1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
26 * Targeted preemption latency for CPU-bound tasks:
28 * NOTE: this latency value is not the same as the concept of
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 * Minimal preemption granularity for CPU-bound tasks:
57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
59 unsigned int sysctl_sched_min_granularity = 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
63 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
64 * Applies only when SCHED_IDLE tasks compete with normal tasks.
66 * (default: 0.75 msec)
68 unsigned int sysctl_sched_idle_min_granularity = 750000ULL;
71 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
73 static unsigned int sched_nr_latency = 8;
76 * After fork, child runs first. If set to 0 (default) then
77 * parent will (try to) run first.
79 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 * SCHED_OTHER wake-up granularity.
84 * This option delays the preemption effects of decoupled workloads
85 * and reduces their over-scheduling. Synchronous workloads will still
86 * have immediate wakeup/sleep latencies.
88 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 int sched_thermal_decay_shift;
96 static int __init setup_sched_thermal_decay_shift(char *str)
100 if (kstrtoint(str, 0, &_shift))
101 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
103 sched_thermal_decay_shift = clamp(_shift, 0, 10);
106 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
110 * For asym packing, by default the lower numbered CPU has higher priority.
112 int __weak arch_asym_cpu_priority(int cpu)
118 * The margin used when comparing utilization with CPU capacity.
122 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
125 * The margin used when comparing CPU capacities.
126 * is 'cap1' noticeably greater than 'cap2'
130 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
133 #ifdef CONFIG_CFS_BANDWIDTH
135 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
136 * each time a cfs_rq requests quota.
138 * Note: in the case that the slice exceeds the runtime remaining (either due
139 * to consumption or the quota being specified to be smaller than the slice)
140 * we will always only issue the remaining available time.
142 * (default: 5 msec, units: microseconds)
144 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
147 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
153 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
159 static inline void update_load_set(struct load_weight *lw, unsigned long w)
166 * Increase the granularity value when there are more CPUs,
167 * because with more CPUs the 'effective latency' as visible
168 * to users decreases. But the relationship is not linear,
169 * so pick a second-best guess by going with the log2 of the
172 * This idea comes from the SD scheduler of Con Kolivas:
174 static unsigned int get_update_sysctl_factor(void)
176 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
179 switch (sysctl_sched_tunable_scaling) {
180 case SCHED_TUNABLESCALING_NONE:
183 case SCHED_TUNABLESCALING_LINEAR:
186 case SCHED_TUNABLESCALING_LOG:
188 factor = 1 + ilog2(cpus);
195 static void update_sysctl(void)
197 unsigned int factor = get_update_sysctl_factor();
199 #define SET_SYSCTL(name) \
200 (sysctl_##name = (factor) * normalized_sysctl_##name)
201 SET_SYSCTL(sched_min_granularity);
202 SET_SYSCTL(sched_latency);
203 SET_SYSCTL(sched_wakeup_granularity);
207 void __init sched_init_granularity(void)
212 #define WMULT_CONST (~0U)
213 #define WMULT_SHIFT 32
215 static void __update_inv_weight(struct load_weight *lw)
219 if (likely(lw->inv_weight))
222 w = scale_load_down(lw->weight);
224 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
226 else if (unlikely(!w))
227 lw->inv_weight = WMULT_CONST;
229 lw->inv_weight = WMULT_CONST / w;
233 * delta_exec * weight / lw.weight
235 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
237 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
238 * we're guaranteed shift stays positive because inv_weight is guaranteed to
239 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
241 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
242 * weight/lw.weight <= 1, and therefore our shift will also be positive.
244 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
246 u64 fact = scale_load_down(weight);
247 u32 fact_hi = (u32)(fact >> 32);
248 int shift = WMULT_SHIFT;
251 __update_inv_weight(lw);
253 if (unlikely(fact_hi)) {
259 fact = mul_u32_u32(fact, lw->inv_weight);
261 fact_hi = (u32)(fact >> 32);
268 return mul_u64_u32_shr(delta_exec, fact, shift);
272 const struct sched_class fair_sched_class;
274 /**************************************************************
275 * CFS operations on generic schedulable entities:
278 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* Walk up scheduling entities hierarchy */
281 #define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
284 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
290 autogroup_path(cfs_rq->tg, path, len);
291 else if (cfs_rq && cfs_rq->tg->css.cgroup)
292 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
294 strlcpy(path, "(null)", len);
297 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
299 struct rq *rq = rq_of(cfs_rq);
300 int cpu = cpu_of(rq);
303 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
308 * Ensure we either appear before our parent (if already
309 * enqueued) or force our parent to appear after us when it is
310 * enqueued. The fact that we always enqueue bottom-up
311 * reduces this to two cases and a special case for the root
312 * cfs_rq. Furthermore, it also means that we will always reset
313 * tmp_alone_branch either when the branch is connected
314 * to a tree or when we reach the top of the tree
316 if (cfs_rq->tg->parent &&
317 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
319 * If parent is already on the list, we add the child
320 * just before. Thanks to circular linked property of
321 * the list, this means to put the child at the tail
322 * of the list that starts by parent.
324 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
325 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
327 * The branch is now connected to its tree so we can
328 * reset tmp_alone_branch to the beginning of the
331 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
335 if (!cfs_rq->tg->parent) {
337 * cfs rq without parent should be put
338 * at the tail of the list.
340 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
341 &rq->leaf_cfs_rq_list);
343 * We have reach the top of a tree so we can reset
344 * tmp_alone_branch to the beginning of the list.
346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 * The parent has not already been added so we want to
352 * make sure that it will be put after us.
353 * tmp_alone_branch points to the begin of the branch
354 * where we will add parent.
356 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
358 * update tmp_alone_branch to points to the new begin
361 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
365 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
367 if (cfs_rq->on_list) {
368 struct rq *rq = rq_of(cfs_rq);
371 * With cfs_rq being unthrottled/throttled during an enqueue,
372 * it can happen the tmp_alone_branch points the a leaf that
373 * we finally want to del. In this case, tmp_alone_branch moves
374 * to the prev element but it will point to rq->leaf_cfs_rq_list
375 * at the end of the enqueue.
377 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
378 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
380 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
387 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
390 /* Iterate thr' all leaf cfs_rq's on a runqueue */
391 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
392 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
395 /* Do the two (enqueued) entities belong to the same group ? */
396 static inline struct cfs_rq *
397 is_same_group(struct sched_entity *se, struct sched_entity *pse)
399 if (se->cfs_rq == pse->cfs_rq)
405 static inline struct sched_entity *parent_entity(struct sched_entity *se)
411 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
413 int se_depth, pse_depth;
416 * preemption test can be made between sibling entities who are in the
417 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
418 * both tasks until we find their ancestors who are siblings of common
422 /* First walk up until both entities are at same depth */
423 se_depth = (*se)->depth;
424 pse_depth = (*pse)->depth;
426 while (se_depth > pse_depth) {
428 *se = parent_entity(*se);
431 while (pse_depth > se_depth) {
433 *pse = parent_entity(*pse);
436 while (!is_same_group(*se, *pse)) {
437 *se = parent_entity(*se);
438 *pse = parent_entity(*pse);
442 static int tg_is_idle(struct task_group *tg)
447 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
449 return cfs_rq->idle > 0;
452 static int se_is_idle(struct sched_entity *se)
454 if (entity_is_task(se))
455 return task_has_idle_policy(task_of(se));
456 return cfs_rq_is_idle(group_cfs_rq(se));
459 #else /* !CONFIG_FAIR_GROUP_SCHED */
461 #define for_each_sched_entity(se) \
462 for (; se; se = NULL)
464 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
467 strlcpy(path, "(null)", len);
470 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
475 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
479 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
483 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
484 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
486 static inline struct sched_entity *parent_entity(struct sched_entity *se)
492 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
496 static inline int tg_is_idle(struct task_group *tg)
501 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
506 static int se_is_idle(struct sched_entity *se)
511 #endif /* CONFIG_FAIR_GROUP_SCHED */
513 static __always_inline
514 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
516 /**************************************************************
517 * Scheduling class tree data structure manipulation methods:
520 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
522 s64 delta = (s64)(vruntime - max_vruntime);
524 max_vruntime = vruntime;
529 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
531 s64 delta = (s64)(vruntime - min_vruntime);
533 min_vruntime = vruntime;
538 static inline bool entity_before(struct sched_entity *a,
539 struct sched_entity *b)
541 return (s64)(a->vruntime - b->vruntime) < 0;
544 #define __node_2_se(node) \
545 rb_entry((node), struct sched_entity, run_node)
547 static void update_min_vruntime(struct cfs_rq *cfs_rq)
549 struct sched_entity *curr = cfs_rq->curr;
550 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
552 u64 vruntime = cfs_rq->min_vruntime;
556 vruntime = curr->vruntime;
561 if (leftmost) { /* non-empty tree */
562 struct sched_entity *se = __node_2_se(leftmost);
565 vruntime = se->vruntime;
567 vruntime = min_vruntime(vruntime, se->vruntime);
570 /* ensure we never gain time by being placed backwards. */
571 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
574 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
578 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
580 return entity_before(__node_2_se(a), __node_2_se(b));
584 * Enqueue an entity into the rb-tree:
586 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
588 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
591 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
593 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
596 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
598 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
603 return __node_2_se(left);
606 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
608 struct rb_node *next = rb_next(&se->run_node);
613 return __node_2_se(next);
616 #ifdef CONFIG_SCHED_DEBUG
617 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
624 return __node_2_se(last);
627 /**************************************************************
628 * Scheduling class statistics methods:
631 int sched_update_scaling(void)
633 unsigned int factor = get_update_sysctl_factor();
635 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
636 sysctl_sched_min_granularity);
638 #define WRT_SYSCTL(name) \
639 (normalized_sysctl_##name = sysctl_##name / (factor))
640 WRT_SYSCTL(sched_min_granularity);
641 WRT_SYSCTL(sched_latency);
642 WRT_SYSCTL(sched_wakeup_granularity);
652 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
654 if (unlikely(se->load.weight != NICE_0_LOAD))
655 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
661 * The idea is to set a period in which each task runs once.
663 * When there are too many tasks (sched_nr_latency) we have to stretch
664 * this period because otherwise the slices get too small.
666 * p = (nr <= nl) ? l : l*nr/nl
668 static u64 __sched_period(unsigned long nr_running)
670 if (unlikely(nr_running > sched_nr_latency))
671 return nr_running * sysctl_sched_min_granularity;
673 return sysctl_sched_latency;
676 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
679 * We calculate the wall-time slice from the period by taking a part
680 * proportional to the weight.
684 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 unsigned int nr_running = cfs_rq->nr_running;
687 struct sched_entity *init_se = se;
688 unsigned int min_gran;
691 if (sched_feat(ALT_PERIOD))
692 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
694 slice = __sched_period(nr_running + !se->on_rq);
696 for_each_sched_entity(se) {
697 struct load_weight *load;
698 struct load_weight lw;
699 struct cfs_rq *qcfs_rq;
701 qcfs_rq = cfs_rq_of(se);
702 load = &qcfs_rq->load;
704 if (unlikely(!se->on_rq)) {
707 update_load_add(&lw, se->load.weight);
710 slice = __calc_delta(slice, se->load.weight, load);
713 if (sched_feat(BASE_SLICE)) {
714 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
715 min_gran = sysctl_sched_idle_min_granularity;
717 min_gran = sysctl_sched_min_granularity;
719 slice = max_t(u64, slice, min_gran);
726 * We calculate the vruntime slice of a to-be-inserted task.
730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
732 return calc_delta_fair(sched_slice(cfs_rq, se), se);
738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
739 static unsigned long task_h_load(struct task_struct *p);
740 static unsigned long capacity_of(int cpu);
742 /* Give new sched_entity start runnable values to heavy its load in infant time */
743 void init_entity_runnable_average(struct sched_entity *se)
745 struct sched_avg *sa = &se->avg;
747 memset(sa, 0, sizeof(*sa));
750 * Tasks are initialized with full load to be seen as heavy tasks until
751 * they get a chance to stabilize to their real load level.
752 * Group entities are initialized with zero load to reflect the fact that
753 * nothing has been attached to the task group yet.
755 if (entity_is_task(se))
756 sa->load_avg = scale_load_down(se->load.weight);
758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
761 static void attach_entity_cfs_rq(struct sched_entity *se);
764 * With new tasks being created, their initial util_avgs are extrapolated
765 * based on the cfs_rq's current util_avg:
767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
769 * However, in many cases, the above util_avg does not give a desired
770 * value. Moreover, the sum of the util_avgs may be divergent, such
771 * as when the series is a harmonic series.
773 * To solve this problem, we also cap the util_avg of successive tasks to
774 * only 1/2 of the left utilization budget:
776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
778 * where n denotes the nth task and cpu_scale the CPU capacity.
780 * For example, for a CPU with 1024 of capacity, a simplest series from
781 * the beginning would be like:
783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787 * if util_avg > util_avg_cap.
789 void post_init_entity_util_avg(struct task_struct *p)
791 struct sched_entity *se = &p->se;
792 struct cfs_rq *cfs_rq = cfs_rq_of(se);
793 struct sched_avg *sa = &se->avg;
794 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
795 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
798 if (cfs_rq->avg.util_avg != 0) {
799 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
800 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
802 if (sa->util_avg > cap)
809 sa->runnable_avg = sa->util_avg;
811 if (p->sched_class != &fair_sched_class) {
813 * For !fair tasks do:
815 update_cfs_rq_load_avg(now, cfs_rq);
816 attach_entity_load_avg(cfs_rq, se);
817 switched_from_fair(rq, p);
819 * such that the next switched_to_fair() has the
822 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
826 attach_entity_cfs_rq(se);
829 #else /* !CONFIG_SMP */
830 void init_entity_runnable_average(struct sched_entity *se)
833 void post_init_entity_util_avg(struct task_struct *p)
836 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
839 #endif /* CONFIG_SMP */
842 * Update the current task's runtime statistics.
844 static void update_curr(struct cfs_rq *cfs_rq)
846 struct sched_entity *curr = cfs_rq->curr;
847 u64 now = rq_clock_task(rq_of(cfs_rq));
853 delta_exec = now - curr->exec_start;
854 if (unlikely((s64)delta_exec <= 0))
857 curr->exec_start = now;
859 schedstat_set(curr->statistics.exec_max,
860 max(delta_exec, curr->statistics.exec_max));
862 curr->sum_exec_runtime += delta_exec;
863 schedstat_add(cfs_rq->exec_clock, delta_exec);
865 curr->vruntime += calc_delta_fair(delta_exec, curr);
866 update_min_vruntime(cfs_rq);
868 if (entity_is_task(curr)) {
869 struct task_struct *curtask = task_of(curr);
871 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
872 cgroup_account_cputime(curtask, delta_exec);
873 account_group_exec_runtime(curtask, delta_exec);
876 account_cfs_rq_runtime(cfs_rq, delta_exec);
879 static void update_curr_fair(struct rq *rq)
881 update_curr(cfs_rq_of(&rq->curr->se));
885 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
887 u64 wait_start, prev_wait_start;
889 if (!schedstat_enabled())
892 wait_start = rq_clock(rq_of(cfs_rq));
893 prev_wait_start = schedstat_val(se->statistics.wait_start);
895 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
896 likely(wait_start > prev_wait_start))
897 wait_start -= prev_wait_start;
899 __schedstat_set(se->statistics.wait_start, wait_start);
903 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
905 struct task_struct *p;
908 if (!schedstat_enabled())
912 * When the sched_schedstat changes from 0 to 1, some sched se
913 * maybe already in the runqueue, the se->statistics.wait_start
914 * will be 0.So it will let the delta wrong. We need to avoid this
917 if (unlikely(!schedstat_val(se->statistics.wait_start)))
920 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
922 if (entity_is_task(se)) {
924 if (task_on_rq_migrating(p)) {
926 * Preserve migrating task's wait time so wait_start
927 * time stamp can be adjusted to accumulate wait time
928 * prior to migration.
930 __schedstat_set(se->statistics.wait_start, delta);
933 trace_sched_stat_wait(p, delta);
936 __schedstat_set(se->statistics.wait_max,
937 max(schedstat_val(se->statistics.wait_max), delta));
938 __schedstat_inc(se->statistics.wait_count);
939 __schedstat_add(se->statistics.wait_sum, delta);
940 __schedstat_set(se->statistics.wait_start, 0);
944 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
946 struct task_struct *tsk = NULL;
947 u64 sleep_start, block_start;
949 if (!schedstat_enabled())
952 sleep_start = schedstat_val(se->statistics.sleep_start);
953 block_start = schedstat_val(se->statistics.block_start);
955 if (entity_is_task(se))
959 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
964 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
965 __schedstat_set(se->statistics.sleep_max, delta);
967 __schedstat_set(se->statistics.sleep_start, 0);
968 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
971 account_scheduler_latency(tsk, delta >> 10, 1);
972 trace_sched_stat_sleep(tsk, delta);
976 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
981 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
982 __schedstat_set(se->statistics.block_max, delta);
984 __schedstat_set(se->statistics.block_start, 0);
985 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
988 if (tsk->in_iowait) {
989 __schedstat_add(se->statistics.iowait_sum, delta);
990 __schedstat_inc(se->statistics.iowait_count);
991 trace_sched_stat_iowait(tsk, delta);
994 trace_sched_stat_blocked(tsk, delta);
997 * Blocking time is in units of nanosecs, so shift by
998 * 20 to get a milliseconds-range estimation of the
999 * amount of time that the task spent sleeping:
1001 if (unlikely(prof_on == SLEEP_PROFILING)) {
1002 profile_hits(SLEEP_PROFILING,
1003 (void *)get_wchan(tsk),
1006 account_scheduler_latency(tsk, delta >> 10, 0);
1012 * Task is being enqueued - update stats:
1015 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1017 if (!schedstat_enabled())
1021 * Are we enqueueing a waiting task? (for current tasks
1022 * a dequeue/enqueue event is a NOP)
1024 if (se != cfs_rq->curr)
1025 update_stats_wait_start(cfs_rq, se);
1027 if (flags & ENQUEUE_WAKEUP)
1028 update_stats_enqueue_sleeper(cfs_rq, se);
1032 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1035 if (!schedstat_enabled())
1039 * Mark the end of the wait period if dequeueing a
1042 if (se != cfs_rq->curr)
1043 update_stats_wait_end(cfs_rq, se);
1045 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1046 struct task_struct *tsk = task_of(se);
1049 /* XXX racy against TTWU */
1050 state = READ_ONCE(tsk->__state);
1051 if (state & TASK_INTERRUPTIBLE)
1052 __schedstat_set(se->statistics.sleep_start,
1053 rq_clock(rq_of(cfs_rq)));
1054 if (state & TASK_UNINTERRUPTIBLE)
1055 __schedstat_set(se->statistics.block_start,
1056 rq_clock(rq_of(cfs_rq)));
1061 * We are picking a new current task - update its stats:
1064 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1067 * We are starting a new run period:
1069 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1072 /**************************************************
1073 * Scheduling class queueing methods:
1076 #ifdef CONFIG_NUMA_BALANCING
1078 * Approximate time to scan a full NUMA task in ms. The task scan period is
1079 * calculated based on the tasks virtual memory size and
1080 * numa_balancing_scan_size.
1082 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1083 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1085 /* Portion of address space to scan in MB */
1086 unsigned int sysctl_numa_balancing_scan_size = 256;
1088 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1089 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1092 refcount_t refcount;
1094 spinlock_t lock; /* nr_tasks, tasks */
1099 struct rcu_head rcu;
1100 unsigned long total_faults;
1101 unsigned long max_faults_cpu;
1103 * Faults_cpu is used to decide whether memory should move
1104 * towards the CPU. As a consequence, these stats are weighted
1105 * more by CPU use than by memory faults.
1107 unsigned long *faults_cpu;
1108 unsigned long faults[];
1112 * For functions that can be called in multiple contexts that permit reading
1113 * ->numa_group (see struct task_struct for locking rules).
1115 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1117 return rcu_dereference_check(p->numa_group, p == current ||
1118 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1121 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1123 return rcu_dereference_protected(p->numa_group, p == current);
1126 static inline unsigned long group_faults_priv(struct numa_group *ng);
1127 static inline unsigned long group_faults_shared(struct numa_group *ng);
1129 static unsigned int task_nr_scan_windows(struct task_struct *p)
1131 unsigned long rss = 0;
1132 unsigned long nr_scan_pages;
1135 * Calculations based on RSS as non-present and empty pages are skipped
1136 * by the PTE scanner and NUMA hinting faults should be trapped based
1139 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1140 rss = get_mm_rss(p->mm);
1142 rss = nr_scan_pages;
1144 rss = round_up(rss, nr_scan_pages);
1145 return rss / nr_scan_pages;
1148 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1149 #define MAX_SCAN_WINDOW 2560
1151 static unsigned int task_scan_min(struct task_struct *p)
1153 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1154 unsigned int scan, floor;
1155 unsigned int windows = 1;
1157 if (scan_size < MAX_SCAN_WINDOW)
1158 windows = MAX_SCAN_WINDOW / scan_size;
1159 floor = 1000 / windows;
1161 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1162 return max_t(unsigned int, floor, scan);
1165 static unsigned int task_scan_start(struct task_struct *p)
1167 unsigned long smin = task_scan_min(p);
1168 unsigned long period = smin;
1169 struct numa_group *ng;
1171 /* Scale the maximum scan period with the amount of shared memory. */
1173 ng = rcu_dereference(p->numa_group);
1175 unsigned long shared = group_faults_shared(ng);
1176 unsigned long private = group_faults_priv(ng);
1178 period *= refcount_read(&ng->refcount);
1179 period *= shared + 1;
1180 period /= private + shared + 1;
1184 return max(smin, period);
1187 static unsigned int task_scan_max(struct task_struct *p)
1189 unsigned long smin = task_scan_min(p);
1191 struct numa_group *ng;
1193 /* Watch for min being lower than max due to floor calculations */
1194 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1196 /* Scale the maximum scan period with the amount of shared memory. */
1197 ng = deref_curr_numa_group(p);
1199 unsigned long shared = group_faults_shared(ng);
1200 unsigned long private = group_faults_priv(ng);
1201 unsigned long period = smax;
1203 period *= refcount_read(&ng->refcount);
1204 period *= shared + 1;
1205 period /= private + shared + 1;
1207 smax = max(smax, period);
1210 return max(smin, smax);
1213 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1215 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1216 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1219 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1221 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1222 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1225 /* Shared or private faults. */
1226 #define NR_NUMA_HINT_FAULT_TYPES 2
1228 /* Memory and CPU locality */
1229 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1231 /* Averaged statistics, and temporary buffers. */
1232 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1234 pid_t task_numa_group_id(struct task_struct *p)
1236 struct numa_group *ng;
1240 ng = rcu_dereference(p->numa_group);
1249 * The averaged statistics, shared & private, memory & CPU,
1250 * occupy the first half of the array. The second half of the
1251 * array is for current counters, which are averaged into the
1252 * first set by task_numa_placement.
1254 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1256 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1259 static inline unsigned long task_faults(struct task_struct *p, int nid)
1261 if (!p->numa_faults)
1264 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1265 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1268 static inline unsigned long group_faults(struct task_struct *p, int nid)
1270 struct numa_group *ng = deref_task_numa_group(p);
1275 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1276 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1279 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1281 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1282 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1285 static inline unsigned long group_faults_priv(struct numa_group *ng)
1287 unsigned long faults = 0;
1290 for_each_online_node(node) {
1291 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1297 static inline unsigned long group_faults_shared(struct numa_group *ng)
1299 unsigned long faults = 0;
1302 for_each_online_node(node) {
1303 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1310 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1311 * considered part of a numa group's pseudo-interleaving set. Migrations
1312 * between these nodes are slowed down, to allow things to settle down.
1314 #define ACTIVE_NODE_FRACTION 3
1316 static bool numa_is_active_node(int nid, struct numa_group *ng)
1318 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1321 /* Handle placement on systems where not all nodes are directly connected. */
1322 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1323 int maxdist, bool task)
1325 unsigned long score = 0;
1329 * All nodes are directly connected, and the same distance
1330 * from each other. No need for fancy placement algorithms.
1332 if (sched_numa_topology_type == NUMA_DIRECT)
1336 * This code is called for each node, introducing N^2 complexity,
1337 * which should be ok given the number of nodes rarely exceeds 8.
1339 for_each_online_node(node) {
1340 unsigned long faults;
1341 int dist = node_distance(nid, node);
1344 * The furthest away nodes in the system are not interesting
1345 * for placement; nid was already counted.
1347 if (dist == sched_max_numa_distance || node == nid)
1351 * On systems with a backplane NUMA topology, compare groups
1352 * of nodes, and move tasks towards the group with the most
1353 * memory accesses. When comparing two nodes at distance
1354 * "hoplimit", only nodes closer by than "hoplimit" are part
1355 * of each group. Skip other nodes.
1357 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1361 /* Add up the faults from nearby nodes. */
1363 faults = task_faults(p, node);
1365 faults = group_faults(p, node);
1368 * On systems with a glueless mesh NUMA topology, there are
1369 * no fixed "groups of nodes". Instead, nodes that are not
1370 * directly connected bounce traffic through intermediate
1371 * nodes; a numa_group can occupy any set of nodes.
1372 * The further away a node is, the less the faults count.
1373 * This seems to result in good task placement.
1375 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1376 faults *= (sched_max_numa_distance - dist);
1377 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1387 * These return the fraction of accesses done by a particular task, or
1388 * task group, on a particular numa node. The group weight is given a
1389 * larger multiplier, in order to group tasks together that are almost
1390 * evenly spread out between numa nodes.
1392 static inline unsigned long task_weight(struct task_struct *p, int nid,
1395 unsigned long faults, total_faults;
1397 if (!p->numa_faults)
1400 total_faults = p->total_numa_faults;
1405 faults = task_faults(p, nid);
1406 faults += score_nearby_nodes(p, nid, dist, true);
1408 return 1000 * faults / total_faults;
1411 static inline unsigned long group_weight(struct task_struct *p, int nid,
1414 struct numa_group *ng = deref_task_numa_group(p);
1415 unsigned long faults, total_faults;
1420 total_faults = ng->total_faults;
1425 faults = group_faults(p, nid);
1426 faults += score_nearby_nodes(p, nid, dist, false);
1428 return 1000 * faults / total_faults;
1431 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1432 int src_nid, int dst_cpu)
1434 struct numa_group *ng = deref_curr_numa_group(p);
1435 int dst_nid = cpu_to_node(dst_cpu);
1436 int last_cpupid, this_cpupid;
1438 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1439 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1442 * Allow first faults or private faults to migrate immediately early in
1443 * the lifetime of a task. The magic number 4 is based on waiting for
1444 * two full passes of the "multi-stage node selection" test that is
1447 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1448 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1452 * Multi-stage node selection is used in conjunction with a periodic
1453 * migration fault to build a temporal task<->page relation. By using
1454 * a two-stage filter we remove short/unlikely relations.
1456 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1457 * a task's usage of a particular page (n_p) per total usage of this
1458 * page (n_t) (in a given time-span) to a probability.
1460 * Our periodic faults will sample this probability and getting the
1461 * same result twice in a row, given these samples are fully
1462 * independent, is then given by P(n)^2, provided our sample period
1463 * is sufficiently short compared to the usage pattern.
1465 * This quadric squishes small probabilities, making it less likely we
1466 * act on an unlikely task<->page relation.
1468 if (!cpupid_pid_unset(last_cpupid) &&
1469 cpupid_to_nid(last_cpupid) != dst_nid)
1472 /* Always allow migrate on private faults */
1473 if (cpupid_match_pid(p, last_cpupid))
1476 /* A shared fault, but p->numa_group has not been set up yet. */
1481 * Destination node is much more heavily used than the source
1482 * node? Allow migration.
1484 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1485 ACTIVE_NODE_FRACTION)
1489 * Distribute memory according to CPU & memory use on each node,
1490 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1492 * faults_cpu(dst) 3 faults_cpu(src)
1493 * --------------- * - > ---------------
1494 * faults_mem(dst) 4 faults_mem(src)
1496 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1497 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1501 * 'numa_type' describes the node at the moment of load balancing.
1504 /* The node has spare capacity that can be used to run more tasks. */
1507 * The node is fully used and the tasks don't compete for more CPU
1508 * cycles. Nevertheless, some tasks might wait before running.
1512 * The node is overloaded and can't provide expected CPU cycles to all
1518 /* Cached statistics for all CPUs within a node */
1521 unsigned long runnable;
1523 /* Total compute capacity of CPUs on a node */
1524 unsigned long compute_capacity;
1525 unsigned int nr_running;
1526 unsigned int weight;
1527 enum numa_type node_type;
1531 static inline bool is_core_idle(int cpu)
1533 #ifdef CONFIG_SCHED_SMT
1536 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1540 if (!idle_cpu(sibling))
1548 struct task_numa_env {
1549 struct task_struct *p;
1551 int src_cpu, src_nid;
1552 int dst_cpu, dst_nid;
1554 struct numa_stats src_stats, dst_stats;
1559 struct task_struct *best_task;
1564 static unsigned long cpu_load(struct rq *rq);
1565 static unsigned long cpu_runnable(struct rq *rq);
1566 static unsigned long cpu_util(int cpu);
1567 static inline long adjust_numa_imbalance(int imbalance,
1568 int dst_running, int dst_weight);
1571 numa_type numa_classify(unsigned int imbalance_pct,
1572 struct numa_stats *ns)
1574 if ((ns->nr_running > ns->weight) &&
1575 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1576 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1577 return node_overloaded;
1579 if ((ns->nr_running < ns->weight) ||
1580 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1581 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1582 return node_has_spare;
1584 return node_fully_busy;
1587 #ifdef CONFIG_SCHED_SMT
1588 /* Forward declarations of select_idle_sibling helpers */
1589 static inline bool test_idle_cores(int cpu, bool def);
1590 static inline int numa_idle_core(int idle_core, int cpu)
1592 if (!static_branch_likely(&sched_smt_present) ||
1593 idle_core >= 0 || !test_idle_cores(cpu, false))
1597 * Prefer cores instead of packing HT siblings
1598 * and triggering future load balancing.
1600 if (is_core_idle(cpu))
1606 static inline int numa_idle_core(int idle_core, int cpu)
1613 * Gather all necessary information to make NUMA balancing placement
1614 * decisions that are compatible with standard load balancer. This
1615 * borrows code and logic from update_sg_lb_stats but sharing a
1616 * common implementation is impractical.
1618 static void update_numa_stats(struct task_numa_env *env,
1619 struct numa_stats *ns, int nid,
1622 int cpu, idle_core = -1;
1624 memset(ns, 0, sizeof(*ns));
1628 for_each_cpu(cpu, cpumask_of_node(nid)) {
1629 struct rq *rq = cpu_rq(cpu);
1631 ns->load += cpu_load(rq);
1632 ns->runnable += cpu_runnable(rq);
1633 ns->util += cpu_util(cpu);
1634 ns->nr_running += rq->cfs.h_nr_running;
1635 ns->compute_capacity += capacity_of(cpu);
1637 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1638 if (READ_ONCE(rq->numa_migrate_on) ||
1639 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1642 if (ns->idle_cpu == -1)
1645 idle_core = numa_idle_core(idle_core, cpu);
1650 ns->weight = cpumask_weight(cpumask_of_node(nid));
1652 ns->node_type = numa_classify(env->imbalance_pct, ns);
1655 ns->idle_cpu = idle_core;
1658 static void task_numa_assign(struct task_numa_env *env,
1659 struct task_struct *p, long imp)
1661 struct rq *rq = cpu_rq(env->dst_cpu);
1663 /* Check if run-queue part of active NUMA balance. */
1664 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1666 int start = env->dst_cpu;
1668 /* Find alternative idle CPU. */
1669 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1670 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1671 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1676 rq = cpu_rq(env->dst_cpu);
1677 if (!xchg(&rq->numa_migrate_on, 1))
1681 /* Failed to find an alternative idle CPU */
1687 * Clear previous best_cpu/rq numa-migrate flag, since task now
1688 * found a better CPU to move/swap.
1690 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1691 rq = cpu_rq(env->best_cpu);
1692 WRITE_ONCE(rq->numa_migrate_on, 0);
1696 put_task_struct(env->best_task);
1701 env->best_imp = imp;
1702 env->best_cpu = env->dst_cpu;
1705 static bool load_too_imbalanced(long src_load, long dst_load,
1706 struct task_numa_env *env)
1709 long orig_src_load, orig_dst_load;
1710 long src_capacity, dst_capacity;
1713 * The load is corrected for the CPU capacity available on each node.
1716 * ------------ vs ---------
1717 * src_capacity dst_capacity
1719 src_capacity = env->src_stats.compute_capacity;
1720 dst_capacity = env->dst_stats.compute_capacity;
1722 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1724 orig_src_load = env->src_stats.load;
1725 orig_dst_load = env->dst_stats.load;
1727 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1729 /* Would this change make things worse? */
1730 return (imb > old_imb);
1734 * Maximum NUMA importance can be 1998 (2*999);
1735 * SMALLIMP @ 30 would be close to 1998/64.
1736 * Used to deter task migration.
1741 * This checks if the overall compute and NUMA accesses of the system would
1742 * be improved if the source tasks was migrated to the target dst_cpu taking
1743 * into account that it might be best if task running on the dst_cpu should
1744 * be exchanged with the source task
1746 static bool task_numa_compare(struct task_numa_env *env,
1747 long taskimp, long groupimp, bool maymove)
1749 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1750 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1751 long imp = p_ng ? groupimp : taskimp;
1752 struct task_struct *cur;
1753 long src_load, dst_load;
1754 int dist = env->dist;
1757 bool stopsearch = false;
1759 if (READ_ONCE(dst_rq->numa_migrate_on))
1763 cur = rcu_dereference(dst_rq->curr);
1764 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1768 * Because we have preemption enabled we can get migrated around and
1769 * end try selecting ourselves (current == env->p) as a swap candidate.
1771 if (cur == env->p) {
1777 if (maymove && moveimp >= env->best_imp)
1783 /* Skip this swap candidate if cannot move to the source cpu. */
1784 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1788 * Skip this swap candidate if it is not moving to its preferred
1789 * node and the best task is.
1791 if (env->best_task &&
1792 env->best_task->numa_preferred_nid == env->src_nid &&
1793 cur->numa_preferred_nid != env->src_nid) {
1798 * "imp" is the fault differential for the source task between the
1799 * source and destination node. Calculate the total differential for
1800 * the source task and potential destination task. The more negative
1801 * the value is, the more remote accesses that would be expected to
1802 * be incurred if the tasks were swapped.
1804 * If dst and source tasks are in the same NUMA group, or not
1805 * in any group then look only at task weights.
1807 cur_ng = rcu_dereference(cur->numa_group);
1808 if (cur_ng == p_ng) {
1809 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1810 task_weight(cur, env->dst_nid, dist);
1812 * Add some hysteresis to prevent swapping the
1813 * tasks within a group over tiny differences.
1819 * Compare the group weights. If a task is all by itself
1820 * (not part of a group), use the task weight instead.
1823 imp += group_weight(cur, env->src_nid, dist) -
1824 group_weight(cur, env->dst_nid, dist);
1826 imp += task_weight(cur, env->src_nid, dist) -
1827 task_weight(cur, env->dst_nid, dist);
1830 /* Discourage picking a task already on its preferred node */
1831 if (cur->numa_preferred_nid == env->dst_nid)
1835 * Encourage picking a task that moves to its preferred node.
1836 * This potentially makes imp larger than it's maximum of
1837 * 1998 (see SMALLIMP and task_weight for why) but in this
1838 * case, it does not matter.
1840 if (cur->numa_preferred_nid == env->src_nid)
1843 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1850 * Prefer swapping with a task moving to its preferred node over a
1853 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1854 env->best_task->numa_preferred_nid != env->src_nid) {
1859 * If the NUMA importance is less than SMALLIMP,
1860 * task migration might only result in ping pong
1861 * of tasks and also hurt performance due to cache
1864 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1868 * In the overloaded case, try and keep the load balanced.
1870 load = task_h_load(env->p) - task_h_load(cur);
1874 dst_load = env->dst_stats.load + load;
1875 src_load = env->src_stats.load - load;
1877 if (load_too_imbalanced(src_load, dst_load, env))
1881 /* Evaluate an idle CPU for a task numa move. */
1883 int cpu = env->dst_stats.idle_cpu;
1885 /* Nothing cached so current CPU went idle since the search. */
1890 * If the CPU is no longer truly idle and the previous best CPU
1891 * is, keep using it.
1893 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1894 idle_cpu(env->best_cpu)) {
1895 cpu = env->best_cpu;
1901 task_numa_assign(env, cur, imp);
1904 * If a move to idle is allowed because there is capacity or load
1905 * balance improves then stop the search. While a better swap
1906 * candidate may exist, a search is not free.
1908 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1912 * If a swap candidate must be identified and the current best task
1913 * moves its preferred node then stop the search.
1915 if (!maymove && env->best_task &&
1916 env->best_task->numa_preferred_nid == env->src_nid) {
1925 static void task_numa_find_cpu(struct task_numa_env *env,
1926 long taskimp, long groupimp)
1928 bool maymove = false;
1932 * If dst node has spare capacity, then check if there is an
1933 * imbalance that would be overruled by the load balancer.
1935 if (env->dst_stats.node_type == node_has_spare) {
1936 unsigned int imbalance;
1937 int src_running, dst_running;
1940 * Would movement cause an imbalance? Note that if src has
1941 * more running tasks that the imbalance is ignored as the
1942 * move improves the imbalance from the perspective of the
1943 * CPU load balancer.
1945 src_running = env->src_stats.nr_running - 1;
1946 dst_running = env->dst_stats.nr_running + 1;
1947 imbalance = max(0, dst_running - src_running);
1948 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1949 env->dst_stats.weight);
1951 /* Use idle CPU if there is no imbalance */
1954 if (env->dst_stats.idle_cpu >= 0) {
1955 env->dst_cpu = env->dst_stats.idle_cpu;
1956 task_numa_assign(env, NULL, 0);
1961 long src_load, dst_load, load;
1963 * If the improvement from just moving env->p direction is better
1964 * than swapping tasks around, check if a move is possible.
1966 load = task_h_load(env->p);
1967 dst_load = env->dst_stats.load + load;
1968 src_load = env->src_stats.load - load;
1969 maymove = !load_too_imbalanced(src_load, dst_load, env);
1972 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1973 /* Skip this CPU if the source task cannot migrate */
1974 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1978 if (task_numa_compare(env, taskimp, groupimp, maymove))
1983 static int task_numa_migrate(struct task_struct *p)
1985 struct task_numa_env env = {
1988 .src_cpu = task_cpu(p),
1989 .src_nid = task_node(p),
1991 .imbalance_pct = 112,
1997 unsigned long taskweight, groupweight;
1998 struct sched_domain *sd;
1999 long taskimp, groupimp;
2000 struct numa_group *ng;
2005 * Pick the lowest SD_NUMA domain, as that would have the smallest
2006 * imbalance and would be the first to start moving tasks about.
2008 * And we want to avoid any moving of tasks about, as that would create
2009 * random movement of tasks -- counter the numa conditions we're trying
2013 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2015 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2019 * Cpusets can break the scheduler domain tree into smaller
2020 * balance domains, some of which do not cross NUMA boundaries.
2021 * Tasks that are "trapped" in such domains cannot be migrated
2022 * elsewhere, so there is no point in (re)trying.
2024 if (unlikely(!sd)) {
2025 sched_setnuma(p, task_node(p));
2029 env.dst_nid = p->numa_preferred_nid;
2030 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2031 taskweight = task_weight(p, env.src_nid, dist);
2032 groupweight = group_weight(p, env.src_nid, dist);
2033 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2034 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2035 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2036 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2038 /* Try to find a spot on the preferred nid. */
2039 task_numa_find_cpu(&env, taskimp, groupimp);
2042 * Look at other nodes in these cases:
2043 * - there is no space available on the preferred_nid
2044 * - the task is part of a numa_group that is interleaved across
2045 * multiple NUMA nodes; in order to better consolidate the group,
2046 * we need to check other locations.
2048 ng = deref_curr_numa_group(p);
2049 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2050 for_each_online_node(nid) {
2051 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2054 dist = node_distance(env.src_nid, env.dst_nid);
2055 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2057 taskweight = task_weight(p, env.src_nid, dist);
2058 groupweight = group_weight(p, env.src_nid, dist);
2061 /* Only consider nodes where both task and groups benefit */
2062 taskimp = task_weight(p, nid, dist) - taskweight;
2063 groupimp = group_weight(p, nid, dist) - groupweight;
2064 if (taskimp < 0 && groupimp < 0)
2069 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2070 task_numa_find_cpu(&env, taskimp, groupimp);
2075 * If the task is part of a workload that spans multiple NUMA nodes,
2076 * and is migrating into one of the workload's active nodes, remember
2077 * this node as the task's preferred numa node, so the workload can
2079 * A task that migrated to a second choice node will be better off
2080 * trying for a better one later. Do not set the preferred node here.
2083 if (env.best_cpu == -1)
2086 nid = cpu_to_node(env.best_cpu);
2088 if (nid != p->numa_preferred_nid)
2089 sched_setnuma(p, nid);
2092 /* No better CPU than the current one was found. */
2093 if (env.best_cpu == -1) {
2094 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2098 best_rq = cpu_rq(env.best_cpu);
2099 if (env.best_task == NULL) {
2100 ret = migrate_task_to(p, env.best_cpu);
2101 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2103 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2107 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2108 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2111 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2112 put_task_struct(env.best_task);
2116 /* Attempt to migrate a task to a CPU on the preferred node. */
2117 static void numa_migrate_preferred(struct task_struct *p)
2119 unsigned long interval = HZ;
2121 /* This task has no NUMA fault statistics yet */
2122 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2125 /* Periodically retry migrating the task to the preferred node */
2126 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2127 p->numa_migrate_retry = jiffies + interval;
2129 /* Success if task is already running on preferred CPU */
2130 if (task_node(p) == p->numa_preferred_nid)
2133 /* Otherwise, try migrate to a CPU on the preferred node */
2134 task_numa_migrate(p);
2138 * Find out how many nodes on the workload is actively running on. Do this by
2139 * tracking the nodes from which NUMA hinting faults are triggered. This can
2140 * be different from the set of nodes where the workload's memory is currently
2143 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2145 unsigned long faults, max_faults = 0;
2146 int nid, active_nodes = 0;
2148 for_each_online_node(nid) {
2149 faults = group_faults_cpu(numa_group, nid);
2150 if (faults > max_faults)
2151 max_faults = faults;
2154 for_each_online_node(nid) {
2155 faults = group_faults_cpu(numa_group, nid);
2156 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2160 numa_group->max_faults_cpu = max_faults;
2161 numa_group->active_nodes = active_nodes;
2165 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2166 * increments. The more local the fault statistics are, the higher the scan
2167 * period will be for the next scan window. If local/(local+remote) ratio is
2168 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2169 * the scan period will decrease. Aim for 70% local accesses.
2171 #define NUMA_PERIOD_SLOTS 10
2172 #define NUMA_PERIOD_THRESHOLD 7
2175 * Increase the scan period (slow down scanning) if the majority of
2176 * our memory is already on our local node, or if the majority of
2177 * the page accesses are shared with other processes.
2178 * Otherwise, decrease the scan period.
2180 static void update_task_scan_period(struct task_struct *p,
2181 unsigned long shared, unsigned long private)
2183 unsigned int period_slot;
2184 int lr_ratio, ps_ratio;
2187 unsigned long remote = p->numa_faults_locality[0];
2188 unsigned long local = p->numa_faults_locality[1];
2191 * If there were no record hinting faults then either the task is
2192 * completely idle or all activity is areas that are not of interest
2193 * to automatic numa balancing. Related to that, if there were failed
2194 * migration then it implies we are migrating too quickly or the local
2195 * node is overloaded. In either case, scan slower
2197 if (local + shared == 0 || p->numa_faults_locality[2]) {
2198 p->numa_scan_period = min(p->numa_scan_period_max,
2199 p->numa_scan_period << 1);
2201 p->mm->numa_next_scan = jiffies +
2202 msecs_to_jiffies(p->numa_scan_period);
2208 * Prepare to scale scan period relative to the current period.
2209 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2210 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2211 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2213 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2214 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2215 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2217 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2219 * Most memory accesses are local. There is no need to
2220 * do fast NUMA scanning, since memory is already local.
2222 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2225 diff = slot * period_slot;
2226 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2228 * Most memory accesses are shared with other tasks.
2229 * There is no point in continuing fast NUMA scanning,
2230 * since other tasks may just move the memory elsewhere.
2232 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2235 diff = slot * period_slot;
2238 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2239 * yet they are not on the local NUMA node. Speed up
2240 * NUMA scanning to get the memory moved over.
2242 int ratio = max(lr_ratio, ps_ratio);
2243 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2246 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2247 task_scan_min(p), task_scan_max(p));
2248 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2252 * Get the fraction of time the task has been running since the last
2253 * NUMA placement cycle. The scheduler keeps similar statistics, but
2254 * decays those on a 32ms period, which is orders of magnitude off
2255 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2256 * stats only if the task is so new there are no NUMA statistics yet.
2258 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2260 u64 runtime, delta, now;
2261 /* Use the start of this time slice to avoid calculations. */
2262 now = p->se.exec_start;
2263 runtime = p->se.sum_exec_runtime;
2265 if (p->last_task_numa_placement) {
2266 delta = runtime - p->last_sum_exec_runtime;
2267 *period = now - p->last_task_numa_placement;
2269 /* Avoid time going backwards, prevent potential divide error: */
2270 if (unlikely((s64)*period < 0))
2273 delta = p->se.avg.load_sum;
2274 *period = LOAD_AVG_MAX;
2277 p->last_sum_exec_runtime = runtime;
2278 p->last_task_numa_placement = now;
2284 * Determine the preferred nid for a task in a numa_group. This needs to
2285 * be done in a way that produces consistent results with group_weight,
2286 * otherwise workloads might not converge.
2288 static int preferred_group_nid(struct task_struct *p, int nid)
2293 /* Direct connections between all NUMA nodes. */
2294 if (sched_numa_topology_type == NUMA_DIRECT)
2298 * On a system with glueless mesh NUMA topology, group_weight
2299 * scores nodes according to the number of NUMA hinting faults on
2300 * both the node itself, and on nearby nodes.
2302 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2303 unsigned long score, max_score = 0;
2304 int node, max_node = nid;
2306 dist = sched_max_numa_distance;
2308 for_each_online_node(node) {
2309 score = group_weight(p, node, dist);
2310 if (score > max_score) {
2319 * Finding the preferred nid in a system with NUMA backplane
2320 * interconnect topology is more involved. The goal is to locate
2321 * tasks from numa_groups near each other in the system, and
2322 * untangle workloads from different sides of the system. This requires
2323 * searching down the hierarchy of node groups, recursively searching
2324 * inside the highest scoring group of nodes. The nodemask tricks
2325 * keep the complexity of the search down.
2327 nodes = node_online_map;
2328 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2329 unsigned long max_faults = 0;
2330 nodemask_t max_group = NODE_MASK_NONE;
2333 /* Are there nodes at this distance from each other? */
2334 if (!find_numa_distance(dist))
2337 for_each_node_mask(a, nodes) {
2338 unsigned long faults = 0;
2339 nodemask_t this_group;
2340 nodes_clear(this_group);
2342 /* Sum group's NUMA faults; includes a==b case. */
2343 for_each_node_mask(b, nodes) {
2344 if (node_distance(a, b) < dist) {
2345 faults += group_faults(p, b);
2346 node_set(b, this_group);
2347 node_clear(b, nodes);
2351 /* Remember the top group. */
2352 if (faults > max_faults) {
2353 max_faults = faults;
2354 max_group = this_group;
2356 * subtle: at the smallest distance there is
2357 * just one node left in each "group", the
2358 * winner is the preferred nid.
2363 /* Next round, evaluate the nodes within max_group. */
2371 static void task_numa_placement(struct task_struct *p)
2373 int seq, nid, max_nid = NUMA_NO_NODE;
2374 unsigned long max_faults = 0;
2375 unsigned long fault_types[2] = { 0, 0 };
2376 unsigned long total_faults;
2377 u64 runtime, period;
2378 spinlock_t *group_lock = NULL;
2379 struct numa_group *ng;
2382 * The p->mm->numa_scan_seq field gets updated without
2383 * exclusive access. Use READ_ONCE() here to ensure
2384 * that the field is read in a single access:
2386 seq = READ_ONCE(p->mm->numa_scan_seq);
2387 if (p->numa_scan_seq == seq)
2389 p->numa_scan_seq = seq;
2390 p->numa_scan_period_max = task_scan_max(p);
2392 total_faults = p->numa_faults_locality[0] +
2393 p->numa_faults_locality[1];
2394 runtime = numa_get_avg_runtime(p, &period);
2396 /* If the task is part of a group prevent parallel updates to group stats */
2397 ng = deref_curr_numa_group(p);
2399 group_lock = &ng->lock;
2400 spin_lock_irq(group_lock);
2403 /* Find the node with the highest number of faults */
2404 for_each_online_node(nid) {
2405 /* Keep track of the offsets in numa_faults array */
2406 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2407 unsigned long faults = 0, group_faults = 0;
2410 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2411 long diff, f_diff, f_weight;
2413 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2414 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2415 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2416 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2418 /* Decay existing window, copy faults since last scan */
2419 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2420 fault_types[priv] += p->numa_faults[membuf_idx];
2421 p->numa_faults[membuf_idx] = 0;
2424 * Normalize the faults_from, so all tasks in a group
2425 * count according to CPU use, instead of by the raw
2426 * number of faults. Tasks with little runtime have
2427 * little over-all impact on throughput, and thus their
2428 * faults are less important.
2430 f_weight = div64_u64(runtime << 16, period + 1);
2431 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2433 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2434 p->numa_faults[cpubuf_idx] = 0;
2436 p->numa_faults[mem_idx] += diff;
2437 p->numa_faults[cpu_idx] += f_diff;
2438 faults += p->numa_faults[mem_idx];
2439 p->total_numa_faults += diff;
2442 * safe because we can only change our own group
2444 * mem_idx represents the offset for a given
2445 * nid and priv in a specific region because it
2446 * is at the beginning of the numa_faults array.
2448 ng->faults[mem_idx] += diff;
2449 ng->faults_cpu[mem_idx] += f_diff;
2450 ng->total_faults += diff;
2451 group_faults += ng->faults[mem_idx];
2456 if (faults > max_faults) {
2457 max_faults = faults;
2460 } else if (group_faults > max_faults) {
2461 max_faults = group_faults;
2467 numa_group_count_active_nodes(ng);
2468 spin_unlock_irq(group_lock);
2469 max_nid = preferred_group_nid(p, max_nid);
2473 /* Set the new preferred node */
2474 if (max_nid != p->numa_preferred_nid)
2475 sched_setnuma(p, max_nid);
2478 update_task_scan_period(p, fault_types[0], fault_types[1]);
2481 static inline int get_numa_group(struct numa_group *grp)
2483 return refcount_inc_not_zero(&grp->refcount);
2486 static inline void put_numa_group(struct numa_group *grp)
2488 if (refcount_dec_and_test(&grp->refcount))
2489 kfree_rcu(grp, rcu);
2492 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2495 struct numa_group *grp, *my_grp;
2496 struct task_struct *tsk;
2498 int cpu = cpupid_to_cpu(cpupid);
2501 if (unlikely(!deref_curr_numa_group(p))) {
2502 unsigned int size = sizeof(struct numa_group) +
2503 4*nr_node_ids*sizeof(unsigned long);
2505 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2509 refcount_set(&grp->refcount, 1);
2510 grp->active_nodes = 1;
2511 grp->max_faults_cpu = 0;
2512 spin_lock_init(&grp->lock);
2514 /* Second half of the array tracks nids where faults happen */
2515 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2518 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2519 grp->faults[i] = p->numa_faults[i];
2521 grp->total_faults = p->total_numa_faults;
2524 rcu_assign_pointer(p->numa_group, grp);
2528 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2530 if (!cpupid_match_pid(tsk, cpupid))
2533 grp = rcu_dereference(tsk->numa_group);
2537 my_grp = deref_curr_numa_group(p);
2542 * Only join the other group if its bigger; if we're the bigger group,
2543 * the other task will join us.
2545 if (my_grp->nr_tasks > grp->nr_tasks)
2549 * Tie-break on the grp address.
2551 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2554 /* Always join threads in the same process. */
2555 if (tsk->mm == current->mm)
2558 /* Simple filter to avoid false positives due to PID collisions */
2559 if (flags & TNF_SHARED)
2562 /* Update priv based on whether false sharing was detected */
2565 if (join && !get_numa_group(grp))
2573 BUG_ON(irqs_disabled());
2574 double_lock_irq(&my_grp->lock, &grp->lock);
2576 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2577 my_grp->faults[i] -= p->numa_faults[i];
2578 grp->faults[i] += p->numa_faults[i];
2580 my_grp->total_faults -= p->total_numa_faults;
2581 grp->total_faults += p->total_numa_faults;
2586 spin_unlock(&my_grp->lock);
2587 spin_unlock_irq(&grp->lock);
2589 rcu_assign_pointer(p->numa_group, grp);
2591 put_numa_group(my_grp);
2600 * Get rid of NUMA statistics associated with a task (either current or dead).
2601 * If @final is set, the task is dead and has reached refcount zero, so we can
2602 * safely free all relevant data structures. Otherwise, there might be
2603 * concurrent reads from places like load balancing and procfs, and we should
2604 * reset the data back to default state without freeing ->numa_faults.
2606 void task_numa_free(struct task_struct *p, bool final)
2608 /* safe: p either is current or is being freed by current */
2609 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2610 unsigned long *numa_faults = p->numa_faults;
2611 unsigned long flags;
2618 spin_lock_irqsave(&grp->lock, flags);
2619 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2620 grp->faults[i] -= p->numa_faults[i];
2621 grp->total_faults -= p->total_numa_faults;
2624 spin_unlock_irqrestore(&grp->lock, flags);
2625 RCU_INIT_POINTER(p->numa_group, NULL);
2626 put_numa_group(grp);
2630 p->numa_faults = NULL;
2633 p->total_numa_faults = 0;
2634 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2640 * Got a PROT_NONE fault for a page on @node.
2642 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2644 struct task_struct *p = current;
2645 bool migrated = flags & TNF_MIGRATED;
2646 int cpu_node = task_node(current);
2647 int local = !!(flags & TNF_FAULT_LOCAL);
2648 struct numa_group *ng;
2651 if (!static_branch_likely(&sched_numa_balancing))
2654 /* for example, ksmd faulting in a user's mm */
2658 /* Allocate buffer to track faults on a per-node basis */
2659 if (unlikely(!p->numa_faults)) {
2660 int size = sizeof(*p->numa_faults) *
2661 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2663 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2664 if (!p->numa_faults)
2667 p->total_numa_faults = 0;
2668 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2672 * First accesses are treated as private, otherwise consider accesses
2673 * to be private if the accessing pid has not changed
2675 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2678 priv = cpupid_match_pid(p, last_cpupid);
2679 if (!priv && !(flags & TNF_NO_GROUP))
2680 task_numa_group(p, last_cpupid, flags, &priv);
2684 * If a workload spans multiple NUMA nodes, a shared fault that
2685 * occurs wholly within the set of nodes that the workload is
2686 * actively using should be counted as local. This allows the
2687 * scan rate to slow down when a workload has settled down.
2689 ng = deref_curr_numa_group(p);
2690 if (!priv && !local && ng && ng->active_nodes > 1 &&
2691 numa_is_active_node(cpu_node, ng) &&
2692 numa_is_active_node(mem_node, ng))
2696 * Retry to migrate task to preferred node periodically, in case it
2697 * previously failed, or the scheduler moved us.
2699 if (time_after(jiffies, p->numa_migrate_retry)) {
2700 task_numa_placement(p);
2701 numa_migrate_preferred(p);
2705 p->numa_pages_migrated += pages;
2706 if (flags & TNF_MIGRATE_FAIL)
2707 p->numa_faults_locality[2] += pages;
2709 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2710 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2711 p->numa_faults_locality[local] += pages;
2714 static void reset_ptenuma_scan(struct task_struct *p)
2717 * We only did a read acquisition of the mmap sem, so
2718 * p->mm->numa_scan_seq is written to without exclusive access
2719 * and the update is not guaranteed to be atomic. That's not
2720 * much of an issue though, since this is just used for
2721 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2722 * expensive, to avoid any form of compiler optimizations:
2724 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2725 p->mm->numa_scan_offset = 0;
2729 * The expensive part of numa migration is done from task_work context.
2730 * Triggered from task_tick_numa().
2732 static void task_numa_work(struct callback_head *work)
2734 unsigned long migrate, next_scan, now = jiffies;
2735 struct task_struct *p = current;
2736 struct mm_struct *mm = p->mm;
2737 u64 runtime = p->se.sum_exec_runtime;
2738 struct vm_area_struct *vma;
2739 unsigned long start, end;
2740 unsigned long nr_pte_updates = 0;
2741 long pages, virtpages;
2743 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2747 * Who cares about NUMA placement when they're dying.
2749 * NOTE: make sure not to dereference p->mm before this check,
2750 * exit_task_work() happens _after_ exit_mm() so we could be called
2751 * without p->mm even though we still had it when we enqueued this
2754 if (p->flags & PF_EXITING)
2757 if (!mm->numa_next_scan) {
2758 mm->numa_next_scan = now +
2759 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2763 * Enforce maximal scan/migration frequency..
2765 migrate = mm->numa_next_scan;
2766 if (time_before(now, migrate))
2769 if (p->numa_scan_period == 0) {
2770 p->numa_scan_period_max = task_scan_max(p);
2771 p->numa_scan_period = task_scan_start(p);
2774 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2775 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2779 * Delay this task enough that another task of this mm will likely win
2780 * the next time around.
2782 p->node_stamp += 2 * TICK_NSEC;
2784 start = mm->numa_scan_offset;
2785 pages = sysctl_numa_balancing_scan_size;
2786 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2787 virtpages = pages * 8; /* Scan up to this much virtual space */
2792 if (!mmap_read_trylock(mm))
2794 vma = find_vma(mm, start);
2796 reset_ptenuma_scan(p);
2800 for (; vma; vma = vma->vm_next) {
2801 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2802 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2807 * Shared library pages mapped by multiple processes are not
2808 * migrated as it is expected they are cache replicated. Avoid
2809 * hinting faults in read-only file-backed mappings or the vdso
2810 * as migrating the pages will be of marginal benefit.
2813 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2817 * Skip inaccessible VMAs to avoid any confusion between
2818 * PROT_NONE and NUMA hinting ptes
2820 if (!vma_is_accessible(vma))
2824 start = max(start, vma->vm_start);
2825 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2826 end = min(end, vma->vm_end);
2827 nr_pte_updates = change_prot_numa(vma, start, end);
2830 * Try to scan sysctl_numa_balancing_size worth of
2831 * hpages that have at least one present PTE that
2832 * is not already pte-numa. If the VMA contains
2833 * areas that are unused or already full of prot_numa
2834 * PTEs, scan up to virtpages, to skip through those
2838 pages -= (end - start) >> PAGE_SHIFT;
2839 virtpages -= (end - start) >> PAGE_SHIFT;
2842 if (pages <= 0 || virtpages <= 0)
2846 } while (end != vma->vm_end);
2851 * It is possible to reach the end of the VMA list but the last few
2852 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2853 * would find the !migratable VMA on the next scan but not reset the
2854 * scanner to the start so check it now.
2857 mm->numa_scan_offset = start;
2859 reset_ptenuma_scan(p);
2860 mmap_read_unlock(mm);
2863 * Make sure tasks use at least 32x as much time to run other code
2864 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2865 * Usually update_task_scan_period slows down scanning enough; on an
2866 * overloaded system we need to limit overhead on a per task basis.
2868 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2869 u64 diff = p->se.sum_exec_runtime - runtime;
2870 p->node_stamp += 32 * diff;
2874 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2877 struct mm_struct *mm = p->mm;
2880 mm_users = atomic_read(&mm->mm_users);
2881 if (mm_users == 1) {
2882 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2883 mm->numa_scan_seq = 0;
2887 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2888 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2889 /* Protect against double add, see task_tick_numa and task_numa_work */
2890 p->numa_work.next = &p->numa_work;
2891 p->numa_faults = NULL;
2892 RCU_INIT_POINTER(p->numa_group, NULL);
2893 p->last_task_numa_placement = 0;
2894 p->last_sum_exec_runtime = 0;
2896 init_task_work(&p->numa_work, task_numa_work);
2898 /* New address space, reset the preferred nid */
2899 if (!(clone_flags & CLONE_VM)) {
2900 p->numa_preferred_nid = NUMA_NO_NODE;
2905 * New thread, keep existing numa_preferred_nid which should be copied
2906 * already by arch_dup_task_struct but stagger when scans start.
2911 delay = min_t(unsigned int, task_scan_max(current),
2912 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2913 delay += 2 * TICK_NSEC;
2914 p->node_stamp = delay;
2919 * Drive the periodic memory faults..
2921 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2923 struct callback_head *work = &curr->numa_work;
2927 * We don't care about NUMA placement if we don't have memory.
2929 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2933 * Using runtime rather than walltime has the dual advantage that
2934 * we (mostly) drive the selection from busy threads and that the
2935 * task needs to have done some actual work before we bother with
2938 now = curr->se.sum_exec_runtime;
2939 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2941 if (now > curr->node_stamp + period) {
2942 if (!curr->node_stamp)
2943 curr->numa_scan_period = task_scan_start(curr);
2944 curr->node_stamp += period;
2946 if (!time_before(jiffies, curr->mm->numa_next_scan))
2947 task_work_add(curr, work, TWA_RESUME);
2951 static void update_scan_period(struct task_struct *p, int new_cpu)
2953 int src_nid = cpu_to_node(task_cpu(p));
2954 int dst_nid = cpu_to_node(new_cpu);
2956 if (!static_branch_likely(&sched_numa_balancing))
2959 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2962 if (src_nid == dst_nid)
2966 * Allow resets if faults have been trapped before one scan
2967 * has completed. This is most likely due to a new task that
2968 * is pulled cross-node due to wakeups or load balancing.
2970 if (p->numa_scan_seq) {
2972 * Avoid scan adjustments if moving to the preferred
2973 * node or if the task was not previously running on
2974 * the preferred node.
2976 if (dst_nid == p->numa_preferred_nid ||
2977 (p->numa_preferred_nid != NUMA_NO_NODE &&
2978 src_nid != p->numa_preferred_nid))
2982 p->numa_scan_period = task_scan_start(p);
2986 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2990 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2994 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2998 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3002 #endif /* CONFIG_NUMA_BALANCING */
3005 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3007 update_load_add(&cfs_rq->load, se->load.weight);
3009 if (entity_is_task(se)) {
3010 struct rq *rq = rq_of(cfs_rq);
3012 account_numa_enqueue(rq, task_of(se));
3013 list_add(&se->group_node, &rq->cfs_tasks);
3016 cfs_rq->nr_running++;
3018 cfs_rq->idle_nr_running++;
3022 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3024 update_load_sub(&cfs_rq->load, se->load.weight);
3026 if (entity_is_task(se)) {
3027 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3028 list_del_init(&se->group_node);
3031 cfs_rq->nr_running--;
3033 cfs_rq->idle_nr_running--;
3037 * Signed add and clamp on underflow.
3039 * Explicitly do a load-store to ensure the intermediate value never hits
3040 * memory. This allows lockless observations without ever seeing the negative
3043 #define add_positive(_ptr, _val) do { \
3044 typeof(_ptr) ptr = (_ptr); \
3045 typeof(_val) val = (_val); \
3046 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3050 if (val < 0 && res > var) \
3053 WRITE_ONCE(*ptr, res); \
3057 * Unsigned subtract and clamp on underflow.
3059 * Explicitly do a load-store to ensure the intermediate value never hits
3060 * memory. This allows lockless observations without ever seeing the negative
3063 #define sub_positive(_ptr, _val) do { \
3064 typeof(_ptr) ptr = (_ptr); \
3065 typeof(*ptr) val = (_val); \
3066 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3070 WRITE_ONCE(*ptr, res); \
3074 * Remove and clamp on negative, from a local variable.
3076 * A variant of sub_positive(), which does not use explicit load-store
3077 * and is thus optimized for local variable updates.
3079 #define lsub_positive(_ptr, _val) do { \
3080 typeof(_ptr) ptr = (_ptr); \
3081 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3086 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3088 cfs_rq->avg.load_avg += se->avg.load_avg;
3089 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3093 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3095 u32 divider = get_pelt_divider(&se->avg);
3096 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3097 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3101 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3103 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3106 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3107 unsigned long weight)
3110 /* commit outstanding execution time */
3111 if (cfs_rq->curr == se)
3112 update_curr(cfs_rq);
3113 update_load_sub(&cfs_rq->load, se->load.weight);
3115 dequeue_load_avg(cfs_rq, se);
3117 update_load_set(&se->load, weight);
3121 u32 divider = get_pelt_divider(&se->avg);
3123 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3127 enqueue_load_avg(cfs_rq, se);
3129 update_load_add(&cfs_rq->load, se->load.weight);
3133 void reweight_task(struct task_struct *p, int prio)
3135 struct sched_entity *se = &p->se;
3136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3137 struct load_weight *load = &se->load;
3138 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3140 reweight_entity(cfs_rq, se, weight);
3141 load->inv_weight = sched_prio_to_wmult[prio];
3144 #ifdef CONFIG_FAIR_GROUP_SCHED
3147 * All this does is approximate the hierarchical proportion which includes that
3148 * global sum we all love to hate.
3150 * That is, the weight of a group entity, is the proportional share of the
3151 * group weight based on the group runqueue weights. That is:
3153 * tg->weight * grq->load.weight
3154 * ge->load.weight = ----------------------------- (1)
3155 * \Sum grq->load.weight
3157 * Now, because computing that sum is prohibitively expensive to compute (been
3158 * there, done that) we approximate it with this average stuff. The average
3159 * moves slower and therefore the approximation is cheaper and more stable.
3161 * So instead of the above, we substitute:
3163 * grq->load.weight -> grq->avg.load_avg (2)
3165 * which yields the following:
3167 * tg->weight * grq->avg.load_avg
3168 * ge->load.weight = ------------------------------ (3)
3171 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3173 * That is shares_avg, and it is right (given the approximation (2)).
3175 * The problem with it is that because the average is slow -- it was designed
3176 * to be exactly that of course -- this leads to transients in boundary
3177 * conditions. In specific, the case where the group was idle and we start the
3178 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3179 * yielding bad latency etc..
3181 * Now, in that special case (1) reduces to:
3183 * tg->weight * grq->load.weight
3184 * ge->load.weight = ----------------------------- = tg->weight (4)
3187 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3189 * So what we do is modify our approximation (3) to approach (4) in the (near)
3194 * tg->weight * grq->load.weight
3195 * --------------------------------------------------- (5)
3196 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3198 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3199 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3202 * tg->weight * grq->load.weight
3203 * ge->load.weight = ----------------------------- (6)
3208 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3209 * max(grq->load.weight, grq->avg.load_avg)
3211 * And that is shares_weight and is icky. In the (near) UP case it approaches
3212 * (4) while in the normal case it approaches (3). It consistently
3213 * overestimates the ge->load.weight and therefore:
3215 * \Sum ge->load.weight >= tg->weight
3219 static long calc_group_shares(struct cfs_rq *cfs_rq)
3221 long tg_weight, tg_shares, load, shares;
3222 struct task_group *tg = cfs_rq->tg;
3224 tg_shares = READ_ONCE(tg->shares);
3226 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3228 tg_weight = atomic_long_read(&tg->load_avg);
3230 /* Ensure tg_weight >= load */
3231 tg_weight -= cfs_rq->tg_load_avg_contrib;
3234 shares = (tg_shares * load);
3236 shares /= tg_weight;
3239 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3240 * of a group with small tg->shares value. It is a floor value which is
3241 * assigned as a minimum load.weight to the sched_entity representing
3242 * the group on a CPU.
3244 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3245 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3246 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3247 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3250 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3252 #endif /* CONFIG_SMP */
3254 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3257 * Recomputes the group entity based on the current state of its group
3260 static void update_cfs_group(struct sched_entity *se)
3262 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3268 if (throttled_hierarchy(gcfs_rq))
3272 shares = READ_ONCE(gcfs_rq->tg->shares);
3274 if (likely(se->load.weight == shares))
3277 shares = calc_group_shares(gcfs_rq);
3280 reweight_entity(cfs_rq_of(se), se, shares);
3283 #else /* CONFIG_FAIR_GROUP_SCHED */
3284 static inline void update_cfs_group(struct sched_entity *se)
3287 #endif /* CONFIG_FAIR_GROUP_SCHED */
3289 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3291 struct rq *rq = rq_of(cfs_rq);
3293 if (&rq->cfs == cfs_rq) {
3295 * There are a few boundary cases this might miss but it should
3296 * get called often enough that that should (hopefully) not be
3299 * It will not get called when we go idle, because the idle
3300 * thread is a different class (!fair), nor will the utilization
3301 * number include things like RT tasks.
3303 * As is, the util number is not freq-invariant (we'd have to
3304 * implement arch_scale_freq_capacity() for that).
3308 cpufreq_update_util(rq, flags);
3313 #ifdef CONFIG_FAIR_GROUP_SCHED
3315 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3316 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3317 * bottom-up, we only have to test whether the cfs_rq before us on the list
3319 * If cfs_rq is not on the list, test whether a child needs its to be added to
3320 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3322 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3324 struct cfs_rq *prev_cfs_rq;
3325 struct list_head *prev;
3327 if (cfs_rq->on_list) {
3328 prev = cfs_rq->leaf_cfs_rq_list.prev;
3330 struct rq *rq = rq_of(cfs_rq);
3332 prev = rq->tmp_alone_branch;
3335 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3337 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3340 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3342 if (cfs_rq->load.weight)
3345 if (cfs_rq->avg.load_sum)
3348 if (cfs_rq->avg.util_sum)
3351 if (cfs_rq->avg.runnable_sum)
3354 if (child_cfs_rq_on_list(cfs_rq))
3358 * _avg must be null when _sum are null because _avg = _sum / divider
3359 * Make sure that rounding and/or propagation of PELT values never
3362 SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3363 cfs_rq->avg.util_avg ||
3364 cfs_rq->avg.runnable_avg);
3370 * update_tg_load_avg - update the tg's load avg
3371 * @cfs_rq: the cfs_rq whose avg changed
3373 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3374 * However, because tg->load_avg is a global value there are performance
3377 * In order to avoid having to look at the other cfs_rq's, we use a
3378 * differential update where we store the last value we propagated. This in
3379 * turn allows skipping updates if the differential is 'small'.
3381 * Updating tg's load_avg is necessary before update_cfs_share().
3383 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3385 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3388 * No need to update load_avg for root_task_group as it is not used.
3390 if (cfs_rq->tg == &root_task_group)
3393 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3394 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3395 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3400 * Called within set_task_rq() right before setting a task's CPU. The
3401 * caller only guarantees p->pi_lock is held; no other assumptions,
3402 * including the state of rq->lock, should be made.
3404 void set_task_rq_fair(struct sched_entity *se,
3405 struct cfs_rq *prev, struct cfs_rq *next)
3407 u64 p_last_update_time;
3408 u64 n_last_update_time;
3410 if (!sched_feat(ATTACH_AGE_LOAD))
3414 * We are supposed to update the task to "current" time, then its up to
3415 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3416 * getting what current time is, so simply throw away the out-of-date
3417 * time. This will result in the wakee task is less decayed, but giving
3418 * the wakee more load sounds not bad.
3420 if (!(se->avg.last_update_time && prev))
3423 #ifndef CONFIG_64BIT
3425 u64 p_last_update_time_copy;
3426 u64 n_last_update_time_copy;
3429 p_last_update_time_copy = prev->load_last_update_time_copy;
3430 n_last_update_time_copy = next->load_last_update_time_copy;
3434 p_last_update_time = prev->avg.last_update_time;
3435 n_last_update_time = next->avg.last_update_time;
3437 } while (p_last_update_time != p_last_update_time_copy ||
3438 n_last_update_time != n_last_update_time_copy);
3441 p_last_update_time = prev->avg.last_update_time;
3442 n_last_update_time = next->avg.last_update_time;
3444 __update_load_avg_blocked_se(p_last_update_time, se);
3445 se->avg.last_update_time = n_last_update_time;
3450 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3451 * propagate its contribution. The key to this propagation is the invariant
3452 * that for each group:
3454 * ge->avg == grq->avg (1)
3456 * _IFF_ we look at the pure running and runnable sums. Because they
3457 * represent the very same entity, just at different points in the hierarchy.
3459 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3460 * and simply copies the running/runnable sum over (but still wrong, because
3461 * the group entity and group rq do not have their PELT windows aligned).
3463 * However, update_tg_cfs_load() is more complex. So we have:
3465 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3467 * And since, like util, the runnable part should be directly transferable,
3468 * the following would _appear_ to be the straight forward approach:
3470 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3472 * And per (1) we have:
3474 * ge->avg.runnable_avg == grq->avg.runnable_avg
3478 * ge->load.weight * grq->avg.load_avg
3479 * ge->avg.load_avg = ----------------------------------- (4)
3482 * Except that is wrong!
3484 * Because while for entities historical weight is not important and we
3485 * really only care about our future and therefore can consider a pure
3486 * runnable sum, runqueues can NOT do this.
3488 * We specifically want runqueues to have a load_avg that includes
3489 * historical weights. Those represent the blocked load, the load we expect
3490 * to (shortly) return to us. This only works by keeping the weights as
3491 * integral part of the sum. We therefore cannot decompose as per (3).
3493 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3494 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3495 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3496 * runnable section of these tasks overlap (or not). If they were to perfectly
3497 * align the rq as a whole would be runnable 2/3 of the time. If however we
3498 * always have at least 1 runnable task, the rq as a whole is always runnable.
3500 * So we'll have to approximate.. :/
3502 * Given the constraint:
3504 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3506 * We can construct a rule that adds runnable to a rq by assuming minimal
3509 * On removal, we'll assume each task is equally runnable; which yields:
3511 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3513 * XXX: only do this for the part of runnable > running ?
3518 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3520 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3523 /* Nothing to update */
3528 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3529 * See ___update_load_avg() for details.
3531 divider = get_pelt_divider(&cfs_rq->avg);
3533 /* Set new sched_entity's utilization */
3534 se->avg.util_avg = gcfs_rq->avg.util_avg;
3535 se->avg.util_sum = se->avg.util_avg * divider;
3537 /* Update parent cfs_rq utilization */
3538 add_positive(&cfs_rq->avg.util_avg, delta);
3539 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3543 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3545 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3548 /* Nothing to update */
3553 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3554 * See ___update_load_avg() for details.
3556 divider = get_pelt_divider(&cfs_rq->avg);
3558 /* Set new sched_entity's runnable */
3559 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3560 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3562 /* Update parent cfs_rq runnable */
3563 add_positive(&cfs_rq->avg.runnable_avg, delta);
3564 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3568 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3570 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3571 unsigned long load_avg;
3578 gcfs_rq->prop_runnable_sum = 0;
3581 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3582 * See ___update_load_avg() for details.
3584 divider = get_pelt_divider(&cfs_rq->avg);
3586 if (runnable_sum >= 0) {
3588 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3589 * the CPU is saturated running == runnable.
3591 runnable_sum += se->avg.load_sum;
3592 runnable_sum = min_t(long, runnable_sum, divider);
3595 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3596 * assuming all tasks are equally runnable.
3598 if (scale_load_down(gcfs_rq->load.weight)) {
3599 load_sum = div_s64(gcfs_rq->avg.load_sum,
3600 scale_load_down(gcfs_rq->load.weight));
3603 /* But make sure to not inflate se's runnable */
3604 runnable_sum = min(se->avg.load_sum, load_sum);
3608 * runnable_sum can't be lower than running_sum
3609 * Rescale running sum to be in the same range as runnable sum
3610 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3611 * runnable_sum is in [0 : LOAD_AVG_MAX]
3613 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3614 runnable_sum = max(runnable_sum, running_sum);
3616 load_sum = (s64)se_weight(se) * runnable_sum;
3617 load_avg = div_s64(load_sum, divider);
3619 se->avg.load_sum = runnable_sum;
3621 delta = load_avg - se->avg.load_avg;
3625 se->avg.load_avg = load_avg;
3627 add_positive(&cfs_rq->avg.load_avg, delta);
3628 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3631 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3633 cfs_rq->propagate = 1;
3634 cfs_rq->prop_runnable_sum += runnable_sum;
3637 /* Update task and its cfs_rq load average */
3638 static inline int propagate_entity_load_avg(struct sched_entity *se)
3640 struct cfs_rq *cfs_rq, *gcfs_rq;
3642 if (entity_is_task(se))
3645 gcfs_rq = group_cfs_rq(se);
3646 if (!gcfs_rq->propagate)
3649 gcfs_rq->propagate = 0;
3651 cfs_rq = cfs_rq_of(se);
3653 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3655 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3656 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3657 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3659 trace_pelt_cfs_tp(cfs_rq);
3660 trace_pelt_se_tp(se);
3666 * Check if we need to update the load and the utilization of a blocked
3669 static inline bool skip_blocked_update(struct sched_entity *se)
3671 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3674 * If sched_entity still have not zero load or utilization, we have to
3677 if (se->avg.load_avg || se->avg.util_avg)
3681 * If there is a pending propagation, we have to update the load and
3682 * the utilization of the sched_entity:
3684 if (gcfs_rq->propagate)
3688 * Otherwise, the load and the utilization of the sched_entity is
3689 * already zero and there is no pending propagation, so it will be a
3690 * waste of time to try to decay it:
3695 #else /* CONFIG_FAIR_GROUP_SCHED */
3697 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3699 static inline int propagate_entity_load_avg(struct sched_entity *se)
3704 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3706 #endif /* CONFIG_FAIR_GROUP_SCHED */
3709 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3710 * @now: current time, as per cfs_rq_clock_pelt()
3711 * @cfs_rq: cfs_rq to update
3713 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3714 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3715 * post_init_entity_util_avg().
3717 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3719 * Returns true if the load decayed or we removed load.
3721 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3722 * call update_tg_load_avg() when this function returns true.
3725 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3727 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3728 struct sched_avg *sa = &cfs_rq->avg;
3731 if (cfs_rq->removed.nr) {
3733 u32 divider = get_pelt_divider(&cfs_rq->avg);
3735 raw_spin_lock(&cfs_rq->removed.lock);
3736 swap(cfs_rq->removed.util_avg, removed_util);
3737 swap(cfs_rq->removed.load_avg, removed_load);
3738 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3739 cfs_rq->removed.nr = 0;
3740 raw_spin_unlock(&cfs_rq->removed.lock);
3743 sub_positive(&sa->load_avg, r);
3744 sa->load_sum = sa->load_avg * divider;
3747 sub_positive(&sa->util_avg, r);
3748 sa->util_sum = sa->util_avg * divider;
3750 r = removed_runnable;
3751 sub_positive(&sa->runnable_avg, r);
3752 sa->runnable_sum = sa->runnable_avg * divider;
3755 * removed_runnable is the unweighted version of removed_load so we
3756 * can use it to estimate removed_load_sum.
3758 add_tg_cfs_propagate(cfs_rq,
3759 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3764 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3766 #ifndef CONFIG_64BIT
3768 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3775 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3776 * @cfs_rq: cfs_rq to attach to
3777 * @se: sched_entity to attach
3779 * Must call update_cfs_rq_load_avg() before this, since we rely on
3780 * cfs_rq->avg.last_update_time being current.
3782 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3785 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3786 * See ___update_load_avg() for details.
3788 u32 divider = get_pelt_divider(&cfs_rq->avg);
3791 * When we attach the @se to the @cfs_rq, we must align the decay
3792 * window because without that, really weird and wonderful things can
3797 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3798 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3801 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3802 * period_contrib. This isn't strictly correct, but since we're
3803 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3806 se->avg.util_sum = se->avg.util_avg * divider;
3808 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3810 se->avg.load_sum = divider;
3811 if (se_weight(se)) {
3813 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3816 enqueue_load_avg(cfs_rq, se);
3817 cfs_rq->avg.util_avg += se->avg.util_avg;
3818 cfs_rq->avg.util_sum += se->avg.util_sum;
3819 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3820 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3822 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3824 cfs_rq_util_change(cfs_rq, 0);
3826 trace_pelt_cfs_tp(cfs_rq);
3830 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3831 * @cfs_rq: cfs_rq to detach from
3832 * @se: sched_entity to detach
3834 * Must call update_cfs_rq_load_avg() before this, since we rely on
3835 * cfs_rq->avg.last_update_time being current.
3837 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3840 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3841 * See ___update_load_avg() for details.
3843 u32 divider = get_pelt_divider(&cfs_rq->avg);
3845 dequeue_load_avg(cfs_rq, se);
3846 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3847 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3848 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3849 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3851 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3853 cfs_rq_util_change(cfs_rq, 0);
3855 trace_pelt_cfs_tp(cfs_rq);
3859 * Optional action to be done while updating the load average
3861 #define UPDATE_TG 0x1
3862 #define SKIP_AGE_LOAD 0x2
3863 #define DO_ATTACH 0x4
3865 /* Update task and its cfs_rq load average */
3866 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3868 u64 now = cfs_rq_clock_pelt(cfs_rq);
3872 * Track task load average for carrying it to new CPU after migrated, and
3873 * track group sched_entity load average for task_h_load calc in migration
3875 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3876 __update_load_avg_se(now, cfs_rq, se);
3878 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3879 decayed |= propagate_entity_load_avg(se);
3881 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3884 * DO_ATTACH means we're here from enqueue_entity().
3885 * !last_update_time means we've passed through
3886 * migrate_task_rq_fair() indicating we migrated.
3888 * IOW we're enqueueing a task on a new CPU.
3890 attach_entity_load_avg(cfs_rq, se);
3891 update_tg_load_avg(cfs_rq);
3893 } else if (decayed) {
3894 cfs_rq_util_change(cfs_rq, 0);
3896 if (flags & UPDATE_TG)
3897 update_tg_load_avg(cfs_rq);
3901 #ifndef CONFIG_64BIT
3902 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3904 u64 last_update_time_copy;
3905 u64 last_update_time;
3908 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3910 last_update_time = cfs_rq->avg.last_update_time;
3911 } while (last_update_time != last_update_time_copy);
3913 return last_update_time;
3916 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3918 return cfs_rq->avg.last_update_time;
3923 * Synchronize entity load avg of dequeued entity without locking
3926 static void sync_entity_load_avg(struct sched_entity *se)
3928 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3929 u64 last_update_time;
3931 last_update_time = cfs_rq_last_update_time(cfs_rq);
3932 __update_load_avg_blocked_se(last_update_time, se);
3936 * Task first catches up with cfs_rq, and then subtract
3937 * itself from the cfs_rq (task must be off the queue now).
3939 static void remove_entity_load_avg(struct sched_entity *se)
3941 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3942 unsigned long flags;
3945 * tasks cannot exit without having gone through wake_up_new_task() ->
3946 * post_init_entity_util_avg() which will have added things to the
3947 * cfs_rq, so we can remove unconditionally.
3950 sync_entity_load_avg(se);
3952 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3953 ++cfs_rq->removed.nr;
3954 cfs_rq->removed.util_avg += se->avg.util_avg;
3955 cfs_rq->removed.load_avg += se->avg.load_avg;
3956 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3957 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3960 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3962 return cfs_rq->avg.runnable_avg;
3965 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3967 return cfs_rq->avg.load_avg;
3970 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3972 static inline unsigned long task_util(struct task_struct *p)
3974 return READ_ONCE(p->se.avg.util_avg);
3977 static inline unsigned long _task_util_est(struct task_struct *p)
3979 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3981 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3984 static inline unsigned long task_util_est(struct task_struct *p)
3986 return max(task_util(p), _task_util_est(p));
3989 #ifdef CONFIG_UCLAMP_TASK
3990 static inline unsigned long uclamp_task_util(struct task_struct *p)
3992 return clamp(task_util_est(p),
3993 uclamp_eff_value(p, UCLAMP_MIN),
3994 uclamp_eff_value(p, UCLAMP_MAX));
3997 static inline unsigned long uclamp_task_util(struct task_struct *p)
3999 return task_util_est(p);
4003 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4004 struct task_struct *p)
4006 unsigned int enqueued;
4008 if (!sched_feat(UTIL_EST))
4011 /* Update root cfs_rq's estimated utilization */
4012 enqueued = cfs_rq->avg.util_est.enqueued;
4013 enqueued += _task_util_est(p);
4014 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4016 trace_sched_util_est_cfs_tp(cfs_rq);
4019 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4020 struct task_struct *p)
4022 unsigned int enqueued;
4024 if (!sched_feat(UTIL_EST))
4027 /* Update root cfs_rq's estimated utilization */
4028 enqueued = cfs_rq->avg.util_est.enqueued;
4029 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4030 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4032 trace_sched_util_est_cfs_tp(cfs_rq);
4035 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4038 * Check if a (signed) value is within a specified (unsigned) margin,
4039 * based on the observation that:
4041 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4043 * NOTE: this only works when value + margin < INT_MAX.
4045 static inline bool within_margin(int value, int margin)
4047 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4050 static inline void util_est_update(struct cfs_rq *cfs_rq,
4051 struct task_struct *p,
4054 long last_ewma_diff, last_enqueued_diff;
4057 if (!sched_feat(UTIL_EST))
4061 * Skip update of task's estimated utilization when the task has not
4062 * yet completed an activation, e.g. being migrated.
4068 * If the PELT values haven't changed since enqueue time,
4069 * skip the util_est update.
4071 ue = p->se.avg.util_est;
4072 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4075 last_enqueued_diff = ue.enqueued;
4078 * Reset EWMA on utilization increases, the moving average is used only
4079 * to smooth utilization decreases.
4081 ue.enqueued = task_util(p);
4082 if (sched_feat(UTIL_EST_FASTUP)) {
4083 if (ue.ewma < ue.enqueued) {
4084 ue.ewma = ue.enqueued;
4090 * Skip update of task's estimated utilization when its members are
4091 * already ~1% close to its last activation value.
4093 last_ewma_diff = ue.enqueued - ue.ewma;
4094 last_enqueued_diff -= ue.enqueued;
4095 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4096 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4103 * To avoid overestimation of actual task utilization, skip updates if
4104 * we cannot grant there is idle time in this CPU.
4106 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4110 * Update Task's estimated utilization
4112 * When *p completes an activation we can consolidate another sample
4113 * of the task size. This is done by storing the current PELT value
4114 * as ue.enqueued and by using this value to update the Exponential
4115 * Weighted Moving Average (EWMA):
4117 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4118 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4119 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4120 * = w * ( last_ewma_diff ) + ewma(t-1)
4121 * = w * (last_ewma_diff + ewma(t-1) / w)
4123 * Where 'w' is the weight of new samples, which is configured to be
4124 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4126 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4127 ue.ewma += last_ewma_diff;
4128 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4130 ue.enqueued |= UTIL_AVG_UNCHANGED;
4131 WRITE_ONCE(p->se.avg.util_est, ue);
4133 trace_sched_util_est_se_tp(&p->se);
4136 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4138 return fits_capacity(uclamp_task_util(p), capacity);
4141 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4143 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4146 if (!p || p->nr_cpus_allowed == 1) {
4147 rq->misfit_task_load = 0;
4151 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4152 rq->misfit_task_load = 0;
4157 * Make sure that misfit_task_load will not be null even if
4158 * task_h_load() returns 0.
4160 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4163 #else /* CONFIG_SMP */
4165 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4170 #define UPDATE_TG 0x0
4171 #define SKIP_AGE_LOAD 0x0
4172 #define DO_ATTACH 0x0
4174 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4176 cfs_rq_util_change(cfs_rq, 0);
4179 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4182 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4184 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4186 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4192 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4195 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4198 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4200 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4202 #endif /* CONFIG_SMP */
4204 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4206 #ifdef CONFIG_SCHED_DEBUG
4207 s64 d = se->vruntime - cfs_rq->min_vruntime;
4212 if (d > 3*sysctl_sched_latency)
4213 schedstat_inc(cfs_rq->nr_spread_over);
4218 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4220 u64 vruntime = cfs_rq->min_vruntime;
4223 * The 'current' period is already promised to the current tasks,
4224 * however the extra weight of the new task will slow them down a
4225 * little, place the new task so that it fits in the slot that
4226 * stays open at the end.
4228 if (initial && sched_feat(START_DEBIT))
4229 vruntime += sched_vslice(cfs_rq, se);
4231 /* sleeps up to a single latency don't count. */
4233 unsigned long thresh;
4236 thresh = sysctl_sched_min_granularity;
4238 thresh = sysctl_sched_latency;
4241 * Halve their sleep time's effect, to allow
4242 * for a gentler effect of sleepers:
4244 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4250 /* ensure we never gain time by being placed backwards. */
4251 se->vruntime = max_vruntime(se->vruntime, vruntime);
4254 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4256 static inline void check_schedstat_required(void)
4258 #ifdef CONFIG_SCHEDSTATS
4259 if (schedstat_enabled())
4262 /* Force schedstat enabled if a dependent tracepoint is active */
4263 if (trace_sched_stat_wait_enabled() ||
4264 trace_sched_stat_sleep_enabled() ||
4265 trace_sched_stat_iowait_enabled() ||
4266 trace_sched_stat_blocked_enabled() ||
4267 trace_sched_stat_runtime_enabled()) {
4268 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4269 "stat_blocked and stat_runtime require the "
4270 "kernel parameter schedstats=enable or "
4271 "kernel.sched_schedstats=1\n");
4276 static inline bool cfs_bandwidth_used(void);
4283 * update_min_vruntime()
4284 * vruntime -= min_vruntime
4288 * update_min_vruntime()
4289 * vruntime += min_vruntime
4291 * this way the vruntime transition between RQs is done when both
4292 * min_vruntime are up-to-date.
4296 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4297 * vruntime -= min_vruntime
4301 * update_min_vruntime()
4302 * vruntime += min_vruntime
4304 * this way we don't have the most up-to-date min_vruntime on the originating
4305 * CPU and an up-to-date min_vruntime on the destination CPU.
4309 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4311 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4312 bool curr = cfs_rq->curr == se;
4315 * If we're the current task, we must renormalise before calling
4319 se->vruntime += cfs_rq->min_vruntime;
4321 update_curr(cfs_rq);
4324 * Otherwise, renormalise after, such that we're placed at the current
4325 * moment in time, instead of some random moment in the past. Being
4326 * placed in the past could significantly boost this task to the
4327 * fairness detriment of existing tasks.
4329 if (renorm && !curr)
4330 se->vruntime += cfs_rq->min_vruntime;
4333 * When enqueuing a sched_entity, we must:
4334 * - Update loads to have both entity and cfs_rq synced with now.
4335 * - Add its load to cfs_rq->runnable_avg
4336 * - For group_entity, update its weight to reflect the new share of
4338 * - Add its new weight to cfs_rq->load.weight
4340 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4341 se_update_runnable(se);
4342 update_cfs_group(se);
4343 account_entity_enqueue(cfs_rq, se);
4345 if (flags & ENQUEUE_WAKEUP)
4346 place_entity(cfs_rq, se, 0);
4348 check_schedstat_required();
4349 update_stats_enqueue(cfs_rq, se, flags);
4350 check_spread(cfs_rq, se);
4352 __enqueue_entity(cfs_rq, se);
4356 * When bandwidth control is enabled, cfs might have been removed
4357 * because of a parent been throttled but cfs->nr_running > 1. Try to
4358 * add it unconditionally.
4360 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4361 list_add_leaf_cfs_rq(cfs_rq);
4363 if (cfs_rq->nr_running == 1)
4364 check_enqueue_throttle(cfs_rq);
4367 static void __clear_buddies_last(struct sched_entity *se)
4369 for_each_sched_entity(se) {
4370 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4371 if (cfs_rq->last != se)
4374 cfs_rq->last = NULL;
4378 static void __clear_buddies_next(struct sched_entity *se)
4380 for_each_sched_entity(se) {
4381 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4382 if (cfs_rq->next != se)
4385 cfs_rq->next = NULL;
4389 static void __clear_buddies_skip(struct sched_entity *se)
4391 for_each_sched_entity(se) {
4392 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4393 if (cfs_rq->skip != se)
4396 cfs_rq->skip = NULL;
4400 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4402 if (cfs_rq->last == se)
4403 __clear_buddies_last(se);
4405 if (cfs_rq->next == se)
4406 __clear_buddies_next(se);
4408 if (cfs_rq->skip == se)
4409 __clear_buddies_skip(se);
4412 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4415 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4418 * Update run-time statistics of the 'current'.
4420 update_curr(cfs_rq);
4423 * When dequeuing a sched_entity, we must:
4424 * - Update loads to have both entity and cfs_rq synced with now.
4425 * - Subtract its load from the cfs_rq->runnable_avg.
4426 * - Subtract its previous weight from cfs_rq->load.weight.
4427 * - For group entity, update its weight to reflect the new share
4428 * of its group cfs_rq.
4430 update_load_avg(cfs_rq, se, UPDATE_TG);
4431 se_update_runnable(se);
4433 update_stats_dequeue(cfs_rq, se, flags);
4435 clear_buddies(cfs_rq, se);
4437 if (se != cfs_rq->curr)
4438 __dequeue_entity(cfs_rq, se);
4440 account_entity_dequeue(cfs_rq, se);
4443 * Normalize after update_curr(); which will also have moved
4444 * min_vruntime if @se is the one holding it back. But before doing
4445 * update_min_vruntime() again, which will discount @se's position and
4446 * can move min_vruntime forward still more.
4448 if (!(flags & DEQUEUE_SLEEP))
4449 se->vruntime -= cfs_rq->min_vruntime;
4451 /* return excess runtime on last dequeue */
4452 return_cfs_rq_runtime(cfs_rq);
4454 update_cfs_group(se);
4457 * Now advance min_vruntime if @se was the entity holding it back,
4458 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4459 * put back on, and if we advance min_vruntime, we'll be placed back
4460 * further than we started -- ie. we'll be penalized.
4462 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4463 update_min_vruntime(cfs_rq);
4467 * Preempt the current task with a newly woken task if needed:
4470 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4472 unsigned long ideal_runtime, delta_exec;
4473 struct sched_entity *se;
4476 ideal_runtime = sched_slice(cfs_rq, curr);
4477 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4478 if (delta_exec > ideal_runtime) {
4479 resched_curr(rq_of(cfs_rq));
4481 * The current task ran long enough, ensure it doesn't get
4482 * re-elected due to buddy favours.
4484 clear_buddies(cfs_rq, curr);
4489 * Ensure that a task that missed wakeup preemption by a
4490 * narrow margin doesn't have to wait for a full slice.
4491 * This also mitigates buddy induced latencies under load.
4493 if (delta_exec < sysctl_sched_min_granularity)
4496 se = __pick_first_entity(cfs_rq);
4497 delta = curr->vruntime - se->vruntime;
4502 if (delta > ideal_runtime)
4503 resched_curr(rq_of(cfs_rq));
4507 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4509 clear_buddies(cfs_rq, se);
4511 /* 'current' is not kept within the tree. */
4514 * Any task has to be enqueued before it get to execute on
4515 * a CPU. So account for the time it spent waiting on the
4518 update_stats_wait_end(cfs_rq, se);
4519 __dequeue_entity(cfs_rq, se);
4520 update_load_avg(cfs_rq, se, UPDATE_TG);
4523 update_stats_curr_start(cfs_rq, se);
4527 * Track our maximum slice length, if the CPU's load is at
4528 * least twice that of our own weight (i.e. dont track it
4529 * when there are only lesser-weight tasks around):
4531 if (schedstat_enabled() &&
4532 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4533 __schedstat_set(se->statistics.slice_max,
4534 max((u64)se->statistics.slice_max,
4535 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4538 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4542 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4545 * Pick the next process, keeping these things in mind, in this order:
4546 * 1) keep things fair between processes/task groups
4547 * 2) pick the "next" process, since someone really wants that to run
4548 * 3) pick the "last" process, for cache locality
4549 * 4) do not run the "skip" process, if something else is available
4551 static struct sched_entity *
4552 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4554 struct sched_entity *left = __pick_first_entity(cfs_rq);
4555 struct sched_entity *se;
4558 * If curr is set we have to see if its left of the leftmost entity
4559 * still in the tree, provided there was anything in the tree at all.
4561 if (!left || (curr && entity_before(curr, left)))
4564 se = left; /* ideally we run the leftmost entity */
4567 * Avoid running the skip buddy, if running something else can
4568 * be done without getting too unfair.
4570 if (cfs_rq->skip && cfs_rq->skip == se) {
4571 struct sched_entity *second;
4574 second = __pick_first_entity(cfs_rq);
4576 second = __pick_next_entity(se);
4577 if (!second || (curr && entity_before(curr, second)))
4581 if (second && wakeup_preempt_entity(second, left) < 1)
4585 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4587 * Someone really wants this to run. If it's not unfair, run it.
4590 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4592 * Prefer last buddy, try to return the CPU to a preempted task.
4600 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4602 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4605 * If still on the runqueue then deactivate_task()
4606 * was not called and update_curr() has to be done:
4609 update_curr(cfs_rq);
4611 /* throttle cfs_rqs exceeding runtime */
4612 check_cfs_rq_runtime(cfs_rq);
4614 check_spread(cfs_rq, prev);
4617 update_stats_wait_start(cfs_rq, prev);
4618 /* Put 'current' back into the tree. */
4619 __enqueue_entity(cfs_rq, prev);
4620 /* in !on_rq case, update occurred at dequeue */
4621 update_load_avg(cfs_rq, prev, 0);
4623 cfs_rq->curr = NULL;
4627 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4630 * Update run-time statistics of the 'current'.
4632 update_curr(cfs_rq);
4635 * Ensure that runnable average is periodically updated.
4637 update_load_avg(cfs_rq, curr, UPDATE_TG);
4638 update_cfs_group(curr);
4640 #ifdef CONFIG_SCHED_HRTICK
4642 * queued ticks are scheduled to match the slice, so don't bother
4643 * validating it and just reschedule.
4646 resched_curr(rq_of(cfs_rq));
4650 * don't let the period tick interfere with the hrtick preemption
4652 if (!sched_feat(DOUBLE_TICK) &&
4653 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4657 if (cfs_rq->nr_running > 1)
4658 check_preempt_tick(cfs_rq, curr);
4662 /**************************************************
4663 * CFS bandwidth control machinery
4666 #ifdef CONFIG_CFS_BANDWIDTH
4668 #ifdef CONFIG_JUMP_LABEL
4669 static struct static_key __cfs_bandwidth_used;
4671 static inline bool cfs_bandwidth_used(void)
4673 return static_key_false(&__cfs_bandwidth_used);
4676 void cfs_bandwidth_usage_inc(void)
4678 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4681 void cfs_bandwidth_usage_dec(void)
4683 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4685 #else /* CONFIG_JUMP_LABEL */
4686 static bool cfs_bandwidth_used(void)
4691 void cfs_bandwidth_usage_inc(void) {}
4692 void cfs_bandwidth_usage_dec(void) {}
4693 #endif /* CONFIG_JUMP_LABEL */
4696 * default period for cfs group bandwidth.
4697 * default: 0.1s, units: nanoseconds
4699 static inline u64 default_cfs_period(void)
4701 return 100000000ULL;
4704 static inline u64 sched_cfs_bandwidth_slice(void)
4706 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4710 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4711 * directly instead of rq->clock to avoid adding additional synchronization
4714 * requires cfs_b->lock
4716 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4720 if (unlikely(cfs_b->quota == RUNTIME_INF))
4723 cfs_b->runtime += cfs_b->quota;
4724 runtime = cfs_b->runtime_snap - cfs_b->runtime;
4726 cfs_b->burst_time += runtime;
4730 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4731 cfs_b->runtime_snap = cfs_b->runtime;
4734 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4736 return &tg->cfs_bandwidth;
4739 /* returns 0 on failure to allocate runtime */
4740 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4741 struct cfs_rq *cfs_rq, u64 target_runtime)
4743 u64 min_amount, amount = 0;
4745 lockdep_assert_held(&cfs_b->lock);
4747 /* note: this is a positive sum as runtime_remaining <= 0 */
4748 min_amount = target_runtime - cfs_rq->runtime_remaining;
4750 if (cfs_b->quota == RUNTIME_INF)
4751 amount = min_amount;
4753 start_cfs_bandwidth(cfs_b);
4755 if (cfs_b->runtime > 0) {
4756 amount = min(cfs_b->runtime, min_amount);
4757 cfs_b->runtime -= amount;
4762 cfs_rq->runtime_remaining += amount;
4764 return cfs_rq->runtime_remaining > 0;
4767 /* returns 0 on failure to allocate runtime */
4768 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4770 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4773 raw_spin_lock(&cfs_b->lock);
4774 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4775 raw_spin_unlock(&cfs_b->lock);
4780 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4782 /* dock delta_exec before expiring quota (as it could span periods) */
4783 cfs_rq->runtime_remaining -= delta_exec;
4785 if (likely(cfs_rq->runtime_remaining > 0))
4788 if (cfs_rq->throttled)
4791 * if we're unable to extend our runtime we resched so that the active
4792 * hierarchy can be throttled
4794 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4795 resched_curr(rq_of(cfs_rq));
4798 static __always_inline
4799 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4801 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4804 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4807 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4809 return cfs_bandwidth_used() && cfs_rq->throttled;
4812 /* check whether cfs_rq, or any parent, is throttled */
4813 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4815 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4819 * Ensure that neither of the group entities corresponding to src_cpu or
4820 * dest_cpu are members of a throttled hierarchy when performing group
4821 * load-balance operations.
4823 static inline int throttled_lb_pair(struct task_group *tg,
4824 int src_cpu, int dest_cpu)
4826 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4828 src_cfs_rq = tg->cfs_rq[src_cpu];
4829 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4831 return throttled_hierarchy(src_cfs_rq) ||
4832 throttled_hierarchy(dest_cfs_rq);
4835 static int tg_unthrottle_up(struct task_group *tg, void *data)
4837 struct rq *rq = data;
4838 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4840 cfs_rq->throttle_count--;
4841 if (!cfs_rq->throttle_count) {
4842 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4843 cfs_rq->throttled_clock_task;
4845 /* Add cfs_rq with load or one or more already running entities to the list */
4846 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4847 list_add_leaf_cfs_rq(cfs_rq);
4853 static int tg_throttle_down(struct task_group *tg, void *data)
4855 struct rq *rq = data;
4856 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4858 /* group is entering throttled state, stop time */
4859 if (!cfs_rq->throttle_count) {
4860 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4861 list_del_leaf_cfs_rq(cfs_rq);
4863 cfs_rq->throttle_count++;
4868 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4870 struct rq *rq = rq_of(cfs_rq);
4871 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4872 struct sched_entity *se;
4873 long task_delta, idle_task_delta, dequeue = 1;
4875 raw_spin_lock(&cfs_b->lock);
4876 /* This will start the period timer if necessary */
4877 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4879 * We have raced with bandwidth becoming available, and if we
4880 * actually throttled the timer might not unthrottle us for an
4881 * entire period. We additionally needed to make sure that any
4882 * subsequent check_cfs_rq_runtime calls agree not to throttle
4883 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4884 * for 1ns of runtime rather than just check cfs_b.
4888 list_add_tail_rcu(&cfs_rq->throttled_list,
4889 &cfs_b->throttled_cfs_rq);
4891 raw_spin_unlock(&cfs_b->lock);
4894 return false; /* Throttle no longer required. */
4896 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4898 /* freeze hierarchy runnable averages while throttled */
4900 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4903 task_delta = cfs_rq->h_nr_running;
4904 idle_task_delta = cfs_rq->idle_h_nr_running;
4905 for_each_sched_entity(se) {
4906 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4907 /* throttled entity or throttle-on-deactivate */
4911 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4913 if (cfs_rq_is_idle(group_cfs_rq(se)))
4914 idle_task_delta = cfs_rq->h_nr_running;
4916 qcfs_rq->h_nr_running -= task_delta;
4917 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4919 if (qcfs_rq->load.weight) {
4920 /* Avoid re-evaluating load for this entity: */
4921 se = parent_entity(se);
4926 for_each_sched_entity(se) {
4927 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4928 /* throttled entity or throttle-on-deactivate */
4932 update_load_avg(qcfs_rq, se, 0);
4933 se_update_runnable(se);
4935 if (cfs_rq_is_idle(group_cfs_rq(se)))
4936 idle_task_delta = cfs_rq->h_nr_running;
4938 qcfs_rq->h_nr_running -= task_delta;
4939 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4942 /* At this point se is NULL and we are at root level*/
4943 sub_nr_running(rq, task_delta);
4947 * Note: distribution will already see us throttled via the
4948 * throttled-list. rq->lock protects completion.
4950 cfs_rq->throttled = 1;
4951 cfs_rq->throttled_clock = rq_clock(rq);
4955 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4957 struct rq *rq = rq_of(cfs_rq);
4958 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4959 struct sched_entity *se;
4960 long task_delta, idle_task_delta;
4962 se = cfs_rq->tg->se[cpu_of(rq)];
4964 cfs_rq->throttled = 0;
4966 update_rq_clock(rq);
4968 raw_spin_lock(&cfs_b->lock);
4969 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4970 list_del_rcu(&cfs_rq->throttled_list);
4971 raw_spin_unlock(&cfs_b->lock);
4973 /* update hierarchical throttle state */
4974 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4976 /* Nothing to run but something to decay (on_list)? Complete the branch */
4977 if (!cfs_rq->load.weight) {
4978 if (cfs_rq->on_list)
4979 goto unthrottle_throttle;
4983 task_delta = cfs_rq->h_nr_running;
4984 idle_task_delta = cfs_rq->idle_h_nr_running;
4985 for_each_sched_entity(se) {
4986 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4990 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
4992 if (cfs_rq_is_idle(group_cfs_rq(se)))
4993 idle_task_delta = cfs_rq->h_nr_running;
4995 qcfs_rq->h_nr_running += task_delta;
4996 qcfs_rq->idle_h_nr_running += idle_task_delta;
4998 /* end evaluation on encountering a throttled cfs_rq */
4999 if (cfs_rq_throttled(qcfs_rq))
5000 goto unthrottle_throttle;
5003 for_each_sched_entity(se) {
5004 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5006 update_load_avg(qcfs_rq, se, UPDATE_TG);
5007 se_update_runnable(se);
5009 if (cfs_rq_is_idle(group_cfs_rq(se)))
5010 idle_task_delta = cfs_rq->h_nr_running;
5012 qcfs_rq->h_nr_running += task_delta;
5013 qcfs_rq->idle_h_nr_running += idle_task_delta;
5015 /* end evaluation on encountering a throttled cfs_rq */
5016 if (cfs_rq_throttled(qcfs_rq))
5017 goto unthrottle_throttle;
5020 * One parent has been throttled and cfs_rq removed from the
5021 * list. Add it back to not break the leaf list.
5023 if (throttled_hierarchy(qcfs_rq))
5024 list_add_leaf_cfs_rq(qcfs_rq);
5027 /* At this point se is NULL and we are at root level*/
5028 add_nr_running(rq, task_delta);
5030 unthrottle_throttle:
5032 * The cfs_rq_throttled() breaks in the above iteration can result in
5033 * incomplete leaf list maintenance, resulting in triggering the
5036 for_each_sched_entity(se) {
5037 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5039 if (list_add_leaf_cfs_rq(qcfs_rq))
5043 assert_list_leaf_cfs_rq(rq);
5045 /* Determine whether we need to wake up potentially idle CPU: */
5046 if (rq->curr == rq->idle && rq->cfs.nr_running)
5050 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5052 struct cfs_rq *cfs_rq;
5053 u64 runtime, remaining = 1;
5056 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5058 struct rq *rq = rq_of(cfs_rq);
5061 rq_lock_irqsave(rq, &rf);
5062 if (!cfs_rq_throttled(cfs_rq))
5065 /* By the above check, this should never be true */
5066 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5068 raw_spin_lock(&cfs_b->lock);
5069 runtime = -cfs_rq->runtime_remaining + 1;
5070 if (runtime > cfs_b->runtime)
5071 runtime = cfs_b->runtime;
5072 cfs_b->runtime -= runtime;
5073 remaining = cfs_b->runtime;
5074 raw_spin_unlock(&cfs_b->lock);
5076 cfs_rq->runtime_remaining += runtime;
5078 /* we check whether we're throttled above */
5079 if (cfs_rq->runtime_remaining > 0)
5080 unthrottle_cfs_rq(cfs_rq);
5083 rq_unlock_irqrestore(rq, &rf);
5092 * Responsible for refilling a task_group's bandwidth and unthrottling its
5093 * cfs_rqs as appropriate. If there has been no activity within the last
5094 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5095 * used to track this state.
5097 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5101 /* no need to continue the timer with no bandwidth constraint */
5102 if (cfs_b->quota == RUNTIME_INF)
5103 goto out_deactivate;
5105 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5106 cfs_b->nr_periods += overrun;
5108 /* Refill extra burst quota even if cfs_b->idle */
5109 __refill_cfs_bandwidth_runtime(cfs_b);
5112 * idle depends on !throttled (for the case of a large deficit), and if
5113 * we're going inactive then everything else can be deferred
5115 if (cfs_b->idle && !throttled)
5116 goto out_deactivate;
5119 /* mark as potentially idle for the upcoming period */
5124 /* account preceding periods in which throttling occurred */
5125 cfs_b->nr_throttled += overrun;
5128 * This check is repeated as we release cfs_b->lock while we unthrottle.
5130 while (throttled && cfs_b->runtime > 0) {
5131 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5132 /* we can't nest cfs_b->lock while distributing bandwidth */
5133 distribute_cfs_runtime(cfs_b);
5134 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5136 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5140 * While we are ensured activity in the period following an
5141 * unthrottle, this also covers the case in which the new bandwidth is
5142 * insufficient to cover the existing bandwidth deficit. (Forcing the
5143 * timer to remain active while there are any throttled entities.)
5153 /* a cfs_rq won't donate quota below this amount */
5154 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5155 /* minimum remaining period time to redistribute slack quota */
5156 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5157 /* how long we wait to gather additional slack before distributing */
5158 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5161 * Are we near the end of the current quota period?
5163 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5164 * hrtimer base being cleared by hrtimer_start. In the case of
5165 * migrate_hrtimers, base is never cleared, so we are fine.
5167 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5169 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5172 /* if the call-back is running a quota refresh is already occurring */
5173 if (hrtimer_callback_running(refresh_timer))
5176 /* is a quota refresh about to occur? */
5177 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5178 if (remaining < (s64)min_expire)
5184 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5186 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5188 /* if there's a quota refresh soon don't bother with slack */
5189 if (runtime_refresh_within(cfs_b, min_left))
5192 /* don't push forwards an existing deferred unthrottle */
5193 if (cfs_b->slack_started)
5195 cfs_b->slack_started = true;
5197 hrtimer_start(&cfs_b->slack_timer,
5198 ns_to_ktime(cfs_bandwidth_slack_period),
5202 /* we know any runtime found here is valid as update_curr() precedes return */
5203 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5205 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5206 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5208 if (slack_runtime <= 0)
5211 raw_spin_lock(&cfs_b->lock);
5212 if (cfs_b->quota != RUNTIME_INF) {
5213 cfs_b->runtime += slack_runtime;
5215 /* we are under rq->lock, defer unthrottling using a timer */
5216 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5217 !list_empty(&cfs_b->throttled_cfs_rq))
5218 start_cfs_slack_bandwidth(cfs_b);
5220 raw_spin_unlock(&cfs_b->lock);
5222 /* even if it's not valid for return we don't want to try again */
5223 cfs_rq->runtime_remaining -= slack_runtime;
5226 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5228 if (!cfs_bandwidth_used())
5231 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5234 __return_cfs_rq_runtime(cfs_rq);
5238 * This is done with a timer (instead of inline with bandwidth return) since
5239 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5241 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5243 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5244 unsigned long flags;
5246 /* confirm we're still not at a refresh boundary */
5247 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5248 cfs_b->slack_started = false;
5250 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5251 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5255 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5256 runtime = cfs_b->runtime;
5258 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5263 distribute_cfs_runtime(cfs_b);
5267 * When a group wakes up we want to make sure that its quota is not already
5268 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5269 * runtime as update_curr() throttling can not trigger until it's on-rq.
5271 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5273 if (!cfs_bandwidth_used())
5276 /* an active group must be handled by the update_curr()->put() path */
5277 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5280 /* ensure the group is not already throttled */
5281 if (cfs_rq_throttled(cfs_rq))
5284 /* update runtime allocation */
5285 account_cfs_rq_runtime(cfs_rq, 0);
5286 if (cfs_rq->runtime_remaining <= 0)
5287 throttle_cfs_rq(cfs_rq);
5290 static void sync_throttle(struct task_group *tg, int cpu)
5292 struct cfs_rq *pcfs_rq, *cfs_rq;
5294 if (!cfs_bandwidth_used())
5300 cfs_rq = tg->cfs_rq[cpu];
5301 pcfs_rq = tg->parent->cfs_rq[cpu];
5303 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5304 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5307 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5308 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5310 if (!cfs_bandwidth_used())
5313 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5317 * it's possible for a throttled entity to be forced into a running
5318 * state (e.g. set_curr_task), in this case we're finished.
5320 if (cfs_rq_throttled(cfs_rq))
5323 return throttle_cfs_rq(cfs_rq);
5326 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5328 struct cfs_bandwidth *cfs_b =
5329 container_of(timer, struct cfs_bandwidth, slack_timer);
5331 do_sched_cfs_slack_timer(cfs_b);
5333 return HRTIMER_NORESTART;
5336 extern const u64 max_cfs_quota_period;
5338 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5340 struct cfs_bandwidth *cfs_b =
5341 container_of(timer, struct cfs_bandwidth, period_timer);
5342 unsigned long flags;
5347 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5349 overrun = hrtimer_forward_now(timer, cfs_b->period);
5353 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5356 u64 new, old = ktime_to_ns(cfs_b->period);
5359 * Grow period by a factor of 2 to avoid losing precision.
5360 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5364 if (new < max_cfs_quota_period) {
5365 cfs_b->period = ns_to_ktime(new);
5369 pr_warn_ratelimited(
5370 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5372 div_u64(new, NSEC_PER_USEC),
5373 div_u64(cfs_b->quota, NSEC_PER_USEC));
5375 pr_warn_ratelimited(
5376 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5378 div_u64(old, NSEC_PER_USEC),
5379 div_u64(cfs_b->quota, NSEC_PER_USEC));
5382 /* reset count so we don't come right back in here */
5387 cfs_b->period_active = 0;
5388 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5390 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5393 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5395 raw_spin_lock_init(&cfs_b->lock);
5397 cfs_b->quota = RUNTIME_INF;
5398 cfs_b->period = ns_to_ktime(default_cfs_period());
5401 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5402 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5403 cfs_b->period_timer.function = sched_cfs_period_timer;
5404 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5405 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5406 cfs_b->slack_started = false;
5409 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5411 cfs_rq->runtime_enabled = 0;
5412 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5415 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5417 lockdep_assert_held(&cfs_b->lock);
5419 if (cfs_b->period_active)
5422 cfs_b->period_active = 1;
5423 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5424 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5427 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5429 /* init_cfs_bandwidth() was not called */
5430 if (!cfs_b->throttled_cfs_rq.next)
5433 hrtimer_cancel(&cfs_b->period_timer);
5434 hrtimer_cancel(&cfs_b->slack_timer);
5438 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5440 * The race is harmless, since modifying bandwidth settings of unhooked group
5441 * bits doesn't do much.
5444 /* cpu online callback */
5445 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5447 struct task_group *tg;
5449 lockdep_assert_rq_held(rq);
5452 list_for_each_entry_rcu(tg, &task_groups, list) {
5453 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5454 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5456 raw_spin_lock(&cfs_b->lock);
5457 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5458 raw_spin_unlock(&cfs_b->lock);
5463 /* cpu offline callback */
5464 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5466 struct task_group *tg;
5468 lockdep_assert_rq_held(rq);
5471 list_for_each_entry_rcu(tg, &task_groups, list) {
5472 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5474 if (!cfs_rq->runtime_enabled)
5478 * clock_task is not advancing so we just need to make sure
5479 * there's some valid quota amount
5481 cfs_rq->runtime_remaining = 1;
5483 * Offline rq is schedulable till CPU is completely disabled
5484 * in take_cpu_down(), so we prevent new cfs throttling here.
5486 cfs_rq->runtime_enabled = 0;
5488 if (cfs_rq_throttled(cfs_rq))
5489 unthrottle_cfs_rq(cfs_rq);
5494 #else /* CONFIG_CFS_BANDWIDTH */
5496 static inline bool cfs_bandwidth_used(void)
5501 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5502 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5503 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5504 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5505 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5507 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5512 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5517 static inline int throttled_lb_pair(struct task_group *tg,
5518 int src_cpu, int dest_cpu)
5523 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5525 #ifdef CONFIG_FAIR_GROUP_SCHED
5526 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5529 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5533 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5534 static inline void update_runtime_enabled(struct rq *rq) {}
5535 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5537 #endif /* CONFIG_CFS_BANDWIDTH */
5539 /**************************************************
5540 * CFS operations on tasks:
5543 #ifdef CONFIG_SCHED_HRTICK
5544 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5546 struct sched_entity *se = &p->se;
5547 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5549 SCHED_WARN_ON(task_rq(p) != rq);
5551 if (rq->cfs.h_nr_running > 1) {
5552 u64 slice = sched_slice(cfs_rq, se);
5553 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5554 s64 delta = slice - ran;
5557 if (task_current(rq, p))
5561 hrtick_start(rq, delta);
5566 * called from enqueue/dequeue and updates the hrtick when the
5567 * current task is from our class and nr_running is low enough
5570 static void hrtick_update(struct rq *rq)
5572 struct task_struct *curr = rq->curr;
5574 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5577 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5578 hrtick_start_fair(rq, curr);
5580 #else /* !CONFIG_SCHED_HRTICK */
5582 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5586 static inline void hrtick_update(struct rq *rq)
5592 static inline unsigned long cpu_util(int cpu);
5594 static inline bool cpu_overutilized(int cpu)
5596 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5599 static inline void update_overutilized_status(struct rq *rq)
5601 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5602 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5603 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5607 static inline void update_overutilized_status(struct rq *rq) { }
5610 /* Runqueue only has SCHED_IDLE tasks enqueued */
5611 static int sched_idle_rq(struct rq *rq)
5613 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5618 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5619 * of idle_nr_running, which does not consider idle descendants of normal
5622 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5624 return cfs_rq->nr_running &&
5625 cfs_rq->nr_running == cfs_rq->idle_nr_running;
5629 static int sched_idle_cpu(int cpu)
5631 return sched_idle_rq(cpu_rq(cpu));
5636 * The enqueue_task method is called before nr_running is
5637 * increased. Here we update the fair scheduling stats and
5638 * then put the task into the rbtree:
5641 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5643 struct cfs_rq *cfs_rq;
5644 struct sched_entity *se = &p->se;
5645 int idle_h_nr_running = task_has_idle_policy(p);
5646 int task_new = !(flags & ENQUEUE_WAKEUP);
5649 * The code below (indirectly) updates schedutil which looks at
5650 * the cfs_rq utilization to select a frequency.
5651 * Let's add the task's estimated utilization to the cfs_rq's
5652 * estimated utilization, before we update schedutil.
5654 util_est_enqueue(&rq->cfs, p);
5657 * If in_iowait is set, the code below may not trigger any cpufreq
5658 * utilization updates, so do it here explicitly with the IOWAIT flag
5662 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5664 for_each_sched_entity(se) {
5667 cfs_rq = cfs_rq_of(se);
5668 enqueue_entity(cfs_rq, se, flags);
5670 cfs_rq->h_nr_running++;
5671 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5673 if (cfs_rq_is_idle(cfs_rq))
5674 idle_h_nr_running = 1;
5676 /* end evaluation on encountering a throttled cfs_rq */
5677 if (cfs_rq_throttled(cfs_rq))
5678 goto enqueue_throttle;
5680 flags = ENQUEUE_WAKEUP;
5683 for_each_sched_entity(se) {
5684 cfs_rq = cfs_rq_of(se);
5686 update_load_avg(cfs_rq, se, UPDATE_TG);
5687 se_update_runnable(se);
5688 update_cfs_group(se);
5690 cfs_rq->h_nr_running++;
5691 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5693 if (cfs_rq_is_idle(cfs_rq))
5694 idle_h_nr_running = 1;
5696 /* end evaluation on encountering a throttled cfs_rq */
5697 if (cfs_rq_throttled(cfs_rq))
5698 goto enqueue_throttle;
5701 * One parent has been throttled and cfs_rq removed from the
5702 * list. Add it back to not break the leaf list.
5704 if (throttled_hierarchy(cfs_rq))
5705 list_add_leaf_cfs_rq(cfs_rq);
5708 /* At this point se is NULL and we are at root level*/
5709 add_nr_running(rq, 1);
5712 * Since new tasks are assigned an initial util_avg equal to
5713 * half of the spare capacity of their CPU, tiny tasks have the
5714 * ability to cross the overutilized threshold, which will
5715 * result in the load balancer ruining all the task placement
5716 * done by EAS. As a way to mitigate that effect, do not account
5717 * for the first enqueue operation of new tasks during the
5718 * overutilized flag detection.
5720 * A better way of solving this problem would be to wait for
5721 * the PELT signals of tasks to converge before taking them
5722 * into account, but that is not straightforward to implement,
5723 * and the following generally works well enough in practice.
5726 update_overutilized_status(rq);
5729 if (cfs_bandwidth_used()) {
5731 * When bandwidth control is enabled; the cfs_rq_throttled()
5732 * breaks in the above iteration can result in incomplete
5733 * leaf list maintenance, resulting in triggering the assertion
5736 for_each_sched_entity(se) {
5737 cfs_rq = cfs_rq_of(se);
5739 if (list_add_leaf_cfs_rq(cfs_rq))
5744 assert_list_leaf_cfs_rq(rq);
5749 static void set_next_buddy(struct sched_entity *se);
5752 * The dequeue_task method is called before nr_running is
5753 * decreased. We remove the task from the rbtree and
5754 * update the fair scheduling stats:
5756 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5758 struct cfs_rq *cfs_rq;
5759 struct sched_entity *se = &p->se;
5760 int task_sleep = flags & DEQUEUE_SLEEP;
5761 int idle_h_nr_running = task_has_idle_policy(p);
5762 bool was_sched_idle = sched_idle_rq(rq);
5764 util_est_dequeue(&rq->cfs, p);
5766 for_each_sched_entity(se) {
5767 cfs_rq = cfs_rq_of(se);
5768 dequeue_entity(cfs_rq, se, flags);
5770 cfs_rq->h_nr_running--;
5771 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5773 if (cfs_rq_is_idle(cfs_rq))
5774 idle_h_nr_running = 1;
5776 /* end evaluation on encountering a throttled cfs_rq */
5777 if (cfs_rq_throttled(cfs_rq))
5778 goto dequeue_throttle;
5780 /* Don't dequeue parent if it has other entities besides us */
5781 if (cfs_rq->load.weight) {
5782 /* Avoid re-evaluating load for this entity: */
5783 se = parent_entity(se);
5785 * Bias pick_next to pick a task from this cfs_rq, as
5786 * p is sleeping when it is within its sched_slice.
5788 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5792 flags |= DEQUEUE_SLEEP;
5795 for_each_sched_entity(se) {
5796 cfs_rq = cfs_rq_of(se);
5798 update_load_avg(cfs_rq, se, UPDATE_TG);
5799 se_update_runnable(se);
5800 update_cfs_group(se);
5802 cfs_rq->h_nr_running--;
5803 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5805 if (cfs_rq_is_idle(cfs_rq))
5806 idle_h_nr_running = 1;
5808 /* end evaluation on encountering a throttled cfs_rq */
5809 if (cfs_rq_throttled(cfs_rq))
5810 goto dequeue_throttle;
5814 /* At this point se is NULL and we are at root level*/
5815 sub_nr_running(rq, 1);
5817 /* balance early to pull high priority tasks */
5818 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5819 rq->next_balance = jiffies;
5822 util_est_update(&rq->cfs, p, task_sleep);
5828 /* Working cpumask for: load_balance, load_balance_newidle. */
5829 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5830 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5832 #ifdef CONFIG_NO_HZ_COMMON
5835 cpumask_var_t idle_cpus_mask;
5837 int has_blocked; /* Idle CPUS has blocked load */
5838 int needs_update; /* Newly idle CPUs need their next_balance collated */
5839 unsigned long next_balance; /* in jiffy units */
5840 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5841 } nohz ____cacheline_aligned;
5843 #endif /* CONFIG_NO_HZ_COMMON */
5845 static unsigned long cpu_load(struct rq *rq)
5847 return cfs_rq_load_avg(&rq->cfs);
5851 * cpu_load_without - compute CPU load without any contributions from *p
5852 * @cpu: the CPU which load is requested
5853 * @p: the task which load should be discounted
5855 * The load of a CPU is defined by the load of tasks currently enqueued on that
5856 * CPU as well as tasks which are currently sleeping after an execution on that
5859 * This method returns the load of the specified CPU by discounting the load of
5860 * the specified task, whenever the task is currently contributing to the CPU
5863 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5865 struct cfs_rq *cfs_rq;
5868 /* Task has no contribution or is new */
5869 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5870 return cpu_load(rq);
5873 load = READ_ONCE(cfs_rq->avg.load_avg);
5875 /* Discount task's util from CPU's util */
5876 lsub_positive(&load, task_h_load(p));
5881 static unsigned long cpu_runnable(struct rq *rq)
5883 return cfs_rq_runnable_avg(&rq->cfs);
5886 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5888 struct cfs_rq *cfs_rq;
5889 unsigned int runnable;
5891 /* Task has no contribution or is new */
5892 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5893 return cpu_runnable(rq);
5896 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5898 /* Discount task's runnable from CPU's runnable */
5899 lsub_positive(&runnable, p->se.avg.runnable_avg);
5904 static unsigned long capacity_of(int cpu)
5906 return cpu_rq(cpu)->cpu_capacity;
5909 static void record_wakee(struct task_struct *p)
5912 * Only decay a single time; tasks that have less then 1 wakeup per
5913 * jiffy will not have built up many flips.
5915 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5916 current->wakee_flips >>= 1;
5917 current->wakee_flip_decay_ts = jiffies;
5920 if (current->last_wakee != p) {
5921 current->last_wakee = p;
5922 current->wakee_flips++;
5927 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5929 * A waker of many should wake a different task than the one last awakened
5930 * at a frequency roughly N times higher than one of its wakees.
5932 * In order to determine whether we should let the load spread vs consolidating
5933 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5934 * partner, and a factor of lls_size higher frequency in the other.
5936 * With both conditions met, we can be relatively sure that the relationship is
5937 * non-monogamous, with partner count exceeding socket size.
5939 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5940 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5943 static int wake_wide(struct task_struct *p)
5945 unsigned int master = current->wakee_flips;
5946 unsigned int slave = p->wakee_flips;
5947 int factor = __this_cpu_read(sd_llc_size);
5950 swap(master, slave);
5951 if (slave < factor || master < slave * factor)
5957 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5958 * soonest. For the purpose of speed we only consider the waking and previous
5961 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5962 * cache-affine and is (or will be) idle.
5964 * wake_affine_weight() - considers the weight to reflect the average
5965 * scheduling latency of the CPUs. This seems to work
5966 * for the overloaded case.
5969 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5972 * If this_cpu is idle, it implies the wakeup is from interrupt
5973 * context. Only allow the move if cache is shared. Otherwise an
5974 * interrupt intensive workload could force all tasks onto one
5975 * node depending on the IO topology or IRQ affinity settings.
5977 * If the prev_cpu is idle and cache affine then avoid a migration.
5978 * There is no guarantee that the cache hot data from an interrupt
5979 * is more important than cache hot data on the prev_cpu and from
5980 * a cpufreq perspective, it's better to have higher utilisation
5983 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5984 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5986 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5989 if (available_idle_cpu(prev_cpu))
5992 return nr_cpumask_bits;
5996 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5997 int this_cpu, int prev_cpu, int sync)
5999 s64 this_eff_load, prev_eff_load;
6000 unsigned long task_load;
6002 this_eff_load = cpu_load(cpu_rq(this_cpu));
6005 unsigned long current_load = task_h_load(current);
6007 if (current_load > this_eff_load)
6010 this_eff_load -= current_load;
6013 task_load = task_h_load(p);
6015 this_eff_load += task_load;
6016 if (sched_feat(WA_BIAS))
6017 this_eff_load *= 100;
6018 this_eff_load *= capacity_of(prev_cpu);
6020 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6021 prev_eff_load -= task_load;
6022 if (sched_feat(WA_BIAS))
6023 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6024 prev_eff_load *= capacity_of(this_cpu);
6027 * If sync, adjust the weight of prev_eff_load such that if
6028 * prev_eff == this_eff that select_idle_sibling() will consider
6029 * stacking the wakee on top of the waker if no other CPU is
6035 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6038 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6039 int this_cpu, int prev_cpu, int sync)
6041 int target = nr_cpumask_bits;
6043 if (sched_feat(WA_IDLE))
6044 target = wake_affine_idle(this_cpu, prev_cpu, sync);
6046 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6047 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6049 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
6050 if (target == nr_cpumask_bits)
6053 schedstat_inc(sd->ttwu_move_affine);
6054 schedstat_inc(p->se.statistics.nr_wakeups_affine);
6058 static struct sched_group *
6059 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6062 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6065 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6067 unsigned long load, min_load = ULONG_MAX;
6068 unsigned int min_exit_latency = UINT_MAX;
6069 u64 latest_idle_timestamp = 0;
6070 int least_loaded_cpu = this_cpu;
6071 int shallowest_idle_cpu = -1;
6074 /* Check if we have any choice: */
6075 if (group->group_weight == 1)
6076 return cpumask_first(sched_group_span(group));
6078 /* Traverse only the allowed CPUs */
6079 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6080 struct rq *rq = cpu_rq(i);
6082 if (!sched_core_cookie_match(rq, p))
6085 if (sched_idle_cpu(i))
6088 if (available_idle_cpu(i)) {
6089 struct cpuidle_state *idle = idle_get_state(rq);
6090 if (idle && idle->exit_latency < min_exit_latency) {
6092 * We give priority to a CPU whose idle state
6093 * has the smallest exit latency irrespective
6094 * of any idle timestamp.
6096 min_exit_latency = idle->exit_latency;
6097 latest_idle_timestamp = rq->idle_stamp;
6098 shallowest_idle_cpu = i;
6099 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6100 rq->idle_stamp > latest_idle_timestamp) {
6102 * If equal or no active idle state, then
6103 * the most recently idled CPU might have
6106 latest_idle_timestamp = rq->idle_stamp;
6107 shallowest_idle_cpu = i;
6109 } else if (shallowest_idle_cpu == -1) {
6110 load = cpu_load(cpu_rq(i));
6111 if (load < min_load) {
6113 least_loaded_cpu = i;
6118 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6121 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6122 int cpu, int prev_cpu, int sd_flag)
6126 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6130 * We need task's util for cpu_util_without, sync it up to
6131 * prev_cpu's last_update_time.
6133 if (!(sd_flag & SD_BALANCE_FORK))
6134 sync_entity_load_avg(&p->se);
6137 struct sched_group *group;
6138 struct sched_domain *tmp;
6141 if (!(sd->flags & sd_flag)) {
6146 group = find_idlest_group(sd, p, cpu);
6152 new_cpu = find_idlest_group_cpu(group, p, cpu);
6153 if (new_cpu == cpu) {
6154 /* Now try balancing at a lower domain level of 'cpu': */
6159 /* Now try balancing at a lower domain level of 'new_cpu': */
6161 weight = sd->span_weight;
6163 for_each_domain(cpu, tmp) {
6164 if (weight <= tmp->span_weight)
6166 if (tmp->flags & sd_flag)
6174 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6176 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6177 sched_cpu_cookie_match(cpu_rq(cpu), p))
6183 #ifdef CONFIG_SCHED_SMT
6184 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6185 EXPORT_SYMBOL_GPL(sched_smt_present);
6187 static inline void set_idle_cores(int cpu, int val)
6189 struct sched_domain_shared *sds;
6191 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6193 WRITE_ONCE(sds->has_idle_cores, val);
6196 static inline bool test_idle_cores(int cpu, bool def)
6198 struct sched_domain_shared *sds;
6200 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6202 return READ_ONCE(sds->has_idle_cores);
6208 * Scans the local SMT mask to see if the entire core is idle, and records this
6209 * information in sd_llc_shared->has_idle_cores.
6211 * Since SMT siblings share all cache levels, inspecting this limited remote
6212 * state should be fairly cheap.
6214 void __update_idle_core(struct rq *rq)
6216 int core = cpu_of(rq);
6220 if (test_idle_cores(core, true))
6223 for_each_cpu(cpu, cpu_smt_mask(core)) {
6227 if (!available_idle_cpu(cpu))
6231 set_idle_cores(core, 1);
6237 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6238 * there are no idle cores left in the system; tracked through
6239 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6241 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6246 if (!static_branch_likely(&sched_smt_present))
6247 return __select_idle_cpu(core, p);
6249 for_each_cpu(cpu, cpu_smt_mask(core)) {
6250 if (!available_idle_cpu(cpu)) {
6252 if (*idle_cpu == -1) {
6253 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6261 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6268 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6273 * Scan the local SMT mask for idle CPUs.
6275 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6279 for_each_cpu(cpu, cpu_smt_mask(target)) {
6280 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6281 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6283 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6290 #else /* CONFIG_SCHED_SMT */
6292 static inline void set_idle_cores(int cpu, int val)
6296 static inline bool test_idle_cores(int cpu, bool def)
6301 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6303 return __select_idle_cpu(core, p);
6306 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6311 #endif /* CONFIG_SCHED_SMT */
6314 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6315 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6316 * average idle time for this rq (as found in rq->avg_idle).
6318 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6320 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6321 int i, cpu, idle_cpu = -1, nr = INT_MAX;
6322 struct rq *this_rq = this_rq();
6323 int this = smp_processor_id();
6324 struct sched_domain *this_sd;
6327 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6331 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6333 if (sched_feat(SIS_PROP) && !has_idle_core) {
6334 u64 avg_cost, avg_idle, span_avg;
6335 unsigned long now = jiffies;
6338 * If we're busy, the assumption that the last idle period
6339 * predicts the future is flawed; age away the remaining
6340 * predicted idle time.
6342 if (unlikely(this_rq->wake_stamp < now)) {
6343 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6344 this_rq->wake_stamp++;
6345 this_rq->wake_avg_idle >>= 1;
6349 avg_idle = this_rq->wake_avg_idle;
6350 avg_cost = this_sd->avg_scan_cost + 1;
6352 span_avg = sd->span_weight * avg_idle;
6353 if (span_avg > 4*avg_cost)
6354 nr = div_u64(span_avg, avg_cost);
6358 time = cpu_clock(this);
6361 for_each_cpu_wrap(cpu, cpus, target + 1) {
6362 if (has_idle_core) {
6363 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6364 if ((unsigned int)i < nr_cpumask_bits)
6370 idle_cpu = __select_idle_cpu(cpu, p);
6371 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6377 set_idle_cores(target, false);
6379 if (sched_feat(SIS_PROP) && !has_idle_core) {
6380 time = cpu_clock(this) - time;
6383 * Account for the scan cost of wakeups against the average
6386 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6388 update_avg(&this_sd->avg_scan_cost, time);
6395 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6396 * the task fits. If no CPU is big enough, but there are idle ones, try to
6397 * maximize capacity.
6400 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6402 unsigned long task_util, best_cap = 0;
6403 int cpu, best_cpu = -1;
6404 struct cpumask *cpus;
6406 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6407 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6409 task_util = uclamp_task_util(p);
6411 for_each_cpu_wrap(cpu, cpus, target) {
6412 unsigned long cpu_cap = capacity_of(cpu);
6414 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6416 if (fits_capacity(task_util, cpu_cap))
6419 if (cpu_cap > best_cap) {
6428 static inline bool asym_fits_capacity(int task_util, int cpu)
6430 if (static_branch_unlikely(&sched_asym_cpucapacity))
6431 return fits_capacity(task_util, capacity_of(cpu));
6437 * Try and locate an idle core/thread in the LLC cache domain.
6439 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6441 bool has_idle_core = false;
6442 struct sched_domain *sd;
6443 unsigned long task_util;
6444 int i, recent_used_cpu;
6447 * On asymmetric system, update task utilization because we will check
6448 * that the task fits with cpu's capacity.
6450 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6451 sync_entity_load_avg(&p->se);
6452 task_util = uclamp_task_util(p);
6456 * per-cpu select_idle_mask usage
6458 lockdep_assert_irqs_disabled();
6460 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6461 asym_fits_capacity(task_util, target))
6465 * If the previous CPU is cache affine and idle, don't be stupid:
6467 if (prev != target && cpus_share_cache(prev, target) &&
6468 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6469 asym_fits_capacity(task_util, prev))
6473 * Allow a per-cpu kthread to stack with the wakee if the
6474 * kworker thread and the tasks previous CPUs are the same.
6475 * The assumption is that the wakee queued work for the
6476 * per-cpu kthread that is now complete and the wakeup is
6477 * essentially a sync wakeup. An obvious example of this
6478 * pattern is IO completions.
6480 if (is_per_cpu_kthread(current) &&
6481 prev == smp_processor_id() &&
6482 this_rq()->nr_running <= 1) {
6486 /* Check a recently used CPU as a potential idle candidate: */
6487 recent_used_cpu = p->recent_used_cpu;
6488 p->recent_used_cpu = prev;
6489 if (recent_used_cpu != prev &&
6490 recent_used_cpu != target &&
6491 cpus_share_cache(recent_used_cpu, target) &&
6492 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6493 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6494 asym_fits_capacity(task_util, recent_used_cpu)) {
6496 * Replace recent_used_cpu with prev as it is a potential
6497 * candidate for the next wake:
6499 p->recent_used_cpu = prev;
6500 return recent_used_cpu;
6504 * For asymmetric CPU capacity systems, our domain of interest is
6505 * sd_asym_cpucapacity rather than sd_llc.
6507 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6508 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6510 * On an asymmetric CPU capacity system where an exclusive
6511 * cpuset defines a symmetric island (i.e. one unique
6512 * capacity_orig value through the cpuset), the key will be set
6513 * but the CPUs within that cpuset will not have a domain with
6514 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6518 i = select_idle_capacity(p, sd, target);
6519 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6523 sd = rcu_dereference(per_cpu(sd_llc, target));
6527 if (sched_smt_active()) {
6528 has_idle_core = test_idle_cores(target, false);
6530 if (!has_idle_core && cpus_share_cache(prev, target)) {
6531 i = select_idle_smt(p, sd, prev);
6532 if ((unsigned int)i < nr_cpumask_bits)
6537 i = select_idle_cpu(p, sd, has_idle_core, target);
6538 if ((unsigned)i < nr_cpumask_bits)
6545 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6546 * @cpu: the CPU to get the utilization of
6548 * The unit of the return value must be the one of capacity so we can compare
6549 * the utilization with the capacity of the CPU that is available for CFS task
6550 * (ie cpu_capacity).
6552 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6553 * recent utilization of currently non-runnable tasks on a CPU. It represents
6554 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6555 * capacity_orig is the cpu_capacity available at the highest frequency
6556 * (arch_scale_freq_capacity()).
6557 * The utilization of a CPU converges towards a sum equal to or less than the
6558 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6559 * the running time on this CPU scaled by capacity_curr.
6561 * The estimated utilization of a CPU is defined to be the maximum between its
6562 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6563 * currently RUNNABLE on that CPU.
6564 * This allows to properly represent the expected utilization of a CPU which
6565 * has just got a big task running since a long sleep period. At the same time
6566 * however it preserves the benefits of the "blocked utilization" in
6567 * describing the potential for other tasks waking up on the same CPU.
6569 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6570 * higher than capacity_orig because of unfortunate rounding in
6571 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6572 * the average stabilizes with the new running time. We need to check that the
6573 * utilization stays within the range of [0..capacity_orig] and cap it if
6574 * necessary. Without utilization capping, a group could be seen as overloaded
6575 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6576 * available capacity. We allow utilization to overshoot capacity_curr (but not
6577 * capacity_orig) as it useful for predicting the capacity required after task
6578 * migrations (scheduler-driven DVFS).
6580 * Return: the (estimated) utilization for the specified CPU
6582 static inline unsigned long cpu_util(int cpu)
6584 struct cfs_rq *cfs_rq;
6587 cfs_rq = &cpu_rq(cpu)->cfs;
6588 util = READ_ONCE(cfs_rq->avg.util_avg);
6590 if (sched_feat(UTIL_EST))
6591 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6593 return min_t(unsigned long, util, capacity_orig_of(cpu));
6597 * cpu_util_without: compute cpu utilization without any contributions from *p
6598 * @cpu: the CPU which utilization is requested
6599 * @p: the task which utilization should be discounted
6601 * The utilization of a CPU is defined by the utilization of tasks currently
6602 * enqueued on that CPU as well as tasks which are currently sleeping after an
6603 * execution on that CPU.
6605 * This method returns the utilization of the specified CPU by discounting the
6606 * utilization of the specified task, whenever the task is currently
6607 * contributing to the CPU utilization.
6609 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6611 struct cfs_rq *cfs_rq;
6614 /* Task has no contribution or is new */
6615 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6616 return cpu_util(cpu);
6618 cfs_rq = &cpu_rq(cpu)->cfs;
6619 util = READ_ONCE(cfs_rq->avg.util_avg);
6621 /* Discount task's util from CPU's util */
6622 lsub_positive(&util, task_util(p));
6627 * a) if *p is the only task sleeping on this CPU, then:
6628 * cpu_util (== task_util) > util_est (== 0)
6629 * and thus we return:
6630 * cpu_util_without = (cpu_util - task_util) = 0
6632 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6634 * cpu_util >= task_util
6635 * cpu_util > util_est (== 0)
6636 * and thus we discount *p's blocked utilization to return:
6637 * cpu_util_without = (cpu_util - task_util) >= 0
6639 * c) if other tasks are RUNNABLE on that CPU and
6640 * util_est > cpu_util
6641 * then we use util_est since it returns a more restrictive
6642 * estimation of the spare capacity on that CPU, by just
6643 * considering the expected utilization of tasks already
6644 * runnable on that CPU.
6646 * Cases a) and b) are covered by the above code, while case c) is
6647 * covered by the following code when estimated utilization is
6650 if (sched_feat(UTIL_EST)) {
6651 unsigned int estimated =
6652 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6655 * Despite the following checks we still have a small window
6656 * for a possible race, when an execl's select_task_rq_fair()
6657 * races with LB's detach_task():
6660 * p->on_rq = TASK_ON_RQ_MIGRATING;
6661 * ---------------------------------- A
6662 * deactivate_task() \
6663 * dequeue_task() + RaceTime
6664 * util_est_dequeue() /
6665 * ---------------------------------- B
6667 * The additional check on "current == p" it's required to
6668 * properly fix the execl regression and it helps in further
6669 * reducing the chances for the above race.
6671 if (unlikely(task_on_rq_queued(p) || current == p))
6672 lsub_positive(&estimated, _task_util_est(p));
6674 util = max(util, estimated);
6678 * Utilization (estimated) can exceed the CPU capacity, thus let's
6679 * clamp to the maximum CPU capacity to ensure consistency with
6680 * the cpu_util call.
6682 return min_t(unsigned long, util, capacity_orig_of(cpu));
6686 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6689 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6691 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6692 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6695 * If @p migrates from @cpu to another, remove its contribution. Or,
6696 * if @p migrates from another CPU to @cpu, add its contribution. In
6697 * the other cases, @cpu is not impacted by the migration, so the
6698 * util_avg should already be correct.
6700 if (task_cpu(p) == cpu && dst_cpu != cpu)
6701 lsub_positive(&util, task_util(p));
6702 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6703 util += task_util(p);
6705 if (sched_feat(UTIL_EST)) {
6706 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6709 * During wake-up, the task isn't enqueued yet and doesn't
6710 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6711 * so just add it (if needed) to "simulate" what will be
6712 * cpu_util() after the task has been enqueued.
6715 util_est += _task_util_est(p);
6717 util = max(util, util_est);
6720 return min(util, capacity_orig_of(cpu));
6724 * compute_energy(): Estimates the energy that @pd would consume if @p was
6725 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6726 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6727 * to compute what would be the energy if we decided to actually migrate that
6731 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6733 struct cpumask *pd_mask = perf_domain_span(pd);
6734 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6735 unsigned long max_util = 0, sum_util = 0;
6736 unsigned long _cpu_cap = cpu_cap;
6739 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6742 * The capacity state of CPUs of the current rd can be driven by CPUs
6743 * of another rd if they belong to the same pd. So, account for the
6744 * utilization of these CPUs too by masking pd with cpu_online_mask
6745 * instead of the rd span.
6747 * If an entire pd is outside of the current rd, it will not appear in
6748 * its pd list and will not be accounted by compute_energy().
6750 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6751 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6752 unsigned long cpu_util, util_running = util_freq;
6753 struct task_struct *tsk = NULL;
6756 * When @p is placed on @cpu:
6758 * util_running = max(cpu_util, cpu_util_est) +
6759 * max(task_util, _task_util_est)
6761 * while cpu_util_next is: max(cpu_util + task_util,
6762 * cpu_util_est + _task_util_est)
6764 if (cpu == dst_cpu) {
6767 cpu_util_next(cpu, p, -1) + task_util_est(p);
6771 * Busy time computation: utilization clamping is not
6772 * required since the ratio (sum_util / cpu_capacity)
6773 * is already enough to scale the EM reported power
6774 * consumption at the (eventually clamped) cpu_capacity.
6776 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6779 sum_util += min(cpu_util, _cpu_cap);
6782 * Performance domain frequency: utilization clamping
6783 * must be considered since it affects the selection
6784 * of the performance domain frequency.
6785 * NOTE: in case RT tasks are running, by default the
6786 * FREQUENCY_UTIL's utilization can be max OPP.
6788 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6789 FREQUENCY_UTIL, tsk);
6790 max_util = max(max_util, min(cpu_util, _cpu_cap));
6793 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6797 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6798 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6799 * spare capacity in each performance domain and uses it as a potential
6800 * candidate to execute the task. Then, it uses the Energy Model to figure
6801 * out which of the CPU candidates is the most energy-efficient.
6803 * The rationale for this heuristic is as follows. In a performance domain,
6804 * all the most energy efficient CPU candidates (according to the Energy
6805 * Model) are those for which we'll request a low frequency. When there are
6806 * several CPUs for which the frequency request will be the same, we don't
6807 * have enough data to break the tie between them, because the Energy Model
6808 * only includes active power costs. With this model, if we assume that
6809 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6810 * the maximum spare capacity in a performance domain is guaranteed to be among
6811 * the best candidates of the performance domain.
6813 * In practice, it could be preferable from an energy standpoint to pack
6814 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6815 * but that could also hurt our chances to go cluster idle, and we have no
6816 * ways to tell with the current Energy Model if this is actually a good
6817 * idea or not. So, find_energy_efficient_cpu() basically favors
6818 * cluster-packing, and spreading inside a cluster. That should at least be
6819 * a good thing for latency, and this is consistent with the idea that most
6820 * of the energy savings of EAS come from the asymmetry of the system, and
6821 * not so much from breaking the tie between identical CPUs. That's also the
6822 * reason why EAS is enabled in the topology code only for systems where
6823 * SD_ASYM_CPUCAPACITY is set.
6825 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6826 * they don't have any useful utilization data yet and it's not possible to
6827 * forecast their impact on energy consumption. Consequently, they will be
6828 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6829 * to be energy-inefficient in some use-cases. The alternative would be to
6830 * bias new tasks towards specific types of CPUs first, or to try to infer
6831 * their util_avg from the parent task, but those heuristics could hurt
6832 * other use-cases too. So, until someone finds a better way to solve this,
6833 * let's keep things simple by re-using the existing slow path.
6835 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6837 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6838 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6839 int cpu, best_energy_cpu = prev_cpu, target = -1;
6840 unsigned long cpu_cap, util, base_energy = 0;
6841 struct sched_domain *sd;
6842 struct perf_domain *pd;
6845 pd = rcu_dereference(rd->pd);
6846 if (!pd || READ_ONCE(rd->overutilized))
6850 * Energy-aware wake-up happens on the lowest sched_domain starting
6851 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6853 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6854 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6861 sync_entity_load_avg(&p->se);
6862 if (!task_util_est(p))
6865 for (; pd; pd = pd->next) {
6866 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6867 bool compute_prev_delta = false;
6868 unsigned long base_energy_pd;
6869 int max_spare_cap_cpu = -1;
6871 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6872 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6875 util = cpu_util_next(cpu, p, cpu);
6876 cpu_cap = capacity_of(cpu);
6877 spare_cap = cpu_cap;
6878 lsub_positive(&spare_cap, util);
6881 * Skip CPUs that cannot satisfy the capacity request.
6882 * IOW, placing the task there would make the CPU
6883 * overutilized. Take uclamp into account to see how
6884 * much capacity we can get out of the CPU; this is
6885 * aligned with sched_cpu_util().
6887 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6888 if (!fits_capacity(util, cpu_cap))
6891 if (cpu == prev_cpu) {
6892 /* Always use prev_cpu as a candidate. */
6893 compute_prev_delta = true;
6894 } else if (spare_cap > max_spare_cap) {
6896 * Find the CPU with the maximum spare capacity
6897 * in the performance domain.
6899 max_spare_cap = spare_cap;
6900 max_spare_cap_cpu = cpu;
6904 if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6907 /* Compute the 'base' energy of the pd, without @p */
6908 base_energy_pd = compute_energy(p, -1, pd);
6909 base_energy += base_energy_pd;
6911 /* Evaluate the energy impact of using prev_cpu. */
6912 if (compute_prev_delta) {
6913 prev_delta = compute_energy(p, prev_cpu, pd);
6914 if (prev_delta < base_energy_pd)
6916 prev_delta -= base_energy_pd;
6917 best_delta = min(best_delta, prev_delta);
6920 /* Evaluate the energy impact of using max_spare_cap_cpu. */
6921 if (max_spare_cap_cpu >= 0) {
6922 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6923 if (cur_delta < base_energy_pd)
6925 cur_delta -= base_energy_pd;
6926 if (cur_delta < best_delta) {
6927 best_delta = cur_delta;
6928 best_energy_cpu = max_spare_cap_cpu;
6935 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6936 * least 6% of the energy used by prev_cpu.
6938 if ((prev_delta == ULONG_MAX) ||
6939 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6940 target = best_energy_cpu;
6951 * select_task_rq_fair: Select target runqueue for the waking task in domains
6952 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6953 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6955 * Balances load by selecting the idlest CPU in the idlest group, or under
6956 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6958 * Returns the target CPU number.
6961 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6963 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6964 struct sched_domain *tmp, *sd = NULL;
6965 int cpu = smp_processor_id();
6966 int new_cpu = prev_cpu;
6967 int want_affine = 0;
6968 /* SD_flags and WF_flags share the first nibble */
6969 int sd_flag = wake_flags & 0xF;
6972 * required for stable ->cpus_allowed
6974 lockdep_assert_held(&p->pi_lock);
6975 if (wake_flags & WF_TTWU) {
6978 if (sched_energy_enabled()) {
6979 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6985 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6989 for_each_domain(cpu, tmp) {
6991 * If both 'cpu' and 'prev_cpu' are part of this domain,
6992 * cpu is a valid SD_WAKE_AFFINE target.
6994 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6995 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6996 if (cpu != prev_cpu)
6997 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6999 sd = NULL; /* Prefer wake_affine over balance flags */
7003 if (tmp->flags & sd_flag)
7005 else if (!want_affine)
7011 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7012 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
7014 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7021 static void detach_entity_cfs_rq(struct sched_entity *se);
7024 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7025 * cfs_rq_of(p) references at time of call are still valid and identify the
7026 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7028 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7031 * As blocked tasks retain absolute vruntime the migration needs to
7032 * deal with this by subtracting the old and adding the new
7033 * min_vruntime -- the latter is done by enqueue_entity() when placing
7034 * the task on the new runqueue.
7036 if (READ_ONCE(p->__state) == TASK_WAKING) {
7037 struct sched_entity *se = &p->se;
7038 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7041 #ifndef CONFIG_64BIT
7042 u64 min_vruntime_copy;
7045 min_vruntime_copy = cfs_rq->min_vruntime_copy;
7047 min_vruntime = cfs_rq->min_vruntime;
7048 } while (min_vruntime != min_vruntime_copy);
7050 min_vruntime = cfs_rq->min_vruntime;
7053 se->vruntime -= min_vruntime;
7056 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7058 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7059 * rq->lock and can modify state directly.
7061 lockdep_assert_rq_held(task_rq(p));
7062 detach_entity_cfs_rq(&p->se);
7066 * We are supposed to update the task to "current" time, then
7067 * its up to date and ready to go to new CPU/cfs_rq. But we
7068 * have difficulty in getting what current time is, so simply
7069 * throw away the out-of-date time. This will result in the
7070 * wakee task is less decayed, but giving the wakee more load
7073 remove_entity_load_avg(&p->se);
7076 /* Tell new CPU we are migrated */
7077 p->se.avg.last_update_time = 0;
7079 /* We have migrated, no longer consider this task hot */
7080 p->se.exec_start = 0;
7082 update_scan_period(p, new_cpu);
7085 static void task_dead_fair(struct task_struct *p)
7087 remove_entity_load_avg(&p->se);
7091 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7096 return newidle_balance(rq, rf) != 0;
7098 #endif /* CONFIG_SMP */
7100 static unsigned long wakeup_gran(struct sched_entity *se)
7102 unsigned long gran = sysctl_sched_wakeup_granularity;
7105 * Since its curr running now, convert the gran from real-time
7106 * to virtual-time in his units.
7108 * By using 'se' instead of 'curr' we penalize light tasks, so
7109 * they get preempted easier. That is, if 'se' < 'curr' then
7110 * the resulting gran will be larger, therefore penalizing the
7111 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7112 * be smaller, again penalizing the lighter task.
7114 * This is especially important for buddies when the leftmost
7115 * task is higher priority than the buddy.
7117 return calc_delta_fair(gran, se);
7121 * Should 'se' preempt 'curr'.
7135 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7137 s64 gran, vdiff = curr->vruntime - se->vruntime;
7142 gran = wakeup_gran(se);
7149 static void set_last_buddy(struct sched_entity *se)
7151 for_each_sched_entity(se) {
7152 if (SCHED_WARN_ON(!se->on_rq))
7156 cfs_rq_of(se)->last = se;
7160 static void set_next_buddy(struct sched_entity *se)
7162 for_each_sched_entity(se) {
7163 if (SCHED_WARN_ON(!se->on_rq))
7167 cfs_rq_of(se)->next = se;
7171 static void set_skip_buddy(struct sched_entity *se)
7173 for_each_sched_entity(se)
7174 cfs_rq_of(se)->skip = se;
7178 * Preempt the current task with a newly woken task if needed:
7180 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7182 struct task_struct *curr = rq->curr;
7183 struct sched_entity *se = &curr->se, *pse = &p->se;
7184 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7185 int scale = cfs_rq->nr_running >= sched_nr_latency;
7186 int next_buddy_marked = 0;
7187 int cse_is_idle, pse_is_idle;
7189 if (unlikely(se == pse))
7193 * This is possible from callers such as attach_tasks(), in which we
7194 * unconditionally check_preempt_curr() after an enqueue (which may have
7195 * lead to a throttle). This both saves work and prevents false
7196 * next-buddy nomination below.
7198 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7201 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7202 set_next_buddy(pse);
7203 next_buddy_marked = 1;
7207 * We can come here with TIF_NEED_RESCHED already set from new task
7210 * Note: this also catches the edge-case of curr being in a throttled
7211 * group (e.g. via set_curr_task), since update_curr() (in the
7212 * enqueue of curr) will have resulted in resched being set. This
7213 * prevents us from potentially nominating it as a false LAST_BUDDY
7216 if (test_tsk_need_resched(curr))
7219 /* Idle tasks are by definition preempted by non-idle tasks. */
7220 if (unlikely(task_has_idle_policy(curr)) &&
7221 likely(!task_has_idle_policy(p)))
7225 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7226 * is driven by the tick):
7228 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7231 find_matching_se(&se, &pse);
7234 cse_is_idle = se_is_idle(se);
7235 pse_is_idle = se_is_idle(pse);
7238 * Preempt an idle group in favor of a non-idle group (and don't preempt
7239 * in the inverse case).
7241 if (cse_is_idle && !pse_is_idle)
7243 if (cse_is_idle != pse_is_idle)
7246 update_curr(cfs_rq_of(se));
7247 if (wakeup_preempt_entity(se, pse) == 1) {
7249 * Bias pick_next to pick the sched entity that is
7250 * triggering this preemption.
7252 if (!next_buddy_marked)
7253 set_next_buddy(pse);
7262 * Only set the backward buddy when the current task is still
7263 * on the rq. This can happen when a wakeup gets interleaved
7264 * with schedule on the ->pre_schedule() or idle_balance()
7265 * point, either of which can * drop the rq lock.
7267 * Also, during early boot the idle thread is in the fair class,
7268 * for obvious reasons its a bad idea to schedule back to it.
7270 if (unlikely(!se->on_rq || curr == rq->idle))
7273 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7278 static struct task_struct *pick_task_fair(struct rq *rq)
7280 struct sched_entity *se;
7281 struct cfs_rq *cfs_rq;
7285 if (!cfs_rq->nr_running)
7289 struct sched_entity *curr = cfs_rq->curr;
7291 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7294 update_curr(cfs_rq);
7298 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7302 se = pick_next_entity(cfs_rq, curr);
7303 cfs_rq = group_cfs_rq(se);
7310 struct task_struct *
7311 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7313 struct cfs_rq *cfs_rq = &rq->cfs;
7314 struct sched_entity *se;
7315 struct task_struct *p;
7319 if (!sched_fair_runnable(rq))
7322 #ifdef CONFIG_FAIR_GROUP_SCHED
7323 if (!prev || prev->sched_class != &fair_sched_class)
7327 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7328 * likely that a next task is from the same cgroup as the current.
7330 * Therefore attempt to avoid putting and setting the entire cgroup
7331 * hierarchy, only change the part that actually changes.
7335 struct sched_entity *curr = cfs_rq->curr;
7338 * Since we got here without doing put_prev_entity() we also
7339 * have to consider cfs_rq->curr. If it is still a runnable
7340 * entity, update_curr() will update its vruntime, otherwise
7341 * forget we've ever seen it.
7345 update_curr(cfs_rq);
7350 * This call to check_cfs_rq_runtime() will do the
7351 * throttle and dequeue its entity in the parent(s).
7352 * Therefore the nr_running test will indeed
7355 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7358 if (!cfs_rq->nr_running)
7365 se = pick_next_entity(cfs_rq, curr);
7366 cfs_rq = group_cfs_rq(se);
7372 * Since we haven't yet done put_prev_entity and if the selected task
7373 * is a different task than we started out with, try and touch the
7374 * least amount of cfs_rqs.
7377 struct sched_entity *pse = &prev->se;
7379 while (!(cfs_rq = is_same_group(se, pse))) {
7380 int se_depth = se->depth;
7381 int pse_depth = pse->depth;
7383 if (se_depth <= pse_depth) {
7384 put_prev_entity(cfs_rq_of(pse), pse);
7385 pse = parent_entity(pse);
7387 if (se_depth >= pse_depth) {
7388 set_next_entity(cfs_rq_of(se), se);
7389 se = parent_entity(se);
7393 put_prev_entity(cfs_rq, pse);
7394 set_next_entity(cfs_rq, se);
7401 put_prev_task(rq, prev);
7404 se = pick_next_entity(cfs_rq, NULL);
7405 set_next_entity(cfs_rq, se);
7406 cfs_rq = group_cfs_rq(se);
7411 done: __maybe_unused;
7414 * Move the next running task to the front of
7415 * the list, so our cfs_tasks list becomes MRU
7418 list_move(&p->se.group_node, &rq->cfs_tasks);
7421 if (hrtick_enabled_fair(rq))
7422 hrtick_start_fair(rq, p);
7424 update_misfit_status(p, rq);
7432 new_tasks = newidle_balance(rq, rf);
7435 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7436 * possible for any higher priority task to appear. In that case we
7437 * must re-start the pick_next_entity() loop.
7446 * rq is about to be idle, check if we need to update the
7447 * lost_idle_time of clock_pelt
7449 update_idle_rq_clock_pelt(rq);
7454 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7456 return pick_next_task_fair(rq, NULL, NULL);
7460 * Account for a descheduled task:
7462 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7464 struct sched_entity *se = &prev->se;
7465 struct cfs_rq *cfs_rq;
7467 for_each_sched_entity(se) {
7468 cfs_rq = cfs_rq_of(se);
7469 put_prev_entity(cfs_rq, se);
7474 * sched_yield() is very simple
7476 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7478 static void yield_task_fair(struct rq *rq)
7480 struct task_struct *curr = rq->curr;
7481 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7482 struct sched_entity *se = &curr->se;
7485 * Are we the only task in the tree?
7487 if (unlikely(rq->nr_running == 1))
7490 clear_buddies(cfs_rq, se);
7492 if (curr->policy != SCHED_BATCH) {
7493 update_rq_clock(rq);
7495 * Update run-time statistics of the 'current'.
7497 update_curr(cfs_rq);
7499 * Tell update_rq_clock() that we've just updated,
7500 * so we don't do microscopic update in schedule()
7501 * and double the fastpath cost.
7503 rq_clock_skip_update(rq);
7509 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7511 struct sched_entity *se = &p->se;
7513 /* throttled hierarchies are not runnable */
7514 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7517 /* Tell the scheduler that we'd really like pse to run next. */
7520 yield_task_fair(rq);
7526 /**************************************************
7527 * Fair scheduling class load-balancing methods.
7531 * The purpose of load-balancing is to achieve the same basic fairness the
7532 * per-CPU scheduler provides, namely provide a proportional amount of compute
7533 * time to each task. This is expressed in the following equation:
7535 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7537 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7538 * W_i,0 is defined as:
7540 * W_i,0 = \Sum_j w_i,j (2)
7542 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7543 * is derived from the nice value as per sched_prio_to_weight[].
7545 * The weight average is an exponential decay average of the instantaneous
7548 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7550 * C_i is the compute capacity of CPU i, typically it is the
7551 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7552 * can also include other factors [XXX].
7554 * To achieve this balance we define a measure of imbalance which follows
7555 * directly from (1):
7557 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7559 * We them move tasks around to minimize the imbalance. In the continuous
7560 * function space it is obvious this converges, in the discrete case we get
7561 * a few fun cases generally called infeasible weight scenarios.
7564 * - infeasible weights;
7565 * - local vs global optima in the discrete case. ]
7570 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7571 * for all i,j solution, we create a tree of CPUs that follows the hardware
7572 * topology where each level pairs two lower groups (or better). This results
7573 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7574 * tree to only the first of the previous level and we decrease the frequency
7575 * of load-balance at each level inv. proportional to the number of CPUs in
7581 * \Sum { --- * --- * 2^i } = O(n) (5)
7583 * `- size of each group
7584 * | | `- number of CPUs doing load-balance
7586 * `- sum over all levels
7588 * Coupled with a limit on how many tasks we can migrate every balance pass,
7589 * this makes (5) the runtime complexity of the balancer.
7591 * An important property here is that each CPU is still (indirectly) connected
7592 * to every other CPU in at most O(log n) steps:
7594 * The adjacency matrix of the resulting graph is given by:
7597 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7600 * And you'll find that:
7602 * A^(log_2 n)_i,j != 0 for all i,j (7)
7604 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7605 * The task movement gives a factor of O(m), giving a convergence complexity
7608 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7613 * In order to avoid CPUs going idle while there's still work to do, new idle
7614 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7615 * tree itself instead of relying on other CPUs to bring it work.
7617 * This adds some complexity to both (5) and (8) but it reduces the total idle
7625 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7628 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7633 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7635 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7637 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7640 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7641 * rewrite all of this once again.]
7644 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7646 enum fbq_type { regular, remote, all };
7649 * 'group_type' describes the group of CPUs at the moment of load balancing.
7651 * The enum is ordered by pulling priority, with the group with lowest priority
7652 * first so the group_type can simply be compared when selecting the busiest
7653 * group. See update_sd_pick_busiest().
7656 /* The group has spare capacity that can be used to run more tasks. */
7657 group_has_spare = 0,
7659 * The group is fully used and the tasks don't compete for more CPU
7660 * cycles. Nevertheless, some tasks might wait before running.
7664 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7665 * and must be migrated to a more powerful CPU.
7669 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7670 * and the task should be migrated to it instead of running on the
7675 * The tasks' affinity constraints previously prevented the scheduler
7676 * from balancing the load across the system.
7680 * The CPU is overloaded and can't provide expected CPU cycles to all
7686 enum migration_type {
7693 #define LBF_ALL_PINNED 0x01
7694 #define LBF_NEED_BREAK 0x02
7695 #define LBF_DST_PINNED 0x04
7696 #define LBF_SOME_PINNED 0x08
7697 #define LBF_ACTIVE_LB 0x10
7700 struct sched_domain *sd;
7708 struct cpumask *dst_grpmask;
7710 enum cpu_idle_type idle;
7712 /* The set of CPUs under consideration for load-balancing */
7713 struct cpumask *cpus;
7718 unsigned int loop_break;
7719 unsigned int loop_max;
7721 enum fbq_type fbq_type;
7722 enum migration_type migration_type;
7723 struct list_head tasks;
7727 * Is this task likely cache-hot:
7729 static int task_hot(struct task_struct *p, struct lb_env *env)
7733 lockdep_assert_rq_held(env->src_rq);
7735 if (p->sched_class != &fair_sched_class)
7738 if (unlikely(task_has_idle_policy(p)))
7741 /* SMT siblings share cache */
7742 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7746 * Buddy candidates are cache hot:
7748 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7749 (&p->se == cfs_rq_of(&p->se)->next ||
7750 &p->se == cfs_rq_of(&p->se)->last))
7753 if (sysctl_sched_migration_cost == -1)
7757 * Don't migrate task if the task's cookie does not match
7758 * with the destination CPU's core cookie.
7760 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7763 if (sysctl_sched_migration_cost == 0)
7766 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7768 return delta < (s64)sysctl_sched_migration_cost;
7771 #ifdef CONFIG_NUMA_BALANCING
7773 * Returns 1, if task migration degrades locality
7774 * Returns 0, if task migration improves locality i.e migration preferred.
7775 * Returns -1, if task migration is not affected by locality.
7777 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7779 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7780 unsigned long src_weight, dst_weight;
7781 int src_nid, dst_nid, dist;
7783 if (!static_branch_likely(&sched_numa_balancing))
7786 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7789 src_nid = cpu_to_node(env->src_cpu);
7790 dst_nid = cpu_to_node(env->dst_cpu);
7792 if (src_nid == dst_nid)
7795 /* Migrating away from the preferred node is always bad. */
7796 if (src_nid == p->numa_preferred_nid) {
7797 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7803 /* Encourage migration to the preferred node. */
7804 if (dst_nid == p->numa_preferred_nid)
7807 /* Leaving a core idle is often worse than degrading locality. */
7808 if (env->idle == CPU_IDLE)
7811 dist = node_distance(src_nid, dst_nid);
7813 src_weight = group_weight(p, src_nid, dist);
7814 dst_weight = group_weight(p, dst_nid, dist);
7816 src_weight = task_weight(p, src_nid, dist);
7817 dst_weight = task_weight(p, dst_nid, dist);
7820 return dst_weight < src_weight;
7824 static inline int migrate_degrades_locality(struct task_struct *p,
7832 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7835 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7839 lockdep_assert_rq_held(env->src_rq);
7842 * We do not migrate tasks that are:
7843 * 1) throttled_lb_pair, or
7844 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7845 * 3) running (obviously), or
7846 * 4) are cache-hot on their current CPU.
7848 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7851 /* Disregard pcpu kthreads; they are where they need to be. */
7852 if (kthread_is_per_cpu(p))
7855 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7858 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7860 env->flags |= LBF_SOME_PINNED;
7863 * Remember if this task can be migrated to any other CPU in
7864 * our sched_group. We may want to revisit it if we couldn't
7865 * meet load balance goals by pulling other tasks on src_cpu.
7867 * Avoid computing new_dst_cpu
7869 * - if we have already computed one in current iteration
7870 * - if it's an active balance
7872 if (env->idle == CPU_NEWLY_IDLE ||
7873 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7876 /* Prevent to re-select dst_cpu via env's CPUs: */
7877 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7878 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7879 env->flags |= LBF_DST_PINNED;
7880 env->new_dst_cpu = cpu;
7888 /* Record that we found at least one task that could run on dst_cpu */
7889 env->flags &= ~LBF_ALL_PINNED;
7891 if (task_running(env->src_rq, p)) {
7892 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7897 * Aggressive migration if:
7899 * 2) destination numa is preferred
7900 * 3) task is cache cold, or
7901 * 4) too many balance attempts have failed.
7903 if (env->flags & LBF_ACTIVE_LB)
7906 tsk_cache_hot = migrate_degrades_locality(p, env);
7907 if (tsk_cache_hot == -1)
7908 tsk_cache_hot = task_hot(p, env);
7910 if (tsk_cache_hot <= 0 ||
7911 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7912 if (tsk_cache_hot == 1) {
7913 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7914 schedstat_inc(p->se.statistics.nr_forced_migrations);
7919 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7924 * detach_task() -- detach the task for the migration specified in env
7926 static void detach_task(struct task_struct *p, struct lb_env *env)
7928 lockdep_assert_rq_held(env->src_rq);
7930 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7931 set_task_cpu(p, env->dst_cpu);
7935 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7936 * part of active balancing operations within "domain".
7938 * Returns a task if successful and NULL otherwise.
7940 static struct task_struct *detach_one_task(struct lb_env *env)
7942 struct task_struct *p;
7944 lockdep_assert_rq_held(env->src_rq);
7946 list_for_each_entry_reverse(p,
7947 &env->src_rq->cfs_tasks, se.group_node) {
7948 if (!can_migrate_task(p, env))
7951 detach_task(p, env);
7954 * Right now, this is only the second place where
7955 * lb_gained[env->idle] is updated (other is detach_tasks)
7956 * so we can safely collect stats here rather than
7957 * inside detach_tasks().
7959 schedstat_inc(env->sd->lb_gained[env->idle]);
7965 static const unsigned int sched_nr_migrate_break = 32;
7968 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7969 * busiest_rq, as part of a balancing operation within domain "sd".
7971 * Returns number of detached tasks if successful and 0 otherwise.
7973 static int detach_tasks(struct lb_env *env)
7975 struct list_head *tasks = &env->src_rq->cfs_tasks;
7976 unsigned long util, load;
7977 struct task_struct *p;
7980 lockdep_assert_rq_held(env->src_rq);
7983 * Source run queue has been emptied by another CPU, clear
7984 * LBF_ALL_PINNED flag as we will not test any task.
7986 if (env->src_rq->nr_running <= 1) {
7987 env->flags &= ~LBF_ALL_PINNED;
7991 if (env->imbalance <= 0)
7994 while (!list_empty(tasks)) {
7996 * We don't want to steal all, otherwise we may be treated likewise,
7997 * which could at worst lead to a livelock crash.
7999 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8002 p = list_last_entry(tasks, struct task_struct, se.group_node);
8005 /* We've more or less seen every task there is, call it quits */
8006 if (env->loop > env->loop_max)
8009 /* take a breather every nr_migrate tasks */
8010 if (env->loop > env->loop_break) {
8011 env->loop_break += sched_nr_migrate_break;
8012 env->flags |= LBF_NEED_BREAK;
8016 if (!can_migrate_task(p, env))
8019 switch (env->migration_type) {
8022 * Depending of the number of CPUs and tasks and the
8023 * cgroup hierarchy, task_h_load() can return a null
8024 * value. Make sure that env->imbalance decreases
8025 * otherwise detach_tasks() will stop only after
8026 * detaching up to loop_max tasks.
8028 load = max_t(unsigned long, task_h_load(p), 1);
8030 if (sched_feat(LB_MIN) &&
8031 load < 16 && !env->sd->nr_balance_failed)
8035 * Make sure that we don't migrate too much load.
8036 * Nevertheless, let relax the constraint if
8037 * scheduler fails to find a good waiting task to
8040 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8043 env->imbalance -= load;
8047 util = task_util_est(p);
8049 if (util > env->imbalance)
8052 env->imbalance -= util;
8059 case migrate_misfit:
8060 /* This is not a misfit task */
8061 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
8068 detach_task(p, env);
8069 list_add(&p->se.group_node, &env->tasks);
8073 #ifdef CONFIG_PREEMPTION
8075 * NEWIDLE balancing is a source of latency, so preemptible
8076 * kernels will stop after the first task is detached to minimize
8077 * the critical section.
8079 if (env->idle == CPU_NEWLY_IDLE)
8084 * We only want to steal up to the prescribed amount of
8087 if (env->imbalance <= 0)
8092 list_move(&p->se.group_node, tasks);
8096 * Right now, this is one of only two places we collect this stat
8097 * so we can safely collect detach_one_task() stats here rather
8098 * than inside detach_one_task().
8100 schedstat_add(env->sd->lb_gained[env->idle], detached);
8106 * attach_task() -- attach the task detached by detach_task() to its new rq.
8108 static void attach_task(struct rq *rq, struct task_struct *p)
8110 lockdep_assert_rq_held(rq);
8112 BUG_ON(task_rq(p) != rq);
8113 activate_task(rq, p, ENQUEUE_NOCLOCK);
8114 check_preempt_curr(rq, p, 0);
8118 * attach_one_task() -- attaches the task returned from detach_one_task() to
8121 static void attach_one_task(struct rq *rq, struct task_struct *p)
8126 update_rq_clock(rq);
8132 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8135 static void attach_tasks(struct lb_env *env)
8137 struct list_head *tasks = &env->tasks;
8138 struct task_struct *p;
8141 rq_lock(env->dst_rq, &rf);
8142 update_rq_clock(env->dst_rq);
8144 while (!list_empty(tasks)) {
8145 p = list_first_entry(tasks, struct task_struct, se.group_node);
8146 list_del_init(&p->se.group_node);
8148 attach_task(env->dst_rq, p);
8151 rq_unlock(env->dst_rq, &rf);
8154 #ifdef CONFIG_NO_HZ_COMMON
8155 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8157 if (cfs_rq->avg.load_avg)
8160 if (cfs_rq->avg.util_avg)
8166 static inline bool others_have_blocked(struct rq *rq)
8168 if (READ_ONCE(rq->avg_rt.util_avg))
8171 if (READ_ONCE(rq->avg_dl.util_avg))
8174 if (thermal_load_avg(rq))
8177 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8178 if (READ_ONCE(rq->avg_irq.util_avg))
8185 static inline void update_blocked_load_tick(struct rq *rq)
8187 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8190 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8193 rq->has_blocked_load = 0;
8196 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8197 static inline bool others_have_blocked(struct rq *rq) { return false; }
8198 static inline void update_blocked_load_tick(struct rq *rq) {}
8199 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8202 static bool __update_blocked_others(struct rq *rq, bool *done)
8204 const struct sched_class *curr_class;
8205 u64 now = rq_clock_pelt(rq);
8206 unsigned long thermal_pressure;
8210 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8211 * DL and IRQ signals have been updated before updating CFS.
8213 curr_class = rq->curr->sched_class;
8215 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8217 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8218 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8219 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8220 update_irq_load_avg(rq, 0);
8222 if (others_have_blocked(rq))
8228 #ifdef CONFIG_FAIR_GROUP_SCHED
8230 static bool __update_blocked_fair(struct rq *rq, bool *done)
8232 struct cfs_rq *cfs_rq, *pos;
8233 bool decayed = false;
8234 int cpu = cpu_of(rq);
8237 * Iterates the task_group tree in a bottom up fashion, see
8238 * list_add_leaf_cfs_rq() for details.
8240 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8241 struct sched_entity *se;
8243 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8244 update_tg_load_avg(cfs_rq);
8246 if (cfs_rq == &rq->cfs)
8250 /* Propagate pending load changes to the parent, if any: */
8251 se = cfs_rq->tg->se[cpu];
8252 if (se && !skip_blocked_update(se))
8253 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8256 * There can be a lot of idle CPU cgroups. Don't let fully
8257 * decayed cfs_rqs linger on the list.
8259 if (cfs_rq_is_decayed(cfs_rq))
8260 list_del_leaf_cfs_rq(cfs_rq);
8262 /* Don't need periodic decay once load/util_avg are null */
8263 if (cfs_rq_has_blocked(cfs_rq))
8271 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8272 * This needs to be done in a top-down fashion because the load of a child
8273 * group is a fraction of its parents load.
8275 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8277 struct rq *rq = rq_of(cfs_rq);
8278 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8279 unsigned long now = jiffies;
8282 if (cfs_rq->last_h_load_update == now)
8285 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8286 for_each_sched_entity(se) {
8287 cfs_rq = cfs_rq_of(se);
8288 WRITE_ONCE(cfs_rq->h_load_next, se);
8289 if (cfs_rq->last_h_load_update == now)
8294 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8295 cfs_rq->last_h_load_update = now;
8298 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8299 load = cfs_rq->h_load;
8300 load = div64_ul(load * se->avg.load_avg,
8301 cfs_rq_load_avg(cfs_rq) + 1);
8302 cfs_rq = group_cfs_rq(se);
8303 cfs_rq->h_load = load;
8304 cfs_rq->last_h_load_update = now;
8308 static unsigned long task_h_load(struct task_struct *p)
8310 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8312 update_cfs_rq_h_load(cfs_rq);
8313 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8314 cfs_rq_load_avg(cfs_rq) + 1);
8317 static bool __update_blocked_fair(struct rq *rq, bool *done)
8319 struct cfs_rq *cfs_rq = &rq->cfs;
8322 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8323 if (cfs_rq_has_blocked(cfs_rq))
8329 static unsigned long task_h_load(struct task_struct *p)
8331 return p->se.avg.load_avg;
8335 static void update_blocked_averages(int cpu)
8337 bool decayed = false, done = true;
8338 struct rq *rq = cpu_rq(cpu);
8341 rq_lock_irqsave(rq, &rf);
8342 update_blocked_load_tick(rq);
8343 update_rq_clock(rq);
8345 decayed |= __update_blocked_others(rq, &done);
8346 decayed |= __update_blocked_fair(rq, &done);
8348 update_blocked_load_status(rq, !done);
8350 cpufreq_update_util(rq, 0);
8351 rq_unlock_irqrestore(rq, &rf);
8354 /********** Helpers for find_busiest_group ************************/
8357 * sg_lb_stats - stats of a sched_group required for load_balancing
8359 struct sg_lb_stats {
8360 unsigned long avg_load; /*Avg load across the CPUs of the group */
8361 unsigned long group_load; /* Total load over the CPUs of the group */
8362 unsigned long group_capacity;
8363 unsigned long group_util; /* Total utilization over the CPUs of the group */
8364 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8365 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8366 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8367 unsigned int idle_cpus;
8368 unsigned int group_weight;
8369 enum group_type group_type;
8370 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8371 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8372 #ifdef CONFIG_NUMA_BALANCING
8373 unsigned int nr_numa_running;
8374 unsigned int nr_preferred_running;
8379 * sd_lb_stats - Structure to store the statistics of a sched_domain
8380 * during load balancing.
8382 struct sd_lb_stats {
8383 struct sched_group *busiest; /* Busiest group in this sd */
8384 struct sched_group *local; /* Local group in this sd */
8385 unsigned long total_load; /* Total load of all groups in sd */
8386 unsigned long total_capacity; /* Total capacity of all groups in sd */
8387 unsigned long avg_load; /* Average load across all groups in sd */
8388 unsigned int prefer_sibling; /* tasks should go to sibling first */
8390 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8391 struct sg_lb_stats local_stat; /* Statistics of the local group */
8394 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8397 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8398 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8399 * We must however set busiest_stat::group_type and
8400 * busiest_stat::idle_cpus to the worst busiest group because
8401 * update_sd_pick_busiest() reads these before assignment.
8403 *sds = (struct sd_lb_stats){
8407 .total_capacity = 0UL,
8409 .idle_cpus = UINT_MAX,
8410 .group_type = group_has_spare,
8415 static unsigned long scale_rt_capacity(int cpu)
8417 struct rq *rq = cpu_rq(cpu);
8418 unsigned long max = arch_scale_cpu_capacity(cpu);
8419 unsigned long used, free;
8422 irq = cpu_util_irq(rq);
8424 if (unlikely(irq >= max))
8428 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8429 * (running and not running) with weights 0 and 1024 respectively.
8430 * avg_thermal.load_avg tracks thermal pressure and the weighted
8431 * average uses the actual delta max capacity(load).
8433 used = READ_ONCE(rq->avg_rt.util_avg);
8434 used += READ_ONCE(rq->avg_dl.util_avg);
8435 used += thermal_load_avg(rq);
8437 if (unlikely(used >= max))
8442 return scale_irq_capacity(free, irq, max);
8445 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8447 unsigned long capacity = scale_rt_capacity(cpu);
8448 struct sched_group *sdg = sd->groups;
8450 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8455 cpu_rq(cpu)->cpu_capacity = capacity;
8456 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8458 sdg->sgc->capacity = capacity;
8459 sdg->sgc->min_capacity = capacity;
8460 sdg->sgc->max_capacity = capacity;
8463 void update_group_capacity(struct sched_domain *sd, int cpu)
8465 struct sched_domain *child = sd->child;
8466 struct sched_group *group, *sdg = sd->groups;
8467 unsigned long capacity, min_capacity, max_capacity;
8468 unsigned long interval;
8470 interval = msecs_to_jiffies(sd->balance_interval);
8471 interval = clamp(interval, 1UL, max_load_balance_interval);
8472 sdg->sgc->next_update = jiffies + interval;
8475 update_cpu_capacity(sd, cpu);
8480 min_capacity = ULONG_MAX;
8483 if (child->flags & SD_OVERLAP) {
8485 * SD_OVERLAP domains cannot assume that child groups
8486 * span the current group.
8489 for_each_cpu(cpu, sched_group_span(sdg)) {
8490 unsigned long cpu_cap = capacity_of(cpu);
8492 capacity += cpu_cap;
8493 min_capacity = min(cpu_cap, min_capacity);
8494 max_capacity = max(cpu_cap, max_capacity);
8498 * !SD_OVERLAP domains can assume that child groups
8499 * span the current group.
8502 group = child->groups;
8504 struct sched_group_capacity *sgc = group->sgc;
8506 capacity += sgc->capacity;
8507 min_capacity = min(sgc->min_capacity, min_capacity);
8508 max_capacity = max(sgc->max_capacity, max_capacity);
8509 group = group->next;
8510 } while (group != child->groups);
8513 sdg->sgc->capacity = capacity;
8514 sdg->sgc->min_capacity = min_capacity;
8515 sdg->sgc->max_capacity = max_capacity;
8519 * Check whether the capacity of the rq has been noticeably reduced by side
8520 * activity. The imbalance_pct is used for the threshold.
8521 * Return true is the capacity is reduced
8524 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8526 return ((rq->cpu_capacity * sd->imbalance_pct) <
8527 (rq->cpu_capacity_orig * 100));
8531 * Check whether a rq has a misfit task and if it looks like we can actually
8532 * help that task: we can migrate the task to a CPU of higher capacity, or
8533 * the task's current CPU is heavily pressured.
8535 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8537 return rq->misfit_task_load &&
8538 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8539 check_cpu_capacity(rq, sd));
8543 * Group imbalance indicates (and tries to solve) the problem where balancing
8544 * groups is inadequate due to ->cpus_ptr constraints.
8546 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8547 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8550 * { 0 1 2 3 } { 4 5 6 7 }
8553 * If we were to balance group-wise we'd place two tasks in the first group and
8554 * two tasks in the second group. Clearly this is undesired as it will overload
8555 * cpu 3 and leave one of the CPUs in the second group unused.
8557 * The current solution to this issue is detecting the skew in the first group
8558 * by noticing the lower domain failed to reach balance and had difficulty
8559 * moving tasks due to affinity constraints.
8561 * When this is so detected; this group becomes a candidate for busiest; see
8562 * update_sd_pick_busiest(). And calculate_imbalance() and
8563 * find_busiest_group() avoid some of the usual balance conditions to allow it
8564 * to create an effective group imbalance.
8566 * This is a somewhat tricky proposition since the next run might not find the
8567 * group imbalance and decide the groups need to be balanced again. A most
8568 * subtle and fragile situation.
8571 static inline int sg_imbalanced(struct sched_group *group)
8573 return group->sgc->imbalance;
8577 * group_has_capacity returns true if the group has spare capacity that could
8578 * be used by some tasks.
8579 * We consider that a group has spare capacity if the * number of task is
8580 * smaller than the number of CPUs or if the utilization is lower than the
8581 * available capacity for CFS tasks.
8582 * For the latter, we use a threshold to stabilize the state, to take into
8583 * account the variance of the tasks' load and to return true if the available
8584 * capacity in meaningful for the load balancer.
8585 * As an example, an available capacity of 1% can appear but it doesn't make
8586 * any benefit for the load balance.
8589 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8591 if (sgs->sum_nr_running < sgs->group_weight)
8594 if ((sgs->group_capacity * imbalance_pct) <
8595 (sgs->group_runnable * 100))
8598 if ((sgs->group_capacity * 100) >
8599 (sgs->group_util * imbalance_pct))
8606 * group_is_overloaded returns true if the group has more tasks than it can
8608 * group_is_overloaded is not equals to !group_has_capacity because a group
8609 * with the exact right number of tasks, has no more spare capacity but is not
8610 * overloaded so both group_has_capacity and group_is_overloaded return
8614 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8616 if (sgs->sum_nr_running <= sgs->group_weight)
8619 if ((sgs->group_capacity * 100) <
8620 (sgs->group_util * imbalance_pct))
8623 if ((sgs->group_capacity * imbalance_pct) <
8624 (sgs->group_runnable * 100))
8631 group_type group_classify(unsigned int imbalance_pct,
8632 struct sched_group *group,
8633 struct sg_lb_stats *sgs)
8635 if (group_is_overloaded(imbalance_pct, sgs))
8636 return group_overloaded;
8638 if (sg_imbalanced(group))
8639 return group_imbalanced;
8641 if (sgs->group_asym_packing)
8642 return group_asym_packing;
8644 if (sgs->group_misfit_task_load)
8645 return group_misfit_task;
8647 if (!group_has_capacity(imbalance_pct, sgs))
8648 return group_fully_busy;
8650 return group_has_spare;
8654 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8655 * @env: The load balancing environment.
8656 * @group: sched_group whose statistics are to be updated.
8657 * @sgs: variable to hold the statistics for this group.
8658 * @sg_status: Holds flag indicating the status of the sched_group
8660 static inline void update_sg_lb_stats(struct lb_env *env,
8661 struct sched_group *group,
8662 struct sg_lb_stats *sgs,
8665 int i, nr_running, local_group;
8667 memset(sgs, 0, sizeof(*sgs));
8669 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8671 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8672 struct rq *rq = cpu_rq(i);
8674 sgs->group_load += cpu_load(rq);
8675 sgs->group_util += cpu_util(i);
8676 sgs->group_runnable += cpu_runnable(rq);
8677 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8679 nr_running = rq->nr_running;
8680 sgs->sum_nr_running += nr_running;
8683 *sg_status |= SG_OVERLOAD;
8685 if (cpu_overutilized(i))
8686 *sg_status |= SG_OVERUTILIZED;
8688 #ifdef CONFIG_NUMA_BALANCING
8689 sgs->nr_numa_running += rq->nr_numa_running;
8690 sgs->nr_preferred_running += rq->nr_preferred_running;
8693 * No need to call idle_cpu() if nr_running is not 0
8695 if (!nr_running && idle_cpu(i)) {
8697 /* Idle cpu can't have misfit task */
8704 /* Check for a misfit task on the cpu */
8705 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8706 sgs->group_misfit_task_load < rq->misfit_task_load) {
8707 sgs->group_misfit_task_load = rq->misfit_task_load;
8708 *sg_status |= SG_OVERLOAD;
8712 /* Check if dst CPU is idle and preferred to this group */
8713 if (env->sd->flags & SD_ASYM_PACKING &&
8714 env->idle != CPU_NOT_IDLE &&
8715 sgs->sum_h_nr_running &&
8716 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8717 sgs->group_asym_packing = 1;
8720 sgs->group_capacity = group->sgc->capacity;
8722 sgs->group_weight = group->group_weight;
8724 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8726 /* Computing avg_load makes sense only when group is overloaded */
8727 if (sgs->group_type == group_overloaded)
8728 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8729 sgs->group_capacity;
8733 * update_sd_pick_busiest - return 1 on busiest group
8734 * @env: The load balancing environment.
8735 * @sds: sched_domain statistics
8736 * @sg: sched_group candidate to be checked for being the busiest
8737 * @sgs: sched_group statistics
8739 * Determine if @sg is a busier group than the previously selected
8742 * Return: %true if @sg is a busier group than the previously selected
8743 * busiest group. %false otherwise.
8745 static bool update_sd_pick_busiest(struct lb_env *env,
8746 struct sd_lb_stats *sds,
8747 struct sched_group *sg,
8748 struct sg_lb_stats *sgs)
8750 struct sg_lb_stats *busiest = &sds->busiest_stat;
8752 /* Make sure that there is at least one task to pull */
8753 if (!sgs->sum_h_nr_running)
8757 * Don't try to pull misfit tasks we can't help.
8758 * We can use max_capacity here as reduction in capacity on some
8759 * CPUs in the group should either be possible to resolve
8760 * internally or be covered by avg_load imbalance (eventually).
8762 if (sgs->group_type == group_misfit_task &&
8763 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8764 sds->local_stat.group_type != group_has_spare))
8767 if (sgs->group_type > busiest->group_type)
8770 if (sgs->group_type < busiest->group_type)
8774 * The candidate and the current busiest group are the same type of
8775 * group. Let check which one is the busiest according to the type.
8778 switch (sgs->group_type) {
8779 case group_overloaded:
8780 /* Select the overloaded group with highest avg_load. */
8781 if (sgs->avg_load <= busiest->avg_load)
8785 case group_imbalanced:
8787 * Select the 1st imbalanced group as we don't have any way to
8788 * choose one more than another.
8792 case group_asym_packing:
8793 /* Prefer to move from lowest priority CPU's work */
8794 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8798 case group_misfit_task:
8800 * If we have more than one misfit sg go with the biggest
8803 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8807 case group_fully_busy:
8809 * Select the fully busy group with highest avg_load. In
8810 * theory, there is no need to pull task from such kind of
8811 * group because tasks have all compute capacity that they need
8812 * but we can still improve the overall throughput by reducing
8813 * contention when accessing shared HW resources.
8815 * XXX for now avg_load is not computed and always 0 so we
8816 * select the 1st one.
8818 if (sgs->avg_load <= busiest->avg_load)
8822 case group_has_spare:
8824 * Select not overloaded group with lowest number of idle cpus
8825 * and highest number of running tasks. We could also compare
8826 * the spare capacity which is more stable but it can end up
8827 * that the group has less spare capacity but finally more idle
8828 * CPUs which means less opportunity to pull tasks.
8830 if (sgs->idle_cpus > busiest->idle_cpus)
8832 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8833 (sgs->sum_nr_running <= busiest->sum_nr_running))
8840 * Candidate sg has no more than one task per CPU and has higher
8841 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8842 * throughput. Maximize throughput, power/energy consequences are not
8845 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8846 (sgs->group_type <= group_fully_busy) &&
8847 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8853 #ifdef CONFIG_NUMA_BALANCING
8854 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8856 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8858 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8863 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8865 if (rq->nr_running > rq->nr_numa_running)
8867 if (rq->nr_running > rq->nr_preferred_running)
8872 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8877 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8881 #endif /* CONFIG_NUMA_BALANCING */
8887 * task_running_on_cpu - return 1 if @p is running on @cpu.
8890 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8892 /* Task has no contribution or is new */
8893 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8896 if (task_on_rq_queued(p))
8903 * idle_cpu_without - would a given CPU be idle without p ?
8904 * @cpu: the processor on which idleness is tested.
8905 * @p: task which should be ignored.
8907 * Return: 1 if the CPU would be idle. 0 otherwise.
8909 static int idle_cpu_without(int cpu, struct task_struct *p)
8911 struct rq *rq = cpu_rq(cpu);
8913 if (rq->curr != rq->idle && rq->curr != p)
8917 * rq->nr_running can't be used but an updated version without the
8918 * impact of p on cpu must be used instead. The updated nr_running
8919 * be computed and tested before calling idle_cpu_without().
8923 if (rq->ttwu_pending)
8931 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8932 * @sd: The sched_domain level to look for idlest group.
8933 * @group: sched_group whose statistics are to be updated.
8934 * @sgs: variable to hold the statistics for this group.
8935 * @p: The task for which we look for the idlest group/CPU.
8937 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8938 struct sched_group *group,
8939 struct sg_lb_stats *sgs,
8940 struct task_struct *p)
8944 memset(sgs, 0, sizeof(*sgs));
8946 for_each_cpu(i, sched_group_span(group)) {
8947 struct rq *rq = cpu_rq(i);
8950 sgs->group_load += cpu_load_without(rq, p);
8951 sgs->group_util += cpu_util_without(i, p);
8952 sgs->group_runnable += cpu_runnable_without(rq, p);
8953 local = task_running_on_cpu(i, p);
8954 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8956 nr_running = rq->nr_running - local;
8957 sgs->sum_nr_running += nr_running;
8960 * No need to call idle_cpu_without() if nr_running is not 0
8962 if (!nr_running && idle_cpu_without(i, p))
8967 /* Check if task fits in the group */
8968 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8969 !task_fits_capacity(p, group->sgc->max_capacity)) {
8970 sgs->group_misfit_task_load = 1;
8973 sgs->group_capacity = group->sgc->capacity;
8975 sgs->group_weight = group->group_weight;
8977 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8980 * Computing avg_load makes sense only when group is fully busy or
8983 if (sgs->group_type == group_fully_busy ||
8984 sgs->group_type == group_overloaded)
8985 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8986 sgs->group_capacity;
8989 static bool update_pick_idlest(struct sched_group *idlest,
8990 struct sg_lb_stats *idlest_sgs,
8991 struct sched_group *group,
8992 struct sg_lb_stats *sgs)
8994 if (sgs->group_type < idlest_sgs->group_type)
8997 if (sgs->group_type > idlest_sgs->group_type)
9001 * The candidate and the current idlest group are the same type of
9002 * group. Let check which one is the idlest according to the type.
9005 switch (sgs->group_type) {
9006 case group_overloaded:
9007 case group_fully_busy:
9008 /* Select the group with lowest avg_load. */
9009 if (idlest_sgs->avg_load <= sgs->avg_load)
9013 case group_imbalanced:
9014 case group_asym_packing:
9015 /* Those types are not used in the slow wakeup path */
9018 case group_misfit_task:
9019 /* Select group with the highest max capacity */
9020 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9024 case group_has_spare:
9025 /* Select group with most idle CPUs */
9026 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9029 /* Select group with lowest group_util */
9030 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9031 idlest_sgs->group_util <= sgs->group_util)
9041 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9042 * This is an approximation as the number of running tasks may not be
9043 * related to the number of busy CPUs due to sched_setaffinity.
9045 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
9047 return (dst_running < (dst_weight >> 2));
9051 * find_idlest_group() finds and returns the least busy CPU group within the
9054 * Assumes p is allowed on at least one CPU in sd.
9056 static struct sched_group *
9057 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9059 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9060 struct sg_lb_stats local_sgs, tmp_sgs;
9061 struct sg_lb_stats *sgs;
9062 unsigned long imbalance;
9063 struct sg_lb_stats idlest_sgs = {
9064 .avg_load = UINT_MAX,
9065 .group_type = group_overloaded,
9071 /* Skip over this group if it has no CPUs allowed */
9072 if (!cpumask_intersects(sched_group_span(group),
9076 /* Skip over this group if no cookie matched */
9077 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9080 local_group = cpumask_test_cpu(this_cpu,
9081 sched_group_span(group));
9090 update_sg_wakeup_stats(sd, group, sgs, p);
9092 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9097 } while (group = group->next, group != sd->groups);
9100 /* There is no idlest group to push tasks to */
9104 /* The local group has been skipped because of CPU affinity */
9109 * If the local group is idler than the selected idlest group
9110 * don't try and push the task.
9112 if (local_sgs.group_type < idlest_sgs.group_type)
9116 * If the local group is busier than the selected idlest group
9117 * try and push the task.
9119 if (local_sgs.group_type > idlest_sgs.group_type)
9122 switch (local_sgs.group_type) {
9123 case group_overloaded:
9124 case group_fully_busy:
9126 /* Calculate allowed imbalance based on load */
9127 imbalance = scale_load_down(NICE_0_LOAD) *
9128 (sd->imbalance_pct-100) / 100;
9131 * When comparing groups across NUMA domains, it's possible for
9132 * the local domain to be very lightly loaded relative to the
9133 * remote domains but "imbalance" skews the comparison making
9134 * remote CPUs look much more favourable. When considering
9135 * cross-domain, add imbalance to the load on the remote node
9136 * and consider staying local.
9139 if ((sd->flags & SD_NUMA) &&
9140 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9144 * If the local group is less loaded than the selected
9145 * idlest group don't try and push any tasks.
9147 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9150 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9154 case group_imbalanced:
9155 case group_asym_packing:
9156 /* Those type are not used in the slow wakeup path */
9159 case group_misfit_task:
9160 /* Select group with the highest max capacity */
9161 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9165 case group_has_spare:
9166 if (sd->flags & SD_NUMA) {
9167 #ifdef CONFIG_NUMA_BALANCING
9170 * If there is spare capacity at NUMA, try to select
9171 * the preferred node
9173 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9176 idlest_cpu = cpumask_first(sched_group_span(idlest));
9177 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9181 * Otherwise, keep the task on this node to stay close
9182 * its wakeup source and improve locality. If there is
9183 * a real need of migration, periodic load balance will
9186 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
9191 * Select group with highest number of idle CPUs. We could also
9192 * compare the utilization which is more stable but it can end
9193 * up that the group has less spare capacity but finally more
9194 * idle CPUs which means more opportunity to run task.
9196 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9205 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9206 * @env: The load balancing environment.
9207 * @sds: variable to hold the statistics for this sched_domain.
9210 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9212 struct sched_domain *child = env->sd->child;
9213 struct sched_group *sg = env->sd->groups;
9214 struct sg_lb_stats *local = &sds->local_stat;
9215 struct sg_lb_stats tmp_sgs;
9219 struct sg_lb_stats *sgs = &tmp_sgs;
9222 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9227 if (env->idle != CPU_NEWLY_IDLE ||
9228 time_after_eq(jiffies, sg->sgc->next_update))
9229 update_group_capacity(env->sd, env->dst_cpu);
9232 update_sg_lb_stats(env, sg, sgs, &sg_status);
9238 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9240 sds->busiest_stat = *sgs;
9244 /* Now, start updating sd_lb_stats */
9245 sds->total_load += sgs->group_load;
9246 sds->total_capacity += sgs->group_capacity;
9249 } while (sg != env->sd->groups);
9251 /* Tag domain that child domain prefers tasks go to siblings first */
9252 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9255 if (env->sd->flags & SD_NUMA)
9256 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9258 if (!env->sd->parent) {
9259 struct root_domain *rd = env->dst_rq->rd;
9261 /* update overload indicator if we are at root domain */
9262 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9264 /* Update over-utilization (tipping point, U >= 0) indicator */
9265 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9266 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9267 } else if (sg_status & SG_OVERUTILIZED) {
9268 struct root_domain *rd = env->dst_rq->rd;
9270 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9271 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9275 #define NUMA_IMBALANCE_MIN 2
9277 static inline long adjust_numa_imbalance(int imbalance,
9278 int dst_running, int dst_weight)
9280 if (!allow_numa_imbalance(dst_running, dst_weight))
9284 * Allow a small imbalance based on a simple pair of communicating
9285 * tasks that remain local when the destination is lightly loaded.
9287 if (imbalance <= NUMA_IMBALANCE_MIN)
9294 * calculate_imbalance - Calculate the amount of imbalance present within the
9295 * groups of a given sched_domain during load balance.
9296 * @env: load balance environment
9297 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9299 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9301 struct sg_lb_stats *local, *busiest;
9303 local = &sds->local_stat;
9304 busiest = &sds->busiest_stat;
9306 if (busiest->group_type == group_misfit_task) {
9307 /* Set imbalance to allow misfit tasks to be balanced. */
9308 env->migration_type = migrate_misfit;
9313 if (busiest->group_type == group_asym_packing) {
9315 * In case of asym capacity, we will try to migrate all load to
9316 * the preferred CPU.
9318 env->migration_type = migrate_task;
9319 env->imbalance = busiest->sum_h_nr_running;
9323 if (busiest->group_type == group_imbalanced) {
9325 * In the group_imb case we cannot rely on group-wide averages
9326 * to ensure CPU-load equilibrium, try to move any task to fix
9327 * the imbalance. The next load balance will take care of
9328 * balancing back the system.
9330 env->migration_type = migrate_task;
9336 * Try to use spare capacity of local group without overloading it or
9339 if (local->group_type == group_has_spare) {
9340 if ((busiest->group_type > group_fully_busy) &&
9341 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9343 * If busiest is overloaded, try to fill spare
9344 * capacity. This might end up creating spare capacity
9345 * in busiest or busiest still being overloaded but
9346 * there is no simple way to directly compute the
9347 * amount of load to migrate in order to balance the
9350 env->migration_type = migrate_util;
9351 env->imbalance = max(local->group_capacity, local->group_util) -
9355 * In some cases, the group's utilization is max or even
9356 * higher than capacity because of migrations but the
9357 * local CPU is (newly) idle. There is at least one
9358 * waiting task in this overloaded busiest group. Let's
9361 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9362 env->migration_type = migrate_task;
9369 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9370 unsigned int nr_diff = busiest->sum_nr_running;
9372 * When prefer sibling, evenly spread running tasks on
9375 env->migration_type = migrate_task;
9376 lsub_positive(&nr_diff, local->sum_nr_running);
9377 env->imbalance = nr_diff >> 1;
9381 * If there is no overload, we just want to even the number of
9384 env->migration_type = migrate_task;
9385 env->imbalance = max_t(long, 0, (local->idle_cpus -
9386 busiest->idle_cpus) >> 1);
9389 /* Consider allowing a small imbalance between NUMA groups */
9390 if (env->sd->flags & SD_NUMA) {
9391 env->imbalance = adjust_numa_imbalance(env->imbalance,
9392 busiest->sum_nr_running, busiest->group_weight);
9399 * Local is fully busy but has to take more load to relieve the
9402 if (local->group_type < group_overloaded) {
9404 * Local will become overloaded so the avg_load metrics are
9408 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9409 local->group_capacity;
9411 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9412 sds->total_capacity;
9414 * If the local group is more loaded than the selected
9415 * busiest group don't try to pull any tasks.
9417 if (local->avg_load >= busiest->avg_load) {
9424 * Both group are or will become overloaded and we're trying to get all
9425 * the CPUs to the average_load, so we don't want to push ourselves
9426 * above the average load, nor do we wish to reduce the max loaded CPU
9427 * below the average load. At the same time, we also don't want to
9428 * reduce the group load below the group capacity. Thus we look for
9429 * the minimum possible imbalance.
9431 env->migration_type = migrate_load;
9432 env->imbalance = min(
9433 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9434 (sds->avg_load - local->avg_load) * local->group_capacity
9435 ) / SCHED_CAPACITY_SCALE;
9438 /******* find_busiest_group() helpers end here *********************/
9441 * Decision matrix according to the local and busiest group type:
9443 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9444 * has_spare nr_idle balanced N/A N/A balanced balanced
9445 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9446 * misfit_task force N/A N/A N/A force force
9447 * asym_packing force force N/A N/A force force
9448 * imbalanced force force N/A N/A force force
9449 * overloaded force force N/A N/A force avg_load
9451 * N/A : Not Applicable because already filtered while updating
9453 * balanced : The system is balanced for these 2 groups.
9454 * force : Calculate the imbalance as load migration is probably needed.
9455 * avg_load : Only if imbalance is significant enough.
9456 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9457 * different in groups.
9461 * find_busiest_group - Returns the busiest group within the sched_domain
9462 * if there is an imbalance.
9464 * Also calculates the amount of runnable load which should be moved
9465 * to restore balance.
9467 * @env: The load balancing environment.
9469 * Return: - The busiest group if imbalance exists.
9471 static struct sched_group *find_busiest_group(struct lb_env *env)
9473 struct sg_lb_stats *local, *busiest;
9474 struct sd_lb_stats sds;
9476 init_sd_lb_stats(&sds);
9479 * Compute the various statistics relevant for load balancing at
9482 update_sd_lb_stats(env, &sds);
9484 if (sched_energy_enabled()) {
9485 struct root_domain *rd = env->dst_rq->rd;
9487 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9491 local = &sds.local_stat;
9492 busiest = &sds.busiest_stat;
9494 /* There is no busy sibling group to pull tasks from */
9498 /* Misfit tasks should be dealt with regardless of the avg load */
9499 if (busiest->group_type == group_misfit_task)
9502 /* ASYM feature bypasses nice load balance check */
9503 if (busiest->group_type == group_asym_packing)
9507 * If the busiest group is imbalanced the below checks don't
9508 * work because they assume all things are equal, which typically
9509 * isn't true due to cpus_ptr constraints and the like.
9511 if (busiest->group_type == group_imbalanced)
9515 * If the local group is busier than the selected busiest group
9516 * don't try and pull any tasks.
9518 if (local->group_type > busiest->group_type)
9522 * When groups are overloaded, use the avg_load to ensure fairness
9525 if (local->group_type == group_overloaded) {
9527 * If the local group is more loaded than the selected
9528 * busiest group don't try to pull any tasks.
9530 if (local->avg_load >= busiest->avg_load)
9533 /* XXX broken for overlapping NUMA groups */
9534 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9538 * Don't pull any tasks if this group is already above the
9539 * domain average load.
9541 if (local->avg_load >= sds.avg_load)
9545 * If the busiest group is more loaded, use imbalance_pct to be
9548 if (100 * busiest->avg_load <=
9549 env->sd->imbalance_pct * local->avg_load)
9553 /* Try to move all excess tasks to child's sibling domain */
9554 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9555 busiest->sum_nr_running > local->sum_nr_running + 1)
9558 if (busiest->group_type != group_overloaded) {
9559 if (env->idle == CPU_NOT_IDLE)
9561 * If the busiest group is not overloaded (and as a
9562 * result the local one too) but this CPU is already
9563 * busy, let another idle CPU try to pull task.
9567 if (busiest->group_weight > 1 &&
9568 local->idle_cpus <= (busiest->idle_cpus + 1))
9570 * If the busiest group is not overloaded
9571 * and there is no imbalance between this and busiest
9572 * group wrt idle CPUs, it is balanced. The imbalance
9573 * becomes significant if the diff is greater than 1
9574 * otherwise we might end up to just move the imbalance
9575 * on another group. Of course this applies only if
9576 * there is more than 1 CPU per group.
9580 if (busiest->sum_h_nr_running == 1)
9582 * busiest doesn't have any tasks waiting to run
9588 /* Looks like there is an imbalance. Compute it */
9589 calculate_imbalance(env, &sds);
9590 return env->imbalance ? sds.busiest : NULL;
9598 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9600 static struct rq *find_busiest_queue(struct lb_env *env,
9601 struct sched_group *group)
9603 struct rq *busiest = NULL, *rq;
9604 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9605 unsigned int busiest_nr = 0;
9608 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9609 unsigned long capacity, load, util;
9610 unsigned int nr_running;
9614 rt = fbq_classify_rq(rq);
9617 * We classify groups/runqueues into three groups:
9618 * - regular: there are !numa tasks
9619 * - remote: there are numa tasks that run on the 'wrong' node
9620 * - all: there is no distinction
9622 * In order to avoid migrating ideally placed numa tasks,
9623 * ignore those when there's better options.
9625 * If we ignore the actual busiest queue to migrate another
9626 * task, the next balance pass can still reduce the busiest
9627 * queue by moving tasks around inside the node.
9629 * If we cannot move enough load due to this classification
9630 * the next pass will adjust the group classification and
9631 * allow migration of more tasks.
9633 * Both cases only affect the total convergence complexity.
9635 if (rt > env->fbq_type)
9638 nr_running = rq->cfs.h_nr_running;
9642 capacity = capacity_of(i);
9645 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9646 * eventually lead to active_balancing high->low capacity.
9647 * Higher per-CPU capacity is considered better than balancing
9650 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9651 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9655 switch (env->migration_type) {
9658 * When comparing with load imbalance, use cpu_load()
9659 * which is not scaled with the CPU capacity.
9661 load = cpu_load(rq);
9663 if (nr_running == 1 && load > env->imbalance &&
9664 !check_cpu_capacity(rq, env->sd))
9668 * For the load comparisons with the other CPUs,
9669 * consider the cpu_load() scaled with the CPU
9670 * capacity, so that the load can be moved away
9671 * from the CPU that is potentially running at a
9674 * Thus we're looking for max(load_i / capacity_i),
9675 * crosswise multiplication to rid ourselves of the
9676 * division works out to:
9677 * load_i * capacity_j > load_j * capacity_i;
9678 * where j is our previous maximum.
9680 if (load * busiest_capacity > busiest_load * capacity) {
9681 busiest_load = load;
9682 busiest_capacity = capacity;
9688 util = cpu_util(cpu_of(rq));
9691 * Don't try to pull utilization from a CPU with one
9692 * running task. Whatever its utilization, we will fail
9695 if (nr_running <= 1)
9698 if (busiest_util < util) {
9699 busiest_util = util;
9705 if (busiest_nr < nr_running) {
9706 busiest_nr = nr_running;
9711 case migrate_misfit:
9713 * For ASYM_CPUCAPACITY domains with misfit tasks we
9714 * simply seek the "biggest" misfit task.
9716 if (rq->misfit_task_load > busiest_load) {
9717 busiest_load = rq->misfit_task_load;
9730 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9731 * so long as it is large enough.
9733 #define MAX_PINNED_INTERVAL 512
9736 asym_active_balance(struct lb_env *env)
9739 * ASYM_PACKING needs to force migrate tasks from busy but
9740 * lower priority CPUs in order to pack all tasks in the
9741 * highest priority CPUs.
9743 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9744 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9748 imbalanced_active_balance(struct lb_env *env)
9750 struct sched_domain *sd = env->sd;
9753 * The imbalanced case includes the case of pinned tasks preventing a fair
9754 * distribution of the load on the system but also the even distribution of the
9755 * threads on a system with spare capacity
9757 if ((env->migration_type == migrate_task) &&
9758 (sd->nr_balance_failed > sd->cache_nice_tries+2))
9764 static int need_active_balance(struct lb_env *env)
9766 struct sched_domain *sd = env->sd;
9768 if (asym_active_balance(env))
9771 if (imbalanced_active_balance(env))
9775 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9776 * It's worth migrating the task if the src_cpu's capacity is reduced
9777 * because of other sched_class or IRQs if more capacity stays
9778 * available on dst_cpu.
9780 if ((env->idle != CPU_NOT_IDLE) &&
9781 (env->src_rq->cfs.h_nr_running == 1)) {
9782 if ((check_cpu_capacity(env->src_rq, sd)) &&
9783 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9787 if (env->migration_type == migrate_misfit)
9793 static int active_load_balance_cpu_stop(void *data);
9795 static int should_we_balance(struct lb_env *env)
9797 struct sched_group *sg = env->sd->groups;
9801 * Ensure the balancing environment is consistent; can happen
9802 * when the softirq triggers 'during' hotplug.
9804 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9808 * In the newly idle case, we will allow all the CPUs
9809 * to do the newly idle load balance.
9811 if (env->idle == CPU_NEWLY_IDLE)
9814 /* Try to find first idle CPU */
9815 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9819 /* Are we the first idle CPU? */
9820 return cpu == env->dst_cpu;
9823 /* Are we the first CPU of this group ? */
9824 return group_balance_cpu(sg) == env->dst_cpu;
9828 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9829 * tasks if there is an imbalance.
9831 static int load_balance(int this_cpu, struct rq *this_rq,
9832 struct sched_domain *sd, enum cpu_idle_type idle,
9833 int *continue_balancing)
9835 int ld_moved, cur_ld_moved, active_balance = 0;
9836 struct sched_domain *sd_parent = sd->parent;
9837 struct sched_group *group;
9840 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9842 struct lb_env env = {
9844 .dst_cpu = this_cpu,
9846 .dst_grpmask = sched_group_span(sd->groups),
9848 .loop_break = sched_nr_migrate_break,
9851 .tasks = LIST_HEAD_INIT(env.tasks),
9854 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9856 schedstat_inc(sd->lb_count[idle]);
9859 if (!should_we_balance(&env)) {
9860 *continue_balancing = 0;
9864 group = find_busiest_group(&env);
9866 schedstat_inc(sd->lb_nobusyg[idle]);
9870 busiest = find_busiest_queue(&env, group);
9872 schedstat_inc(sd->lb_nobusyq[idle]);
9876 BUG_ON(busiest == env.dst_rq);
9878 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9880 env.src_cpu = busiest->cpu;
9881 env.src_rq = busiest;
9884 /* Clear this flag as soon as we find a pullable task */
9885 env.flags |= LBF_ALL_PINNED;
9886 if (busiest->nr_running > 1) {
9888 * Attempt to move tasks. If find_busiest_group has found
9889 * an imbalance but busiest->nr_running <= 1, the group is
9890 * still unbalanced. ld_moved simply stays zero, so it is
9891 * correctly treated as an imbalance.
9893 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9896 rq_lock_irqsave(busiest, &rf);
9897 update_rq_clock(busiest);
9900 * cur_ld_moved - load moved in current iteration
9901 * ld_moved - cumulative load moved across iterations
9903 cur_ld_moved = detach_tasks(&env);
9906 * We've detached some tasks from busiest_rq. Every
9907 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9908 * unlock busiest->lock, and we are able to be sure
9909 * that nobody can manipulate the tasks in parallel.
9910 * See task_rq_lock() family for the details.
9913 rq_unlock(busiest, &rf);
9917 ld_moved += cur_ld_moved;
9920 local_irq_restore(rf.flags);
9922 if (env.flags & LBF_NEED_BREAK) {
9923 env.flags &= ~LBF_NEED_BREAK;
9928 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9929 * us and move them to an alternate dst_cpu in our sched_group
9930 * where they can run. The upper limit on how many times we
9931 * iterate on same src_cpu is dependent on number of CPUs in our
9934 * This changes load balance semantics a bit on who can move
9935 * load to a given_cpu. In addition to the given_cpu itself
9936 * (or a ilb_cpu acting on its behalf where given_cpu is
9937 * nohz-idle), we now have balance_cpu in a position to move
9938 * load to given_cpu. In rare situations, this may cause
9939 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9940 * _independently_ and at _same_ time to move some load to
9941 * given_cpu) causing excess load to be moved to given_cpu.
9942 * This however should not happen so much in practice and
9943 * moreover subsequent load balance cycles should correct the
9944 * excess load moved.
9946 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9948 /* Prevent to re-select dst_cpu via env's CPUs */
9949 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9951 env.dst_rq = cpu_rq(env.new_dst_cpu);
9952 env.dst_cpu = env.new_dst_cpu;
9953 env.flags &= ~LBF_DST_PINNED;
9955 env.loop_break = sched_nr_migrate_break;
9958 * Go back to "more_balance" rather than "redo" since we
9959 * need to continue with same src_cpu.
9965 * We failed to reach balance because of affinity.
9968 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9970 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9971 *group_imbalance = 1;
9974 /* All tasks on this runqueue were pinned by CPU affinity */
9975 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9976 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9978 * Attempting to continue load balancing at the current
9979 * sched_domain level only makes sense if there are
9980 * active CPUs remaining as possible busiest CPUs to
9981 * pull load from which are not contained within the
9982 * destination group that is receiving any migrated
9985 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9987 env.loop_break = sched_nr_migrate_break;
9990 goto out_all_pinned;
9995 schedstat_inc(sd->lb_failed[idle]);
9997 * Increment the failure counter only on periodic balance.
9998 * We do not want newidle balance, which can be very
9999 * frequent, pollute the failure counter causing
10000 * excessive cache_hot migrations and active balances.
10002 if (idle != CPU_NEWLY_IDLE)
10003 sd->nr_balance_failed++;
10005 if (need_active_balance(&env)) {
10006 unsigned long flags;
10008 raw_spin_rq_lock_irqsave(busiest, flags);
10011 * Don't kick the active_load_balance_cpu_stop,
10012 * if the curr task on busiest CPU can't be
10013 * moved to this_cpu:
10015 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10016 raw_spin_rq_unlock_irqrestore(busiest, flags);
10017 goto out_one_pinned;
10020 /* Record that we found at least one task that could run on this_cpu */
10021 env.flags &= ~LBF_ALL_PINNED;
10024 * ->active_balance synchronizes accesses to
10025 * ->active_balance_work. Once set, it's cleared
10026 * only after active load balance is finished.
10028 if (!busiest->active_balance) {
10029 busiest->active_balance = 1;
10030 busiest->push_cpu = this_cpu;
10031 active_balance = 1;
10033 raw_spin_rq_unlock_irqrestore(busiest, flags);
10035 if (active_balance) {
10036 stop_one_cpu_nowait(cpu_of(busiest),
10037 active_load_balance_cpu_stop, busiest,
10038 &busiest->active_balance_work);
10042 sd->nr_balance_failed = 0;
10045 if (likely(!active_balance) || need_active_balance(&env)) {
10046 /* We were unbalanced, so reset the balancing interval */
10047 sd->balance_interval = sd->min_interval;
10054 * We reach balance although we may have faced some affinity
10055 * constraints. Clear the imbalance flag only if other tasks got
10056 * a chance to move and fix the imbalance.
10058 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10059 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10061 if (*group_imbalance)
10062 *group_imbalance = 0;
10067 * We reach balance because all tasks are pinned at this level so
10068 * we can't migrate them. Let the imbalance flag set so parent level
10069 * can try to migrate them.
10071 schedstat_inc(sd->lb_balanced[idle]);
10073 sd->nr_balance_failed = 0;
10079 * newidle_balance() disregards balance intervals, so we could
10080 * repeatedly reach this code, which would lead to balance_interval
10081 * skyrocketing in a short amount of time. Skip the balance_interval
10082 * increase logic to avoid that.
10084 if (env.idle == CPU_NEWLY_IDLE)
10087 /* tune up the balancing interval */
10088 if ((env.flags & LBF_ALL_PINNED &&
10089 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10090 sd->balance_interval < sd->max_interval)
10091 sd->balance_interval *= 2;
10096 static inline unsigned long
10097 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10099 unsigned long interval = sd->balance_interval;
10102 interval *= sd->busy_factor;
10104 /* scale ms to jiffies */
10105 interval = msecs_to_jiffies(interval);
10108 * Reduce likelihood of busy balancing at higher domains racing with
10109 * balancing at lower domains by preventing their balancing periods
10110 * from being multiples of each other.
10115 interval = clamp(interval, 1UL, max_load_balance_interval);
10121 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10123 unsigned long interval, next;
10125 /* used by idle balance, so cpu_busy = 0 */
10126 interval = get_sd_balance_interval(sd, 0);
10127 next = sd->last_balance + interval;
10129 if (time_after(*next_balance, next))
10130 *next_balance = next;
10134 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10135 * running tasks off the busiest CPU onto idle CPUs. It requires at
10136 * least 1 task to be running on each physical CPU where possible, and
10137 * avoids physical / logical imbalances.
10139 static int active_load_balance_cpu_stop(void *data)
10141 struct rq *busiest_rq = data;
10142 int busiest_cpu = cpu_of(busiest_rq);
10143 int target_cpu = busiest_rq->push_cpu;
10144 struct rq *target_rq = cpu_rq(target_cpu);
10145 struct sched_domain *sd;
10146 struct task_struct *p = NULL;
10147 struct rq_flags rf;
10149 rq_lock_irq(busiest_rq, &rf);
10151 * Between queueing the stop-work and running it is a hole in which
10152 * CPUs can become inactive. We should not move tasks from or to
10155 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10158 /* Make sure the requested CPU hasn't gone down in the meantime: */
10159 if (unlikely(busiest_cpu != smp_processor_id() ||
10160 !busiest_rq->active_balance))
10163 /* Is there any task to move? */
10164 if (busiest_rq->nr_running <= 1)
10168 * This condition is "impossible", if it occurs
10169 * we need to fix it. Originally reported by
10170 * Bjorn Helgaas on a 128-CPU setup.
10172 BUG_ON(busiest_rq == target_rq);
10174 /* Search for an sd spanning us and the target CPU. */
10176 for_each_domain(target_cpu, sd) {
10177 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10182 struct lb_env env = {
10184 .dst_cpu = target_cpu,
10185 .dst_rq = target_rq,
10186 .src_cpu = busiest_rq->cpu,
10187 .src_rq = busiest_rq,
10189 .flags = LBF_ACTIVE_LB,
10192 schedstat_inc(sd->alb_count);
10193 update_rq_clock(busiest_rq);
10195 p = detach_one_task(&env);
10197 schedstat_inc(sd->alb_pushed);
10198 /* Active balancing done, reset the failure counter. */
10199 sd->nr_balance_failed = 0;
10201 schedstat_inc(sd->alb_failed);
10206 busiest_rq->active_balance = 0;
10207 rq_unlock(busiest_rq, &rf);
10210 attach_one_task(target_rq, p);
10212 local_irq_enable();
10217 static DEFINE_SPINLOCK(balancing);
10220 * Scale the max load_balance interval with the number of CPUs in the system.
10221 * This trades load-balance latency on larger machines for less cross talk.
10223 void update_max_interval(void)
10225 max_load_balance_interval = HZ*num_online_cpus()/10;
10229 * It checks each scheduling domain to see if it is due to be balanced,
10230 * and initiates a balancing operation if so.
10232 * Balancing parameters are set up in init_sched_domains.
10234 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10236 int continue_balancing = 1;
10238 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10239 unsigned long interval;
10240 struct sched_domain *sd;
10241 /* Earliest time when we have to do rebalance again */
10242 unsigned long next_balance = jiffies + 60*HZ;
10243 int update_next_balance = 0;
10244 int need_serialize, need_decay = 0;
10248 for_each_domain(cpu, sd) {
10250 * Decay the newidle max times here because this is a regular
10251 * visit to all the domains. Decay ~1% per second.
10253 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10254 sd->max_newidle_lb_cost =
10255 (sd->max_newidle_lb_cost * 253) / 256;
10256 sd->next_decay_max_lb_cost = jiffies + HZ;
10259 max_cost += sd->max_newidle_lb_cost;
10262 * Stop the load balance at this level. There is another
10263 * CPU in our sched group which is doing load balancing more
10266 if (!continue_balancing) {
10272 interval = get_sd_balance_interval(sd, busy);
10274 need_serialize = sd->flags & SD_SERIALIZE;
10275 if (need_serialize) {
10276 if (!spin_trylock(&balancing))
10280 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10281 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10283 * The LBF_DST_PINNED logic could have changed
10284 * env->dst_cpu, so we can't know our idle
10285 * state even if we migrated tasks. Update it.
10287 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10288 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10290 sd->last_balance = jiffies;
10291 interval = get_sd_balance_interval(sd, busy);
10293 if (need_serialize)
10294 spin_unlock(&balancing);
10296 if (time_after(next_balance, sd->last_balance + interval)) {
10297 next_balance = sd->last_balance + interval;
10298 update_next_balance = 1;
10303 * Ensure the rq-wide value also decays but keep it at a
10304 * reasonable floor to avoid funnies with rq->avg_idle.
10306 rq->max_idle_balance_cost =
10307 max((u64)sysctl_sched_migration_cost, max_cost);
10312 * next_balance will be updated only when there is a need.
10313 * When the cpu is attached to null domain for ex, it will not be
10316 if (likely(update_next_balance))
10317 rq->next_balance = next_balance;
10321 static inline int on_null_domain(struct rq *rq)
10323 return unlikely(!rcu_dereference_sched(rq->sd));
10326 #ifdef CONFIG_NO_HZ_COMMON
10328 * idle load balancing details
10329 * - When one of the busy CPUs notice that there may be an idle rebalancing
10330 * needed, they will kick the idle load balancer, which then does idle
10331 * load balancing for all the idle CPUs.
10332 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10336 static inline int find_new_ilb(void)
10339 const struct cpumask *hk_mask;
10341 hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
10343 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10345 if (ilb == smp_processor_id())
10356 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10357 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10359 static void kick_ilb(unsigned int flags)
10364 * Increase nohz.next_balance only when if full ilb is triggered but
10365 * not if we only update stats.
10367 if (flags & NOHZ_BALANCE_KICK)
10368 nohz.next_balance = jiffies+1;
10370 ilb_cpu = find_new_ilb();
10372 if (ilb_cpu >= nr_cpu_ids)
10376 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10377 * the first flag owns it; cleared by nohz_csd_func().
10379 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10380 if (flags & NOHZ_KICK_MASK)
10384 * This way we generate an IPI on the target CPU which
10385 * is idle. And the softirq performing nohz idle load balance
10386 * will be run before returning from the IPI.
10388 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10392 * Current decision point for kicking the idle load balancer in the presence
10393 * of idle CPUs in the system.
10395 static void nohz_balancer_kick(struct rq *rq)
10397 unsigned long now = jiffies;
10398 struct sched_domain_shared *sds;
10399 struct sched_domain *sd;
10400 int nr_busy, i, cpu = rq->cpu;
10401 unsigned int flags = 0;
10403 if (unlikely(rq->idle_balance))
10407 * We may be recently in ticked or tickless idle mode. At the first
10408 * busy tick after returning from idle, we will update the busy stats.
10410 nohz_balance_exit_idle(rq);
10413 * None are in tickless mode and hence no need for NOHZ idle load
10416 if (likely(!atomic_read(&nohz.nr_cpus)))
10419 if (READ_ONCE(nohz.has_blocked) &&
10420 time_after(now, READ_ONCE(nohz.next_blocked)))
10421 flags = NOHZ_STATS_KICK;
10423 if (time_before(now, nohz.next_balance))
10426 if (rq->nr_running >= 2) {
10427 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10433 sd = rcu_dereference(rq->sd);
10436 * If there's a CFS task and the current CPU has reduced
10437 * capacity; kick the ILB to see if there's a better CPU to run
10440 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10441 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10446 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10449 * When ASYM_PACKING; see if there's a more preferred CPU
10450 * currently idle; in which case, kick the ILB to move tasks
10453 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10454 if (sched_asym_prefer(i, cpu)) {
10455 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10461 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10464 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10465 * to run the misfit task on.
10467 if (check_misfit_status(rq, sd)) {
10468 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10473 * For asymmetric systems, we do not want to nicely balance
10474 * cache use, instead we want to embrace asymmetry and only
10475 * ensure tasks have enough CPU capacity.
10477 * Skip the LLC logic because it's not relevant in that case.
10482 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10485 * If there is an imbalance between LLC domains (IOW we could
10486 * increase the overall cache use), we need some less-loaded LLC
10487 * domain to pull some load. Likewise, we may need to spread
10488 * load within the current LLC domain (e.g. packed SMT cores but
10489 * other CPUs are idle). We can't really know from here how busy
10490 * the others are - so just get a nohz balance going if it looks
10491 * like this LLC domain has tasks we could move.
10493 nr_busy = atomic_read(&sds->nr_busy_cpus);
10495 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10502 if (READ_ONCE(nohz.needs_update))
10503 flags |= NOHZ_NEXT_KICK;
10509 static void set_cpu_sd_state_busy(int cpu)
10511 struct sched_domain *sd;
10514 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10516 if (!sd || !sd->nohz_idle)
10520 atomic_inc(&sd->shared->nr_busy_cpus);
10525 void nohz_balance_exit_idle(struct rq *rq)
10527 SCHED_WARN_ON(rq != this_rq());
10529 if (likely(!rq->nohz_tick_stopped))
10532 rq->nohz_tick_stopped = 0;
10533 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10534 atomic_dec(&nohz.nr_cpus);
10536 set_cpu_sd_state_busy(rq->cpu);
10539 static void set_cpu_sd_state_idle(int cpu)
10541 struct sched_domain *sd;
10544 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10546 if (!sd || sd->nohz_idle)
10550 atomic_dec(&sd->shared->nr_busy_cpus);
10556 * This routine will record that the CPU is going idle with tick stopped.
10557 * This info will be used in performing idle load balancing in the future.
10559 void nohz_balance_enter_idle(int cpu)
10561 struct rq *rq = cpu_rq(cpu);
10563 SCHED_WARN_ON(cpu != smp_processor_id());
10565 /* If this CPU is going down, then nothing needs to be done: */
10566 if (!cpu_active(cpu))
10569 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10570 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10574 * Can be set safely without rq->lock held
10575 * If a clear happens, it will have evaluated last additions because
10576 * rq->lock is held during the check and the clear
10578 rq->has_blocked_load = 1;
10581 * The tick is still stopped but load could have been added in the
10582 * meantime. We set the nohz.has_blocked flag to trig a check of the
10583 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10584 * of nohz.has_blocked can only happen after checking the new load
10586 if (rq->nohz_tick_stopped)
10589 /* If we're a completely isolated CPU, we don't play: */
10590 if (on_null_domain(rq))
10593 rq->nohz_tick_stopped = 1;
10595 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10596 atomic_inc(&nohz.nr_cpus);
10599 * Ensures that if nohz_idle_balance() fails to observe our
10600 * @idle_cpus_mask store, it must observe the @has_blocked
10601 * and @needs_update stores.
10603 smp_mb__after_atomic();
10605 set_cpu_sd_state_idle(cpu);
10607 WRITE_ONCE(nohz.needs_update, 1);
10610 * Each time a cpu enter idle, we assume that it has blocked load and
10611 * enable the periodic update of the load of idle cpus
10613 WRITE_ONCE(nohz.has_blocked, 1);
10616 static bool update_nohz_stats(struct rq *rq)
10618 unsigned int cpu = rq->cpu;
10620 if (!rq->has_blocked_load)
10623 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10626 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10629 update_blocked_averages(cpu);
10631 return rq->has_blocked_load;
10635 * Internal function that runs load balance for all idle cpus. The load balance
10636 * can be a simple update of blocked load or a complete load balance with
10637 * tasks movement depending of flags.
10639 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10640 enum cpu_idle_type idle)
10642 /* Earliest time when we have to do rebalance again */
10643 unsigned long now = jiffies;
10644 unsigned long next_balance = now + 60*HZ;
10645 bool has_blocked_load = false;
10646 int update_next_balance = 0;
10647 int this_cpu = this_rq->cpu;
10651 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10654 * We assume there will be no idle load after this update and clear
10655 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10656 * set the has_blocked flag and trigger another update of idle load.
10657 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10658 * setting the flag, we are sure to not clear the state and not
10659 * check the load of an idle cpu.
10661 * Same applies to idle_cpus_mask vs needs_update.
10663 if (flags & NOHZ_STATS_KICK)
10664 WRITE_ONCE(nohz.has_blocked, 0);
10665 if (flags & NOHZ_NEXT_KICK)
10666 WRITE_ONCE(nohz.needs_update, 0);
10669 * Ensures that if we miss the CPU, we must see the has_blocked
10670 * store from nohz_balance_enter_idle().
10675 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10676 * chance for other idle cpu to pull load.
10678 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10679 if (!idle_cpu(balance_cpu))
10683 * If this CPU gets work to do, stop the load balancing
10684 * work being done for other CPUs. Next load
10685 * balancing owner will pick it up.
10687 if (need_resched()) {
10688 if (flags & NOHZ_STATS_KICK)
10689 has_blocked_load = true;
10690 if (flags & NOHZ_NEXT_KICK)
10691 WRITE_ONCE(nohz.needs_update, 1);
10695 rq = cpu_rq(balance_cpu);
10697 if (flags & NOHZ_STATS_KICK)
10698 has_blocked_load |= update_nohz_stats(rq);
10701 * If time for next balance is due,
10704 if (time_after_eq(jiffies, rq->next_balance)) {
10705 struct rq_flags rf;
10707 rq_lock_irqsave(rq, &rf);
10708 update_rq_clock(rq);
10709 rq_unlock_irqrestore(rq, &rf);
10711 if (flags & NOHZ_BALANCE_KICK)
10712 rebalance_domains(rq, CPU_IDLE);
10715 if (time_after(next_balance, rq->next_balance)) {
10716 next_balance = rq->next_balance;
10717 update_next_balance = 1;
10722 * next_balance will be updated only when there is a need.
10723 * When the CPU is attached to null domain for ex, it will not be
10726 if (likely(update_next_balance))
10727 nohz.next_balance = next_balance;
10729 if (flags & NOHZ_STATS_KICK)
10730 WRITE_ONCE(nohz.next_blocked,
10731 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10734 /* There is still blocked load, enable periodic update */
10735 if (has_blocked_load)
10736 WRITE_ONCE(nohz.has_blocked, 1);
10740 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10741 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10743 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10745 unsigned int flags = this_rq->nohz_idle_balance;
10750 this_rq->nohz_idle_balance = 0;
10752 if (idle != CPU_IDLE)
10755 _nohz_idle_balance(this_rq, flags, idle);
10761 * Check if we need to run the ILB for updating blocked load before entering
10764 void nohz_run_idle_balance(int cpu)
10766 unsigned int flags;
10768 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10771 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10772 * (ie NOHZ_STATS_KICK set) and will do the same.
10774 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10775 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10778 static void nohz_newidle_balance(struct rq *this_rq)
10780 int this_cpu = this_rq->cpu;
10783 * This CPU doesn't want to be disturbed by scheduler
10786 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10789 /* Will wake up very soon. No time for doing anything else*/
10790 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10793 /* Don't need to update blocked load of idle CPUs*/
10794 if (!READ_ONCE(nohz.has_blocked) ||
10795 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10799 * Set the need to trigger ILB in order to update blocked load
10800 * before entering idle state.
10802 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10805 #else /* !CONFIG_NO_HZ_COMMON */
10806 static inline void nohz_balancer_kick(struct rq *rq) { }
10808 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10813 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10814 #endif /* CONFIG_NO_HZ_COMMON */
10817 * newidle_balance is called by schedule() if this_cpu is about to become
10818 * idle. Attempts to pull tasks from other CPUs.
10821 * < 0 - we released the lock and there are !fair tasks present
10822 * 0 - failed, no new tasks
10823 * > 0 - success, new (fair) tasks present
10825 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10827 unsigned long next_balance = jiffies + HZ;
10828 int this_cpu = this_rq->cpu;
10829 struct sched_domain *sd;
10830 int pulled_task = 0;
10833 update_misfit_status(NULL, this_rq);
10836 * There is a task waiting to run. No need to search for one.
10837 * Return 0; the task will be enqueued when switching to idle.
10839 if (this_rq->ttwu_pending)
10843 * We must set idle_stamp _before_ calling idle_balance(), such that we
10844 * measure the duration of idle_balance() as idle time.
10846 this_rq->idle_stamp = rq_clock(this_rq);
10849 * Do not pull tasks towards !active CPUs...
10851 if (!cpu_active(this_cpu))
10855 * This is OK, because current is on_cpu, which avoids it being picked
10856 * for load-balance and preemption/IRQs are still disabled avoiding
10857 * further scheduler activity on it and we're being very careful to
10858 * re-start the picking loop.
10860 rq_unpin_lock(this_rq, rf);
10862 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10863 !READ_ONCE(this_rq->rd->overload)) {
10866 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10868 update_next_balance(sd, &next_balance);
10874 raw_spin_rq_unlock(this_rq);
10876 update_blocked_averages(this_cpu);
10878 for_each_domain(this_cpu, sd) {
10879 int continue_balancing = 1;
10880 u64 t0, domain_cost;
10882 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10883 update_next_balance(sd, &next_balance);
10887 if (sd->flags & SD_BALANCE_NEWIDLE) {
10888 t0 = sched_clock_cpu(this_cpu);
10890 pulled_task = load_balance(this_cpu, this_rq,
10891 sd, CPU_NEWLY_IDLE,
10892 &continue_balancing);
10894 domain_cost = sched_clock_cpu(this_cpu) - t0;
10895 if (domain_cost > sd->max_newidle_lb_cost)
10896 sd->max_newidle_lb_cost = domain_cost;
10898 curr_cost += domain_cost;
10901 update_next_balance(sd, &next_balance);
10904 * Stop searching for tasks to pull if there are
10905 * now runnable tasks on this rq.
10907 if (pulled_task || this_rq->nr_running > 0 ||
10908 this_rq->ttwu_pending)
10913 raw_spin_rq_lock(this_rq);
10915 if (curr_cost > this_rq->max_idle_balance_cost)
10916 this_rq->max_idle_balance_cost = curr_cost;
10919 * While browsing the domains, we released the rq lock, a task could
10920 * have been enqueued in the meantime. Since we're not going idle,
10921 * pretend we pulled a task.
10923 if (this_rq->cfs.h_nr_running && !pulled_task)
10926 /* Is there a task of a high priority class? */
10927 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10931 /* Move the next balance forward */
10932 if (time_after(this_rq->next_balance, next_balance))
10933 this_rq->next_balance = next_balance;
10936 this_rq->idle_stamp = 0;
10938 nohz_newidle_balance(this_rq);
10940 rq_repin_lock(this_rq, rf);
10942 return pulled_task;
10946 * run_rebalance_domains is triggered when needed from the scheduler tick.
10947 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10949 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10951 struct rq *this_rq = this_rq();
10952 enum cpu_idle_type idle = this_rq->idle_balance ?
10953 CPU_IDLE : CPU_NOT_IDLE;
10956 * If this CPU has a pending nohz_balance_kick, then do the
10957 * balancing on behalf of the other idle CPUs whose ticks are
10958 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10959 * give the idle CPUs a chance to load balance. Else we may
10960 * load balance only within the local sched_domain hierarchy
10961 * and abort nohz_idle_balance altogether if we pull some load.
10963 if (nohz_idle_balance(this_rq, idle))
10966 /* normal load balance */
10967 update_blocked_averages(this_rq->cpu);
10968 rebalance_domains(this_rq, idle);
10972 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10974 void trigger_load_balance(struct rq *rq)
10977 * Don't need to rebalance while attached to NULL domain or
10978 * runqueue CPU is not active
10980 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10983 if (time_after_eq(jiffies, rq->next_balance))
10984 raise_softirq(SCHED_SOFTIRQ);
10986 nohz_balancer_kick(rq);
10989 static void rq_online_fair(struct rq *rq)
10993 update_runtime_enabled(rq);
10996 static void rq_offline_fair(struct rq *rq)
11000 /* Ensure any throttled groups are reachable by pick_next_task */
11001 unthrottle_offline_cfs_rqs(rq);
11004 #endif /* CONFIG_SMP */
11006 #ifdef CONFIG_SCHED_CORE
11008 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11010 u64 slice = sched_slice(cfs_rq_of(se), se);
11011 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11013 return (rtime * min_nr_tasks > slice);
11016 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
11017 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11019 if (!sched_core_enabled(rq))
11023 * If runqueue has only one task which used up its slice and
11024 * if the sibling is forced idle, then trigger schedule to
11025 * give forced idle task a chance.
11027 * sched_slice() considers only this active rq and it gets the
11028 * whole slice. But during force idle, we have siblings acting
11029 * like a single runqueue and hence we need to consider runnable
11030 * tasks on this CPU and the forced idle CPU. Ideally, we should
11031 * go through the forced idle rq, but that would be a perf hit.
11032 * We can assume that the forced idle CPU has at least
11033 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11034 * if we need to give up the CPU.
11036 if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
11037 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11042 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11044 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11046 for_each_sched_entity(se) {
11047 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11050 if (cfs_rq->forceidle_seq == fi_seq)
11052 cfs_rq->forceidle_seq = fi_seq;
11055 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11059 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11061 struct sched_entity *se = &p->se;
11063 if (p->sched_class != &fair_sched_class)
11066 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11069 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11071 struct rq *rq = task_rq(a);
11072 struct sched_entity *sea = &a->se;
11073 struct sched_entity *seb = &b->se;
11074 struct cfs_rq *cfs_rqa;
11075 struct cfs_rq *cfs_rqb;
11078 SCHED_WARN_ON(task_rq(b)->core != rq->core);
11080 #ifdef CONFIG_FAIR_GROUP_SCHED
11082 * Find an se in the hierarchy for tasks a and b, such that the se's
11083 * are immediate siblings.
11085 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11086 int sea_depth = sea->depth;
11087 int seb_depth = seb->depth;
11089 if (sea_depth >= seb_depth)
11090 sea = parent_entity(sea);
11091 if (sea_depth <= seb_depth)
11092 seb = parent_entity(seb);
11095 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11096 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11098 cfs_rqa = sea->cfs_rq;
11099 cfs_rqb = seb->cfs_rq;
11101 cfs_rqa = &task_rq(a)->cfs;
11102 cfs_rqb = &task_rq(b)->cfs;
11106 * Find delta after normalizing se's vruntime with its cfs_rq's
11107 * min_vruntime_fi, which would have been updated in prior calls
11108 * to se_fi_update().
11110 delta = (s64)(sea->vruntime - seb->vruntime) +
11111 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11116 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11120 * scheduler tick hitting a task of our scheduling class.
11122 * NOTE: This function can be called remotely by the tick offload that
11123 * goes along full dynticks. Therefore no local assumption can be made
11124 * and everything must be accessed through the @rq and @curr passed in
11127 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11129 struct cfs_rq *cfs_rq;
11130 struct sched_entity *se = &curr->se;
11132 for_each_sched_entity(se) {
11133 cfs_rq = cfs_rq_of(se);
11134 entity_tick(cfs_rq, se, queued);
11137 if (static_branch_unlikely(&sched_numa_balancing))
11138 task_tick_numa(rq, curr);
11140 update_misfit_status(curr, rq);
11141 update_overutilized_status(task_rq(curr));
11143 task_tick_core(rq, curr);
11147 * called on fork with the child task as argument from the parent's context
11148 * - child not yet on the tasklist
11149 * - preemption disabled
11151 static void task_fork_fair(struct task_struct *p)
11153 struct cfs_rq *cfs_rq;
11154 struct sched_entity *se = &p->se, *curr;
11155 struct rq *rq = this_rq();
11156 struct rq_flags rf;
11159 update_rq_clock(rq);
11161 cfs_rq = task_cfs_rq(current);
11162 curr = cfs_rq->curr;
11164 update_curr(cfs_rq);
11165 se->vruntime = curr->vruntime;
11167 place_entity(cfs_rq, se, 1);
11169 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11171 * Upon rescheduling, sched_class::put_prev_task() will place
11172 * 'current' within the tree based on its new key value.
11174 swap(curr->vruntime, se->vruntime);
11178 se->vruntime -= cfs_rq->min_vruntime;
11179 rq_unlock(rq, &rf);
11183 * Priority of the task has changed. Check to see if we preempt
11184 * the current task.
11187 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11189 if (!task_on_rq_queued(p))
11192 if (rq->cfs.nr_running == 1)
11196 * Reschedule if we are currently running on this runqueue and
11197 * our priority decreased, or if we are not currently running on
11198 * this runqueue and our priority is higher than the current's
11200 if (task_current(rq, p)) {
11201 if (p->prio > oldprio)
11204 check_preempt_curr(rq, p, 0);
11207 static inline bool vruntime_normalized(struct task_struct *p)
11209 struct sched_entity *se = &p->se;
11212 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11213 * the dequeue_entity(.flags=0) will already have normalized the
11220 * When !on_rq, vruntime of the task has usually NOT been normalized.
11221 * But there are some cases where it has already been normalized:
11223 * - A forked child which is waiting for being woken up by
11224 * wake_up_new_task().
11225 * - A task which has been woken up by try_to_wake_up() and
11226 * waiting for actually being woken up by sched_ttwu_pending().
11228 if (!se->sum_exec_runtime ||
11229 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11235 #ifdef CONFIG_FAIR_GROUP_SCHED
11237 * Propagate the changes of the sched_entity across the tg tree to make it
11238 * visible to the root
11240 static void propagate_entity_cfs_rq(struct sched_entity *se)
11242 struct cfs_rq *cfs_rq;
11244 list_add_leaf_cfs_rq(cfs_rq_of(se));
11246 /* Start to propagate at parent */
11249 for_each_sched_entity(se) {
11250 cfs_rq = cfs_rq_of(se);
11252 if (!cfs_rq_throttled(cfs_rq)){
11253 update_load_avg(cfs_rq, se, UPDATE_TG);
11254 list_add_leaf_cfs_rq(cfs_rq);
11258 if (list_add_leaf_cfs_rq(cfs_rq))
11263 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11266 static void detach_entity_cfs_rq(struct sched_entity *se)
11268 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11270 /* Catch up with the cfs_rq and remove our load when we leave */
11271 update_load_avg(cfs_rq, se, 0);
11272 detach_entity_load_avg(cfs_rq, se);
11273 update_tg_load_avg(cfs_rq);
11274 propagate_entity_cfs_rq(se);
11277 static void attach_entity_cfs_rq(struct sched_entity *se)
11279 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11281 #ifdef CONFIG_FAIR_GROUP_SCHED
11283 * Since the real-depth could have been changed (only FAIR
11284 * class maintain depth value), reset depth properly.
11286 se->depth = se->parent ? se->parent->depth + 1 : 0;
11289 /* Synchronize entity with its cfs_rq */
11290 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11291 attach_entity_load_avg(cfs_rq, se);
11292 update_tg_load_avg(cfs_rq);
11293 propagate_entity_cfs_rq(se);
11296 static void detach_task_cfs_rq(struct task_struct *p)
11298 struct sched_entity *se = &p->se;
11299 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11301 if (!vruntime_normalized(p)) {
11303 * Fix up our vruntime so that the current sleep doesn't
11304 * cause 'unlimited' sleep bonus.
11306 place_entity(cfs_rq, se, 0);
11307 se->vruntime -= cfs_rq->min_vruntime;
11310 detach_entity_cfs_rq(se);
11313 static void attach_task_cfs_rq(struct task_struct *p)
11315 struct sched_entity *se = &p->se;
11316 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11318 attach_entity_cfs_rq(se);
11320 if (!vruntime_normalized(p))
11321 se->vruntime += cfs_rq->min_vruntime;
11324 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11326 detach_task_cfs_rq(p);
11329 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11331 attach_task_cfs_rq(p);
11333 if (task_on_rq_queued(p)) {
11335 * We were most likely switched from sched_rt, so
11336 * kick off the schedule if running, otherwise just see
11337 * if we can still preempt the current task.
11339 if (task_current(rq, p))
11342 check_preempt_curr(rq, p, 0);
11346 /* Account for a task changing its policy or group.
11348 * This routine is mostly called to set cfs_rq->curr field when a task
11349 * migrates between groups/classes.
11351 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11353 struct sched_entity *se = &p->se;
11356 if (task_on_rq_queued(p)) {
11358 * Move the next running task to the front of the list, so our
11359 * cfs_tasks list becomes MRU one.
11361 list_move(&se->group_node, &rq->cfs_tasks);
11365 for_each_sched_entity(se) {
11366 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11368 set_next_entity(cfs_rq, se);
11369 /* ensure bandwidth has been allocated on our new cfs_rq */
11370 account_cfs_rq_runtime(cfs_rq, 0);
11374 void init_cfs_rq(struct cfs_rq *cfs_rq)
11376 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11377 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11378 #ifndef CONFIG_64BIT
11379 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11382 raw_spin_lock_init(&cfs_rq->removed.lock);
11386 #ifdef CONFIG_FAIR_GROUP_SCHED
11387 static void task_set_group_fair(struct task_struct *p)
11389 struct sched_entity *se = &p->se;
11391 set_task_rq(p, task_cpu(p));
11392 se->depth = se->parent ? se->parent->depth + 1 : 0;
11395 static void task_move_group_fair(struct task_struct *p)
11397 detach_task_cfs_rq(p);
11398 set_task_rq(p, task_cpu(p));
11401 /* Tell se's cfs_rq has been changed -- migrated */
11402 p->se.avg.last_update_time = 0;
11404 attach_task_cfs_rq(p);
11407 static void task_change_group_fair(struct task_struct *p, int type)
11410 case TASK_SET_GROUP:
11411 task_set_group_fair(p);
11414 case TASK_MOVE_GROUP:
11415 task_move_group_fair(p);
11420 void free_fair_sched_group(struct task_group *tg)
11424 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11426 for_each_possible_cpu(i) {
11428 kfree(tg->cfs_rq[i]);
11437 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11439 struct sched_entity *se;
11440 struct cfs_rq *cfs_rq;
11443 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11446 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11450 tg->shares = NICE_0_LOAD;
11452 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11454 for_each_possible_cpu(i) {
11455 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11456 GFP_KERNEL, cpu_to_node(i));
11460 se = kzalloc_node(sizeof(struct sched_entity),
11461 GFP_KERNEL, cpu_to_node(i));
11465 init_cfs_rq(cfs_rq);
11466 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11467 init_entity_runnable_average(se);
11478 void online_fair_sched_group(struct task_group *tg)
11480 struct sched_entity *se;
11481 struct rq_flags rf;
11485 for_each_possible_cpu(i) {
11488 rq_lock_irq(rq, &rf);
11489 update_rq_clock(rq);
11490 attach_entity_cfs_rq(se);
11491 sync_throttle(tg, i);
11492 rq_unlock_irq(rq, &rf);
11496 void unregister_fair_sched_group(struct task_group *tg)
11498 unsigned long flags;
11502 for_each_possible_cpu(cpu) {
11504 remove_entity_load_avg(tg->se[cpu]);
11507 * Only empty task groups can be destroyed; so we can speculatively
11508 * check on_list without danger of it being re-added.
11510 if (!tg->cfs_rq[cpu]->on_list)
11515 raw_spin_rq_lock_irqsave(rq, flags);
11516 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11517 raw_spin_rq_unlock_irqrestore(rq, flags);
11521 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11522 struct sched_entity *se, int cpu,
11523 struct sched_entity *parent)
11525 struct rq *rq = cpu_rq(cpu);
11529 init_cfs_rq_runtime(cfs_rq);
11531 tg->cfs_rq[cpu] = cfs_rq;
11534 /* se could be NULL for root_task_group */
11539 se->cfs_rq = &rq->cfs;
11542 se->cfs_rq = parent->my_q;
11543 se->depth = parent->depth + 1;
11547 /* guarantee group entities always have weight */
11548 update_load_set(&se->load, NICE_0_LOAD);
11549 se->parent = parent;
11552 static DEFINE_MUTEX(shares_mutex);
11554 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11558 lockdep_assert_held(&shares_mutex);
11561 * We can't change the weight of the root cgroup.
11566 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11568 if (tg->shares == shares)
11571 tg->shares = shares;
11572 for_each_possible_cpu(i) {
11573 struct rq *rq = cpu_rq(i);
11574 struct sched_entity *se = tg->se[i];
11575 struct rq_flags rf;
11577 /* Propagate contribution to hierarchy */
11578 rq_lock_irqsave(rq, &rf);
11579 update_rq_clock(rq);
11580 for_each_sched_entity(se) {
11581 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11582 update_cfs_group(se);
11584 rq_unlock_irqrestore(rq, &rf);
11590 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11594 mutex_lock(&shares_mutex);
11595 if (tg_is_idle(tg))
11598 ret = __sched_group_set_shares(tg, shares);
11599 mutex_unlock(&shares_mutex);
11604 int sched_group_set_idle(struct task_group *tg, long idle)
11608 if (tg == &root_task_group)
11611 if (idle < 0 || idle > 1)
11614 mutex_lock(&shares_mutex);
11616 if (tg->idle == idle) {
11617 mutex_unlock(&shares_mutex);
11623 for_each_possible_cpu(i) {
11624 struct rq *rq = cpu_rq(i);
11625 struct sched_entity *se = tg->se[i];
11626 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
11627 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11628 long idle_task_delta;
11629 struct rq_flags rf;
11631 rq_lock_irqsave(rq, &rf);
11633 grp_cfs_rq->idle = idle;
11634 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11638 parent_cfs_rq = cfs_rq_of(se);
11639 if (cfs_rq_is_idle(grp_cfs_rq))
11640 parent_cfs_rq->idle_nr_running++;
11642 parent_cfs_rq->idle_nr_running--;
11645 idle_task_delta = grp_cfs_rq->h_nr_running -
11646 grp_cfs_rq->idle_h_nr_running;
11647 if (!cfs_rq_is_idle(grp_cfs_rq))
11648 idle_task_delta *= -1;
11650 for_each_sched_entity(se) {
11651 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11656 cfs_rq->idle_h_nr_running += idle_task_delta;
11658 /* Already accounted at parent level and above. */
11659 if (cfs_rq_is_idle(cfs_rq))
11664 rq_unlock_irqrestore(rq, &rf);
11667 /* Idle groups have minimum weight. */
11668 if (tg_is_idle(tg))
11669 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11671 __sched_group_set_shares(tg, NICE_0_LOAD);
11673 mutex_unlock(&shares_mutex);
11677 #else /* CONFIG_FAIR_GROUP_SCHED */
11679 void free_fair_sched_group(struct task_group *tg) { }
11681 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11686 void online_fair_sched_group(struct task_group *tg) { }
11688 void unregister_fair_sched_group(struct task_group *tg) { }
11690 #endif /* CONFIG_FAIR_GROUP_SCHED */
11693 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11695 struct sched_entity *se = &task->se;
11696 unsigned int rr_interval = 0;
11699 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11702 if (rq->cfs.load.weight)
11703 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11705 return rr_interval;
11709 * All the scheduling class methods:
11711 DEFINE_SCHED_CLASS(fair) = {
11713 .enqueue_task = enqueue_task_fair,
11714 .dequeue_task = dequeue_task_fair,
11715 .yield_task = yield_task_fair,
11716 .yield_to_task = yield_to_task_fair,
11718 .check_preempt_curr = check_preempt_wakeup,
11720 .pick_next_task = __pick_next_task_fair,
11721 .put_prev_task = put_prev_task_fair,
11722 .set_next_task = set_next_task_fair,
11725 .balance = balance_fair,
11726 .pick_task = pick_task_fair,
11727 .select_task_rq = select_task_rq_fair,
11728 .migrate_task_rq = migrate_task_rq_fair,
11730 .rq_online = rq_online_fair,
11731 .rq_offline = rq_offline_fair,
11733 .task_dead = task_dead_fair,
11734 .set_cpus_allowed = set_cpus_allowed_common,
11737 .task_tick = task_tick_fair,
11738 .task_fork = task_fork_fair,
11740 .prio_changed = prio_changed_fair,
11741 .switched_from = switched_from_fair,
11742 .switched_to = switched_to_fair,
11744 .get_rr_interval = get_rr_interval_fair,
11746 .update_curr = update_curr_fair,
11748 #ifdef CONFIG_FAIR_GROUP_SCHED
11749 .task_change_group = task_change_group_fair,
11752 #ifdef CONFIG_UCLAMP_TASK
11753 .uclamp_enabled = 1,
11757 #ifdef CONFIG_SCHED_DEBUG
11758 void print_cfs_stats(struct seq_file *m, int cpu)
11760 struct cfs_rq *cfs_rq, *pos;
11763 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11764 print_cfs_rq(m, cpu, cfs_rq);
11768 #ifdef CONFIG_NUMA_BALANCING
11769 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11772 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11773 struct numa_group *ng;
11776 ng = rcu_dereference(p->numa_group);
11777 for_each_online_node(node) {
11778 if (p->numa_faults) {
11779 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11780 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11783 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11784 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11786 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11790 #endif /* CONFIG_NUMA_BALANCING */
11791 #endif /* CONFIG_SCHED_DEBUG */
11793 __init void init_sched_fair_class(void)
11796 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11798 #ifdef CONFIG_NO_HZ_COMMON
11799 nohz.next_balance = jiffies;
11800 nohz.next_blocked = jiffies;
11801 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11808 * Helper functions to facilitate extracting info from tracepoints.
11811 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11814 return cfs_rq ? &cfs_rq->avg : NULL;
11819 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11821 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11825 strlcpy(str, "(null)", len);
11830 cfs_rq_tg_path(cfs_rq, str, len);
11833 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11835 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11837 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11839 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11841 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11844 return rq ? &rq->avg_rt : NULL;
11849 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11851 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11854 return rq ? &rq->avg_dl : NULL;
11859 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11861 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11863 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11864 return rq ? &rq->avg_irq : NULL;
11869 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11871 int sched_trace_rq_cpu(struct rq *rq)
11873 return rq ? cpu_of(rq) : -1;
11875 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11877 int sched_trace_rq_cpu_capacity(struct rq *rq)
11883 SCHED_CAPACITY_SCALE
11887 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11889 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11892 return rd ? rd->span : NULL;
11897 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11899 int sched_trace_rq_nr_running(struct rq *rq)
11901 return rq ? rq->nr_running : -1;
11903 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);