2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
33 #include <trace/events/sched.h>
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 static unsigned int sched_nr_latency = 8;
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
96 * The exponential sliding window over which load is averaged for shares
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 #ifdef CONFIG_CFS_BANDWIDTH
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
111 * default: 5 msec, units: microseconds
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
141 * This idea comes from the SD scheduler of Con Kolivas:
143 static int get_update_sysctl_factor(void)
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
152 case SCHED_TUNABLESCALING_LINEAR:
155 case SCHED_TUNABLESCALING_LOG:
157 factor = 1 + ilog2(cpus);
164 static void update_sysctl(void)
166 unsigned int factor = get_update_sysctl_factor();
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
176 void sched_init_granularity(void)
181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32
184 static void __update_inv_weight(struct load_weight *lw)
188 if (likely(lw->inv_weight))
191 w = scale_load_down(lw->weight);
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
198 lw->inv_weight = WMULT_CONST / w;
202 * delta_exec * weight / lw.weight
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
218 __update_inv_weight(lw);
220 if (unlikely(fact >> 32)) {
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
235 return mul_u64_u32_shr(delta_exec, fact, shift);
239 const struct sched_class fair_sched_class;
241 /**************************************************************
242 * CFS operations on generic schedulable entities:
245 #ifdef CONFIG_FAIR_GROUP_SCHED
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q)
256 static inline struct task_struct *task_of(struct sched_entity *se)
258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
261 return container_of(se, struct task_struct, se);
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 if (!cfs_rq->on_list) {
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 /* Do the two (enqueued) entities belong to the same group ? */
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 if (se->cfs_rq == pse->cfs_rq)
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
339 /* return depth at which a sched entity is present in the hierarchy */
340 static inline int depth_se(struct sched_entity *se)
344 for_each_sched_entity(se)
351 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
353 int se_depth, pse_depth;
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
366 while (se_depth > pse_depth) {
368 *se = parent_entity(*se);
371 while (pse_depth > se_depth) {
373 *pse = parent_entity(*pse);
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
382 #else /* !CONFIG_FAIR_GROUP_SCHED */
384 static inline struct task_struct *task_of(struct sched_entity *se)
386 return container_of(se, struct task_struct, se);
389 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
391 return container_of(cfs_rq, struct rq, cfs);
394 #define entity_is_task(se) 1
396 #define for_each_sched_entity(se) \
397 for (; se; se = NULL)
399 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
401 return &task_rq(p)->cfs;
404 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
412 /* runqueue "owned" by this group */
413 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
418 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
422 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
426 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
430 is_same_group(struct sched_entity *se, struct sched_entity *pse)
435 static inline struct sched_entity *parent_entity(struct sched_entity *se)
441 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
445 #endif /* CONFIG_FAIR_GROUP_SCHED */
447 static __always_inline
448 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
450 /**************************************************************
451 * Scheduling class tree data structure manipulation methods:
454 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
456 s64 delta = (s64)(vruntime - max_vruntime);
458 max_vruntime = vruntime;
463 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
465 s64 delta = (s64)(vruntime - min_vruntime);
467 min_vruntime = vruntime;
472 static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
475 return (s64)(a->vruntime - b->vruntime) < 0;
478 static void update_min_vruntime(struct cfs_rq *cfs_rq)
480 u64 vruntime = cfs_rq->min_vruntime;
483 vruntime = cfs_rq->curr->vruntime;
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
491 vruntime = se->vruntime;
493 vruntime = min_vruntime(vruntime, se->vruntime);
496 /* ensure we never gain time by being placed backwards. */
497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
505 * Enqueue an entity into the rb-tree:
507 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
515 * Find the right place in the rbtree:
519 entry = rb_entry(parent, struct sched_entity, run_node);
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
524 if (entity_before(se, entry)) {
525 link = &parent->rb_left;
527 link = &parent->rb_right;
533 * Maintain a cache of leftmost tree entries (it is frequently
537 cfs_rq->rb_leftmost = &se->run_node;
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
543 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
555 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
557 struct rb_node *left = cfs_rq->rb_leftmost;
562 return rb_entry(left, struct sched_entity, run_node);
565 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
567 struct rb_node *next = rb_next(&se->run_node);
572 return rb_entry(next, struct sched_entity, run_node);
575 #ifdef CONFIG_SCHED_DEBUG
576 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
583 return rb_entry(last, struct sched_entity, run_node);
586 /**************************************************************
587 * Scheduling class statistics methods:
590 int sched_proc_update_handler(struct ctl_table *table, int write,
591 void __user *buffer, size_t *lenp,
594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
595 int factor = get_update_sysctl_factor();
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
603 #define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
617 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
619 if (unlikely(se->load.weight != NICE_0_LOAD))
620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
626 * The idea is to set a period in which each task runs once.
628 * When there are too many tasks (sched_nr_latency) we have to stretch
629 * this period because otherwise the slices get too small.
631 * p = (nr <= nl) ? l : l*nr/nl
633 static u64 __sched_period(unsigned long nr_running)
635 u64 period = sysctl_sched_latency;
636 unsigned long nr_latency = sched_nr_latency;
638 if (unlikely(nr_running > nr_latency)) {
639 period = sysctl_sched_min_granularity;
640 period *= nr_running;
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
652 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
656 for_each_sched_entity(se) {
657 struct load_weight *load;
658 struct load_weight lw;
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
663 if (unlikely(!se->on_rq)) {
666 update_load_add(&lw, se->load.weight);
669 slice = __calc_delta(slice, se->load.weight, load);
675 * We calculate the vruntime slice of a to-be-inserted task.
679 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
685 static unsigned long task_h_load(struct task_struct *p);
687 static inline void __update_task_entity_contrib(struct sched_entity *se);
689 /* Give new task start runnable values to heavy its load in infant time */
690 void init_task_runnable_average(struct task_struct *p)
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
701 void init_task_runnable_average(struct task_struct *p)
707 * Update the current task's runtime statistics.
709 static void update_curr(struct cfs_rq *cfs_rq)
711 struct sched_entity *curr = cfs_rq->curr;
712 u64 now = rq_clock_task(rq_of(cfs_rq));
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
722 curr->exec_start = now;
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
737 cpuacct_charge(curtask, delta_exec);
738 account_group_exec_runtime(curtask, delta_exec);
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
745 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
751 * Task is being enqueued - update stats:
753 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
759 if (se != cfs_rq->curr)
760 update_stats_wait_start(cfs_rq, se);
764 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 #ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
777 schedstat_set(se->statistics.wait_start, 0);
781 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
784 * Mark the end of the wait period if dequeueing a
787 if (se != cfs_rq->curr)
788 update_stats_wait_end(cfs_rq, se);
792 * We are picking a new current task - update its stats:
795 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
798 * We are starting a new run period:
800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
803 /**************************************************
804 * Scheduling class queueing methods:
807 #ifdef CONFIG_NUMA_BALANCING
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
813 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
816 /* Portion of address space to scan in MB */
817 unsigned int sysctl_numa_balancing_scan_size = 256;
819 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820 unsigned int sysctl_numa_balancing_scan_delay = 1000;
823 * After skipping a page migration on a shared page, skip N more numa page
824 * migrations unconditionally. This reduces the number of NUMA migrations
825 * in shared memory workloads, and has the effect of pulling tasks towards
826 * where their memory lives, over pulling the memory towards the task.
828 unsigned int sysctl_numa_balancing_migrate_deferred = 16;
830 static unsigned int task_nr_scan_windows(struct task_struct *p)
832 unsigned long rss = 0;
833 unsigned long nr_scan_pages;
836 * Calculations based on RSS as non-present and empty pages are skipped
837 * by the PTE scanner and NUMA hinting faults should be trapped based
840 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
841 rss = get_mm_rss(p->mm);
845 rss = round_up(rss, nr_scan_pages);
846 return rss / nr_scan_pages;
849 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
850 #define MAX_SCAN_WINDOW 2560
852 static unsigned int task_scan_min(struct task_struct *p)
854 unsigned int scan, floor;
855 unsigned int windows = 1;
857 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
858 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
859 floor = 1000 / windows;
861 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
862 return max_t(unsigned int, floor, scan);
865 static unsigned int task_scan_max(struct task_struct *p)
867 unsigned int smin = task_scan_min(p);
870 /* Watch for min being lower than max due to floor calculations */
871 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
872 return max(smin, smax);
876 * Once a preferred node is selected the scheduler balancer will prefer moving
877 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
878 * scans. This will give the process the chance to accumulate more faults on
879 * the preferred node but still allow the scheduler to move the task again if
880 * the nodes CPUs are overloaded.
882 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
884 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
886 rq->nr_numa_running += (p->numa_preferred_nid != -1);
887 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
890 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
892 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
893 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
899 spinlock_t lock; /* nr_tasks, tasks */
902 struct list_head task_list;
905 unsigned long total_faults;
906 unsigned long faults[0];
909 pid_t task_numa_group_id(struct task_struct *p)
911 return p->numa_group ? p->numa_group->gid : 0;
914 static inline int task_faults_idx(int nid, int priv)
916 return 2 * nid + priv;
919 static inline unsigned long task_faults(struct task_struct *p, int nid)
924 return p->numa_faults[task_faults_idx(nid, 0)] +
925 p->numa_faults[task_faults_idx(nid, 1)];
928 static inline unsigned long group_faults(struct task_struct *p, int nid)
933 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
937 * These return the fraction of accesses done by a particular task, or
938 * task group, on a particular numa node. The group weight is given a
939 * larger multiplier, in order to group tasks together that are almost
940 * evenly spread out between numa nodes.
942 static inline unsigned long task_weight(struct task_struct *p, int nid)
944 unsigned long total_faults;
949 total_faults = p->total_numa_faults;
954 return 1000 * task_faults(p, nid) / total_faults;
957 static inline unsigned long group_weight(struct task_struct *p, int nid)
959 if (!p->numa_group || !p->numa_group->total_faults)
962 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
965 static unsigned long weighted_cpuload(const int cpu);
966 static unsigned long source_load(int cpu, int type);
967 static unsigned long target_load(int cpu, int type);
968 static unsigned long power_of(int cpu);
969 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
971 /* Cached statistics for all CPUs within a node */
973 unsigned long nr_running;
976 /* Total compute capacity of CPUs on a node */
979 /* Approximate capacity in terms of runnable tasks on a node */
980 unsigned long capacity;
985 * XXX borrowed from update_sg_lb_stats
987 static void update_numa_stats(struct numa_stats *ns, int nid)
991 memset(ns, 0, sizeof(*ns));
992 for_each_cpu(cpu, cpumask_of_node(nid)) {
993 struct rq *rq = cpu_rq(cpu);
995 ns->nr_running += rq->nr_running;
996 ns->load += weighted_cpuload(cpu);
997 ns->power += power_of(cpu);
1003 * If we raced with hotplug and there are no CPUs left in our mask
1004 * the @ns structure is NULL'ed and task_numa_compare() will
1005 * not find this node attractive.
1007 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1013 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1014 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1015 ns->has_capacity = (ns->nr_running < ns->capacity);
1018 struct task_numa_env {
1019 struct task_struct *p;
1021 int src_cpu, src_nid;
1022 int dst_cpu, dst_nid;
1024 struct numa_stats src_stats, dst_stats;
1026 int imbalance_pct, idx;
1028 struct task_struct *best_task;
1033 static void task_numa_assign(struct task_numa_env *env,
1034 struct task_struct *p, long imp)
1037 put_task_struct(env->best_task);
1042 env->best_imp = imp;
1043 env->best_cpu = env->dst_cpu;
1047 * This checks if the overall compute and NUMA accesses of the system would
1048 * be improved if the source tasks was migrated to the target dst_cpu taking
1049 * into account that it might be best if task running on the dst_cpu should
1050 * be exchanged with the source task
1052 static void task_numa_compare(struct task_numa_env *env,
1053 long taskimp, long groupimp)
1055 struct rq *src_rq = cpu_rq(env->src_cpu);
1056 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1057 struct task_struct *cur;
1058 long dst_load, src_load;
1060 long imp = (groupimp > 0) ? groupimp : taskimp;
1063 cur = ACCESS_ONCE(dst_rq->curr);
1064 if (cur->pid == 0) /* idle */
1068 * "imp" is the fault differential for the source task between the
1069 * source and destination node. Calculate the total differential for
1070 * the source task and potential destination task. The more negative
1071 * the value is, the more rmeote accesses that would be expected to
1072 * be incurred if the tasks were swapped.
1075 /* Skip this swap candidate if cannot move to the source cpu */
1076 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1080 * If dst and source tasks are in the same NUMA group, or not
1081 * in any group then look only at task weights.
1083 if (cur->numa_group == env->p->numa_group) {
1084 imp = taskimp + task_weight(cur, env->src_nid) -
1085 task_weight(cur, env->dst_nid);
1087 * Add some hysteresis to prevent swapping the
1088 * tasks within a group over tiny differences.
1090 if (cur->numa_group)
1094 * Compare the group weights. If a task is all by
1095 * itself (not part of a group), use the task weight
1098 if (env->p->numa_group)
1103 if (cur->numa_group)
1104 imp += group_weight(cur, env->src_nid) -
1105 group_weight(cur, env->dst_nid);
1107 imp += task_weight(cur, env->src_nid) -
1108 task_weight(cur, env->dst_nid);
1112 if (imp < env->best_imp)
1116 /* Is there capacity at our destination? */
1117 if (env->src_stats.has_capacity &&
1118 !env->dst_stats.has_capacity)
1124 /* Balance doesn't matter much if we're running a task per cpu */
1125 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1129 * In the overloaded case, try and keep the load balanced.
1132 dst_load = env->dst_stats.load;
1133 src_load = env->src_stats.load;
1135 /* XXX missing power terms */
1136 load = task_h_load(env->p);
1141 load = task_h_load(cur);
1146 /* make src_load the smaller */
1147 if (dst_load < src_load)
1148 swap(dst_load, src_load);
1150 if (src_load * env->imbalance_pct < dst_load * 100)
1154 task_numa_assign(env, cur, imp);
1159 static void task_numa_find_cpu(struct task_numa_env *env,
1160 long taskimp, long groupimp)
1164 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1165 /* Skip this CPU if the source task cannot migrate */
1166 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1170 task_numa_compare(env, taskimp, groupimp);
1174 static int task_numa_migrate(struct task_struct *p)
1176 struct task_numa_env env = {
1179 .src_cpu = task_cpu(p),
1180 .src_nid = task_node(p),
1182 .imbalance_pct = 112,
1188 struct sched_domain *sd;
1189 unsigned long taskweight, groupweight;
1191 long taskimp, groupimp;
1194 * Pick the lowest SD_NUMA domain, as that would have the smallest
1195 * imbalance and would be the first to start moving tasks about.
1197 * And we want to avoid any moving of tasks about, as that would create
1198 * random movement of tasks -- counter the numa conditions we're trying
1202 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1208 * Cpusets can break the scheduler domain tree into smaller
1209 * balance domains, some of which do not cross NUMA boundaries.
1210 * Tasks that are "trapped" in such domains cannot be migrated
1211 * elsewhere, so there is no point in (re)trying.
1213 if (unlikely(!sd)) {
1214 p->numa_preferred_nid = cpu_to_node(task_cpu(p));
1218 taskweight = task_weight(p, env.src_nid);
1219 groupweight = group_weight(p, env.src_nid);
1220 update_numa_stats(&env.src_stats, env.src_nid);
1221 env.dst_nid = p->numa_preferred_nid;
1222 taskimp = task_weight(p, env.dst_nid) - taskweight;
1223 groupimp = group_weight(p, env.dst_nid) - groupweight;
1224 update_numa_stats(&env.dst_stats, env.dst_nid);
1226 /* If the preferred nid has capacity, try to use it. */
1227 if (env.dst_stats.has_capacity)
1228 task_numa_find_cpu(&env, taskimp, groupimp);
1230 /* No space available on the preferred nid. Look elsewhere. */
1231 if (env.best_cpu == -1) {
1232 for_each_online_node(nid) {
1233 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1236 /* Only consider nodes where both task and groups benefit */
1237 taskimp = task_weight(p, nid) - taskweight;
1238 groupimp = group_weight(p, nid) - groupweight;
1239 if (taskimp < 0 && groupimp < 0)
1243 update_numa_stats(&env.dst_stats, env.dst_nid);
1244 task_numa_find_cpu(&env, taskimp, groupimp);
1248 /* No better CPU than the current one was found. */
1249 if (env.best_cpu == -1)
1252 sched_setnuma(p, env.dst_nid);
1255 * Reset the scan period if the task is being rescheduled on an
1256 * alternative node to recheck if the tasks is now properly placed.
1258 p->numa_scan_period = task_scan_min(p);
1260 if (env.best_task == NULL) {
1261 int ret = migrate_task_to(p, env.best_cpu);
1265 ret = migrate_swap(p, env.best_task);
1266 put_task_struct(env.best_task);
1270 /* Attempt to migrate a task to a CPU on the preferred node. */
1271 static void numa_migrate_preferred(struct task_struct *p)
1273 /* This task has no NUMA fault statistics yet */
1274 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1277 /* Periodically retry migrating the task to the preferred node */
1278 p->numa_migrate_retry = jiffies + HZ;
1280 /* Success if task is already running on preferred CPU */
1281 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
1284 /* Otherwise, try migrate to a CPU on the preferred node */
1285 task_numa_migrate(p);
1289 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1290 * increments. The more local the fault statistics are, the higher the scan
1291 * period will be for the next scan window. If local/remote ratio is below
1292 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1293 * scan period will decrease
1295 #define NUMA_PERIOD_SLOTS 10
1296 #define NUMA_PERIOD_THRESHOLD 3
1299 * Increase the scan period (slow down scanning) if the majority of
1300 * our memory is already on our local node, or if the majority of
1301 * the page accesses are shared with other processes.
1302 * Otherwise, decrease the scan period.
1304 static void update_task_scan_period(struct task_struct *p,
1305 unsigned long shared, unsigned long private)
1307 unsigned int period_slot;
1311 unsigned long remote = p->numa_faults_locality[0];
1312 unsigned long local = p->numa_faults_locality[1];
1315 * If there were no record hinting faults then either the task is
1316 * completely idle or all activity is areas that are not of interest
1317 * to automatic numa balancing. Scan slower
1319 if (local + shared == 0) {
1320 p->numa_scan_period = min(p->numa_scan_period_max,
1321 p->numa_scan_period << 1);
1323 p->mm->numa_next_scan = jiffies +
1324 msecs_to_jiffies(p->numa_scan_period);
1330 * Prepare to scale scan period relative to the current period.
1331 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1332 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1333 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1335 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1336 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1337 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1338 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1341 diff = slot * period_slot;
1343 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1346 * Scale scan rate increases based on sharing. There is an
1347 * inverse relationship between the degree of sharing and
1348 * the adjustment made to the scanning period. Broadly
1349 * speaking the intent is that there is little point
1350 * scanning faster if shared accesses dominate as it may
1351 * simply bounce migrations uselessly
1353 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1354 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1355 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1358 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1359 task_scan_min(p), task_scan_max(p));
1360 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1363 static void task_numa_placement(struct task_struct *p)
1365 int seq, nid, max_nid = -1, max_group_nid = -1;
1366 unsigned long max_faults = 0, max_group_faults = 0;
1367 unsigned long fault_types[2] = { 0, 0 };
1368 spinlock_t *group_lock = NULL;
1370 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1371 if (p->numa_scan_seq == seq)
1373 p->numa_scan_seq = seq;
1374 p->numa_scan_period_max = task_scan_max(p);
1376 /* If the task is part of a group prevent parallel updates to group stats */
1377 if (p->numa_group) {
1378 group_lock = &p->numa_group->lock;
1379 spin_lock(group_lock);
1382 /* Find the node with the highest number of faults */
1383 for_each_online_node(nid) {
1384 unsigned long faults = 0, group_faults = 0;
1387 for (priv = 0; priv < 2; priv++) {
1390 i = task_faults_idx(nid, priv);
1391 diff = -p->numa_faults[i];
1393 /* Decay existing window, copy faults since last scan */
1394 p->numa_faults[i] >>= 1;
1395 p->numa_faults[i] += p->numa_faults_buffer[i];
1396 fault_types[priv] += p->numa_faults_buffer[i];
1397 p->numa_faults_buffer[i] = 0;
1399 faults += p->numa_faults[i];
1400 diff += p->numa_faults[i];
1401 p->total_numa_faults += diff;
1402 if (p->numa_group) {
1403 /* safe because we can only change our own group */
1404 p->numa_group->faults[i] += diff;
1405 p->numa_group->total_faults += diff;
1406 group_faults += p->numa_group->faults[i];
1410 if (faults > max_faults) {
1411 max_faults = faults;
1415 if (group_faults > max_group_faults) {
1416 max_group_faults = group_faults;
1417 max_group_nid = nid;
1421 update_task_scan_period(p, fault_types[0], fault_types[1]);
1423 if (p->numa_group) {
1425 * If the preferred task and group nids are different,
1426 * iterate over the nodes again to find the best place.
1428 if (max_nid != max_group_nid) {
1429 unsigned long weight, max_weight = 0;
1431 for_each_online_node(nid) {
1432 weight = task_weight(p, nid) + group_weight(p, nid);
1433 if (weight > max_weight) {
1434 max_weight = weight;
1440 spin_unlock(group_lock);
1443 /* Preferred node as the node with the most faults */
1444 if (max_faults && max_nid != p->numa_preferred_nid) {
1445 /* Update the preferred nid and migrate task if possible */
1446 sched_setnuma(p, max_nid);
1447 numa_migrate_preferred(p);
1451 static inline int get_numa_group(struct numa_group *grp)
1453 return atomic_inc_not_zero(&grp->refcount);
1456 static inline void put_numa_group(struct numa_group *grp)
1458 if (atomic_dec_and_test(&grp->refcount))
1459 kfree_rcu(grp, rcu);
1462 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1465 struct numa_group *grp, *my_grp;
1466 struct task_struct *tsk;
1468 int cpu = cpupid_to_cpu(cpupid);
1471 if (unlikely(!p->numa_group)) {
1472 unsigned int size = sizeof(struct numa_group) +
1473 2*nr_node_ids*sizeof(unsigned long);
1475 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1479 atomic_set(&grp->refcount, 1);
1480 spin_lock_init(&grp->lock);
1481 INIT_LIST_HEAD(&grp->task_list);
1484 for (i = 0; i < 2*nr_node_ids; i++)
1485 grp->faults[i] = p->numa_faults[i];
1487 grp->total_faults = p->total_numa_faults;
1489 list_add(&p->numa_entry, &grp->task_list);
1491 rcu_assign_pointer(p->numa_group, grp);
1495 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1497 if (!cpupid_match_pid(tsk, cpupid))
1500 grp = rcu_dereference(tsk->numa_group);
1504 my_grp = p->numa_group;
1509 * Only join the other group if its bigger; if we're the bigger group,
1510 * the other task will join us.
1512 if (my_grp->nr_tasks > grp->nr_tasks)
1516 * Tie-break on the grp address.
1518 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1521 /* Always join threads in the same process. */
1522 if (tsk->mm == current->mm)
1525 /* Simple filter to avoid false positives due to PID collisions */
1526 if (flags & TNF_SHARED)
1529 /* Update priv based on whether false sharing was detected */
1532 if (join && !get_numa_group(grp))
1540 double_lock(&my_grp->lock, &grp->lock);
1542 for (i = 0; i < 2*nr_node_ids; i++) {
1543 my_grp->faults[i] -= p->numa_faults[i];
1544 grp->faults[i] += p->numa_faults[i];
1546 my_grp->total_faults -= p->total_numa_faults;
1547 grp->total_faults += p->total_numa_faults;
1549 list_move(&p->numa_entry, &grp->task_list);
1553 spin_unlock(&my_grp->lock);
1554 spin_unlock(&grp->lock);
1556 rcu_assign_pointer(p->numa_group, grp);
1558 put_numa_group(my_grp);
1566 void task_numa_free(struct task_struct *p)
1568 struct numa_group *grp = p->numa_group;
1570 void *numa_faults = p->numa_faults;
1573 spin_lock(&grp->lock);
1574 for (i = 0; i < 2*nr_node_ids; i++)
1575 grp->faults[i] -= p->numa_faults[i];
1576 grp->total_faults -= p->total_numa_faults;
1578 list_del(&p->numa_entry);
1580 spin_unlock(&grp->lock);
1581 rcu_assign_pointer(p->numa_group, NULL);
1582 put_numa_group(grp);
1585 p->numa_faults = NULL;
1586 p->numa_faults_buffer = NULL;
1591 * Got a PROT_NONE fault for a page on @node.
1593 void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1595 struct task_struct *p = current;
1596 bool migrated = flags & TNF_MIGRATED;
1599 if (!numabalancing_enabled)
1602 /* for example, ksmd faulting in a user's mm */
1606 /* Do not worry about placement if exiting */
1607 if (p->state == TASK_DEAD)
1610 /* Allocate buffer to track faults on a per-node basis */
1611 if (unlikely(!p->numa_faults)) {
1612 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1614 /* numa_faults and numa_faults_buffer share the allocation */
1615 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1616 if (!p->numa_faults)
1619 BUG_ON(p->numa_faults_buffer);
1620 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1621 p->total_numa_faults = 0;
1622 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1626 * First accesses are treated as private, otherwise consider accesses
1627 * to be private if the accessing pid has not changed
1629 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1632 priv = cpupid_match_pid(p, last_cpupid);
1633 if (!priv && !(flags & TNF_NO_GROUP))
1634 task_numa_group(p, last_cpupid, flags, &priv);
1637 task_numa_placement(p);
1640 * Retry task to preferred node migration periodically, in case it
1641 * case it previously failed, or the scheduler moved us.
1643 if (time_after(jiffies, p->numa_migrate_retry))
1644 numa_migrate_preferred(p);
1647 p->numa_pages_migrated += pages;
1649 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1650 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1653 static void reset_ptenuma_scan(struct task_struct *p)
1655 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1656 p->mm->numa_scan_offset = 0;
1660 * The expensive part of numa migration is done from task_work context.
1661 * Triggered from task_tick_numa().
1663 void task_numa_work(struct callback_head *work)
1665 unsigned long migrate, next_scan, now = jiffies;
1666 struct task_struct *p = current;
1667 struct mm_struct *mm = p->mm;
1668 struct vm_area_struct *vma;
1669 unsigned long start, end;
1670 unsigned long nr_pte_updates = 0;
1673 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1675 work->next = work; /* protect against double add */
1677 * Who cares about NUMA placement when they're dying.
1679 * NOTE: make sure not to dereference p->mm before this check,
1680 * exit_task_work() happens _after_ exit_mm() so we could be called
1681 * without p->mm even though we still had it when we enqueued this
1684 if (p->flags & PF_EXITING)
1687 if (!mm->numa_next_scan) {
1688 mm->numa_next_scan = now +
1689 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1693 * Enforce maximal scan/migration frequency..
1695 migrate = mm->numa_next_scan;
1696 if (time_before(now, migrate))
1699 if (p->numa_scan_period == 0) {
1700 p->numa_scan_period_max = task_scan_max(p);
1701 p->numa_scan_period = task_scan_min(p);
1704 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1705 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1709 * Delay this task enough that another task of this mm will likely win
1710 * the next time around.
1712 p->node_stamp += 2 * TICK_NSEC;
1714 start = mm->numa_scan_offset;
1715 pages = sysctl_numa_balancing_scan_size;
1716 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1720 down_read(&mm->mmap_sem);
1721 vma = find_vma(mm, start);
1723 reset_ptenuma_scan(p);
1727 for (; vma; vma = vma->vm_next) {
1728 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1732 * Shared library pages mapped by multiple processes are not
1733 * migrated as it is expected they are cache replicated. Avoid
1734 * hinting faults in read-only file-backed mappings or the vdso
1735 * as migrating the pages will be of marginal benefit.
1738 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1742 start = max(start, vma->vm_start);
1743 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1744 end = min(end, vma->vm_end);
1745 nr_pte_updates += change_prot_numa(vma, start, end);
1748 * Scan sysctl_numa_balancing_scan_size but ensure that
1749 * at least one PTE is updated so that unused virtual
1750 * address space is quickly skipped.
1753 pages -= (end - start) >> PAGE_SHIFT;
1758 } while (end != vma->vm_end);
1763 * It is possible to reach the end of the VMA list but the last few
1764 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1765 * would find the !migratable VMA on the next scan but not reset the
1766 * scanner to the start so check it now.
1769 mm->numa_scan_offset = start;
1771 reset_ptenuma_scan(p);
1772 up_read(&mm->mmap_sem);
1776 * Drive the periodic memory faults..
1778 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1780 struct callback_head *work = &curr->numa_work;
1784 * We don't care about NUMA placement if we don't have memory.
1786 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1790 * Using runtime rather than walltime has the dual advantage that
1791 * we (mostly) drive the selection from busy threads and that the
1792 * task needs to have done some actual work before we bother with
1795 now = curr->se.sum_exec_runtime;
1796 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1798 if (now - curr->node_stamp > period) {
1799 if (!curr->node_stamp)
1800 curr->numa_scan_period = task_scan_min(curr);
1801 curr->node_stamp += period;
1803 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1804 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1805 task_work_add(curr, work, true);
1810 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1814 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1818 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1821 #endif /* CONFIG_NUMA_BALANCING */
1824 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1826 update_load_add(&cfs_rq->load, se->load.weight);
1827 if (!parent_entity(se))
1828 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1830 if (entity_is_task(se)) {
1831 struct rq *rq = rq_of(cfs_rq);
1833 account_numa_enqueue(rq, task_of(se));
1834 list_add(&se->group_node, &rq->cfs_tasks);
1837 cfs_rq->nr_running++;
1841 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1843 update_load_sub(&cfs_rq->load, se->load.weight);
1844 if (!parent_entity(se))
1845 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1846 if (entity_is_task(se)) {
1847 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1848 list_del_init(&se->group_node);
1850 cfs_rq->nr_running--;
1853 #ifdef CONFIG_FAIR_GROUP_SCHED
1855 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1860 * Use this CPU's actual weight instead of the last load_contribution
1861 * to gain a more accurate current total weight. See
1862 * update_cfs_rq_load_contribution().
1864 tg_weight = atomic_long_read(&tg->load_avg);
1865 tg_weight -= cfs_rq->tg_load_contrib;
1866 tg_weight += cfs_rq->load.weight;
1871 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1873 long tg_weight, load, shares;
1875 tg_weight = calc_tg_weight(tg, cfs_rq);
1876 load = cfs_rq->load.weight;
1878 shares = (tg->shares * load);
1880 shares /= tg_weight;
1882 if (shares < MIN_SHARES)
1883 shares = MIN_SHARES;
1884 if (shares > tg->shares)
1885 shares = tg->shares;
1889 # else /* CONFIG_SMP */
1890 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1894 # endif /* CONFIG_SMP */
1895 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1896 unsigned long weight)
1899 /* commit outstanding execution time */
1900 if (cfs_rq->curr == se)
1901 update_curr(cfs_rq);
1902 account_entity_dequeue(cfs_rq, se);
1905 update_load_set(&se->load, weight);
1908 account_entity_enqueue(cfs_rq, se);
1911 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1913 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1915 struct task_group *tg;
1916 struct sched_entity *se;
1920 se = tg->se[cpu_of(rq_of(cfs_rq))];
1921 if (!se || throttled_hierarchy(cfs_rq))
1924 if (likely(se->load.weight == tg->shares))
1927 shares = calc_cfs_shares(cfs_rq, tg);
1929 reweight_entity(cfs_rq_of(se), se, shares);
1931 #else /* CONFIG_FAIR_GROUP_SCHED */
1932 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1935 #endif /* CONFIG_FAIR_GROUP_SCHED */
1939 * We choose a half-life close to 1 scheduling period.
1940 * Note: The tables below are dependent on this value.
1942 #define LOAD_AVG_PERIOD 32
1943 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1944 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1946 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1947 static const u32 runnable_avg_yN_inv[] = {
1948 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1949 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1950 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1951 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1952 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1953 0x85aac367, 0x82cd8698,
1957 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1958 * over-estimates when re-combining.
1960 static const u32 runnable_avg_yN_sum[] = {
1961 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1962 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1963 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1968 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1970 static __always_inline u64 decay_load(u64 val, u64 n)
1972 unsigned int local_n;
1976 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1979 /* after bounds checking we can collapse to 32-bit */
1983 * As y^PERIOD = 1/2, we can combine
1984 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1985 * With a look-up table which covers k^n (n<PERIOD)
1987 * To achieve constant time decay_load.
1989 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1990 val >>= local_n / LOAD_AVG_PERIOD;
1991 local_n %= LOAD_AVG_PERIOD;
1994 val *= runnable_avg_yN_inv[local_n];
1995 /* We don't use SRR here since we always want to round down. */
2000 * For updates fully spanning n periods, the contribution to runnable
2001 * average will be: \Sum 1024*y^n
2003 * We can compute this reasonably efficiently by combining:
2004 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2006 static u32 __compute_runnable_contrib(u64 n)
2010 if (likely(n <= LOAD_AVG_PERIOD))
2011 return runnable_avg_yN_sum[n];
2012 else if (unlikely(n >= LOAD_AVG_MAX_N))
2013 return LOAD_AVG_MAX;
2015 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2017 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2018 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2020 n -= LOAD_AVG_PERIOD;
2021 } while (n > LOAD_AVG_PERIOD);
2023 contrib = decay_load(contrib, n);
2024 return contrib + runnable_avg_yN_sum[n];
2028 * We can represent the historical contribution to runnable average as the
2029 * coefficients of a geometric series. To do this we sub-divide our runnable
2030 * history into segments of approximately 1ms (1024us); label the segment that
2031 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2033 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2035 * (now) (~1ms ago) (~2ms ago)
2037 * Let u_i denote the fraction of p_i that the entity was runnable.
2039 * We then designate the fractions u_i as our co-efficients, yielding the
2040 * following representation of historical load:
2041 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2043 * We choose y based on the with of a reasonably scheduling period, fixing:
2046 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2047 * approximately half as much as the contribution to load within the last ms
2050 * When a period "rolls over" and we have new u_0`, multiplying the previous
2051 * sum again by y is sufficient to update:
2052 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2053 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2055 static __always_inline int __update_entity_runnable_avg(u64 now,
2056 struct sched_avg *sa,
2060 u32 runnable_contrib;
2061 int delta_w, decayed = 0;
2063 delta = now - sa->last_runnable_update;
2065 * This should only happen when time goes backwards, which it
2066 * unfortunately does during sched clock init when we swap over to TSC.
2068 if ((s64)delta < 0) {
2069 sa->last_runnable_update = now;
2074 * Use 1024ns as the unit of measurement since it's a reasonable
2075 * approximation of 1us and fast to compute.
2080 sa->last_runnable_update = now;
2082 /* delta_w is the amount already accumulated against our next period */
2083 delta_w = sa->runnable_avg_period % 1024;
2084 if (delta + delta_w >= 1024) {
2085 /* period roll-over */
2089 * Now that we know we're crossing a period boundary, figure
2090 * out how much from delta we need to complete the current
2091 * period and accrue it.
2093 delta_w = 1024 - delta_w;
2095 sa->runnable_avg_sum += delta_w;
2096 sa->runnable_avg_period += delta_w;
2100 /* Figure out how many additional periods this update spans */
2101 periods = delta / 1024;
2104 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2106 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2109 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2110 runnable_contrib = __compute_runnable_contrib(periods);
2112 sa->runnable_avg_sum += runnable_contrib;
2113 sa->runnable_avg_period += runnable_contrib;
2116 /* Remainder of delta accrued against u_0` */
2118 sa->runnable_avg_sum += delta;
2119 sa->runnable_avg_period += delta;
2124 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2125 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2127 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2128 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2130 decays -= se->avg.decay_count;
2134 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2135 se->avg.decay_count = 0;
2140 #ifdef CONFIG_FAIR_GROUP_SCHED
2141 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2144 struct task_group *tg = cfs_rq->tg;
2147 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2148 tg_contrib -= cfs_rq->tg_load_contrib;
2150 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2151 atomic_long_add(tg_contrib, &tg->load_avg);
2152 cfs_rq->tg_load_contrib += tg_contrib;
2157 * Aggregate cfs_rq runnable averages into an equivalent task_group
2158 * representation for computing load contributions.
2160 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2161 struct cfs_rq *cfs_rq)
2163 struct task_group *tg = cfs_rq->tg;
2166 /* The fraction of a cpu used by this cfs_rq */
2167 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2168 sa->runnable_avg_period + 1);
2169 contrib -= cfs_rq->tg_runnable_contrib;
2171 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2172 atomic_add(contrib, &tg->runnable_avg);
2173 cfs_rq->tg_runnable_contrib += contrib;
2177 static inline void __update_group_entity_contrib(struct sched_entity *se)
2179 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2180 struct task_group *tg = cfs_rq->tg;
2185 contrib = cfs_rq->tg_load_contrib * tg->shares;
2186 se->avg.load_avg_contrib = div_u64(contrib,
2187 atomic_long_read(&tg->load_avg) + 1);
2190 * For group entities we need to compute a correction term in the case
2191 * that they are consuming <1 cpu so that we would contribute the same
2192 * load as a task of equal weight.
2194 * Explicitly co-ordinating this measurement would be expensive, but
2195 * fortunately the sum of each cpus contribution forms a usable
2196 * lower-bound on the true value.
2198 * Consider the aggregate of 2 contributions. Either they are disjoint
2199 * (and the sum represents true value) or they are disjoint and we are
2200 * understating by the aggregate of their overlap.
2202 * Extending this to N cpus, for a given overlap, the maximum amount we
2203 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2204 * cpus that overlap for this interval and w_i is the interval width.
2206 * On a small machine; the first term is well-bounded which bounds the
2207 * total error since w_i is a subset of the period. Whereas on a
2208 * larger machine, while this first term can be larger, if w_i is the
2209 * of consequential size guaranteed to see n_i*w_i quickly converge to
2210 * our upper bound of 1-cpu.
2212 runnable_avg = atomic_read(&tg->runnable_avg);
2213 if (runnable_avg < NICE_0_LOAD) {
2214 se->avg.load_avg_contrib *= runnable_avg;
2215 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2219 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2220 int force_update) {}
2221 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2222 struct cfs_rq *cfs_rq) {}
2223 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2226 static inline void __update_task_entity_contrib(struct sched_entity *se)
2230 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2231 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2232 contrib /= (se->avg.runnable_avg_period + 1);
2233 se->avg.load_avg_contrib = scale_load(contrib);
2236 /* Compute the current contribution to load_avg by se, return any delta */
2237 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2239 long old_contrib = se->avg.load_avg_contrib;
2241 if (entity_is_task(se)) {
2242 __update_task_entity_contrib(se);
2244 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2245 __update_group_entity_contrib(se);
2248 return se->avg.load_avg_contrib - old_contrib;
2251 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2254 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2255 cfs_rq->blocked_load_avg -= load_contrib;
2257 cfs_rq->blocked_load_avg = 0;
2260 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2262 /* Update a sched_entity's runnable average */
2263 static inline void update_entity_load_avg(struct sched_entity *se,
2266 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2271 * For a group entity we need to use their owned cfs_rq_clock_task() in
2272 * case they are the parent of a throttled hierarchy.
2274 if (entity_is_task(se))
2275 now = cfs_rq_clock_task(cfs_rq);
2277 now = cfs_rq_clock_task(group_cfs_rq(se));
2279 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2282 contrib_delta = __update_entity_load_avg_contrib(se);
2288 cfs_rq->runnable_load_avg += contrib_delta;
2290 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2294 * Decay the load contributed by all blocked children and account this so that
2295 * their contribution may appropriately discounted when they wake up.
2297 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2299 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2302 decays = now - cfs_rq->last_decay;
2303 if (!decays && !force_update)
2306 if (atomic_long_read(&cfs_rq->removed_load)) {
2307 unsigned long removed_load;
2308 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2309 subtract_blocked_load_contrib(cfs_rq, removed_load);
2313 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2315 atomic64_add(decays, &cfs_rq->decay_counter);
2316 cfs_rq->last_decay = now;
2319 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2322 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2324 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2325 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2328 /* Add the load generated by se into cfs_rq's child load-average */
2329 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2330 struct sched_entity *se,
2334 * We track migrations using entity decay_count <= 0, on a wake-up
2335 * migration we use a negative decay count to track the remote decays
2336 * accumulated while sleeping.
2338 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2339 * are seen by enqueue_entity_load_avg() as a migration with an already
2340 * constructed load_avg_contrib.
2342 if (unlikely(se->avg.decay_count <= 0)) {
2343 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2344 if (se->avg.decay_count) {
2346 * In a wake-up migration we have to approximate the
2347 * time sleeping. This is because we can't synchronize
2348 * clock_task between the two cpus, and it is not
2349 * guaranteed to be read-safe. Instead, we can
2350 * approximate this using our carried decays, which are
2351 * explicitly atomically readable.
2353 se->avg.last_runnable_update -= (-se->avg.decay_count)
2355 update_entity_load_avg(se, 0);
2356 /* Indicate that we're now synchronized and on-rq */
2357 se->avg.decay_count = 0;
2362 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2363 * would have made count negative); we must be careful to avoid
2364 * double-accounting blocked time after synchronizing decays.
2366 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2370 /* migrated tasks did not contribute to our blocked load */
2372 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2373 update_entity_load_avg(se, 0);
2376 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2377 /* we force update consideration on load-balancer moves */
2378 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2382 * Remove se's load from this cfs_rq child load-average, if the entity is
2383 * transitioning to a blocked state we track its projected decay using
2386 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2387 struct sched_entity *se,
2390 update_entity_load_avg(se, 1);
2391 /* we force update consideration on load-balancer moves */
2392 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2394 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2396 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2397 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2398 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2402 * Update the rq's load with the elapsed running time before entering
2403 * idle. if the last scheduled task is not a CFS task, idle_enter will
2404 * be the only way to update the runnable statistic.
2406 void idle_enter_fair(struct rq *this_rq)
2408 update_rq_runnable_avg(this_rq, 1);
2412 * Update the rq's load with the elapsed idle time before a task is
2413 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2414 * be the only way to update the runnable statistic.
2416 void idle_exit_fair(struct rq *this_rq)
2418 update_rq_runnable_avg(this_rq, 0);
2422 static inline void update_entity_load_avg(struct sched_entity *se,
2423 int update_cfs_rq) {}
2424 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2425 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2426 struct sched_entity *se,
2428 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2429 struct sched_entity *se,
2431 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2432 int force_update) {}
2435 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2437 #ifdef CONFIG_SCHEDSTATS
2438 struct task_struct *tsk = NULL;
2440 if (entity_is_task(se))
2443 if (se->statistics.sleep_start) {
2444 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2449 if (unlikely(delta > se->statistics.sleep_max))
2450 se->statistics.sleep_max = delta;
2452 se->statistics.sleep_start = 0;
2453 se->statistics.sum_sleep_runtime += delta;
2456 account_scheduler_latency(tsk, delta >> 10, 1);
2457 trace_sched_stat_sleep(tsk, delta);
2460 if (se->statistics.block_start) {
2461 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2466 if (unlikely(delta > se->statistics.block_max))
2467 se->statistics.block_max = delta;
2469 se->statistics.block_start = 0;
2470 se->statistics.sum_sleep_runtime += delta;
2473 if (tsk->in_iowait) {
2474 se->statistics.iowait_sum += delta;
2475 se->statistics.iowait_count++;
2476 trace_sched_stat_iowait(tsk, delta);
2479 trace_sched_stat_blocked(tsk, delta);
2482 * Blocking time is in units of nanosecs, so shift by
2483 * 20 to get a milliseconds-range estimation of the
2484 * amount of time that the task spent sleeping:
2486 if (unlikely(prof_on == SLEEP_PROFILING)) {
2487 profile_hits(SLEEP_PROFILING,
2488 (void *)get_wchan(tsk),
2491 account_scheduler_latency(tsk, delta >> 10, 0);
2497 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2499 #ifdef CONFIG_SCHED_DEBUG
2500 s64 d = se->vruntime - cfs_rq->min_vruntime;
2505 if (d > 3*sysctl_sched_latency)
2506 schedstat_inc(cfs_rq, nr_spread_over);
2511 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2513 u64 vruntime = cfs_rq->min_vruntime;
2516 * The 'current' period is already promised to the current tasks,
2517 * however the extra weight of the new task will slow them down a
2518 * little, place the new task so that it fits in the slot that
2519 * stays open at the end.
2521 if (initial && sched_feat(START_DEBIT))
2522 vruntime += sched_vslice(cfs_rq, se);
2524 /* sleeps up to a single latency don't count. */
2526 unsigned long thresh = sysctl_sched_latency;
2529 * Halve their sleep time's effect, to allow
2530 * for a gentler effect of sleepers:
2532 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2538 /* ensure we never gain time by being placed backwards. */
2539 se->vruntime = max_vruntime(se->vruntime, vruntime);
2542 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2545 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2548 * Update the normalized vruntime before updating min_vruntime
2549 * through calling update_curr().
2551 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2552 se->vruntime += cfs_rq->min_vruntime;
2555 * Update run-time statistics of the 'current'.
2557 update_curr(cfs_rq);
2558 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2559 account_entity_enqueue(cfs_rq, se);
2560 update_cfs_shares(cfs_rq);
2562 if (flags & ENQUEUE_WAKEUP) {
2563 place_entity(cfs_rq, se, 0);
2564 enqueue_sleeper(cfs_rq, se);
2567 update_stats_enqueue(cfs_rq, se);
2568 check_spread(cfs_rq, se);
2569 if (se != cfs_rq->curr)
2570 __enqueue_entity(cfs_rq, se);
2573 if (cfs_rq->nr_running == 1) {
2574 list_add_leaf_cfs_rq(cfs_rq);
2575 check_enqueue_throttle(cfs_rq);
2579 static void __clear_buddies_last(struct sched_entity *se)
2581 for_each_sched_entity(se) {
2582 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2583 if (cfs_rq->last == se)
2584 cfs_rq->last = NULL;
2590 static void __clear_buddies_next(struct sched_entity *se)
2592 for_each_sched_entity(se) {
2593 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2594 if (cfs_rq->next == se)
2595 cfs_rq->next = NULL;
2601 static void __clear_buddies_skip(struct sched_entity *se)
2603 for_each_sched_entity(se) {
2604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2605 if (cfs_rq->skip == se)
2606 cfs_rq->skip = NULL;
2612 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2614 if (cfs_rq->last == se)
2615 __clear_buddies_last(se);
2617 if (cfs_rq->next == se)
2618 __clear_buddies_next(se);
2620 if (cfs_rq->skip == se)
2621 __clear_buddies_skip(se);
2624 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2627 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2630 * Update run-time statistics of the 'current'.
2632 update_curr(cfs_rq);
2633 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2635 update_stats_dequeue(cfs_rq, se);
2636 if (flags & DEQUEUE_SLEEP) {
2637 #ifdef CONFIG_SCHEDSTATS
2638 if (entity_is_task(se)) {
2639 struct task_struct *tsk = task_of(se);
2641 if (tsk->state & TASK_INTERRUPTIBLE)
2642 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2643 if (tsk->state & TASK_UNINTERRUPTIBLE)
2644 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2649 clear_buddies(cfs_rq, se);
2651 if (se != cfs_rq->curr)
2652 __dequeue_entity(cfs_rq, se);
2654 account_entity_dequeue(cfs_rq, se);
2657 * Normalize the entity after updating the min_vruntime because the
2658 * update can refer to the ->curr item and we need to reflect this
2659 * movement in our normalized position.
2661 if (!(flags & DEQUEUE_SLEEP))
2662 se->vruntime -= cfs_rq->min_vruntime;
2664 /* return excess runtime on last dequeue */
2665 return_cfs_rq_runtime(cfs_rq);
2667 update_min_vruntime(cfs_rq);
2668 update_cfs_shares(cfs_rq);
2672 * Preempt the current task with a newly woken task if needed:
2675 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2677 unsigned long ideal_runtime, delta_exec;
2678 struct sched_entity *se;
2681 ideal_runtime = sched_slice(cfs_rq, curr);
2682 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2683 if (delta_exec > ideal_runtime) {
2684 resched_task(rq_of(cfs_rq)->curr);
2686 * The current task ran long enough, ensure it doesn't get
2687 * re-elected due to buddy favours.
2689 clear_buddies(cfs_rq, curr);
2694 * Ensure that a task that missed wakeup preemption by a
2695 * narrow margin doesn't have to wait for a full slice.
2696 * This also mitigates buddy induced latencies under load.
2698 if (delta_exec < sysctl_sched_min_granularity)
2701 se = __pick_first_entity(cfs_rq);
2702 delta = curr->vruntime - se->vruntime;
2707 if (delta > ideal_runtime)
2708 resched_task(rq_of(cfs_rq)->curr);
2712 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2714 /* 'current' is not kept within the tree. */
2717 * Any task has to be enqueued before it get to execute on
2718 * a CPU. So account for the time it spent waiting on the
2721 update_stats_wait_end(cfs_rq, se);
2722 __dequeue_entity(cfs_rq, se);
2725 update_stats_curr_start(cfs_rq, se);
2727 #ifdef CONFIG_SCHEDSTATS
2729 * Track our maximum slice length, if the CPU's load is at
2730 * least twice that of our own weight (i.e. dont track it
2731 * when there are only lesser-weight tasks around):
2733 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2734 se->statistics.slice_max = max(se->statistics.slice_max,
2735 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2738 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2742 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2745 * Pick the next process, keeping these things in mind, in this order:
2746 * 1) keep things fair between processes/task groups
2747 * 2) pick the "next" process, since someone really wants that to run
2748 * 3) pick the "last" process, for cache locality
2749 * 4) do not run the "skip" process, if something else is available
2751 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2753 struct sched_entity *se = __pick_first_entity(cfs_rq);
2754 struct sched_entity *left = se;
2757 * Avoid running the skip buddy, if running something else can
2758 * be done without getting too unfair.
2760 if (cfs_rq->skip == se) {
2761 struct sched_entity *second = __pick_next_entity(se);
2762 if (second && wakeup_preempt_entity(second, left) < 1)
2767 * Prefer last buddy, try to return the CPU to a preempted task.
2769 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2773 * Someone really wants this to run. If it's not unfair, run it.
2775 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2778 clear_buddies(cfs_rq, se);
2783 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2785 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2788 * If still on the runqueue then deactivate_task()
2789 * was not called and update_curr() has to be done:
2792 update_curr(cfs_rq);
2794 /* throttle cfs_rqs exceeding runtime */
2795 check_cfs_rq_runtime(cfs_rq);
2797 check_spread(cfs_rq, prev);
2799 update_stats_wait_start(cfs_rq, prev);
2800 /* Put 'current' back into the tree. */
2801 __enqueue_entity(cfs_rq, prev);
2802 /* in !on_rq case, update occurred at dequeue */
2803 update_entity_load_avg(prev, 1);
2805 cfs_rq->curr = NULL;
2809 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2812 * Update run-time statistics of the 'current'.
2814 update_curr(cfs_rq);
2817 * Ensure that runnable average is periodically updated.
2819 update_entity_load_avg(curr, 1);
2820 update_cfs_rq_blocked_load(cfs_rq, 1);
2821 update_cfs_shares(cfs_rq);
2823 #ifdef CONFIG_SCHED_HRTICK
2825 * queued ticks are scheduled to match the slice, so don't bother
2826 * validating it and just reschedule.
2829 resched_task(rq_of(cfs_rq)->curr);
2833 * don't let the period tick interfere with the hrtick preemption
2835 if (!sched_feat(DOUBLE_TICK) &&
2836 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2840 if (cfs_rq->nr_running > 1)
2841 check_preempt_tick(cfs_rq, curr);
2845 /**************************************************
2846 * CFS bandwidth control machinery
2849 #ifdef CONFIG_CFS_BANDWIDTH
2851 #ifdef HAVE_JUMP_LABEL
2852 static struct static_key __cfs_bandwidth_used;
2854 static inline bool cfs_bandwidth_used(void)
2856 return static_key_false(&__cfs_bandwidth_used);
2859 void cfs_bandwidth_usage_inc(void)
2861 static_key_slow_inc(&__cfs_bandwidth_used);
2864 void cfs_bandwidth_usage_dec(void)
2866 static_key_slow_dec(&__cfs_bandwidth_used);
2868 #else /* HAVE_JUMP_LABEL */
2869 static bool cfs_bandwidth_used(void)
2874 void cfs_bandwidth_usage_inc(void) {}
2875 void cfs_bandwidth_usage_dec(void) {}
2876 #endif /* HAVE_JUMP_LABEL */
2879 * default period for cfs group bandwidth.
2880 * default: 0.1s, units: nanoseconds
2882 static inline u64 default_cfs_period(void)
2884 return 100000000ULL;
2887 static inline u64 sched_cfs_bandwidth_slice(void)
2889 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2893 * Replenish runtime according to assigned quota and update expiration time.
2894 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2895 * additional synchronization around rq->lock.
2897 * requires cfs_b->lock
2899 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2903 if (cfs_b->quota == RUNTIME_INF)
2906 now = sched_clock_cpu(smp_processor_id());
2907 cfs_b->runtime = cfs_b->quota;
2908 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2911 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2913 return &tg->cfs_bandwidth;
2916 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2917 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2919 if (unlikely(cfs_rq->throttle_count))
2920 return cfs_rq->throttled_clock_task;
2922 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2925 /* returns 0 on failure to allocate runtime */
2926 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2928 struct task_group *tg = cfs_rq->tg;
2929 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2930 u64 amount = 0, min_amount, expires;
2932 /* note: this is a positive sum as runtime_remaining <= 0 */
2933 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2935 raw_spin_lock(&cfs_b->lock);
2936 if (cfs_b->quota == RUNTIME_INF)
2937 amount = min_amount;
2940 * If the bandwidth pool has become inactive, then at least one
2941 * period must have elapsed since the last consumption.
2942 * Refresh the global state and ensure bandwidth timer becomes
2945 if (!cfs_b->timer_active) {
2946 __refill_cfs_bandwidth_runtime(cfs_b);
2947 __start_cfs_bandwidth(cfs_b);
2950 if (cfs_b->runtime > 0) {
2951 amount = min(cfs_b->runtime, min_amount);
2952 cfs_b->runtime -= amount;
2956 expires = cfs_b->runtime_expires;
2957 raw_spin_unlock(&cfs_b->lock);
2959 cfs_rq->runtime_remaining += amount;
2961 * we may have advanced our local expiration to account for allowed
2962 * spread between our sched_clock and the one on which runtime was
2965 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2966 cfs_rq->runtime_expires = expires;
2968 return cfs_rq->runtime_remaining > 0;
2972 * Note: This depends on the synchronization provided by sched_clock and the
2973 * fact that rq->clock snapshots this value.
2975 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2977 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2979 /* if the deadline is ahead of our clock, nothing to do */
2980 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2983 if (cfs_rq->runtime_remaining < 0)
2987 * If the local deadline has passed we have to consider the
2988 * possibility that our sched_clock is 'fast' and the global deadline
2989 * has not truly expired.
2991 * Fortunately we can check determine whether this the case by checking
2992 * whether the global deadline has advanced.
2995 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2996 /* extend local deadline, drift is bounded above by 2 ticks */
2997 cfs_rq->runtime_expires += TICK_NSEC;
2999 /* global deadline is ahead, expiration has passed */
3000 cfs_rq->runtime_remaining = 0;
3004 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3006 /* dock delta_exec before expiring quota (as it could span periods) */
3007 cfs_rq->runtime_remaining -= delta_exec;
3008 expire_cfs_rq_runtime(cfs_rq);
3010 if (likely(cfs_rq->runtime_remaining > 0))
3014 * if we're unable to extend our runtime we resched so that the active
3015 * hierarchy can be throttled
3017 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3018 resched_task(rq_of(cfs_rq)->curr);
3021 static __always_inline
3022 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3024 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3027 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3030 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3032 return cfs_bandwidth_used() && cfs_rq->throttled;
3035 /* check whether cfs_rq, or any parent, is throttled */
3036 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3038 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3042 * Ensure that neither of the group entities corresponding to src_cpu or
3043 * dest_cpu are members of a throttled hierarchy when performing group
3044 * load-balance operations.
3046 static inline int throttled_lb_pair(struct task_group *tg,
3047 int src_cpu, int dest_cpu)
3049 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3051 src_cfs_rq = tg->cfs_rq[src_cpu];
3052 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3054 return throttled_hierarchy(src_cfs_rq) ||
3055 throttled_hierarchy(dest_cfs_rq);
3058 /* updated child weight may affect parent so we have to do this bottom up */
3059 static int tg_unthrottle_up(struct task_group *tg, void *data)
3061 struct rq *rq = data;
3062 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3064 cfs_rq->throttle_count--;
3066 if (!cfs_rq->throttle_count) {
3067 /* adjust cfs_rq_clock_task() */
3068 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3069 cfs_rq->throttled_clock_task;
3076 static int tg_throttle_down(struct task_group *tg, void *data)
3078 struct rq *rq = data;
3079 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3081 /* group is entering throttled state, stop time */
3082 if (!cfs_rq->throttle_count)
3083 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3084 cfs_rq->throttle_count++;
3089 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3091 struct rq *rq = rq_of(cfs_rq);
3092 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3093 struct sched_entity *se;
3094 long task_delta, dequeue = 1;
3096 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3098 /* freeze hierarchy runnable averages while throttled */
3100 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3103 task_delta = cfs_rq->h_nr_running;
3104 for_each_sched_entity(se) {
3105 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3106 /* throttled entity or throttle-on-deactivate */
3111 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3112 qcfs_rq->h_nr_running -= task_delta;
3114 if (qcfs_rq->load.weight)
3119 rq->nr_running -= task_delta;
3121 cfs_rq->throttled = 1;
3122 cfs_rq->throttled_clock = rq_clock(rq);
3123 raw_spin_lock(&cfs_b->lock);
3124 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3125 if (!cfs_b->timer_active)
3126 __start_cfs_bandwidth(cfs_b);
3127 raw_spin_unlock(&cfs_b->lock);
3130 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3132 struct rq *rq = rq_of(cfs_rq);
3133 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3134 struct sched_entity *se;
3138 se = cfs_rq->tg->se[cpu_of(rq)];
3140 cfs_rq->throttled = 0;
3142 update_rq_clock(rq);
3144 raw_spin_lock(&cfs_b->lock);
3145 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3146 list_del_rcu(&cfs_rq->throttled_list);
3147 raw_spin_unlock(&cfs_b->lock);
3149 /* update hierarchical throttle state */
3150 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3152 if (!cfs_rq->load.weight)
3155 task_delta = cfs_rq->h_nr_running;
3156 for_each_sched_entity(se) {
3160 cfs_rq = cfs_rq_of(se);
3162 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3163 cfs_rq->h_nr_running += task_delta;
3165 if (cfs_rq_throttled(cfs_rq))
3170 rq->nr_running += task_delta;
3172 /* determine whether we need to wake up potentially idle cpu */
3173 if (rq->curr == rq->idle && rq->cfs.nr_running)
3174 resched_task(rq->curr);
3177 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3178 u64 remaining, u64 expires)
3180 struct cfs_rq *cfs_rq;
3181 u64 runtime = remaining;
3184 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3186 struct rq *rq = rq_of(cfs_rq);
3188 raw_spin_lock(&rq->lock);
3189 if (!cfs_rq_throttled(cfs_rq))
3192 runtime = -cfs_rq->runtime_remaining + 1;
3193 if (runtime > remaining)
3194 runtime = remaining;
3195 remaining -= runtime;
3197 cfs_rq->runtime_remaining += runtime;
3198 cfs_rq->runtime_expires = expires;
3200 /* we check whether we're throttled above */
3201 if (cfs_rq->runtime_remaining > 0)
3202 unthrottle_cfs_rq(cfs_rq);
3205 raw_spin_unlock(&rq->lock);
3216 * Responsible for refilling a task_group's bandwidth and unthrottling its
3217 * cfs_rqs as appropriate. If there has been no activity within the last
3218 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3219 * used to track this state.
3221 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3223 u64 runtime, runtime_expires;
3224 int idle = 1, throttled;
3226 raw_spin_lock(&cfs_b->lock);
3227 /* no need to continue the timer with no bandwidth constraint */
3228 if (cfs_b->quota == RUNTIME_INF)
3231 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3232 /* idle depends on !throttled (for the case of a large deficit) */
3233 idle = cfs_b->idle && !throttled;
3234 cfs_b->nr_periods += overrun;
3236 /* if we're going inactive then everything else can be deferred */
3241 * if we have relooped after returning idle once, we need to update our
3242 * status as actually running, so that other cpus doing
3243 * __start_cfs_bandwidth will stop trying to cancel us.
3245 cfs_b->timer_active = 1;
3247 __refill_cfs_bandwidth_runtime(cfs_b);
3250 /* mark as potentially idle for the upcoming period */
3255 /* account preceding periods in which throttling occurred */
3256 cfs_b->nr_throttled += overrun;
3259 * There are throttled entities so we must first use the new bandwidth
3260 * to unthrottle them before making it generally available. This
3261 * ensures that all existing debts will be paid before a new cfs_rq is
3264 runtime = cfs_b->runtime;
3265 runtime_expires = cfs_b->runtime_expires;
3269 * This check is repeated as we are holding onto the new bandwidth
3270 * while we unthrottle. This can potentially race with an unthrottled
3271 * group trying to acquire new bandwidth from the global pool.
3273 while (throttled && runtime > 0) {
3274 raw_spin_unlock(&cfs_b->lock);
3275 /* we can't nest cfs_b->lock while distributing bandwidth */
3276 runtime = distribute_cfs_runtime(cfs_b, runtime,
3278 raw_spin_lock(&cfs_b->lock);
3280 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3283 /* return (any) remaining runtime */
3284 cfs_b->runtime = runtime;
3286 * While we are ensured activity in the period following an
3287 * unthrottle, this also covers the case in which the new bandwidth is
3288 * insufficient to cover the existing bandwidth deficit. (Forcing the
3289 * timer to remain active while there are any throttled entities.)
3294 cfs_b->timer_active = 0;
3295 raw_spin_unlock(&cfs_b->lock);
3300 /* a cfs_rq won't donate quota below this amount */
3301 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3302 /* minimum remaining period time to redistribute slack quota */
3303 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3304 /* how long we wait to gather additional slack before distributing */
3305 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3308 * Are we near the end of the current quota period?
3310 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3311 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3312 * migrate_hrtimers, base is never cleared, so we are fine.
3314 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3316 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3319 /* if the call-back is running a quota refresh is already occurring */
3320 if (hrtimer_callback_running(refresh_timer))
3323 /* is a quota refresh about to occur? */
3324 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3325 if (remaining < min_expire)
3331 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3333 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3335 /* if there's a quota refresh soon don't bother with slack */
3336 if (runtime_refresh_within(cfs_b, min_left))
3339 start_bandwidth_timer(&cfs_b->slack_timer,
3340 ns_to_ktime(cfs_bandwidth_slack_period));
3343 /* we know any runtime found here is valid as update_curr() precedes return */
3344 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3346 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3347 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3349 if (slack_runtime <= 0)
3352 raw_spin_lock(&cfs_b->lock);
3353 if (cfs_b->quota != RUNTIME_INF &&
3354 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3355 cfs_b->runtime += slack_runtime;
3357 /* we are under rq->lock, defer unthrottling using a timer */
3358 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3359 !list_empty(&cfs_b->throttled_cfs_rq))
3360 start_cfs_slack_bandwidth(cfs_b);
3362 raw_spin_unlock(&cfs_b->lock);
3364 /* even if it's not valid for return we don't want to try again */
3365 cfs_rq->runtime_remaining -= slack_runtime;
3368 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3370 if (!cfs_bandwidth_used())
3373 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3376 __return_cfs_rq_runtime(cfs_rq);
3380 * This is done with a timer (instead of inline with bandwidth return) since
3381 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3383 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3385 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3388 /* confirm we're still not at a refresh boundary */
3389 raw_spin_lock(&cfs_b->lock);
3390 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3391 raw_spin_unlock(&cfs_b->lock);
3395 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3396 runtime = cfs_b->runtime;
3399 expires = cfs_b->runtime_expires;
3400 raw_spin_unlock(&cfs_b->lock);
3405 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3407 raw_spin_lock(&cfs_b->lock);
3408 if (expires == cfs_b->runtime_expires)
3409 cfs_b->runtime = runtime;
3410 raw_spin_unlock(&cfs_b->lock);
3414 * When a group wakes up we want to make sure that its quota is not already
3415 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3416 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3418 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3420 if (!cfs_bandwidth_used())
3423 /* an active group must be handled by the update_curr()->put() path */
3424 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3427 /* ensure the group is not already throttled */
3428 if (cfs_rq_throttled(cfs_rq))
3431 /* update runtime allocation */
3432 account_cfs_rq_runtime(cfs_rq, 0);
3433 if (cfs_rq->runtime_remaining <= 0)
3434 throttle_cfs_rq(cfs_rq);
3437 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3438 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3440 if (!cfs_bandwidth_used())
3443 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3447 * it's possible for a throttled entity to be forced into a running
3448 * state (e.g. set_curr_task), in this case we're finished.
3450 if (cfs_rq_throttled(cfs_rq))
3453 throttle_cfs_rq(cfs_rq);
3456 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3458 struct cfs_bandwidth *cfs_b =
3459 container_of(timer, struct cfs_bandwidth, slack_timer);
3460 do_sched_cfs_slack_timer(cfs_b);
3462 return HRTIMER_NORESTART;
3465 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3467 struct cfs_bandwidth *cfs_b =
3468 container_of(timer, struct cfs_bandwidth, period_timer);
3474 now = hrtimer_cb_get_time(timer);
3475 overrun = hrtimer_forward(timer, now, cfs_b->period);
3480 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3483 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3486 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3488 raw_spin_lock_init(&cfs_b->lock);
3490 cfs_b->quota = RUNTIME_INF;
3491 cfs_b->period = ns_to_ktime(default_cfs_period());
3493 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3494 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3495 cfs_b->period_timer.function = sched_cfs_period_timer;
3496 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3497 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3500 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3502 cfs_rq->runtime_enabled = 0;
3503 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3506 /* requires cfs_b->lock, may release to reprogram timer */
3507 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3510 * The timer may be active because we're trying to set a new bandwidth
3511 * period or because we're racing with the tear-down path
3512 * (timer_active==0 becomes visible before the hrtimer call-back
3513 * terminates). In either case we ensure that it's re-programmed
3515 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3516 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3517 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3518 raw_spin_unlock(&cfs_b->lock);
3520 raw_spin_lock(&cfs_b->lock);
3521 /* if someone else restarted the timer then we're done */
3522 if (cfs_b->timer_active)
3526 cfs_b->timer_active = 1;
3527 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3530 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3532 hrtimer_cancel(&cfs_b->period_timer);
3533 hrtimer_cancel(&cfs_b->slack_timer);
3536 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3538 struct cfs_rq *cfs_rq;
3540 for_each_leaf_cfs_rq(rq, cfs_rq) {
3541 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3543 if (!cfs_rq->runtime_enabled)
3547 * clock_task is not advancing so we just need to make sure
3548 * there's some valid quota amount
3550 cfs_rq->runtime_remaining = cfs_b->quota;
3551 if (cfs_rq_throttled(cfs_rq))
3552 unthrottle_cfs_rq(cfs_rq);
3556 #else /* CONFIG_CFS_BANDWIDTH */
3557 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3559 return rq_clock_task(rq_of(cfs_rq));
3562 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3563 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3564 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3565 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3567 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3572 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3577 static inline int throttled_lb_pair(struct task_group *tg,
3578 int src_cpu, int dest_cpu)
3583 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3585 #ifdef CONFIG_FAIR_GROUP_SCHED
3586 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3589 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3593 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3594 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3596 #endif /* CONFIG_CFS_BANDWIDTH */
3598 /**************************************************
3599 * CFS operations on tasks:
3602 #ifdef CONFIG_SCHED_HRTICK
3603 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3605 struct sched_entity *se = &p->se;
3606 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3608 WARN_ON(task_rq(p) != rq);
3610 if (cfs_rq->nr_running > 1) {
3611 u64 slice = sched_slice(cfs_rq, se);
3612 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3613 s64 delta = slice - ran;
3622 * Don't schedule slices shorter than 10000ns, that just
3623 * doesn't make sense. Rely on vruntime for fairness.
3626 delta = max_t(s64, 10000LL, delta);
3628 hrtick_start(rq, delta);
3633 * called from enqueue/dequeue and updates the hrtick when the
3634 * current task is from our class and nr_running is low enough
3637 static void hrtick_update(struct rq *rq)
3639 struct task_struct *curr = rq->curr;
3641 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3644 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3645 hrtick_start_fair(rq, curr);
3647 #else /* !CONFIG_SCHED_HRTICK */
3649 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3653 static inline void hrtick_update(struct rq *rq)
3659 * The enqueue_task method is called before nr_running is
3660 * increased. Here we update the fair scheduling stats and
3661 * then put the task into the rbtree:
3664 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3666 struct cfs_rq *cfs_rq;
3667 struct sched_entity *se = &p->se;
3669 for_each_sched_entity(se) {
3672 cfs_rq = cfs_rq_of(se);
3673 enqueue_entity(cfs_rq, se, flags);
3676 * end evaluation on encountering a throttled cfs_rq
3678 * note: in the case of encountering a throttled cfs_rq we will
3679 * post the final h_nr_running increment below.
3681 if (cfs_rq_throttled(cfs_rq))
3683 cfs_rq->h_nr_running++;
3685 flags = ENQUEUE_WAKEUP;
3688 for_each_sched_entity(se) {
3689 cfs_rq = cfs_rq_of(se);
3690 cfs_rq->h_nr_running++;
3692 if (cfs_rq_throttled(cfs_rq))
3695 update_cfs_shares(cfs_rq);
3696 update_entity_load_avg(se, 1);
3700 update_rq_runnable_avg(rq, rq->nr_running);
3706 static void set_next_buddy(struct sched_entity *se);
3709 * The dequeue_task method is called before nr_running is
3710 * decreased. We remove the task from the rbtree and
3711 * update the fair scheduling stats:
3713 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3715 struct cfs_rq *cfs_rq;
3716 struct sched_entity *se = &p->se;
3717 int task_sleep = flags & DEQUEUE_SLEEP;
3719 for_each_sched_entity(se) {
3720 cfs_rq = cfs_rq_of(se);
3721 dequeue_entity(cfs_rq, se, flags);
3724 * end evaluation on encountering a throttled cfs_rq
3726 * note: in the case of encountering a throttled cfs_rq we will
3727 * post the final h_nr_running decrement below.
3729 if (cfs_rq_throttled(cfs_rq))
3731 cfs_rq->h_nr_running--;
3733 /* Don't dequeue parent if it has other entities besides us */
3734 if (cfs_rq->load.weight) {
3736 * Bias pick_next to pick a task from this cfs_rq, as
3737 * p is sleeping when it is within its sched_slice.
3739 if (task_sleep && parent_entity(se))
3740 set_next_buddy(parent_entity(se));
3742 /* avoid re-evaluating load for this entity */
3743 se = parent_entity(se);
3746 flags |= DEQUEUE_SLEEP;
3749 for_each_sched_entity(se) {
3750 cfs_rq = cfs_rq_of(se);
3751 cfs_rq->h_nr_running--;
3753 if (cfs_rq_throttled(cfs_rq))
3756 update_cfs_shares(cfs_rq);
3757 update_entity_load_avg(se, 1);
3762 update_rq_runnable_avg(rq, 1);
3768 /* Used instead of source_load when we know the type == 0 */
3769 static unsigned long weighted_cpuload(const int cpu)
3771 return cpu_rq(cpu)->cfs.runnable_load_avg;
3775 * Return a low guess at the load of a migration-source cpu weighted
3776 * according to the scheduling class and "nice" value.
3778 * We want to under-estimate the load of migration sources, to
3779 * balance conservatively.
3781 static unsigned long source_load(int cpu, int type)
3783 struct rq *rq = cpu_rq(cpu);
3784 unsigned long total = weighted_cpuload(cpu);
3786 if (type == 0 || !sched_feat(LB_BIAS))
3789 return min(rq->cpu_load[type-1], total);
3793 * Return a high guess at the load of a migration-target cpu weighted
3794 * according to the scheduling class and "nice" value.
3796 static unsigned long target_load(int cpu, int type)
3798 struct rq *rq = cpu_rq(cpu);
3799 unsigned long total = weighted_cpuload(cpu);
3801 if (type == 0 || !sched_feat(LB_BIAS))
3804 return max(rq->cpu_load[type-1], total);
3807 static unsigned long power_of(int cpu)
3809 return cpu_rq(cpu)->cpu_power;
3812 static unsigned long cpu_avg_load_per_task(int cpu)
3814 struct rq *rq = cpu_rq(cpu);
3815 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3816 unsigned long load_avg = rq->cfs.runnable_load_avg;
3819 return load_avg / nr_running;
3824 static void record_wakee(struct task_struct *p)
3827 * Rough decay (wiping) for cost saving, don't worry
3828 * about the boundary, really active task won't care
3831 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3832 current->wakee_flips = 0;
3833 current->wakee_flip_decay_ts = jiffies;
3836 if (current->last_wakee != p) {
3837 current->last_wakee = p;
3838 current->wakee_flips++;
3842 static void task_waking_fair(struct task_struct *p)
3844 struct sched_entity *se = &p->se;
3845 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3848 #ifndef CONFIG_64BIT
3849 u64 min_vruntime_copy;
3852 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3854 min_vruntime = cfs_rq->min_vruntime;
3855 } while (min_vruntime != min_vruntime_copy);
3857 min_vruntime = cfs_rq->min_vruntime;
3860 se->vruntime -= min_vruntime;
3864 #ifdef CONFIG_FAIR_GROUP_SCHED
3866 * effective_load() calculates the load change as seen from the root_task_group
3868 * Adding load to a group doesn't make a group heavier, but can cause movement
3869 * of group shares between cpus. Assuming the shares were perfectly aligned one
3870 * can calculate the shift in shares.
3872 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3873 * on this @cpu and results in a total addition (subtraction) of @wg to the
3874 * total group weight.
3876 * Given a runqueue weight distribution (rw_i) we can compute a shares
3877 * distribution (s_i) using:
3879 * s_i = rw_i / \Sum rw_j (1)
3881 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3882 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3883 * shares distribution (s_i):
3885 * rw_i = { 2, 4, 1, 0 }
3886 * s_i = { 2/7, 4/7, 1/7, 0 }
3888 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3889 * task used to run on and the CPU the waker is running on), we need to
3890 * compute the effect of waking a task on either CPU and, in case of a sync
3891 * wakeup, compute the effect of the current task going to sleep.
3893 * So for a change of @wl to the local @cpu with an overall group weight change
3894 * of @wl we can compute the new shares distribution (s'_i) using:
3896 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3898 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3899 * differences in waking a task to CPU 0. The additional task changes the
3900 * weight and shares distributions like:
3902 * rw'_i = { 3, 4, 1, 0 }
3903 * s'_i = { 3/8, 4/8, 1/8, 0 }
3905 * We can then compute the difference in effective weight by using:
3907 * dw_i = S * (s'_i - s_i) (3)
3909 * Where 'S' is the group weight as seen by its parent.
3911 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3912 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3913 * 4/7) times the weight of the group.
3915 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3917 struct sched_entity *se = tg->se[cpu];
3919 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
3922 for_each_sched_entity(se) {
3928 * W = @wg + \Sum rw_j
3930 W = wg + calc_tg_weight(tg, se->my_q);
3935 w = se->my_q->load.weight + wl;
3938 * wl = S * s'_i; see (2)
3941 wl = (w * tg->shares) / W;
3946 * Per the above, wl is the new se->load.weight value; since
3947 * those are clipped to [MIN_SHARES, ...) do so now. See
3948 * calc_cfs_shares().
3950 if (wl < MIN_SHARES)
3954 * wl = dw_i = S * (s'_i - s_i); see (3)
3956 wl -= se->load.weight;
3959 * Recursively apply this logic to all parent groups to compute
3960 * the final effective load change on the root group. Since
3961 * only the @tg group gets extra weight, all parent groups can
3962 * only redistribute existing shares. @wl is the shift in shares
3963 * resulting from this level per the above.
3972 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3979 static int wake_wide(struct task_struct *p)
3981 int factor = this_cpu_read(sd_llc_size);
3984 * Yeah, it's the switching-frequency, could means many wakee or
3985 * rapidly switch, use factor here will just help to automatically
3986 * adjust the loose-degree, so bigger node will lead to more pull.
3988 if (p->wakee_flips > factor) {
3990 * wakee is somewhat hot, it needs certain amount of cpu
3991 * resource, so if waker is far more hot, prefer to leave
3994 if (current->wakee_flips > (factor * p->wakee_flips))
4001 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4003 s64 this_load, load;
4004 int idx, this_cpu, prev_cpu;
4005 unsigned long tl_per_task;
4006 struct task_group *tg;
4007 unsigned long weight;
4011 * If we wake multiple tasks be careful to not bounce
4012 * ourselves around too much.
4018 this_cpu = smp_processor_id();
4019 prev_cpu = task_cpu(p);
4020 load = source_load(prev_cpu, idx);
4021 this_load = target_load(this_cpu, idx);
4024 * If sync wakeup then subtract the (maximum possible)
4025 * effect of the currently running task from the load
4026 * of the current CPU:
4029 tg = task_group(current);
4030 weight = current->se.load.weight;
4032 this_load += effective_load(tg, this_cpu, -weight, -weight);
4033 load += effective_load(tg, prev_cpu, 0, -weight);
4037 weight = p->se.load.weight;
4040 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4041 * due to the sync cause above having dropped this_load to 0, we'll
4042 * always have an imbalance, but there's really nothing you can do
4043 * about that, so that's good too.
4045 * Otherwise check if either cpus are near enough in load to allow this
4046 * task to be woken on this_cpu.
4048 if (this_load > 0) {
4049 s64 this_eff_load, prev_eff_load;
4051 this_eff_load = 100;
4052 this_eff_load *= power_of(prev_cpu);
4053 this_eff_load *= this_load +
4054 effective_load(tg, this_cpu, weight, weight);
4056 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4057 prev_eff_load *= power_of(this_cpu);
4058 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4060 balanced = this_eff_load <= prev_eff_load;
4065 * If the currently running task will sleep within
4066 * a reasonable amount of time then attract this newly
4069 if (sync && balanced)
4072 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4073 tl_per_task = cpu_avg_load_per_task(this_cpu);
4076 (this_load <= load &&
4077 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4079 * This domain has SD_WAKE_AFFINE and
4080 * p is cache cold in this domain, and
4081 * there is no bad imbalance.
4083 schedstat_inc(sd, ttwu_move_affine);
4084 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4092 * find_idlest_group finds and returns the least busy CPU group within the
4095 static struct sched_group *
4096 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4097 int this_cpu, int load_idx)
4099 struct sched_group *idlest = NULL, *group = sd->groups;
4100 unsigned long min_load = ULONG_MAX, this_load = 0;
4101 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4104 unsigned long load, avg_load;
4108 /* Skip over this group if it has no CPUs allowed */
4109 if (!cpumask_intersects(sched_group_cpus(group),
4110 tsk_cpus_allowed(p)))
4113 local_group = cpumask_test_cpu(this_cpu,
4114 sched_group_cpus(group));
4116 /* Tally up the load of all CPUs in the group */
4119 for_each_cpu(i, sched_group_cpus(group)) {
4120 /* Bias balancing toward cpus of our domain */
4122 load = source_load(i, load_idx);
4124 load = target_load(i, load_idx);
4129 /* Adjust by relative CPU power of the group */
4130 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4133 this_load = avg_load;
4134 } else if (avg_load < min_load) {
4135 min_load = avg_load;
4138 } while (group = group->next, group != sd->groups);
4140 if (!idlest || 100*this_load < imbalance*min_load)
4146 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4149 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4151 unsigned long load, min_load = ULONG_MAX;
4155 /* Traverse only the allowed CPUs */
4156 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4157 load = weighted_cpuload(i);
4159 if (load < min_load || (load == min_load && i == this_cpu)) {
4169 * Try and locate an idle CPU in the sched_domain.
4171 static int select_idle_sibling(struct task_struct *p, int target)
4173 struct sched_domain *sd;
4174 struct sched_group *sg;
4175 int i = task_cpu(p);
4177 if (idle_cpu(target))
4181 * If the prevous cpu is cache affine and idle, don't be stupid.
4183 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4187 * Otherwise, iterate the domains and find an elegible idle cpu.
4189 sd = rcu_dereference(per_cpu(sd_llc, target));
4190 for_each_lower_domain(sd) {
4193 if (!cpumask_intersects(sched_group_cpus(sg),
4194 tsk_cpus_allowed(p)))
4197 for_each_cpu(i, sched_group_cpus(sg)) {
4198 if (i == target || !idle_cpu(i))
4202 target = cpumask_first_and(sched_group_cpus(sg),
4203 tsk_cpus_allowed(p));
4207 } while (sg != sd->groups);
4214 * sched_balance_self: balance the current task (running on cpu) in domains
4215 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4218 * Balance, ie. select the least loaded group.
4220 * Returns the target CPU number, or the same CPU if no balancing is needed.
4222 * preempt must be disabled.
4225 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4227 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4228 int cpu = smp_processor_id();
4230 int want_affine = 0;
4231 int sync = wake_flags & WF_SYNC;
4233 if (p->nr_cpus_allowed == 1)
4236 if (sd_flag & SD_BALANCE_WAKE) {
4237 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4243 for_each_domain(cpu, tmp) {
4244 if (!(tmp->flags & SD_LOAD_BALANCE))
4248 * If both cpu and prev_cpu are part of this domain,
4249 * cpu is a valid SD_WAKE_AFFINE target.
4251 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4252 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4257 if (tmp->flags & sd_flag)
4262 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4265 new_cpu = select_idle_sibling(p, prev_cpu);
4270 int load_idx = sd->forkexec_idx;
4271 struct sched_group *group;
4274 if (!(sd->flags & sd_flag)) {
4279 if (sd_flag & SD_BALANCE_WAKE)
4280 load_idx = sd->wake_idx;
4282 group = find_idlest_group(sd, p, cpu, load_idx);
4288 new_cpu = find_idlest_cpu(group, p, cpu);
4289 if (new_cpu == -1 || new_cpu == cpu) {
4290 /* Now try balancing at a lower domain level of cpu */
4295 /* Now try balancing at a lower domain level of new_cpu */
4297 weight = sd->span_weight;
4299 for_each_domain(cpu, tmp) {
4300 if (weight <= tmp->span_weight)
4302 if (tmp->flags & sd_flag)
4305 /* while loop will break here if sd == NULL */
4314 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4315 * cfs_rq_of(p) references at time of call are still valid and identify the
4316 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4317 * other assumptions, including the state of rq->lock, should be made.
4320 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4322 struct sched_entity *se = &p->se;
4323 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4326 * Load tracking: accumulate removed load so that it can be processed
4327 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4328 * to blocked load iff they have a positive decay-count. It can never
4329 * be negative here since on-rq tasks have decay-count == 0.
4331 if (se->avg.decay_count) {
4332 se->avg.decay_count = -__synchronize_entity_decay(se);
4333 atomic_long_add(se->avg.load_avg_contrib,
4334 &cfs_rq->removed_load);
4337 #endif /* CONFIG_SMP */
4339 static unsigned long
4340 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4342 unsigned long gran = sysctl_sched_wakeup_granularity;
4345 * Since its curr running now, convert the gran from real-time
4346 * to virtual-time in his units.
4348 * By using 'se' instead of 'curr' we penalize light tasks, so
4349 * they get preempted easier. That is, if 'se' < 'curr' then
4350 * the resulting gran will be larger, therefore penalizing the
4351 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4352 * be smaller, again penalizing the lighter task.
4354 * This is especially important for buddies when the leftmost
4355 * task is higher priority than the buddy.
4357 return calc_delta_fair(gran, se);
4361 * Should 'se' preempt 'curr'.
4375 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4377 s64 gran, vdiff = curr->vruntime - se->vruntime;
4382 gran = wakeup_gran(curr, se);
4389 static void set_last_buddy(struct sched_entity *se)
4391 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4394 for_each_sched_entity(se)
4395 cfs_rq_of(se)->last = se;
4398 static void set_next_buddy(struct sched_entity *se)
4400 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4403 for_each_sched_entity(se)
4404 cfs_rq_of(se)->next = se;
4407 static void set_skip_buddy(struct sched_entity *se)
4409 for_each_sched_entity(se)
4410 cfs_rq_of(se)->skip = se;
4414 * Preempt the current task with a newly woken task if needed:
4416 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4418 struct task_struct *curr = rq->curr;
4419 struct sched_entity *se = &curr->se, *pse = &p->se;
4420 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4421 int scale = cfs_rq->nr_running >= sched_nr_latency;
4422 int next_buddy_marked = 0;
4424 if (unlikely(se == pse))
4428 * This is possible from callers such as move_task(), in which we
4429 * unconditionally check_prempt_curr() after an enqueue (which may have
4430 * lead to a throttle). This both saves work and prevents false
4431 * next-buddy nomination below.
4433 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4436 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4437 set_next_buddy(pse);
4438 next_buddy_marked = 1;
4442 * We can come here with TIF_NEED_RESCHED already set from new task
4445 * Note: this also catches the edge-case of curr being in a throttled
4446 * group (e.g. via set_curr_task), since update_curr() (in the
4447 * enqueue of curr) will have resulted in resched being set. This
4448 * prevents us from potentially nominating it as a false LAST_BUDDY
4451 if (test_tsk_need_resched(curr))
4454 /* Idle tasks are by definition preempted by non-idle tasks. */
4455 if (unlikely(curr->policy == SCHED_IDLE) &&
4456 likely(p->policy != SCHED_IDLE))
4460 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4461 * is driven by the tick):
4463 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4466 find_matching_se(&se, &pse);
4467 update_curr(cfs_rq_of(se));
4469 if (wakeup_preempt_entity(se, pse) == 1) {
4471 * Bias pick_next to pick the sched entity that is
4472 * triggering this preemption.
4474 if (!next_buddy_marked)
4475 set_next_buddy(pse);
4484 * Only set the backward buddy when the current task is still
4485 * on the rq. This can happen when a wakeup gets interleaved
4486 * with schedule on the ->pre_schedule() or idle_balance()
4487 * point, either of which can * drop the rq lock.
4489 * Also, during early boot the idle thread is in the fair class,
4490 * for obvious reasons its a bad idea to schedule back to it.
4492 if (unlikely(!se->on_rq || curr == rq->idle))
4495 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4499 static struct task_struct *pick_next_task_fair(struct rq *rq)
4501 struct task_struct *p;
4502 struct cfs_rq *cfs_rq = &rq->cfs;
4503 struct sched_entity *se;
4505 if (!cfs_rq->nr_running)
4509 se = pick_next_entity(cfs_rq);
4510 set_next_entity(cfs_rq, se);
4511 cfs_rq = group_cfs_rq(se);
4515 if (hrtick_enabled(rq))
4516 hrtick_start_fair(rq, p);
4522 * Account for a descheduled task:
4524 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4526 struct sched_entity *se = &prev->se;
4527 struct cfs_rq *cfs_rq;
4529 for_each_sched_entity(se) {
4530 cfs_rq = cfs_rq_of(se);
4531 put_prev_entity(cfs_rq, se);
4536 * sched_yield() is very simple
4538 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4540 static void yield_task_fair(struct rq *rq)
4542 struct task_struct *curr = rq->curr;
4543 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4544 struct sched_entity *se = &curr->se;
4547 * Are we the only task in the tree?
4549 if (unlikely(rq->nr_running == 1))
4552 clear_buddies(cfs_rq, se);
4554 if (curr->policy != SCHED_BATCH) {
4555 update_rq_clock(rq);
4557 * Update run-time statistics of the 'current'.
4559 update_curr(cfs_rq);
4561 * Tell update_rq_clock() that we've just updated,
4562 * so we don't do microscopic update in schedule()
4563 * and double the fastpath cost.
4565 rq->skip_clock_update = 1;
4571 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4573 struct sched_entity *se = &p->se;
4575 /* throttled hierarchies are not runnable */
4576 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4579 /* Tell the scheduler that we'd really like pse to run next. */
4582 yield_task_fair(rq);
4588 /**************************************************
4589 * Fair scheduling class load-balancing methods.
4593 * The purpose of load-balancing is to achieve the same basic fairness the
4594 * per-cpu scheduler provides, namely provide a proportional amount of compute
4595 * time to each task. This is expressed in the following equation:
4597 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4599 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4600 * W_i,0 is defined as:
4602 * W_i,0 = \Sum_j w_i,j (2)
4604 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4605 * is derived from the nice value as per prio_to_weight[].
4607 * The weight average is an exponential decay average of the instantaneous
4610 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4612 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4613 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4614 * can also include other factors [XXX].
4616 * To achieve this balance we define a measure of imbalance which follows
4617 * directly from (1):
4619 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4621 * We them move tasks around to minimize the imbalance. In the continuous
4622 * function space it is obvious this converges, in the discrete case we get
4623 * a few fun cases generally called infeasible weight scenarios.
4626 * - infeasible weights;
4627 * - local vs global optima in the discrete case. ]
4632 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4633 * for all i,j solution, we create a tree of cpus that follows the hardware
4634 * topology where each level pairs two lower groups (or better). This results
4635 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4636 * tree to only the first of the previous level and we decrease the frequency
4637 * of load-balance at each level inv. proportional to the number of cpus in
4643 * \Sum { --- * --- * 2^i } = O(n) (5)
4645 * `- size of each group
4646 * | | `- number of cpus doing load-balance
4648 * `- sum over all levels
4650 * Coupled with a limit on how many tasks we can migrate every balance pass,
4651 * this makes (5) the runtime complexity of the balancer.
4653 * An important property here is that each CPU is still (indirectly) connected
4654 * to every other cpu in at most O(log n) steps:
4656 * The adjacency matrix of the resulting graph is given by:
4659 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4662 * And you'll find that:
4664 * A^(log_2 n)_i,j != 0 for all i,j (7)
4666 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4667 * The task movement gives a factor of O(m), giving a convergence complexity
4670 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4675 * In order to avoid CPUs going idle while there's still work to do, new idle
4676 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4677 * tree itself instead of relying on other CPUs to bring it work.
4679 * This adds some complexity to both (5) and (8) but it reduces the total idle
4687 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4690 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4695 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4697 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4699 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4702 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4703 * rewrite all of this once again.]
4706 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4708 enum fbq_type { regular, remote, all };
4710 #define LBF_ALL_PINNED 0x01
4711 #define LBF_NEED_BREAK 0x02
4712 #define LBF_DST_PINNED 0x04
4713 #define LBF_SOME_PINNED 0x08
4716 struct sched_domain *sd;
4724 struct cpumask *dst_grpmask;
4726 enum cpu_idle_type idle;
4728 /* The set of CPUs under consideration for load-balancing */
4729 struct cpumask *cpus;
4734 unsigned int loop_break;
4735 unsigned int loop_max;
4737 enum fbq_type fbq_type;
4741 * move_task - move a task from one runqueue to another runqueue.
4742 * Both runqueues must be locked.
4744 static void move_task(struct task_struct *p, struct lb_env *env)
4746 deactivate_task(env->src_rq, p, 0);
4747 set_task_cpu(p, env->dst_cpu);
4748 activate_task(env->dst_rq, p, 0);
4749 check_preempt_curr(env->dst_rq, p, 0);
4753 * Is this task likely cache-hot:
4756 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4760 if (p->sched_class != &fair_sched_class)
4763 if (unlikely(p->policy == SCHED_IDLE))
4767 * Buddy candidates are cache hot:
4769 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4770 (&p->se == cfs_rq_of(&p->se)->next ||
4771 &p->se == cfs_rq_of(&p->se)->last))
4774 if (sysctl_sched_migration_cost == -1)
4776 if (sysctl_sched_migration_cost == 0)
4779 delta = now - p->se.exec_start;
4781 return delta < (s64)sysctl_sched_migration_cost;
4784 #ifdef CONFIG_NUMA_BALANCING
4785 /* Returns true if the destination node has incurred more faults */
4786 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4788 int src_nid, dst_nid;
4790 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4791 !(env->sd->flags & SD_NUMA)) {
4795 src_nid = cpu_to_node(env->src_cpu);
4796 dst_nid = cpu_to_node(env->dst_cpu);
4798 if (src_nid == dst_nid)
4801 /* Always encourage migration to the preferred node. */
4802 if (dst_nid == p->numa_preferred_nid)
4805 /* If both task and group weight improve, this move is a winner. */
4806 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4807 group_weight(p, dst_nid) > group_weight(p, src_nid))
4814 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4816 int src_nid, dst_nid;
4818 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4821 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4824 src_nid = cpu_to_node(env->src_cpu);
4825 dst_nid = cpu_to_node(env->dst_cpu);
4827 if (src_nid == dst_nid)
4830 /* Migrating away from the preferred node is always bad. */
4831 if (src_nid == p->numa_preferred_nid)
4834 /* If either task or group weight get worse, don't do it. */
4835 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4836 group_weight(p, dst_nid) < group_weight(p, src_nid))
4843 static inline bool migrate_improves_locality(struct task_struct *p,
4849 static inline bool migrate_degrades_locality(struct task_struct *p,
4857 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4860 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4862 int tsk_cache_hot = 0;
4864 * We do not migrate tasks that are:
4865 * 1) throttled_lb_pair, or
4866 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4867 * 3) running (obviously), or
4868 * 4) are cache-hot on their current CPU.
4870 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4873 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4876 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4878 env->flags |= LBF_SOME_PINNED;
4881 * Remember if this task can be migrated to any other cpu in
4882 * our sched_group. We may want to revisit it if we couldn't
4883 * meet load balance goals by pulling other tasks on src_cpu.
4885 * Also avoid computing new_dst_cpu if we have already computed
4886 * one in current iteration.
4888 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4891 /* Prevent to re-select dst_cpu via env's cpus */
4892 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4893 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4894 env->flags |= LBF_DST_PINNED;
4895 env->new_dst_cpu = cpu;
4903 /* Record that we found atleast one task that could run on dst_cpu */
4904 env->flags &= ~LBF_ALL_PINNED;
4906 if (task_running(env->src_rq, p)) {
4907 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4912 * Aggressive migration if:
4913 * 1) destination numa is preferred
4914 * 2) task is cache cold, or
4915 * 3) too many balance attempts have failed.
4917 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4919 tsk_cache_hot = migrate_degrades_locality(p, env);
4921 if (migrate_improves_locality(p, env)) {
4922 #ifdef CONFIG_SCHEDSTATS
4923 if (tsk_cache_hot) {
4924 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4925 schedstat_inc(p, se.statistics.nr_forced_migrations);
4931 if (!tsk_cache_hot ||
4932 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4934 if (tsk_cache_hot) {
4935 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4936 schedstat_inc(p, se.statistics.nr_forced_migrations);
4942 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4947 * move_one_task tries to move exactly one task from busiest to this_rq, as
4948 * part of active balancing operations within "domain".
4949 * Returns 1 if successful and 0 otherwise.
4951 * Called with both runqueues locked.
4953 static int move_one_task(struct lb_env *env)
4955 struct task_struct *p, *n;
4957 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4958 if (!can_migrate_task(p, env))
4963 * Right now, this is only the second place move_task()
4964 * is called, so we can safely collect move_task()
4965 * stats here rather than inside move_task().
4967 schedstat_inc(env->sd, lb_gained[env->idle]);
4973 static const unsigned int sched_nr_migrate_break = 32;
4976 * move_tasks tries to move up to imbalance weighted load from busiest to
4977 * this_rq, as part of a balancing operation within domain "sd".
4978 * Returns 1 if successful and 0 otherwise.
4980 * Called with both runqueues locked.
4982 static int move_tasks(struct lb_env *env)
4984 struct list_head *tasks = &env->src_rq->cfs_tasks;
4985 struct task_struct *p;
4989 if (env->imbalance <= 0)
4992 while (!list_empty(tasks)) {
4993 p = list_first_entry(tasks, struct task_struct, se.group_node);
4996 /* We've more or less seen every task there is, call it quits */
4997 if (env->loop > env->loop_max)
5000 /* take a breather every nr_migrate tasks */
5001 if (env->loop > env->loop_break) {
5002 env->loop_break += sched_nr_migrate_break;
5003 env->flags |= LBF_NEED_BREAK;
5007 if (!can_migrate_task(p, env))
5010 load = task_h_load(p);
5012 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5015 if ((load / 2) > env->imbalance)
5020 env->imbalance -= load;
5022 #ifdef CONFIG_PREEMPT
5024 * NEWIDLE balancing is a source of latency, so preemptible
5025 * kernels will stop after the first task is pulled to minimize
5026 * the critical section.
5028 if (env->idle == CPU_NEWLY_IDLE)
5033 * We only want to steal up to the prescribed amount of
5036 if (env->imbalance <= 0)
5041 list_move_tail(&p->se.group_node, tasks);
5045 * Right now, this is one of only two places move_task() is called,
5046 * so we can safely collect move_task() stats here rather than
5047 * inside move_task().
5049 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5054 #ifdef CONFIG_FAIR_GROUP_SCHED
5056 * update tg->load_weight by folding this cpu's load_avg
5058 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5060 struct sched_entity *se = tg->se[cpu];
5061 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5063 /* throttled entities do not contribute to load */
5064 if (throttled_hierarchy(cfs_rq))
5067 update_cfs_rq_blocked_load(cfs_rq, 1);
5070 update_entity_load_avg(se, 1);
5072 * We pivot on our runnable average having decayed to zero for
5073 * list removal. This generally implies that all our children
5074 * have also been removed (modulo rounding error or bandwidth
5075 * control); however, such cases are rare and we can fix these
5078 * TODO: fix up out-of-order children on enqueue.
5080 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5081 list_del_leaf_cfs_rq(cfs_rq);
5083 struct rq *rq = rq_of(cfs_rq);
5084 update_rq_runnable_avg(rq, rq->nr_running);
5088 static void update_blocked_averages(int cpu)
5090 struct rq *rq = cpu_rq(cpu);
5091 struct cfs_rq *cfs_rq;
5092 unsigned long flags;
5094 raw_spin_lock_irqsave(&rq->lock, flags);
5095 update_rq_clock(rq);
5097 * Iterates the task_group tree in a bottom up fashion, see
5098 * list_add_leaf_cfs_rq() for details.
5100 for_each_leaf_cfs_rq(rq, cfs_rq) {
5102 * Note: We may want to consider periodically releasing
5103 * rq->lock about these updates so that creating many task
5104 * groups does not result in continually extending hold time.
5106 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5109 raw_spin_unlock_irqrestore(&rq->lock, flags);
5113 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5114 * This needs to be done in a top-down fashion because the load of a child
5115 * group is a fraction of its parents load.
5117 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5119 struct rq *rq = rq_of(cfs_rq);
5120 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5121 unsigned long now = jiffies;
5124 if (cfs_rq->last_h_load_update == now)
5127 cfs_rq->h_load_next = NULL;
5128 for_each_sched_entity(se) {
5129 cfs_rq = cfs_rq_of(se);
5130 cfs_rq->h_load_next = se;
5131 if (cfs_rq->last_h_load_update == now)
5136 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5137 cfs_rq->last_h_load_update = now;
5140 while ((se = cfs_rq->h_load_next) != NULL) {
5141 load = cfs_rq->h_load;
5142 load = div64_ul(load * se->avg.load_avg_contrib,
5143 cfs_rq->runnable_load_avg + 1);
5144 cfs_rq = group_cfs_rq(se);
5145 cfs_rq->h_load = load;
5146 cfs_rq->last_h_load_update = now;
5150 static unsigned long task_h_load(struct task_struct *p)
5152 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5154 update_cfs_rq_h_load(cfs_rq);
5155 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5156 cfs_rq->runnable_load_avg + 1);
5159 static inline void update_blocked_averages(int cpu)
5163 static unsigned long task_h_load(struct task_struct *p)
5165 return p->se.avg.load_avg_contrib;
5169 /********** Helpers for find_busiest_group ************************/
5171 * sg_lb_stats - stats of a sched_group required for load_balancing
5173 struct sg_lb_stats {
5174 unsigned long avg_load; /*Avg load across the CPUs of the group */
5175 unsigned long group_load; /* Total load over the CPUs of the group */
5176 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5177 unsigned long load_per_task;
5178 unsigned long group_power;
5179 unsigned int sum_nr_running; /* Nr tasks running in the group */
5180 unsigned int group_capacity;
5181 unsigned int idle_cpus;
5182 unsigned int group_weight;
5183 int group_imb; /* Is there an imbalance in the group ? */
5184 int group_has_capacity; /* Is there extra capacity in the group? */
5185 #ifdef CONFIG_NUMA_BALANCING
5186 unsigned int nr_numa_running;
5187 unsigned int nr_preferred_running;
5192 * sd_lb_stats - Structure to store the statistics of a sched_domain
5193 * during load balancing.
5195 struct sd_lb_stats {
5196 struct sched_group *busiest; /* Busiest group in this sd */
5197 struct sched_group *local; /* Local group in this sd */
5198 unsigned long total_load; /* Total load of all groups in sd */
5199 unsigned long total_pwr; /* Total power of all groups in sd */
5200 unsigned long avg_load; /* Average load across all groups in sd */
5202 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5203 struct sg_lb_stats local_stat; /* Statistics of the local group */
5206 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5209 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5210 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5211 * We must however clear busiest_stat::avg_load because
5212 * update_sd_pick_busiest() reads this before assignment.
5214 *sds = (struct sd_lb_stats){
5226 * get_sd_load_idx - Obtain the load index for a given sched domain.
5227 * @sd: The sched_domain whose load_idx is to be obtained.
5228 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5230 * Return: The load index.
5232 static inline int get_sd_load_idx(struct sched_domain *sd,
5233 enum cpu_idle_type idle)
5239 load_idx = sd->busy_idx;
5242 case CPU_NEWLY_IDLE:
5243 load_idx = sd->newidle_idx;
5246 load_idx = sd->idle_idx;
5253 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5255 return SCHED_POWER_SCALE;
5258 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5260 return default_scale_freq_power(sd, cpu);
5263 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5265 unsigned long weight = sd->span_weight;
5266 unsigned long smt_gain = sd->smt_gain;
5273 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5275 return default_scale_smt_power(sd, cpu);
5278 static unsigned long scale_rt_power(int cpu)
5280 struct rq *rq = cpu_rq(cpu);
5281 u64 total, available, age_stamp, avg;
5284 * Since we're reading these variables without serialization make sure
5285 * we read them once before doing sanity checks on them.
5287 age_stamp = ACCESS_ONCE(rq->age_stamp);
5288 avg = ACCESS_ONCE(rq->rt_avg);
5290 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5292 if (unlikely(total < avg)) {
5293 /* Ensures that power won't end up being negative */
5296 available = total - avg;
5299 if (unlikely((s64)total < SCHED_POWER_SCALE))
5300 total = SCHED_POWER_SCALE;
5302 total >>= SCHED_POWER_SHIFT;
5304 return div_u64(available, total);
5307 static void update_cpu_power(struct sched_domain *sd, int cpu)
5309 unsigned long weight = sd->span_weight;
5310 unsigned long power = SCHED_POWER_SCALE;
5311 struct sched_group *sdg = sd->groups;
5313 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5314 if (sched_feat(ARCH_POWER))
5315 power *= arch_scale_smt_power(sd, cpu);
5317 power *= default_scale_smt_power(sd, cpu);
5319 power >>= SCHED_POWER_SHIFT;
5322 sdg->sgp->power_orig = power;
5324 if (sched_feat(ARCH_POWER))
5325 power *= arch_scale_freq_power(sd, cpu);
5327 power *= default_scale_freq_power(sd, cpu);
5329 power >>= SCHED_POWER_SHIFT;
5331 power *= scale_rt_power(cpu);
5332 power >>= SCHED_POWER_SHIFT;
5337 cpu_rq(cpu)->cpu_power = power;
5338 sdg->sgp->power = power;
5341 void update_group_power(struct sched_domain *sd, int cpu)
5343 struct sched_domain *child = sd->child;
5344 struct sched_group *group, *sdg = sd->groups;
5345 unsigned long power, power_orig;
5346 unsigned long interval;
5348 interval = msecs_to_jiffies(sd->balance_interval);
5349 interval = clamp(interval, 1UL, max_load_balance_interval);
5350 sdg->sgp->next_update = jiffies + interval;
5353 update_cpu_power(sd, cpu);
5357 power_orig = power = 0;
5359 if (child->flags & SD_OVERLAP) {
5361 * SD_OVERLAP domains cannot assume that child groups
5362 * span the current group.
5365 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5366 struct sched_group_power *sgp;
5367 struct rq *rq = cpu_rq(cpu);
5370 * build_sched_domains() -> init_sched_groups_power()
5371 * gets here before we've attached the domains to the
5374 * Use power_of(), which is set irrespective of domains
5375 * in update_cpu_power().
5377 * This avoids power/power_orig from being 0 and
5378 * causing divide-by-zero issues on boot.
5380 * Runtime updates will correct power_orig.
5382 if (unlikely(!rq->sd)) {
5383 power_orig += power_of(cpu);
5384 power += power_of(cpu);
5388 sgp = rq->sd->groups->sgp;
5389 power_orig += sgp->power_orig;
5390 power += sgp->power;
5394 * !SD_OVERLAP domains can assume that child groups
5395 * span the current group.
5398 group = child->groups;
5400 power_orig += group->sgp->power_orig;
5401 power += group->sgp->power;
5402 group = group->next;
5403 } while (group != child->groups);
5406 sdg->sgp->power_orig = power_orig;
5407 sdg->sgp->power = power;
5411 * Try and fix up capacity for tiny siblings, this is needed when
5412 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5413 * which on its own isn't powerful enough.
5415 * See update_sd_pick_busiest() and check_asym_packing().
5418 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5421 * Only siblings can have significantly less than SCHED_POWER_SCALE
5423 if (!(sd->flags & SD_SHARE_CPUPOWER))
5427 * If ~90% of the cpu_power is still there, we're good.
5429 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5436 * Group imbalance indicates (and tries to solve) the problem where balancing
5437 * groups is inadequate due to tsk_cpus_allowed() constraints.
5439 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5440 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5443 * { 0 1 2 3 } { 4 5 6 7 }
5446 * If we were to balance group-wise we'd place two tasks in the first group and
5447 * two tasks in the second group. Clearly this is undesired as it will overload
5448 * cpu 3 and leave one of the cpus in the second group unused.
5450 * The current solution to this issue is detecting the skew in the first group
5451 * by noticing the lower domain failed to reach balance and had difficulty
5452 * moving tasks due to affinity constraints.
5454 * When this is so detected; this group becomes a candidate for busiest; see
5455 * update_sd_pick_busiest(). And calculate_imbalance() and
5456 * find_busiest_group() avoid some of the usual balance conditions to allow it
5457 * to create an effective group imbalance.
5459 * This is a somewhat tricky proposition since the next run might not find the
5460 * group imbalance and decide the groups need to be balanced again. A most
5461 * subtle and fragile situation.
5464 static inline int sg_imbalanced(struct sched_group *group)
5466 return group->sgp->imbalance;
5470 * Compute the group capacity.
5472 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5473 * first dividing out the smt factor and computing the actual number of cores
5474 * and limit power unit capacity with that.
5476 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5478 unsigned int capacity, smt, cpus;
5479 unsigned int power, power_orig;
5481 power = group->sgp->power;
5482 power_orig = group->sgp->power_orig;
5483 cpus = group->group_weight;
5485 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5486 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5487 capacity = cpus / smt; /* cores */
5489 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5491 capacity = fix_small_capacity(env->sd, group);
5497 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5498 * @env: The load balancing environment.
5499 * @group: sched_group whose statistics are to be updated.
5500 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5501 * @local_group: Does group contain this_cpu.
5502 * @sgs: variable to hold the statistics for this group.
5504 static inline void update_sg_lb_stats(struct lb_env *env,
5505 struct sched_group *group, int load_idx,
5506 int local_group, struct sg_lb_stats *sgs)
5508 unsigned long nr_running;
5512 memset(sgs, 0, sizeof(*sgs));
5514 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5515 struct rq *rq = cpu_rq(i);
5517 nr_running = rq->nr_running;
5519 /* Bias balancing toward cpus of our domain */
5521 load = target_load(i, load_idx);
5523 load = source_load(i, load_idx);
5525 sgs->group_load += load;
5526 sgs->sum_nr_running += nr_running;
5527 #ifdef CONFIG_NUMA_BALANCING
5528 sgs->nr_numa_running += rq->nr_numa_running;
5529 sgs->nr_preferred_running += rq->nr_preferred_running;
5531 sgs->sum_weighted_load += weighted_cpuload(i);
5536 /* Adjust by relative CPU power of the group */
5537 sgs->group_power = group->sgp->power;
5538 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5540 if (sgs->sum_nr_running)
5541 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5543 sgs->group_weight = group->group_weight;
5545 sgs->group_imb = sg_imbalanced(group);
5546 sgs->group_capacity = sg_capacity(env, group);
5548 if (sgs->group_capacity > sgs->sum_nr_running)
5549 sgs->group_has_capacity = 1;
5553 * update_sd_pick_busiest - return 1 on busiest group
5554 * @env: The load balancing environment.
5555 * @sds: sched_domain statistics
5556 * @sg: sched_group candidate to be checked for being the busiest
5557 * @sgs: sched_group statistics
5559 * Determine if @sg is a busier group than the previously selected
5562 * Return: %true if @sg is a busier group than the previously selected
5563 * busiest group. %false otherwise.
5565 static bool update_sd_pick_busiest(struct lb_env *env,
5566 struct sd_lb_stats *sds,
5567 struct sched_group *sg,
5568 struct sg_lb_stats *sgs)
5570 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5573 if (sgs->sum_nr_running > sgs->group_capacity)
5580 * ASYM_PACKING needs to move all the work to the lowest
5581 * numbered CPUs in the group, therefore mark all groups
5582 * higher than ourself as busy.
5584 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5585 env->dst_cpu < group_first_cpu(sg)) {
5589 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5596 #ifdef CONFIG_NUMA_BALANCING
5597 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5599 if (sgs->sum_nr_running > sgs->nr_numa_running)
5601 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5606 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5608 if (rq->nr_running > rq->nr_numa_running)
5610 if (rq->nr_running > rq->nr_preferred_running)
5615 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5620 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5624 #endif /* CONFIG_NUMA_BALANCING */
5627 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5628 * @env: The load balancing environment.
5629 * @sds: variable to hold the statistics for this sched_domain.
5631 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5633 struct sched_domain *child = env->sd->child;
5634 struct sched_group *sg = env->sd->groups;
5635 struct sg_lb_stats tmp_sgs;
5636 int load_idx, prefer_sibling = 0;
5638 if (child && child->flags & SD_PREFER_SIBLING)
5641 load_idx = get_sd_load_idx(env->sd, env->idle);
5644 struct sg_lb_stats *sgs = &tmp_sgs;
5647 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5650 sgs = &sds->local_stat;
5652 if (env->idle != CPU_NEWLY_IDLE ||
5653 time_after_eq(jiffies, sg->sgp->next_update))
5654 update_group_power(env->sd, env->dst_cpu);
5657 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5663 * In case the child domain prefers tasks go to siblings
5664 * first, lower the sg capacity to one so that we'll try
5665 * and move all the excess tasks away. We lower the capacity
5666 * of a group only if the local group has the capacity to fit
5667 * these excess tasks, i.e. nr_running < group_capacity. The
5668 * extra check prevents the case where you always pull from the
5669 * heaviest group when it is already under-utilized (possible
5670 * with a large weight task outweighs the tasks on the system).
5672 if (prefer_sibling && sds->local &&
5673 sds->local_stat.group_has_capacity)
5674 sgs->group_capacity = min(sgs->group_capacity, 1U);
5676 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5678 sds->busiest_stat = *sgs;
5682 /* Now, start updating sd_lb_stats */
5683 sds->total_load += sgs->group_load;
5684 sds->total_pwr += sgs->group_power;
5687 } while (sg != env->sd->groups);
5689 if (env->sd->flags & SD_NUMA)
5690 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5694 * check_asym_packing - Check to see if the group is packed into the
5697 * This is primarily intended to used at the sibling level. Some
5698 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5699 * case of POWER7, it can move to lower SMT modes only when higher
5700 * threads are idle. When in lower SMT modes, the threads will
5701 * perform better since they share less core resources. Hence when we
5702 * have idle threads, we want them to be the higher ones.
5704 * This packing function is run on idle threads. It checks to see if
5705 * the busiest CPU in this domain (core in the P7 case) has a higher
5706 * CPU number than the packing function is being run on. Here we are
5707 * assuming lower CPU number will be equivalent to lower a SMT thread
5710 * Return: 1 when packing is required and a task should be moved to
5711 * this CPU. The amount of the imbalance is returned in *imbalance.
5713 * @env: The load balancing environment.
5714 * @sds: Statistics of the sched_domain which is to be packed
5716 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5720 if (!(env->sd->flags & SD_ASYM_PACKING))
5726 busiest_cpu = group_first_cpu(sds->busiest);
5727 if (env->dst_cpu > busiest_cpu)
5730 env->imbalance = DIV_ROUND_CLOSEST(
5731 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5738 * fix_small_imbalance - Calculate the minor imbalance that exists
5739 * amongst the groups of a sched_domain, during
5741 * @env: The load balancing environment.
5742 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5745 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5747 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5748 unsigned int imbn = 2;
5749 unsigned long scaled_busy_load_per_task;
5750 struct sg_lb_stats *local, *busiest;
5752 local = &sds->local_stat;
5753 busiest = &sds->busiest_stat;
5755 if (!local->sum_nr_running)
5756 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5757 else if (busiest->load_per_task > local->load_per_task)
5760 scaled_busy_load_per_task =
5761 (busiest->load_per_task * SCHED_POWER_SCALE) /
5762 busiest->group_power;
5764 if (busiest->avg_load + scaled_busy_load_per_task >=
5765 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5766 env->imbalance = busiest->load_per_task;
5771 * OK, we don't have enough imbalance to justify moving tasks,
5772 * however we may be able to increase total CPU power used by
5776 pwr_now += busiest->group_power *
5777 min(busiest->load_per_task, busiest->avg_load);
5778 pwr_now += local->group_power *
5779 min(local->load_per_task, local->avg_load);
5780 pwr_now /= SCHED_POWER_SCALE;
5782 /* Amount of load we'd subtract */
5783 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5784 busiest->group_power;
5785 if (busiest->avg_load > tmp) {
5786 pwr_move += busiest->group_power *
5787 min(busiest->load_per_task,
5788 busiest->avg_load - tmp);
5791 /* Amount of load we'd add */
5792 if (busiest->avg_load * busiest->group_power <
5793 busiest->load_per_task * SCHED_POWER_SCALE) {
5794 tmp = (busiest->avg_load * busiest->group_power) /
5797 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5800 pwr_move += local->group_power *
5801 min(local->load_per_task, local->avg_load + tmp);
5802 pwr_move /= SCHED_POWER_SCALE;
5804 /* Move if we gain throughput */
5805 if (pwr_move > pwr_now)
5806 env->imbalance = busiest->load_per_task;
5810 * calculate_imbalance - Calculate the amount of imbalance present within the
5811 * groups of a given sched_domain during load balance.
5812 * @env: load balance environment
5813 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5815 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5817 unsigned long max_pull, load_above_capacity = ~0UL;
5818 struct sg_lb_stats *local, *busiest;
5820 local = &sds->local_stat;
5821 busiest = &sds->busiest_stat;
5823 if (busiest->group_imb) {
5825 * In the group_imb case we cannot rely on group-wide averages
5826 * to ensure cpu-load equilibrium, look at wider averages. XXX
5828 busiest->load_per_task =
5829 min(busiest->load_per_task, sds->avg_load);
5833 * In the presence of smp nice balancing, certain scenarios can have
5834 * max load less than avg load(as we skip the groups at or below
5835 * its cpu_power, while calculating max_load..)
5837 if (busiest->avg_load <= sds->avg_load ||
5838 local->avg_load >= sds->avg_load) {
5840 return fix_small_imbalance(env, sds);
5843 if (!busiest->group_imb) {
5845 * Don't want to pull so many tasks that a group would go idle.
5846 * Except of course for the group_imb case, since then we might
5847 * have to drop below capacity to reach cpu-load equilibrium.
5849 load_above_capacity =
5850 (busiest->sum_nr_running - busiest->group_capacity);
5852 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5853 load_above_capacity /= busiest->group_power;
5857 * We're trying to get all the cpus to the average_load, so we don't
5858 * want to push ourselves above the average load, nor do we wish to
5859 * reduce the max loaded cpu below the average load. At the same time,
5860 * we also don't want to reduce the group load below the group capacity
5861 * (so that we can implement power-savings policies etc). Thus we look
5862 * for the minimum possible imbalance.
5864 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5866 /* How much load to actually move to equalise the imbalance */
5867 env->imbalance = min(
5868 max_pull * busiest->group_power,
5869 (sds->avg_load - local->avg_load) * local->group_power
5870 ) / SCHED_POWER_SCALE;
5873 * if *imbalance is less than the average load per runnable task
5874 * there is no guarantee that any tasks will be moved so we'll have
5875 * a think about bumping its value to force at least one task to be
5878 if (env->imbalance < busiest->load_per_task)
5879 return fix_small_imbalance(env, sds);
5882 /******* find_busiest_group() helpers end here *********************/
5885 * find_busiest_group - Returns the busiest group within the sched_domain
5886 * if there is an imbalance. If there isn't an imbalance, and
5887 * the user has opted for power-savings, it returns a group whose
5888 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5889 * such a group exists.
5891 * Also calculates the amount of weighted load which should be moved
5892 * to restore balance.
5894 * @env: The load balancing environment.
5896 * Return: - The busiest group if imbalance exists.
5897 * - If no imbalance and user has opted for power-savings balance,
5898 * return the least loaded group whose CPUs can be
5899 * put to idle by rebalancing its tasks onto our group.
5901 static struct sched_group *find_busiest_group(struct lb_env *env)
5903 struct sg_lb_stats *local, *busiest;
5904 struct sd_lb_stats sds;
5906 init_sd_lb_stats(&sds);
5909 * Compute the various statistics relavent for load balancing at
5912 update_sd_lb_stats(env, &sds);
5913 local = &sds.local_stat;
5914 busiest = &sds.busiest_stat;
5916 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5917 check_asym_packing(env, &sds))
5920 /* There is no busy sibling group to pull tasks from */
5921 if (!sds.busiest || busiest->sum_nr_running == 0)
5924 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5927 * If the busiest group is imbalanced the below checks don't
5928 * work because they assume all things are equal, which typically
5929 * isn't true due to cpus_allowed constraints and the like.
5931 if (busiest->group_imb)
5934 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5935 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5936 !busiest->group_has_capacity)
5940 * If the local group is more busy than the selected busiest group
5941 * don't try and pull any tasks.
5943 if (local->avg_load >= busiest->avg_load)
5947 * Don't pull any tasks if this group is already above the domain
5950 if (local->avg_load >= sds.avg_load)
5953 if (env->idle == CPU_IDLE) {
5955 * This cpu is idle. If the busiest group load doesn't
5956 * have more tasks than the number of available cpu's and
5957 * there is no imbalance between this and busiest group
5958 * wrt to idle cpu's, it is balanced.
5960 if ((local->idle_cpus < busiest->idle_cpus) &&
5961 busiest->sum_nr_running <= busiest->group_weight)
5965 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5966 * imbalance_pct to be conservative.
5968 if (100 * busiest->avg_load <=
5969 env->sd->imbalance_pct * local->avg_load)
5974 /* Looks like there is an imbalance. Compute it */
5975 calculate_imbalance(env, &sds);
5984 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5986 static struct rq *find_busiest_queue(struct lb_env *env,
5987 struct sched_group *group)
5989 struct rq *busiest = NULL, *rq;
5990 unsigned long busiest_load = 0, busiest_power = 1;
5993 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5994 unsigned long power, capacity, wl;
5998 rt = fbq_classify_rq(rq);
6001 * We classify groups/runqueues into three groups:
6002 * - regular: there are !numa tasks
6003 * - remote: there are numa tasks that run on the 'wrong' node
6004 * - all: there is no distinction
6006 * In order to avoid migrating ideally placed numa tasks,
6007 * ignore those when there's better options.
6009 * If we ignore the actual busiest queue to migrate another
6010 * task, the next balance pass can still reduce the busiest
6011 * queue by moving tasks around inside the node.
6013 * If we cannot move enough load due to this classification
6014 * the next pass will adjust the group classification and
6015 * allow migration of more tasks.
6017 * Both cases only affect the total convergence complexity.
6019 if (rt > env->fbq_type)
6022 power = power_of(i);
6023 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6025 capacity = fix_small_capacity(env->sd, group);
6027 wl = weighted_cpuload(i);
6030 * When comparing with imbalance, use weighted_cpuload()
6031 * which is not scaled with the cpu power.
6033 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6037 * For the load comparisons with the other cpu's, consider
6038 * the weighted_cpuload() scaled with the cpu power, so that
6039 * the load can be moved away from the cpu that is potentially
6040 * running at a lower capacity.
6042 * Thus we're looking for max(wl_i / power_i), crosswise
6043 * multiplication to rid ourselves of the division works out
6044 * to: wl_i * power_j > wl_j * power_i; where j is our
6047 if (wl * busiest_power > busiest_load * power) {
6049 busiest_power = power;
6058 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6059 * so long as it is large enough.
6061 #define MAX_PINNED_INTERVAL 512
6063 /* Working cpumask for load_balance and load_balance_newidle. */
6064 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6066 static int need_active_balance(struct lb_env *env)
6068 struct sched_domain *sd = env->sd;
6070 if (env->idle == CPU_NEWLY_IDLE) {
6073 * ASYM_PACKING needs to force migrate tasks from busy but
6074 * higher numbered CPUs in order to pack all tasks in the
6075 * lowest numbered CPUs.
6077 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6081 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6084 static int active_load_balance_cpu_stop(void *data);
6086 static int should_we_balance(struct lb_env *env)
6088 struct sched_group *sg = env->sd->groups;
6089 struct cpumask *sg_cpus, *sg_mask;
6090 int cpu, balance_cpu = -1;
6093 * In the newly idle case, we will allow all the cpu's
6094 * to do the newly idle load balance.
6096 if (env->idle == CPU_NEWLY_IDLE)
6099 sg_cpus = sched_group_cpus(sg);
6100 sg_mask = sched_group_mask(sg);
6101 /* Try to find first idle cpu */
6102 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6103 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6110 if (balance_cpu == -1)
6111 balance_cpu = group_balance_cpu(sg);
6114 * First idle cpu or the first cpu(busiest) in this sched group
6115 * is eligible for doing load balancing at this and above domains.
6117 return balance_cpu == env->dst_cpu;
6121 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6122 * tasks if there is an imbalance.
6124 static int load_balance(int this_cpu, struct rq *this_rq,
6125 struct sched_domain *sd, enum cpu_idle_type idle,
6126 int *continue_balancing)
6128 int ld_moved, cur_ld_moved, active_balance = 0;
6129 struct sched_domain *sd_parent = sd->parent;
6130 struct sched_group *group;
6132 unsigned long flags;
6133 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6135 struct lb_env env = {
6137 .dst_cpu = this_cpu,
6139 .dst_grpmask = sched_group_cpus(sd->groups),
6141 .loop_break = sched_nr_migrate_break,
6147 * For NEWLY_IDLE load_balancing, we don't need to consider
6148 * other cpus in our group
6150 if (idle == CPU_NEWLY_IDLE)
6151 env.dst_grpmask = NULL;
6153 cpumask_copy(cpus, cpu_active_mask);
6155 schedstat_inc(sd, lb_count[idle]);
6158 if (!should_we_balance(&env)) {
6159 *continue_balancing = 0;
6163 group = find_busiest_group(&env);
6165 schedstat_inc(sd, lb_nobusyg[idle]);
6169 busiest = find_busiest_queue(&env, group);
6171 schedstat_inc(sd, lb_nobusyq[idle]);
6175 BUG_ON(busiest == env.dst_rq);
6177 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6180 if (busiest->nr_running > 1) {
6182 * Attempt to move tasks. If find_busiest_group has found
6183 * an imbalance but busiest->nr_running <= 1, the group is
6184 * still unbalanced. ld_moved simply stays zero, so it is
6185 * correctly treated as an imbalance.
6187 env.flags |= LBF_ALL_PINNED;
6188 env.src_cpu = busiest->cpu;
6189 env.src_rq = busiest;
6190 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6193 local_irq_save(flags);
6194 double_rq_lock(env.dst_rq, busiest);
6197 * cur_ld_moved - load moved in current iteration
6198 * ld_moved - cumulative load moved across iterations
6200 cur_ld_moved = move_tasks(&env);
6201 ld_moved += cur_ld_moved;
6202 double_rq_unlock(env.dst_rq, busiest);
6203 local_irq_restore(flags);
6206 * some other cpu did the load balance for us.
6208 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6209 resched_cpu(env.dst_cpu);
6211 if (env.flags & LBF_NEED_BREAK) {
6212 env.flags &= ~LBF_NEED_BREAK;
6217 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6218 * us and move them to an alternate dst_cpu in our sched_group
6219 * where they can run. The upper limit on how many times we
6220 * iterate on same src_cpu is dependent on number of cpus in our
6223 * This changes load balance semantics a bit on who can move
6224 * load to a given_cpu. In addition to the given_cpu itself
6225 * (or a ilb_cpu acting on its behalf where given_cpu is
6226 * nohz-idle), we now have balance_cpu in a position to move
6227 * load to given_cpu. In rare situations, this may cause
6228 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6229 * _independently_ and at _same_ time to move some load to
6230 * given_cpu) causing exceess load to be moved to given_cpu.
6231 * This however should not happen so much in practice and
6232 * moreover subsequent load balance cycles should correct the
6233 * excess load moved.
6235 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6237 /* Prevent to re-select dst_cpu via env's cpus */
6238 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6240 env.dst_rq = cpu_rq(env.new_dst_cpu);
6241 env.dst_cpu = env.new_dst_cpu;
6242 env.flags &= ~LBF_DST_PINNED;
6244 env.loop_break = sched_nr_migrate_break;
6247 * Go back to "more_balance" rather than "redo" since we
6248 * need to continue with same src_cpu.
6254 * We failed to reach balance because of affinity.
6257 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6259 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6260 *group_imbalance = 1;
6261 } else if (*group_imbalance)
6262 *group_imbalance = 0;
6265 /* All tasks on this runqueue were pinned by CPU affinity */
6266 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6267 cpumask_clear_cpu(cpu_of(busiest), cpus);
6268 if (!cpumask_empty(cpus)) {
6270 env.loop_break = sched_nr_migrate_break;
6278 schedstat_inc(sd, lb_failed[idle]);
6280 * Increment the failure counter only on periodic balance.
6281 * We do not want newidle balance, which can be very
6282 * frequent, pollute the failure counter causing
6283 * excessive cache_hot migrations and active balances.
6285 if (idle != CPU_NEWLY_IDLE)
6286 sd->nr_balance_failed++;
6288 if (need_active_balance(&env)) {
6289 raw_spin_lock_irqsave(&busiest->lock, flags);
6291 /* don't kick the active_load_balance_cpu_stop,
6292 * if the curr task on busiest cpu can't be
6295 if (!cpumask_test_cpu(this_cpu,
6296 tsk_cpus_allowed(busiest->curr))) {
6297 raw_spin_unlock_irqrestore(&busiest->lock,
6299 env.flags |= LBF_ALL_PINNED;
6300 goto out_one_pinned;
6304 * ->active_balance synchronizes accesses to
6305 * ->active_balance_work. Once set, it's cleared
6306 * only after active load balance is finished.
6308 if (!busiest->active_balance) {
6309 busiest->active_balance = 1;
6310 busiest->push_cpu = this_cpu;
6313 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6315 if (active_balance) {
6316 stop_one_cpu_nowait(cpu_of(busiest),
6317 active_load_balance_cpu_stop, busiest,
6318 &busiest->active_balance_work);
6322 * We've kicked active balancing, reset the failure
6325 sd->nr_balance_failed = sd->cache_nice_tries+1;
6328 sd->nr_balance_failed = 0;
6330 if (likely(!active_balance)) {
6331 /* We were unbalanced, so reset the balancing interval */
6332 sd->balance_interval = sd->min_interval;
6335 * If we've begun active balancing, start to back off. This
6336 * case may not be covered by the all_pinned logic if there
6337 * is only 1 task on the busy runqueue (because we don't call
6340 if (sd->balance_interval < sd->max_interval)
6341 sd->balance_interval *= 2;
6347 schedstat_inc(sd, lb_balanced[idle]);
6349 sd->nr_balance_failed = 0;
6352 /* tune up the balancing interval */
6353 if (((env.flags & LBF_ALL_PINNED) &&
6354 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6355 (sd->balance_interval < sd->max_interval))
6356 sd->balance_interval *= 2;
6364 * idle_balance is called by schedule() if this_cpu is about to become
6365 * idle. Attempts to pull tasks from other CPUs.
6367 void idle_balance(int this_cpu, struct rq *this_rq)
6369 struct sched_domain *sd;
6370 int pulled_task = 0;
6371 unsigned long next_balance = jiffies + HZ;
6374 this_rq->idle_stamp = rq_clock(this_rq);
6376 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6380 * Drop the rq->lock, but keep IRQ/preempt disabled.
6382 raw_spin_unlock(&this_rq->lock);
6384 update_blocked_averages(this_cpu);
6386 for_each_domain(this_cpu, sd) {
6387 unsigned long interval;
6388 int continue_balancing = 1;
6389 u64 t0, domain_cost;
6391 if (!(sd->flags & SD_LOAD_BALANCE))
6394 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6397 if (sd->flags & SD_BALANCE_NEWIDLE) {
6398 t0 = sched_clock_cpu(this_cpu);
6400 /* If we've pulled tasks over stop searching: */
6401 pulled_task = load_balance(this_cpu, this_rq,
6403 &continue_balancing);
6405 domain_cost = sched_clock_cpu(this_cpu) - t0;
6406 if (domain_cost > sd->max_newidle_lb_cost)
6407 sd->max_newidle_lb_cost = domain_cost;
6409 curr_cost += domain_cost;
6412 interval = msecs_to_jiffies(sd->balance_interval);
6413 if (time_after(next_balance, sd->last_balance + interval))
6414 next_balance = sd->last_balance + interval;
6416 this_rq->idle_stamp = 0;
6422 raw_spin_lock(&this_rq->lock);
6424 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6426 * We are going idle. next_balance may be set based on
6427 * a busy processor. So reset next_balance.
6429 this_rq->next_balance = next_balance;
6432 if (curr_cost > this_rq->max_idle_balance_cost)
6433 this_rq->max_idle_balance_cost = curr_cost;
6437 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6438 * running tasks off the busiest CPU onto idle CPUs. It requires at
6439 * least 1 task to be running on each physical CPU where possible, and
6440 * avoids physical / logical imbalances.
6442 static int active_load_balance_cpu_stop(void *data)
6444 struct rq *busiest_rq = data;
6445 int busiest_cpu = cpu_of(busiest_rq);
6446 int target_cpu = busiest_rq->push_cpu;
6447 struct rq *target_rq = cpu_rq(target_cpu);
6448 struct sched_domain *sd;
6450 raw_spin_lock_irq(&busiest_rq->lock);
6452 /* make sure the requested cpu hasn't gone down in the meantime */
6453 if (unlikely(busiest_cpu != smp_processor_id() ||
6454 !busiest_rq->active_balance))
6457 /* Is there any task to move? */
6458 if (busiest_rq->nr_running <= 1)
6462 * This condition is "impossible", if it occurs
6463 * we need to fix it. Originally reported by
6464 * Bjorn Helgaas on a 128-cpu setup.
6466 BUG_ON(busiest_rq == target_rq);
6468 /* move a task from busiest_rq to target_rq */
6469 double_lock_balance(busiest_rq, target_rq);
6471 /* Search for an sd spanning us and the target CPU. */
6473 for_each_domain(target_cpu, sd) {
6474 if ((sd->flags & SD_LOAD_BALANCE) &&
6475 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6480 struct lb_env env = {
6482 .dst_cpu = target_cpu,
6483 .dst_rq = target_rq,
6484 .src_cpu = busiest_rq->cpu,
6485 .src_rq = busiest_rq,
6489 schedstat_inc(sd, alb_count);
6491 if (move_one_task(&env))
6492 schedstat_inc(sd, alb_pushed);
6494 schedstat_inc(sd, alb_failed);
6497 double_unlock_balance(busiest_rq, target_rq);
6499 busiest_rq->active_balance = 0;
6500 raw_spin_unlock_irq(&busiest_rq->lock);
6504 #ifdef CONFIG_NO_HZ_COMMON
6506 * idle load balancing details
6507 * - When one of the busy CPUs notice that there may be an idle rebalancing
6508 * needed, they will kick the idle load balancer, which then does idle
6509 * load balancing for all the idle CPUs.
6512 cpumask_var_t idle_cpus_mask;
6514 unsigned long next_balance; /* in jiffy units */
6515 } nohz ____cacheline_aligned;
6517 static inline int find_new_ilb(int call_cpu)
6519 int ilb = cpumask_first(nohz.idle_cpus_mask);
6521 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6528 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6529 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6530 * CPU (if there is one).
6532 static void nohz_balancer_kick(int cpu)
6536 nohz.next_balance++;
6538 ilb_cpu = find_new_ilb(cpu);
6540 if (ilb_cpu >= nr_cpu_ids)
6543 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6546 * Use smp_send_reschedule() instead of resched_cpu().
6547 * This way we generate a sched IPI on the target cpu which
6548 * is idle. And the softirq performing nohz idle load balance
6549 * will be run before returning from the IPI.
6551 smp_send_reschedule(ilb_cpu);
6555 static inline void nohz_balance_exit_idle(int cpu)
6557 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6558 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6559 atomic_dec(&nohz.nr_cpus);
6560 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6564 static inline void set_cpu_sd_state_busy(void)
6566 struct sched_domain *sd;
6567 int cpu = smp_processor_id();
6570 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6572 if (!sd || !sd->nohz_idle)
6576 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6581 void set_cpu_sd_state_idle(void)
6583 struct sched_domain *sd;
6584 int cpu = smp_processor_id();
6587 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6589 if (!sd || sd->nohz_idle)
6593 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6599 * This routine will record that the cpu is going idle with tick stopped.
6600 * This info will be used in performing idle load balancing in the future.
6602 void nohz_balance_enter_idle(int cpu)
6605 * If this cpu is going down, then nothing needs to be done.
6607 if (!cpu_active(cpu))
6610 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6613 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6614 atomic_inc(&nohz.nr_cpus);
6615 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6618 static int sched_ilb_notifier(struct notifier_block *nfb,
6619 unsigned long action, void *hcpu)
6621 switch (action & ~CPU_TASKS_FROZEN) {
6623 nohz_balance_exit_idle(smp_processor_id());
6631 static DEFINE_SPINLOCK(balancing);
6634 * Scale the max load_balance interval with the number of CPUs in the system.
6635 * This trades load-balance latency on larger machines for less cross talk.
6637 void update_max_interval(void)
6639 max_load_balance_interval = HZ*num_online_cpus()/10;
6643 * It checks each scheduling domain to see if it is due to be balanced,
6644 * and initiates a balancing operation if so.
6646 * Balancing parameters are set up in init_sched_domains.
6648 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6650 int continue_balancing = 1;
6651 struct rq *rq = cpu_rq(cpu);
6652 unsigned long interval;
6653 struct sched_domain *sd;
6654 /* Earliest time when we have to do rebalance again */
6655 unsigned long next_balance = jiffies + 60*HZ;
6656 int update_next_balance = 0;
6657 int need_serialize, need_decay = 0;
6660 update_blocked_averages(cpu);
6663 for_each_domain(cpu, sd) {
6665 * Decay the newidle max times here because this is a regular
6666 * visit to all the domains. Decay ~1% per second.
6668 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6669 sd->max_newidle_lb_cost =
6670 (sd->max_newidle_lb_cost * 253) / 256;
6671 sd->next_decay_max_lb_cost = jiffies + HZ;
6674 max_cost += sd->max_newidle_lb_cost;
6676 if (!(sd->flags & SD_LOAD_BALANCE))
6680 * Stop the load balance at this level. There is another
6681 * CPU in our sched group which is doing load balancing more
6684 if (!continue_balancing) {
6690 interval = sd->balance_interval;
6691 if (idle != CPU_IDLE)
6692 interval *= sd->busy_factor;
6694 /* scale ms to jiffies */
6695 interval = msecs_to_jiffies(interval);
6696 interval = clamp(interval, 1UL, max_load_balance_interval);
6698 need_serialize = sd->flags & SD_SERIALIZE;
6700 if (need_serialize) {
6701 if (!spin_trylock(&balancing))
6705 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6706 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6708 * The LBF_DST_PINNED logic could have changed
6709 * env->dst_cpu, so we can't know our idle
6710 * state even if we migrated tasks. Update it.
6712 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6714 sd->last_balance = jiffies;
6717 spin_unlock(&balancing);
6719 if (time_after(next_balance, sd->last_balance + interval)) {
6720 next_balance = sd->last_balance + interval;
6721 update_next_balance = 1;
6726 * Ensure the rq-wide value also decays but keep it at a
6727 * reasonable floor to avoid funnies with rq->avg_idle.
6729 rq->max_idle_balance_cost =
6730 max((u64)sysctl_sched_migration_cost, max_cost);
6735 * next_balance will be updated only when there is a need.
6736 * When the cpu is attached to null domain for ex, it will not be
6739 if (likely(update_next_balance))
6740 rq->next_balance = next_balance;
6743 #ifdef CONFIG_NO_HZ_COMMON
6745 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6746 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6748 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6750 struct rq *this_rq = cpu_rq(this_cpu);
6754 if (idle != CPU_IDLE ||
6755 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6758 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6759 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6763 * If this cpu gets work to do, stop the load balancing
6764 * work being done for other cpus. Next load
6765 * balancing owner will pick it up.
6770 rq = cpu_rq(balance_cpu);
6772 raw_spin_lock_irq(&rq->lock);
6773 update_rq_clock(rq);
6774 update_idle_cpu_load(rq);
6775 raw_spin_unlock_irq(&rq->lock);
6777 rebalance_domains(balance_cpu, CPU_IDLE);
6779 if (time_after(this_rq->next_balance, rq->next_balance))
6780 this_rq->next_balance = rq->next_balance;
6782 nohz.next_balance = this_rq->next_balance;
6784 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6788 * Current heuristic for kicking the idle load balancer in the presence
6789 * of an idle cpu is the system.
6790 * - This rq has more than one task.
6791 * - At any scheduler domain level, this cpu's scheduler group has multiple
6792 * busy cpu's exceeding the group's power.
6793 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6794 * domain span are idle.
6796 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6798 unsigned long now = jiffies;
6799 struct sched_domain *sd;
6800 struct sched_group_power *sgp;
6803 if (unlikely(idle_cpu(cpu)))
6807 * We may be recently in ticked or tickless idle mode. At the first
6808 * busy tick after returning from idle, we will update the busy stats.
6810 set_cpu_sd_state_busy();
6811 nohz_balance_exit_idle(cpu);
6814 * None are in tickless mode and hence no need for NOHZ idle load
6817 if (likely(!atomic_read(&nohz.nr_cpus)))
6820 if (time_before(now, nohz.next_balance))
6823 if (rq->nr_running >= 2)
6827 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6830 sgp = sd->groups->sgp;
6831 nr_busy = atomic_read(&sgp->nr_busy_cpus);
6834 goto need_kick_unlock;
6837 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6839 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6840 sched_domain_span(sd)) < cpu))
6841 goto need_kick_unlock;
6852 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6856 * run_rebalance_domains is triggered when needed from the scheduler tick.
6857 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6859 static void run_rebalance_domains(struct softirq_action *h)
6861 int this_cpu = smp_processor_id();
6862 struct rq *this_rq = cpu_rq(this_cpu);
6863 enum cpu_idle_type idle = this_rq->idle_balance ?
6864 CPU_IDLE : CPU_NOT_IDLE;
6866 rebalance_domains(this_cpu, idle);
6869 * If this cpu has a pending nohz_balance_kick, then do the
6870 * balancing on behalf of the other idle cpus whose ticks are
6873 nohz_idle_balance(this_cpu, idle);
6876 static inline int on_null_domain(int cpu)
6878 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6882 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6884 void trigger_load_balance(struct rq *rq, int cpu)
6886 /* Don't need to rebalance while attached to NULL domain */
6887 if (time_after_eq(jiffies, rq->next_balance) &&
6888 likely(!on_null_domain(cpu)))
6889 raise_softirq(SCHED_SOFTIRQ);
6890 #ifdef CONFIG_NO_HZ_COMMON
6891 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6892 nohz_balancer_kick(cpu);
6896 static void rq_online_fair(struct rq *rq)
6901 static void rq_offline_fair(struct rq *rq)
6905 /* Ensure any throttled groups are reachable by pick_next_task */
6906 unthrottle_offline_cfs_rqs(rq);
6909 #endif /* CONFIG_SMP */
6912 * scheduler tick hitting a task of our scheduling class:
6914 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6916 struct cfs_rq *cfs_rq;
6917 struct sched_entity *se = &curr->se;
6919 for_each_sched_entity(se) {
6920 cfs_rq = cfs_rq_of(se);
6921 entity_tick(cfs_rq, se, queued);
6924 if (numabalancing_enabled)
6925 task_tick_numa(rq, curr);
6927 update_rq_runnable_avg(rq, 1);
6931 * called on fork with the child task as argument from the parent's context
6932 * - child not yet on the tasklist
6933 * - preemption disabled
6935 static void task_fork_fair(struct task_struct *p)
6937 struct cfs_rq *cfs_rq;
6938 struct sched_entity *se = &p->se, *curr;
6939 int this_cpu = smp_processor_id();
6940 struct rq *rq = this_rq();
6941 unsigned long flags;
6943 raw_spin_lock_irqsave(&rq->lock, flags);
6945 update_rq_clock(rq);
6947 cfs_rq = task_cfs_rq(current);
6948 curr = cfs_rq->curr;
6951 * Not only the cpu but also the task_group of the parent might have
6952 * been changed after parent->se.parent,cfs_rq were copied to
6953 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6954 * of child point to valid ones.
6957 __set_task_cpu(p, this_cpu);
6960 update_curr(cfs_rq);
6963 se->vruntime = curr->vruntime;
6964 place_entity(cfs_rq, se, 1);
6966 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6968 * Upon rescheduling, sched_class::put_prev_task() will place
6969 * 'current' within the tree based on its new key value.
6971 swap(curr->vruntime, se->vruntime);
6972 resched_task(rq->curr);
6975 se->vruntime -= cfs_rq->min_vruntime;
6977 raw_spin_unlock_irqrestore(&rq->lock, flags);
6981 * Priority of the task has changed. Check to see if we preempt
6985 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6991 * Reschedule if we are currently running on this runqueue and
6992 * our priority decreased, or if we are not currently running on
6993 * this runqueue and our priority is higher than the current's
6995 if (rq->curr == p) {
6996 if (p->prio > oldprio)
6997 resched_task(rq->curr);
6999 check_preempt_curr(rq, p, 0);
7002 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7004 struct sched_entity *se = &p->se;
7005 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7008 * Ensure the task's vruntime is normalized, so that when its
7009 * switched back to the fair class the enqueue_entity(.flags=0) will
7010 * do the right thing.
7012 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7013 * have normalized the vruntime, if it was !on_rq, then only when
7014 * the task is sleeping will it still have non-normalized vruntime.
7016 if (!se->on_rq && p->state != TASK_RUNNING) {
7018 * Fix up our vruntime so that the current sleep doesn't
7019 * cause 'unlimited' sleep bonus.
7021 place_entity(cfs_rq, se, 0);
7022 se->vruntime -= cfs_rq->min_vruntime;
7027 * Remove our load from contribution when we leave sched_fair
7028 * and ensure we don't carry in an old decay_count if we
7031 if (se->avg.decay_count) {
7032 __synchronize_entity_decay(se);
7033 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7039 * We switched to the sched_fair class.
7041 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7047 * We were most likely switched from sched_rt, so
7048 * kick off the schedule if running, otherwise just see
7049 * if we can still preempt the current task.
7052 resched_task(rq->curr);
7054 check_preempt_curr(rq, p, 0);
7057 /* Account for a task changing its policy or group.
7059 * This routine is mostly called to set cfs_rq->curr field when a task
7060 * migrates between groups/classes.
7062 static void set_curr_task_fair(struct rq *rq)
7064 struct sched_entity *se = &rq->curr->se;
7066 for_each_sched_entity(se) {
7067 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7069 set_next_entity(cfs_rq, se);
7070 /* ensure bandwidth has been allocated on our new cfs_rq */
7071 account_cfs_rq_runtime(cfs_rq, 0);
7075 void init_cfs_rq(struct cfs_rq *cfs_rq)
7077 cfs_rq->tasks_timeline = RB_ROOT;
7078 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7079 #ifndef CONFIG_64BIT
7080 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7083 atomic64_set(&cfs_rq->decay_counter, 1);
7084 atomic_long_set(&cfs_rq->removed_load, 0);
7088 #ifdef CONFIG_FAIR_GROUP_SCHED
7089 static void task_move_group_fair(struct task_struct *p, int on_rq)
7091 struct cfs_rq *cfs_rq;
7093 * If the task was not on the rq at the time of this cgroup movement
7094 * it must have been asleep, sleeping tasks keep their ->vruntime
7095 * absolute on their old rq until wakeup (needed for the fair sleeper
7096 * bonus in place_entity()).
7098 * If it was on the rq, we've just 'preempted' it, which does convert
7099 * ->vruntime to a relative base.
7101 * Make sure both cases convert their relative position when migrating
7102 * to another cgroup's rq. This does somewhat interfere with the
7103 * fair sleeper stuff for the first placement, but who cares.
7106 * When !on_rq, vruntime of the task has usually NOT been normalized.
7107 * But there are some cases where it has already been normalized:
7109 * - Moving a forked child which is waiting for being woken up by
7110 * wake_up_new_task().
7111 * - Moving a task which has been woken up by try_to_wake_up() and
7112 * waiting for actually being woken up by sched_ttwu_pending().
7114 * To prevent boost or penalty in the new cfs_rq caused by delta
7115 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7117 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7121 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7122 set_task_rq(p, task_cpu(p));
7124 cfs_rq = cfs_rq_of(&p->se);
7125 p->se.vruntime += cfs_rq->min_vruntime;
7128 * migrate_task_rq_fair() will have removed our previous
7129 * contribution, but we must synchronize for ongoing future
7132 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7133 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7138 void free_fair_sched_group(struct task_group *tg)
7142 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7144 for_each_possible_cpu(i) {
7146 kfree(tg->cfs_rq[i]);
7155 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7157 struct cfs_rq *cfs_rq;
7158 struct sched_entity *se;
7161 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7164 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7168 tg->shares = NICE_0_LOAD;
7170 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7172 for_each_possible_cpu(i) {
7173 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7174 GFP_KERNEL, cpu_to_node(i));
7178 se = kzalloc_node(sizeof(struct sched_entity),
7179 GFP_KERNEL, cpu_to_node(i));
7183 init_cfs_rq(cfs_rq);
7184 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7195 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7197 struct rq *rq = cpu_rq(cpu);
7198 unsigned long flags;
7201 * Only empty task groups can be destroyed; so we can speculatively
7202 * check on_list without danger of it being re-added.
7204 if (!tg->cfs_rq[cpu]->on_list)
7207 raw_spin_lock_irqsave(&rq->lock, flags);
7208 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7209 raw_spin_unlock_irqrestore(&rq->lock, flags);
7212 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7213 struct sched_entity *se, int cpu,
7214 struct sched_entity *parent)
7216 struct rq *rq = cpu_rq(cpu);
7220 init_cfs_rq_runtime(cfs_rq);
7222 tg->cfs_rq[cpu] = cfs_rq;
7225 /* se could be NULL for root_task_group */
7230 se->cfs_rq = &rq->cfs;
7232 se->cfs_rq = parent->my_q;
7235 /* guarantee group entities always have weight */
7236 update_load_set(&se->load, NICE_0_LOAD);
7237 se->parent = parent;
7240 static DEFINE_MUTEX(shares_mutex);
7242 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7245 unsigned long flags;
7248 * We can't change the weight of the root cgroup.
7253 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7255 mutex_lock(&shares_mutex);
7256 if (tg->shares == shares)
7259 tg->shares = shares;
7260 for_each_possible_cpu(i) {
7261 struct rq *rq = cpu_rq(i);
7262 struct sched_entity *se;
7265 /* Propagate contribution to hierarchy */
7266 raw_spin_lock_irqsave(&rq->lock, flags);
7268 /* Possible calls to update_curr() need rq clock */
7269 update_rq_clock(rq);
7270 for_each_sched_entity(se)
7271 update_cfs_shares(group_cfs_rq(se));
7272 raw_spin_unlock_irqrestore(&rq->lock, flags);
7276 mutex_unlock(&shares_mutex);
7279 #else /* CONFIG_FAIR_GROUP_SCHED */
7281 void free_fair_sched_group(struct task_group *tg) { }
7283 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7288 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7290 #endif /* CONFIG_FAIR_GROUP_SCHED */
7293 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7295 struct sched_entity *se = &task->se;
7296 unsigned int rr_interval = 0;
7299 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7302 if (rq->cfs.load.weight)
7303 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7309 * All the scheduling class methods:
7311 const struct sched_class fair_sched_class = {
7312 .next = &idle_sched_class,
7313 .enqueue_task = enqueue_task_fair,
7314 .dequeue_task = dequeue_task_fair,
7315 .yield_task = yield_task_fair,
7316 .yield_to_task = yield_to_task_fair,
7318 .check_preempt_curr = check_preempt_wakeup,
7320 .pick_next_task = pick_next_task_fair,
7321 .put_prev_task = put_prev_task_fair,
7324 .select_task_rq = select_task_rq_fair,
7325 .migrate_task_rq = migrate_task_rq_fair,
7327 .rq_online = rq_online_fair,
7328 .rq_offline = rq_offline_fair,
7330 .task_waking = task_waking_fair,
7333 .set_curr_task = set_curr_task_fair,
7334 .task_tick = task_tick_fair,
7335 .task_fork = task_fork_fair,
7337 .prio_changed = prio_changed_fair,
7338 .switched_from = switched_from_fair,
7339 .switched_to = switched_to_fair,
7341 .get_rr_interval = get_rr_interval_fair,
7343 #ifdef CONFIG_FAIR_GROUP_SCHED
7344 .task_move_group = task_move_group_fair,
7348 #ifdef CONFIG_SCHED_DEBUG
7349 void print_cfs_stats(struct seq_file *m, int cpu)
7351 struct cfs_rq *cfs_rq;
7354 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7355 print_cfs_rq(m, cpu, cfs_rq);
7360 __init void init_sched_fair_class(void)
7363 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7365 #ifdef CONFIG_NO_HZ_COMMON
7366 nohz.next_balance = jiffies;
7367 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7368 cpu_notifier(sched_ilb_notifier, 0);