2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
34 #include <trace/events/sched.h>
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
75 static unsigned int sched_nr_latency = 8;
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
97 * The exponential sliding window over which load is averaged for shares
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
103 #ifdef CONFIG_CFS_BANDWIDTH
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
112 * default: 5 msec, units: microseconds
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
142 * This idea comes from the SD scheduler of Con Kolivas:
144 static unsigned int get_update_sysctl_factor(void)
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
153 case SCHED_TUNABLESCALING_LINEAR:
156 case SCHED_TUNABLESCALING_LOG:
158 factor = 1 + ilog2(cpus);
165 static void update_sysctl(void)
167 unsigned int factor = get_update_sysctl_factor();
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
177 void sched_init_granularity(void)
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
185 static void __update_inv_weight(struct load_weight *lw)
189 if (likely(lw->inv_weight))
192 w = scale_load_down(lw->weight);
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
199 lw->inv_weight = WMULT_CONST / w;
203 * delta_exec * weight / lw.weight
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
219 __update_inv_weight(lw);
221 if (unlikely(fact >> 32)) {
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
236 return mul_u64_u32_shr(delta_exec, fact, shift);
240 const struct sched_class fair_sched_class;
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
246 #ifdef CONFIG_FAIR_GROUP_SCHED
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
257 static inline struct task_struct *task_of(struct sched_entity *se)
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
262 return container_of(se, struct task_struct, se);
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
288 if (!cfs_rq->on_list) {
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
324 if (se->cfs_rq == pse->cfs_rq)
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
338 int se_depth, pse_depth;
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
351 while (se_depth > pse_depth) {
353 *se = parent_entity(*se);
356 while (pse_depth > se_depth) {
358 *pse = parent_entity(*pse);
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
369 static inline struct task_struct *task_of(struct sched_entity *se)
371 return container_of(se, struct task_struct, se);
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
376 return container_of(cfs_rq, struct rq, cfs);
379 #define entity_is_task(se) 1
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
386 return &task_rq(p)->cfs;
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
435 s64 delta = (s64)(vruntime - max_vruntime);
437 max_vruntime = vruntime;
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
444 s64 delta = (s64)(vruntime - min_vruntime);
446 min_vruntime = vruntime;
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
454 return (s64)(a->vruntime - b->vruntime) < 0;
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
459 u64 vruntime = cfs_rq->min_vruntime;
462 vruntime = cfs_rq->curr->vruntime;
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 vruntime = se->vruntime;
472 vruntime = min_vruntime(vruntime, se->vruntime);
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484 * Enqueue an entity into the rb-tree:
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
494 * Find the right place in the rbtree:
498 entry = rb_entry(parent, struct sched_entity, run_node);
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
506 link = &parent->rb_right;
512 * Maintain a cache of leftmost tree entries (it is frequently
516 cfs_rq->rb_leftmost = &se->run_node;
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
536 struct rb_node *left = cfs_rq->rb_leftmost;
541 return rb_entry(left, struct sched_entity, run_node);
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
546 struct rb_node *next = rb_next(&se->run_node);
551 return rb_entry(next, struct sched_entity, run_node);
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562 return rb_entry(last, struct sched_entity, run_node);
565 /**************************************************************
566 * Scheduling class statistics methods:
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 * The idea is to set a period in which each task runs once.
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
610 * p = (nr <= nl) ? l : l*nr/nl
612 static u64 __sched_period(unsigned long nr_running)
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
617 return sysctl_sched_latency;
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
637 if (unlikely(!se->on_rq)) {
640 update_load_add(&lw, se->load.weight);
643 slice = __calc_delta(slice, se->load.weight, load);
649 * We calculate the vruntime slice of a to-be-inserted task.
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
674 struct sched_avg *sa = &se->avg;
676 sa->last_update_time = 0;
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
693 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
694 static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
695 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
696 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
699 * With new tasks being created, their initial util_avgs are extrapolated
700 * based on the cfs_rq's current util_avg:
702 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
704 * However, in many cases, the above util_avg does not give a desired
705 * value. Moreover, the sum of the util_avgs may be divergent, such
706 * as when the series is a harmonic series.
708 * To solve this problem, we also cap the util_avg of successive tasks to
709 * only 1/2 of the left utilization budget:
711 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
713 * where n denotes the nth task.
715 * For example, a simplest series from the beginning would be like:
717 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
718 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
720 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
721 * if util_avg > util_avg_cap.
723 void post_init_entity_util_avg(struct sched_entity *se)
725 struct cfs_rq *cfs_rq = cfs_rq_of(se);
726 struct sched_avg *sa = &se->avg;
727 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
728 u64 now = cfs_rq_clock_task(cfs_rq);
732 if (cfs_rq->avg.util_avg != 0) {
733 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
734 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
736 if (sa->util_avg > cap)
741 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
744 if (entity_is_task(se)) {
745 struct task_struct *p = task_of(se);
746 if (p->sched_class != &fair_sched_class) {
748 * For !fair tasks do:
750 update_cfs_rq_load_avg(now, cfs_rq, false);
751 attach_entity_load_avg(cfs_rq, se);
752 switched_from_fair(rq, p);
754 * such that the next switched_to_fair() has the
757 se->avg.last_update_time = now;
762 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
763 attach_entity_load_avg(cfs_rq, se);
765 update_tg_load_avg(cfs_rq, false);
768 #else /* !CONFIG_SMP */
769 void init_entity_runnable_average(struct sched_entity *se)
772 void post_init_entity_util_avg(struct sched_entity *se)
775 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
778 #endif /* CONFIG_SMP */
781 * Update the current task's runtime statistics.
783 static void update_curr(struct cfs_rq *cfs_rq)
785 struct sched_entity *curr = cfs_rq->curr;
786 u64 now = rq_clock_task(rq_of(cfs_rq));
792 delta_exec = now - curr->exec_start;
793 if (unlikely((s64)delta_exec <= 0))
796 curr->exec_start = now;
798 schedstat_set(curr->statistics.exec_max,
799 max(delta_exec, curr->statistics.exec_max));
801 curr->sum_exec_runtime += delta_exec;
802 schedstat_add(cfs_rq, exec_clock, delta_exec);
804 curr->vruntime += calc_delta_fair(delta_exec, curr);
805 update_min_vruntime(cfs_rq);
807 if (entity_is_task(curr)) {
808 struct task_struct *curtask = task_of(curr);
810 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
811 cpuacct_charge(curtask, delta_exec);
812 account_group_exec_runtime(curtask, delta_exec);
815 account_cfs_rq_runtime(cfs_rq, delta_exec);
818 static void update_curr_fair(struct rq *rq)
820 update_curr(cfs_rq_of(&rq->curr->se));
823 #ifdef CONFIG_SCHEDSTATS
825 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
827 u64 wait_start = rq_clock(rq_of(cfs_rq));
829 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
830 likely(wait_start > se->statistics.wait_start))
831 wait_start -= se->statistics.wait_start;
833 se->statistics.wait_start = wait_start;
837 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
839 struct task_struct *p;
842 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
844 if (entity_is_task(se)) {
846 if (task_on_rq_migrating(p)) {
848 * Preserve migrating task's wait time so wait_start
849 * time stamp can be adjusted to accumulate wait time
850 * prior to migration.
852 se->statistics.wait_start = delta;
855 trace_sched_stat_wait(p, delta);
858 se->statistics.wait_max = max(se->statistics.wait_max, delta);
859 se->statistics.wait_count++;
860 se->statistics.wait_sum += delta;
861 se->statistics.wait_start = 0;
865 * Task is being enqueued - update stats:
868 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
871 * Are we enqueueing a waiting task? (for current tasks
872 * a dequeue/enqueue event is a NOP)
874 if (se != cfs_rq->curr)
875 update_stats_wait_start(cfs_rq, se);
879 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
882 * Mark the end of the wait period if dequeueing a
885 if (se != cfs_rq->curr)
886 update_stats_wait_end(cfs_rq, se);
888 if (flags & DEQUEUE_SLEEP) {
889 if (entity_is_task(se)) {
890 struct task_struct *tsk = task_of(se);
892 if (tsk->state & TASK_INTERRUPTIBLE)
893 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
894 if (tsk->state & TASK_UNINTERRUPTIBLE)
895 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
902 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
907 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
912 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
917 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
923 * We are picking a new current task - update its stats:
926 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
929 * We are starting a new run period:
931 se->exec_start = rq_clock_task(rq_of(cfs_rq));
934 /**************************************************
935 * Scheduling class queueing methods:
938 #ifdef CONFIG_NUMA_BALANCING
940 * Approximate time to scan a full NUMA task in ms. The task scan period is
941 * calculated based on the tasks virtual memory size and
942 * numa_balancing_scan_size.
944 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
945 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
947 /* Portion of address space to scan in MB */
948 unsigned int sysctl_numa_balancing_scan_size = 256;
950 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
951 unsigned int sysctl_numa_balancing_scan_delay = 1000;
953 static unsigned int task_nr_scan_windows(struct task_struct *p)
955 unsigned long rss = 0;
956 unsigned long nr_scan_pages;
959 * Calculations based on RSS as non-present and empty pages are skipped
960 * by the PTE scanner and NUMA hinting faults should be trapped based
963 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
964 rss = get_mm_rss(p->mm);
968 rss = round_up(rss, nr_scan_pages);
969 return rss / nr_scan_pages;
972 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
973 #define MAX_SCAN_WINDOW 2560
975 static unsigned int task_scan_min(struct task_struct *p)
977 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
978 unsigned int scan, floor;
979 unsigned int windows = 1;
981 if (scan_size < MAX_SCAN_WINDOW)
982 windows = MAX_SCAN_WINDOW / scan_size;
983 floor = 1000 / windows;
985 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
986 return max_t(unsigned int, floor, scan);
989 static unsigned int task_scan_max(struct task_struct *p)
991 unsigned int smin = task_scan_min(p);
994 /* Watch for min being lower than max due to floor calculations */
995 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
996 return max(smin, smax);
999 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1001 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1002 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1005 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1007 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1008 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1014 spinlock_t lock; /* nr_tasks, tasks */
1019 struct rcu_head rcu;
1020 unsigned long total_faults;
1021 unsigned long max_faults_cpu;
1023 * Faults_cpu is used to decide whether memory should move
1024 * towards the CPU. As a consequence, these stats are weighted
1025 * more by CPU use than by memory faults.
1027 unsigned long *faults_cpu;
1028 unsigned long faults[0];
1031 /* Shared or private faults. */
1032 #define NR_NUMA_HINT_FAULT_TYPES 2
1034 /* Memory and CPU locality */
1035 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1037 /* Averaged statistics, and temporary buffers. */
1038 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1040 pid_t task_numa_group_id(struct task_struct *p)
1042 return p->numa_group ? p->numa_group->gid : 0;
1046 * The averaged statistics, shared & private, memory & cpu,
1047 * occupy the first half of the array. The second half of the
1048 * array is for current counters, which are averaged into the
1049 * first set by task_numa_placement.
1051 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1053 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1056 static inline unsigned long task_faults(struct task_struct *p, int nid)
1058 if (!p->numa_faults)
1061 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1062 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1065 static inline unsigned long group_faults(struct task_struct *p, int nid)
1070 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1071 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1074 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1076 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1077 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1081 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1082 * considered part of a numa group's pseudo-interleaving set. Migrations
1083 * between these nodes are slowed down, to allow things to settle down.
1085 #define ACTIVE_NODE_FRACTION 3
1087 static bool numa_is_active_node(int nid, struct numa_group *ng)
1089 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1092 /* Handle placement on systems where not all nodes are directly connected. */
1093 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1094 int maxdist, bool task)
1096 unsigned long score = 0;
1100 * All nodes are directly connected, and the same distance
1101 * from each other. No need for fancy placement algorithms.
1103 if (sched_numa_topology_type == NUMA_DIRECT)
1107 * This code is called for each node, introducing N^2 complexity,
1108 * which should be ok given the number of nodes rarely exceeds 8.
1110 for_each_online_node(node) {
1111 unsigned long faults;
1112 int dist = node_distance(nid, node);
1115 * The furthest away nodes in the system are not interesting
1116 * for placement; nid was already counted.
1118 if (dist == sched_max_numa_distance || node == nid)
1122 * On systems with a backplane NUMA topology, compare groups
1123 * of nodes, and move tasks towards the group with the most
1124 * memory accesses. When comparing two nodes at distance
1125 * "hoplimit", only nodes closer by than "hoplimit" are part
1126 * of each group. Skip other nodes.
1128 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1132 /* Add up the faults from nearby nodes. */
1134 faults = task_faults(p, node);
1136 faults = group_faults(p, node);
1139 * On systems with a glueless mesh NUMA topology, there are
1140 * no fixed "groups of nodes". Instead, nodes that are not
1141 * directly connected bounce traffic through intermediate
1142 * nodes; a numa_group can occupy any set of nodes.
1143 * The further away a node is, the less the faults count.
1144 * This seems to result in good task placement.
1146 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1147 faults *= (sched_max_numa_distance - dist);
1148 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1158 * These return the fraction of accesses done by a particular task, or
1159 * task group, on a particular numa node. The group weight is given a
1160 * larger multiplier, in order to group tasks together that are almost
1161 * evenly spread out between numa nodes.
1163 static inline unsigned long task_weight(struct task_struct *p, int nid,
1166 unsigned long faults, total_faults;
1168 if (!p->numa_faults)
1171 total_faults = p->total_numa_faults;
1176 faults = task_faults(p, nid);
1177 faults += score_nearby_nodes(p, nid, dist, true);
1179 return 1000 * faults / total_faults;
1182 static inline unsigned long group_weight(struct task_struct *p, int nid,
1185 unsigned long faults, total_faults;
1190 total_faults = p->numa_group->total_faults;
1195 faults = group_faults(p, nid);
1196 faults += score_nearby_nodes(p, nid, dist, false);
1198 return 1000 * faults / total_faults;
1201 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1202 int src_nid, int dst_cpu)
1204 struct numa_group *ng = p->numa_group;
1205 int dst_nid = cpu_to_node(dst_cpu);
1206 int last_cpupid, this_cpupid;
1208 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1211 * Multi-stage node selection is used in conjunction with a periodic
1212 * migration fault to build a temporal task<->page relation. By using
1213 * a two-stage filter we remove short/unlikely relations.
1215 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1216 * a task's usage of a particular page (n_p) per total usage of this
1217 * page (n_t) (in a given time-span) to a probability.
1219 * Our periodic faults will sample this probability and getting the
1220 * same result twice in a row, given these samples are fully
1221 * independent, is then given by P(n)^2, provided our sample period
1222 * is sufficiently short compared to the usage pattern.
1224 * This quadric squishes small probabilities, making it less likely we
1225 * act on an unlikely task<->page relation.
1227 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1228 if (!cpupid_pid_unset(last_cpupid) &&
1229 cpupid_to_nid(last_cpupid) != dst_nid)
1232 /* Always allow migrate on private faults */
1233 if (cpupid_match_pid(p, last_cpupid))
1236 /* A shared fault, but p->numa_group has not been set up yet. */
1241 * Destination node is much more heavily used than the source
1242 * node? Allow migration.
1244 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1245 ACTIVE_NODE_FRACTION)
1249 * Distribute memory according to CPU & memory use on each node,
1250 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1252 * faults_cpu(dst) 3 faults_cpu(src)
1253 * --------------- * - > ---------------
1254 * faults_mem(dst) 4 faults_mem(src)
1256 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1257 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1260 static unsigned long weighted_cpuload(const int cpu);
1261 static unsigned long source_load(int cpu, int type);
1262 static unsigned long target_load(int cpu, int type);
1263 static unsigned long capacity_of(int cpu);
1264 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1266 /* Cached statistics for all CPUs within a node */
1268 unsigned long nr_running;
1271 /* Total compute capacity of CPUs on a node */
1272 unsigned long compute_capacity;
1274 /* Approximate capacity in terms of runnable tasks on a node */
1275 unsigned long task_capacity;
1276 int has_free_capacity;
1280 * XXX borrowed from update_sg_lb_stats
1282 static void update_numa_stats(struct numa_stats *ns, int nid)
1284 int smt, cpu, cpus = 0;
1285 unsigned long capacity;
1287 memset(ns, 0, sizeof(*ns));
1288 for_each_cpu(cpu, cpumask_of_node(nid)) {
1289 struct rq *rq = cpu_rq(cpu);
1291 ns->nr_running += rq->nr_running;
1292 ns->load += weighted_cpuload(cpu);
1293 ns->compute_capacity += capacity_of(cpu);
1299 * If we raced with hotplug and there are no CPUs left in our mask
1300 * the @ns structure is NULL'ed and task_numa_compare() will
1301 * not find this node attractive.
1303 * We'll either bail at !has_free_capacity, or we'll detect a huge
1304 * imbalance and bail there.
1309 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1310 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1311 capacity = cpus / smt; /* cores */
1313 ns->task_capacity = min_t(unsigned, capacity,
1314 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1315 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1318 struct task_numa_env {
1319 struct task_struct *p;
1321 int src_cpu, src_nid;
1322 int dst_cpu, dst_nid;
1324 struct numa_stats src_stats, dst_stats;
1329 struct task_struct *best_task;
1334 static void task_numa_assign(struct task_numa_env *env,
1335 struct task_struct *p, long imp)
1338 put_task_struct(env->best_task);
1343 env->best_imp = imp;
1344 env->best_cpu = env->dst_cpu;
1347 static bool load_too_imbalanced(long src_load, long dst_load,
1348 struct task_numa_env *env)
1351 long orig_src_load, orig_dst_load;
1352 long src_capacity, dst_capacity;
1355 * The load is corrected for the CPU capacity available on each node.
1358 * ------------ vs ---------
1359 * src_capacity dst_capacity
1361 src_capacity = env->src_stats.compute_capacity;
1362 dst_capacity = env->dst_stats.compute_capacity;
1364 /* We care about the slope of the imbalance, not the direction. */
1365 if (dst_load < src_load)
1366 swap(dst_load, src_load);
1368 /* Is the difference below the threshold? */
1369 imb = dst_load * src_capacity * 100 -
1370 src_load * dst_capacity * env->imbalance_pct;
1375 * The imbalance is above the allowed threshold.
1376 * Compare it with the old imbalance.
1378 orig_src_load = env->src_stats.load;
1379 orig_dst_load = env->dst_stats.load;
1381 if (orig_dst_load < orig_src_load)
1382 swap(orig_dst_load, orig_src_load);
1384 old_imb = orig_dst_load * src_capacity * 100 -
1385 orig_src_load * dst_capacity * env->imbalance_pct;
1387 /* Would this change make things worse? */
1388 return (imb > old_imb);
1392 * This checks if the overall compute and NUMA accesses of the system would
1393 * be improved if the source tasks was migrated to the target dst_cpu taking
1394 * into account that it might be best if task running on the dst_cpu should
1395 * be exchanged with the source task
1397 static void task_numa_compare(struct task_numa_env *env,
1398 long taskimp, long groupimp)
1400 struct rq *src_rq = cpu_rq(env->src_cpu);
1401 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1402 struct task_struct *cur;
1403 long src_load, dst_load;
1405 long imp = env->p->numa_group ? groupimp : taskimp;
1407 int dist = env->dist;
1410 cur = task_rcu_dereference(&dst_rq->curr);
1411 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1415 * Because we have preemption enabled we can get migrated around and
1416 * end try selecting ourselves (current == env->p) as a swap candidate.
1422 * "imp" is the fault differential for the source task between the
1423 * source and destination node. Calculate the total differential for
1424 * the source task and potential destination task. The more negative
1425 * the value is, the more rmeote accesses that would be expected to
1426 * be incurred if the tasks were swapped.
1429 /* Skip this swap candidate if cannot move to the source cpu */
1430 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1434 * If dst and source tasks are in the same NUMA group, or not
1435 * in any group then look only at task weights.
1437 if (cur->numa_group == env->p->numa_group) {
1438 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1439 task_weight(cur, env->dst_nid, dist);
1441 * Add some hysteresis to prevent swapping the
1442 * tasks within a group over tiny differences.
1444 if (cur->numa_group)
1448 * Compare the group weights. If a task is all by
1449 * itself (not part of a group), use the task weight
1452 if (cur->numa_group)
1453 imp += group_weight(cur, env->src_nid, dist) -
1454 group_weight(cur, env->dst_nid, dist);
1456 imp += task_weight(cur, env->src_nid, dist) -
1457 task_weight(cur, env->dst_nid, dist);
1461 if (imp <= env->best_imp && moveimp <= env->best_imp)
1465 /* Is there capacity at our destination? */
1466 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1467 !env->dst_stats.has_free_capacity)
1473 /* Balance doesn't matter much if we're running a task per cpu */
1474 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1475 dst_rq->nr_running == 1)
1479 * In the overloaded case, try and keep the load balanced.
1482 load = task_h_load(env->p);
1483 dst_load = env->dst_stats.load + load;
1484 src_load = env->src_stats.load - load;
1486 if (moveimp > imp && moveimp > env->best_imp) {
1488 * If the improvement from just moving env->p direction is
1489 * better than swapping tasks around, check if a move is
1490 * possible. Store a slightly smaller score than moveimp,
1491 * so an actually idle CPU will win.
1493 if (!load_too_imbalanced(src_load, dst_load, env)) {
1500 if (imp <= env->best_imp)
1504 load = task_h_load(cur);
1509 if (load_too_imbalanced(src_load, dst_load, env))
1513 * One idle CPU per node is evaluated for a task numa move.
1514 * Call select_idle_sibling to maybe find a better one.
1517 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1520 task_numa_assign(env, cur, imp);
1525 static void task_numa_find_cpu(struct task_numa_env *env,
1526 long taskimp, long groupimp)
1530 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1531 /* Skip this CPU if the source task cannot migrate */
1532 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1536 task_numa_compare(env, taskimp, groupimp);
1540 /* Only move tasks to a NUMA node less busy than the current node. */
1541 static bool numa_has_capacity(struct task_numa_env *env)
1543 struct numa_stats *src = &env->src_stats;
1544 struct numa_stats *dst = &env->dst_stats;
1546 if (src->has_free_capacity && !dst->has_free_capacity)
1550 * Only consider a task move if the source has a higher load
1551 * than the destination, corrected for CPU capacity on each node.
1553 * src->load dst->load
1554 * --------------------- vs ---------------------
1555 * src->compute_capacity dst->compute_capacity
1557 if (src->load * dst->compute_capacity * env->imbalance_pct >
1559 dst->load * src->compute_capacity * 100)
1565 static int task_numa_migrate(struct task_struct *p)
1567 struct task_numa_env env = {
1570 .src_cpu = task_cpu(p),
1571 .src_nid = task_node(p),
1573 .imbalance_pct = 112,
1579 struct sched_domain *sd;
1580 unsigned long taskweight, groupweight;
1582 long taskimp, groupimp;
1585 * Pick the lowest SD_NUMA domain, as that would have the smallest
1586 * imbalance and would be the first to start moving tasks about.
1588 * And we want to avoid any moving of tasks about, as that would create
1589 * random movement of tasks -- counter the numa conditions we're trying
1593 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1595 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1599 * Cpusets can break the scheduler domain tree into smaller
1600 * balance domains, some of which do not cross NUMA boundaries.
1601 * Tasks that are "trapped" in such domains cannot be migrated
1602 * elsewhere, so there is no point in (re)trying.
1604 if (unlikely(!sd)) {
1605 p->numa_preferred_nid = task_node(p);
1609 env.dst_nid = p->numa_preferred_nid;
1610 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1611 taskweight = task_weight(p, env.src_nid, dist);
1612 groupweight = group_weight(p, env.src_nid, dist);
1613 update_numa_stats(&env.src_stats, env.src_nid);
1614 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1615 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1616 update_numa_stats(&env.dst_stats, env.dst_nid);
1618 /* Try to find a spot on the preferred nid. */
1619 if (numa_has_capacity(&env))
1620 task_numa_find_cpu(&env, taskimp, groupimp);
1623 * Look at other nodes in these cases:
1624 * - there is no space available on the preferred_nid
1625 * - the task is part of a numa_group that is interleaved across
1626 * multiple NUMA nodes; in order to better consolidate the group,
1627 * we need to check other locations.
1629 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1630 for_each_online_node(nid) {
1631 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1634 dist = node_distance(env.src_nid, env.dst_nid);
1635 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1637 taskweight = task_weight(p, env.src_nid, dist);
1638 groupweight = group_weight(p, env.src_nid, dist);
1641 /* Only consider nodes where both task and groups benefit */
1642 taskimp = task_weight(p, nid, dist) - taskweight;
1643 groupimp = group_weight(p, nid, dist) - groupweight;
1644 if (taskimp < 0 && groupimp < 0)
1649 update_numa_stats(&env.dst_stats, env.dst_nid);
1650 if (numa_has_capacity(&env))
1651 task_numa_find_cpu(&env, taskimp, groupimp);
1656 * If the task is part of a workload that spans multiple NUMA nodes,
1657 * and is migrating into one of the workload's active nodes, remember
1658 * this node as the task's preferred numa node, so the workload can
1660 * A task that migrated to a second choice node will be better off
1661 * trying for a better one later. Do not set the preferred node here.
1663 if (p->numa_group) {
1664 struct numa_group *ng = p->numa_group;
1666 if (env.best_cpu == -1)
1671 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1672 sched_setnuma(p, env.dst_nid);
1675 /* No better CPU than the current one was found. */
1676 if (env.best_cpu == -1)
1680 * Reset the scan period if the task is being rescheduled on an
1681 * alternative node to recheck if the tasks is now properly placed.
1683 p->numa_scan_period = task_scan_min(p);
1685 if (env.best_task == NULL) {
1686 ret = migrate_task_to(p, env.best_cpu);
1688 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1692 ret = migrate_swap(p, env.best_task);
1694 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1695 put_task_struct(env.best_task);
1699 /* Attempt to migrate a task to a CPU on the preferred node. */
1700 static void numa_migrate_preferred(struct task_struct *p)
1702 unsigned long interval = HZ;
1704 /* This task has no NUMA fault statistics yet */
1705 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1708 /* Periodically retry migrating the task to the preferred node */
1709 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1710 p->numa_migrate_retry = jiffies + interval;
1712 /* Success if task is already running on preferred CPU */
1713 if (task_node(p) == p->numa_preferred_nid)
1716 /* Otherwise, try migrate to a CPU on the preferred node */
1717 task_numa_migrate(p);
1721 * Find out how many nodes on the workload is actively running on. Do this by
1722 * tracking the nodes from which NUMA hinting faults are triggered. This can
1723 * be different from the set of nodes where the workload's memory is currently
1726 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1728 unsigned long faults, max_faults = 0;
1729 int nid, active_nodes = 0;
1731 for_each_online_node(nid) {
1732 faults = group_faults_cpu(numa_group, nid);
1733 if (faults > max_faults)
1734 max_faults = faults;
1737 for_each_online_node(nid) {
1738 faults = group_faults_cpu(numa_group, nid);
1739 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1743 numa_group->max_faults_cpu = max_faults;
1744 numa_group->active_nodes = active_nodes;
1748 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1749 * increments. The more local the fault statistics are, the higher the scan
1750 * period will be for the next scan window. If local/(local+remote) ratio is
1751 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1752 * the scan period will decrease. Aim for 70% local accesses.
1754 #define NUMA_PERIOD_SLOTS 10
1755 #define NUMA_PERIOD_THRESHOLD 7
1758 * Increase the scan period (slow down scanning) if the majority of
1759 * our memory is already on our local node, or if the majority of
1760 * the page accesses are shared with other processes.
1761 * Otherwise, decrease the scan period.
1763 static void update_task_scan_period(struct task_struct *p,
1764 unsigned long shared, unsigned long private)
1766 unsigned int period_slot;
1770 unsigned long remote = p->numa_faults_locality[0];
1771 unsigned long local = p->numa_faults_locality[1];
1774 * If there were no record hinting faults then either the task is
1775 * completely idle or all activity is areas that are not of interest
1776 * to automatic numa balancing. Related to that, if there were failed
1777 * migration then it implies we are migrating too quickly or the local
1778 * node is overloaded. In either case, scan slower
1780 if (local + shared == 0 || p->numa_faults_locality[2]) {
1781 p->numa_scan_period = min(p->numa_scan_period_max,
1782 p->numa_scan_period << 1);
1784 p->mm->numa_next_scan = jiffies +
1785 msecs_to_jiffies(p->numa_scan_period);
1791 * Prepare to scale scan period relative to the current period.
1792 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1793 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1794 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1796 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1797 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1798 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1799 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1802 diff = slot * period_slot;
1804 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1807 * Scale scan rate increases based on sharing. There is an
1808 * inverse relationship between the degree of sharing and
1809 * the adjustment made to the scanning period. Broadly
1810 * speaking the intent is that there is little point
1811 * scanning faster if shared accesses dominate as it may
1812 * simply bounce migrations uselessly
1814 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1815 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1818 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1819 task_scan_min(p), task_scan_max(p));
1820 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1824 * Get the fraction of time the task has been running since the last
1825 * NUMA placement cycle. The scheduler keeps similar statistics, but
1826 * decays those on a 32ms period, which is orders of magnitude off
1827 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1828 * stats only if the task is so new there are no NUMA statistics yet.
1830 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1832 u64 runtime, delta, now;
1833 /* Use the start of this time slice to avoid calculations. */
1834 now = p->se.exec_start;
1835 runtime = p->se.sum_exec_runtime;
1837 if (p->last_task_numa_placement) {
1838 delta = runtime - p->last_sum_exec_runtime;
1839 *period = now - p->last_task_numa_placement;
1841 delta = p->se.avg.load_sum / p->se.load.weight;
1842 *period = LOAD_AVG_MAX;
1845 p->last_sum_exec_runtime = runtime;
1846 p->last_task_numa_placement = now;
1852 * Determine the preferred nid for a task in a numa_group. This needs to
1853 * be done in a way that produces consistent results with group_weight,
1854 * otherwise workloads might not converge.
1856 static int preferred_group_nid(struct task_struct *p, int nid)
1861 /* Direct connections between all NUMA nodes. */
1862 if (sched_numa_topology_type == NUMA_DIRECT)
1866 * On a system with glueless mesh NUMA topology, group_weight
1867 * scores nodes according to the number of NUMA hinting faults on
1868 * both the node itself, and on nearby nodes.
1870 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1871 unsigned long score, max_score = 0;
1872 int node, max_node = nid;
1874 dist = sched_max_numa_distance;
1876 for_each_online_node(node) {
1877 score = group_weight(p, node, dist);
1878 if (score > max_score) {
1887 * Finding the preferred nid in a system with NUMA backplane
1888 * interconnect topology is more involved. The goal is to locate
1889 * tasks from numa_groups near each other in the system, and
1890 * untangle workloads from different sides of the system. This requires
1891 * searching down the hierarchy of node groups, recursively searching
1892 * inside the highest scoring group of nodes. The nodemask tricks
1893 * keep the complexity of the search down.
1895 nodes = node_online_map;
1896 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1897 unsigned long max_faults = 0;
1898 nodemask_t max_group = NODE_MASK_NONE;
1901 /* Are there nodes at this distance from each other? */
1902 if (!find_numa_distance(dist))
1905 for_each_node_mask(a, nodes) {
1906 unsigned long faults = 0;
1907 nodemask_t this_group;
1908 nodes_clear(this_group);
1910 /* Sum group's NUMA faults; includes a==b case. */
1911 for_each_node_mask(b, nodes) {
1912 if (node_distance(a, b) < dist) {
1913 faults += group_faults(p, b);
1914 node_set(b, this_group);
1915 node_clear(b, nodes);
1919 /* Remember the top group. */
1920 if (faults > max_faults) {
1921 max_faults = faults;
1922 max_group = this_group;
1924 * subtle: at the smallest distance there is
1925 * just one node left in each "group", the
1926 * winner is the preferred nid.
1931 /* Next round, evaluate the nodes within max_group. */
1939 static void task_numa_placement(struct task_struct *p)
1941 int seq, nid, max_nid = -1, max_group_nid = -1;
1942 unsigned long max_faults = 0, max_group_faults = 0;
1943 unsigned long fault_types[2] = { 0, 0 };
1944 unsigned long total_faults;
1945 u64 runtime, period;
1946 spinlock_t *group_lock = NULL;
1949 * The p->mm->numa_scan_seq field gets updated without
1950 * exclusive access. Use READ_ONCE() here to ensure
1951 * that the field is read in a single access:
1953 seq = READ_ONCE(p->mm->numa_scan_seq);
1954 if (p->numa_scan_seq == seq)
1956 p->numa_scan_seq = seq;
1957 p->numa_scan_period_max = task_scan_max(p);
1959 total_faults = p->numa_faults_locality[0] +
1960 p->numa_faults_locality[1];
1961 runtime = numa_get_avg_runtime(p, &period);
1963 /* If the task is part of a group prevent parallel updates to group stats */
1964 if (p->numa_group) {
1965 group_lock = &p->numa_group->lock;
1966 spin_lock_irq(group_lock);
1969 /* Find the node with the highest number of faults */
1970 for_each_online_node(nid) {
1971 /* Keep track of the offsets in numa_faults array */
1972 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1973 unsigned long faults = 0, group_faults = 0;
1976 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1977 long diff, f_diff, f_weight;
1979 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1980 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1981 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1982 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1984 /* Decay existing window, copy faults since last scan */
1985 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1986 fault_types[priv] += p->numa_faults[membuf_idx];
1987 p->numa_faults[membuf_idx] = 0;
1990 * Normalize the faults_from, so all tasks in a group
1991 * count according to CPU use, instead of by the raw
1992 * number of faults. Tasks with little runtime have
1993 * little over-all impact on throughput, and thus their
1994 * faults are less important.
1996 f_weight = div64_u64(runtime << 16, period + 1);
1997 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1999 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2000 p->numa_faults[cpubuf_idx] = 0;
2002 p->numa_faults[mem_idx] += diff;
2003 p->numa_faults[cpu_idx] += f_diff;
2004 faults += p->numa_faults[mem_idx];
2005 p->total_numa_faults += diff;
2006 if (p->numa_group) {
2008 * safe because we can only change our own group
2010 * mem_idx represents the offset for a given
2011 * nid and priv in a specific region because it
2012 * is at the beginning of the numa_faults array.
2014 p->numa_group->faults[mem_idx] += diff;
2015 p->numa_group->faults_cpu[mem_idx] += f_diff;
2016 p->numa_group->total_faults += diff;
2017 group_faults += p->numa_group->faults[mem_idx];
2021 if (faults > max_faults) {
2022 max_faults = faults;
2026 if (group_faults > max_group_faults) {
2027 max_group_faults = group_faults;
2028 max_group_nid = nid;
2032 update_task_scan_period(p, fault_types[0], fault_types[1]);
2034 if (p->numa_group) {
2035 numa_group_count_active_nodes(p->numa_group);
2036 spin_unlock_irq(group_lock);
2037 max_nid = preferred_group_nid(p, max_group_nid);
2041 /* Set the new preferred node */
2042 if (max_nid != p->numa_preferred_nid)
2043 sched_setnuma(p, max_nid);
2045 if (task_node(p) != p->numa_preferred_nid)
2046 numa_migrate_preferred(p);
2050 static inline int get_numa_group(struct numa_group *grp)
2052 return atomic_inc_not_zero(&grp->refcount);
2055 static inline void put_numa_group(struct numa_group *grp)
2057 if (atomic_dec_and_test(&grp->refcount))
2058 kfree_rcu(grp, rcu);
2061 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2064 struct numa_group *grp, *my_grp;
2065 struct task_struct *tsk;
2067 int cpu = cpupid_to_cpu(cpupid);
2070 if (unlikely(!p->numa_group)) {
2071 unsigned int size = sizeof(struct numa_group) +
2072 4*nr_node_ids*sizeof(unsigned long);
2074 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2078 atomic_set(&grp->refcount, 1);
2079 grp->active_nodes = 1;
2080 grp->max_faults_cpu = 0;
2081 spin_lock_init(&grp->lock);
2083 /* Second half of the array tracks nids where faults happen */
2084 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2087 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2088 grp->faults[i] = p->numa_faults[i];
2090 grp->total_faults = p->total_numa_faults;
2093 rcu_assign_pointer(p->numa_group, grp);
2097 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2099 if (!cpupid_match_pid(tsk, cpupid))
2102 grp = rcu_dereference(tsk->numa_group);
2106 my_grp = p->numa_group;
2111 * Only join the other group if its bigger; if we're the bigger group,
2112 * the other task will join us.
2114 if (my_grp->nr_tasks > grp->nr_tasks)
2118 * Tie-break on the grp address.
2120 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2123 /* Always join threads in the same process. */
2124 if (tsk->mm == current->mm)
2127 /* Simple filter to avoid false positives due to PID collisions */
2128 if (flags & TNF_SHARED)
2131 /* Update priv based on whether false sharing was detected */
2134 if (join && !get_numa_group(grp))
2142 BUG_ON(irqs_disabled());
2143 double_lock_irq(&my_grp->lock, &grp->lock);
2145 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2146 my_grp->faults[i] -= p->numa_faults[i];
2147 grp->faults[i] += p->numa_faults[i];
2149 my_grp->total_faults -= p->total_numa_faults;
2150 grp->total_faults += p->total_numa_faults;
2155 spin_unlock(&my_grp->lock);
2156 spin_unlock_irq(&grp->lock);
2158 rcu_assign_pointer(p->numa_group, grp);
2160 put_numa_group(my_grp);
2168 void task_numa_free(struct task_struct *p)
2170 struct numa_group *grp = p->numa_group;
2171 void *numa_faults = p->numa_faults;
2172 unsigned long flags;
2176 spin_lock_irqsave(&grp->lock, flags);
2177 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2178 grp->faults[i] -= p->numa_faults[i];
2179 grp->total_faults -= p->total_numa_faults;
2182 spin_unlock_irqrestore(&grp->lock, flags);
2183 RCU_INIT_POINTER(p->numa_group, NULL);
2184 put_numa_group(grp);
2187 p->numa_faults = NULL;
2192 * Got a PROT_NONE fault for a page on @node.
2194 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2196 struct task_struct *p = current;
2197 bool migrated = flags & TNF_MIGRATED;
2198 int cpu_node = task_node(current);
2199 int local = !!(flags & TNF_FAULT_LOCAL);
2200 struct numa_group *ng;
2203 if (!static_branch_likely(&sched_numa_balancing))
2206 /* for example, ksmd faulting in a user's mm */
2210 /* Allocate buffer to track faults on a per-node basis */
2211 if (unlikely(!p->numa_faults)) {
2212 int size = sizeof(*p->numa_faults) *
2213 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2215 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2216 if (!p->numa_faults)
2219 p->total_numa_faults = 0;
2220 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2224 * First accesses are treated as private, otherwise consider accesses
2225 * to be private if the accessing pid has not changed
2227 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2230 priv = cpupid_match_pid(p, last_cpupid);
2231 if (!priv && !(flags & TNF_NO_GROUP))
2232 task_numa_group(p, last_cpupid, flags, &priv);
2236 * If a workload spans multiple NUMA nodes, a shared fault that
2237 * occurs wholly within the set of nodes that the workload is
2238 * actively using should be counted as local. This allows the
2239 * scan rate to slow down when a workload has settled down.
2242 if (!priv && !local && ng && ng->active_nodes > 1 &&
2243 numa_is_active_node(cpu_node, ng) &&
2244 numa_is_active_node(mem_node, ng))
2247 task_numa_placement(p);
2250 * Retry task to preferred node migration periodically, in case it
2251 * case it previously failed, or the scheduler moved us.
2253 if (time_after(jiffies, p->numa_migrate_retry))
2254 numa_migrate_preferred(p);
2257 p->numa_pages_migrated += pages;
2258 if (flags & TNF_MIGRATE_FAIL)
2259 p->numa_faults_locality[2] += pages;
2261 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2262 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2263 p->numa_faults_locality[local] += pages;
2266 static void reset_ptenuma_scan(struct task_struct *p)
2269 * We only did a read acquisition of the mmap sem, so
2270 * p->mm->numa_scan_seq is written to without exclusive access
2271 * and the update is not guaranteed to be atomic. That's not
2272 * much of an issue though, since this is just used for
2273 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2274 * expensive, to avoid any form of compiler optimizations:
2276 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2277 p->mm->numa_scan_offset = 0;
2281 * The expensive part of numa migration is done from task_work context.
2282 * Triggered from task_tick_numa().
2284 void task_numa_work(struct callback_head *work)
2286 unsigned long migrate, next_scan, now = jiffies;
2287 struct task_struct *p = current;
2288 struct mm_struct *mm = p->mm;
2289 u64 runtime = p->se.sum_exec_runtime;
2290 struct vm_area_struct *vma;
2291 unsigned long start, end;
2292 unsigned long nr_pte_updates = 0;
2293 long pages, virtpages;
2295 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2297 work->next = work; /* protect against double add */
2299 * Who cares about NUMA placement when they're dying.
2301 * NOTE: make sure not to dereference p->mm before this check,
2302 * exit_task_work() happens _after_ exit_mm() so we could be called
2303 * without p->mm even though we still had it when we enqueued this
2306 if (p->flags & PF_EXITING)
2309 if (!mm->numa_next_scan) {
2310 mm->numa_next_scan = now +
2311 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2315 * Enforce maximal scan/migration frequency..
2317 migrate = mm->numa_next_scan;
2318 if (time_before(now, migrate))
2321 if (p->numa_scan_period == 0) {
2322 p->numa_scan_period_max = task_scan_max(p);
2323 p->numa_scan_period = task_scan_min(p);
2326 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2327 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2331 * Delay this task enough that another task of this mm will likely win
2332 * the next time around.
2334 p->node_stamp += 2 * TICK_NSEC;
2336 start = mm->numa_scan_offset;
2337 pages = sysctl_numa_balancing_scan_size;
2338 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2339 virtpages = pages * 8; /* Scan up to this much virtual space */
2344 down_read(&mm->mmap_sem);
2345 vma = find_vma(mm, start);
2347 reset_ptenuma_scan(p);
2351 for (; vma; vma = vma->vm_next) {
2352 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2353 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2358 * Shared library pages mapped by multiple processes are not
2359 * migrated as it is expected they are cache replicated. Avoid
2360 * hinting faults in read-only file-backed mappings or the vdso
2361 * as migrating the pages will be of marginal benefit.
2364 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2368 * Skip inaccessible VMAs to avoid any confusion between
2369 * PROT_NONE and NUMA hinting ptes
2371 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2375 start = max(start, vma->vm_start);
2376 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2377 end = min(end, vma->vm_end);
2378 nr_pte_updates = change_prot_numa(vma, start, end);
2381 * Try to scan sysctl_numa_balancing_size worth of
2382 * hpages that have at least one present PTE that
2383 * is not already pte-numa. If the VMA contains
2384 * areas that are unused or already full of prot_numa
2385 * PTEs, scan up to virtpages, to skip through those
2389 pages -= (end - start) >> PAGE_SHIFT;
2390 virtpages -= (end - start) >> PAGE_SHIFT;
2393 if (pages <= 0 || virtpages <= 0)
2397 } while (end != vma->vm_end);
2402 * It is possible to reach the end of the VMA list but the last few
2403 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2404 * would find the !migratable VMA on the next scan but not reset the
2405 * scanner to the start so check it now.
2408 mm->numa_scan_offset = start;
2410 reset_ptenuma_scan(p);
2411 up_read(&mm->mmap_sem);
2414 * Make sure tasks use at least 32x as much time to run other code
2415 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2416 * Usually update_task_scan_period slows down scanning enough; on an
2417 * overloaded system we need to limit overhead on a per task basis.
2419 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2420 u64 diff = p->se.sum_exec_runtime - runtime;
2421 p->node_stamp += 32 * diff;
2426 * Drive the periodic memory faults..
2428 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2430 struct callback_head *work = &curr->numa_work;
2434 * We don't care about NUMA placement if we don't have memory.
2436 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2440 * Using runtime rather than walltime has the dual advantage that
2441 * we (mostly) drive the selection from busy threads and that the
2442 * task needs to have done some actual work before we bother with
2445 now = curr->se.sum_exec_runtime;
2446 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2448 if (now > curr->node_stamp + period) {
2449 if (!curr->node_stamp)
2450 curr->numa_scan_period = task_scan_min(curr);
2451 curr->node_stamp += period;
2453 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2454 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2455 task_work_add(curr, work, true);
2460 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2464 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2468 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2471 #endif /* CONFIG_NUMA_BALANCING */
2474 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2476 update_load_add(&cfs_rq->load, se->load.weight);
2477 if (!parent_entity(se))
2478 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2480 if (entity_is_task(se)) {
2481 struct rq *rq = rq_of(cfs_rq);
2483 account_numa_enqueue(rq, task_of(se));
2484 list_add(&se->group_node, &rq->cfs_tasks);
2487 cfs_rq->nr_running++;
2491 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2493 update_load_sub(&cfs_rq->load, se->load.weight);
2494 if (!parent_entity(se))
2495 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2497 if (entity_is_task(se)) {
2498 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2499 list_del_init(&se->group_node);
2502 cfs_rq->nr_running--;
2505 #ifdef CONFIG_FAIR_GROUP_SCHED
2507 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2509 long tg_weight, load, shares;
2512 * This really should be: cfs_rq->avg.load_avg, but instead we use
2513 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2514 * the shares for small weight interactive tasks.
2516 load = scale_load_down(cfs_rq->load.weight);
2518 tg_weight = atomic_long_read(&tg->load_avg);
2520 /* Ensure tg_weight >= load */
2521 tg_weight -= cfs_rq->tg_load_avg_contrib;
2524 shares = (tg->shares * load);
2526 shares /= tg_weight;
2528 if (shares < MIN_SHARES)
2529 shares = MIN_SHARES;
2530 if (shares > tg->shares)
2531 shares = tg->shares;
2535 # else /* CONFIG_SMP */
2536 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2540 # endif /* CONFIG_SMP */
2542 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2549 account_entity_dequeue(cfs_rq, se);
2552 update_load_set(&se->load, weight);
2555 account_entity_enqueue(cfs_rq, se);
2558 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2560 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2562 struct task_group *tg;
2563 struct sched_entity *se;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
2568 if (!se || throttled_hierarchy(cfs_rq))
2571 if (likely(se->load.weight == tg->shares))
2574 shares = calc_cfs_shares(cfs_rq, tg);
2576 reweight_entity(cfs_rq_of(se), se, shares);
2578 #else /* CONFIG_FAIR_GROUP_SCHED */
2579 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2582 #endif /* CONFIG_FAIR_GROUP_SCHED */
2585 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2586 static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2599 static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2606 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2607 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2610 static const u32 __accumulated_sum_N32[] = {
2611 0, 23371, 35056, 40899, 43820, 45281,
2612 46011, 46376, 46559, 46650, 46696, 46719,
2617 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2619 static __always_inline u64 decay_load(u64 val, u64 n)
2621 unsigned int local_n;
2625 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2628 /* after bounds checking we can collapse to 32-bit */
2632 * As y^PERIOD = 1/2, we can combine
2633 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2634 * With a look-up table which covers y^n (n<PERIOD)
2636 * To achieve constant time decay_load.
2638 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2639 val >>= local_n / LOAD_AVG_PERIOD;
2640 local_n %= LOAD_AVG_PERIOD;
2643 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2648 * For updates fully spanning n periods, the contribution to runnable
2649 * average will be: \Sum 1024*y^n
2651 * We can compute this reasonably efficiently by combining:
2652 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2654 static u32 __compute_runnable_contrib(u64 n)
2658 if (likely(n <= LOAD_AVG_PERIOD))
2659 return runnable_avg_yN_sum[n];
2660 else if (unlikely(n >= LOAD_AVG_MAX_N))
2661 return LOAD_AVG_MAX;
2663 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2664 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2665 n %= LOAD_AVG_PERIOD;
2666 contrib = decay_load(contrib, n);
2667 return contrib + runnable_avg_yN_sum[n];
2670 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2673 * We can represent the historical contribution to runnable average as the
2674 * coefficients of a geometric series. To do this we sub-divide our runnable
2675 * history into segments of approximately 1ms (1024us); label the segment that
2676 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2678 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2680 * (now) (~1ms ago) (~2ms ago)
2682 * Let u_i denote the fraction of p_i that the entity was runnable.
2684 * We then designate the fractions u_i as our co-efficients, yielding the
2685 * following representation of historical load:
2686 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2688 * We choose y based on the with of a reasonably scheduling period, fixing:
2691 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2692 * approximately half as much as the contribution to load within the last ms
2695 * When a period "rolls over" and we have new u_0`, multiplying the previous
2696 * sum again by y is sufficient to update:
2697 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2698 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2700 static __always_inline int
2701 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2702 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2704 u64 delta, scaled_delta, periods;
2706 unsigned int delta_w, scaled_delta_w, decayed = 0;
2707 unsigned long scale_freq, scale_cpu;
2709 delta = now - sa->last_update_time;
2711 * This should only happen when time goes backwards, which it
2712 * unfortunately does during sched clock init when we swap over to TSC.
2714 if ((s64)delta < 0) {
2715 sa->last_update_time = now;
2720 * Use 1024ns as the unit of measurement since it's a reasonable
2721 * approximation of 1us and fast to compute.
2726 sa->last_update_time = now;
2728 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2729 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2731 /* delta_w is the amount already accumulated against our next period */
2732 delta_w = sa->period_contrib;
2733 if (delta + delta_w >= 1024) {
2736 /* how much left for next period will start over, we don't know yet */
2737 sa->period_contrib = 0;
2740 * Now that we know we're crossing a period boundary, figure
2741 * out how much from delta we need to complete the current
2742 * period and accrue it.
2744 delta_w = 1024 - delta_w;
2745 scaled_delta_w = cap_scale(delta_w, scale_freq);
2747 sa->load_sum += weight * scaled_delta_w;
2749 cfs_rq->runnable_load_sum +=
2750 weight * scaled_delta_w;
2754 sa->util_sum += scaled_delta_w * scale_cpu;
2758 /* Figure out how many additional periods this update spans */
2759 periods = delta / 1024;
2762 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2764 cfs_rq->runnable_load_sum =
2765 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2767 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2769 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2770 contrib = __compute_runnable_contrib(periods);
2771 contrib = cap_scale(contrib, scale_freq);
2773 sa->load_sum += weight * contrib;
2775 cfs_rq->runnable_load_sum += weight * contrib;
2778 sa->util_sum += contrib * scale_cpu;
2781 /* Remainder of delta accrued against u_0` */
2782 scaled_delta = cap_scale(delta, scale_freq);
2784 sa->load_sum += weight * scaled_delta;
2786 cfs_rq->runnable_load_sum += weight * scaled_delta;
2789 sa->util_sum += scaled_delta * scale_cpu;
2791 sa->period_contrib += delta;
2794 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2796 cfs_rq->runnable_load_avg =
2797 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2799 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2805 #ifdef CONFIG_FAIR_GROUP_SCHED
2807 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2808 * and effective_load (which is not done because it is too costly).
2810 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2812 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2815 * No need to update load_avg for root_task_group as it is not used.
2817 if (cfs_rq->tg == &root_task_group)
2820 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2821 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2822 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2827 * Called within set_task_rq() right before setting a task's cpu. The
2828 * caller only guarantees p->pi_lock is held; no other assumptions,
2829 * including the state of rq->lock, should be made.
2831 void set_task_rq_fair(struct sched_entity *se,
2832 struct cfs_rq *prev, struct cfs_rq *next)
2834 if (!sched_feat(ATTACH_AGE_LOAD))
2838 * We are supposed to update the task to "current" time, then its up to
2839 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2840 * getting what current time is, so simply throw away the out-of-date
2841 * time. This will result in the wakee task is less decayed, but giving
2842 * the wakee more load sounds not bad.
2844 if (se->avg.last_update_time && prev) {
2845 u64 p_last_update_time;
2846 u64 n_last_update_time;
2848 #ifndef CONFIG_64BIT
2849 u64 p_last_update_time_copy;
2850 u64 n_last_update_time_copy;
2853 p_last_update_time_copy = prev->load_last_update_time_copy;
2854 n_last_update_time_copy = next->load_last_update_time_copy;
2858 p_last_update_time = prev->avg.last_update_time;
2859 n_last_update_time = next->avg.last_update_time;
2861 } while (p_last_update_time != p_last_update_time_copy ||
2862 n_last_update_time != n_last_update_time_copy);
2864 p_last_update_time = prev->avg.last_update_time;
2865 n_last_update_time = next->avg.last_update_time;
2867 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2868 &se->avg, 0, 0, NULL);
2869 se->avg.last_update_time = n_last_update_time;
2872 #else /* CONFIG_FAIR_GROUP_SCHED */
2873 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2874 #endif /* CONFIG_FAIR_GROUP_SCHED */
2876 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2878 struct rq *rq = rq_of(cfs_rq);
2879 int cpu = cpu_of(rq);
2881 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2882 unsigned long max = rq->cpu_capacity_orig;
2885 * There are a few boundary cases this might miss but it should
2886 * get called often enough that that should (hopefully) not be
2887 * a real problem -- added to that it only calls on the local
2888 * CPU, so if we enqueue remotely we'll miss an update, but
2889 * the next tick/schedule should update.
2891 * It will not get called when we go idle, because the idle
2892 * thread is a different class (!fair), nor will the utilization
2893 * number include things like RT tasks.
2895 * As is, the util number is not freq-invariant (we'd have to
2896 * implement arch_scale_freq_capacity() for that).
2900 cpufreq_update_util(rq_clock(rq),
2901 min(cfs_rq->avg.util_avg, max), max);
2906 * Unsigned subtract and clamp on underflow.
2908 * Explicitly do a load-store to ensure the intermediate value never hits
2909 * memory. This allows lockless observations without ever seeing the negative
2912 #define sub_positive(_ptr, _val) do { \
2913 typeof(_ptr) ptr = (_ptr); \
2914 typeof(*ptr) val = (_val); \
2915 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2919 WRITE_ONCE(*ptr, res); \
2923 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
2924 * @now: current time, as per cfs_rq_clock_task()
2925 * @cfs_rq: cfs_rq to update
2926 * @update_freq: should we call cfs_rq_util_change() or will the call do so
2928 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
2929 * avg. The immediate corollary is that all (fair) tasks must be attached, see
2930 * post_init_entity_util_avg().
2932 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
2934 * Returns true if the load decayed or we removed utilization. It is expected
2935 * that one calls update_tg_load_avg() on this condition, but after you've
2936 * modified the cfs_rq avg (attach/detach), such that we propagate the new
2940 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2942 struct sched_avg *sa = &cfs_rq->avg;
2943 int decayed, removed_load = 0, removed_util = 0;
2945 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2946 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2947 sub_positive(&sa->load_avg, r);
2948 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
2952 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2953 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2954 sub_positive(&sa->util_avg, r);
2955 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
2959 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2960 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2962 #ifndef CONFIG_64BIT
2964 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2967 if (update_freq && (decayed || removed_util))
2968 cfs_rq_util_change(cfs_rq);
2970 return decayed || removed_load;
2973 /* Update task and its cfs_rq load average */
2974 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2976 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2977 u64 now = cfs_rq_clock_task(cfs_rq);
2978 struct rq *rq = rq_of(cfs_rq);
2979 int cpu = cpu_of(rq);
2982 * Track task load average for carrying it to new CPU after migrated, and
2983 * track group sched_entity load average for task_h_load calc in migration
2985 __update_load_avg(now, cpu, &se->avg,
2986 se->on_rq * scale_load_down(se->load.weight),
2987 cfs_rq->curr == se, NULL);
2989 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
2990 update_tg_load_avg(cfs_rq, 0);
2994 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
2995 * @cfs_rq: cfs_rq to attach to
2996 * @se: sched_entity to attach
2998 * Must call update_cfs_rq_load_avg() before this, since we rely on
2999 * cfs_rq->avg.last_update_time being current.
3001 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3003 if (!sched_feat(ATTACH_AGE_LOAD))
3007 * If we got migrated (either between CPUs or between cgroups) we'll
3008 * have aged the average right before clearing @last_update_time.
3010 * Or we're fresh through post_init_entity_util_avg().
3012 if (se->avg.last_update_time) {
3013 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3014 &se->avg, 0, 0, NULL);
3017 * XXX: we could have just aged the entire load away if we've been
3018 * absent from the fair class for too long.
3023 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3024 cfs_rq->avg.load_avg += se->avg.load_avg;
3025 cfs_rq->avg.load_sum += se->avg.load_sum;
3026 cfs_rq->avg.util_avg += se->avg.util_avg;
3027 cfs_rq->avg.util_sum += se->avg.util_sum;
3029 cfs_rq_util_change(cfs_rq);
3033 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3034 * @cfs_rq: cfs_rq to detach from
3035 * @se: sched_entity to detach
3037 * Must call update_cfs_rq_load_avg() before this, since we rely on
3038 * cfs_rq->avg.last_update_time being current.
3040 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3042 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3043 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3044 cfs_rq->curr == se, NULL);
3046 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3047 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3048 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3049 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3051 cfs_rq_util_change(cfs_rq);
3054 /* Add the load generated by se into cfs_rq's load average */
3056 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3058 struct sched_avg *sa = &se->avg;
3059 u64 now = cfs_rq_clock_task(cfs_rq);
3060 int migrated, decayed;
3062 migrated = !sa->last_update_time;
3064 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3065 se->on_rq * scale_load_down(se->load.weight),
3066 cfs_rq->curr == se, NULL);
3069 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3071 cfs_rq->runnable_load_avg += sa->load_avg;
3072 cfs_rq->runnable_load_sum += sa->load_sum;
3075 attach_entity_load_avg(cfs_rq, se);
3077 if (decayed || migrated)
3078 update_tg_load_avg(cfs_rq, 0);
3081 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3083 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3085 update_load_avg(se, 1);
3087 cfs_rq->runnable_load_avg =
3088 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3089 cfs_rq->runnable_load_sum =
3090 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3093 #ifndef CONFIG_64BIT
3094 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3096 u64 last_update_time_copy;
3097 u64 last_update_time;
3100 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3102 last_update_time = cfs_rq->avg.last_update_time;
3103 } while (last_update_time != last_update_time_copy);
3105 return last_update_time;
3108 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3110 return cfs_rq->avg.last_update_time;
3115 * Task first catches up with cfs_rq, and then subtract
3116 * itself from the cfs_rq (task must be off the queue now).
3118 void remove_entity_load_avg(struct sched_entity *se)
3120 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3121 u64 last_update_time;
3124 * tasks cannot exit without having gone through wake_up_new_task() ->
3125 * post_init_entity_util_avg() which will have added things to the
3126 * cfs_rq, so we can remove unconditionally.
3128 * Similarly for groups, they will have passed through
3129 * post_init_entity_util_avg() before unregister_sched_fair_group()
3133 last_update_time = cfs_rq_last_update_time(cfs_rq);
3135 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3136 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3137 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3140 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3142 return cfs_rq->runnable_load_avg;
3145 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3147 return cfs_rq->avg.load_avg;
3150 static int idle_balance(struct rq *this_rq);
3152 #else /* CONFIG_SMP */
3155 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3160 static inline void update_load_avg(struct sched_entity *se, int not_used)
3162 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3163 struct rq *rq = rq_of(cfs_rq);
3165 cpufreq_trigger_update(rq_clock(rq));
3169 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3171 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3172 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3175 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3177 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3179 static inline int idle_balance(struct rq *rq)
3184 #endif /* CONFIG_SMP */
3186 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3188 #ifdef CONFIG_SCHEDSTATS
3189 struct task_struct *tsk = NULL;
3191 if (entity_is_task(se))
3194 if (se->statistics.sleep_start) {
3195 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3200 if (unlikely(delta > se->statistics.sleep_max))
3201 se->statistics.sleep_max = delta;
3203 se->statistics.sleep_start = 0;
3204 se->statistics.sum_sleep_runtime += delta;
3207 account_scheduler_latency(tsk, delta >> 10, 1);
3208 trace_sched_stat_sleep(tsk, delta);
3211 if (se->statistics.block_start) {
3212 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3217 if (unlikely(delta > se->statistics.block_max))
3218 se->statistics.block_max = delta;
3220 se->statistics.block_start = 0;
3221 se->statistics.sum_sleep_runtime += delta;
3224 if (tsk->in_iowait) {
3225 se->statistics.iowait_sum += delta;
3226 se->statistics.iowait_count++;
3227 trace_sched_stat_iowait(tsk, delta);
3230 trace_sched_stat_blocked(tsk, delta);
3233 * Blocking time is in units of nanosecs, so shift by
3234 * 20 to get a milliseconds-range estimation of the
3235 * amount of time that the task spent sleeping:
3237 if (unlikely(prof_on == SLEEP_PROFILING)) {
3238 profile_hits(SLEEP_PROFILING,
3239 (void *)get_wchan(tsk),
3242 account_scheduler_latency(tsk, delta >> 10, 0);
3248 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3250 #ifdef CONFIG_SCHED_DEBUG
3251 s64 d = se->vruntime - cfs_rq->min_vruntime;
3256 if (d > 3*sysctl_sched_latency)
3257 schedstat_inc(cfs_rq, nr_spread_over);
3262 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3264 u64 vruntime = cfs_rq->min_vruntime;
3267 * The 'current' period is already promised to the current tasks,
3268 * however the extra weight of the new task will slow them down a
3269 * little, place the new task so that it fits in the slot that
3270 * stays open at the end.
3272 if (initial && sched_feat(START_DEBIT))
3273 vruntime += sched_vslice(cfs_rq, se);
3275 /* sleeps up to a single latency don't count. */
3277 unsigned long thresh = sysctl_sched_latency;
3280 * Halve their sleep time's effect, to allow
3281 * for a gentler effect of sleepers:
3283 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3289 /* ensure we never gain time by being placed backwards. */
3290 se->vruntime = max_vruntime(se->vruntime, vruntime);
3293 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3295 static inline void check_schedstat_required(void)
3297 #ifdef CONFIG_SCHEDSTATS
3298 if (schedstat_enabled())
3301 /* Force schedstat enabled if a dependent tracepoint is active */
3302 if (trace_sched_stat_wait_enabled() ||
3303 trace_sched_stat_sleep_enabled() ||
3304 trace_sched_stat_iowait_enabled() ||
3305 trace_sched_stat_blocked_enabled() ||
3306 trace_sched_stat_runtime_enabled()) {
3307 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3308 "stat_blocked and stat_runtime require the "
3309 "kernel parameter schedstats=enabled or "
3310 "kernel.sched_schedstats=1\n");
3321 * update_min_vruntime()
3322 * vruntime -= min_vruntime
3326 * update_min_vruntime()
3327 * vruntime += min_vruntime
3329 * this way the vruntime transition between RQs is done when both
3330 * min_vruntime are up-to-date.
3334 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3335 * vruntime -= min_vruntime
3339 * update_min_vruntime()
3340 * vruntime += min_vruntime
3342 * this way we don't have the most up-to-date min_vruntime on the originating
3343 * CPU and an up-to-date min_vruntime on the destination CPU.
3347 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3349 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3350 bool curr = cfs_rq->curr == se;
3353 * If we're the current task, we must renormalise before calling
3357 se->vruntime += cfs_rq->min_vruntime;
3359 update_curr(cfs_rq);
3362 * Otherwise, renormalise after, such that we're placed at the current
3363 * moment in time, instead of some random moment in the past. Being
3364 * placed in the past could significantly boost this task to the
3365 * fairness detriment of existing tasks.
3367 if (renorm && !curr)
3368 se->vruntime += cfs_rq->min_vruntime;
3370 enqueue_entity_load_avg(cfs_rq, se);
3371 account_entity_enqueue(cfs_rq, se);
3372 update_cfs_shares(cfs_rq);
3374 if (flags & ENQUEUE_WAKEUP) {
3375 place_entity(cfs_rq, se, 0);
3376 if (schedstat_enabled())
3377 enqueue_sleeper(cfs_rq, se);
3380 check_schedstat_required();
3381 if (schedstat_enabled()) {
3382 update_stats_enqueue(cfs_rq, se);
3383 check_spread(cfs_rq, se);
3386 __enqueue_entity(cfs_rq, se);
3389 if (cfs_rq->nr_running == 1) {
3390 list_add_leaf_cfs_rq(cfs_rq);
3391 check_enqueue_throttle(cfs_rq);
3395 static void __clear_buddies_last(struct sched_entity *se)
3397 for_each_sched_entity(se) {
3398 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3399 if (cfs_rq->last != se)
3402 cfs_rq->last = NULL;
3406 static void __clear_buddies_next(struct sched_entity *se)
3408 for_each_sched_entity(se) {
3409 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3410 if (cfs_rq->next != se)
3413 cfs_rq->next = NULL;
3417 static void __clear_buddies_skip(struct sched_entity *se)
3419 for_each_sched_entity(se) {
3420 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3421 if (cfs_rq->skip != se)
3424 cfs_rq->skip = NULL;
3428 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3430 if (cfs_rq->last == se)
3431 __clear_buddies_last(se);
3433 if (cfs_rq->next == se)
3434 __clear_buddies_next(se);
3436 if (cfs_rq->skip == se)
3437 __clear_buddies_skip(se);
3440 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3443 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3446 * Update run-time statistics of the 'current'.
3448 update_curr(cfs_rq);
3449 dequeue_entity_load_avg(cfs_rq, se);
3451 if (schedstat_enabled())
3452 update_stats_dequeue(cfs_rq, se, flags);
3454 clear_buddies(cfs_rq, se);
3456 if (se != cfs_rq->curr)
3457 __dequeue_entity(cfs_rq, se);
3459 account_entity_dequeue(cfs_rq, se);
3462 * Normalize the entity after updating the min_vruntime because the
3463 * update can refer to the ->curr item and we need to reflect this
3464 * movement in our normalized position.
3466 if (!(flags & DEQUEUE_SLEEP))
3467 se->vruntime -= cfs_rq->min_vruntime;
3469 /* return excess runtime on last dequeue */
3470 return_cfs_rq_runtime(cfs_rq);
3472 update_min_vruntime(cfs_rq);
3473 update_cfs_shares(cfs_rq);
3477 * Preempt the current task with a newly woken task if needed:
3480 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3482 unsigned long ideal_runtime, delta_exec;
3483 struct sched_entity *se;
3486 ideal_runtime = sched_slice(cfs_rq, curr);
3487 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3488 if (delta_exec > ideal_runtime) {
3489 resched_curr(rq_of(cfs_rq));
3491 * The current task ran long enough, ensure it doesn't get
3492 * re-elected due to buddy favours.
3494 clear_buddies(cfs_rq, curr);
3499 * Ensure that a task that missed wakeup preemption by a
3500 * narrow margin doesn't have to wait for a full slice.
3501 * This also mitigates buddy induced latencies under load.
3503 if (delta_exec < sysctl_sched_min_granularity)
3506 se = __pick_first_entity(cfs_rq);
3507 delta = curr->vruntime - se->vruntime;
3512 if (delta > ideal_runtime)
3513 resched_curr(rq_of(cfs_rq));
3517 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3519 /* 'current' is not kept within the tree. */
3522 * Any task has to be enqueued before it get to execute on
3523 * a CPU. So account for the time it spent waiting on the
3526 if (schedstat_enabled())
3527 update_stats_wait_end(cfs_rq, se);
3528 __dequeue_entity(cfs_rq, se);
3529 update_load_avg(se, 1);
3532 update_stats_curr_start(cfs_rq, se);
3534 #ifdef CONFIG_SCHEDSTATS
3536 * Track our maximum slice length, if the CPU's load is at
3537 * least twice that of our own weight (i.e. dont track it
3538 * when there are only lesser-weight tasks around):
3540 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3541 se->statistics.slice_max = max(se->statistics.slice_max,
3542 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3545 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3549 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3552 * Pick the next process, keeping these things in mind, in this order:
3553 * 1) keep things fair between processes/task groups
3554 * 2) pick the "next" process, since someone really wants that to run
3555 * 3) pick the "last" process, for cache locality
3556 * 4) do not run the "skip" process, if something else is available
3558 static struct sched_entity *
3559 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3561 struct sched_entity *left = __pick_first_entity(cfs_rq);
3562 struct sched_entity *se;
3565 * If curr is set we have to see if its left of the leftmost entity
3566 * still in the tree, provided there was anything in the tree at all.
3568 if (!left || (curr && entity_before(curr, left)))
3571 se = left; /* ideally we run the leftmost entity */
3574 * Avoid running the skip buddy, if running something else can
3575 * be done without getting too unfair.
3577 if (cfs_rq->skip == se) {
3578 struct sched_entity *second;
3581 second = __pick_first_entity(cfs_rq);
3583 second = __pick_next_entity(se);
3584 if (!second || (curr && entity_before(curr, second)))
3588 if (second && wakeup_preempt_entity(second, left) < 1)
3593 * Prefer last buddy, try to return the CPU to a preempted task.
3595 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3599 * Someone really wants this to run. If it's not unfair, run it.
3601 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3604 clear_buddies(cfs_rq, se);
3609 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3611 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3614 * If still on the runqueue then deactivate_task()
3615 * was not called and update_curr() has to be done:
3618 update_curr(cfs_rq);
3620 /* throttle cfs_rqs exceeding runtime */
3621 check_cfs_rq_runtime(cfs_rq);
3623 if (schedstat_enabled()) {
3624 check_spread(cfs_rq, prev);
3626 update_stats_wait_start(cfs_rq, prev);
3630 /* Put 'current' back into the tree. */
3631 __enqueue_entity(cfs_rq, prev);
3632 /* in !on_rq case, update occurred at dequeue */
3633 update_load_avg(prev, 0);
3635 cfs_rq->curr = NULL;
3639 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3642 * Update run-time statistics of the 'current'.
3644 update_curr(cfs_rq);
3647 * Ensure that runnable average is periodically updated.
3649 update_load_avg(curr, 1);
3650 update_cfs_shares(cfs_rq);
3652 #ifdef CONFIG_SCHED_HRTICK
3654 * queued ticks are scheduled to match the slice, so don't bother
3655 * validating it and just reschedule.
3658 resched_curr(rq_of(cfs_rq));
3662 * don't let the period tick interfere with the hrtick preemption
3664 if (!sched_feat(DOUBLE_TICK) &&
3665 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3669 if (cfs_rq->nr_running > 1)
3670 check_preempt_tick(cfs_rq, curr);
3674 /**************************************************
3675 * CFS bandwidth control machinery
3678 #ifdef CONFIG_CFS_BANDWIDTH
3680 #ifdef HAVE_JUMP_LABEL
3681 static struct static_key __cfs_bandwidth_used;
3683 static inline bool cfs_bandwidth_used(void)
3685 return static_key_false(&__cfs_bandwidth_used);
3688 void cfs_bandwidth_usage_inc(void)
3690 static_key_slow_inc(&__cfs_bandwidth_used);
3693 void cfs_bandwidth_usage_dec(void)
3695 static_key_slow_dec(&__cfs_bandwidth_used);
3697 #else /* HAVE_JUMP_LABEL */
3698 static bool cfs_bandwidth_used(void)
3703 void cfs_bandwidth_usage_inc(void) {}
3704 void cfs_bandwidth_usage_dec(void) {}
3705 #endif /* HAVE_JUMP_LABEL */
3708 * default period for cfs group bandwidth.
3709 * default: 0.1s, units: nanoseconds
3711 static inline u64 default_cfs_period(void)
3713 return 100000000ULL;
3716 static inline u64 sched_cfs_bandwidth_slice(void)
3718 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3722 * Replenish runtime according to assigned quota and update expiration time.
3723 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3724 * additional synchronization around rq->lock.
3726 * requires cfs_b->lock
3728 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3732 if (cfs_b->quota == RUNTIME_INF)
3735 now = sched_clock_cpu(smp_processor_id());
3736 cfs_b->runtime = cfs_b->quota;
3737 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3740 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3742 return &tg->cfs_bandwidth;
3745 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3746 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3748 if (unlikely(cfs_rq->throttle_count))
3749 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3751 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3754 /* returns 0 on failure to allocate runtime */
3755 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3757 struct task_group *tg = cfs_rq->tg;
3758 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3759 u64 amount = 0, min_amount, expires;
3761 /* note: this is a positive sum as runtime_remaining <= 0 */
3762 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3764 raw_spin_lock(&cfs_b->lock);
3765 if (cfs_b->quota == RUNTIME_INF)
3766 amount = min_amount;
3768 start_cfs_bandwidth(cfs_b);
3770 if (cfs_b->runtime > 0) {
3771 amount = min(cfs_b->runtime, min_amount);
3772 cfs_b->runtime -= amount;
3776 expires = cfs_b->runtime_expires;
3777 raw_spin_unlock(&cfs_b->lock);
3779 cfs_rq->runtime_remaining += amount;
3781 * we may have advanced our local expiration to account for allowed
3782 * spread between our sched_clock and the one on which runtime was
3785 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3786 cfs_rq->runtime_expires = expires;
3788 return cfs_rq->runtime_remaining > 0;
3792 * Note: This depends on the synchronization provided by sched_clock and the
3793 * fact that rq->clock snapshots this value.
3795 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3797 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3799 /* if the deadline is ahead of our clock, nothing to do */
3800 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3803 if (cfs_rq->runtime_remaining < 0)
3807 * If the local deadline has passed we have to consider the
3808 * possibility that our sched_clock is 'fast' and the global deadline
3809 * has not truly expired.
3811 * Fortunately we can check determine whether this the case by checking
3812 * whether the global deadline has advanced. It is valid to compare
3813 * cfs_b->runtime_expires without any locks since we only care about
3814 * exact equality, so a partial write will still work.
3817 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3818 /* extend local deadline, drift is bounded above by 2 ticks */
3819 cfs_rq->runtime_expires += TICK_NSEC;
3821 /* global deadline is ahead, expiration has passed */
3822 cfs_rq->runtime_remaining = 0;
3826 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3828 /* dock delta_exec before expiring quota (as it could span periods) */
3829 cfs_rq->runtime_remaining -= delta_exec;
3830 expire_cfs_rq_runtime(cfs_rq);
3832 if (likely(cfs_rq->runtime_remaining > 0))
3836 * if we're unable to extend our runtime we resched so that the active
3837 * hierarchy can be throttled
3839 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3840 resched_curr(rq_of(cfs_rq));
3843 static __always_inline
3844 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3846 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3849 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3852 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3854 return cfs_bandwidth_used() && cfs_rq->throttled;
3857 /* check whether cfs_rq, or any parent, is throttled */
3858 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3860 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3864 * Ensure that neither of the group entities corresponding to src_cpu or
3865 * dest_cpu are members of a throttled hierarchy when performing group
3866 * load-balance operations.
3868 static inline int throttled_lb_pair(struct task_group *tg,
3869 int src_cpu, int dest_cpu)
3871 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3873 src_cfs_rq = tg->cfs_rq[src_cpu];
3874 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3876 return throttled_hierarchy(src_cfs_rq) ||
3877 throttled_hierarchy(dest_cfs_rq);
3880 /* updated child weight may affect parent so we have to do this bottom up */
3881 static int tg_unthrottle_up(struct task_group *tg, void *data)
3883 struct rq *rq = data;
3884 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3886 cfs_rq->throttle_count--;
3887 if (!cfs_rq->throttle_count) {
3888 /* adjust cfs_rq_clock_task() */
3889 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3890 cfs_rq->throttled_clock_task;
3896 static int tg_throttle_down(struct task_group *tg, void *data)
3898 struct rq *rq = data;
3899 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3901 /* group is entering throttled state, stop time */
3902 if (!cfs_rq->throttle_count)
3903 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3904 cfs_rq->throttle_count++;
3909 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3911 struct rq *rq = rq_of(cfs_rq);
3912 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3913 struct sched_entity *se;
3914 long task_delta, dequeue = 1;
3917 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3919 /* freeze hierarchy runnable averages while throttled */
3921 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3924 task_delta = cfs_rq->h_nr_running;
3925 for_each_sched_entity(se) {
3926 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3927 /* throttled entity or throttle-on-deactivate */
3932 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3933 qcfs_rq->h_nr_running -= task_delta;
3935 if (qcfs_rq->load.weight)
3940 sub_nr_running(rq, task_delta);
3942 cfs_rq->throttled = 1;
3943 cfs_rq->throttled_clock = rq_clock(rq);
3944 raw_spin_lock(&cfs_b->lock);
3945 empty = list_empty(&cfs_b->throttled_cfs_rq);
3948 * Add to the _head_ of the list, so that an already-started
3949 * distribute_cfs_runtime will not see us
3951 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3954 * If we're the first throttled task, make sure the bandwidth
3958 start_cfs_bandwidth(cfs_b);
3960 raw_spin_unlock(&cfs_b->lock);
3963 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3965 struct rq *rq = rq_of(cfs_rq);
3966 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3967 struct sched_entity *se;
3971 se = cfs_rq->tg->se[cpu_of(rq)];
3973 cfs_rq->throttled = 0;
3975 update_rq_clock(rq);
3977 raw_spin_lock(&cfs_b->lock);
3978 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3979 list_del_rcu(&cfs_rq->throttled_list);
3980 raw_spin_unlock(&cfs_b->lock);
3982 /* update hierarchical throttle state */
3983 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3985 if (!cfs_rq->load.weight)
3988 task_delta = cfs_rq->h_nr_running;
3989 for_each_sched_entity(se) {
3993 cfs_rq = cfs_rq_of(se);
3995 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3996 cfs_rq->h_nr_running += task_delta;
3998 if (cfs_rq_throttled(cfs_rq))
4003 add_nr_running(rq, task_delta);
4005 /* determine whether we need to wake up potentially idle cpu */
4006 if (rq->curr == rq->idle && rq->cfs.nr_running)
4010 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4011 u64 remaining, u64 expires)
4013 struct cfs_rq *cfs_rq;
4015 u64 starting_runtime = remaining;
4018 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4020 struct rq *rq = rq_of(cfs_rq);
4022 raw_spin_lock(&rq->lock);
4023 if (!cfs_rq_throttled(cfs_rq))
4026 runtime = -cfs_rq->runtime_remaining + 1;
4027 if (runtime > remaining)
4028 runtime = remaining;
4029 remaining -= runtime;
4031 cfs_rq->runtime_remaining += runtime;
4032 cfs_rq->runtime_expires = expires;
4034 /* we check whether we're throttled above */
4035 if (cfs_rq->runtime_remaining > 0)
4036 unthrottle_cfs_rq(cfs_rq);
4039 raw_spin_unlock(&rq->lock);
4046 return starting_runtime - remaining;
4050 * Responsible for refilling a task_group's bandwidth and unthrottling its
4051 * cfs_rqs as appropriate. If there has been no activity within the last
4052 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4053 * used to track this state.
4055 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4057 u64 runtime, runtime_expires;
4060 /* no need to continue the timer with no bandwidth constraint */
4061 if (cfs_b->quota == RUNTIME_INF)
4062 goto out_deactivate;
4064 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4065 cfs_b->nr_periods += overrun;
4068 * idle depends on !throttled (for the case of a large deficit), and if
4069 * we're going inactive then everything else can be deferred
4071 if (cfs_b->idle && !throttled)
4072 goto out_deactivate;
4074 __refill_cfs_bandwidth_runtime(cfs_b);
4077 /* mark as potentially idle for the upcoming period */
4082 /* account preceding periods in which throttling occurred */
4083 cfs_b->nr_throttled += overrun;
4085 runtime_expires = cfs_b->runtime_expires;
4088 * This check is repeated as we are holding onto the new bandwidth while
4089 * we unthrottle. This can potentially race with an unthrottled group
4090 * trying to acquire new bandwidth from the global pool. This can result
4091 * in us over-using our runtime if it is all used during this loop, but
4092 * only by limited amounts in that extreme case.
4094 while (throttled && cfs_b->runtime > 0) {
4095 runtime = cfs_b->runtime;
4096 raw_spin_unlock(&cfs_b->lock);
4097 /* we can't nest cfs_b->lock while distributing bandwidth */
4098 runtime = distribute_cfs_runtime(cfs_b, runtime,
4100 raw_spin_lock(&cfs_b->lock);
4102 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4104 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4108 * While we are ensured activity in the period following an
4109 * unthrottle, this also covers the case in which the new bandwidth is
4110 * insufficient to cover the existing bandwidth deficit. (Forcing the
4111 * timer to remain active while there are any throttled entities.)
4121 /* a cfs_rq won't donate quota below this amount */
4122 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4123 /* minimum remaining period time to redistribute slack quota */
4124 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4125 /* how long we wait to gather additional slack before distributing */
4126 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4129 * Are we near the end of the current quota period?
4131 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4132 * hrtimer base being cleared by hrtimer_start. In the case of
4133 * migrate_hrtimers, base is never cleared, so we are fine.
4135 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4137 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4140 /* if the call-back is running a quota refresh is already occurring */
4141 if (hrtimer_callback_running(refresh_timer))
4144 /* is a quota refresh about to occur? */
4145 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4146 if (remaining < min_expire)
4152 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4154 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4156 /* if there's a quota refresh soon don't bother with slack */
4157 if (runtime_refresh_within(cfs_b, min_left))
4160 hrtimer_start(&cfs_b->slack_timer,
4161 ns_to_ktime(cfs_bandwidth_slack_period),
4165 /* we know any runtime found here is valid as update_curr() precedes return */
4166 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4168 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4169 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4171 if (slack_runtime <= 0)
4174 raw_spin_lock(&cfs_b->lock);
4175 if (cfs_b->quota != RUNTIME_INF &&
4176 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4177 cfs_b->runtime += slack_runtime;
4179 /* we are under rq->lock, defer unthrottling using a timer */
4180 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4181 !list_empty(&cfs_b->throttled_cfs_rq))
4182 start_cfs_slack_bandwidth(cfs_b);
4184 raw_spin_unlock(&cfs_b->lock);
4186 /* even if it's not valid for return we don't want to try again */
4187 cfs_rq->runtime_remaining -= slack_runtime;
4190 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4192 if (!cfs_bandwidth_used())
4195 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4198 __return_cfs_rq_runtime(cfs_rq);
4202 * This is done with a timer (instead of inline with bandwidth return) since
4203 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4205 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4207 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4210 /* confirm we're still not at a refresh boundary */
4211 raw_spin_lock(&cfs_b->lock);
4212 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4213 raw_spin_unlock(&cfs_b->lock);
4217 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4218 runtime = cfs_b->runtime;
4220 expires = cfs_b->runtime_expires;
4221 raw_spin_unlock(&cfs_b->lock);
4226 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4228 raw_spin_lock(&cfs_b->lock);
4229 if (expires == cfs_b->runtime_expires)
4230 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4231 raw_spin_unlock(&cfs_b->lock);
4235 * When a group wakes up we want to make sure that its quota is not already
4236 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4237 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4239 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4241 if (!cfs_bandwidth_used())
4244 /* an active group must be handled by the update_curr()->put() path */
4245 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4248 /* ensure the group is not already throttled */
4249 if (cfs_rq_throttled(cfs_rq))
4252 /* update runtime allocation */
4253 account_cfs_rq_runtime(cfs_rq, 0);
4254 if (cfs_rq->runtime_remaining <= 0)
4255 throttle_cfs_rq(cfs_rq);
4258 static void sync_throttle(struct task_group *tg, int cpu)
4260 struct cfs_rq *pcfs_rq, *cfs_rq;
4262 if (!cfs_bandwidth_used())
4268 cfs_rq = tg->cfs_rq[cpu];
4269 pcfs_rq = tg->parent->cfs_rq[cpu];
4271 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4272 pcfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4275 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4276 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4278 if (!cfs_bandwidth_used())
4281 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4285 * it's possible for a throttled entity to be forced into a running
4286 * state (e.g. set_curr_task), in this case we're finished.
4288 if (cfs_rq_throttled(cfs_rq))
4291 throttle_cfs_rq(cfs_rq);
4295 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4297 struct cfs_bandwidth *cfs_b =
4298 container_of(timer, struct cfs_bandwidth, slack_timer);
4300 do_sched_cfs_slack_timer(cfs_b);
4302 return HRTIMER_NORESTART;
4305 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4307 struct cfs_bandwidth *cfs_b =
4308 container_of(timer, struct cfs_bandwidth, period_timer);
4312 raw_spin_lock(&cfs_b->lock);
4314 overrun = hrtimer_forward_now(timer, cfs_b->period);
4318 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4321 cfs_b->period_active = 0;
4322 raw_spin_unlock(&cfs_b->lock);
4324 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4327 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4329 raw_spin_lock_init(&cfs_b->lock);
4331 cfs_b->quota = RUNTIME_INF;
4332 cfs_b->period = ns_to_ktime(default_cfs_period());
4334 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4335 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4336 cfs_b->period_timer.function = sched_cfs_period_timer;
4337 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4338 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4341 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4343 cfs_rq->runtime_enabled = 0;
4344 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4347 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4349 lockdep_assert_held(&cfs_b->lock);
4351 if (!cfs_b->period_active) {
4352 cfs_b->period_active = 1;
4353 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4354 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4358 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4360 /* init_cfs_bandwidth() was not called */
4361 if (!cfs_b->throttled_cfs_rq.next)
4364 hrtimer_cancel(&cfs_b->period_timer);
4365 hrtimer_cancel(&cfs_b->slack_timer);
4368 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4370 struct cfs_rq *cfs_rq;
4372 for_each_leaf_cfs_rq(rq, cfs_rq) {
4373 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4375 raw_spin_lock(&cfs_b->lock);
4376 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4377 raw_spin_unlock(&cfs_b->lock);
4381 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4383 struct cfs_rq *cfs_rq;
4385 for_each_leaf_cfs_rq(rq, cfs_rq) {
4386 if (!cfs_rq->runtime_enabled)
4390 * clock_task is not advancing so we just need to make sure
4391 * there's some valid quota amount
4393 cfs_rq->runtime_remaining = 1;
4395 * Offline rq is schedulable till cpu is completely disabled
4396 * in take_cpu_down(), so we prevent new cfs throttling here.
4398 cfs_rq->runtime_enabled = 0;
4400 if (cfs_rq_throttled(cfs_rq))
4401 unthrottle_cfs_rq(cfs_rq);
4405 #else /* CONFIG_CFS_BANDWIDTH */
4406 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4408 return rq_clock_task(rq_of(cfs_rq));
4411 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4412 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4413 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4414 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4415 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4417 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4422 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4427 static inline int throttled_lb_pair(struct task_group *tg,
4428 int src_cpu, int dest_cpu)
4433 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4435 #ifdef CONFIG_FAIR_GROUP_SCHED
4436 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4439 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4443 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4444 static inline void update_runtime_enabled(struct rq *rq) {}
4445 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4447 #endif /* CONFIG_CFS_BANDWIDTH */
4449 /**************************************************
4450 * CFS operations on tasks:
4453 #ifdef CONFIG_SCHED_HRTICK
4454 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4456 struct sched_entity *se = &p->se;
4457 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4459 WARN_ON(task_rq(p) != rq);
4461 if (cfs_rq->nr_running > 1) {
4462 u64 slice = sched_slice(cfs_rq, se);
4463 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4464 s64 delta = slice - ran;
4471 hrtick_start(rq, delta);
4476 * called from enqueue/dequeue and updates the hrtick when the
4477 * current task is from our class and nr_running is low enough
4480 static void hrtick_update(struct rq *rq)
4482 struct task_struct *curr = rq->curr;
4484 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4487 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4488 hrtick_start_fair(rq, curr);
4490 #else /* !CONFIG_SCHED_HRTICK */
4492 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4496 static inline void hrtick_update(struct rq *rq)
4502 * The enqueue_task method is called before nr_running is
4503 * increased. Here we update the fair scheduling stats and
4504 * then put the task into the rbtree:
4507 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4509 struct cfs_rq *cfs_rq;
4510 struct sched_entity *se = &p->se;
4512 for_each_sched_entity(se) {
4515 cfs_rq = cfs_rq_of(se);
4516 enqueue_entity(cfs_rq, se, flags);
4519 * end evaluation on encountering a throttled cfs_rq
4521 * note: in the case of encountering a throttled cfs_rq we will
4522 * post the final h_nr_running increment below.
4524 if (cfs_rq_throttled(cfs_rq))
4526 cfs_rq->h_nr_running++;
4528 flags = ENQUEUE_WAKEUP;
4531 for_each_sched_entity(se) {
4532 cfs_rq = cfs_rq_of(se);
4533 cfs_rq->h_nr_running++;
4535 if (cfs_rq_throttled(cfs_rq))
4538 update_load_avg(se, 1);
4539 update_cfs_shares(cfs_rq);
4543 add_nr_running(rq, 1);
4548 static void set_next_buddy(struct sched_entity *se);
4551 * The dequeue_task method is called before nr_running is
4552 * decreased. We remove the task from the rbtree and
4553 * update the fair scheduling stats:
4555 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4557 struct cfs_rq *cfs_rq;
4558 struct sched_entity *se = &p->se;
4559 int task_sleep = flags & DEQUEUE_SLEEP;
4561 for_each_sched_entity(se) {
4562 cfs_rq = cfs_rq_of(se);
4563 dequeue_entity(cfs_rq, se, flags);
4566 * end evaluation on encountering a throttled cfs_rq
4568 * note: in the case of encountering a throttled cfs_rq we will
4569 * post the final h_nr_running decrement below.
4571 if (cfs_rq_throttled(cfs_rq))
4573 cfs_rq->h_nr_running--;
4575 /* Don't dequeue parent if it has other entities besides us */
4576 if (cfs_rq->load.weight) {
4577 /* Avoid re-evaluating load for this entity: */
4578 se = parent_entity(se);
4580 * Bias pick_next to pick a task from this cfs_rq, as
4581 * p is sleeping when it is within its sched_slice.
4583 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4587 flags |= DEQUEUE_SLEEP;
4590 for_each_sched_entity(se) {
4591 cfs_rq = cfs_rq_of(se);
4592 cfs_rq->h_nr_running--;
4594 if (cfs_rq_throttled(cfs_rq))
4597 update_load_avg(se, 1);
4598 update_cfs_shares(cfs_rq);
4602 sub_nr_running(rq, 1);
4608 #ifdef CONFIG_NO_HZ_COMMON
4610 * per rq 'load' arrray crap; XXX kill this.
4614 * The exact cpuload calculated at every tick would be:
4616 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4618 * If a cpu misses updates for n ticks (as it was idle) and update gets
4619 * called on the n+1-th tick when cpu may be busy, then we have:
4621 * load_n = (1 - 1/2^i)^n * load_0
4622 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4624 * decay_load_missed() below does efficient calculation of
4626 * load' = (1 - 1/2^i)^n * load
4628 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4629 * This allows us to precompute the above in said factors, thereby allowing the
4630 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4631 * fixed_power_int())
4633 * The calculation is approximated on a 128 point scale.
4635 #define DEGRADE_SHIFT 7
4637 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4638 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4639 { 0, 0, 0, 0, 0, 0, 0, 0 },
4640 { 64, 32, 8, 0, 0, 0, 0, 0 },
4641 { 96, 72, 40, 12, 1, 0, 0, 0 },
4642 { 112, 98, 75, 43, 15, 1, 0, 0 },
4643 { 120, 112, 98, 76, 45, 16, 2, 0 }
4647 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4648 * would be when CPU is idle and so we just decay the old load without
4649 * adding any new load.
4651 static unsigned long
4652 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4656 if (!missed_updates)
4659 if (missed_updates >= degrade_zero_ticks[idx])
4663 return load >> missed_updates;
4665 while (missed_updates) {
4666 if (missed_updates % 2)
4667 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4669 missed_updates >>= 1;
4674 #endif /* CONFIG_NO_HZ_COMMON */
4677 * __cpu_load_update - update the rq->cpu_load[] statistics
4678 * @this_rq: The rq to update statistics for
4679 * @this_load: The current load
4680 * @pending_updates: The number of missed updates
4682 * Update rq->cpu_load[] statistics. This function is usually called every
4683 * scheduler tick (TICK_NSEC).
4685 * This function computes a decaying average:
4687 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4689 * Because of NOHZ it might not get called on every tick which gives need for
4690 * the @pending_updates argument.
4692 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4693 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4694 * = A * (A * load[i]_n-2 + B) + B
4695 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4696 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4697 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4698 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4699 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4701 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4702 * any change in load would have resulted in the tick being turned back on.
4704 * For regular NOHZ, this reduces to:
4706 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4708 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4711 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4712 unsigned long pending_updates)
4714 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4717 this_rq->nr_load_updates++;
4719 /* Update our load: */
4720 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4721 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4722 unsigned long old_load, new_load;
4724 /* scale is effectively 1 << i now, and >> i divides by scale */
4726 old_load = this_rq->cpu_load[i];
4727 #ifdef CONFIG_NO_HZ_COMMON
4728 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4729 if (tickless_load) {
4730 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4732 * old_load can never be a negative value because a
4733 * decayed tickless_load cannot be greater than the
4734 * original tickless_load.
4736 old_load += tickless_load;
4739 new_load = this_load;
4741 * Round up the averaging division if load is increasing. This
4742 * prevents us from getting stuck on 9 if the load is 10, for
4745 if (new_load > old_load)
4746 new_load += scale - 1;
4748 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4751 sched_avg_update(this_rq);
4754 /* Used instead of source_load when we know the type == 0 */
4755 static unsigned long weighted_cpuload(const int cpu)
4757 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4760 #ifdef CONFIG_NO_HZ_COMMON
4762 * There is no sane way to deal with nohz on smp when using jiffies because the
4763 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4764 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4766 * Therefore we need to avoid the delta approach from the regular tick when
4767 * possible since that would seriously skew the load calculation. This is why we
4768 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4769 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4770 * loop exit, nohz_idle_balance, nohz full exit...)
4772 * This means we might still be one tick off for nohz periods.
4775 static void cpu_load_update_nohz(struct rq *this_rq,
4776 unsigned long curr_jiffies,
4779 unsigned long pending_updates;
4781 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4782 if (pending_updates) {
4783 this_rq->last_load_update_tick = curr_jiffies;
4785 * In the regular NOHZ case, we were idle, this means load 0.
4786 * In the NOHZ_FULL case, we were non-idle, we should consider
4787 * its weighted load.
4789 cpu_load_update(this_rq, load, pending_updates);
4794 * Called from nohz_idle_balance() to update the load ratings before doing the
4797 static void cpu_load_update_idle(struct rq *this_rq)
4800 * bail if there's load or we're actually up-to-date.
4802 if (weighted_cpuload(cpu_of(this_rq)))
4805 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4809 * Record CPU load on nohz entry so we know the tickless load to account
4810 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4811 * than other cpu_load[idx] but it should be fine as cpu_load readers
4812 * shouldn't rely into synchronized cpu_load[*] updates.
4814 void cpu_load_update_nohz_start(void)
4816 struct rq *this_rq = this_rq();
4819 * This is all lockless but should be fine. If weighted_cpuload changes
4820 * concurrently we'll exit nohz. And cpu_load write can race with
4821 * cpu_load_update_idle() but both updater would be writing the same.
4823 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4827 * Account the tickless load in the end of a nohz frame.
4829 void cpu_load_update_nohz_stop(void)
4831 unsigned long curr_jiffies = READ_ONCE(jiffies);
4832 struct rq *this_rq = this_rq();
4835 if (curr_jiffies == this_rq->last_load_update_tick)
4838 load = weighted_cpuload(cpu_of(this_rq));
4839 raw_spin_lock(&this_rq->lock);
4840 update_rq_clock(this_rq);
4841 cpu_load_update_nohz(this_rq, curr_jiffies, load);
4842 raw_spin_unlock(&this_rq->lock);
4844 #else /* !CONFIG_NO_HZ_COMMON */
4845 static inline void cpu_load_update_nohz(struct rq *this_rq,
4846 unsigned long curr_jiffies,
4847 unsigned long load) { }
4848 #endif /* CONFIG_NO_HZ_COMMON */
4850 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4852 #ifdef CONFIG_NO_HZ_COMMON
4853 /* See the mess around cpu_load_update_nohz(). */
4854 this_rq->last_load_update_tick = READ_ONCE(jiffies);
4856 cpu_load_update(this_rq, load, 1);
4860 * Called from scheduler_tick()
4862 void cpu_load_update_active(struct rq *this_rq)
4864 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4866 if (tick_nohz_tick_stopped())
4867 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4869 cpu_load_update_periodic(this_rq, load);
4873 * Return a low guess at the load of a migration-source cpu weighted
4874 * according to the scheduling class and "nice" value.
4876 * We want to under-estimate the load of migration sources, to
4877 * balance conservatively.
4879 static unsigned long source_load(int cpu, int type)
4881 struct rq *rq = cpu_rq(cpu);
4882 unsigned long total = weighted_cpuload(cpu);
4884 if (type == 0 || !sched_feat(LB_BIAS))
4887 return min(rq->cpu_load[type-1], total);
4891 * Return a high guess at the load of a migration-target cpu weighted
4892 * according to the scheduling class and "nice" value.
4894 static unsigned long target_load(int cpu, int type)
4896 struct rq *rq = cpu_rq(cpu);
4897 unsigned long total = weighted_cpuload(cpu);
4899 if (type == 0 || !sched_feat(LB_BIAS))
4902 return max(rq->cpu_load[type-1], total);
4905 static unsigned long capacity_of(int cpu)
4907 return cpu_rq(cpu)->cpu_capacity;
4910 static unsigned long capacity_orig_of(int cpu)
4912 return cpu_rq(cpu)->cpu_capacity_orig;
4915 static unsigned long cpu_avg_load_per_task(int cpu)
4917 struct rq *rq = cpu_rq(cpu);
4918 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4919 unsigned long load_avg = weighted_cpuload(cpu);
4922 return load_avg / nr_running;
4927 #ifdef CONFIG_FAIR_GROUP_SCHED
4929 * effective_load() calculates the load change as seen from the root_task_group
4931 * Adding load to a group doesn't make a group heavier, but can cause movement
4932 * of group shares between cpus. Assuming the shares were perfectly aligned one
4933 * can calculate the shift in shares.
4935 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4936 * on this @cpu and results in a total addition (subtraction) of @wg to the
4937 * total group weight.
4939 * Given a runqueue weight distribution (rw_i) we can compute a shares
4940 * distribution (s_i) using:
4942 * s_i = rw_i / \Sum rw_j (1)
4944 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4945 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4946 * shares distribution (s_i):
4948 * rw_i = { 2, 4, 1, 0 }
4949 * s_i = { 2/7, 4/7, 1/7, 0 }
4951 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4952 * task used to run on and the CPU the waker is running on), we need to
4953 * compute the effect of waking a task on either CPU and, in case of a sync
4954 * wakeup, compute the effect of the current task going to sleep.
4956 * So for a change of @wl to the local @cpu with an overall group weight change
4957 * of @wl we can compute the new shares distribution (s'_i) using:
4959 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4961 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4962 * differences in waking a task to CPU 0. The additional task changes the
4963 * weight and shares distributions like:
4965 * rw'_i = { 3, 4, 1, 0 }
4966 * s'_i = { 3/8, 4/8, 1/8, 0 }
4968 * We can then compute the difference in effective weight by using:
4970 * dw_i = S * (s'_i - s_i) (3)
4972 * Where 'S' is the group weight as seen by its parent.
4974 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4975 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4976 * 4/7) times the weight of the group.
4978 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4980 struct sched_entity *se = tg->se[cpu];
4982 if (!tg->parent) /* the trivial, non-cgroup case */
4985 for_each_sched_entity(se) {
4986 struct cfs_rq *cfs_rq = se->my_q;
4987 long W, w = cfs_rq_load_avg(cfs_rq);
4992 * W = @wg + \Sum rw_j
4994 W = wg + atomic_long_read(&tg->load_avg);
4996 /* Ensure \Sum rw_j >= rw_i */
4997 W -= cfs_rq->tg_load_avg_contrib;
5006 * wl = S * s'_i; see (2)
5009 wl = (w * (long)tg->shares) / W;
5014 * Per the above, wl is the new se->load.weight value; since
5015 * those are clipped to [MIN_SHARES, ...) do so now. See
5016 * calc_cfs_shares().
5018 if (wl < MIN_SHARES)
5022 * wl = dw_i = S * (s'_i - s_i); see (3)
5024 wl -= se->avg.load_avg;
5027 * Recursively apply this logic to all parent groups to compute
5028 * the final effective load change on the root group. Since
5029 * only the @tg group gets extra weight, all parent groups can
5030 * only redistribute existing shares. @wl is the shift in shares
5031 * resulting from this level per the above.
5040 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5047 static void record_wakee(struct task_struct *p)
5050 * Only decay a single time; tasks that have less then 1 wakeup per
5051 * jiffy will not have built up many flips.
5053 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5054 current->wakee_flips >>= 1;
5055 current->wakee_flip_decay_ts = jiffies;
5058 if (current->last_wakee != p) {
5059 current->last_wakee = p;
5060 current->wakee_flips++;
5065 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5067 * A waker of many should wake a different task than the one last awakened
5068 * at a frequency roughly N times higher than one of its wakees.
5070 * In order to determine whether we should let the load spread vs consolidating
5071 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5072 * partner, and a factor of lls_size higher frequency in the other.
5074 * With both conditions met, we can be relatively sure that the relationship is
5075 * non-monogamous, with partner count exceeding socket size.
5077 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5078 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5081 static int wake_wide(struct task_struct *p)
5083 unsigned int master = current->wakee_flips;
5084 unsigned int slave = p->wakee_flips;
5085 int factor = this_cpu_read(sd_llc_size);
5088 swap(master, slave);
5089 if (slave < factor || master < slave * factor)
5094 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
5096 s64 this_load, load;
5097 s64 this_eff_load, prev_eff_load;
5098 int idx, this_cpu, prev_cpu;
5099 struct task_group *tg;
5100 unsigned long weight;
5104 this_cpu = smp_processor_id();
5105 prev_cpu = task_cpu(p);
5106 load = source_load(prev_cpu, idx);
5107 this_load = target_load(this_cpu, idx);
5110 * If sync wakeup then subtract the (maximum possible)
5111 * effect of the currently running task from the load
5112 * of the current CPU:
5115 tg = task_group(current);
5116 weight = current->se.avg.load_avg;
5118 this_load += effective_load(tg, this_cpu, -weight, -weight);
5119 load += effective_load(tg, prev_cpu, 0, -weight);
5123 weight = p->se.avg.load_avg;
5126 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5127 * due to the sync cause above having dropped this_load to 0, we'll
5128 * always have an imbalance, but there's really nothing you can do
5129 * about that, so that's good too.
5131 * Otherwise check if either cpus are near enough in load to allow this
5132 * task to be woken on this_cpu.
5134 this_eff_load = 100;
5135 this_eff_load *= capacity_of(prev_cpu);
5137 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5138 prev_eff_load *= capacity_of(this_cpu);
5140 if (this_load > 0) {
5141 this_eff_load *= this_load +
5142 effective_load(tg, this_cpu, weight, weight);
5144 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5147 balanced = this_eff_load <= prev_eff_load;
5149 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
5154 schedstat_inc(sd, ttwu_move_affine);
5155 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5161 * find_idlest_group finds and returns the least busy CPU group within the
5164 static struct sched_group *
5165 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5166 int this_cpu, int sd_flag)
5168 struct sched_group *idlest = NULL, *group = sd->groups;
5169 unsigned long min_load = ULONG_MAX, this_load = 0;
5170 int load_idx = sd->forkexec_idx;
5171 int imbalance = 100 + (sd->imbalance_pct-100)/2;
5173 if (sd_flag & SD_BALANCE_WAKE)
5174 load_idx = sd->wake_idx;
5177 unsigned long load, avg_load;
5181 /* Skip over this group if it has no CPUs allowed */
5182 if (!cpumask_intersects(sched_group_cpus(group),
5183 tsk_cpus_allowed(p)))
5186 local_group = cpumask_test_cpu(this_cpu,
5187 sched_group_cpus(group));
5189 /* Tally up the load of all CPUs in the group */
5192 for_each_cpu(i, sched_group_cpus(group)) {
5193 /* Bias balancing toward cpus of our domain */
5195 load = source_load(i, load_idx);
5197 load = target_load(i, load_idx);
5202 /* Adjust by relative CPU capacity of the group */
5203 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5206 this_load = avg_load;
5207 } else if (avg_load < min_load) {
5208 min_load = avg_load;
5211 } while (group = group->next, group != sd->groups);
5213 if (!idlest || 100*this_load < imbalance*min_load)
5219 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5222 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5224 unsigned long load, min_load = ULONG_MAX;
5225 unsigned int min_exit_latency = UINT_MAX;
5226 u64 latest_idle_timestamp = 0;
5227 int least_loaded_cpu = this_cpu;
5228 int shallowest_idle_cpu = -1;
5231 /* Traverse only the allowed CPUs */
5232 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5234 struct rq *rq = cpu_rq(i);
5235 struct cpuidle_state *idle = idle_get_state(rq);
5236 if (idle && idle->exit_latency < min_exit_latency) {
5238 * We give priority to a CPU whose idle state
5239 * has the smallest exit latency irrespective
5240 * of any idle timestamp.
5242 min_exit_latency = idle->exit_latency;
5243 latest_idle_timestamp = rq->idle_stamp;
5244 shallowest_idle_cpu = i;
5245 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5246 rq->idle_stamp > latest_idle_timestamp) {
5248 * If equal or no active idle state, then
5249 * the most recently idled CPU might have
5252 latest_idle_timestamp = rq->idle_stamp;
5253 shallowest_idle_cpu = i;
5255 } else if (shallowest_idle_cpu == -1) {
5256 load = weighted_cpuload(i);
5257 if (load < min_load || (load == min_load && i == this_cpu)) {
5259 least_loaded_cpu = i;
5264 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5268 * Try and locate an idle CPU in the sched_domain.
5270 static int select_idle_sibling(struct task_struct *p, int target)
5272 struct sched_domain *sd;
5273 struct sched_group *sg;
5274 int i = task_cpu(p);
5276 if (idle_cpu(target))
5280 * If the prevous cpu is cache affine and idle, don't be stupid.
5282 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5286 * Otherwise, iterate the domains and find an eligible idle cpu.
5288 * A completely idle sched group at higher domains is more
5289 * desirable than an idle group at a lower level, because lower
5290 * domains have smaller groups and usually share hardware
5291 * resources which causes tasks to contend on them, e.g. x86
5292 * hyperthread siblings in the lowest domain (SMT) can contend
5293 * on the shared cpu pipeline.
5295 * However, while we prefer idle groups at higher domains
5296 * finding an idle cpu at the lowest domain is still better than
5297 * returning 'target', which we've already established, isn't
5300 sd = rcu_dereference(per_cpu(sd_llc, target));
5301 for_each_lower_domain(sd) {
5304 if (!cpumask_intersects(sched_group_cpus(sg),
5305 tsk_cpus_allowed(p)))
5308 /* Ensure the entire group is idle */
5309 for_each_cpu(i, sched_group_cpus(sg)) {
5310 if (i == target || !idle_cpu(i))
5315 * It doesn't matter which cpu we pick, the
5316 * whole group is idle.
5318 target = cpumask_first_and(sched_group_cpus(sg),
5319 tsk_cpus_allowed(p));
5323 } while (sg != sd->groups);
5330 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5331 * tasks. The unit of the return value must be the one of capacity so we can
5332 * compare the utilization with the capacity of the CPU that is available for
5333 * CFS task (ie cpu_capacity).
5335 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5336 * recent utilization of currently non-runnable tasks on a CPU. It represents
5337 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5338 * capacity_orig is the cpu_capacity available at the highest frequency
5339 * (arch_scale_freq_capacity()).
5340 * The utilization of a CPU converges towards a sum equal to or less than the
5341 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5342 * the running time on this CPU scaled by capacity_curr.
5344 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5345 * higher than capacity_orig because of unfortunate rounding in
5346 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5347 * the average stabilizes with the new running time. We need to check that the
5348 * utilization stays within the range of [0..capacity_orig] and cap it if
5349 * necessary. Without utilization capping, a group could be seen as overloaded
5350 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5351 * available capacity. We allow utilization to overshoot capacity_curr (but not
5352 * capacity_orig) as it useful for predicting the capacity required after task
5353 * migrations (scheduler-driven DVFS).
5355 static int cpu_util(int cpu)
5357 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5358 unsigned long capacity = capacity_orig_of(cpu);
5360 return (util >= capacity) ? capacity : util;
5364 * select_task_rq_fair: Select target runqueue for the waking task in domains
5365 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5366 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5368 * Balances load by selecting the idlest cpu in the idlest group, or under
5369 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5371 * Returns the target cpu number.
5373 * preempt must be disabled.
5376 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5378 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5379 int cpu = smp_processor_id();
5380 int new_cpu = prev_cpu;
5381 int want_affine = 0;
5382 int sync = wake_flags & WF_SYNC;
5384 if (sd_flag & SD_BALANCE_WAKE) {
5386 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5390 for_each_domain(cpu, tmp) {
5391 if (!(tmp->flags & SD_LOAD_BALANCE))
5395 * If both cpu and prev_cpu are part of this domain,
5396 * cpu is a valid SD_WAKE_AFFINE target.
5398 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5399 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5404 if (tmp->flags & sd_flag)
5406 else if (!want_affine)
5411 sd = NULL; /* Prefer wake_affine over balance flags */
5412 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5417 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5418 new_cpu = select_idle_sibling(p, new_cpu);
5421 struct sched_group *group;
5424 if (!(sd->flags & sd_flag)) {
5429 group = find_idlest_group(sd, p, cpu, sd_flag);
5435 new_cpu = find_idlest_cpu(group, p, cpu);
5436 if (new_cpu == -1 || new_cpu == cpu) {
5437 /* Now try balancing at a lower domain level of cpu */
5442 /* Now try balancing at a lower domain level of new_cpu */
5444 weight = sd->span_weight;
5446 for_each_domain(cpu, tmp) {
5447 if (weight <= tmp->span_weight)
5449 if (tmp->flags & sd_flag)
5452 /* while loop will break here if sd == NULL */
5460 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5461 * cfs_rq_of(p) references at time of call are still valid and identify the
5462 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5464 static void migrate_task_rq_fair(struct task_struct *p)
5467 * As blocked tasks retain absolute vruntime the migration needs to
5468 * deal with this by subtracting the old and adding the new
5469 * min_vruntime -- the latter is done by enqueue_entity() when placing
5470 * the task on the new runqueue.
5472 if (p->state == TASK_WAKING) {
5473 struct sched_entity *se = &p->se;
5474 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5477 #ifndef CONFIG_64BIT
5478 u64 min_vruntime_copy;
5481 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5483 min_vruntime = cfs_rq->min_vruntime;
5484 } while (min_vruntime != min_vruntime_copy);
5486 min_vruntime = cfs_rq->min_vruntime;
5489 se->vruntime -= min_vruntime;
5493 * We are supposed to update the task to "current" time, then its up to date
5494 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5495 * what current time is, so simply throw away the out-of-date time. This
5496 * will result in the wakee task is less decayed, but giving the wakee more
5497 * load sounds not bad.
5499 remove_entity_load_avg(&p->se);
5501 /* Tell new CPU we are migrated */
5502 p->se.avg.last_update_time = 0;
5504 /* We have migrated, no longer consider this task hot */
5505 p->se.exec_start = 0;
5508 static void task_dead_fair(struct task_struct *p)
5510 remove_entity_load_avg(&p->se);
5512 #endif /* CONFIG_SMP */
5514 static unsigned long
5515 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5517 unsigned long gran = sysctl_sched_wakeup_granularity;
5520 * Since its curr running now, convert the gran from real-time
5521 * to virtual-time in his units.
5523 * By using 'se' instead of 'curr' we penalize light tasks, so
5524 * they get preempted easier. That is, if 'se' < 'curr' then
5525 * the resulting gran will be larger, therefore penalizing the
5526 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5527 * be smaller, again penalizing the lighter task.
5529 * This is especially important for buddies when the leftmost
5530 * task is higher priority than the buddy.
5532 return calc_delta_fair(gran, se);
5536 * Should 'se' preempt 'curr'.
5550 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5552 s64 gran, vdiff = curr->vruntime - se->vruntime;
5557 gran = wakeup_gran(curr, se);
5564 static void set_last_buddy(struct sched_entity *se)
5566 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5569 for_each_sched_entity(se)
5570 cfs_rq_of(se)->last = se;
5573 static void set_next_buddy(struct sched_entity *se)
5575 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5578 for_each_sched_entity(se)
5579 cfs_rq_of(se)->next = se;
5582 static void set_skip_buddy(struct sched_entity *se)
5584 for_each_sched_entity(se)
5585 cfs_rq_of(se)->skip = se;
5589 * Preempt the current task with a newly woken task if needed:
5591 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5593 struct task_struct *curr = rq->curr;
5594 struct sched_entity *se = &curr->se, *pse = &p->se;
5595 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5596 int scale = cfs_rq->nr_running >= sched_nr_latency;
5597 int next_buddy_marked = 0;
5599 if (unlikely(se == pse))
5603 * This is possible from callers such as attach_tasks(), in which we
5604 * unconditionally check_prempt_curr() after an enqueue (which may have
5605 * lead to a throttle). This both saves work and prevents false
5606 * next-buddy nomination below.
5608 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5611 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5612 set_next_buddy(pse);
5613 next_buddy_marked = 1;
5617 * We can come here with TIF_NEED_RESCHED already set from new task
5620 * Note: this also catches the edge-case of curr being in a throttled
5621 * group (e.g. via set_curr_task), since update_curr() (in the
5622 * enqueue of curr) will have resulted in resched being set. This
5623 * prevents us from potentially nominating it as a false LAST_BUDDY
5626 if (test_tsk_need_resched(curr))
5629 /* Idle tasks are by definition preempted by non-idle tasks. */
5630 if (unlikely(curr->policy == SCHED_IDLE) &&
5631 likely(p->policy != SCHED_IDLE))
5635 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5636 * is driven by the tick):
5638 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5641 find_matching_se(&se, &pse);
5642 update_curr(cfs_rq_of(se));
5644 if (wakeup_preempt_entity(se, pse) == 1) {
5646 * Bias pick_next to pick the sched entity that is
5647 * triggering this preemption.
5649 if (!next_buddy_marked)
5650 set_next_buddy(pse);
5659 * Only set the backward buddy when the current task is still
5660 * on the rq. This can happen when a wakeup gets interleaved
5661 * with schedule on the ->pre_schedule() or idle_balance()
5662 * point, either of which can * drop the rq lock.
5664 * Also, during early boot the idle thread is in the fair class,
5665 * for obvious reasons its a bad idea to schedule back to it.
5667 if (unlikely(!se->on_rq || curr == rq->idle))
5670 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5674 static struct task_struct *
5675 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5677 struct cfs_rq *cfs_rq = &rq->cfs;
5678 struct sched_entity *se;
5679 struct task_struct *p;
5683 #ifdef CONFIG_FAIR_GROUP_SCHED
5684 if (!cfs_rq->nr_running)
5687 if (prev->sched_class != &fair_sched_class)
5691 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5692 * likely that a next task is from the same cgroup as the current.
5694 * Therefore attempt to avoid putting and setting the entire cgroup
5695 * hierarchy, only change the part that actually changes.
5699 struct sched_entity *curr = cfs_rq->curr;
5702 * Since we got here without doing put_prev_entity() we also
5703 * have to consider cfs_rq->curr. If it is still a runnable
5704 * entity, update_curr() will update its vruntime, otherwise
5705 * forget we've ever seen it.
5709 update_curr(cfs_rq);
5714 * This call to check_cfs_rq_runtime() will do the
5715 * throttle and dequeue its entity in the parent(s).
5716 * Therefore the 'simple' nr_running test will indeed
5719 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5723 se = pick_next_entity(cfs_rq, curr);
5724 cfs_rq = group_cfs_rq(se);
5730 * Since we haven't yet done put_prev_entity and if the selected task
5731 * is a different task than we started out with, try and touch the
5732 * least amount of cfs_rqs.
5735 struct sched_entity *pse = &prev->se;
5737 while (!(cfs_rq = is_same_group(se, pse))) {
5738 int se_depth = se->depth;
5739 int pse_depth = pse->depth;
5741 if (se_depth <= pse_depth) {
5742 put_prev_entity(cfs_rq_of(pse), pse);
5743 pse = parent_entity(pse);
5745 if (se_depth >= pse_depth) {
5746 set_next_entity(cfs_rq_of(se), se);
5747 se = parent_entity(se);
5751 put_prev_entity(cfs_rq, pse);
5752 set_next_entity(cfs_rq, se);
5755 if (hrtick_enabled(rq))
5756 hrtick_start_fair(rq, p);
5763 if (!cfs_rq->nr_running)
5766 put_prev_task(rq, prev);
5769 se = pick_next_entity(cfs_rq, NULL);
5770 set_next_entity(cfs_rq, se);
5771 cfs_rq = group_cfs_rq(se);
5776 if (hrtick_enabled(rq))
5777 hrtick_start_fair(rq, p);
5783 * This is OK, because current is on_cpu, which avoids it being picked
5784 * for load-balance and preemption/IRQs are still disabled avoiding
5785 * further scheduler activity on it and we're being very careful to
5786 * re-start the picking loop.
5788 lockdep_unpin_lock(&rq->lock, cookie);
5789 new_tasks = idle_balance(rq);
5790 lockdep_repin_lock(&rq->lock, cookie);
5792 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5793 * possible for any higher priority task to appear. In that case we
5794 * must re-start the pick_next_entity() loop.
5806 * Account for a descheduled task:
5808 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5810 struct sched_entity *se = &prev->se;
5811 struct cfs_rq *cfs_rq;
5813 for_each_sched_entity(se) {
5814 cfs_rq = cfs_rq_of(se);
5815 put_prev_entity(cfs_rq, se);
5820 * sched_yield() is very simple
5822 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5824 static void yield_task_fair(struct rq *rq)
5826 struct task_struct *curr = rq->curr;
5827 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5828 struct sched_entity *se = &curr->se;
5831 * Are we the only task in the tree?
5833 if (unlikely(rq->nr_running == 1))
5836 clear_buddies(cfs_rq, se);
5838 if (curr->policy != SCHED_BATCH) {
5839 update_rq_clock(rq);
5841 * Update run-time statistics of the 'current'.
5843 update_curr(cfs_rq);
5845 * Tell update_rq_clock() that we've just updated,
5846 * so we don't do microscopic update in schedule()
5847 * and double the fastpath cost.
5849 rq_clock_skip_update(rq, true);
5855 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5857 struct sched_entity *se = &p->se;
5859 /* throttled hierarchies are not runnable */
5860 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5863 /* Tell the scheduler that we'd really like pse to run next. */
5866 yield_task_fair(rq);
5872 /**************************************************
5873 * Fair scheduling class load-balancing methods.
5877 * The purpose of load-balancing is to achieve the same basic fairness the
5878 * per-cpu scheduler provides, namely provide a proportional amount of compute
5879 * time to each task. This is expressed in the following equation:
5881 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5883 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5884 * W_i,0 is defined as:
5886 * W_i,0 = \Sum_j w_i,j (2)
5888 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5889 * is derived from the nice value as per sched_prio_to_weight[].
5891 * The weight average is an exponential decay average of the instantaneous
5894 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5896 * C_i is the compute capacity of cpu i, typically it is the
5897 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5898 * can also include other factors [XXX].
5900 * To achieve this balance we define a measure of imbalance which follows
5901 * directly from (1):
5903 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5905 * We them move tasks around to minimize the imbalance. In the continuous
5906 * function space it is obvious this converges, in the discrete case we get
5907 * a few fun cases generally called infeasible weight scenarios.
5910 * - infeasible weights;
5911 * - local vs global optima in the discrete case. ]
5916 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5917 * for all i,j solution, we create a tree of cpus that follows the hardware
5918 * topology where each level pairs two lower groups (or better). This results
5919 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5920 * tree to only the first of the previous level and we decrease the frequency
5921 * of load-balance at each level inv. proportional to the number of cpus in
5927 * \Sum { --- * --- * 2^i } = O(n) (5)
5929 * `- size of each group
5930 * | | `- number of cpus doing load-balance
5932 * `- sum over all levels
5934 * Coupled with a limit on how many tasks we can migrate every balance pass,
5935 * this makes (5) the runtime complexity of the balancer.
5937 * An important property here is that each CPU is still (indirectly) connected
5938 * to every other cpu in at most O(log n) steps:
5940 * The adjacency matrix of the resulting graph is given by:
5943 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5946 * And you'll find that:
5948 * A^(log_2 n)_i,j != 0 for all i,j (7)
5950 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5951 * The task movement gives a factor of O(m), giving a convergence complexity
5954 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5959 * In order to avoid CPUs going idle while there's still work to do, new idle
5960 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5961 * tree itself instead of relying on other CPUs to bring it work.
5963 * This adds some complexity to both (5) and (8) but it reduces the total idle
5971 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5974 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5979 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5981 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5983 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5986 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5987 * rewrite all of this once again.]
5990 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5992 enum fbq_type { regular, remote, all };
5994 #define LBF_ALL_PINNED 0x01
5995 #define LBF_NEED_BREAK 0x02
5996 #define LBF_DST_PINNED 0x04
5997 #define LBF_SOME_PINNED 0x08
6000 struct sched_domain *sd;
6008 struct cpumask *dst_grpmask;
6010 enum cpu_idle_type idle;
6012 /* The set of CPUs under consideration for load-balancing */
6013 struct cpumask *cpus;
6018 unsigned int loop_break;
6019 unsigned int loop_max;
6021 enum fbq_type fbq_type;
6022 struct list_head tasks;
6026 * Is this task likely cache-hot:
6028 static int task_hot(struct task_struct *p, struct lb_env *env)
6032 lockdep_assert_held(&env->src_rq->lock);
6034 if (p->sched_class != &fair_sched_class)
6037 if (unlikely(p->policy == SCHED_IDLE))
6041 * Buddy candidates are cache hot:
6043 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6044 (&p->se == cfs_rq_of(&p->se)->next ||
6045 &p->se == cfs_rq_of(&p->se)->last))
6048 if (sysctl_sched_migration_cost == -1)
6050 if (sysctl_sched_migration_cost == 0)
6053 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6055 return delta < (s64)sysctl_sched_migration_cost;
6058 #ifdef CONFIG_NUMA_BALANCING
6060 * Returns 1, if task migration degrades locality
6061 * Returns 0, if task migration improves locality i.e migration preferred.
6062 * Returns -1, if task migration is not affected by locality.
6064 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6066 struct numa_group *numa_group = rcu_dereference(p->numa_group);
6067 unsigned long src_faults, dst_faults;
6068 int src_nid, dst_nid;
6070 if (!static_branch_likely(&sched_numa_balancing))
6073 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6076 src_nid = cpu_to_node(env->src_cpu);
6077 dst_nid = cpu_to_node(env->dst_cpu);
6079 if (src_nid == dst_nid)
6082 /* Migrating away from the preferred node is always bad. */
6083 if (src_nid == p->numa_preferred_nid) {
6084 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6090 /* Encourage migration to the preferred node. */
6091 if (dst_nid == p->numa_preferred_nid)
6095 src_faults = group_faults(p, src_nid);
6096 dst_faults = group_faults(p, dst_nid);
6098 src_faults = task_faults(p, src_nid);
6099 dst_faults = task_faults(p, dst_nid);
6102 return dst_faults < src_faults;
6106 static inline int migrate_degrades_locality(struct task_struct *p,
6114 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6117 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6121 lockdep_assert_held(&env->src_rq->lock);
6124 * We do not migrate tasks that are:
6125 * 1) throttled_lb_pair, or
6126 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6127 * 3) running (obviously), or
6128 * 4) are cache-hot on their current CPU.
6130 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6133 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6136 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
6138 env->flags |= LBF_SOME_PINNED;
6141 * Remember if this task can be migrated to any other cpu in
6142 * our sched_group. We may want to revisit it if we couldn't
6143 * meet load balance goals by pulling other tasks on src_cpu.
6145 * Also avoid computing new_dst_cpu if we have already computed
6146 * one in current iteration.
6148 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6151 /* Prevent to re-select dst_cpu via env's cpus */
6152 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6153 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6154 env->flags |= LBF_DST_PINNED;
6155 env->new_dst_cpu = cpu;
6163 /* Record that we found atleast one task that could run on dst_cpu */
6164 env->flags &= ~LBF_ALL_PINNED;
6166 if (task_running(env->src_rq, p)) {
6167 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
6172 * Aggressive migration if:
6173 * 1) destination numa is preferred
6174 * 2) task is cache cold, or
6175 * 3) too many balance attempts have failed.
6177 tsk_cache_hot = migrate_degrades_locality(p, env);
6178 if (tsk_cache_hot == -1)
6179 tsk_cache_hot = task_hot(p, env);
6181 if (tsk_cache_hot <= 0 ||
6182 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6183 if (tsk_cache_hot == 1) {
6184 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6185 schedstat_inc(p, se.statistics.nr_forced_migrations);
6190 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6195 * detach_task() -- detach the task for the migration specified in env
6197 static void detach_task(struct task_struct *p, struct lb_env *env)
6199 lockdep_assert_held(&env->src_rq->lock);
6201 p->on_rq = TASK_ON_RQ_MIGRATING;
6202 deactivate_task(env->src_rq, p, 0);
6203 set_task_cpu(p, env->dst_cpu);
6207 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6208 * part of active balancing operations within "domain".
6210 * Returns a task if successful and NULL otherwise.
6212 static struct task_struct *detach_one_task(struct lb_env *env)
6214 struct task_struct *p, *n;
6216 lockdep_assert_held(&env->src_rq->lock);
6218 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6219 if (!can_migrate_task(p, env))
6222 detach_task(p, env);
6225 * Right now, this is only the second place where
6226 * lb_gained[env->idle] is updated (other is detach_tasks)
6227 * so we can safely collect stats here rather than
6228 * inside detach_tasks().
6230 schedstat_inc(env->sd, lb_gained[env->idle]);
6236 static const unsigned int sched_nr_migrate_break = 32;
6239 * detach_tasks() -- tries to detach up to imbalance weighted load from
6240 * busiest_rq, as part of a balancing operation within domain "sd".
6242 * Returns number of detached tasks if successful and 0 otherwise.
6244 static int detach_tasks(struct lb_env *env)
6246 struct list_head *tasks = &env->src_rq->cfs_tasks;
6247 struct task_struct *p;
6251 lockdep_assert_held(&env->src_rq->lock);
6253 if (env->imbalance <= 0)
6256 while (!list_empty(tasks)) {
6258 * We don't want to steal all, otherwise we may be treated likewise,
6259 * which could at worst lead to a livelock crash.
6261 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6264 p = list_first_entry(tasks, struct task_struct, se.group_node);
6267 /* We've more or less seen every task there is, call it quits */
6268 if (env->loop > env->loop_max)
6271 /* take a breather every nr_migrate tasks */
6272 if (env->loop > env->loop_break) {
6273 env->loop_break += sched_nr_migrate_break;
6274 env->flags |= LBF_NEED_BREAK;
6278 if (!can_migrate_task(p, env))
6281 load = task_h_load(p);
6283 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6286 if ((load / 2) > env->imbalance)
6289 detach_task(p, env);
6290 list_add(&p->se.group_node, &env->tasks);
6293 env->imbalance -= load;
6295 #ifdef CONFIG_PREEMPT
6297 * NEWIDLE balancing is a source of latency, so preemptible
6298 * kernels will stop after the first task is detached to minimize
6299 * the critical section.
6301 if (env->idle == CPU_NEWLY_IDLE)
6306 * We only want to steal up to the prescribed amount of
6309 if (env->imbalance <= 0)
6314 list_move_tail(&p->se.group_node, tasks);
6318 * Right now, this is one of only two places we collect this stat
6319 * so we can safely collect detach_one_task() stats here rather
6320 * than inside detach_one_task().
6322 schedstat_add(env->sd, lb_gained[env->idle], detached);
6328 * attach_task() -- attach the task detached by detach_task() to its new rq.
6330 static void attach_task(struct rq *rq, struct task_struct *p)
6332 lockdep_assert_held(&rq->lock);
6334 BUG_ON(task_rq(p) != rq);
6335 activate_task(rq, p, 0);
6336 p->on_rq = TASK_ON_RQ_QUEUED;
6337 check_preempt_curr(rq, p, 0);
6341 * attach_one_task() -- attaches the task returned from detach_one_task() to
6344 static void attach_one_task(struct rq *rq, struct task_struct *p)
6346 raw_spin_lock(&rq->lock);
6348 raw_spin_unlock(&rq->lock);
6352 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6355 static void attach_tasks(struct lb_env *env)
6357 struct list_head *tasks = &env->tasks;
6358 struct task_struct *p;
6360 raw_spin_lock(&env->dst_rq->lock);
6362 while (!list_empty(tasks)) {
6363 p = list_first_entry(tasks, struct task_struct, se.group_node);
6364 list_del_init(&p->se.group_node);
6366 attach_task(env->dst_rq, p);
6369 raw_spin_unlock(&env->dst_rq->lock);
6372 #ifdef CONFIG_FAIR_GROUP_SCHED
6373 static void update_blocked_averages(int cpu)
6375 struct rq *rq = cpu_rq(cpu);
6376 struct cfs_rq *cfs_rq;
6377 unsigned long flags;
6379 raw_spin_lock_irqsave(&rq->lock, flags);
6380 update_rq_clock(rq);
6383 * Iterates the task_group tree in a bottom up fashion, see
6384 * list_add_leaf_cfs_rq() for details.
6386 for_each_leaf_cfs_rq(rq, cfs_rq) {
6387 /* throttled entities do not contribute to load */
6388 if (throttled_hierarchy(cfs_rq))
6391 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6392 update_tg_load_avg(cfs_rq, 0);
6394 raw_spin_unlock_irqrestore(&rq->lock, flags);
6398 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6399 * This needs to be done in a top-down fashion because the load of a child
6400 * group is a fraction of its parents load.
6402 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6404 struct rq *rq = rq_of(cfs_rq);
6405 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6406 unsigned long now = jiffies;
6409 if (cfs_rq->last_h_load_update == now)
6412 cfs_rq->h_load_next = NULL;
6413 for_each_sched_entity(se) {
6414 cfs_rq = cfs_rq_of(se);
6415 cfs_rq->h_load_next = se;
6416 if (cfs_rq->last_h_load_update == now)
6421 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6422 cfs_rq->last_h_load_update = now;
6425 while ((se = cfs_rq->h_load_next) != NULL) {
6426 load = cfs_rq->h_load;
6427 load = div64_ul(load * se->avg.load_avg,
6428 cfs_rq_load_avg(cfs_rq) + 1);
6429 cfs_rq = group_cfs_rq(se);
6430 cfs_rq->h_load = load;
6431 cfs_rq->last_h_load_update = now;
6435 static unsigned long task_h_load(struct task_struct *p)
6437 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6439 update_cfs_rq_h_load(cfs_rq);
6440 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6441 cfs_rq_load_avg(cfs_rq) + 1);
6444 static inline void update_blocked_averages(int cpu)
6446 struct rq *rq = cpu_rq(cpu);
6447 struct cfs_rq *cfs_rq = &rq->cfs;
6448 unsigned long flags;
6450 raw_spin_lock_irqsave(&rq->lock, flags);
6451 update_rq_clock(rq);
6452 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6453 raw_spin_unlock_irqrestore(&rq->lock, flags);
6456 static unsigned long task_h_load(struct task_struct *p)
6458 return p->se.avg.load_avg;
6462 /********** Helpers for find_busiest_group ************************/
6471 * sg_lb_stats - stats of a sched_group required for load_balancing
6473 struct sg_lb_stats {
6474 unsigned long avg_load; /*Avg load across the CPUs of the group */
6475 unsigned long group_load; /* Total load over the CPUs of the group */
6476 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6477 unsigned long load_per_task;
6478 unsigned long group_capacity;
6479 unsigned long group_util; /* Total utilization of the group */
6480 unsigned int sum_nr_running; /* Nr tasks running in the group */
6481 unsigned int idle_cpus;
6482 unsigned int group_weight;
6483 enum group_type group_type;
6484 int group_no_capacity;
6485 #ifdef CONFIG_NUMA_BALANCING
6486 unsigned int nr_numa_running;
6487 unsigned int nr_preferred_running;
6492 * sd_lb_stats - Structure to store the statistics of a sched_domain
6493 * during load balancing.
6495 struct sd_lb_stats {
6496 struct sched_group *busiest; /* Busiest group in this sd */
6497 struct sched_group *local; /* Local group in this sd */
6498 unsigned long total_load; /* Total load of all groups in sd */
6499 unsigned long total_capacity; /* Total capacity of all groups in sd */
6500 unsigned long avg_load; /* Average load across all groups in sd */
6502 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6503 struct sg_lb_stats local_stat; /* Statistics of the local group */
6506 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6509 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6510 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6511 * We must however clear busiest_stat::avg_load because
6512 * update_sd_pick_busiest() reads this before assignment.
6514 *sds = (struct sd_lb_stats){
6518 .total_capacity = 0UL,
6521 .sum_nr_running = 0,
6522 .group_type = group_other,
6528 * get_sd_load_idx - Obtain the load index for a given sched domain.
6529 * @sd: The sched_domain whose load_idx is to be obtained.
6530 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6532 * Return: The load index.
6534 static inline int get_sd_load_idx(struct sched_domain *sd,
6535 enum cpu_idle_type idle)
6541 load_idx = sd->busy_idx;
6544 case CPU_NEWLY_IDLE:
6545 load_idx = sd->newidle_idx;
6548 load_idx = sd->idle_idx;
6555 static unsigned long scale_rt_capacity(int cpu)
6557 struct rq *rq = cpu_rq(cpu);
6558 u64 total, used, age_stamp, avg;
6562 * Since we're reading these variables without serialization make sure
6563 * we read them once before doing sanity checks on them.
6565 age_stamp = READ_ONCE(rq->age_stamp);
6566 avg = READ_ONCE(rq->rt_avg);
6567 delta = __rq_clock_broken(rq) - age_stamp;
6569 if (unlikely(delta < 0))
6572 total = sched_avg_period() + delta;
6574 used = div_u64(avg, total);
6576 if (likely(used < SCHED_CAPACITY_SCALE))
6577 return SCHED_CAPACITY_SCALE - used;
6582 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6584 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6585 struct sched_group *sdg = sd->groups;
6587 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6589 capacity *= scale_rt_capacity(cpu);
6590 capacity >>= SCHED_CAPACITY_SHIFT;
6595 cpu_rq(cpu)->cpu_capacity = capacity;
6596 sdg->sgc->capacity = capacity;
6599 void update_group_capacity(struct sched_domain *sd, int cpu)
6601 struct sched_domain *child = sd->child;
6602 struct sched_group *group, *sdg = sd->groups;
6603 unsigned long capacity;
6604 unsigned long interval;
6606 interval = msecs_to_jiffies(sd->balance_interval);
6607 interval = clamp(interval, 1UL, max_load_balance_interval);
6608 sdg->sgc->next_update = jiffies + interval;
6611 update_cpu_capacity(sd, cpu);
6617 if (child->flags & SD_OVERLAP) {
6619 * SD_OVERLAP domains cannot assume that child groups
6620 * span the current group.
6623 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6624 struct sched_group_capacity *sgc;
6625 struct rq *rq = cpu_rq(cpu);
6628 * build_sched_domains() -> init_sched_groups_capacity()
6629 * gets here before we've attached the domains to the
6632 * Use capacity_of(), which is set irrespective of domains
6633 * in update_cpu_capacity().
6635 * This avoids capacity from being 0 and
6636 * causing divide-by-zero issues on boot.
6638 if (unlikely(!rq->sd)) {
6639 capacity += capacity_of(cpu);
6643 sgc = rq->sd->groups->sgc;
6644 capacity += sgc->capacity;
6648 * !SD_OVERLAP domains can assume that child groups
6649 * span the current group.
6652 group = child->groups;
6654 capacity += group->sgc->capacity;
6655 group = group->next;
6656 } while (group != child->groups);
6659 sdg->sgc->capacity = capacity;
6663 * Check whether the capacity of the rq has been noticeably reduced by side
6664 * activity. The imbalance_pct is used for the threshold.
6665 * Return true is the capacity is reduced
6668 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6670 return ((rq->cpu_capacity * sd->imbalance_pct) <
6671 (rq->cpu_capacity_orig * 100));
6675 * Group imbalance indicates (and tries to solve) the problem where balancing
6676 * groups is inadequate due to tsk_cpus_allowed() constraints.
6678 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6679 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6682 * { 0 1 2 3 } { 4 5 6 7 }
6685 * If we were to balance group-wise we'd place two tasks in the first group and
6686 * two tasks in the second group. Clearly this is undesired as it will overload
6687 * cpu 3 and leave one of the cpus in the second group unused.
6689 * The current solution to this issue is detecting the skew in the first group
6690 * by noticing the lower domain failed to reach balance and had difficulty
6691 * moving tasks due to affinity constraints.
6693 * When this is so detected; this group becomes a candidate for busiest; see
6694 * update_sd_pick_busiest(). And calculate_imbalance() and
6695 * find_busiest_group() avoid some of the usual balance conditions to allow it
6696 * to create an effective group imbalance.
6698 * This is a somewhat tricky proposition since the next run might not find the
6699 * group imbalance and decide the groups need to be balanced again. A most
6700 * subtle and fragile situation.
6703 static inline int sg_imbalanced(struct sched_group *group)
6705 return group->sgc->imbalance;
6709 * group_has_capacity returns true if the group has spare capacity that could
6710 * be used by some tasks.
6711 * We consider that a group has spare capacity if the * number of task is
6712 * smaller than the number of CPUs or if the utilization is lower than the
6713 * available capacity for CFS tasks.
6714 * For the latter, we use a threshold to stabilize the state, to take into
6715 * account the variance of the tasks' load and to return true if the available
6716 * capacity in meaningful for the load balancer.
6717 * As an example, an available capacity of 1% can appear but it doesn't make
6718 * any benefit for the load balance.
6721 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6723 if (sgs->sum_nr_running < sgs->group_weight)
6726 if ((sgs->group_capacity * 100) >
6727 (sgs->group_util * env->sd->imbalance_pct))
6734 * group_is_overloaded returns true if the group has more tasks than it can
6736 * group_is_overloaded is not equals to !group_has_capacity because a group
6737 * with the exact right number of tasks, has no more spare capacity but is not
6738 * overloaded so both group_has_capacity and group_is_overloaded return
6742 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6744 if (sgs->sum_nr_running <= sgs->group_weight)
6747 if ((sgs->group_capacity * 100) <
6748 (sgs->group_util * env->sd->imbalance_pct))
6755 group_type group_classify(struct sched_group *group,
6756 struct sg_lb_stats *sgs)
6758 if (sgs->group_no_capacity)
6759 return group_overloaded;
6761 if (sg_imbalanced(group))
6762 return group_imbalanced;
6768 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6769 * @env: The load balancing environment.
6770 * @group: sched_group whose statistics are to be updated.
6771 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6772 * @local_group: Does group contain this_cpu.
6773 * @sgs: variable to hold the statistics for this group.
6774 * @overload: Indicate more than one runnable task for any CPU.
6776 static inline void update_sg_lb_stats(struct lb_env *env,
6777 struct sched_group *group, int load_idx,
6778 int local_group, struct sg_lb_stats *sgs,
6784 memset(sgs, 0, sizeof(*sgs));
6786 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6787 struct rq *rq = cpu_rq(i);
6789 /* Bias balancing toward cpus of our domain */
6791 load = target_load(i, load_idx);
6793 load = source_load(i, load_idx);
6795 sgs->group_load += load;
6796 sgs->group_util += cpu_util(i);
6797 sgs->sum_nr_running += rq->cfs.h_nr_running;
6799 nr_running = rq->nr_running;
6803 #ifdef CONFIG_NUMA_BALANCING
6804 sgs->nr_numa_running += rq->nr_numa_running;
6805 sgs->nr_preferred_running += rq->nr_preferred_running;
6807 sgs->sum_weighted_load += weighted_cpuload(i);
6809 * No need to call idle_cpu() if nr_running is not 0
6811 if (!nr_running && idle_cpu(i))
6815 /* Adjust by relative CPU capacity of the group */
6816 sgs->group_capacity = group->sgc->capacity;
6817 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6819 if (sgs->sum_nr_running)
6820 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6822 sgs->group_weight = group->group_weight;
6824 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6825 sgs->group_type = group_classify(group, sgs);
6829 * update_sd_pick_busiest - return 1 on busiest group
6830 * @env: The load balancing environment.
6831 * @sds: sched_domain statistics
6832 * @sg: sched_group candidate to be checked for being the busiest
6833 * @sgs: sched_group statistics
6835 * Determine if @sg is a busier group than the previously selected
6838 * Return: %true if @sg is a busier group than the previously selected
6839 * busiest group. %false otherwise.
6841 static bool update_sd_pick_busiest(struct lb_env *env,
6842 struct sd_lb_stats *sds,
6843 struct sched_group *sg,
6844 struct sg_lb_stats *sgs)
6846 struct sg_lb_stats *busiest = &sds->busiest_stat;
6848 if (sgs->group_type > busiest->group_type)
6851 if (sgs->group_type < busiest->group_type)
6854 if (sgs->avg_load <= busiest->avg_load)
6857 /* This is the busiest node in its class. */
6858 if (!(env->sd->flags & SD_ASYM_PACKING))
6861 /* No ASYM_PACKING if target cpu is already busy */
6862 if (env->idle == CPU_NOT_IDLE)
6865 * ASYM_PACKING needs to move all the work to the lowest
6866 * numbered CPUs in the group, therefore mark all groups
6867 * higher than ourself as busy.
6869 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6873 /* Prefer to move from highest possible cpu's work */
6874 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6881 #ifdef CONFIG_NUMA_BALANCING
6882 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6884 if (sgs->sum_nr_running > sgs->nr_numa_running)
6886 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6891 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6893 if (rq->nr_running > rq->nr_numa_running)
6895 if (rq->nr_running > rq->nr_preferred_running)
6900 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6905 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6909 #endif /* CONFIG_NUMA_BALANCING */
6912 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6913 * @env: The load balancing environment.
6914 * @sds: variable to hold the statistics for this sched_domain.
6916 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6918 struct sched_domain *child = env->sd->child;
6919 struct sched_group *sg = env->sd->groups;
6920 struct sg_lb_stats tmp_sgs;
6921 int load_idx, prefer_sibling = 0;
6922 bool overload = false;
6924 if (child && child->flags & SD_PREFER_SIBLING)
6927 load_idx = get_sd_load_idx(env->sd, env->idle);
6930 struct sg_lb_stats *sgs = &tmp_sgs;
6933 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6936 sgs = &sds->local_stat;
6938 if (env->idle != CPU_NEWLY_IDLE ||
6939 time_after_eq(jiffies, sg->sgc->next_update))
6940 update_group_capacity(env->sd, env->dst_cpu);
6943 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6950 * In case the child domain prefers tasks go to siblings
6951 * first, lower the sg capacity so that we'll try
6952 * and move all the excess tasks away. We lower the capacity
6953 * of a group only if the local group has the capacity to fit
6954 * these excess tasks. The extra check prevents the case where
6955 * you always pull from the heaviest group when it is already
6956 * under-utilized (possible with a large weight task outweighs
6957 * the tasks on the system).
6959 if (prefer_sibling && sds->local &&
6960 group_has_capacity(env, &sds->local_stat) &&
6961 (sgs->sum_nr_running > 1)) {
6962 sgs->group_no_capacity = 1;
6963 sgs->group_type = group_classify(sg, sgs);
6966 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6968 sds->busiest_stat = *sgs;
6972 /* Now, start updating sd_lb_stats */
6973 sds->total_load += sgs->group_load;
6974 sds->total_capacity += sgs->group_capacity;
6977 } while (sg != env->sd->groups);
6979 if (env->sd->flags & SD_NUMA)
6980 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6982 if (!env->sd->parent) {
6983 /* update overload indicator if we are at root domain */
6984 if (env->dst_rq->rd->overload != overload)
6985 env->dst_rq->rd->overload = overload;
6991 * check_asym_packing - Check to see if the group is packed into the
6994 * This is primarily intended to used at the sibling level. Some
6995 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6996 * case of POWER7, it can move to lower SMT modes only when higher
6997 * threads are idle. When in lower SMT modes, the threads will
6998 * perform better since they share less core resources. Hence when we
6999 * have idle threads, we want them to be the higher ones.
7001 * This packing function is run on idle threads. It checks to see if
7002 * the busiest CPU in this domain (core in the P7 case) has a higher
7003 * CPU number than the packing function is being run on. Here we are
7004 * assuming lower CPU number will be equivalent to lower a SMT thread
7007 * Return: 1 when packing is required and a task should be moved to
7008 * this CPU. The amount of the imbalance is returned in *imbalance.
7010 * @env: The load balancing environment.
7011 * @sds: Statistics of the sched_domain which is to be packed
7013 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7017 if (!(env->sd->flags & SD_ASYM_PACKING))
7020 if (env->idle == CPU_NOT_IDLE)
7026 busiest_cpu = group_first_cpu(sds->busiest);
7027 if (env->dst_cpu > busiest_cpu)
7030 env->imbalance = DIV_ROUND_CLOSEST(
7031 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7032 SCHED_CAPACITY_SCALE);
7038 * fix_small_imbalance - Calculate the minor imbalance that exists
7039 * amongst the groups of a sched_domain, during
7041 * @env: The load balancing environment.
7042 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7045 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7047 unsigned long tmp, capa_now = 0, capa_move = 0;
7048 unsigned int imbn = 2;
7049 unsigned long scaled_busy_load_per_task;
7050 struct sg_lb_stats *local, *busiest;
7052 local = &sds->local_stat;
7053 busiest = &sds->busiest_stat;
7055 if (!local->sum_nr_running)
7056 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7057 else if (busiest->load_per_task > local->load_per_task)
7060 scaled_busy_load_per_task =
7061 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7062 busiest->group_capacity;
7064 if (busiest->avg_load + scaled_busy_load_per_task >=
7065 local->avg_load + (scaled_busy_load_per_task * imbn)) {
7066 env->imbalance = busiest->load_per_task;
7071 * OK, we don't have enough imbalance to justify moving tasks,
7072 * however we may be able to increase total CPU capacity used by
7076 capa_now += busiest->group_capacity *
7077 min(busiest->load_per_task, busiest->avg_load);
7078 capa_now += local->group_capacity *
7079 min(local->load_per_task, local->avg_load);
7080 capa_now /= SCHED_CAPACITY_SCALE;
7082 /* Amount of load we'd subtract */
7083 if (busiest->avg_load > scaled_busy_load_per_task) {
7084 capa_move += busiest->group_capacity *
7085 min(busiest->load_per_task,
7086 busiest->avg_load - scaled_busy_load_per_task);
7089 /* Amount of load we'd add */
7090 if (busiest->avg_load * busiest->group_capacity <
7091 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7092 tmp = (busiest->avg_load * busiest->group_capacity) /
7093 local->group_capacity;
7095 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7096 local->group_capacity;
7098 capa_move += local->group_capacity *
7099 min(local->load_per_task, local->avg_load + tmp);
7100 capa_move /= SCHED_CAPACITY_SCALE;
7102 /* Move if we gain throughput */
7103 if (capa_move > capa_now)
7104 env->imbalance = busiest->load_per_task;
7108 * calculate_imbalance - Calculate the amount of imbalance present within the
7109 * groups of a given sched_domain during load balance.
7110 * @env: load balance environment
7111 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7113 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7115 unsigned long max_pull, load_above_capacity = ~0UL;
7116 struct sg_lb_stats *local, *busiest;
7118 local = &sds->local_stat;
7119 busiest = &sds->busiest_stat;
7121 if (busiest->group_type == group_imbalanced) {
7123 * In the group_imb case we cannot rely on group-wide averages
7124 * to ensure cpu-load equilibrium, look at wider averages. XXX
7126 busiest->load_per_task =
7127 min(busiest->load_per_task, sds->avg_load);
7131 * Avg load of busiest sg can be less and avg load of local sg can
7132 * be greater than avg load across all sgs of sd because avg load
7133 * factors in sg capacity and sgs with smaller group_type are
7134 * skipped when updating the busiest sg:
7136 if (busiest->avg_load <= sds->avg_load ||
7137 local->avg_load >= sds->avg_load) {
7139 return fix_small_imbalance(env, sds);
7143 * If there aren't any idle cpus, avoid creating some.
7145 if (busiest->group_type == group_overloaded &&
7146 local->group_type == group_overloaded) {
7147 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7148 if (load_above_capacity > busiest->group_capacity) {
7149 load_above_capacity -= busiest->group_capacity;
7150 load_above_capacity *= NICE_0_LOAD;
7151 load_above_capacity /= busiest->group_capacity;
7153 load_above_capacity = ~0UL;
7157 * We're trying to get all the cpus to the average_load, so we don't
7158 * want to push ourselves above the average load, nor do we wish to
7159 * reduce the max loaded cpu below the average load. At the same time,
7160 * we also don't want to reduce the group load below the group
7161 * capacity. Thus we look for the minimum possible imbalance.
7163 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7165 /* How much load to actually move to equalise the imbalance */
7166 env->imbalance = min(
7167 max_pull * busiest->group_capacity,
7168 (sds->avg_load - local->avg_load) * local->group_capacity
7169 ) / SCHED_CAPACITY_SCALE;
7172 * if *imbalance is less than the average load per runnable task
7173 * there is no guarantee that any tasks will be moved so we'll have
7174 * a think about bumping its value to force at least one task to be
7177 if (env->imbalance < busiest->load_per_task)
7178 return fix_small_imbalance(env, sds);
7181 /******* find_busiest_group() helpers end here *********************/
7184 * find_busiest_group - Returns the busiest group within the sched_domain
7185 * if there is an imbalance.
7187 * Also calculates the amount of weighted load which should be moved
7188 * to restore balance.
7190 * @env: The load balancing environment.
7192 * Return: - The busiest group if imbalance exists.
7194 static struct sched_group *find_busiest_group(struct lb_env *env)
7196 struct sg_lb_stats *local, *busiest;
7197 struct sd_lb_stats sds;
7199 init_sd_lb_stats(&sds);
7202 * Compute the various statistics relavent for load balancing at
7205 update_sd_lb_stats(env, &sds);
7206 local = &sds.local_stat;
7207 busiest = &sds.busiest_stat;
7209 /* ASYM feature bypasses nice load balance check */
7210 if (check_asym_packing(env, &sds))
7213 /* There is no busy sibling group to pull tasks from */
7214 if (!sds.busiest || busiest->sum_nr_running == 0)
7217 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7218 / sds.total_capacity;
7221 * If the busiest group is imbalanced the below checks don't
7222 * work because they assume all things are equal, which typically
7223 * isn't true due to cpus_allowed constraints and the like.
7225 if (busiest->group_type == group_imbalanced)
7228 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7229 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7230 busiest->group_no_capacity)
7234 * If the local group is busier than the selected busiest group
7235 * don't try and pull any tasks.
7237 if (local->avg_load >= busiest->avg_load)
7241 * Don't pull any tasks if this group is already above the domain
7244 if (local->avg_load >= sds.avg_load)
7247 if (env->idle == CPU_IDLE) {
7249 * This cpu is idle. If the busiest group is not overloaded
7250 * and there is no imbalance between this and busiest group
7251 * wrt idle cpus, it is balanced. The imbalance becomes
7252 * significant if the diff is greater than 1 otherwise we
7253 * might end up to just move the imbalance on another group
7255 if ((busiest->group_type != group_overloaded) &&
7256 (local->idle_cpus <= (busiest->idle_cpus + 1)))
7260 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7261 * imbalance_pct to be conservative.
7263 if (100 * busiest->avg_load <=
7264 env->sd->imbalance_pct * local->avg_load)
7269 /* Looks like there is an imbalance. Compute it */
7270 calculate_imbalance(env, &sds);
7279 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7281 static struct rq *find_busiest_queue(struct lb_env *env,
7282 struct sched_group *group)
7284 struct rq *busiest = NULL, *rq;
7285 unsigned long busiest_load = 0, busiest_capacity = 1;
7288 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7289 unsigned long capacity, wl;
7293 rt = fbq_classify_rq(rq);
7296 * We classify groups/runqueues into three groups:
7297 * - regular: there are !numa tasks
7298 * - remote: there are numa tasks that run on the 'wrong' node
7299 * - all: there is no distinction
7301 * In order to avoid migrating ideally placed numa tasks,
7302 * ignore those when there's better options.
7304 * If we ignore the actual busiest queue to migrate another
7305 * task, the next balance pass can still reduce the busiest
7306 * queue by moving tasks around inside the node.
7308 * If we cannot move enough load due to this classification
7309 * the next pass will adjust the group classification and
7310 * allow migration of more tasks.
7312 * Both cases only affect the total convergence complexity.
7314 if (rt > env->fbq_type)
7317 capacity = capacity_of(i);
7319 wl = weighted_cpuload(i);
7322 * When comparing with imbalance, use weighted_cpuload()
7323 * which is not scaled with the cpu capacity.
7326 if (rq->nr_running == 1 && wl > env->imbalance &&
7327 !check_cpu_capacity(rq, env->sd))
7331 * For the load comparisons with the other cpu's, consider
7332 * the weighted_cpuload() scaled with the cpu capacity, so
7333 * that the load can be moved away from the cpu that is
7334 * potentially running at a lower capacity.
7336 * Thus we're looking for max(wl_i / capacity_i), crosswise
7337 * multiplication to rid ourselves of the division works out
7338 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7339 * our previous maximum.
7341 if (wl * busiest_capacity > busiest_load * capacity) {
7343 busiest_capacity = capacity;
7352 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7353 * so long as it is large enough.
7355 #define MAX_PINNED_INTERVAL 512
7357 /* Working cpumask for load_balance and load_balance_newidle. */
7358 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7360 static int need_active_balance(struct lb_env *env)
7362 struct sched_domain *sd = env->sd;
7364 if (env->idle == CPU_NEWLY_IDLE) {
7367 * ASYM_PACKING needs to force migrate tasks from busy but
7368 * higher numbered CPUs in order to pack all tasks in the
7369 * lowest numbered CPUs.
7371 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7376 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7377 * It's worth migrating the task if the src_cpu's capacity is reduced
7378 * because of other sched_class or IRQs if more capacity stays
7379 * available on dst_cpu.
7381 if ((env->idle != CPU_NOT_IDLE) &&
7382 (env->src_rq->cfs.h_nr_running == 1)) {
7383 if ((check_cpu_capacity(env->src_rq, sd)) &&
7384 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7388 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7391 static int active_load_balance_cpu_stop(void *data);
7393 static int should_we_balance(struct lb_env *env)
7395 struct sched_group *sg = env->sd->groups;
7396 struct cpumask *sg_cpus, *sg_mask;
7397 int cpu, balance_cpu = -1;
7400 * In the newly idle case, we will allow all the cpu's
7401 * to do the newly idle load balance.
7403 if (env->idle == CPU_NEWLY_IDLE)
7406 sg_cpus = sched_group_cpus(sg);
7407 sg_mask = sched_group_mask(sg);
7408 /* Try to find first idle cpu */
7409 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7410 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7417 if (balance_cpu == -1)
7418 balance_cpu = group_balance_cpu(sg);
7421 * First idle cpu or the first cpu(busiest) in this sched group
7422 * is eligible for doing load balancing at this and above domains.
7424 return balance_cpu == env->dst_cpu;
7428 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7429 * tasks if there is an imbalance.
7431 static int load_balance(int this_cpu, struct rq *this_rq,
7432 struct sched_domain *sd, enum cpu_idle_type idle,
7433 int *continue_balancing)
7435 int ld_moved, cur_ld_moved, active_balance = 0;
7436 struct sched_domain *sd_parent = sd->parent;
7437 struct sched_group *group;
7439 unsigned long flags;
7440 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7442 struct lb_env env = {
7444 .dst_cpu = this_cpu,
7446 .dst_grpmask = sched_group_cpus(sd->groups),
7448 .loop_break = sched_nr_migrate_break,
7451 .tasks = LIST_HEAD_INIT(env.tasks),
7455 * For NEWLY_IDLE load_balancing, we don't need to consider
7456 * other cpus in our group
7458 if (idle == CPU_NEWLY_IDLE)
7459 env.dst_grpmask = NULL;
7461 cpumask_copy(cpus, cpu_active_mask);
7463 schedstat_inc(sd, lb_count[idle]);
7466 if (!should_we_balance(&env)) {
7467 *continue_balancing = 0;
7471 group = find_busiest_group(&env);
7473 schedstat_inc(sd, lb_nobusyg[idle]);
7477 busiest = find_busiest_queue(&env, group);
7479 schedstat_inc(sd, lb_nobusyq[idle]);
7483 BUG_ON(busiest == env.dst_rq);
7485 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7487 env.src_cpu = busiest->cpu;
7488 env.src_rq = busiest;
7491 if (busiest->nr_running > 1) {
7493 * Attempt to move tasks. If find_busiest_group has found
7494 * an imbalance but busiest->nr_running <= 1, the group is
7495 * still unbalanced. ld_moved simply stays zero, so it is
7496 * correctly treated as an imbalance.
7498 env.flags |= LBF_ALL_PINNED;
7499 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7502 raw_spin_lock_irqsave(&busiest->lock, flags);
7505 * cur_ld_moved - load moved in current iteration
7506 * ld_moved - cumulative load moved across iterations
7508 cur_ld_moved = detach_tasks(&env);
7511 * We've detached some tasks from busiest_rq. Every
7512 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7513 * unlock busiest->lock, and we are able to be sure
7514 * that nobody can manipulate the tasks in parallel.
7515 * See task_rq_lock() family for the details.
7518 raw_spin_unlock(&busiest->lock);
7522 ld_moved += cur_ld_moved;
7525 local_irq_restore(flags);
7527 if (env.flags & LBF_NEED_BREAK) {
7528 env.flags &= ~LBF_NEED_BREAK;
7533 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7534 * us and move them to an alternate dst_cpu in our sched_group
7535 * where they can run. The upper limit on how many times we
7536 * iterate on same src_cpu is dependent on number of cpus in our
7539 * This changes load balance semantics a bit on who can move
7540 * load to a given_cpu. In addition to the given_cpu itself
7541 * (or a ilb_cpu acting on its behalf where given_cpu is
7542 * nohz-idle), we now have balance_cpu in a position to move
7543 * load to given_cpu. In rare situations, this may cause
7544 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7545 * _independently_ and at _same_ time to move some load to
7546 * given_cpu) causing exceess load to be moved to given_cpu.
7547 * This however should not happen so much in practice and
7548 * moreover subsequent load balance cycles should correct the
7549 * excess load moved.
7551 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7553 /* Prevent to re-select dst_cpu via env's cpus */
7554 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7556 env.dst_rq = cpu_rq(env.new_dst_cpu);
7557 env.dst_cpu = env.new_dst_cpu;
7558 env.flags &= ~LBF_DST_PINNED;
7560 env.loop_break = sched_nr_migrate_break;
7563 * Go back to "more_balance" rather than "redo" since we
7564 * need to continue with same src_cpu.
7570 * We failed to reach balance because of affinity.
7573 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7575 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7576 *group_imbalance = 1;
7579 /* All tasks on this runqueue were pinned by CPU affinity */
7580 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7581 cpumask_clear_cpu(cpu_of(busiest), cpus);
7582 if (!cpumask_empty(cpus)) {
7584 env.loop_break = sched_nr_migrate_break;
7587 goto out_all_pinned;
7592 schedstat_inc(sd, lb_failed[idle]);
7594 * Increment the failure counter only on periodic balance.
7595 * We do not want newidle balance, which can be very
7596 * frequent, pollute the failure counter causing
7597 * excessive cache_hot migrations and active balances.
7599 if (idle != CPU_NEWLY_IDLE)
7600 sd->nr_balance_failed++;
7602 if (need_active_balance(&env)) {
7603 raw_spin_lock_irqsave(&busiest->lock, flags);
7605 /* don't kick the active_load_balance_cpu_stop,
7606 * if the curr task on busiest cpu can't be
7609 if (!cpumask_test_cpu(this_cpu,
7610 tsk_cpus_allowed(busiest->curr))) {
7611 raw_spin_unlock_irqrestore(&busiest->lock,
7613 env.flags |= LBF_ALL_PINNED;
7614 goto out_one_pinned;
7618 * ->active_balance synchronizes accesses to
7619 * ->active_balance_work. Once set, it's cleared
7620 * only after active load balance is finished.
7622 if (!busiest->active_balance) {
7623 busiest->active_balance = 1;
7624 busiest->push_cpu = this_cpu;
7627 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7629 if (active_balance) {
7630 stop_one_cpu_nowait(cpu_of(busiest),
7631 active_load_balance_cpu_stop, busiest,
7632 &busiest->active_balance_work);
7635 /* We've kicked active balancing, force task migration. */
7636 sd->nr_balance_failed = sd->cache_nice_tries+1;
7639 sd->nr_balance_failed = 0;
7641 if (likely(!active_balance)) {
7642 /* We were unbalanced, so reset the balancing interval */
7643 sd->balance_interval = sd->min_interval;
7646 * If we've begun active balancing, start to back off. This
7647 * case may not be covered by the all_pinned logic if there
7648 * is only 1 task on the busy runqueue (because we don't call
7651 if (sd->balance_interval < sd->max_interval)
7652 sd->balance_interval *= 2;
7659 * We reach balance although we may have faced some affinity
7660 * constraints. Clear the imbalance flag if it was set.
7663 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7665 if (*group_imbalance)
7666 *group_imbalance = 0;
7671 * We reach balance because all tasks are pinned at this level so
7672 * we can't migrate them. Let the imbalance flag set so parent level
7673 * can try to migrate them.
7675 schedstat_inc(sd, lb_balanced[idle]);
7677 sd->nr_balance_failed = 0;
7680 /* tune up the balancing interval */
7681 if (((env.flags & LBF_ALL_PINNED) &&
7682 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7683 (sd->balance_interval < sd->max_interval))
7684 sd->balance_interval *= 2;
7691 static inline unsigned long
7692 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7694 unsigned long interval = sd->balance_interval;
7697 interval *= sd->busy_factor;
7699 /* scale ms to jiffies */
7700 interval = msecs_to_jiffies(interval);
7701 interval = clamp(interval, 1UL, max_load_balance_interval);
7707 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7709 unsigned long interval, next;
7711 interval = get_sd_balance_interval(sd, cpu_busy);
7712 next = sd->last_balance + interval;
7714 if (time_after(*next_balance, next))
7715 *next_balance = next;
7719 * idle_balance is called by schedule() if this_cpu is about to become
7720 * idle. Attempts to pull tasks from other CPUs.
7722 static int idle_balance(struct rq *this_rq)
7724 unsigned long next_balance = jiffies + HZ;
7725 int this_cpu = this_rq->cpu;
7726 struct sched_domain *sd;
7727 int pulled_task = 0;
7731 * We must set idle_stamp _before_ calling idle_balance(), such that we
7732 * measure the duration of idle_balance() as idle time.
7734 this_rq->idle_stamp = rq_clock(this_rq);
7736 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7737 !this_rq->rd->overload) {
7739 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7741 update_next_balance(sd, 0, &next_balance);
7747 raw_spin_unlock(&this_rq->lock);
7749 update_blocked_averages(this_cpu);
7751 for_each_domain(this_cpu, sd) {
7752 int continue_balancing = 1;
7753 u64 t0, domain_cost;
7755 if (!(sd->flags & SD_LOAD_BALANCE))
7758 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7759 update_next_balance(sd, 0, &next_balance);
7763 if (sd->flags & SD_BALANCE_NEWIDLE) {
7764 t0 = sched_clock_cpu(this_cpu);
7766 pulled_task = load_balance(this_cpu, this_rq,
7768 &continue_balancing);
7770 domain_cost = sched_clock_cpu(this_cpu) - t0;
7771 if (domain_cost > sd->max_newidle_lb_cost)
7772 sd->max_newidle_lb_cost = domain_cost;
7774 curr_cost += domain_cost;
7777 update_next_balance(sd, 0, &next_balance);
7780 * Stop searching for tasks to pull if there are
7781 * now runnable tasks on this rq.
7783 if (pulled_task || this_rq->nr_running > 0)
7788 raw_spin_lock(&this_rq->lock);
7790 if (curr_cost > this_rq->max_idle_balance_cost)
7791 this_rq->max_idle_balance_cost = curr_cost;
7794 * While browsing the domains, we released the rq lock, a task could
7795 * have been enqueued in the meantime. Since we're not going idle,
7796 * pretend we pulled a task.
7798 if (this_rq->cfs.h_nr_running && !pulled_task)
7802 /* Move the next balance forward */
7803 if (time_after(this_rq->next_balance, next_balance))
7804 this_rq->next_balance = next_balance;
7806 /* Is there a task of a high priority class? */
7807 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7811 this_rq->idle_stamp = 0;
7817 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7818 * running tasks off the busiest CPU onto idle CPUs. It requires at
7819 * least 1 task to be running on each physical CPU where possible, and
7820 * avoids physical / logical imbalances.
7822 static int active_load_balance_cpu_stop(void *data)
7824 struct rq *busiest_rq = data;
7825 int busiest_cpu = cpu_of(busiest_rq);
7826 int target_cpu = busiest_rq->push_cpu;
7827 struct rq *target_rq = cpu_rq(target_cpu);
7828 struct sched_domain *sd;
7829 struct task_struct *p = NULL;
7831 raw_spin_lock_irq(&busiest_rq->lock);
7833 /* make sure the requested cpu hasn't gone down in the meantime */
7834 if (unlikely(busiest_cpu != smp_processor_id() ||
7835 !busiest_rq->active_balance))
7838 /* Is there any task to move? */
7839 if (busiest_rq->nr_running <= 1)
7843 * This condition is "impossible", if it occurs
7844 * we need to fix it. Originally reported by
7845 * Bjorn Helgaas on a 128-cpu setup.
7847 BUG_ON(busiest_rq == target_rq);
7849 /* Search for an sd spanning us and the target CPU. */
7851 for_each_domain(target_cpu, sd) {
7852 if ((sd->flags & SD_LOAD_BALANCE) &&
7853 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7858 struct lb_env env = {
7860 .dst_cpu = target_cpu,
7861 .dst_rq = target_rq,
7862 .src_cpu = busiest_rq->cpu,
7863 .src_rq = busiest_rq,
7867 schedstat_inc(sd, alb_count);
7869 p = detach_one_task(&env);
7871 schedstat_inc(sd, alb_pushed);
7872 /* Active balancing done, reset the failure counter. */
7873 sd->nr_balance_failed = 0;
7875 schedstat_inc(sd, alb_failed);
7880 busiest_rq->active_balance = 0;
7881 raw_spin_unlock(&busiest_rq->lock);
7884 attach_one_task(target_rq, p);
7891 static inline int on_null_domain(struct rq *rq)
7893 return unlikely(!rcu_dereference_sched(rq->sd));
7896 #ifdef CONFIG_NO_HZ_COMMON
7898 * idle load balancing details
7899 * - When one of the busy CPUs notice that there may be an idle rebalancing
7900 * needed, they will kick the idle load balancer, which then does idle
7901 * load balancing for all the idle CPUs.
7904 cpumask_var_t idle_cpus_mask;
7906 unsigned long next_balance; /* in jiffy units */
7907 } nohz ____cacheline_aligned;
7909 static inline int find_new_ilb(void)
7911 int ilb = cpumask_first(nohz.idle_cpus_mask);
7913 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7920 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7921 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7922 * CPU (if there is one).
7924 static void nohz_balancer_kick(void)
7928 nohz.next_balance++;
7930 ilb_cpu = find_new_ilb();
7932 if (ilb_cpu >= nr_cpu_ids)
7935 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7938 * Use smp_send_reschedule() instead of resched_cpu().
7939 * This way we generate a sched IPI on the target cpu which
7940 * is idle. And the softirq performing nohz idle load balance
7941 * will be run before returning from the IPI.
7943 smp_send_reschedule(ilb_cpu);
7947 void nohz_balance_exit_idle(unsigned int cpu)
7949 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7951 * Completely isolated CPUs don't ever set, so we must test.
7953 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7954 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7955 atomic_dec(&nohz.nr_cpus);
7957 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7961 static inline void set_cpu_sd_state_busy(void)
7963 struct sched_domain *sd;
7964 int cpu = smp_processor_id();
7967 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7969 if (!sd || !sd->nohz_idle)
7973 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7978 void set_cpu_sd_state_idle(void)
7980 struct sched_domain *sd;
7981 int cpu = smp_processor_id();
7984 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7986 if (!sd || sd->nohz_idle)
7990 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7996 * This routine will record that the cpu is going idle with tick stopped.
7997 * This info will be used in performing idle load balancing in the future.
7999 void nohz_balance_enter_idle(int cpu)
8002 * If this cpu is going down, then nothing needs to be done.
8004 if (!cpu_active(cpu))
8007 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8011 * If we're a completely isolated CPU, we don't play.
8013 if (on_null_domain(cpu_rq(cpu)))
8016 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8017 atomic_inc(&nohz.nr_cpus);
8018 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8022 static DEFINE_SPINLOCK(balancing);
8025 * Scale the max load_balance interval with the number of CPUs in the system.
8026 * This trades load-balance latency on larger machines for less cross talk.
8028 void update_max_interval(void)
8030 max_load_balance_interval = HZ*num_online_cpus()/10;
8034 * It checks each scheduling domain to see if it is due to be balanced,
8035 * and initiates a balancing operation if so.
8037 * Balancing parameters are set up in init_sched_domains.
8039 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8041 int continue_balancing = 1;
8043 unsigned long interval;
8044 struct sched_domain *sd;
8045 /* Earliest time when we have to do rebalance again */
8046 unsigned long next_balance = jiffies + 60*HZ;
8047 int update_next_balance = 0;
8048 int need_serialize, need_decay = 0;
8051 update_blocked_averages(cpu);
8054 for_each_domain(cpu, sd) {
8056 * Decay the newidle max times here because this is a regular
8057 * visit to all the domains. Decay ~1% per second.
8059 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8060 sd->max_newidle_lb_cost =
8061 (sd->max_newidle_lb_cost * 253) / 256;
8062 sd->next_decay_max_lb_cost = jiffies + HZ;
8065 max_cost += sd->max_newidle_lb_cost;
8067 if (!(sd->flags & SD_LOAD_BALANCE))
8071 * Stop the load balance at this level. There is another
8072 * CPU in our sched group which is doing load balancing more
8075 if (!continue_balancing) {
8081 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8083 need_serialize = sd->flags & SD_SERIALIZE;
8084 if (need_serialize) {
8085 if (!spin_trylock(&balancing))
8089 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8090 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8092 * The LBF_DST_PINNED logic could have changed
8093 * env->dst_cpu, so we can't know our idle
8094 * state even if we migrated tasks. Update it.
8096 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8098 sd->last_balance = jiffies;
8099 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8102 spin_unlock(&balancing);
8104 if (time_after(next_balance, sd->last_balance + interval)) {
8105 next_balance = sd->last_balance + interval;
8106 update_next_balance = 1;
8111 * Ensure the rq-wide value also decays but keep it at a
8112 * reasonable floor to avoid funnies with rq->avg_idle.
8114 rq->max_idle_balance_cost =
8115 max((u64)sysctl_sched_migration_cost, max_cost);
8120 * next_balance will be updated only when there is a need.
8121 * When the cpu is attached to null domain for ex, it will not be
8124 if (likely(update_next_balance)) {
8125 rq->next_balance = next_balance;
8127 #ifdef CONFIG_NO_HZ_COMMON
8129 * If this CPU has been elected to perform the nohz idle
8130 * balance. Other idle CPUs have already rebalanced with
8131 * nohz_idle_balance() and nohz.next_balance has been
8132 * updated accordingly. This CPU is now running the idle load
8133 * balance for itself and we need to update the
8134 * nohz.next_balance accordingly.
8136 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8137 nohz.next_balance = rq->next_balance;
8142 #ifdef CONFIG_NO_HZ_COMMON
8144 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8145 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8147 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8149 int this_cpu = this_rq->cpu;
8152 /* Earliest time when we have to do rebalance again */
8153 unsigned long next_balance = jiffies + 60*HZ;
8154 int update_next_balance = 0;
8156 if (idle != CPU_IDLE ||
8157 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8160 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8161 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8165 * If this cpu gets work to do, stop the load balancing
8166 * work being done for other cpus. Next load
8167 * balancing owner will pick it up.
8172 rq = cpu_rq(balance_cpu);
8175 * If time for next balance is due,
8178 if (time_after_eq(jiffies, rq->next_balance)) {
8179 raw_spin_lock_irq(&rq->lock);
8180 update_rq_clock(rq);
8181 cpu_load_update_idle(rq);
8182 raw_spin_unlock_irq(&rq->lock);
8183 rebalance_domains(rq, CPU_IDLE);
8186 if (time_after(next_balance, rq->next_balance)) {
8187 next_balance = rq->next_balance;
8188 update_next_balance = 1;
8193 * next_balance will be updated only when there is a need.
8194 * When the CPU is attached to null domain for ex, it will not be
8197 if (likely(update_next_balance))
8198 nohz.next_balance = next_balance;
8200 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8204 * Current heuristic for kicking the idle load balancer in the presence
8205 * of an idle cpu in the system.
8206 * - This rq has more than one task.
8207 * - This rq has at least one CFS task and the capacity of the CPU is
8208 * significantly reduced because of RT tasks or IRQs.
8209 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8210 * multiple busy cpu.
8211 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8212 * domain span are idle.
8214 static inline bool nohz_kick_needed(struct rq *rq)
8216 unsigned long now = jiffies;
8217 struct sched_domain *sd;
8218 struct sched_group_capacity *sgc;
8219 int nr_busy, cpu = rq->cpu;
8222 if (unlikely(rq->idle_balance))
8226 * We may be recently in ticked or tickless idle mode. At the first
8227 * busy tick after returning from idle, we will update the busy stats.
8229 set_cpu_sd_state_busy();
8230 nohz_balance_exit_idle(cpu);
8233 * None are in tickless mode and hence no need for NOHZ idle load
8236 if (likely(!atomic_read(&nohz.nr_cpus)))
8239 if (time_before(now, nohz.next_balance))
8242 if (rq->nr_running >= 2)
8246 sd = rcu_dereference(per_cpu(sd_busy, cpu));
8248 sgc = sd->groups->sgc;
8249 nr_busy = atomic_read(&sgc->nr_busy_cpus);
8258 sd = rcu_dereference(rq->sd);
8260 if ((rq->cfs.h_nr_running >= 1) &&
8261 check_cpu_capacity(rq, sd)) {
8267 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8268 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8269 sched_domain_span(sd)) < cpu)) {
8279 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8283 * run_rebalance_domains is triggered when needed from the scheduler tick.
8284 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8286 static void run_rebalance_domains(struct softirq_action *h)
8288 struct rq *this_rq = this_rq();
8289 enum cpu_idle_type idle = this_rq->idle_balance ?
8290 CPU_IDLE : CPU_NOT_IDLE;
8293 * If this cpu has a pending nohz_balance_kick, then do the
8294 * balancing on behalf of the other idle cpus whose ticks are
8295 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8296 * give the idle cpus a chance to load balance. Else we may
8297 * load balance only within the local sched_domain hierarchy
8298 * and abort nohz_idle_balance altogether if we pull some load.
8300 nohz_idle_balance(this_rq, idle);
8301 rebalance_domains(this_rq, idle);
8305 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8307 void trigger_load_balance(struct rq *rq)
8309 /* Don't need to rebalance while attached to NULL domain */
8310 if (unlikely(on_null_domain(rq)))
8313 if (time_after_eq(jiffies, rq->next_balance))
8314 raise_softirq(SCHED_SOFTIRQ);
8315 #ifdef CONFIG_NO_HZ_COMMON
8316 if (nohz_kick_needed(rq))
8317 nohz_balancer_kick();
8321 static void rq_online_fair(struct rq *rq)
8325 update_runtime_enabled(rq);
8328 static void rq_offline_fair(struct rq *rq)
8332 /* Ensure any throttled groups are reachable by pick_next_task */
8333 unthrottle_offline_cfs_rqs(rq);
8336 #endif /* CONFIG_SMP */
8339 * scheduler tick hitting a task of our scheduling class:
8341 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8343 struct cfs_rq *cfs_rq;
8344 struct sched_entity *se = &curr->se;
8346 for_each_sched_entity(se) {
8347 cfs_rq = cfs_rq_of(se);
8348 entity_tick(cfs_rq, se, queued);
8351 if (static_branch_unlikely(&sched_numa_balancing))
8352 task_tick_numa(rq, curr);
8356 * called on fork with the child task as argument from the parent's context
8357 * - child not yet on the tasklist
8358 * - preemption disabled
8360 static void task_fork_fair(struct task_struct *p)
8362 struct cfs_rq *cfs_rq;
8363 struct sched_entity *se = &p->se, *curr;
8364 struct rq *rq = this_rq();
8366 raw_spin_lock(&rq->lock);
8367 update_rq_clock(rq);
8369 cfs_rq = task_cfs_rq(current);
8370 curr = cfs_rq->curr;
8372 update_curr(cfs_rq);
8373 se->vruntime = curr->vruntime;
8375 place_entity(cfs_rq, se, 1);
8377 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8379 * Upon rescheduling, sched_class::put_prev_task() will place
8380 * 'current' within the tree based on its new key value.
8382 swap(curr->vruntime, se->vruntime);
8386 se->vruntime -= cfs_rq->min_vruntime;
8387 raw_spin_unlock(&rq->lock);
8391 * Priority of the task has changed. Check to see if we preempt
8395 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8397 if (!task_on_rq_queued(p))
8401 * Reschedule if we are currently running on this runqueue and
8402 * our priority decreased, or if we are not currently running on
8403 * this runqueue and our priority is higher than the current's
8405 if (rq->curr == p) {
8406 if (p->prio > oldprio)
8409 check_preempt_curr(rq, p, 0);
8412 static inline bool vruntime_normalized(struct task_struct *p)
8414 struct sched_entity *se = &p->se;
8417 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8418 * the dequeue_entity(.flags=0) will already have normalized the
8425 * When !on_rq, vruntime of the task has usually NOT been normalized.
8426 * But there are some cases where it has already been normalized:
8428 * - A forked child which is waiting for being woken up by
8429 * wake_up_new_task().
8430 * - A task which has been woken up by try_to_wake_up() and
8431 * waiting for actually being woken up by sched_ttwu_pending().
8433 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8439 static void detach_task_cfs_rq(struct task_struct *p)
8441 struct sched_entity *se = &p->se;
8442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8443 u64 now = cfs_rq_clock_task(cfs_rq);
8446 if (!vruntime_normalized(p)) {
8448 * Fix up our vruntime so that the current sleep doesn't
8449 * cause 'unlimited' sleep bonus.
8451 place_entity(cfs_rq, se, 0);
8452 se->vruntime -= cfs_rq->min_vruntime;
8455 /* Catch up with the cfs_rq and remove our load when we leave */
8456 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
8457 detach_entity_load_avg(cfs_rq, se);
8459 update_tg_load_avg(cfs_rq, false);
8462 static void attach_task_cfs_rq(struct task_struct *p)
8464 struct sched_entity *se = &p->se;
8465 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8466 u64 now = cfs_rq_clock_task(cfs_rq);
8469 #ifdef CONFIG_FAIR_GROUP_SCHED
8471 * Since the real-depth could have been changed (only FAIR
8472 * class maintain depth value), reset depth properly.
8474 se->depth = se->parent ? se->parent->depth + 1 : 0;
8477 /* Synchronize task with its cfs_rq */
8478 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
8479 attach_entity_load_avg(cfs_rq, se);
8481 update_tg_load_avg(cfs_rq, false);
8483 if (!vruntime_normalized(p))
8484 se->vruntime += cfs_rq->min_vruntime;
8487 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8489 detach_task_cfs_rq(p);
8492 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8494 attach_task_cfs_rq(p);
8496 if (task_on_rq_queued(p)) {
8498 * We were most likely switched from sched_rt, so
8499 * kick off the schedule if running, otherwise just see
8500 * if we can still preempt the current task.
8505 check_preempt_curr(rq, p, 0);
8509 /* Account for a task changing its policy or group.
8511 * This routine is mostly called to set cfs_rq->curr field when a task
8512 * migrates between groups/classes.
8514 static void set_curr_task_fair(struct rq *rq)
8516 struct sched_entity *se = &rq->curr->se;
8518 for_each_sched_entity(se) {
8519 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8521 set_next_entity(cfs_rq, se);
8522 /* ensure bandwidth has been allocated on our new cfs_rq */
8523 account_cfs_rq_runtime(cfs_rq, 0);
8527 void init_cfs_rq(struct cfs_rq *cfs_rq)
8529 cfs_rq->tasks_timeline = RB_ROOT;
8530 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8531 #ifndef CONFIG_64BIT
8532 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8535 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8536 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8540 #ifdef CONFIG_FAIR_GROUP_SCHED
8541 static void task_set_group_fair(struct task_struct *p)
8543 struct sched_entity *se = &p->se;
8545 set_task_rq(p, task_cpu(p));
8546 se->depth = se->parent ? se->parent->depth + 1 : 0;
8549 static void task_move_group_fair(struct task_struct *p)
8551 detach_task_cfs_rq(p);
8552 set_task_rq(p, task_cpu(p));
8555 /* Tell se's cfs_rq has been changed -- migrated */
8556 p->se.avg.last_update_time = 0;
8558 attach_task_cfs_rq(p);
8561 static void task_change_group_fair(struct task_struct *p, int type)
8564 case TASK_SET_GROUP:
8565 task_set_group_fair(p);
8568 case TASK_MOVE_GROUP:
8569 task_move_group_fair(p);
8574 void free_fair_sched_group(struct task_group *tg)
8578 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8580 for_each_possible_cpu(i) {
8582 kfree(tg->cfs_rq[i]);
8591 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8593 struct sched_entity *se;
8594 struct cfs_rq *cfs_rq;
8598 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8601 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8605 tg->shares = NICE_0_LOAD;
8607 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8609 for_each_possible_cpu(i) {
8612 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8613 GFP_KERNEL, cpu_to_node(i));
8617 se = kzalloc_node(sizeof(struct sched_entity),
8618 GFP_KERNEL, cpu_to_node(i));
8622 init_cfs_rq(cfs_rq);
8623 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8624 init_entity_runnable_average(se);
8635 void online_fair_sched_group(struct task_group *tg)
8637 struct sched_entity *se;
8641 for_each_possible_cpu(i) {
8645 raw_spin_lock_irq(&rq->lock);
8646 post_init_entity_util_avg(se);
8647 sync_throttle(tg, i);
8648 raw_spin_unlock_irq(&rq->lock);
8652 void unregister_fair_sched_group(struct task_group *tg)
8654 unsigned long flags;
8658 for_each_possible_cpu(cpu) {
8660 remove_entity_load_avg(tg->se[cpu]);
8663 * Only empty task groups can be destroyed; so we can speculatively
8664 * check on_list without danger of it being re-added.
8666 if (!tg->cfs_rq[cpu]->on_list)
8671 raw_spin_lock_irqsave(&rq->lock, flags);
8672 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8673 raw_spin_unlock_irqrestore(&rq->lock, flags);
8677 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8678 struct sched_entity *se, int cpu,
8679 struct sched_entity *parent)
8681 struct rq *rq = cpu_rq(cpu);
8685 init_cfs_rq_runtime(cfs_rq);
8687 tg->cfs_rq[cpu] = cfs_rq;
8690 /* se could be NULL for root_task_group */
8695 se->cfs_rq = &rq->cfs;
8698 se->cfs_rq = parent->my_q;
8699 se->depth = parent->depth + 1;
8703 /* guarantee group entities always have weight */
8704 update_load_set(&se->load, NICE_0_LOAD);
8705 se->parent = parent;
8708 static DEFINE_MUTEX(shares_mutex);
8710 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8713 unsigned long flags;
8716 * We can't change the weight of the root cgroup.
8721 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8723 mutex_lock(&shares_mutex);
8724 if (tg->shares == shares)
8727 tg->shares = shares;
8728 for_each_possible_cpu(i) {
8729 struct rq *rq = cpu_rq(i);
8730 struct sched_entity *se;
8733 /* Propagate contribution to hierarchy */
8734 raw_spin_lock_irqsave(&rq->lock, flags);
8736 /* Possible calls to update_curr() need rq clock */
8737 update_rq_clock(rq);
8738 for_each_sched_entity(se)
8739 update_cfs_shares(group_cfs_rq(se));
8740 raw_spin_unlock_irqrestore(&rq->lock, flags);
8744 mutex_unlock(&shares_mutex);
8747 #else /* CONFIG_FAIR_GROUP_SCHED */
8749 void free_fair_sched_group(struct task_group *tg) { }
8751 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8756 void online_fair_sched_group(struct task_group *tg) { }
8758 void unregister_fair_sched_group(struct task_group *tg) { }
8760 #endif /* CONFIG_FAIR_GROUP_SCHED */
8763 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8765 struct sched_entity *se = &task->se;
8766 unsigned int rr_interval = 0;
8769 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8772 if (rq->cfs.load.weight)
8773 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8779 * All the scheduling class methods:
8781 const struct sched_class fair_sched_class = {
8782 .next = &idle_sched_class,
8783 .enqueue_task = enqueue_task_fair,
8784 .dequeue_task = dequeue_task_fair,
8785 .yield_task = yield_task_fair,
8786 .yield_to_task = yield_to_task_fair,
8788 .check_preempt_curr = check_preempt_wakeup,
8790 .pick_next_task = pick_next_task_fair,
8791 .put_prev_task = put_prev_task_fair,
8794 .select_task_rq = select_task_rq_fair,
8795 .migrate_task_rq = migrate_task_rq_fair,
8797 .rq_online = rq_online_fair,
8798 .rq_offline = rq_offline_fair,
8800 .task_dead = task_dead_fair,
8801 .set_cpus_allowed = set_cpus_allowed_common,
8804 .set_curr_task = set_curr_task_fair,
8805 .task_tick = task_tick_fair,
8806 .task_fork = task_fork_fair,
8808 .prio_changed = prio_changed_fair,
8809 .switched_from = switched_from_fair,
8810 .switched_to = switched_to_fair,
8812 .get_rr_interval = get_rr_interval_fair,
8814 .update_curr = update_curr_fair,
8816 #ifdef CONFIG_FAIR_GROUP_SCHED
8817 .task_change_group = task_change_group_fair,
8821 #ifdef CONFIG_SCHED_DEBUG
8822 void print_cfs_stats(struct seq_file *m, int cpu)
8824 struct cfs_rq *cfs_rq;
8827 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8828 print_cfs_rq(m, cpu, cfs_rq);
8832 #ifdef CONFIG_NUMA_BALANCING
8833 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8836 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8838 for_each_online_node(node) {
8839 if (p->numa_faults) {
8840 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8841 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8843 if (p->numa_group) {
8844 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8845 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8847 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8850 #endif /* CONFIG_NUMA_BALANCING */
8851 #endif /* CONFIG_SCHED_DEBUG */
8853 __init void init_sched_fair_class(void)
8856 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8858 #ifdef CONFIG_NO_HZ_COMMON
8859 nohz.next_balance = jiffies;
8860 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);