq: cfs_rq to attach to
3754 * @se: sched_entity to attach
3756 * Must call update_cfs_rq_load_avg() before this, since we rely on
3757 * cfs_rq->avg.last_update_time being current.
3759 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3762 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3763 * See ___update_load_avg() for details.
3765 u32 divider = get_pelt_divider(&cfs_rq->avg);
3768 * When we attach the @se to the @cfs_rq, we must align the decay
3769 * window because without that, really weird and wonderful things can
3774 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3775 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3778 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3779 * period_contrib. This isn't strictly correct, but since we're
3780 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3783 se->avg.util_sum = se->avg.util_avg * divider;
3785 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3787 se->avg.load_sum = divider;
3788 if (se_weight(se)) {
3790 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3793 enqueue_load_avg(cfs_rq, se);
3794 cfs_rq->avg.util_avg += se->avg.util_avg;
3795 cfs_rq->avg.util_sum += se->avg.util_sum;
3796 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3797 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3799 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3801 cfs_rq_util_change(cfs_rq, 0);
3803 trace_pelt_cfs_tp(cfs_rq);
3807 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3808 * @cfs_rq: cfs_rq to detach from
3809 * @se: sched_entity to detach
3811 * Must call update_cfs_rq_load_avg() before this, since we rely on
3812 * cfs_rq->avg.last_update_time being current.
3814 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3817 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3818 * See ___update_load_avg() for details.
3820 u32 divider = get_pelt_divider(&cfs_rq->avg);
3822 dequeue_load_avg(cfs_rq, se);
3823 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3824 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3825 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3826 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3828 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3830 cfs_rq_util_change(cfs_rq, 0);
3832 trace_pelt_cfs_tp(cfs_rq);
3836 * Optional action to be done while updating the load average
3838 #define UPDATE_TG 0x1
3839 #define SKIP_AGE_LOAD 0x2
3840 #define DO_ATTACH 0x4
3842 /* Update task and its cfs_rq load average */
3843 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3845 u64 now = cfs_rq_clock_pelt(cfs_rq);
3849 * Track task load average for carrying it to new CPU after migrated, and
3850 * track group sched_entity load average for task_h_load calc in migration
3852 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3853 __update_load_avg_se(now, cfs_rq, se);
3855 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3856 decayed |= propagate_entity_load_avg(se);
3858 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3861 * DO_ATTACH means we're here from enqueue_entity().
3862 * !last_update_time means we've passed through
3863 * migrate_task_rq_fair() indicating we migrated.
3865 * IOW we're enqueueing a task on a new CPU.
3867 attach_entity_load_avg(cfs_rq, se);
3868 update_tg_load_avg(cfs_rq);
3870 } else if (decayed) {
3871 cfs_rq_util_change(cfs_rq, 0);
3873 if (flags & UPDATE_TG)
3874 update_tg_load_avg(cfs_rq);
3878 #ifndef CONFIG_64BIT
3879 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3881 u64 last_update_time_copy;
3882 u64 last_update_time;
3885 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3887 last_update_time = cfs_rq->avg.last_update_time;
3888 } while (last_update_time != last_update_time_copy);
3890 return last_update_time;
3893 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3895 return cfs_rq->avg.last_update_time;
3900 * Synchronize entity load avg of dequeued entity without locking
3903 static void sync_entity_load_avg(struct sched_entity *se)
3905 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3906 u64 last_update_time;
3908 last_update_time = cfs_rq_last_update_time(cfs_rq);
3909 __update_load_avg_blocked_se(last_update_time, se);
3913 * Task first catches up with cfs_rq, and then subtract
3914 * itself from the cfs_rq (task must be off the queue now).
3916 static void remove_entity_load_avg(struct sched_entity *se)
3918 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3919 unsigned long flags;
3922 * tasks cannot exit without having gone through wake_up_new_task() ->
3923 * post_init_entity_util_avg() which will have added things to the
3924 * cfs_rq, so we can remove unconditionally.
3927 sync_entity_load_avg(se);
3929 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3930 ++cfs_rq->removed.nr;
3931 cfs_rq->removed.util_avg += se->avg.util_avg;
3932 cfs_rq->removed.load_avg += se->avg.load_avg;
3933 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3934 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3937 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3939 return cfs_rq->avg.runnable_avg;
3942 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3944 return cfs_rq->avg.load_avg;
3947 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3949 static inline unsigned long task_util(struct task_struct *p)
3951 return READ_ONCE(p->se.avg.util_avg);
3954 static inline unsigned long _task_util_est(struct task_struct *p)
3956 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3958 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3961 static inline unsigned long task_util_est(struct task_struct *p)
3963 return max(task_util(p), _task_util_est(p));
3966 #ifdef CONFIG_UCLAMP_TASK
3967 static inline unsigned long uclamp_task_util(struct task_struct *p)
3969 return clamp(task_util_est(p),
3970 uclamp_eff_value(p, UCLAMP_MIN),
3971 uclamp_eff_value(p, UCLAMP_MAX));
3974 static inline unsigned long uclamp_task_util(struct task_struct *p)
3976 return task_util_est(p);
3980 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3981 struct task_struct *p)
3983 unsigned int enqueued;
3985 if (!sched_feat(UTIL_EST))
3988 /* Update root cfs_rq's estimated utilization */
3989 enqueued = cfs_rq->avg.util_est.enqueued;
3990 enqueued += _task_util_est(p);
3991 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3993 trace_sched_util_est_cfs_tp(cfs_rq);
3996 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3997 struct task_struct *p)
3999 unsigned int enqueued;
4001 if (!sched_feat(UTIL_EST))
4004 /* Update root cfs_rq's estimated utilization */
4005 enqueued = cfs_rq->avg.util_est.enqueued;
4006 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4007 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4009 trace_sched_util_est_cfs_tp(cfs_rq);
4012 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4015 * Check if a (signed) value is within a specified (unsigned) margin,
4016 * based on the observation that:
4018 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4020 * NOTE: this only works when value + margin < INT_MAX.
4022 static inline bool within_margin(int value, int margin)
4024 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4027 static inline void util_est_update(struct cfs_rq *cfs_rq,
4028 struct task_struct *p,
4031 long last_ewma_diff, last_enqueued_diff;
4034 if (!sched_feat(UTIL_EST))
4038 * Skip update of task's estimated utilization when the task has not
4039 * yet completed an activation, e.g. being migrated.
4045 * If the PELT values haven't changed since enqueue time,
4046 * skip the util_est update.
4048 ue = p->se.avg.util_est;
4049 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4052 last_enqueued_diff = ue.enqueued;
4055 * Reset EWMA on utilization increases, the moving average is used only
4056 * to smooth utilization decreases.
4058 ue.enqueued = task_util(p);
4059 if (sched_feat(UTIL_EST_FASTUP)) {
4060 if (ue.ewma < ue.enqueued) {
4061 ue.ewma = ue.enqueued;
4067 * Skip update of task's estimated utilization when its members are
4068 * already ~1% close to its last activation value.
4070 last_ewma_diff = ue.enqueued - ue.ewma;
4071 last_enqueued_diff -= ue.enqueued;
4072 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4073 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4080 * To avoid overestimation of actual task utilization, skip updates if
4081 * we cannot grant there is idle time in this CPU.
4083 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4087 * Update Task's estimated utilization
4089 * When *p completes an activation we can consolidate another sample
4090 * of the task size. This is done by storing the current PELT value
4091 * as ue.enqueued and by using this value to update the Exponential
4092 * Weighted Moving Average (EWMA):
4094 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4095 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4096 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4097 * = w * ( last_ewma_diff ) + ewma(t-1)
4098 * = w * (last_ewma_diff + ewma(t-1) / w)
4100 * Where 'w' is the weight of new samples, which is configured to be
4101 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4103 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4104 ue.ewma += last_ewma_diff;
4105 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4107 ue.enqueued |= UTIL_AVG_UNCHANGED;
4108 WRITE_ONCE(p->se.avg.util_est, ue);
4110 trace_sched_util_est_se_tp(&p->se);
4113 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4115 return fits_capacity(uclamp_task_util(p), capacity);
4118 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4120 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4123 if (!p || p->nr_cpus_allowed == 1) {
4124 rq->misfit_task_load = 0;
4128 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4129 rq->misfit_task_load = 0;
4134 * Make sure that misfit_task_load will not be null even if
4135 * task_h_load() returns 0.
4137 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4140 #else /* CONFIG_SMP */
4142 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4147 #define UPDATE_TG 0x0
4148 #define SKIP_AGE_LOAD 0x0
4149 #define DO_ATTACH 0x0
4151 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4153 cfs_rq_util_change(cfs_rq, 0);
4156 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4159 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4161 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4163 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4169 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4172 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4175 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4177 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4179 #endif /* CONFIG_SMP */
4181 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4183 #ifdef CONFIG_SCHED_DEBUG
4184 s64 d = se->vruntime - cfs_rq->min_vruntime;
4189 if (d > 3*sysctl_sched_latency)
4190 schedstat_inc(cfs_rq->nr_spread_over);
4195 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4197 u64 vruntime = cfs_rq->min_vruntime;
4200 * The 'current' period is already promised to the current tasks,
4201 * however the extra weight of the new task will slow them down a
4202 * little, place the new task so that it fits in the slot that
4203 * stays open at the end.
4205 if (initial && sched_feat(START_DEBIT))
4206 vruntime += sched_vslice(cfs_rq, se);
4208 /* sleeps up to a single latency don't count. */
4210 unsigned long thresh = sysctl_sched_latency;
4213 * Halve their sleep time's effect, to allow
4214 * for a gentler effect of sleepers:
4216 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4222 /* ensure we never gain time by being placed backwards. */
4223 se->vruntime = max_vruntime(se->vruntime, vruntime);
4226 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4228 static inline void check_schedstat_required(void)
4230 #ifdef CONFIG_SCHEDSTATS
4231 if (schedstat_enabled())
4234 /* Force schedstat enabled if a dependent tracepoint is active */
4235 if (trace_sched_stat_wait_enabled() ||
4236 trace_sched_stat_sleep_enabled() ||
4237 trace_sched_stat_iowait_enabled() ||
4238 trace_sched_stat_blocked_enabled() ||
4239 trace_sched_stat_runtime_enabled()) {
4240 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4241 "stat_blocked and stat_runtime require the "
4242 "kernel parameter schedstats=enable or "
4243 "kernel.sched_schedstats=1\n");
4248 static inline bool cfs_bandwidth_used(void);
4255 * update_min_vruntime()
4256 * vruntime -= min_vruntime
4260 * update_min_vruntime()
4261 * vruntime += min_vruntime
4263 * this way the vruntime transition between RQs is done when both
4264 * min_vruntime are up-to-date.
4268 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4269 * vruntime -= min_vruntime
4273 * update_min_vruntime()
4274 * vruntime += min_vruntime
4276 * this way we don't have the most up-to-date min_vruntime on the originating
4277 * CPU and an up-to-date min_vruntime on the destination CPU.
4281 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4283 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4284 bool curr = cfs_rq->curr == se;
4287 * If we're the current task, we must renormalise before calling
4291 se->vruntime += cfs_rq->min_vruntime;
4293 update_curr(cfs_rq);
4296 * Otherwise, renormalise after, such that we're placed at the current
4297 * moment in time, instead of some random moment in the past. Being
4298 * placed in the past could significantly boost this task to the
4299 * fairness detriment of existing tasks.
4301 if (renorm && !curr)
4302 se->vruntime += cfs_rq->min_vruntime;
4305 * When enqueuing a sched_entity, we must:
4306 * - Update loads to have both entity and cfs_rq synced with now.
4307 * - Add its load to cfs_rq->runnable_avg
4308 * - For group_entity, update its weight to reflect the new share of
4310 * - Add its new weight to cfs_rq->load.weight
4312 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4313 se_update_runnable(se);
4314 update_cfs_group(se);
4315 account_entity_enqueue(cfs_rq, se);
4317 if (flags & ENQUEUE_WAKEUP)
4318 place_entity(cfs_rq, se, 0);
4320 check_schedstat_required();
4321 update_stats_enqueue(cfs_rq, se, flags);
4322 check_spread(cfs_rq, se);
4324 __enqueue_entity(cfs_rq, se);
4328 * When bandwidth control is enabled, cfs might have been removed
4329 * because of a parent been throttled but cfs->nr_running > 1. Try to
4330 * add it unconditionally.
4332 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4333 list_add_leaf_cfs_rq(cfs_rq);
4335 if (cfs_rq->nr_running == 1)
4336 check_enqueue_throttle(cfs_rq);
4339 static void __clear_buddies_last(struct sched_entity *se)
4341 for_each_sched_entity(se) {
4342 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4343 if (cfs_rq->last != se)
4346 cfs_rq->last = NULL;
4350 static void __clear_buddies_next(struct sched_entity *se)
4352 for_each_sched_entity(se) {
4353 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4354 if (cfs_rq->next != se)
4357 cfs_rq->next = NULL;
4361 static void __clear_buddies_skip(struct sched_entity *se)
4363 for_each_sched_entity(se) {
4364 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4365 if (cfs_rq->skip != se)
4368 cfs_rq->skip = NULL;
4372 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4374 if (cfs_rq->last == se)
4375 __clear_buddies_last(se);
4377 if (cfs_rq->next == se)
4378 __clear_buddies_next(se);
4380 if (cfs_rq->skip == se)
4381 __clear_buddies_skip(se);
4384 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4387 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4390 * Update run-time statistics of the 'current'.
4392 update_curr(cfs_rq);
4395 * When dequeuing a sched_entity, we must:
4396 * - Update loads to have both entity and cfs_rq synced with now.
4397 * - Subtract its load from the cfs_rq->runnable_avg.
4398 * - Subtract its previous weight from cfs_rq->load.weight.
4399 * - For group entity, update its weight to reflect the new share
4400 * of its group cfs_rq.
4402 update_load_avg(cfs_rq, se, UPDATE_TG);
4403 se_update_runnable(se);
4405 update_stats_dequeue(cfs_rq, se, flags);
4407 clear_buddies(cfs_rq, se);
4409 if (se != cfs_rq->curr)
4410 __dequeue_entity(cfs_rq, se);
4412 account_entity_dequeue(cfs_rq, se);
4415 * Normalize after update_curr(); which will also have moved
4416 * min_vruntime if @se is the one holding it back. But before doing
4417 * update_min_vruntime() again, which will discount @se's position and
4418 * can move min_vruntime forward still more.
4420 if (!(flags & DEQUEUE_SLEEP))
4421 se->vruntime -= cfs_rq->min_vruntime;
4423 /* return excess runtime on last dequeue */
4424 return_cfs_rq_runtime(cfs_rq);
4426 update_cfs_group(se);
4429 * Now advance min_vruntime if @se was the entity holding it back,
4430 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4431 * put back on, and if we advance min_vruntime, we'll be placed back
4432 * further than we started -- ie. we'll be penalized.
4434 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4435 update_min_vruntime(cfs_rq);
4439 * Preempt the current task with a newly woken task if needed:
4442 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4444 unsigned long ideal_runtime, delta_exec;
4445 struct sched_entity *se;
4448 ideal_runtime = sched_slice(cfs_rq, curr);
4449 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4450 if (delta_exec > ideal_runtime) {
4451 resched_curr(rq_of(cfs_rq));
4453 * The current task ran long enough, ensure it doesn't get
4454 * re-elected due to buddy favours.
4456 clear_buddies(cfs_rq, curr);
4461 * Ensure that a task that missed wakeup preemption by a
4462 * narrow margin doesn't have to wait for a full slice.
4463 * This also mitigates buddy induced latencies under load.
4465 if (delta_exec < sysctl_sched_min_granularity)
4468 se = __pick_first_entity(cfs_rq);
4469 delta = curr->vruntime - se->vruntime;
4474 if (delta > ideal_runtime)
4475 resched_curr(rq_of(cfs_rq));
4479 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4481 clear_buddies(cfs_rq, se);
4483 /* 'current' is not kept within the tree. */
4486 * Any task has to be enqueued before it get to execute on
4487 * a CPU. So account for the time it spent waiting on the
4490 update_stats_wait_end(cfs_rq, se);
4491 __dequeue_entity(cfs_rq, se);
4492 update_load_avg(cfs_rq, se, UPDATE_TG);
4495 update_stats_curr_start(cfs_rq, se);
4499 * Track our maximum slice length, if the CPU's load is at
4500 * least twice that of our own weight (i.e. dont track it
4501 * when there are only lesser-weight tasks around):
4503 if (schedstat_enabled() &&
4504 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4505 schedstat_set(se->statistics.slice_max,
4506 max((u64)schedstat_val(se->statistics.slice_max),
4507 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4510 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4514 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4517 * Pick the next process, keeping these things in mind, in this order:
4518 * 1) keep things fair between processes/task groups
4519 * 2) pick the "next" process, since someone really wants that to run
4520 * 3) pick the "last" process, for cache locality
4521 * 4) do not run the "skip" process, if something else is available
4523 static struct sched_entity *
4524 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4526 struct sched_entity *left = __pick_first_entity(cfs_rq);
4527 struct sched_entity *se;
4530 * If curr is set we have to see if its left of the leftmost entity
4531 * still in the tree, provided there was anything in the tree at all.
4533 if (!left || (curr && entity_before(curr, left)))
4536 se = left; /* ideally we run the leftmost entity */
4539 * Avoid running the skip buddy, if running something else can
4540 * be done without getting too unfair.
4542 if (cfs_rq->skip && cfs_rq->skip == se) {
4543 struct sched_entity *second;
4546 second = __pick_first_entity(cfs_rq);
4548 second = __pick_next_entity(se);
4549 if (!second || (curr && entity_before(curr, second)))
4553 if (second && wakeup_preempt_entity(second, left) < 1)
4557 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4559 * Someone really wants this to run. If it's not unfair, run it.
4562 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4564 * Prefer last buddy, try to return the CPU to a preempted task.
4572 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4574 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4577 * If still on the runqueue then deactivate_task()
4578 * was not called and update_curr() has to be done:
4581 update_curr(cfs_rq);
4583 /* throttle cfs_rqs exceeding runtime */
4584 check_cfs_rq_runtime(cfs_rq);
4586 check_spread(cfs_rq, prev);
4589 update_stats_wait_start(cfs_rq, prev);
4590 /* Put 'current' back into the tree. */
4591 __enqueue_entity(cfs_rq, prev);
4592 /* in !on_rq case, update occurred at dequeue */
4593 update_load_avg(cfs_rq, prev, 0);
4595 cfs_rq->curr = NULL;
4599 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4602 * Update run-time statistics of the 'current'.
4604 update_curr(cfs_rq);
4607 * Ensure that runnable average is periodically updated.
4609 update_load_avg(cfs_rq, curr, UPDATE_TG);
4610 update_cfs_group(curr);
4612 #ifdef CONFIG_SCHED_HRTICK
4614 * queued ticks are scheduled to match the slice, so don't bother
4615 * validating it and just reschedule.
4618 resched_curr(rq_of(cfs_rq));
4622 * don't let the period tick interfere with the hrtick preemption
4624 if (!sched_feat(DOUBLE_TICK) &&
4625 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4629 if (cfs_rq->nr_running > 1)
4630 check_preempt_tick(cfs_rq, curr);
4634 /**************************************************
4635 * CFS bandwidth control machinery
4638 #ifdef CONFIG_CFS_BANDWIDTH
4640 #ifdef CONFIG_JUMP_LABEL
4641 static struct static_key __cfs_bandwidth_used;
4643 static inline bool cfs_bandwidth_used(void)
4645 return static_key_false(&__cfs_bandwidth_used);
4648 void cfs_bandwidth_usage_inc(void)
4650 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4653 void cfs_bandwidth_usage_dec(void)
4655 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4657 #else /* CONFIG_JUMP_LABEL */
4658 static bool cfs_bandwidth_used(void)
4663 void cfs_bandwidth_usage_inc(void) {}
4664 void cfs_bandwidth_usage_dec(void) {}
4665 #endif /* CONFIG_JUMP_LABEL */
4668 * default period for cfs group bandwidth.
4669 * default: 0.1s, units: nanoseconds
4671 static inline u64 default_cfs_period(void)
4673 return 100000000ULL;
4676 static inline u64 sched_cfs_bandwidth_slice(void)
4678 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4682 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4683 * directly instead of rq->clock to avoid adding additional synchronization
4686 * requires cfs_b->lock
4688 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4690 if (unlikely(cfs_b->quota == RUNTIME_INF))
4693 cfs_b->runtime += cfs_b->quota;
4694 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4697 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4699 return &tg->cfs_bandwidth;
4702 /* returns 0 on failure to allocate runtime */
4703 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4704 struct cfs_rq *cfs_rq, u64 target_runtime)
4706 u64 min_amount, amount = 0;
4708 lockdep_assert_held(&cfs_b->lock);
4710 /* note: this is a positive sum as runtime_remaining <= 0 */
4711 min_amount = target_runtime - cfs_rq->runtime_remaining;
4713 if (cfs_b->quota == RUNTIME_INF)
4714 amount = min_amount;
4716 start_cfs_bandwidth(cfs_b);
4718 if (cfs_b->runtime > 0) {
4719 amount = min(cfs_b->runtime, min_amount);
4720 cfs_b->runtime -= amount;
4725 cfs_rq->runtime_remaining += amount;
4727 return cfs_rq->runtime_remaining > 0;
4730 /* returns 0 on failure to allocate runtime */
4731 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4733 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4736 raw_spin_lock(&cfs_b->lock);
4737 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4738 raw_spin_unlock(&cfs_b->lock);
4743 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4745 /* dock delta_exec before expiring quota (as it could span periods) */
4746 cfs_rq->runtime_remaining -= delta_exec;
4748 if (likely(cfs_rq->runtime_remaining > 0))
4751 if (cfs_rq->throttled)
4754 * if we're unable to extend our runtime we resched so that the active
4755 * hierarchy can be throttled
4757 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4758 resched_curr(rq_of(cfs_rq));
4761 static __always_inline
4762 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4764 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4767 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4770 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4772 return cfs_bandwidth_used() && cfs_rq->throttled;
4775 /* check whether cfs_rq, or any parent, is throttled */
4776 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4778 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4782 * Ensure that neither of the group entities corresponding to src_cpu or
4783 * dest_cpu are members of a throttled hierarchy when performing group
4784 * load-balance operations.
4786 static inline int throttled_lb_pair(struct task_group *tg,
4787 int src_cpu, int dest_cpu)
4789 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4791 src_cfs_rq = tg->cfs_rq[src_cpu];
4792 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4794 return throttled_hierarchy(src_cfs_rq) ||
4795 throttled_hierarchy(dest_cfs_rq);
4798 static int tg_unthrottle_up(struct task_group *tg, void *data)
4800 struct rq *rq = data;
4801 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4803 cfs_rq->throttle_count--;
4804 if (!cfs_rq->throttle_count) {
4805 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4806 cfs_rq->throttled_clock_task;
4808 /* Add cfs_rq with load or one or more already running entities to the list */
4809 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4810 list_add_leaf_cfs_rq(cfs_rq);
4816 static int tg_throttle_down(struct task_group *tg, void *data)
4818 struct rq *rq = data;
4819 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4821 /* group is entering throttled state, stop time */
4822 if (!cfs_rq->throttle_count) {
4823 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4824 list_del_leaf_cfs_rq(cfs_rq);
4826 cfs_rq->throttle_count++;
4831 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4833 struct rq *rq = rq_of(cfs_rq);
4834 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4835 struct sched_entity *se;
4836 long task_delta, idle_task_delta, dequeue = 1;
4838 raw_spin_lock(&cfs_b->lock);
4839 /* This will start the period timer if necessary */
4840 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4842 * We have raced with bandwidth becoming available, and if we
4843 * actually throttled the timer might not unthrottle us for an
4844 * entire period. We additionally needed to make sure that any
4845 * subsequent check_cfs_rq_runtime calls agree not to throttle
4846 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4847 * for 1ns of runtime rather than just check cfs_b.
4851 list_add_tail_rcu(&cfs_rq->throttled_list,
4852 &cfs_b->throttled_cfs_rq);
4854 raw_spin_unlock(&cfs_b->lock);
4857 return false; /* Throttle no longer required. */
4859 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4861 /* freeze hierarchy runnable averages while throttled */
4863 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4866 task_delta = cfs_rq->h_nr_running;
4867 idle_task_delta = cfs_rq->idle_h_nr_running;
4868 for_each_sched_entity(se) {
4869 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4870 /* throttled entity or throttle-on-deactivate */
4874 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4876 if (cfs_rq_is_idle(group_cfs_rq(se)))
4877 idle_task_delta = cfs_rq->h_nr_running;
4879 qcfs_rq->h_nr_running -= task_delta;
4880 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4882 if (qcfs_rq->load.weight) {
4883 /* Avoid re-evaluating load for this entity: */
4884 se = parent_entity(se);
4889 for_each_sched_entity(se) {
4890 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4891 /* throttled entity or throttle-on-deactivate */
4895 update_load_avg(qcfs_rq, se, 0);
4896 se_update_runnable(se);
4898 if (cfs_rq_is_idle(group_cfs_rq(se)))
4899 idle_task_delta = cfs_rq->h_nr_running;
4901 qcfs_rq->h_nr_running -= task_delta;
4902 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4905 /* At this point se is NULL and we are at root level*/
4906 sub_nr_running(rq, task_delta);
4910 * Note: distribution will already see us throttled via the
4911 * throttled-list. rq->lock protects completion.
4913 cfs_rq->throttled = 1;
4914 cfs_rq->throttled_clock = rq_clock(rq);
4918 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4920 struct rq *rq = rq_of(cfs_rq);
4921 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4922 struct sched_entity *se;
4923 long task_delta, idle_task_delta;
4925 se = cfs_rq->tg->se[cpu_of(rq)];
4927 cfs_rq->throttled = 0;
4929 update_rq_clock(rq);
4931 raw_spin_lock(&cfs_b->lock);
4932 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4933 list_del_rcu(&cfs_rq->throttled_list);
4934 raw_spin_unlock(&cfs_b->lock);
4936 /* update hierarchical throttle state */
4937 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4939 if (!cfs_rq->load.weight)
4942 task_delta = cfs_rq->h_nr_running;
4943 idle_task_delta = cfs_rq->idle_h_nr_running;
4944 for_each_sched_entity(se) {
4945 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4949 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
4951 if (cfs_rq_is_idle(group_cfs_rq(se)))
4952 idle_task_delta = cfs_rq->h_nr_running;
4954 qcfs_rq->h_nr_running += task_delta;
4955 qcfs_rq->idle_h_nr_running += idle_task_delta;
4957 /* end evaluation on encountering a throttled cfs_rq */
4958 if (cfs_rq_throttled(qcfs_rq))
4959 goto unthrottle_throttle;
4962 for_each_sched_entity(se) {
4963 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4965 update_load_avg(qcfs_rq, se, UPDATE_TG);
4966 se_update_runnable(se);
4968 if (cfs_rq_is_idle(group_cfs_rq(se)))
4969 idle_task_delta = cfs_rq->h_nr_running;
4971 qcfs_rq->h_nr_running += task_delta;
4972 qcfs_rq->idle_h_nr_running += idle_task_delta;
4974 /* end evaluation on encountering a throttled cfs_rq */
4975 if (cfs_rq_throttled(qcfs_rq))
4976 goto unthrottle_throttle;
4979 * One parent has been throttled and cfs_rq removed from the
4980 * list. Add it back to not break the leaf list.
4982 if (throttled_hierarchy(qcfs_rq))
4983 list_add_leaf_cfs_rq(qcfs_rq);
4986 /* At this point se is NULL and we are at root level*/
4987 add_nr_running(rq, task_delta);
4989 unthrottle_throttle:
4991 * The cfs_rq_throttled() breaks in the above iteration can result in
4992 * incomplete leaf list maintenance, resulting in triggering the
4995 for_each_sched_entity(se) {
4996 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4998 if (list_add_leaf_cfs_rq(qcfs_rq))
5002 assert_list_leaf_cfs_rq(rq);
5004 /* Determine whether we need to wake up potentially idle CPU: */
5005 if (rq->curr == rq->idle && rq->cfs.nr_running)
5009 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5011 struct cfs_rq *cfs_rq;
5012 u64 runtime, remaining = 1;
5015 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5017 struct rq *rq = rq_of(cfs_rq);
5020 rq_lock_irqsave(rq, &rf);
5021 if (!cfs_rq_throttled(cfs_rq))
5024 /* By the above check, this should never be true */
5025 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5027 raw_spin_lock(&cfs_b->lock);
5028 runtime = -cfs_rq->runtime_remaining + 1;
5029 if (runtime > cfs_b->runtime)
5030 runtime = cfs_b->runtime;
5031 cfs_b->runtime -= runtime;
5032 remaining = cfs_b->runtime;
5033 raw_spin_unlock(&cfs_b->lock);
5035 cfs_rq->runtime_remaining += runtime;
5037 /* we check whether we're throttled above */
5038 if (cfs_rq->runtime_remaining > 0)
5039 unthrottle_cfs_rq(cfs_rq);
5042 rq_unlock_irqrestore(rq, &rf);
5051 * Responsible for refilling a task_group's bandwidth and unthrottling its
5052 * cfs_rqs as appropriate. If there has been no activity within the last
5053 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5054 * used to track this state.
5056 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5060 /* no need to continue the timer with no bandwidth constraint */
5061 if (cfs_b->quota == RUNTIME_INF)
5062 goto out_deactivate;
5064 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5065 cfs_b->nr_periods += overrun;
5067 /* Refill extra burst quota even if cfs_b->idle */
5068 __refill_cfs_bandwidth_runtime(cfs_b);
5071 * idle depends on !throttled (for the case of a large deficit), and if
5072 * we're going inactive then everything else can be deferred
5074 if (cfs_b->idle && !throttled)
5075 goto out_deactivate;
5078 /* mark as potentially idle for the upcoming period */
5083 /* account preceding periods in which throttling occurred */
5084 cfs_b->nr_throttled += overrun;
5087 * This check is repeated as we release cfs_b->lock while we unthrottle.
5089 while (throttled && cfs_b->runtime > 0) {
5090 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5091 /* we can't nest cfs_b->lock while distributing bandwidth */
5092 distribute_cfs_runtime(cfs_b);
5093 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5095 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5099 * While we are ensured activity in the period following an
5100 * unthrottle, this also covers the case in which the new bandwidth is
5101 * insufficient to cover the existing bandwidth deficit. (Forcing the
5102 * timer to remain active while there are any throttled entities.)
5112 /* a cfs_rq won't donate quota below this amount */
5113 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5114 /* minimum remaining period time to redistribute slack quota */
5115 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5116 /* how long we wait to gather additional slack before distributing */
5117 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5120 * Are we near the end of the current quota period?
5122 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5123 * hrtimer base being cleared by hrtimer_start. In the case of
5124 * migrate_hrtimers, base is never cleared, so we are fine.
5126 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5128 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5131 /* if the call-back is running a quota refresh is already occurring */
5132 if (hrtimer_callback_running(refresh_timer))
5135 /* is a quota refresh about to occur? */
5136 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5137 if (remaining < (s64)min_expire)
5143 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5145 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5147 /* if there's a quota refresh soon don't bother with slack */
5148 if (runtime_refresh_within(cfs_b, min_left))
5151 /* don't push forwards an existing deferred unthrottle */
5152 if (cfs_b->slack_started)
5154 cfs_b->slack_started = true;
5156 hrtimer_start(&cfs_b->slack_timer,
5157 ns_to_ktime(cfs_bandwidth_slack_period),
5161 /* we know any runtime found here is valid as update_curr() precedes return */
5162 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5164 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5165 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5167 if (slack_runtime <= 0)
5170 raw_spin_lock(&cfs_b->lock);
5171 if (cfs_b->quota != RUNTIME_INF) {
5172 cfs_b->runtime += slack_runtime;
5174 /* we are under rq->lock, defer unthrottling using a timer */
5175 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5176 !list_empty(&cfs_b->throttled_cfs_rq))
5177 start_cfs_slack_bandwidth(cfs_b);
5179 raw_spin_unlock(&cfs_b->lock);
5181 /* even if it's not valid for return we don't want to try again */
5182 cfs_rq->runtime_remaining -= slack_runtime;
5185 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5187 if (!cfs_bandwidth_used())
5190 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5193 __return_cfs_rq_runtime(cfs_rq);
5197 * This is done with a timer (instead of inline with bandwidth return) since
5198 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5200 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5202 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5203 unsigned long flags;
5205 /* confirm we're still not at a refresh boundary */
5206 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5207 cfs_b->slack_started = false;
5209 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5210 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5214 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5215 runtime = cfs_b->runtime;
5217 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5222 distribute_cfs_runtime(cfs_b);
5226 * When a group wakes up we want to make sure that its quota is not already
5227 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5228 * runtime as update_curr() throttling can not trigger until it's on-rq.
5230 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5232 if (!cfs_bandwidth_used())
5235 /* an active group must be handled by the update_curr()->put() path */
5236 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5239 /* ensure the group is not already throttled */
5240 if (cfs_rq_throttled(cfs_rq))
5243 /* update runtime allocation */
5244 account_cfs_rq_runtime(cfs_rq, 0);
5245 if (cfs_rq->runtime_remaining <= 0)
5246 throttle_cfs_rq(cfs_rq);
5249 static void sync_throttle(struct task_group *tg, int cpu)
5251 struct cfs_rq *pcfs_rq, *cfs_rq;
5253 if (!cfs_bandwidth_used())
5259 cfs_rq = tg->cfs_rq[cpu];
5260 pcfs_rq = tg->parent->cfs_rq[cpu];
5262 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5263 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5266 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5267 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5269 if (!cfs_bandwidth_used())
5272 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5276 * it's possible for a throttled entity to be forced into a running
5277 * state (e.g. set_curr_task), in this case we're finished.
5279 if (cfs_rq_throttled(cfs_rq))
5282 return throttle_cfs_rq(cfs_rq);
5285 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5287 struct cfs_bandwidth *cfs_b =
5288 container_of(timer, struct cfs_bandwidth, slack_timer);
5290 do_sched_cfs_slack_timer(cfs_b);
5292 return HRTIMER_NORESTART;
5295 extern const u64 max_cfs_quota_period;
5297 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5299 struct cfs_bandwidth *cfs_b =
5300 container_of(timer, struct cfs_bandwidth, period_timer);
5301 unsigned long flags;
5306 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5308 overrun = hrtimer_forward_now(timer, cfs_b->period);
5312 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5315 u64 new, old = ktime_to_ns(cfs_b->period);
5318 * Grow period by a factor of 2 to avoid losing precision.
5319 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5323 if (new < max_cfs_quota_period) {
5324 cfs_b->period = ns_to_ktime(new);
5328 pr_warn_ratelimited(
5329 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5331 div_u64(new, NSEC_PER_USEC),
5332 div_u64(cfs_b->quota, NSEC_PER_USEC));
5334 pr_warn_ratelimited(
5335 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5337 div_u64(old, NSEC_PER_USEC),
5338 div_u64(cfs_b->quota, NSEC_PER_USEC));
5341 /* reset count so we don't come right back in here */
5346 cfs_b->period_active = 0;
5347 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5349 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5352 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5354 raw_spin_lock_init(&cfs_b->lock);
5356 cfs_b->quota = RUNTIME_INF;
5357 cfs_b->period = ns_to_ktime(default_cfs_period());
5360 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5361 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5362 cfs_b->period_timer.function = sched_cfs_period_timer;
5363 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5364 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5365 cfs_b->slack_started = false;
5368 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5370 cfs_rq->runtime_enabled = 0;
5371 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5374 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5376 lockdep_assert_held(&cfs_b->lock);
5378 if (cfs_b->period_active)
5381 cfs_b->period_active = 1;
5382 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5383 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5386 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5388 /* init_cfs_bandwidth() was not called */
5389 if (!cfs_b->throttled_cfs_rq.next)
5392 hrtimer_cancel(&cfs_b->period_timer);
5393 hrtimer_cancel(&cfs_b->slack_timer);
5397 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5399 * The race is harmless, since modifying bandwidth settings of unhooked group
5400 * bits doesn't do much.
5403 /* cpu online callback */
5404 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5406 struct task_group *tg;
5408 lockdep_assert_rq_held(rq);
5411 list_for_each_entry_rcu(tg, &task_groups, list) {
5412 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5413 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5415 raw_spin_lock(&cfs_b->lock);
5416 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5417 raw_spin_unlock(&cfs_b->lock);
5422 /* cpu offline callback */
5423 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5425 struct task_group *tg;
5427 lockdep_assert_rq_held(rq);
5430 list_for_each_entry_rcu(tg, &task_groups, list) {
5431 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5433 if (!cfs_rq->runtime_enabled)
5437 * clock_task is not advancing so we just need to make sure
5438 * there's some valid quota amount
5440 cfs_rq->runtime_remaining = 1;
5442 * Offline rq is schedulable till CPU is completely disabled
5443 * in take_cpu_down(), so we prevent new cfs throttling here.
5445 cfs_rq->runtime_enabled = 0;
5447 if (cfs_rq_throttled(cfs_rq))
5448 unthrottle_cfs_rq(cfs_rq);
5453 #else /* CONFIG_CFS_BANDWIDTH */
5455 static inline bool cfs_bandwidth_used(void)
5460 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5461 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5462 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5463 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5464 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5466 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5471 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5476 static inline int throttled_lb_pair(struct task_group *tg,
5477 int src_cpu, int dest_cpu)
5482 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5484 #ifdef CONFIG_FAIR_GROUP_SCHED
5485 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5488 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5492 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5493 static inline void update_runtime_enabled(struct rq *rq) {}
5494 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5496 #endif /* CONFIG_CFS_BANDWIDTH */
5498 /**************************************************
5499 * CFS operations on tasks:
5502 #ifdef CONFIG_SCHED_HRTICK
5503 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5505 struct sched_entity *se = &p->se;
5506 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5508 SCHED_WARN_ON(task_rq(p) != rq);
5510 if (rq->cfs.h_nr_running > 1) {
5511 u64 slice = sched_slice(cfs_rq, se);
5512 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5513 s64 delta = slice - ran;
5516 if (task_current(rq, p))
5520 hrtick_start(rq, delta);
5525 * called from enqueue/dequeue and updates the hrtick when the
5526 * current task is from our class and nr_running is low enough
5529 static void hrtick_update(struct rq *rq)
5531 struct task_struct *curr = rq->curr;
5533 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5536 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5537 hrtick_start_fair(rq, curr);
5539 #else /* !CONFIG_SCHED_HRTICK */
5541 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5545 static inline void hrtick_update(struct rq *rq)
5551 static inline unsigned long cpu_util(int cpu);
5553 static inline bool cpu_overutilized(int cpu)
5555 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5558 static inline void update_overutilized_status(struct rq *rq)
5560 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5561 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5562 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5566 static inline void update_overutilized_status(struct rq *rq) { }
5569 /* Runqueue only has SCHED_IDLE tasks enqueued */
5570 static int sched_idle_rq(struct rq *rq)
5572 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5577 static int sched_idle_cpu(int cpu)
5579 return sched_idle_rq(cpu_rq(cpu));
5584 * The enqueue_task method is called before nr_running is
5585 * increased. Here we update the fair scheduling stats and
5586 * then put the task into the rbtree:
5589 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5591 struct cfs_rq *cfs_rq;
5592 struct sched_entity *se = &p->se;
5593 int idle_h_nr_running = task_has_idle_policy(p);
5594 int task_new = !(flags & ENQUEUE_WAKEUP);
5597 * The code below (indirectly) updates schedutil which looks at
5598 * the cfs_rq utilization to select a frequency.
5599 * Let's add the task's estimated utilization to the cfs_rq's
5600 * estimated utilization, before we update schedutil.
5602 util_est_enqueue(&rq->cfs, p);
5605 * If in_iowait is set, the code below may not trigger any cpufreq
5606 * utilization updates, so do it here explicitly with the IOWAIT flag
5610 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5612 for_each_sched_entity(se) {
5615 cfs_rq = cfs_rq_of(se);
5616 enqueue_entity(cfs_rq, se, flags);
5618 cfs_rq->h_nr_running++;
5619 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5621 if (cfs_rq_is_idle(cfs_rq))
5622 idle_h_nr_running = 1;
5624 /* end evaluation on encountering a throttled cfs_rq */
5625 if (cfs_rq_throttled(cfs_rq))
5626 goto enqueue_throttle;
5628 flags = ENQUEUE_WAKEUP;
5631 for_each_sched_entity(se) {
5632 cfs_rq = cfs_rq_of(se);
5634 update_load_avg(cfs_rq, se, UPDATE_TG);
5635 se_update_runnable(se);
5636 update_cfs_group(se);
5638 cfs_rq->h_nr_running++;
5639 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5641 if (cfs_rq_is_idle(cfs_rq))
5642 idle_h_nr_running = 1;
5644 /* end evaluation on encountering a throttled cfs_rq */
5645 if (cfs_rq_throttled(cfs_rq))
5646 goto enqueue_throttle;
5649 * One parent has been throttled and cfs_rq removed from the
5650 * list. Add it back to not break the leaf list.
5652 if (throttled_hierarchy(cfs_rq))
5653 list_add_leaf_cfs_rq(cfs_rq);
5656 /* At this point se is NULL and we are at root level*/
5657 add_nr_running(rq, 1);
5660 * Since new tasks are assigned an initial util_avg equal to
5661 * half of the spare capacity of their CPU, tiny tasks have the
5662 * ability to cross the overutilized threshold, which will
5663 * result in the load balancer ruining all the task placement
5664 * done by EAS. As a way to mitigate that effect, do not account
5665 * for the first enqueue operation of new tasks during the
5666 * overutilized flag detection.
5668 * A better way of solving this problem would be to wait for
5669 * the PELT signals of tasks to converge before taking them
5670 * into account, but that is not straightforward to implement,
5671 * and the following generally works well enough in practice.
5674 update_overutilized_status(rq);
5677 if (cfs_bandwidth_used()) {
5679 * When bandwidth control is enabled; the cfs_rq_throttled()
5680 * breaks in the above iteration can result in incomplete
5681 * leaf list maintenance, resulting in triggering the assertion
5684 for_each_sched_entity(se) {
5685 cfs_rq = cfs_rq_of(se);
5687 if (list_add_leaf_cfs_rq(cfs_rq))
5692 assert_list_leaf_cfs_rq(rq);
5697 static void set_next_buddy(struct sched_entity *se);
5700 * The dequeue_task method is called before nr_running is
5701 * decreased. We remove the task from the rbtree and
5702 * update the fair scheduling stats:
5704 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5706 struct cfs_rq *cfs_rq;
5707 struct sched_entity *se = &p->se;
5708 int task_sleep = flags & DEQUEUE_SLEEP;
5709 int idle_h_nr_running = task_has_idle_policy(p);
5710 bool was_sched_idle = sched_idle_rq(rq);
5712 util_est_dequeue(&rq->cfs, p);
5714 for_each_sched_entity(se) {
5715 cfs_rq = cfs_rq_of(se);
5716 dequeue_entity(cfs_rq, se, flags);
5718 cfs_rq->h_nr_running--;
5719 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5721 if (cfs_rq_is_idle(cfs_rq))
5722 idle_h_nr_running = 1;
5724 /* end evaluation on encountering a throttled cfs_rq */
5725 if (cfs_rq_throttled(cfs_rq))
5726 goto dequeue_throttle;
5728 /* Don't dequeue parent if it has other entities besides us */
5729 if (cfs_rq->load.weight) {
5730 /* Avoid re-evaluating load for this entity: */
5731 se = parent_entity(se);
5733 * Bias pick_next to pick a task from this cfs_rq, as
5734 * p is sleeping when it is within its sched_slice.
5736 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5740 flags |= DEQUEUE_SLEEP;
5743 for_each_sched_entity(se) {
5744 cfs_rq = cfs_rq_of(se);
5746 update_load_avg(cfs_rq, se, UPDATE_TG);
5747 se_update_runnable(se);
5748 update_cfs_group(se);
5750 cfs_rq->h_nr_running--;
5751 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5753 if (cfs_rq_is_idle(cfs_rq))
5754 idle_h_nr_running = 1;
5756 /* end evaluation on encountering a throttled cfs_rq */
5757 if (cfs_rq_throttled(cfs_rq))
5758 goto dequeue_throttle;
5762 /* At this point se is NULL and we are at root level*/
5763 sub_nr_running(rq, 1);
5765 /* balance early to pull high priority tasks */
5766 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5767 rq->next_balance = jiffies;
5770 util_est_update(&rq->cfs, p, task_sleep);
5776 /* Working cpumask for: load_balance, load_balance_newidle. */
5777 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5778 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5780 #ifdef CONFIG_NO_HZ_COMMON
5783 cpumask_var_t idle_cpus_mask;
5785 int has_blocked; /* Idle CPUS has blocked load */
5786 unsigned long next_balance; /* in jiffy units */
5787 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5788 } nohz ____cacheline_aligned;
5790 #endif /* CONFIG_NO_HZ_COMMON */
5792 static unsigned long cpu_load(struct rq *rq)
5794 return cfs_rq_load_avg(&rq->cfs);
5798 * cpu_load_without - compute CPU load without any contributions from *p
5799 * @cpu: the CPU which load is requested
5800 * @p: the task which load should be discounted
5802 * The load of a CPU is defined by the load of tasks currently enqueued on that
5803 * CPU as well as tasks which are currently sleeping after an execution on that
5806 * This method returns the load of the specified CPU by discounting the load of
5807 * the specified task, whenever the task is currently contributing to the CPU
5810 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5812 struct cfs_rq *cfs_rq;
5815 /* Task has no contribution or is new */
5816 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5817 return cpu_load(rq);
5820 load = READ_ONCE(cfs_rq->avg.load_avg);
5822 /* Discount task's util from CPU's util */
5823 lsub_positive(&load, task_h_load(p));
5828 static unsigned long cpu_runnable(struct rq *rq)
5830 return cfs_rq_runnable_avg(&rq->cfs);
5833 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5835 struct cfs_rq *cfs_rq;
5836 unsigned int runnable;
5838 /* Task has no contribution or is new */
5839 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5840 return cpu_runnable(rq);
5843 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5845 /* Discount task's runnable from CPU's runnable */
5846 lsub_positive(&runnable, p->se.avg.runnable_avg);
5851 static unsigned long capacity_of(int cpu)
5853 return cpu_rq(cpu)->cpu_capacity;
5856 static void record_wakee(struct task_struct *p)
5859 * Only decay a single time; tasks that have less then 1 wakeup per
5860 * jiffy will not have built up many flips.
5862 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5863 current->wakee_flips >>= 1;
5864 current->wakee_flip_decay_ts = jiffies;
5867 if (current->last_wakee != p) {
5868 current->last_wakee = p;
5869 current->wakee_flips++;
5874 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5876 * A waker of many should wake a different task than the one last awakened
5877 * at a frequency roughly N times higher than one of its wakees.
5879 * In order to determine whether we should let the load spread vs consolidating
5880 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5881 * partner, and a factor of lls_size higher frequency in the other.
5883 * With both conditions met, we can be relatively sure that the relationship is
5884 * non-monogamous, with partner count exceeding socket size.
5886 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5887 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5890 static int wake_wide(struct task_struct *p)
5892 unsigned int master = current->wakee_flips;
5893 unsigned int slave = p->wakee_flips;
5894 int factor = __this_cpu_read(sd_llc_size);
5897 swap(master, slave);
5898 if (slave < factor || master < slave * factor)
5904 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5905 * soonest. For the purpose of speed we only consider the waking and previous
5908 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5909 * cache-affine and is (or will be) idle.
5911 * wake_affine_weight() - considers the weight to reflect the average
5912 * scheduling latency of the CPUs. This seems to work
5913 * for the overloaded case.
5916 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5919 * If this_cpu is idle, it implies the wakeup is from interrupt
5920 * context. Only allow the move if cache is shared. Otherwise an
5921 * interrupt intensive workload could force all tasks onto one
5922 * node depending on the IO topology or IRQ affinity settings.
5924 * If the prev_cpu is idle and cache affine then avoid a migration.
5925 * There is no guarantee that the cache hot data from an interrupt
5926 * is more important than cache hot data on the prev_cpu and from
5927 * a cpufreq perspective, it's better to have higher utilisation
5930 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5931 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5933 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5936 if (available_idle_cpu(prev_cpu))
5939 return nr_cpumask_bits;
5943 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5944 int this_cpu, int prev_cpu, int sync)
5946 s64 this_eff_load, prev_eff_load;
5947 unsigned long task_load;
5949 this_eff_load = cpu_load(cpu_rq(this_cpu));
5952 unsigned long current_load = task_h_load(current);
5954 if (current_load > this_eff_load)
5957 this_eff_load -= current_load;
5960 task_load = task_h_load(p);
5962 this_eff_load += task_load;
5963 if (sched_feat(WA_BIAS))
5964 this_eff_load *= 100;
5965 this_eff_load *= capacity_of(prev_cpu);
5967 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5968 prev_eff_load -= task_load;
5969 if (sched_feat(WA_BIAS))
5970 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5971 prev_eff_load *= capacity_of(this_cpu);
5974 * If sync, adjust the weight of prev_eff_load such that if
5975 * prev_eff == this_eff that select_idle_sibling() will consider
5976 * stacking the wakee on top of the waker if no other CPU is
5982 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5985 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5986 int this_cpu, int prev_cpu, int sync)
5988 int target = nr_cpumask_bits;
5990 if (sched_feat(WA_IDLE))
5991 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5993 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5994 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5996 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5997 if (target == nr_cpumask_bits)
6000 schedstat_inc(sd->ttwu_move_affine);
6001 schedstat_inc(p->se.statistics.nr_wakeups_affine);
6005 static struct sched_group *
6006 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6009 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6012 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6014 unsigned long load, min_load = ULONG_MAX;
6015 unsigned int min_exit_latency = UINT_MAX;
6016 u64 latest_idle_timestamp = 0;
6017 int least_loaded_cpu = this_cpu;
6018 int shallowest_idle_cpu = -1;
6021 /* Check if we have any choice: */
6022 if (group->group_weight == 1)
6023 return cpumask_first(sched_group_span(group));
6025 /* Traverse only the allowed CPUs */
6026 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6027 struct rq *rq = cpu_rq(i);
6029 if (!sched_core_cookie_match(rq, p))
6032 if (sched_idle_cpu(i))
6035 if (available_idle_cpu(i)) {
6036 struct cpuidle_state *idle = idle_get_state(rq);
6037 if (idle && idle->exit_latency < min_exit_latency) {
6039 * We give priority to a CPU whose idle state
6040 * has the smallest exit latency irrespective
6041 * of any idle timestamp.
6043 min_exit_latency = idle->exit_latency;
6044 latest_idle_timestamp = rq->idle_stamp;
6045 shallowest_idle_cpu = i;
6046 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6047 rq->idle_stamp > latest_idle_timestamp) {
6049 * If equal or no active idle state, then
6050 * the most recently idled CPU might have
6053 latest_idle_timestamp = rq->idle_stamp;
6054 shallowest_idle_cpu = i;
6056 } else if (shallowest_idle_cpu == -1) {
6057 load = cpu_load(cpu_rq(i));
6058 if (load < min_load) {
6060 least_loaded_cpu = i;
6065 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6068 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6069 int cpu, int prev_cpu, int sd_flag)
6073 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6077 * We need task's util for cpu_util_without, sync it up to
6078 * prev_cpu's last_update_time.
6080 if (!(sd_flag & SD_BALANCE_FORK))
6081 sync_entity_load_avg(&p->se);
6084 struct sched_group *group;
6085 struct sched_domain *tmp;
6088 if (!(sd->flags & sd_flag)) {
6093 group = find_idlest_group(sd, p, cpu);
6099 new_cpu = find_idlest_group_cpu(group, p, cpu);
6100 if (new_cpu == cpu) {
6101 /* Now try balancing at a lower domain level of 'cpu': */
6106 /* Now try balancing at a lower domain level of 'new_cpu': */
6108 weight = sd->span_weight;
6110 for_each_domain(cpu, tmp) {
6111 if (weight <= tmp->span_weight)
6113 if (tmp->flags & sd_flag)
6121 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6123 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6124 sched_cpu_cookie_match(cpu_rq(cpu), p))
6130 #ifdef CONFIG_SCHED_SMT
6131 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6132 EXPORT_SYMBOL_GPL(sched_smt_present);
6134 static inline void set_idle_cores(int cpu, int val)
6136 struct sched_domain_shared *sds;
6138 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6140 WRITE_ONCE(sds->has_idle_cores, val);
6143 static inline bool test_idle_cores(int cpu, bool def)
6145 struct sched_domain_shared *sds;
6147 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6149 return READ_ONCE(sds->has_idle_cores);
6155 * Scans the local SMT mask to see if the entire core is idle, and records this
6156 * information in sd_llc_shared->has_idle_cores.
6158 * Since SMT siblings share all cache levels, inspecting this limited remote
6159 * state should be fairly cheap.
6161 void __update_idle_core(struct rq *rq)
6163 int core = cpu_of(rq);
6167 if (test_idle_cores(core, true))
6170 for_each_cpu(cpu, cpu_smt_mask(core)) {
6174 if (!available_idle_cpu(cpu))
6178 set_idle_cores(core, 1);
6184 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6185 * there are no idle cores left in the system; tracked through
6186 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6188 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6193 if (!static_branch_likely(&sched_smt_present))
6194 return __select_idle_cpu(core, p);
6196 for_each_cpu(cpu, cpu_smt_mask(core)) {
6197 if (!available_idle_cpu(cpu)) {
6199 if (*idle_cpu == -1) {
6200 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6208 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6215 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6220 * Scan the local SMT mask for idle CPUs.
6222 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6226 for_each_cpu(cpu, cpu_smt_mask(target)) {
6227 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6228 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6230 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6237 #else /* CONFIG_SCHED_SMT */
6239 static inline void set_idle_cores(int cpu, int val)
6243 static inline bool test_idle_cores(int cpu, bool def)
6248 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6250 return __select_idle_cpu(core, p);
6253 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6258 #endif /* CONFIG_SCHED_SMT */
6261 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6262 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6263 * average idle time for this rq (as found in rq->avg_idle).
6265 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6267 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6268 int i, cpu, idle_cpu = -1, nr = INT_MAX;
6269 struct rq *this_rq = this_rq();
6270 int this = smp_processor_id();
6271 struct sched_domain *this_sd;
6274 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6278 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6280 if (sched_feat(SIS_PROP) && !has_idle_core) {
6281 u64 avg_cost, avg_idle, span_avg;
6282 unsigned long now = jiffies;
6285 * If we're busy, the assumption that the last idle period
6286 * predicts the future is flawed; age away the remaining
6287 * predicted idle time.
6289 if (unlikely(this_rq->wake_stamp < now)) {
6290 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6291 this_rq->wake_stamp++;
6292 this_rq->wake_avg_idle >>= 1;
6296 avg_idle = this_rq->wake_avg_idle;
6297 avg_cost = this_sd->avg_scan_cost + 1;
6299 span_avg = sd->span_weight * avg_idle;
6300 if (span_avg > 4*avg_cost)
6301 nr = div_u64(span_avg, avg_cost);
6305 time = cpu_clock(this);
6308 for_each_cpu_wrap(cpu, cpus, target + 1) {
6309 if (has_idle_core) {
6310 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6311 if ((unsigned int)i < nr_cpumask_bits)
6317 idle_cpu = __select_idle_cpu(cpu, p);
6318 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6324 set_idle_cores(target, false);
6326 if (sched_feat(SIS_PROP) && !has_idle_core) {
6327 time = cpu_clock(this) - time;
6330 * Account for the scan cost of wakeups against the average
6333 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6335 update_avg(&this_sd->avg_scan_cost, time);
6342 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6343 * the task fits. If no CPU is big enough, but there are idle ones, try to
6344 * maximize capacity.
6347 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6349 unsigned long task_util, best_cap = 0;
6350 int cpu, best_cpu = -1;
6351 struct cpumask *cpus;
6353 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6354 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6356 task_util = uclamp_task_util(p);
6358 for_each_cpu_wrap(cpu, cpus, target) {
6359 unsigned long cpu_cap = capacity_of(cpu);
6361 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6363 if (fits_capacity(task_util, cpu_cap))
6366 if (cpu_cap > best_cap) {
6375 static inline bool asym_fits_capacity(int task_util, int cpu)
6377 if (static_branch_unlikely(&sched_asym_cpucapacity))
6378 return fits_capacity(task_util, capacity_of(cpu));
6384 * Try and locate an idle core/thread in the LLC cache domain.
6386 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6388 bool has_idle_core = false;
6389 struct sched_domain *sd;
6390 unsigned long task_util;
6391 int i, recent_used_cpu;
6394 * On asymmetric system, update task utilization because we will check
6395 * that the task fits with cpu's capacity.
6397 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6398 sync_entity_load_avg(&p->se);
6399 task_util = uclamp_task_util(p);
6403 * per-cpu select_idle_mask usage
6405 lockdep_assert_irqs_disabled();
6407 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6408 asym_fits_capacity(task_util, target))
6412 * If the previous CPU is cache affine and idle, don't be stupid:
6414 if (prev != target && cpus_share_cache(prev, target) &&
6415 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6416 asym_fits_capacity(task_util, prev))
6420 * Allow a per-cpu kthread to stack with the wakee if the
6421 * kworker thread and the tasks previous CPUs are the same.
6422 * The assumption is that the wakee queued work for the
6423 * per-cpu kthread that is now complete and the wakeup is
6424 * essentially a sync wakeup. An obvious example of this
6425 * pattern is IO completions.
6427 if (is_per_cpu_kthread(current) &&
6428 prev == smp_processor_id() &&
6429 this_rq()->nr_running <= 1) {
6433 /* Check a recently used CPU as a potential idle candidate: */
6434 recent_used_cpu = p->recent_used_cpu;
6435 p->recent_used_cpu = prev;
6436 if (recent_used_cpu != prev &&
6437 recent_used_cpu != target &&
6438 cpus_share_cache(recent_used_cpu, target) &&
6439 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6440 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6441 asym_fits_capacity(task_util, recent_used_cpu)) {
6443 * Replace recent_used_cpu with prev as it is a potential
6444 * candidate for the next wake:
6446 p->recent_used_cpu = prev;
6447 return recent_used_cpu;
6451 * For asymmetric CPU capacity systems, our domain of interest is
6452 * sd_asym_cpucapacity rather than sd_llc.
6454 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6455 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6457 * On an asymmetric CPU capacity system where an exclusive
6458 * cpuset defines a symmetric island (i.e. one unique
6459 * capacity_orig value through the cpuset), the key will be set
6460 * but the CPUs within that cpuset will not have a domain with
6461 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6465 i = select_idle_capacity(p, sd, target);
6466 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6470 sd = rcu_dereference(per_cpu(sd_llc, target));
6474 if (sched_smt_active()) {
6475 has_idle_core = test_idle_cores(target, false);
6477 if (!has_idle_core && cpus_share_cache(prev, target)) {
6478 i = select_idle_smt(p, sd, prev);
6479 if ((unsigned int)i < nr_cpumask_bits)
6484 i = select_idle_cpu(p, sd, has_idle_core, target);
6485 if ((unsigned)i < nr_cpumask_bits)
6492 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6493 * @cpu: the CPU to get the utilization of
6495 * The unit of the return value must be the one of capacity so we can compare
6496 * the utilization with the capacity of the CPU that is available for CFS task
6497 * (ie cpu_capacity).
6499 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6500 * recent utilization of currently non-runnable tasks on a CPU. It represents
6501 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6502 * capacity_orig is the cpu_capacity available at the highest frequency
6503 * (arch_scale_freq_capacity()).
6504 * The utilization of a CPU converges towards a sum equal to or less than the
6505 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6506 * the running time on this CPU scaled by capacity_curr.
6508 * The estimated utilization of a CPU is defined to be the maximum between its
6509 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6510 * currently RUNNABLE on that CPU.
6511 * This allows to properly represent the expected utilization of a CPU which
6512 * has just got a big task running since a long sleep period. At the same time
6513 * however it preserves the benefits of the "blocked utilization" in
6514 * describing the potential for other tasks waking up on the same CPU.
6516 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6517 * higher than capacity_orig because of unfortunate rounding in
6518 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6519 * the average stabilizes with the new running time. We need to check that the
6520 * utilization stays within the range of [0..capacity_orig] and cap it if
6521 * necessary. Without utilization capping, a group could be seen as overloaded
6522 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6523 * available capacity. We allow utilization to overshoot capacity_curr (but not
6524 * capacity_orig) as it useful for predicting the capacity required after task
6525 * migrations (scheduler-driven DVFS).
6527 * Return: the (estimated) utilization for the specified CPU
6529 static inline unsigned long cpu_util(int cpu)
6531 struct cfs_rq *cfs_rq;
6534 cfs_rq = &cpu_rq(cpu)->cfs;
6535 util = READ_ONCE(cfs_rq->avg.util_avg);
6537 if (sched_feat(UTIL_EST))
6538 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6540 return min_t(unsigned long, util, capacity_orig_of(cpu));
6544 * cpu_util_without: compute cpu utilization without any contributions from *p
6545 * @cpu: the CPU which utilization is requested
6546 * @p: the task which utilization should be discounted
6548 * The utilization of a CPU is defined by the utilization of tasks currently
6549 * enqueued on that CPU as well as tasks which are currently sleeping after an
6550 * execution on that CPU.
6552 * This method returns the utilization of the specified CPU by discounting the
6553 * utilization of the specified task, whenever the task is currently
6554 * contributing to the CPU utilization.
6556 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6558 struct cfs_rq *cfs_rq;
6561 /* Task has no contribution or is new */
6562 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6563 return cpu_util(cpu);
6565 cfs_rq = &cpu_rq(cpu)->cfs;
6566 util = READ_ONCE(cfs_rq->avg.util_avg);
6568 /* Discount task's util from CPU's util */
6569 lsub_positive(&util, task_util(p));
6574 * a) if *p is the only task sleeping on this CPU, then:
6575 * cpu_util (== task_util) > util_est (== 0)
6576 * and thus we return:
6577 * cpu_util_without = (cpu_util - task_util) = 0
6579 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6581 * cpu_util >= task_util
6582 * cpu_util > util_est (== 0)
6583 * and thus we discount *p's blocked utilization to return:
6584 * cpu_util_without = (cpu_util - task_util) >= 0
6586 * c) if other tasks are RUNNABLE on that CPU and
6587 * util_est > cpu_util
6588 * then we use util_est since it returns a more restrictive
6589 * estimation of the spare capacity on that CPU, by just
6590 * considering the expected utilization of tasks already
6591 * runnable on that CPU.
6593 * Cases a) and b) are covered by the above code, while case c) is
6594 * covered by the following code when estimated utilization is
6597 if (sched_feat(UTIL_EST)) {
6598 unsigned int estimated =
6599 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6602 * Despite the following checks we still have a small window
6603 * for a possible race, when an execl's select_task_rq_fair()
6604 * races with LB's detach_task():
6607 * p->on_rq = TASK_ON_RQ_MIGRATING;
6608 * ---------------------------------- A
6609 * deactivate_task() \
6610 * dequeue_task() + RaceTime
6611 * util_est_dequeue() /
6612 * ---------------------------------- B
6614 * The additional check on "current == p" it's required to
6615 * properly fix the execl regression and it helps in further
6616 * reducing the chances for the above race.
6618 if (unlikely(task_on_rq_queued(p) || current == p))
6619 lsub_positive(&estimated, _task_util_est(p));
6621 util = max(util, estimated);
6625 * Utilization (estimated) can exceed the CPU capacity, thus let's
6626 * clamp to the maximum CPU capacity to ensure consistency with
6627 * the cpu_util call.
6629 return min_t(unsigned long, util, capacity_orig_of(cpu));
6633 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6636 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6638 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6639 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6642 * If @p migrates from @cpu to another, remove its contribution. Or,
6643 * if @p migrates from another CPU to @cpu, add its contribution. In
6644 * the other cases, @cpu is not impacted by the migration, so the
6645 * util_avg should already be correct.
6647 if (task_cpu(p) == cpu && dst_cpu != cpu)
6648 lsub_positive(&util, task_util(p));
6649 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6650 util += task_util(p);
6652 if (sched_feat(UTIL_EST)) {
6653 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6656 * During wake-up, the task isn't enqueued yet and doesn't
6657 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6658 * so just add it (if needed) to "simulate" what will be
6659 * cpu_util() after the task has been enqueued.
6662 util_est += _task_util_est(p);
6664 util = max(util, util_est);
6667 return min(util, capacity_orig_of(cpu));
6671 * compute_energy(): Estimates the energy that @pd would consume if @p was
6672 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6673 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6674 * to compute what would be the energy if we decided to actually migrate that
6678 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6680 struct cpumask *pd_mask = perf_domain_span(pd);
6681 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6682 unsigned long max_util = 0, sum_util = 0;
6683 unsigned long _cpu_cap = cpu_cap;
6686 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6689 * The capacity state of CPUs of the current rd can be driven by CPUs
6690 * of another rd if they belong to the same pd. So, account for the
6691 * utilization of these CPUs too by masking pd with cpu_online_mask
6692 * instead of the rd span.
6694 * If an entire pd is outside of the current rd, it will not appear in
6695 * its pd list and will not be accounted by compute_energy().
6697 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6698 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6699 unsigned long cpu_util, util_running = util_freq;
6700 struct task_struct *tsk = NULL;
6703 * When @p is placed on @cpu:
6705 * util_running = max(cpu_util, cpu_util_est) +
6706 * max(task_util, _task_util_est)
6708 * while cpu_util_next is: max(cpu_util + task_util,
6709 * cpu_util_est + _task_util_est)
6711 if (cpu == dst_cpu) {
6714 cpu_util_next(cpu, p, -1) + task_util_est(p);
6718 * Busy time computation: utilization clamping is not
6719 * required since the ratio (sum_util / cpu_capacity)
6720 * is already enough to scale the EM reported power
6721 * consumption at the (eventually clamped) cpu_capacity.
6723 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6726 sum_util += min(cpu_util, _cpu_cap);
6729 * Performance domain frequency: utilization clamping
6730 * must be considered since it affects the selection
6731 * of the performance domain frequency.
6732 * NOTE: in case RT tasks are running, by default the
6733 * FREQUENCY_UTIL's utilization can be max OPP.
6735 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6736 FREQUENCY_UTIL, tsk);
6737 max_util = max(max_util, min(cpu_util, _cpu_cap));
6740 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6744 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6745 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6746 * spare capacity in each performance domain and uses it as a potential
6747 * candidate to execute the task. Then, it uses the Energy Model to figure
6748 * out which of the CPU candidates is the most energy-efficient.
6750 * The rationale for this heuristic is as follows. In a performance domain,
6751 * all the most energy efficient CPU candidates (according to the Energy
6752 * Model) are those for which we'll request a low frequency. When there are
6753 * several CPUs for which the frequency request will be the same, we don't
6754 * have enough data to break the tie between them, because the Energy Model
6755 * only includes active power costs. With this model, if we assume that
6756 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6757 * the maximum spare capacity in a performance domain is guaranteed to be among
6758 * the best candidates of the performance domain.
6760 * In practice, it could be preferable from an energy standpoint to pack
6761 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6762 * but that could also hurt our chances to go cluster idle, and we have no
6763 * ways to tell with the current Energy Model if this is actually a good
6764 * idea or not. So, find_energy_efficient_cpu() basically favors
6765 * cluster-packing, and spreading inside a cluster. That should at least be
6766 * a good thing for latency, and this is consistent with the idea that most
6767 * of the energy savings of EAS come from the asymmetry of the system, and
6768 * not so much from breaking the tie between identical CPUs. That's also the
6769 * reason why EAS is enabled in the topology code only for systems where
6770 * SD_ASYM_CPUCAPACITY is set.
6772 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6773 * they don't have any useful utilization data yet and it's not possible to
6774 * forecast their impact on energy consumption. Consequently, they will be
6775 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6776 * to be energy-inefficient in some use-cases. The alternative would be to
6777 * bias new tasks towards specific types of CPUs first, or to try to infer
6778 * their util_avg from the parent task, but those heuristics could hurt
6779 * other use-cases too. So, until someone finds a better way to solve this,
6780 * let's keep things simple by re-using the existing slow path.
6782 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6784 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6785 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6786 int cpu, best_energy_cpu = prev_cpu, target = -1;
6787 unsigned long cpu_cap, util, base_energy = 0;
6788 struct sched_domain *sd;
6789 struct perf_domain *pd;
6792 pd = rcu_dereference(rd->pd);
6793 if (!pd || READ_ONCE(rd->overutilized))
6797 * Energy-aware wake-up happens on the lowest sched_domain starting
6798 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6800 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6801 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6808 sync_entity_load_avg(&p->se);
6809 if (!task_util_est(p))
6812 for (; pd; pd = pd->next) {
6813 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6814 bool compute_prev_delta = false;
6815 unsigned long base_energy_pd;
6816 int max_spare_cap_cpu = -1;
6818 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6819 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6822 util = cpu_util_next(cpu, p, cpu);
6823 cpu_cap = capacity_of(cpu);
6824 spare_cap = cpu_cap;
6825 lsub_positive(&spare_cap, util);
6828 * Skip CPUs that cannot satisfy the capacity request.
6829 * IOW, placing the task there would make the CPU
6830 * overutilized. Take uclamp into account to see how
6831 * much capacity we can get out of the CPU; this is
6832 * aligned with sched_cpu_util().
6834 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6835 if (!fits_capacity(util, cpu_cap))
6838 if (cpu == prev_cpu) {
6839 /* Always use prev_cpu as a candidate. */
6840 compute_prev_delta = true;
6841 } else if (spare_cap > max_spare_cap) {
6843 * Find the CPU with the maximum spare capacity
6844 * in the performance domain.
6846 max_spare_cap = spare_cap;
6847 max_spare_cap_cpu = cpu;
6851 if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6854 /* Compute the 'base' energy of the pd, without @p */
6855 base_energy_pd = compute_energy(p, -1, pd);
6856 base_energy += base_energy_pd;
6858 /* Evaluate the energy impact of using prev_cpu. */
6859 if (compute_prev_delta) {
6860 prev_delta = compute_energy(p, prev_cpu, pd);
6861 if (prev_delta < base_energy_pd)
6863 prev_delta -= base_energy_pd;
6864 best_delta = min(best_delta, prev_delta);
6867 /* Evaluate the energy impact of using max_spare_cap_cpu. */
6868 if (max_spare_cap_cpu >= 0) {
6869 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6870 if (cur_delta < base_energy_pd)
6872 cur_delta -= base_energy_pd;
6873 if (cur_delta < best_delta) {
6874 best_delta = cur_delta;
6875 best_energy_cpu = max_spare_cap_cpu;
6882 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6883 * least 6% of the energy used by prev_cpu.
6885 if ((prev_delta == ULONG_MAX) ||
6886 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6887 target = best_energy_cpu;
6898 * select_task_rq_fair: Select target runqueue for the waking task in domains
6899 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6900 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6902 * Balances load by selecting the idlest CPU in the idlest group, or under
6903 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6905 * Returns the target CPU number.
6908 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6910 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6911 struct sched_domain *tmp, *sd = NULL;
6912 int cpu = smp_processor_id();
6913 int new_cpu = prev_cpu;
6914 int want_affine = 0;
6915 /* SD_flags and WF_flags share the first nibble */
6916 int sd_flag = wake_flags & 0xF;
6919 * required for stable ->cpus_allowed
6921 lockdep_assert_held(&p->pi_lock);
6922 if (wake_flags & WF_TTWU) {
6925 if (sched_energy_enabled()) {
6926 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6932 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6936 for_each_domain(cpu, tmp) {
6938 * If both 'cpu' and 'prev_cpu' are part of this domain,
6939 * cpu is a valid SD_WAKE_AFFINE target.
6941 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6942 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6943 if (cpu != prev_cpu)
6944 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6946 sd = NULL; /* Prefer wake_affine over balance flags */
6950 if (tmp->flags & sd_flag)
6952 else if (!want_affine)
6958 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6959 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
6961 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6968 static void detach_entity_cfs_rq(struct sched_entity *se);
6971 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6972 * cfs_rq_of(p) references at time of call are still valid and identify the
6973 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6975 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6978 * As blocked tasks retain absolute vruntime the migration needs to
6979 * deal with this by subtracting the old and adding the new
6980 * min_vruntime -- the latter is done by enqueue_entity() when placing
6981 * the task on the new runqueue.
6983 if (READ_ONCE(p->__state) == TASK_WAKING) {
6984 struct sched_entity *se = &p->se;
6985 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6988 #ifndef CONFIG_64BIT
6989 u64 min_vruntime_copy;
6992 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6994 min_vruntime = cfs_rq->min_vruntime;
6995 } while (min_vruntime != min_vruntime_copy);
6997 min_vruntime = cfs_rq->min_vruntime;
7000 se->vruntime -= min_vruntime;
7003 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7005 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7006 * rq->lock and can modify state directly.
7008 lockdep_assert_rq_held(task_rq(p));
7009 detach_entity_cfs_rq(&p->se);
7013 * We are supposed to update the task to "current" time, then
7014 * its up to date and ready to go to new CPU/cfs_rq. But we
7015 * have difficulty in getting what current time is, so simply
7016 * throw away the out-of-date time. This will result in the
7017 * wakee task is less decayed, but giving the wakee more load
7020 remove_entity_load_avg(&p->se);
7023 /* Tell new CPU we are migrated */
7024 p->se.avg.last_update_time = 0;
7026 /* We have migrated, no longer consider this task hot */
7027 p->se.exec_start = 0;
7029 update_scan_period(p, new_cpu);
7032 static void task_dead_fair(struct task_struct *p)
7034 remove_entity_load_avg(&p->se);
7038 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7043 return newidle_balance(rq, rf) != 0;
7045 #endif /* CONFIG_SMP */
7047 static unsigned long wakeup_gran(struct sched_entity *se)
7049 unsigned long gran = sysctl_sched_wakeup_granularity;
7052 * Since its curr running now, convert the gran from real-time
7053 * to virtual-time in his units.
7055 * By using 'se' instead of 'curr' we penalize light tasks, so
7056 * they get preempted easier. That is, if 'se' < 'curr' then
7057 * the resulting gran will be larger, therefore penalizing the
7058 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7059 * be smaller, again penalizing the lighter task.
7061 * This is especially important for buddies when the leftmost
7062 * task is higher priority than the buddy.
7064 return calc_delta_fair(gran, se);
7068 * Should 'se' preempt 'curr'.
7082 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7084 s64 gran, vdiff = curr->vruntime - se->vruntime;
7089 gran = wakeup_gran(se);
7096 static void set_last_buddy(struct sched_entity *se)
7098 for_each_sched_entity(se) {
7099 if (SCHED_WARN_ON(!se->on_rq))
7103 cfs_rq_of(se)->last = se;
7107 static void set_next_buddy(struct sched_entity *se)
7109 for_each_sched_entity(se) {
7110 if (SCHED_WARN_ON(!se->on_rq))
7114 cfs_rq_of(se)->next = se;
7118 static void set_skip_buddy(struct sched_entity *se)
7120 for_each_sched_entity(se)
7121 cfs_rq_of(se)->skip = se;
7125 * Preempt the current task with a newly woken task if needed:
7127 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7129 struct task_struct *curr = rq->curr;
7130 struct sched_entity *se = &curr->se, *pse = &p->se;
7131 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7132 int scale = cfs_rq->nr_running >= sched_nr_latency;
7133 int next_buddy_marked = 0;
7134 int cse_is_idle, pse_is_idle;
7136 if (unlikely(se == pse))
7140 * This is possible from callers such as attach_tasks(), in which we
7141 * unconditionally check_preempt_curr() after an enqueue (which may have
7142 * lead to a throttle). This both saves work and prevents false
7143 * next-buddy nomination below.
7145 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7148 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7149 set_next_buddy(pse);
7150 next_buddy_marked = 1;
7154 * We can come here with TIF_NEED_RESCHED already set from new task
7157 * Note: this also catches the edge-case of curr being in a throttled
7158 * group (e.g. via set_curr_task), since update_curr() (in the
7159 * enqueue of curr) will have resulted in resched being set. This
7160 * prevents us from potentially nominating it as a false LAST_BUDDY
7163 if (test_tsk_need_resched(curr))
7166 /* Idle tasks are by definition preempted by non-idle tasks. */
7167 if (unlikely(task_has_idle_policy(curr)) &&
7168 likely(!task_has_idle_policy(p)))
7172 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7173 * is driven by the tick):
7175 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7178 find_matching_se(&se, &pse);
7181 cse_is_idle = se_is_idle(se);
7182 pse_is_idle = se_is_idle(pse);
7185 * Preempt an idle group in favor of a non-idle group (and don't preempt
7186 * in the inverse case).
7188 if (cse_is_idle && !pse_is_idle)
7190 if (cse_is_idle != pse_is_idle)
7193 update_curr(cfs_rq_of(se));
7194 if (wakeup_preempt_entity(se, pse) == 1) {
7196 * Bias pick_next to pick the sched entity that is
7197 * triggering this preemption.
7199 if (!next_buddy_marked)
7200 set_next_buddy(pse);
7209 * Only set the backward buddy when the current task is still
7210 * on the rq. This can happen when a wakeup gets interleaved
7211 * with schedule on the ->pre_schedule() or idle_balance()
7212 * point, either of which can * drop the rq lock.
7214 * Also, during early boot the idle thread is in the fair class,
7215 * for obvious reasons its a bad idea to schedule back to it.
7217 if (unlikely(!se->on_rq || curr == rq->idle))
7220 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7225 static struct task_struct *pick_task_fair(struct rq *rq)
7227 struct sched_entity *se;
7228 struct cfs_rq *cfs_rq;
7232 if (!cfs_rq->nr_running)
7236 struct sched_entity *curr = cfs_rq->curr;
7238 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7241 update_curr(cfs_rq);
7245 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7249 se = pick_next_entity(cfs_rq, curr);
7250 cfs_rq = group_cfs_rq(se);
7257 struct task_struct *
7258 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7260 struct cfs_rq *cfs_rq = &rq->cfs;
7261 struct sched_entity *se;
7262 struct task_struct *p;
7266 if (!sched_fair_runnable(rq))
7269 #ifdef CONFIG_FAIR_GROUP_SCHED
7270 if (!prev || prev->sched_class != &fair_sched_class)
7274 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7275 * likely that a next task is from the same cgroup as the current.
7277 * Therefore attempt to avoid putting and setting the entire cgroup
7278 * hierarchy, only change the part that actually changes.
7282 struct sched_entity *curr = cfs_rq->curr;
7285 * Since we got here without doing put_prev_entity() we also
7286 * have to consider cfs_rq->curr. If it is still a runnable
7287 * entity, update_curr() will update its vruntime, otherwise
7288 * forget we've ever seen it.
7292 update_curr(cfs_rq);
7297 * This call to check_cfs_rq_runtime() will do the
7298 * throttle and dequeue its entity in the parent(s).
7299 * Therefore the nr_running test will indeed
7302 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7305 if (!cfs_rq->nr_running)
7312 se = pick_next_entity(cfs_rq, curr);
7313 cfs_rq = group_cfs_rq(se);
7319 * Since we haven't yet done put_prev_entity and if the selected task
7320 * is a different task than we started out with, try and touch the
7321 * least amount of cfs_rqs.
7324 struct sched_entity *pse = &prev->se;
7326 while (!(cfs_rq = is_same_group(se, pse))) {
7327 int se_depth = se->depth;
7328 int pse_depth = pse->depth;
7330 if (se_depth <= pse_depth) {
7331 put_prev_entity(cfs_rq_of(pse), pse);
7332 pse = parent_entity(pse);
7334 if (se_depth >= pse_depth) {
7335 set_next_entity(cfs_rq_of(se), se);
7336 se = parent_entity(se);
7340 put_prev_entity(cfs_rq, pse);
7341 set_next_entity(cfs_rq, se);
7348 put_prev_task(rq, prev);
7351 se = pick_next_entity(cfs_rq, NULL);
7352 set_next_entity(cfs_rq, se);
7353 cfs_rq = group_cfs_rq(se);
7358 done: __maybe_unused;
7361 * Move the next running task to the front of
7362 * the list, so our cfs_tasks list becomes MRU
7365 list_move(&p->se.group_node, &rq->cfs_tasks);
7368 if (hrtick_enabled_fair(rq))
7369 hrtick_start_fair(rq, p);
7371 update_misfit_status(p, rq);
7379 new_tasks = newidle_balance(rq, rf);
7382 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7383 * possible for any higher priority task to appear. In that case we
7384 * must re-start the pick_next_entity() loop.
7393 * rq is about to be idle, check if we need to update the
7394 * lost_idle_time of clock_pelt
7396 update_idle_rq_clock_pelt(rq);
7401 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7403 return pick_next_task_fair(rq, NULL, NULL);
7407 * Account for a descheduled task:
7409 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7411 struct sched_entity *se = &prev->se;
7412 struct cfs_rq *cfs_rq;
7414 for_each_sched_entity(se) {
7415 cfs_rq = cfs_rq_of(se);
7416 put_prev_entity(cfs_rq, se);
7421 * sched_yield() is very simple
7423 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7425 static void yield_task_fair(struct rq *rq)
7427 struct task_struct *curr = rq->curr;
7428 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7429 struct sched_entity *se = &curr->se;
7432 * Are we the only task in the tree?
7434 if (unlikely(rq->nr_running == 1))
7437 clear_buddies(cfs_rq, se);
7439 if (curr->policy != SCHED_BATCH) {
7440 update_rq_clock(rq);
7442 * Update run-time statistics of the 'current'.
7444 update_curr(cfs_rq);
7446 * Tell update_rq_clock() that we've just updated,
7447 * so we don't do microscopic update in schedule()
7448 * and double the fastpath cost.
7450 rq_clock_skip_update(rq);
7456 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7458 struct sched_entity *se = &p->se;
7460 /* throttled hierarchies are not runnable */
7461 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7464 /* Tell the scheduler that we'd really like pse to run next. */
7467 yield_task_fair(rq);
7473 /**************************************************
7474 * Fair scheduling class load-balancing methods.
7478 * The purpose of load-balancing is to achieve the same basic fairness the
7479 * per-CPU scheduler provides, namely provide a proportional amount of compute
7480 * time to each task. This is expressed in the following equation:
7482 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7484 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7485 * W_i,0 is defined as:
7487 * W_i,0 = \Sum_j w_i,j (2)
7489 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7490 * is derived from the nice value as per sched_prio_to_weight[].
7492 * The weight average is an exponential decay average of the instantaneous
7495 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7497 * C_i is the compute capacity of CPU i, typically it is the
7498 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7499 * can also include other factors [XXX].
7501 * To achieve this balance we define a measure of imbalance which follows
7502 * directly from (1):
7504 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7506 * We them move tasks around to minimize the imbalance. In the continuous
7507 * function space it is obvious this converges, in the discrete case we get
7508 * a few fun cases generally called infeasible weight scenarios.
7511 * - infeasible weights;
7512 * - local vs global optima in the discrete case. ]
7517 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7518 * for all i,j solution, we create a tree of CPUs that follows the hardware
7519 * topology where each level pairs two lower groups (or better). This results
7520 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7521 * tree to only the first of the previous level and we decrease the frequency
7522 * of load-balance at each level inv. proportional to the number of CPUs in
7528 * \Sum { --- * --- * 2^i } = O(n) (5)
7530 * `- size of each group
7531 * | | `- number of CPUs doing load-balance
7533 * `- sum over all levels
7535 * Coupled with a limit on how many tasks we can migrate every balance pass,
7536 * this makes (5) the runtime complexity of the balancer.
7538 * An important property here is that each CPU is still (indirectly) connected
7539 * to every other CPU in at most O(log n) steps:
7541 * The adjacency matrix of the resulting graph is given by:
7544 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7547 * And you'll find that:
7549 * A^(log_2 n)_i,j != 0 for all i,j (7)
7551 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7552 * The task movement gives a factor of O(m), giving a convergence complexity
7555 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7560 * In order to avoid CPUs going idle while there's still work to do, new idle
7561 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7562 * tree itself instead of relying on other CPUs to bring it work.
7564 * This adds some complexity to both (5) and (8) but it reduces the total idle
7572 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7575 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7580 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7582 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7584 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7587 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7588 * rewrite all of this once again.]
7591 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7593 enum fbq_type { regular, remote, all };
7596 * 'group_type' describes the group of CPUs at the moment of load balancing.
7598 * The enum is ordered by pulling priority, with the group with lowest priority
7599 * first so the group_type can simply be compared when selecting the busiest
7600 * group. See update_sd_pick_busiest().
7603 /* The group has spare capacity that can be used to run more tasks. */
7604 group_has_spare = 0,
7606 * The group is fully used and the tasks don't compete for more CPU
7607 * cycles. Nevertheless, some tasks might wait before running.
7611 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7612 * and must be migrated to a more powerful CPU.
7616 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7617 * and the task should be migrated to it instead of running on the
7622 * The tasks' affinity constraints previously prevented the scheduler
7623 * from balancing the load across the system.
7627 * The CPU is overloaded and can't provide expected CPU cycles to all
7633 enum migration_type {
7640 #define LBF_ALL_PINNED 0x01
7641 #define LBF_NEED_BREAK 0x02
7642 #define LBF_DST_PINNED 0x04
7643 #define LBF_SOME_PINNED 0x08
7644 #define LBF_ACTIVE_LB 0x10
7647 struct sched_domain *sd;
7655 struct cpumask *dst_grpmask;
7657 enum cpu_idle_type idle;
7659 /* The set of CPUs under consideration for load-balancing */
7660 struct cpumask *cpus;
7665 unsigned int loop_break;
7666 unsigned int loop_max;
7668 enum fbq_type fbq_type;
7669 enum migration_type migration_type;
7670 struct list_head tasks;
7674 * Is this task likely cache-hot:
7676 static int task_hot(struct task_struct *p, struct lb_env *env)
7680 lockdep_assert_rq_held(env->src_rq);
7682 if (p->sched_class != &fair_sched_class)
7685 if (unlikely(task_has_idle_policy(p)))
7688 /* SMT siblings share cache */
7689 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7693 * Buddy candidates are cache hot:
7695 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7696 (&p->se == cfs_rq_of(&p->se)->next ||
7697 &p->se == cfs_rq_of(&p->se)->last))
7700 if (sysctl_sched_migration_cost == -1)
7704 * Don't migrate task if the task's cookie does not match
7705 * with the destination CPU's core cookie.
7707 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7710 if (sysctl_sched_migration_cost == 0)
7713 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7715 return delta < (s64)sysctl_sched_migration_cost;
7718 #ifdef CONFIG_NUMA_BALANCING
7720 * Returns 1, if task migration degrades locality
7721 * Returns 0, if task migration improves locality i.e migration preferred.
7722 * Returns -1, if task migration is not affected by locality.
7724 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7726 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7727 unsigned long src_weight, dst_weight;
7728 int src_nid, dst_nid, dist;
7730 if (!static_branch_likely(&sched_numa_balancing))
7733 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7736 src_nid = cpu_to_node(env->src_cpu);
7737 dst_nid = cpu_to_node(env->dst_cpu);
7739 if (src_nid == dst_nid)
7742 /* Migrating away from the preferred node is always bad. */
7743 if (src_nid == p->numa_preferred_nid) {
7744 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7750 /* Encourage migration to the preferred node. */
7751 if (dst_nid == p->numa_preferred_nid)
7754 /* Leaving a core idle is often worse than degrading locality. */
7755 if (env->idle == CPU_IDLE)
7758 dist = node_distance(src_nid, dst_nid);
7760 src_weight = group_weight(p, src_nid, dist);
7761 dst_weight = group_weight(p, dst_nid, dist);
7763 src_weight = task_weight(p, src_nid, dist);
7764 dst_weight = task_weight(p, dst_nid, dist);
7767 return dst_weight < src_weight;
7771 static inline int migrate_degrades_locality(struct task_struct *p,
7779 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7782 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7786 lockdep_assert_rq_held(env->src_rq);
7789 * We do not migrate tasks that are:
7790 * 1) throttled_lb_pair, or
7791 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7792 * 3) running (obviously), or
7793 * 4) are cache-hot on their current CPU.
7795 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7798 /* Disregard pcpu kthreads; they are where they need to be. */
7799 if (kthread_is_per_cpu(p))
7802 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7805 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7807 env->flags |= LBF_SOME_PINNED;
7810 * Remember if this task can be migrated to any other CPU in
7811 * our sched_group. We may want to revisit it if we couldn't
7812 * meet load balance goals by pulling other tasks on src_cpu.
7814 * Avoid computing new_dst_cpu
7816 * - if we have already computed one in current iteration
7817 * - if it's an active balance
7819 if (env->idle == CPU_NEWLY_IDLE ||
7820 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7823 /* Prevent to re-select dst_cpu via env's CPUs: */
7824 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7825 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7826 env->flags |= LBF_DST_PINNED;
7827 env->new_dst_cpu = cpu;
7835 /* Record that we found at least one task that could run on dst_cpu */
7836 env->flags &= ~LBF_ALL_PINNED;
7838 if (task_running(env->src_rq, p)) {
7839 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7844 * Aggressive migration if:
7846 * 2) destination numa is preferred
7847 * 3) task is cache cold, or
7848 * 4) too many balance attempts have failed.
7850 if (env->flags & LBF_ACTIVE_LB)
7853 tsk_cache_hot = migrate_degrades_locality(p, env);
7854 if (tsk_cache_hot == -1)
7855 tsk_cache_hot = task_hot(p, env);
7857 if (tsk_cache_hot <= 0 ||
7858 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7859 if (tsk_cache_hot == 1) {
7860 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7861 schedstat_inc(p->se.statistics.nr_forced_migrations);
7866 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7871 * detach_task() -- detach the task for the migration specified in env
7873 static void detach_task(struct task_struct *p, struct lb_env *env)
7875 lockdep_assert_rq_held(env->src_rq);
7877 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7878 set_task_cpu(p, env->dst_cpu);
7882 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7883 * part of active balancing operations within "domain".
7885 * Returns a task if successful and NULL otherwise.
7887 static struct task_struct *detach_one_task(struct lb_env *env)
7889 struct task_struct *p;
7891 lockdep_assert_rq_held(env->src_rq);
7893 list_for_each_entry_reverse(p,
7894 &env->src_rq->cfs_tasks, se.group_node) {
7895 if (!can_migrate_task(p, env))
7898 detach_task(p, env);
7901 * Right now, this is only the second place where
7902 * lb_gained[env->idle] is updated (other is detach_tasks)
7903 * so we can safely collect stats here rather than
7904 * inside detach_tasks().
7906 schedstat_inc(env->sd->lb_gained[env->idle]);
7912 static const unsigned int sched_nr_migrate_break = 32;
7915 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7916 * busiest_rq, as part of a balancing operation within domain "sd".
7918 * Returns number of detached tasks if successful and 0 otherwise.
7920 static int detach_tasks(struct lb_env *env)
7922 struct list_head *tasks = &env->src_rq->cfs_tasks;
7923 unsigned long util, load;
7924 struct task_struct *p;
7927 lockdep_assert_rq_held(env->src_rq);
7930 * Source run queue has been emptied by another CPU, clear
7931 * LBF_ALL_PINNED flag as we will not test any task.
7933 if (env->src_rq->nr_running <= 1) {
7934 env->flags &= ~LBF_ALL_PINNED;
7938 if (env->imbalance <= 0)
7941 while (!list_empty(tasks)) {
7943 * We don't want to steal all, otherwise we may be treated likewise,
7944 * which could at worst lead to a livelock crash.
7946 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7949 p = list_last_entry(tasks, struct task_struct, se.group_node);
7952 /* We've more or less seen every task there is, call it quits */
7953 if (env->loop > env->loop_max)
7956 /* take a breather every nr_migrate tasks */
7957 if (env->loop > env->loop_break) {
7958 env->loop_break += sched_nr_migrate_break;
7959 env->flags |= LBF_NEED_BREAK;
7963 if (!can_migrate_task(p, env))
7966 switch (env->migration_type) {
7969 * Depending of the number of CPUs and tasks and the
7970 * cgroup hierarchy, task_h_load() can return a null
7971 * value. Make sure that env->imbalance decreases
7972 * otherwise detach_tasks() will stop only after
7973 * detaching up to loop_max tasks.
7975 load = max_t(unsigned long, task_h_load(p), 1);
7977 if (sched_feat(LB_MIN) &&
7978 load < 16 && !env->sd->nr_balance_failed)
7982 * Make sure that we don't migrate too much load.
7983 * Nevertheless, let relax the constraint if
7984 * scheduler fails to find a good waiting task to
7987 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7990 env->imbalance -= load;
7994 util = task_util_est(p);
7996 if (util > env->imbalance)
7999 env->imbalance -= util;
8006 case migrate_misfit:
8007 /* This is not a misfit task */
8008 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
8015 detach_task(p, env);
8016 list_add(&p->se.group_node, &env->tasks);
8020 #ifdef CONFIG_PREEMPTION
8022 * NEWIDLE balancing is a source of latency, so preemptible
8023 * kernels will stop after the first task is detached to minimize
8024 * the critical section.
8026 if (env->idle == CPU_NEWLY_IDLE)
8031 * We only want to steal up to the prescribed amount of
8034 if (env->imbalance <= 0)
8039 list_move(&p->se.group_node, tasks);
8043 * Right now, this is one of only two places we collect this stat
8044 * so we can safely collect detach_one_task() stats here rather
8045 * than inside detach_one_task().
8047 schedstat_add(env->sd->lb_gained[env->idle], detached);
8053 * attach_task() -- attach the task detached by detach_task() to its new rq.
8055 static void attach_task(struct rq *rq, struct task_struct *p)
8057 lockdep_assert_rq_held(rq);
8059 BUG_ON(task_rq(p) != rq);
8060 activate_task(rq, p, ENQUEUE_NOCLOCK);
8061 check_preempt_curr(rq, p, 0);
8065 * attach_one_task() -- attaches the task returned from detach_one_task() to
8068 static void attach_one_task(struct rq *rq, struct task_struct *p)
8073 update_rq_clock(rq);
8079 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8082 static void attach_tasks(struct lb_env *env)
8084 struct list_head *tasks = &env->tasks;
8085 struct task_struct *p;
8088 rq_lock(env->dst_rq, &rf);
8089 update_rq_clock(env->dst_rq);
8091 while (!list_empty(tasks)) {
8092 p = list_first_entry(tasks, struct task_struct, se.group_node);
8093 list_del_init(&p->se.group_node);
8095 attach_task(env->dst_rq, p);
8098 rq_unlock(env->dst_rq, &rf);
8101 #ifdef CONFIG_NO_HZ_COMMON
8102 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8104 if (cfs_rq->avg.load_avg)
8107 if (cfs_rq->avg.util_avg)
8113 static inline bool others_have_blocked(struct rq *rq)
8115 if (READ_ONCE(rq->avg_rt.util_avg))
8118 if (READ_ONCE(rq->avg_dl.util_avg))
8121 if (thermal_load_avg(rq))
8124 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8125 if (READ_ONCE(rq->avg_irq.util_avg))
8132 static inline void update_blocked_load_tick(struct rq *rq)
8134 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8137 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8140 rq->has_blocked_load = 0;
8143 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8144 static inline bool others_have_blocked(struct rq *rq) { return false; }
8145 static inline void update_blocked_load_tick(struct rq *rq) {}
8146 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8149 static bool __update_blocked_others(struct rq *rq, bool *done)
8151 const struct sched_class *curr_class;
8152 u64 now = rq_clock_pelt(rq);
8153 unsigned long thermal_pressure;
8157 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8158 * DL and IRQ signals have been updated before updating CFS.
8160 curr_class = rq->curr->sched_class;
8162 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8164 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8165 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8166 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8167 update_irq_load_avg(rq, 0);
8169 if (others_have_blocked(rq))
8175 #ifdef CONFIG_FAIR_GROUP_SCHED
8177 static bool __update_blocked_fair(struct rq *rq, bool *done)
8179 struct cfs_rq *cfs_rq, *pos;
8180 bool decayed = false;
8181 int cpu = cpu_of(rq);
8184 * Iterates the task_group tree in a bottom up fashion, see
8185 * list_add_leaf_cfs_rq() for details.
8187 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8188 struct sched_entity *se;
8190 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8191 update_tg_load_avg(cfs_rq);
8193 if (cfs_rq == &rq->cfs)
8197 /* Propagate pending load changes to the parent, if any: */
8198 se = cfs_rq->tg->se[cpu];
8199 if (se && !skip_blocked_update(se))
8200 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8203 * There can be a lot of idle CPU cgroups. Don't let fully
8204 * decayed cfs_rqs linger on the list.
8206 if (cfs_rq_is_decayed(cfs_rq))
8207 list_del_leaf_cfs_rq(cfs_rq);
8209 /* Don't need periodic decay once load/util_avg are null */
8210 if (cfs_rq_has_blocked(cfs_rq))
8218 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8219 * This needs to be done in a top-down fashion because the load of a child
8220 * group is a fraction of its parents load.
8222 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8224 struct rq *rq = rq_of(cfs_rq);
8225 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8226 unsigned long now = jiffies;
8229 if (cfs_rq->last_h_load_update == now)
8232 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8233 for_each_sched_entity(se) {
8234 cfs_rq = cfs_rq_of(se);
8235 WRITE_ONCE(cfs_rq->h_load_next, se);
8236 if (cfs_rq->last_h_load_update == now)
8241 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8242 cfs_rq->last_h_load_update = now;
8245 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8246 load = cfs_rq->h_load;
8247 load = div64_ul(load * se->avg.load_avg,
8248 cfs_rq_load_avg(cfs_rq) + 1);
8249 cfs_rq = group_cfs_rq(se);
8250 cfs_rq->h_load = load;
8251 cfs_rq->last_h_load_update = now;
8255 static unsigned long task_h_load(struct task_struct *p)
8257 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8259 update_cfs_rq_h_load(cfs_rq);
8260 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8261 cfs_rq_load_avg(cfs_rq) + 1);
8264 static bool __update_blocked_fair(struct rq *rq, bool *done)
8266 struct cfs_rq *cfs_rq = &rq->cfs;
8269 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8270 if (cfs_rq_has_blocked(cfs_rq))
8276 static unsigned long task_h_load(struct task_struct *p)
8278 return p->se.avg.load_avg;
8282 static void update_blocked_averages(int cpu)
8284 bool decayed = false, done = true;
8285 struct rq *rq = cpu_rq(cpu);
8288 rq_lock_irqsave(rq, &rf);
8289 update_blocked_load_tick(rq);
8290 update_rq_clock(rq);
8292 decayed |= __update_blocked_others(rq, &done);
8293 decayed |= __update_blocked_fair(rq, &done);
8295 update_blocked_load_status(rq, !done);
8297 cpufreq_update_util(rq, 0);
8298 rq_unlock_irqrestore(rq, &rf);
8301 /********** Helpers for find_busiest_group ************************/
8304 * sg_lb_stats - stats of a sched_group required for load_balancing
8306 struct sg_lb_stats {
8307 unsigned long avg_load; /*Avg load across the CPUs of the group */
8308 unsigned long group_load; /* Total load over the CPUs of the group */
8309 unsigned long group_capacity;
8310 unsigned long group_util; /* Total utilization over the CPUs of the group */
8311 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8312 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8313 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8314 unsigned int idle_cpus;
8315 unsigned int group_weight;
8316 enum group_type group_type;
8317 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8318 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8319 #ifdef CONFIG_NUMA_BALANCING
8320 unsigned int nr_numa_running;
8321 unsigned int nr_preferred_running;
8326 * sd_lb_stats - Structure to store the statistics of a sched_domain
8327 * during load balancing.
8329 struct sd_lb_stats {
8330 struct sched_group *busiest; /* Busiest group in this sd */
8331 struct sched_group *local; /* Local group in this sd */
8332 unsigned long total_load; /* Total load of all groups in sd */
8333 unsigned long total_capacity; /* Total capacity of all groups in sd */
8334 unsigned long avg_load; /* Average load across all groups in sd */
8335 unsigned int prefer_sibling; /* tasks should go to sibling first */
8337 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8338 struct sg_lb_stats local_stat; /* Statistics of the local group */
8341 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8344 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8345 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8346 * We must however set busiest_stat::group_type and
8347 * busiest_stat::idle_cpus to the worst busiest group because
8348 * update_sd_pick_busiest() reads these before assignment.
8350 *sds = (struct sd_lb_stats){
8354 .total_capacity = 0UL,
8356 .idle_cpus = UINT_MAX,
8357 .group_type = group_has_spare,
8362 static unsigned long scale_rt_capacity(int cpu)
8364 struct rq *rq = cpu_rq(cpu);
8365 unsigned long max = arch_scale_cpu_capacity(cpu);
8366 unsigned long used, free;
8369 irq = cpu_util_irq(rq);
8371 if (unlikely(irq >= max))
8375 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8376 * (running and not running) with weights 0 and 1024 respectively.
8377 * avg_thermal.load_avg tracks thermal pressure and the weighted
8378 * average uses the actual delta max capacity(load).
8380 used = READ_ONCE(rq->avg_rt.util_avg);
8381 used += READ_ONCE(rq->avg_dl.util_avg);
8382 used += thermal_load_avg(rq);
8384 if (unlikely(used >= max))
8389 return scale_irq_capacity(free, irq, max);
8392 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8394 unsigned long capacity = scale_rt_capacity(cpu);
8395 struct sched_group *sdg = sd->groups;
8397 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8402 cpu_rq(cpu)->cpu_capacity = capacity;
8403 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8405 sdg->sgc->capacity = capacity;
8406 sdg->sgc->min_capacity = capacity;
8407 sdg->sgc->max_capacity = capacity;
8410 void update_group_capacity(struct sched_domain *sd, int cpu)
8412 struct sched_domain *child = sd->child;
8413 struct sched_group *group, *sdg = sd->groups;
8414 unsigned long capacity, min_capacity, max_capacity;
8415 unsigned long interval;
8417 interval = msecs_to_jiffies(sd->balance_interval);
8418 interval = clamp(interval, 1UL, max_load_balance_interval);
8419 sdg->sgc->next_update = jiffies + interval;
8422 update_cpu_capacity(sd, cpu);
8427 min_capacity = ULONG_MAX;
8430 if (child->flags & SD_OVERLAP) {
8432 * SD_OVERLAP domains cannot assume that child groups
8433 * span the current group.
8436 for_each_cpu(cpu, sched_group_span(sdg)) {
8437 unsigned long cpu_cap = capacity_of(cpu);
8439 capacity += cpu_cap;
8440 min_capacity = min(cpu_cap, min_capacity);
8441 max_capacity = max(cpu_cap, max_capacity);
8445 * !SD_OVERLAP domains can assume that child groups
8446 * span the current group.
8449 group = child->groups;
8451 struct sched_group_capacity *sgc = group->sgc;
8453 capacity += sgc->capacity;
8454 min_capacity = min(sgc->min_capacity, min_capacity);
8455 max_capacity = max(sgc->max_capacity, max_capacity);
8456 group = group->next;
8457 } while (group != child->groups);
8460 sdg->sgc->capacity = capacity;
8461 sdg->sgc->min_capacity = min_capacity;
8462 sdg->sgc->max_capacity = max_capacity;
8466 * Check whether the capacity of the rq has been noticeably reduced by side
8467 * activity. The imbalance_pct is used for the threshold.
8468 * Return true is the capacity is reduced
8471 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8473 return ((rq->cpu_capacity * sd->imbalance_pct) <
8474 (rq->cpu_capacity_orig * 100));
8478 * Check whether a rq has a misfit task and if it looks like we can actually
8479 * help that task: we can migrate the task to a CPU of higher capacity, or
8480 * the task's current CPU is heavily pressured.
8482 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8484 return rq->misfit_task_load &&
8485 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8486 check_cpu_capacity(rq, sd));
8490 * Group imbalance indicates (and tries to solve) the problem where balancing
8491 * groups is inadequate due to ->cpus_ptr constraints.
8493 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8494 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8497 * { 0 1 2 3 } { 4 5 6 7 }
8500 * If we were to balance group-wise we'd place two tasks in the first group and
8501 * two tasks in the second group. Clearly this is undesired as it will overload
8502 * cpu 3 and leave one of the CPUs in the second group unused.
8504 * The current solution to this issue is detecting the skew in the first group
8505 * by noticing the lower domain failed to reach balance and had difficulty
8506 * moving tasks due to affinity constraints.
8508 * When this is so detected; this group becomes a candidate for busiest; see
8509 * update_sd_pick_busiest(). And calculate_imbalance() and
8510 * find_busiest_group() avoid some of the usual balance conditions to allow it
8511 * to create an effective group imbalance.
8513 * This is a somewhat tricky proposition since the next run might not find the
8514 * group imbalance and decide the groups need to be balanced again. A most
8515 * subtle and fragile situation.
8518 static inline int sg_imbalanced(struct sched_group *group)
8520 return group->sgc->imbalance;
8524 * group_has_capacity returns true if the group has spare capacity that could
8525 * be used by some tasks.
8526 * We consider that a group has spare capacity if the * number of task is
8527 * smaller than the number of CPUs or if the utilization is lower than the
8528 * available capacity for CFS tasks.
8529 * For the latter, we use a threshold to stabilize the state, to take into
8530 * account the variance of the tasks' load and to return true if the available
8531 * capacity in meaningful for the load balancer.
8532 * As an example, an available capacity of 1% can appear but it doesn't make
8533 * any benefit for the load balance.
8536 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8538 if (sgs->sum_nr_running < sgs->group_weight)
8541 if ((sgs->group_capacity * imbalance_pct) <
8542 (sgs->group_runnable * 100))
8545 if ((sgs->group_capacity * 100) >
8546 (sgs->group_util * imbalance_pct))
8553 * group_is_overloaded returns true if the group has more tasks than it can
8555 * group_is_overloaded is not equals to !group_has_capacity because a group
8556 * with the exact right number of tasks, has no more spare capacity but is not
8557 * overloaded so both group_has_capacity and group_is_overloaded return
8561 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8563 if (sgs->sum_nr_running <= sgs->group_weight)
8566 if ((sgs->group_capacity * 100) <
8567 (sgs->group_util * imbalance_pct))
8570 if ((sgs->group_capacity * imbalance_pct) <
8571 (sgs->group_runnable * 100))
8578 group_type group_classify(unsigned int imbalance_pct,
8579 struct sched_group *group,
8580 struct sg_lb_stats *sgs)
8582 if (group_is_overloaded(imbalance_pct, sgs))
8583 return group_overloaded;
8585 if (sg_imbalanced(group))
8586 return group_imbalanced;
8588 if (sgs->group_asym_packing)
8589 return group_asym_packing;
8591 if (sgs->group_misfit_task_load)
8592 return group_misfit_task;
8594 if (!group_has_capacity(imbalance_pct, sgs))
8595 return group_fully_busy;
8597 return group_has_spare;
8601 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8602 * @env: The load balancing environment.
8603 * @group: sched_group whose statistics are to be updated.
8604 * @sgs: variable to hold the statistics for this group.
8605 * @sg_status: Holds flag indicating the status of the sched_group
8607 static inline void update_sg_lb_stats(struct lb_env *env,
8608 struct sched_group *group,
8609 struct sg_lb_stats *sgs,
8612 int i, nr_running, local_group;
8614 memset(sgs, 0, sizeof(*sgs));
8616 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8618 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8619 struct rq *rq = cpu_rq(i);
8621 sgs->group_load += cpu_load(rq);
8622 sgs->group_util += cpu_util(i);
8623 sgs->group_runnable += cpu_runnable(rq);
8624 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8626 nr_running = rq->nr_running;
8627 sgs->sum_nr_running += nr_running;
8630 *sg_status |= SG_OVERLOAD;
8632 if (cpu_overutilized(i))
8633 *sg_status |= SG_OVERUTILIZED;
8635 #ifdef CONFIG_NUMA_BALANCING
8636 sgs->nr_numa_running += rq->nr_numa_running;
8637 sgs->nr_preferred_running += rq->nr_preferred_running;
8640 * No need to call idle_cpu() if nr_running is not 0
8642 if (!nr_running && idle_cpu(i)) {
8644 /* Idle cpu can't have misfit task */
8651 /* Check for a misfit task on the cpu */
8652 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8653 sgs->group_misfit_task_load < rq->misfit_task_load) {
8654 sgs->group_misfit_task_load = rq->misfit_task_load;
8655 *sg_status |= SG_OVERLOAD;
8659 /* Check if dst CPU is idle and preferred to this group */
8660 if (env->sd->flags & SD_ASYM_PACKING &&
8661 env->idle != CPU_NOT_IDLE &&
8662 sgs->sum_h_nr_running &&
8663 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8664 sgs->group_asym_packing = 1;
8667 sgs->group_capacity = group->sgc->capacity;
8669 sgs->group_weight = group->group_weight;
8671 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8673 /* Computing avg_load makes sense only when group is overloaded */
8674 if (sgs->group_type == group_overloaded)
8675 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8676 sgs->group_capacity;
8680 * update_sd_pick_busiest - return 1 on busiest group
8681 * @env: The load balancing environment.
8682 * @sds: sched_domain statistics
8683 * @sg: sched_group candidate to be checked for being the busiest
8684 * @sgs: sched_group statistics
8686 * Determine if @sg is a busier group than the previously selected
8689 * Return: %true if @sg is a busier group than the previously selected
8690 * busiest group. %false otherwise.
8692 static bool update_sd_pick_busiest(struct lb_env *env,
8693 struct sd_lb_stats *sds,
8694 struct sched_group *sg,
8695 struct sg_lb_stats *sgs)
8697 struct sg_lb_stats *busiest = &sds->busiest_stat;
8699 /* Make sure that there is at least one task to pull */
8700 if (!sgs->sum_h_nr_running)
8704 * Don't try to pull misfit tasks we can't help.
8705 * We can use max_capacity here as reduction in capacity on some
8706 * CPUs in the group should either be possible to resolve
8707 * internally or be covered by avg_load imbalance (eventually).
8709 if (sgs->group_type == group_misfit_task &&
8710 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8711 sds->local_stat.group_type != group_has_spare))
8714 if (sgs->group_type > busiest->group_type)
8717 if (sgs->group_type < busiest->group_type)
8721 * The candidate and the current busiest group are the same type of
8722 * group. Let check which one is the busiest according to the type.
8725 switch (sgs->group_type) {
8726 case group_overloaded:
8727 /* Select the overloaded group with highest avg_load. */
8728 if (sgs->avg_load <= busiest->avg_load)
8732 case group_imbalanced:
8734 * Select the 1st imbalanced group as we don't have any way to
8735 * choose one more than another.
8739 case group_asym_packing:
8740 /* Prefer to move from lowest priority CPU's work */
8741 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8745 case group_misfit_task:
8747 * If we have more than one misfit sg go with the biggest
8750 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8754 case group_fully_busy:
8756 * Select the fully busy group with highest avg_load. In
8757 * theory, there is no need to pull task from such kind of
8758 * group because tasks have all compute capacity that they need
8759 * but we can still improve the overall throughput by reducing
8760 * contention when accessing shared HW resources.
8762 * XXX for now avg_load is not computed and always 0 so we
8763 * select the 1st one.
8765 if (sgs->avg_load <= busiest->avg_load)
8769 case group_has_spare:
8771 * Select not overloaded group with lowest number of idle cpus
8772 * and highest number of running tasks. We could also compare
8773 * the spare capacity which is more stable but it can end up
8774 * that the group has less spare capacity but finally more idle
8775 * CPUs which means less opportunity to pull tasks.
8777 if (sgs->idle_cpus > busiest->idle_cpus)
8779 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8780 (sgs->sum_nr_running <= busiest->sum_nr_running))
8787 * Candidate sg has no more than one task per CPU and has higher
8788 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8789 * throughput. Maximize throughput, power/energy consequences are not
8792 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8793 (sgs->group_type <= group_fully_busy) &&
8794 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8800 #ifdef CONFIG_NUMA_BALANCING
8801 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8803 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8805 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8810 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8812 if (rq->nr_running > rq->nr_numa_running)
8814 if (rq->nr_running > rq->nr_preferred_running)
8819 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8824 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8828 #endif /* CONFIG_NUMA_BALANCING */
8834 * task_running_on_cpu - return 1 if @p is running on @cpu.
8837 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8839 /* Task has no contribution or is new */
8840 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8843 if (task_on_rq_queued(p))
8850 * idle_cpu_without - would a given CPU be idle without p ?
8851 * @cpu: the processor on which idleness is tested.
8852 * @p: task which should be ignored.
8854 * Return: 1 if the CPU would be idle. 0 otherwise.
8856 static int idle_cpu_without(int cpu, struct task_struct *p)
8858 struct rq *rq = cpu_rq(cpu);
8860 if (rq->curr != rq->idle && rq->curr != p)
8864 * rq->nr_running can't be used but an updated version without the
8865 * impact of p on cpu must be used instead. The updated nr_running
8866 * be computed and tested before calling idle_cpu_without().
8870 if (rq->ttwu_pending)
8878 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8879 * @sd: The sched_domain level to look for idlest group.
8880 * @group: sched_group whose statistics are to be updated.
8881 * @sgs: variable to hold the statistics for this group.
8882 * @p: The task for which we look for the idlest group/CPU.
8884 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8885 struct sched_group *group,
8886 struct sg_lb_stats *sgs,
8887 struct task_struct *p)
8891 memset(sgs, 0, sizeof(*sgs));
8893 for_each_cpu(i, sched_group_span(group)) {
8894 struct rq *rq = cpu_rq(i);
8897 sgs->group_load += cpu_load_without(rq, p);
8898 sgs->group_util += cpu_util_without(i, p);
8899 sgs->group_runnable += cpu_runnable_without(rq, p);
8900 local = task_running_on_cpu(i, p);
8901 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8903 nr_running = rq->nr_running - local;
8904 sgs->sum_nr_running += nr_running;
8907 * No need to call idle_cpu_without() if nr_running is not 0
8909 if (!nr_running && idle_cpu_without(i, p))
8914 /* Check if task fits in the group */
8915 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8916 !task_fits_capacity(p, group->sgc->max_capacity)) {
8917 sgs->group_misfit_task_load = 1;
8920 sgs->group_capacity = group->sgc->capacity;
8922 sgs->group_weight = group->group_weight;
8924 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8927 * Computing avg_load makes sense only when group is fully busy or
8930 if (sgs->group_type == group_fully_busy ||
8931 sgs->group_type == group_overloaded)
8932 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8933 sgs->group_capacity;
8936 static bool update_pick_idlest(struct sched_group *idlest,
8937 struct sg_lb_stats *idlest_sgs,
8938 struct sched_group *group,
8939 struct sg_lb_stats *sgs)
8941 if (sgs->group_type < idlest_sgs->group_type)
8944 if (sgs->group_type > idlest_sgs->group_type)
8948 * The candidate and the current idlest group are the same type of
8949 * group. Let check which one is the idlest according to the type.
8952 switch (sgs->group_type) {
8953 case group_overloaded:
8954 case group_fully_busy:
8955 /* Select the group with lowest avg_load. */
8956 if (idlest_sgs->avg_load <= sgs->avg_load)
8960 case group_imbalanced:
8961 case group_asym_packing:
8962 /* Those types are not used in the slow wakeup path */
8965 case group_misfit_task:
8966 /* Select group with the highest max capacity */
8967 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8971 case group_has_spare:
8972 /* Select group with most idle CPUs */
8973 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8976 /* Select group with lowest group_util */
8977 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8978 idlest_sgs->group_util <= sgs->group_util)
8988 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8989 * This is an approximation as the number of running tasks may not be
8990 * related to the number of busy CPUs due to sched_setaffinity.
8992 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8994 return (dst_running < (dst_weight >> 2));
8998 * find_idlest_group() finds and returns the least busy CPU group within the
9001 * Assumes p is allowed on at least one CPU in sd.
9003 static struct sched_group *
9004 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9006 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9007 struct sg_lb_stats local_sgs, tmp_sgs;
9008 struct sg_lb_stats *sgs;
9009 unsigned long imbalance;
9010 struct sg_lb_stats idlest_sgs = {
9011 .avg_load = UINT_MAX,
9012 .group_type = group_overloaded,
9018 /* Skip over this group if it has no CPUs allowed */
9019 if (!cpumask_intersects(sched_group_span(group),
9023 /* Skip over this group if no cookie matched */
9024 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9027 local_group = cpumask_test_cpu(this_cpu,
9028 sched_group_span(group));
9037 update_sg_wakeup_stats(sd, group, sgs, p);
9039 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9044 } while (group = group->next, group != sd->groups);
9047 /* There is no idlest group to push tasks to */
9051 /* The local group has been skipped because of CPU affinity */
9056 * If the local group is idler than the selected idlest group
9057 * don't try and push the task.
9059 if (local_sgs.group_type < idlest_sgs.group_type)
9063 * If the local group is busier than the selected idlest group
9064 * try and push the task.
9066 if (local_sgs.group_type > idlest_sgs.group_type)
9069 switch (local_sgs.group_type) {
9070 case group_overloaded:
9071 case group_fully_busy:
9073 /* Calculate allowed imbalance based on load */
9074 imbalance = scale_load_down(NICE_0_LOAD) *
9075 (sd->imbalance_pct-100) / 100;
9078 * When comparing groups across NUMA domains, it's possible for
9079 * the local domain to be very lightly loaded relative to the
9080 * remote domains but "imbalance" skews the comparison making
9081 * remote CPUs look much more favourable. When considering
9082 * cross-domain, add imbalance to the load on the remote node
9083 * and consider staying local.
9086 if ((sd->flags & SD_NUMA) &&
9087 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9091 * If the local group is less loaded than the selected
9092 * idlest group don't try and push any tasks.
9094 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9097 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9101 case group_imbalanced:
9102 case group_asym_packing:
9103 /* Those type are not used in the slow wakeup path */
9106 case group_misfit_task:
9107 /* Select group with the highest max capacity */
9108 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9112 case group_has_spare:
9113 if (sd->flags & SD_NUMA) {
9114 #ifdef CONFIG_NUMA_BALANCING
9117 * If there is spare capacity at NUMA, try to select
9118 * the preferred node
9120 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9123 idlest_cpu = cpumask_first(sched_group_span(idlest));
9124 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9128 * Otherwise, keep the task on this node to stay close
9129 * its wakeup source and improve locality. If there is
9130 * a real need of migration, periodic load balance will
9133 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
9138 * Select group with highest number of idle CPUs. We could also
9139 * compare the utilization which is more stable but it can end
9140 * up that the group has less spare capacity but finally more
9141 * idle CPUs which means more opportunity to run task.
9143 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9152 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9153 * @env: The load balancing environment.
9154 * @sds: variable to hold the statistics for this sched_domain.
9157 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9159 struct sched_domain *child = env->sd->child;
9160 struct sched_group *sg = env->sd->groups;
9161 struct sg_lb_stats *local = &sds->local_stat;
9162 struct sg_lb_stats tmp_sgs;
9166 struct sg_lb_stats *sgs = &tmp_sgs;
9169 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9174 if (env->idle != CPU_NEWLY_IDLE ||
9175 time_after_eq(jiffies, sg->sgc->next_update))
9176 update_group_capacity(env->sd, env->dst_cpu);
9179 update_sg_lb_stats(env, sg, sgs, &sg_status);
9185 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9187 sds->busiest_stat = *sgs;
9191 /* Now, start updating sd_lb_stats */
9192 sds->total_load += sgs->group_load;
9193 sds->total_capacity += sgs->group_capacity;
9196 } while (sg != env->sd->groups);
9198 /* Tag domain that child domain prefers tasks go to siblings first */
9199 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9202 if (env->sd->flags & SD_NUMA)
9203 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9205 if (!env->sd->parent) {
9206 struct root_domain *rd = env->dst_rq->rd;
9208 /* update overload indicator if we are at root domain */
9209 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9211 /* Update over-utilization (tipping point, U >= 0) indicator */
9212 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9213 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9214 } else if (sg_status & SG_OVERUTILIZED) {
9215 struct root_domain *rd = env->dst_rq->rd;
9217 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9218 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9222 #define NUMA_IMBALANCE_MIN 2
9224 static inline long adjust_numa_imbalance(int imbalance,
9225 int dst_running, int dst_weight)
9227 if (!allow_numa_imbalance(dst_running, dst_weight))
9231 * Allow a small imbalance based on a simple pair of communicating
9232 * tasks that remain local when the destination is lightly loaded.
9234 if (imbalance <= NUMA_IMBALANCE_MIN)
9241 * calculate_imbalance - Calculate the amount of imbalance present within the
9242 * groups of a given sched_domain during load balance.
9243 * @env: load balance environment
9244 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9246 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9248 struct sg_lb_stats *local, *busiest;
9250 local = &sds->local_stat;
9251 busiest = &sds->busiest_stat;
9253 if (busiest->group_type == group_misfit_task) {
9254 /* Set imbalance to allow misfit tasks to be balanced. */
9255 env->migration_type = migrate_misfit;
9260 if (busiest->group_type == group_asym_packing) {
9262 * In case of asym capacity, we will try to migrate all load to
9263 * the preferred CPU.
9265 env->migration_type = migrate_task;
9266 env->imbalance = busiest->sum_h_nr_running;
9270 if (busiest->group_type == group_imbalanced) {
9272 * In the group_imb case we cannot rely on group-wide averages
9273 * to ensure CPU-load equilibrium, try to move any task to fix
9274 * the imbalance. The next load balance will take care of
9275 * balancing back the system.
9277 env->migration_type = migrate_task;
9283 * Try to use spare capacity of local group without overloading it or
9286 if (local->group_type == group_has_spare) {
9287 if ((busiest->group_type > group_fully_busy) &&
9288 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9290 * If busiest is overloaded, try to fill spare
9291 * capacity. This might end up creating spare capacity
9292 * in busiest or busiest still being overloaded but
9293 * there is no simple way to directly compute the
9294 * amount of load to migrate in order to balance the
9297 env->migration_type = migrate_util;
9298 env->imbalance = max(local->group_capacity, local->group_util) -
9302 * In some cases, the group's utilization is max or even
9303 * higher than capacity because of migrations but the
9304 * local CPU is (newly) idle. There is at least one
9305 * waiting task in this overloaded busiest group. Let's
9308 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9309 env->migration_type = migrate_task;
9316 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9317 unsigned int nr_diff = busiest->sum_nr_running;
9319 * When prefer sibling, evenly spread running tasks on
9322 env->migration_type = migrate_task;
9323 lsub_positive(&nr_diff, local->sum_nr_running);
9324 env->imbalance = nr_diff >> 1;
9328 * If there is no overload, we just want to even the number of
9331 env->migration_type = migrate_task;
9332 env->imbalance = max_t(long, 0, (local->idle_cpus -
9333 busiest->idle_cpus) >> 1);
9336 /* Consider allowing a small imbalance between NUMA groups */
9337 if (env->sd->flags & SD_NUMA) {
9338 env->imbalance = adjust_numa_imbalance(env->imbalance,
9339 busiest->sum_nr_running, busiest->group_weight);
9346 * Local is fully busy but has to take more load to relieve the
9349 if (local->group_type < group_overloaded) {
9351 * Local will become overloaded so the avg_load metrics are
9355 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9356 local->group_capacity;
9358 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9359 sds->total_capacity;
9361 * If the local group is more loaded than the selected
9362 * busiest group don't try to pull any tasks.
9364 if (local->avg_load >= busiest->avg_load) {
9371 * Both group are or will become overloaded and we're trying to get all
9372 * the CPUs to the average_load, so we don't want to push ourselves
9373 * above the average load, nor do we wish to reduce the max loaded CPU
9374 * below the average load. At the same time, we also don't want to
9375 * reduce the group load below the group capacity. Thus we look for
9376 * the minimum possible imbalance.
9378 env->migration_type = migrate_load;
9379 env->imbalance = min(
9380 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9381 (sds->avg_load - local->avg_load) * local->group_capacity
9382 ) / SCHED_CAPACITY_SCALE;
9385 /******* find_busiest_group() helpers end here *********************/
9388 * Decision matrix according to the local and busiest group type:
9390 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9391 * has_spare nr_idle balanced N/A N/A balanced balanced
9392 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9393 * misfit_task force N/A N/A N/A force force
9394 * asym_packing force force N/A N/A force force
9395 * imbalanced force force N/A N/A force force
9396 * overloaded force force N/A N/A force avg_load
9398 * N/A : Not Applicable because already filtered while updating
9400 * balanced : The system is balanced for these 2 groups.
9401 * force : Calculate the imbalance as load migration is probably needed.
9402 * avg_load : Only if imbalance is significant enough.
9403 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9404 * different in groups.
9408 * find_busiest_group - Returns the busiest group within the sched_domain
9409 * if there is an imbalance.
9411 * Also calculates the amount of runnable load which should be moved
9412 * to restore balance.
9414 * @env: The load balancing environment.
9416 * Return: - The busiest group if imbalance exists.
9418 static struct sched_group *find_busiest_group(struct lb_env *env)
9420 struct sg_lb_stats *local, *busiest;
9421 struct sd_lb_stats sds;
9423 init_sd_lb_stats(&sds);
9426 * Compute the various statistics relevant for load balancing at
9429 update_sd_lb_stats(env, &sds);
9431 if (sched_energy_enabled()) {
9432 struct root_domain *rd = env->dst_rq->rd;
9434 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9438 local = &sds.local_stat;
9439 busiest = &sds.busiest_stat;
9441 /* There is no busy sibling group to pull tasks from */
9445 /* Misfit tasks should be dealt with regardless of the avg load */
9446 if (busiest->group_type == group_misfit_task)
9449 /* ASYM feature bypasses nice load balance check */
9450 if (busiest->group_type == group_asym_packing)
9454 * If the busiest group is imbalanced the below checks don't
9455 * work because they assume all things are equal, which typically
9456 * isn't true due to cpus_ptr constraints and the like.
9458 if (busiest->group_type == group_imbalanced)
9462 * If the local group is busier than the selected busiest group
9463 * don't try and pull any tasks.
9465 if (local->group_type > busiest->group_type)
9469 * When groups are overloaded, use the avg_load to ensure fairness
9472 if (local->group_type == group_overloaded) {
9474 * If the local group is more loaded than the selected
9475 * busiest group don't try to pull any tasks.
9477 if (local->avg_load >= busiest->avg_load)
9480 /* XXX broken for overlapping NUMA groups */
9481 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9485 * Don't pull any tasks if this group is already above the
9486 * domain average load.
9488 if (local->avg_load >= sds.avg_load)
9492 * If the busiest group is more loaded, use imbalance_pct to be
9495 if (100 * busiest->avg_load <=
9496 env->sd->imbalance_pct * local->avg_load)
9500 /* Try to move all excess tasks to child's sibling domain */
9501 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9502 busiest->sum_nr_running > local->sum_nr_running + 1)
9505 if (busiest->group_type != group_overloaded) {
9506 if (env->idle == CPU_NOT_IDLE)
9508 * If the busiest group is not overloaded (and as a
9509 * result the local one too) but this CPU is already
9510 * busy, let another idle CPU try to pull task.
9514 if (busiest->group_weight > 1 &&
9515 local->idle_cpus <= (busiest->idle_cpus + 1))
9517 * If the busiest group is not overloaded
9518 * and there is no imbalance between this and busiest
9519 * group wrt idle CPUs, it is balanced. The imbalance
9520 * becomes significant if the diff is greater than 1
9521 * otherwise we might end up to just move the imbalance
9522 * on another group. Of course this applies only if
9523 * there is more than 1 CPU per group.
9527 if (busiest->sum_h_nr_running == 1)
9529 * busiest doesn't have any tasks waiting to run
9535 /* Looks like there is an imbalance. Compute it */
9536 calculate_imbalance(env, &sds);
9537 return env->imbalance ? sds.busiest : NULL;
9545 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9547 static struct rq *find_busiest_queue(struct lb_env *env,
9548 struct sched_group *group)
9550 struct rq *busiest = NULL, *rq;
9551 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9552 unsigned int busiest_nr = 0;
9555 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9556 unsigned long capacity, load, util;
9557 unsigned int nr_running;
9561 rt = fbq_classify_rq(rq);
9564 * We classify groups/runqueues into three groups:
9565 * - regular: there are !numa tasks
9566 * - remote: there are numa tasks that run on the 'wrong' node
9567 * - all: there is no distinction
9569 * In order to avoid migrating ideally placed numa tasks,
9570 * ignore those when there's better options.
9572 * If we ignore the actual busiest queue to migrate another
9573 * task, the next balance pass can still reduce the busiest
9574 * queue by moving tasks around inside the node.
9576 * If we cannot move enough load due to this classification
9577 * the next pass will adjust the group classification and
9578 * allow migration of more tasks.
9580 * Both cases only affect the total convergence complexity.
9582 if (rt > env->fbq_type)
9585 nr_running = rq->cfs.h_nr_running;
9589 capacity = capacity_of(i);
9592 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9593 * eventually lead to active_balancing high->low capacity.
9594 * Higher per-CPU capacity is considered better than balancing
9597 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9598 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9602 switch (env->migration_type) {
9605 * When comparing with load imbalance, use cpu_load()
9606 * which is not scaled with the CPU capacity.
9608 load = cpu_load(rq);
9610 if (nr_running == 1 && load > env->imbalance &&
9611 !check_cpu_capacity(rq, env->sd))
9615 * For the load comparisons with the other CPUs,
9616 * consider the cpu_load() scaled with the CPU
9617 * capacity, so that the load can be moved away
9618 * from the CPU that is potentially running at a
9621 * Thus we're looking for max(load_i / capacity_i),
9622 * crosswise multiplication to rid ourselves of the
9623 * division works out to:
9624 * load_i * capacity_j > load_j * capacity_i;
9625 * where j is our previous maximum.
9627 if (load * busiest_capacity > busiest_load * capacity) {
9628 busiest_load = load;
9629 busiest_capacity = capacity;
9635 util = cpu_util(cpu_of(rq));
9638 * Don't try to pull utilization from a CPU with one
9639 * running task. Whatever its utilization, we will fail
9642 if (nr_running <= 1)
9645 if (busiest_util < util) {
9646 busiest_util = util;
9652 if (busiest_nr < nr_running) {
9653 busiest_nr = nr_running;
9658 case migrate_misfit:
9660 * For ASYM_CPUCAPACITY domains with misfit tasks we
9661 * simply seek the "biggest" misfit task.
9663 if (rq->misfit_task_load > busiest_load) {
9664 busiest_load = rq->misfit_task_load;
9677 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9678 * so long as it is large enough.
9680 #define MAX_PINNED_INTERVAL 512
9683 asym_active_balance(struct lb_env *env)
9686 * ASYM_PACKING needs to force migrate tasks from busy but
9687 * lower priority CPUs in order to pack all tasks in the
9688 * highest priority CPUs.
9690 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9691 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9695 imbalanced_active_balance(struct lb_env *env)
9697 struct sched_domain *sd = env->sd;
9700 * The imbalanced case includes the case of pinned tasks preventing a fair
9701 * distribution of the load on the system but also the even distribution of the
9702 * threads on a system with spare capacity
9704 if ((env->migration_type == migrate_task) &&
9705 (sd->nr_balance_failed > sd->cache_nice_tries+2))
9711 static int need_active_balance(struct lb_env *env)
9713 struct sched_domain *sd = env->sd;
9715 if (asym_active_balance(env))
9718 if (imbalanced_active_balance(env))
9722 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9723 * It's worth migrating the task if the src_cpu's capacity is reduced
9724 * because of other sched_class or IRQs if more capacity stays
9725 * available on dst_cpu.
9727 if ((env->idle != CPU_NOT_IDLE) &&
9728 (env->src_rq->cfs.h_nr_running == 1)) {
9729 if ((check_cpu_capacity(env->src_rq, sd)) &&
9730 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9734 if (env->migration_type == migrate_misfit)
9740 static int active_load_balance_cpu_stop(void *data);
9742 static int should_we_balance(struct lb_env *env)
9744 struct sched_group *sg = env->sd->groups;
9748 * Ensure the balancing environment is consistent; can happen
9749 * when the softirq triggers 'during' hotplug.
9751 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9755 * In the newly idle case, we will allow all the CPUs
9756 * to do the newly idle load balance.
9758 if (env->idle == CPU_NEWLY_IDLE)
9761 /* Try to find first idle CPU */
9762 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9766 /* Are we the first idle CPU? */
9767 return cpu == env->dst_cpu;
9770 /* Are we the first CPU of this group ? */
9771 return group_balance_cpu(sg) == env->dst_cpu;
9775 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9776 * tasks if there is an imbalance.
9778 static int load_balance(int this_cpu, struct rq *this_rq,
9779 struct sched_domain *sd, enum cpu_idle_type idle,
9780 int *continue_balancing)
9782 int ld_moved, cur_ld_moved, active_balance = 0;
9783 struct sched_domain *sd_parent = sd->parent;
9784 struct sched_group *group;
9787 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9789 struct lb_env env = {
9791 .dst_cpu = this_cpu,
9793 .dst_grpmask = sched_group_span(sd->groups),
9795 .loop_break = sched_nr_migrate_break,
9798 .tasks = LIST_HEAD_INIT(env.tasks),
9801 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9803 schedstat_inc(sd->lb_count[idle]);
9806 if (!should_we_balance(&env)) {
9807 *continue_balancing = 0;
9811 group = find_busiest_group(&env);
9813 schedstat_inc(sd->lb_nobusyg[idle]);
9817 busiest = find_busiest_queue(&env, group);
9819 schedstat_inc(sd->lb_nobusyq[idle]);
9823 BUG_ON(busiest == env.dst_rq);
9825 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9827 env.src_cpu = busiest->cpu;
9828 env.src_rq = busiest;
9831 /* Clear this flag as soon as we find a pullable task */
9832 env.flags |= LBF_ALL_PINNED;
9833 if (busiest->nr_running > 1) {
9835 * Attempt to move tasks. If find_busiest_group has found
9836 * an imbalance but busiest->nr_running <= 1, the group is
9837 * still unbalanced. ld_moved simply stays zero, so it is
9838 * correctly treated as an imbalance.
9840 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9843 rq_lock_irqsave(busiest, &rf);
9844 update_rq_clock(busiest);
9847 * cur_ld_moved - load moved in current iteration
9848 * ld_moved - cumulative load moved across iterations
9850 cur_ld_moved = detach_tasks(&env);
9853 * We've detached some tasks from busiest_rq. Every
9854 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9855 * unlock busiest->lock, and we are able to be sure
9856 * that nobody can manipulate the tasks in parallel.
9857 * See task_rq_lock() family for the details.
9860 rq_unlock(busiest, &rf);
9864 ld_moved += cur_ld_moved;
9867 local_irq_restore(rf.flags);
9869 if (env.flags & LBF_NEED_BREAK) {
9870 env.flags &= ~LBF_NEED_BREAK;
9875 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9876 * us and move them to an alternate dst_cpu in our sched_group
9877 * where they can run. The upper limit on how many times we
9878 * iterate on same src_cpu is dependent on number of CPUs in our
9881 * This changes load balance semantics a bit on who can move
9882 * load to a given_cpu. In addition to the given_cpu itself
9883 * (or a ilb_cpu acting on its behalf where given_cpu is
9884 * nohz-idle), we now have balance_cpu in a position to move
9885 * load to given_cpu. In rare situations, this may cause
9886 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9887 * _independently_ and at _same_ time to move some load to
9888 * given_cpu) causing excess load to be moved to given_cpu.
9889 * This however should not happen so much in practice and
9890 * moreover subsequent load balance cycles should correct the
9891 * excess load moved.
9893 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9895 /* Prevent to re-select dst_cpu via env's CPUs */
9896 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9898 env.dst_rq = cpu_rq(env.new_dst_cpu);
9899 env.dst_cpu = env.new_dst_cpu;
9900 env.flags &= ~LBF_DST_PINNED;
9902 env.loop_break = sched_nr_migrate_break;
9905 * Go back to "more_balance" rather than "redo" since we
9906 * need to continue with same src_cpu.
9912 * We failed to reach balance because of affinity.
9915 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9917 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9918 *group_imbalance = 1;
9921 /* All tasks on this runqueue were pinned by CPU affinity */
9922 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9923 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9925 * Attempting to continue load balancing at the current
9926 * sched_domain level only makes sense if there are
9927 * active CPUs remaining as possible busiest CPUs to
9928 * pull load from which are not contained within the
9929 * destination group that is receiving any migrated
9932 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9934 env.loop_break = sched_nr_migrate_break;
9937 goto out_all_pinned;
9942 schedstat_inc(sd->lb_failed[idle]);
9944 * Increment the failure counter only on periodic balance.
9945 * We do not want newidle balance, which can be very
9946 * frequent, pollute the failure counter causing
9947 * excessive cache_hot migrations and active balances.
9949 if (idle != CPU_NEWLY_IDLE)
9950 sd->nr_balance_failed++;
9952 if (need_active_balance(&env)) {
9953 unsigned long flags;
9955 raw_spin_rq_lock_irqsave(busiest, flags);
9958 * Don't kick the active_load_balance_cpu_stop,
9959 * if the curr task on busiest CPU can't be
9960 * moved to this_cpu:
9962 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9963 raw_spin_rq_unlock_irqrestore(busiest, flags);
9964 goto out_one_pinned;
9967 /* Record that we found at least one task that could run on this_cpu */
9968 env.flags &= ~LBF_ALL_PINNED;
9971 * ->active_balance synchronizes accesses to
9972 * ->active_balance_work. Once set, it's cleared
9973 * only after active load balance is finished.
9975 if (!busiest->active_balance) {
9976 busiest->active_balance = 1;
9977 busiest->push_cpu = this_cpu;
9980 raw_spin_rq_unlock_irqrestore(busiest, flags);
9982 if (active_balance) {
9983 stop_one_cpu_nowait(cpu_of(busiest),
9984 active_load_balance_cpu_stop, busiest,
9985 &busiest->active_balance_work);
9989 sd->nr_balance_failed = 0;
9992 if (likely(!active_balance) || need_active_balance(&env)) {
9993 /* We were unbalanced, so reset the balancing interval */
9994 sd->balance_interval = sd->min_interval;
10001 * We reach balance although we may have faced some affinity
10002 * constraints. Clear the imbalance flag only if other tasks got
10003 * a chance to move and fix the imbalance.
10005 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10006 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10008 if (*group_imbalance)
10009 *group_imbalance = 0;
10014 * We reach balance because all tasks are pinned at this level so
10015 * we can't migrate them. Let the imbalance flag set so parent level
10016 * can try to migrate them.
10018 schedstat_inc(sd->lb_balanced[idle]);
10020 sd->nr_balance_failed = 0;
10026 * newidle_balance() disregards balance intervals, so we could
10027 * repeatedly reach this code, which would lead to balance_interval
10028 * skyrocketing in a short amount of time. Skip the balance_interval
10029 * increase logic to avoid that.
10031 if (env.idle == CPU_NEWLY_IDLE)
10034 /* tune up the balancing interval */
10035 if ((env.flags & LBF_ALL_PINNED &&
10036 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10037 sd->balance_interval < sd->max_interval)
10038 sd->balance_interval *= 2;
10043 static inline unsigned long
10044 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10046 unsigned long interval = sd->balance_interval;
10049 interval *= sd->busy_factor;
10051 /* scale ms to jiffies */
10052 interval = msecs_to_jiffies(interval);
10055 * Reduce likelihood of busy balancing at higher domains racing with
10056 * balancing at lower domains by preventing their balancing periods
10057 * from being multiples of each other.
10062 interval = clamp(interval, 1UL, max_load_balance_interval);
10068 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10070 unsigned long interval, next;
10072 /* used by idle balance, so cpu_busy = 0 */
10073 interval = get_sd_balance_interval(sd, 0);
10074 next = sd->last_balance + interval;
10076 if (time_after(*next_balance, next))
10077 *next_balance = next;
10081 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10082 * running tasks off the busiest CPU onto idle CPUs. It requires at
10083 * least 1 task to be running on each physical CPU where possible, and
10084 * avoids physical / logical imbalances.
10086 static int active_load_balance_cpu_stop(void *data)
10088 struct rq *busiest_rq = data;
10089 int busiest_cpu = cpu_of(busiest_rq);
10090 int target_cpu = busiest_rq->push_cpu;
10091 struct rq *target_rq = cpu_rq(target_cpu);
10092 struct sched_domain *sd;
10093 struct task_struct *p = NULL;
10094 struct rq_flags rf;
10096 rq_lock_irq(busiest_rq, &rf);
10098 * Between queueing the stop-work and running it is a hole in which
10099 * CPUs can become inactive. We should not move tasks from or to
10102 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10105 /* Make sure the requested CPU hasn't gone down in the meantime: */
10106 if (unlikely(busiest_cpu != smp_processor_id() ||
10107 !busiest_rq->active_balance))
10110 /* Is there any task to move? */
10111 if (busiest_rq->nr_running <= 1)
10115 * This condition is "impossible", if it occurs
10116 * we need to fix it. Originally reported by
10117 * Bjorn Helgaas on a 128-CPU setup.
10119 BUG_ON(busiest_rq == target_rq);
10121 /* Search for an sd spanning us and the target CPU. */
10123 for_each_domain(target_cpu, sd) {
10124 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10129 struct lb_env env = {
10131 .dst_cpu = target_cpu,
10132 .dst_rq = target_rq,
10133 .src_cpu = busiest_rq->cpu,
10134 .src_rq = busiest_rq,
10136 .flags = LBF_ACTIVE_LB,
10139 schedstat_inc(sd->alb_count);
10140 update_rq_clock(busiest_rq);
10142 p = detach_one_task(&env);
10144 schedstat_inc(sd->alb_pushed);
10145 /* Active balancing done, reset the failure counter. */
10146 sd->nr_balance_failed = 0;
10148 schedstat_inc(sd->alb_failed);
10153 busiest_rq->active_balance = 0;
10154 rq_unlock(busiest_rq, &rf);
10157 attach_one_task(target_rq, p);
10159 local_irq_enable();
10164 static DEFINE_SPINLOCK(balancing);
10167 * Scale the max load_balance interval with the number of CPUs in the system.
10168 * This trades load-balance latency on larger machines for less cross talk.
10170 void update_max_interval(void)
10172 max_load_balance_interval = HZ*num_online_cpus()/10;
10176 * It checks each scheduling domain to see if it is due to be balanced,
10177 * and initiates a balancing operation if so.
10179 * Balancing parameters are set up in init_sched_domains.
10181 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10183 int continue_balancing = 1;
10185 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10186 unsigned long interval;
10187 struct sched_domain *sd;
10188 /* Earliest time when we have to do rebalance again */
10189 unsigned long next_balance = jiffies + 60*HZ;
10190 int update_next_balance = 0;
10191 int need_serialize, need_decay = 0;
10195 for_each_domain(cpu, sd) {
10197 * Decay the newidle max times here because this is a regular
10198 * visit to all the domains. Decay ~1% per second.
10200 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10201 sd->max_newidle_lb_cost =
10202 (sd->max_newidle_lb_cost * 253) / 256;
10203 sd->next_decay_max_lb_cost = jiffies + HZ;
10206 max_cost += sd->max_newidle_lb_cost;
10209 * Stop the load balance at this level. There is another
10210 * CPU in our sched group which is doing load balancing more
10213 if (!continue_balancing) {
10219 interval = get_sd_balance_interval(sd, busy);
10221 need_serialize = sd->flags & SD_SERIALIZE;
10222 if (need_serialize) {
10223 if (!spin_trylock(&balancing))
10227 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10228 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10230 * The LBF_DST_PINNED logic could have changed
10231 * env->dst_cpu, so we can't know our idle
10232 * state even if we migrated tasks. Update it.
10234 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10235 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10237 sd->last_balance = jiffies;
10238 interval = get_sd_balance_interval(sd, busy);
10240 if (need_serialize)
10241 spin_unlock(&balancing);
10243 if (time_after(next_balance, sd->last_balance + interval)) {
10244 next_balance = sd->last_balance + interval;
10245 update_next_balance = 1;
10250 * Ensure the rq-wide value also decays but keep it at a
10251 * reasonable floor to avoid funnies with rq->avg_idle.
10253 rq->max_idle_balance_cost =
10254 max((u64)sysctl_sched_migration_cost, max_cost);
10259 * next_balance will be updated only when there is a need.
10260 * When the cpu is attached to null domain for ex, it will not be
10263 if (likely(update_next_balance))
10264 rq->next_balance = next_balance;
10268 static inline int on_null_domain(struct rq *rq)
10270 return unlikely(!rcu_dereference_sched(rq->sd));
10273 #ifdef CONFIG_NO_HZ_COMMON
10275 * idle load balancing details
10276 * - When one of the busy CPUs notice that there may be an idle rebalancing
10277 * needed, they will kick the idle load balancer, which then does idle
10278 * load balancing for all the idle CPUs.
10279 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10283 static inline int find_new_ilb(void)
10286 const struct cpumask *hk_mask;
10288 hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
10290 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10292 if (ilb == smp_processor_id())
10303 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10304 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10306 static void kick_ilb(unsigned int flags)
10311 * Increase nohz.next_balance only when if full ilb is triggered but
10312 * not if we only update stats.
10314 if (flags & NOHZ_BALANCE_KICK)
10315 nohz.next_balance = jiffies+1;
10317 ilb_cpu = find_new_ilb();
10319 if (ilb_cpu >= nr_cpu_ids)
10323 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10324 * the first flag owns it; cleared by nohz_csd_func().
10326 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10327 if (flags & NOHZ_KICK_MASK)
10331 * This way we generate an IPI on the target CPU which
10332 * is idle. And the softirq performing nohz idle load balance
10333 * will be run before returning from the IPI.
10335 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10339 * Current decision point for kicking the idle load balancer in the presence
10340 * of idle CPUs in the system.
10342 static void nohz_balancer_kick(struct rq *rq)
10344 unsigned long now = jiffies;
10345 struct sched_domain_shared *sds;
10346 struct sched_domain *sd;
10347 int nr_busy, i, cpu = rq->cpu;
10348 unsigned int flags = 0;
10350 if (unlikely(rq->idle_balance))
10354 * We may be recently in ticked or tickless idle mode. At the first
10355 * busy tick after returning from idle, we will update the busy stats.
10357 nohz_balance_exit_idle(rq);
10360 * None are in tickless mode and hence no need for NOHZ idle load
10363 if (likely(!atomic_read(&nohz.nr_cpus)))
10366 if (READ_ONCE(nohz.has_blocked) &&
10367 time_after(now, READ_ONCE(nohz.next_blocked)))
10368 flags = NOHZ_STATS_KICK;
10370 if (time_before(now, nohz.next_balance))
10373 if (rq->nr_running >= 2) {
10374 flags = NOHZ_KICK_MASK;
10380 sd = rcu_dereference(rq->sd);
10383 * If there's a CFS task and the current CPU has reduced
10384 * capacity; kick the ILB to see if there's a better CPU to run
10387 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10388 flags = NOHZ_KICK_MASK;
10393 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10396 * When ASYM_PACKING; see if there's a more preferred CPU
10397 * currently idle; in which case, kick the ILB to move tasks
10400 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10401 if (sched_asym_prefer(i, cpu)) {
10402 flags = NOHZ_KICK_MASK;
10408 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10411 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10412 * to run the misfit task on.
10414 if (check_misfit_status(rq, sd)) {
10415 flags = NOHZ_KICK_MASK;
10420 * For asymmetric systems, we do not want to nicely balance
10421 * cache use, instead we want to embrace asymmetry and only
10422 * ensure tasks have enough CPU capacity.
10424 * Skip the LLC logic because it's not relevant in that case.
10429 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10432 * If there is an imbalance between LLC domains (IOW we could
10433 * increase the overall cache use), we need some less-loaded LLC
10434 * domain to pull some load. Likewise, we may need to spread
10435 * load within the current LLC domain (e.g. packed SMT cores but
10436 * other CPUs are idle). We can't really know from here how busy
10437 * the others are - so just get a nohz balance going if it looks
10438 * like this LLC domain has tasks we could move.
10440 nr_busy = atomic_read(&sds->nr_busy_cpus);
10442 flags = NOHZ_KICK_MASK;
10453 static void set_cpu_sd_state_busy(int cpu)
10455 struct sched_domain *sd;
10458 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10460 if (!sd || !sd->nohz_idle)
10464 atomic_inc(&sd->shared->nr_busy_cpus);
10469 void nohz_balance_exit_idle(struct rq *rq)
10471 SCHED_WARN_ON(rq != this_rq());
10473 if (likely(!rq->nohz_tick_stopped))
10476 rq->nohz_tick_stopped = 0;
10477 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10478 atomic_dec(&nohz.nr_cpus);
10480 set_cpu_sd_state_busy(rq->cpu);
10483 static void set_cpu_sd_state_idle(int cpu)
10485 struct sched_domain *sd;
10488 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10490 if (!sd || sd->nohz_idle)
10494 atomic_dec(&sd->shared->nr_busy_cpus);
10500 * This routine will record that the CPU is going idle with tick stopped.
10501 * This info will be used in performing idle load balancing in the future.
10503 void nohz_balance_enter_idle(int cpu)
10505 struct rq *rq = cpu_rq(cpu);
10507 SCHED_WARN_ON(cpu != smp_processor_id());
10509 /* If this CPU is going down, then nothing needs to be done: */
10510 if (!cpu_active(cpu))
10513 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10514 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10518 * Can be set safely without rq->lock held
10519 * If a clear happens, it will have evaluated last additions because
10520 * rq->lock is held during the check and the clear
10522 rq->has_blocked_load = 1;
10525 * The tick is still stopped but load could have been added in the
10526 * meantime. We set the nohz.has_blocked flag to trig a check of the
10527 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10528 * of nohz.has_blocked can only happen after checking the new load
10530 if (rq->nohz_tick_stopped)
10533 /* If we're a completely isolated CPU, we don't play: */
10534 if (on_null_domain(rq))
10537 rq->nohz_tick_stopped = 1;
10539 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10540 atomic_inc(&nohz.nr_cpus);
10543 * Ensures that if nohz_idle_balance() fails to observe our
10544 * @idle_cpus_mask store, it must observe the @has_blocked
10547 smp_mb__after_atomic();
10549 set_cpu_sd_state_idle(cpu);
10553 * Each time a cpu enter idle, we assume that it has blocked load and
10554 * enable the periodic update of the load of idle cpus
10556 WRITE_ONCE(nohz.has_blocked, 1);
10559 static bool update_nohz_stats(struct rq *rq)
10561 unsigned int cpu = rq->cpu;
10563 if (!rq->has_blocked_load)
10566 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10569 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10572 update_blocked_averages(cpu);
10574 return rq->has_blocked_load;
10578 * Internal function that runs load balance for all idle cpus. The load balance
10579 * can be a simple update of blocked load or a complete load balance with
10580 * tasks movement depending of flags.
10582 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10583 enum cpu_idle_type idle)
10585 /* Earliest time when we have to do rebalance again */
10586 unsigned long now = jiffies;
10587 unsigned long next_balance = now + 60*HZ;
10588 bool has_blocked_load = false;
10589 int update_next_balance = 0;
10590 int this_cpu = this_rq->cpu;
10594 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10597 * We assume there will be no idle load after this update and clear
10598 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10599 * set the has_blocked flag and trig another update of idle load.
10600 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10601 * setting the flag, we are sure to not clear the state and not
10602 * check the load of an idle cpu.
10604 WRITE_ONCE(nohz.has_blocked, 0);
10607 * Ensures that if we miss the CPU, we must see the has_blocked
10608 * store from nohz_balance_enter_idle().
10613 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10614 * chance for other idle cpu to pull load.
10616 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10617 if (!idle_cpu(balance_cpu))
10621 * If this CPU gets work to do, stop the load balancing
10622 * work being done for other CPUs. Next load
10623 * balancing owner will pick it up.
10625 if (need_resched()) {
10626 has_blocked_load = true;
10630 rq = cpu_rq(balance_cpu);
10632 has_blocked_load |= update_nohz_stats(rq);
10635 * If time for next balance is due,
10638 if (time_after_eq(jiffies, rq->next_balance)) {
10639 struct rq_flags rf;
10641 rq_lock_irqsave(rq, &rf);
10642 update_rq_clock(rq);
10643 rq_unlock_irqrestore(rq, &rf);
10645 if (flags & NOHZ_BALANCE_KICK)
10646 rebalance_domains(rq, CPU_IDLE);
10649 if (time_after(next_balance, rq->next_balance)) {
10650 next_balance = rq->next_balance;
10651 update_next_balance = 1;
10656 * next_balance will be updated only when there is a need.
10657 * When the CPU is attached to null domain for ex, it will not be
10660 if (likely(update_next_balance))
10661 nohz.next_balance = next_balance;
10663 WRITE_ONCE(nohz.next_blocked,
10664 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10667 /* There is still blocked load, enable periodic update */
10668 if (has_blocked_load)
10669 WRITE_ONCE(nohz.has_blocked, 1);
10673 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10674 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10676 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10678 unsigned int flags = this_rq->nohz_idle_balance;
10683 this_rq->nohz_idle_balance = 0;
10685 if (idle != CPU_IDLE)
10688 _nohz_idle_balance(this_rq, flags, idle);
10694 * Check if we need to run the ILB for updating blocked load before entering
10697 void nohz_run_idle_balance(int cpu)
10699 unsigned int flags;
10701 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10704 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10705 * (ie NOHZ_STATS_KICK set) and will do the same.
10707 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10708 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10711 static void nohz_newidle_balance(struct rq *this_rq)
10713 int this_cpu = this_rq->cpu;
10716 * This CPU doesn't want to be disturbed by scheduler
10719 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10722 /* Will wake up very soon. No time for doing anything else*/
10723 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10726 /* Don't need to update blocked load of idle CPUs*/
10727 if (!READ_ONCE(nohz.has_blocked) ||
10728 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10732 * Set the need to trigger ILB in order to update blocked load
10733 * before entering idle state.
10735 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10738 #else /* !CONFIG_NO_HZ_COMMON */
10739 static inline void nohz_balancer_kick(struct rq *rq) { }
10741 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10746 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10747 #endif /* CONFIG_NO_HZ_COMMON */
10750 * newidle_balance is called by schedule() if this_cpu is about to become
10751 * idle. Attempts to pull tasks from other CPUs.
10754 * < 0 - we released the lock and there are !fair tasks present
10755 * 0 - failed, no new tasks
10756 * > 0 - success, new (fair) tasks present
10758 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10760 unsigned long next_balance = jiffies + HZ;
10761 int this_cpu = this_rq->cpu;
10762 struct sched_domain *sd;
10763 int pulled_task = 0;
10766 update_misfit_status(NULL, this_rq);
10769 * There is a task waiting to run. No need to search for one.
10770 * Return 0; the task will be enqueued when switching to idle.
10772 if (this_rq->ttwu_pending)
10776 * We must set idle_stamp _before_ calling idle_balance(), such that we
10777 * measure the duration of idle_balance() as idle time.
10779 this_rq->idle_stamp = rq_clock(this_rq);
10782 * Do not pull tasks towards !active CPUs...
10784 if (!cpu_active(this_cpu))
10788 * This is OK, because current is on_cpu, which avoids it being picked
10789 * for load-balance and preemption/IRQs are still disabled avoiding
10790 * further scheduler activity on it and we're being very careful to
10791 * re-start the picking loop.
10793 rq_unpin_lock(this_rq, rf);
10795 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10796 !READ_ONCE(this_rq->rd->overload)) {
10799 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10801 update_next_balance(sd, &next_balance);
10807 raw_spin_rq_unlock(this_rq);
10809 update_blocked_averages(this_cpu);
10811 for_each_domain(this_cpu, sd) {
10812 int continue_balancing = 1;
10813 u64 t0, domain_cost;
10815 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10816 update_next_balance(sd, &next_balance);
10820 if (sd->flags & SD_BALANCE_NEWIDLE) {
10821 t0 = sched_clock_cpu(this_cpu);
10823 pulled_task = load_balance(this_cpu, this_rq,
10824 sd, CPU_NEWLY_IDLE,
10825 &continue_balancing);
10827 domain_cost = sched_clock_cpu(this_cpu) - t0;
10828 if (domain_cost > sd->max_newidle_lb_cost)
10829 sd->max_newidle_lb_cost = domain_cost;
10831 curr_cost += domain_cost;
10834 update_next_balance(sd, &next_balance);
10837 * Stop searching for tasks to pull if there are
10838 * now runnable tasks on this rq.
10840 if (pulled_task || this_rq->nr_running > 0 ||
10841 this_rq->ttwu_pending)
10846 raw_spin_rq_lock(this_rq);
10848 if (curr_cost > this_rq->max_idle_balance_cost)
10849 this_rq->max_idle_balance_cost = curr_cost;
10852 * While browsing the domains, we released the rq lock, a task could
10853 * have been enqueued in the meantime. Since we're not going idle,
10854 * pretend we pulled a task.
10856 if (this_rq->cfs.h_nr_running && !pulled_task)
10859 /* Is there a task of a high priority class? */
10860 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10864 /* Move the next balance forward */
10865 if (time_after(this_rq->next_balance, next_balance))
10866 this_rq->next_balance = next_balance;
10869 this_rq->idle_stamp = 0;
10871 nohz_newidle_balance(this_rq);
10873 rq_repin_lock(this_rq, rf);
10875 return pulled_task;
10879 * run_rebalance_domains is triggered when needed from the scheduler tick.
10880 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10882 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10884 struct rq *this_rq = this_rq();
10885 enum cpu_idle_type idle = this_rq->idle_balance ?
10886 CPU_IDLE : CPU_NOT_IDLE;
10889 * If this CPU has a pending nohz_balance_kick, then do the
10890 * balancing on behalf of the other idle CPUs whose ticks are
10891 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10892 * give the idle CPUs a chance to load balance. Else we may
10893 * load balance only within the local sched_domain hierarchy
10894 * and abort nohz_idle_balance altogether if we pull some load.
10896 if (nohz_idle_balance(this_rq, idle))
10899 /* normal load balance */
10900 update_blocked_averages(this_rq->cpu);
10901 rebalance_domains(this_rq, idle);
10905 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10907 void trigger_load_balance(struct rq *rq)
10910 * Don't need to rebalance while attached to NULL domain or
10911 * runqueue CPU is not active
10913 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10916 if (time_after_eq(jiffies, rq->next_balance))
10917 raise_softirq(SCHED_SOFTIRQ);
10919 nohz_balancer_kick(rq);
10922 static void rq_online_fair(struct rq *rq)
10926 update_runtime_enabled(rq);
10929 static void rq_offline_fair(struct rq *rq)
10933 /* Ensure any throttled groups are reachable by pick_next_task */
10934 unthrottle_offline_cfs_rqs(rq);
10937 #endif /* CONFIG_SMP */
10939 #ifdef CONFIG_SCHED_CORE
10941 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
10943 u64 slice = sched_slice(cfs_rq_of(se), se);
10944 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
10946 return (rtime * min_nr_tasks > slice);
10949 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
10950 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
10952 if (!sched_core_enabled(rq))
10956 * If runqueue has only one task which used up its slice and
10957 * if the sibling is forced idle, then trigger schedule to
10958 * give forced idle task a chance.
10960 * sched_slice() considers only this active rq and it gets the
10961 * whole slice. But during force idle, we have siblings acting
10962 * like a single runqueue and hence we need to consider runnable
10963 * tasks on this CPU and the forced idle CPU. Ideally, we should
10964 * go through the forced idle rq, but that would be a perf hit.
10965 * We can assume that the forced idle CPU has at least
10966 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
10967 * if we need to give up the CPU.
10969 if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
10970 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
10975 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
10977 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
10979 for_each_sched_entity(se) {
10980 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10983 if (cfs_rq->forceidle_seq == fi_seq)
10985 cfs_rq->forceidle_seq = fi_seq;
10988 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
10992 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
10994 struct sched_entity *se = &p->se;
10996 if (p->sched_class != &fair_sched_class)
10999 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11002 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11004 struct rq *rq = task_rq(a);
11005 struct sched_entity *sea = &a->se;
11006 struct sched_entity *seb = &b->se;
11007 struct cfs_rq *cfs_rqa;
11008 struct cfs_rq *cfs_rqb;
11011 SCHED_WARN_ON(task_rq(b)->core != rq->core);
11013 #ifdef CONFIG_FAIR_GROUP_SCHED
11015 * Find an se in the hierarchy for tasks a and b, such that the se's
11016 * are immediate siblings.
11018 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11019 int sea_depth = sea->depth;
11020 int seb_depth = seb->depth;
11022 if (sea_depth >= seb_depth)
11023 sea = parent_entity(sea);
11024 if (sea_depth <= seb_depth)
11025 seb = parent_entity(seb);
11028 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11029 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11031 cfs_rqa = sea->cfs_rq;
11032 cfs_rqb = seb->cfs_rq;
11034 cfs_rqa = &task_rq(a)->cfs;
11035 cfs_rqb = &task_rq(b)->cfs;
11039 * Find delta after normalizing se's vruntime with its cfs_rq's
11040 * min_vruntime_fi, which would have been updated in prior calls
11041 * to se_fi_update().
11043 delta = (s64)(sea->vruntime - seb->vruntime) +
11044 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11049 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11053 * scheduler tick hitting a task of our scheduling class.
11055 * NOTE: This function can be called remotely by the tick offload that
11056 * goes along full dynticks. Therefore no local assumption can be made
11057 * and everything must be accessed through the @rq and @curr passed in
11060 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11062 struct cfs_rq *cfs_rq;
11063 struct sched_entity *se = &curr->se;
11065 for_each_sched_entity(se) {
11066 cfs_rq = cfs_rq_of(se);
11067 entity_tick(cfs_rq, se, queued);
11070 if (static_branch_unlikely(&sched_numa_balancing))
11071 task_tick_numa(rq, curr);
11073 update_misfit_status(curr, rq);
11074 update_overutilized_status(task_rq(curr));
11076 task_tick_core(rq, curr);
11080 * called on fork with the child task as argument from the parent's context
11081 * - child not yet on the tasklist
11082 * - preemption disabled
11084 static void task_fork_fair(struct task_struct *p)
11086 struct cfs_rq *cfs_rq;
11087 struct sched_entity *se = &p->se, *curr;
11088 struct rq *rq = this_rq();
11089 struct rq_flags rf;
11092 update_rq_clock(rq);
11094 cfs_rq = task_cfs_rq(current);
11095 curr = cfs_rq->curr;
11097 update_curr(cfs_rq);
11098 se->vruntime = curr->vruntime;
11100 place_entity(cfs_rq, se, 1);
11102 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11104 * Upon rescheduling, sched_class::put_prev_task() will place
11105 * 'current' within the tree based on its new key value.
11107 swap(curr->vruntime, se->vruntime);
11111 se->vruntime -= cfs_rq->min_vruntime;
11112 rq_unlock(rq, &rf);
11116 * Priority of the task has changed. Check to see if we preempt
11117 * the current task.
11120 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11122 if (!task_on_rq_queued(p))
11125 if (rq->cfs.nr_running == 1)
11129 * Reschedule if we are currently running on this runqueue and
11130 * our priority decreased, or if we are not currently running on
11131 * this runqueue and our priority is higher than the current's
11133 if (task_current(rq, p)) {
11134 if (p->prio > oldprio)
11137 check_preempt_curr(rq, p, 0);
11140 static inline bool vruntime_normalized(struct task_struct *p)
11142 struct sched_entity *se = &p->se;
11145 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11146 * the dequeue_entity(.flags=0) will already have normalized the
11153 * When !on_rq, vruntime of the task has usually NOT been normalized.
11154 * But there are some cases where it has already been normalized:
11156 * - A forked child which is waiting for being woken up by
11157 * wake_up_new_task().
11158 * - A task which has been woken up by try_to_wake_up() and
11159 * waiting for actually being woken up by sched_ttwu_pending().
11161 if (!se->sum_exec_runtime ||
11162 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11168 #ifdef CONFIG_FAIR_GROUP_SCHED
11170 * Propagate the changes of the sched_entity across the tg tree to make it
11171 * visible to the root
11173 static void propagate_entity_cfs_rq(struct sched_entity *se)
11175 struct cfs_rq *cfs_rq;
11177 list_add_leaf_cfs_rq(cfs_rq_of(se));
11179 /* Start to propagate at parent */
11182 for_each_sched_entity(se) {
11183 cfs_rq = cfs_rq_of(se);
11185 if (!cfs_rq_throttled(cfs_rq)){
11186 update_load_avg(cfs_rq, se, UPDATE_TG);
11187 list_add_leaf_cfs_rq(cfs_rq);
11191 if (list_add_leaf_cfs_rq(cfs_rq))
11196 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11199 static void detach_entity_cfs_rq(struct sched_entity *se)
11201 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11203 /* Catch up with the cfs_rq and remove our load when we leave */
11204 update_load_avg(cfs_rq, se, 0);
11205 detach_entity_load_avg(cfs_rq, se);
11206 update_tg_load_avg(cfs_rq);
11207 propagate_entity_cfs_rq(se);
11210 static void attach_entity_cfs_rq(struct sched_entity *se)
11212 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11214 #ifdef CONFIG_FAIR_GROUP_SCHED
11216 * Since the real-depth could have been changed (only FAIR
11217 * class maintain depth value), reset depth properly.
11219 se->depth = se->parent ? se->parent->depth + 1 : 0;
11222 /* Synchronize entity with its cfs_rq */
11223 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11224 attach_entity_load_avg(cfs_rq, se);
11225 update_tg_load_avg(cfs_rq);
11226 propagate_entity_cfs_rq(se);
11229 static void detach_task_cfs_rq(struct task_struct *p)
11231 struct sched_entity *se = &p->se;
11232 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11234 if (!vruntime_normalized(p)) {
11236 * Fix up our vruntime so that the current sleep doesn't
11237 * cause 'unlimited' sleep bonus.
11239 place_entity(cfs_rq, se, 0);
11240 se->vruntime -= cfs_rq->min_vruntime;
11243 detach_entity_cfs_rq(se);
11246 static void attach_task_cfs_rq(struct task_struct *p)
11248 struct sched_entity *se = &p->se;
11249 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11251 attach_entity_cfs_rq(se);
11253 if (!vruntime_normalized(p))
11254 se->vruntime += cfs_rq->min_vruntime;
11257 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11259 detach_task_cfs_rq(p);
11262 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11264 attach_task_cfs_rq(p);
11266 if (task_on_rq_queued(p)) {
11268 * We were most likely switched from sched_rt, so
11269 * kick off the schedule if running, otherwise just see
11270 * if we can still preempt the current task.
11272 if (task_current(rq, p))
11275 check_preempt_curr(rq, p, 0);
11279 /* Account for a task changing its policy or group.
11281 * This routine is mostly called to set cfs_rq->curr field when a task
11282 * migrates between groups/classes.
11284 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11286 struct sched_entity *se = &p->se;
11289 if (task_on_rq_queued(p)) {
11291 * Move the next running task to the front of the list, so our
11292 * cfs_tasks list becomes MRU one.
11294 list_move(&se->group_node, &rq->cfs_tasks);
11298 for_each_sched_entity(se) {
11299 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11301 set_next_entity(cfs_rq, se);
11302 /* ensure bandwidth has been allocated on our new cfs_rq */
11303 account_cfs_rq_runtime(cfs_rq, 0);
11307 void init_cfs_rq(struct cfs_rq *cfs_rq)
11309 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11310 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11311 #ifndef CONFIG_64BIT
11312 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11315 raw_spin_lock_init(&cfs_rq->removed.lock);
11319 #ifdef CONFIG_FAIR_GROUP_SCHED
11320 static void task_set_group_fair(struct task_struct *p)
11322 struct sched_entity *se = &p->se;
11324 set_task_rq(p, task_cpu(p));
11325 se->depth = se->parent ? se->parent->depth + 1 : 0;
11328 static void task_move_group_fair(struct task_struct *p)
11330 detach_task_cfs_rq(p);
11331 set_task_rq(p, task_cpu(p));
11334 /* Tell se's cfs_rq has been changed -- migrated */
11335 p->se.avg.last_update_time = 0;
11337 attach_task_cfs_rq(p);
11340 static void task_change_group_fair(struct task_struct *p, int type)
11343 case TASK_SET_GROUP:
11344 task_set_group_fair(p);
11347 case TASK_MOVE_GROUP:
11348 task_move_group_fair(p);
11353 void free_fair_sched_group(struct task_group *tg)
11357 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11359 for_each_possible_cpu(i) {
11361 kfree(tg->cfs_rq[i]);
11370 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11372 struct sched_entity *se;
11373 struct cfs_rq *cfs_rq;
11376 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11379 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11383 tg->shares = NICE_0_LOAD;
11385 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11387 for_each_possible_cpu(i) {
11388 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11389 GFP_KERNEL, cpu_to_node(i));
11393 se = kzalloc_node(sizeof(struct sched_entity),
11394 GFP_KERNEL, cpu_to_node(i));
11398 init_cfs_rq(cfs_rq);
11399 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11400 init_entity_runnable_average(se);
11411 void online_fair_sched_group(struct task_group *tg)
11413 struct sched_entity *se;
11414 struct rq_flags rf;
11418 for_each_possible_cpu(i) {
11421 rq_lock_irq(rq, &rf);
11422 update_rq_clock(rq);
11423 attach_entity_cfs_rq(se);
11424 sync_throttle(tg, i);
11425 rq_unlock_irq(rq, &rf);
11429 void unregister_fair_sched_group(struct task_group *tg)
11431 unsigned long flags;
11435 for_each_possible_cpu(cpu) {
11437 remove_entity_load_avg(tg->se[cpu]);
11440 * Only empty task groups can be destroyed; so we can speculatively
11441 * check on_list without danger of it being re-added.
11443 if (!tg->cfs_rq[cpu]->on_list)
11448 raw_spin_rq_lock_irqsave(rq, flags);
11449 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11450 raw_spin_rq_unlock_irqrestore(rq, flags);
11454 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11455 struct sched_entity *se, int cpu,
11456 struct sched_entity *parent)
11458 struct rq *rq = cpu_rq(cpu);
11462 init_cfs_rq_runtime(cfs_rq);
11464 tg->cfs_rq[cpu] = cfs_rq;
11467 /* se could be NULL for root_task_group */
11472 se->cfs_rq = &rq->cfs;
11475 se->cfs_rq = parent->my_q;
11476 se->depth = parent->depth + 1;
11480 /* guarantee group entities always have weight */
11481 update_load_set(&se->load, NICE_0_LOAD);
11482 se->parent = parent;
11485 static DEFINE_MUTEX(shares_mutex);
11487 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11491 lockdep_assert_held(&shares_mutex);
11494 * We can't change the weight of the root cgroup.
11499 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11501 if (tg->shares == shares)
11504 tg->shares = shares;
11505 for_each_possible_cpu(i) {
11506 struct rq *rq = cpu_rq(i);
11507 struct sched_entity *se = tg->se[i];
11508 struct rq_flags rf;
11510 /* Propagate contribution to hierarchy */
11511 rq_lock_irqsave(rq, &rf);
11512 update_rq_clock(rq);
11513 for_each_sched_entity(se) {
11514 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11515 update_cfs_group(se);
11517 rq_unlock_irqrestore(rq, &rf);
11523 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11527 mutex_lock(&shares_mutex);
11528 if (tg_is_idle(tg))
11531 ret = __sched_group_set_shares(tg, shares);
11532 mutex_unlock(&shares_mutex);
11537 int sched_group_set_idle(struct task_group *tg, long idle)
11541 if (tg == &root_task_group)
11544 if (idle < 0 || idle > 1)
11547 mutex_lock(&shares_mutex);
11549 if (tg->idle == idle) {
11550 mutex_unlock(&shares_mutex);
11556 for_each_possible_cpu(i) {
11557 struct rq *rq = cpu_rq(i);
11558 struct sched_entity *se = tg->se[i];
11559 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
11560 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11561 long idle_task_delta;
11562 struct rq_flags rf;
11564 rq_lock_irqsave(rq, &rf);
11566 grp_cfs_rq->idle = idle;
11567 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11570 idle_task_delta = grp_cfs_rq->h_nr_running -
11571 grp_cfs_rq->idle_h_nr_running;
11572 if (!cfs_rq_is_idle(grp_cfs_rq))
11573 idle_task_delta *= -1;
11575 for_each_sched_entity(se) {
11576 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11581 cfs_rq->idle_h_nr_running += idle_task_delta;
11583 /* Already accounted at parent level and above. */
11584 if (cfs_rq_is_idle(cfs_rq))
11589 rq_unlock_irqrestore(rq, &rf);
11592 /* Idle groups have minimum weight. */
11593 if (tg_is_idle(tg))
11594 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11596 __sched_group_set_shares(tg, NICE_0_LOAD);
11598 mutex_unlock(&shares_mutex);
11602 #else /* CONFIG_FAIR_GROUP_SCHED */
11604 void free_fair_sched_group(struct task_group *tg) { }
11606 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11611 void online_fair_sched_group(struct task_group *tg) { }
11613 void unregister_fair_sched_group(struct task_group *tg) { }
11615 #endif /* CONFIG_FAIR_GROUP_SCHED */
11618 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11620 struct sched_entity *se = &task->se;
11621 unsigned int rr_interval = 0;
11624 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11627 if (rq->cfs.load.weight)
11628 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11630 return rr_interval;
11634 * All the scheduling class methods:
11636 DEFINE_SCHED_CLASS(fair) = {
11638 .enqueue_task = enqueue_task_fair,
11639 .dequeue_task = dequeue_task_fair,
11640 .yield_task = yield_task_fair,
11641 .yield_to_task = yield_to_task_fair,
11643 .check_preempt_curr = check_preempt_wakeup,
11645 .pick_next_task = __pick_next_task_fair,
11646 .put_prev_task = put_prev_task_fair,
11647 .set_next_task = set_next_task_fair,
11650 .balance = balance_fair,
11651 .pick_task = pick_task_fair,
11652 .select_task_rq = select_task_rq_fair,
11653 .migrate_task_rq = migrate_task_rq_fair,
11655 .rq_online = rq_online_fair,
11656 .rq_offline = rq_offline_fair,
11658 .task_dead = task_dead_fair,
11659 .set_cpus_allowed = set_cpus_allowed_common,
11662 .task_tick = task_tick_fair,
11663 .task_fork = task_fork_fair,
11665 .prio_changed = prio_changed_fair,
11666 .switched_from = switched_from_fair,
11667 .switched_to = switched_to_fair,
11669 .get_rr_interval = get_rr_interval_fair,
11671 .update_curr = update_curr_fair,
11673 #ifdef CONFIG_FAIR_GROUP_SCHED
11674 .task_change_group = task_change_group_fair,
11677 #ifdef CONFIG_UCLAMP_TASK
11678 .uclamp_enabled = 1,
11682 #ifdef CONFIG_SCHED_DEBUG
11683 void print_cfs_stats(struct seq_file *m, int cpu)
11685 struct cfs_rq *cfs_rq, *pos;
11688 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11689 print_cfs_rq(m, cpu, cfs_rq);
11693 #ifdef CONFIG_NUMA_BALANCING
11694 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11697 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11698 struct numa_group *ng;
11701 ng = rcu_dereference(p->numa_group);
11702 for_each_online_node(node) {
11703 if (p->numa_faults) {
11704 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11705 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11708 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11709 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11711 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11715 #endif /* CONFIG_NUMA_BALANCING */
11716 #endif /* CONFIG_SCHED_DEBUG */
11718 __init void init_sched_fair_class(void)
11721 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11723 #ifdef CONFIG_NO_HZ_COMMON
11724 nohz.next_balance = jiffies;
11725 nohz.next_blocked = jiffies;
11726 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11733 * Helper functions to facilitate extracting info from tracepoints.
11736 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11739 return cfs_rq ? &cfs_rq->avg : NULL;
11744 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11746 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11750 strlcpy(str, "(null)", len);
11755 cfs_rq_tg_path(cfs_rq, str, len);
11758 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11760 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11762 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11764 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11766 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11769 return rq ? &rq->avg_rt : NULL;
11774 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11776 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11779 return rq ? &rq->avg_dl : NULL;
11784 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11786 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11788 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11789 return rq ? &rq->avg_irq : NULL;
11794 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11796 int sched_trace_rq_cpu(struct rq *rq)
11798 return rq ? cpu_of(rq) : -1;
11800 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11802 int sched_trace_rq_cpu_capacity(struct rq *rq)
11808 SCHED_CAPACITY_SCALE
11812 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11814 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11817 return rd ? rd->span : NULL;
11822 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11824 int sched_trace_rq_nr_running(struct rq *rq)
11826 return rq ? rq->nr_running : -1;
11828 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);