ring-buffer: Test last update in 32bit version of __rb_time_read()
[platform/kernel/linux-starfive.git] / kernel / sched / debug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/sched/debug.c
4  *
5  * Print the CFS rbtree and other debugging details
6  *
7  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8  */
9
10 /*
11  * This allows printing both to /proc/sched_debug and
12  * to the console
13  */
14 #define SEQ_printf(m, x...)                     \
15  do {                                           \
16         if (m)                                  \
17                 seq_printf(m, x);               \
18         else                                    \
19                 pr_cont(x);                     \
20  } while (0)
21
22 /*
23  * Ease the printing of nsec fields:
24  */
25 static long long nsec_high(unsigned long long nsec)
26 {
27         if ((long long)nsec < 0) {
28                 nsec = -nsec;
29                 do_div(nsec, 1000000);
30                 return -nsec;
31         }
32         do_div(nsec, 1000000);
33
34         return nsec;
35 }
36
37 static unsigned long nsec_low(unsigned long long nsec)
38 {
39         if ((long long)nsec < 0)
40                 nsec = -nsec;
41
42         return do_div(nsec, 1000000);
43 }
44
45 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
46
47 #define SCHED_FEAT(name, enabled)       \
48         #name ,
49
50 static const char * const sched_feat_names[] = {
51 #include "features.h"
52 };
53
54 #undef SCHED_FEAT
55
56 static int sched_feat_show(struct seq_file *m, void *v)
57 {
58         int i;
59
60         for (i = 0; i < __SCHED_FEAT_NR; i++) {
61                 if (!(sysctl_sched_features & (1UL << i)))
62                         seq_puts(m, "NO_");
63                 seq_printf(m, "%s ", sched_feat_names[i]);
64         }
65         seq_puts(m, "\n");
66
67         return 0;
68 }
69
70 #ifdef CONFIG_JUMP_LABEL
71
72 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
73 #define jump_label_key__false STATIC_KEY_INIT_FALSE
74
75 #define SCHED_FEAT(name, enabled)       \
76         jump_label_key__##enabled ,
77
78 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
79 #include "features.h"
80 };
81
82 #undef SCHED_FEAT
83
84 static void sched_feat_disable(int i)
85 {
86         static_key_disable_cpuslocked(&sched_feat_keys[i]);
87 }
88
89 static void sched_feat_enable(int i)
90 {
91         static_key_enable_cpuslocked(&sched_feat_keys[i]);
92 }
93 #else
94 static void sched_feat_disable(int i) { };
95 static void sched_feat_enable(int i) { };
96 #endif /* CONFIG_JUMP_LABEL */
97
98 static int sched_feat_set(char *cmp)
99 {
100         int i;
101         int neg = 0;
102
103         if (strncmp(cmp, "NO_", 3) == 0) {
104                 neg = 1;
105                 cmp += 3;
106         }
107
108         i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
109         if (i < 0)
110                 return i;
111
112         if (neg) {
113                 sysctl_sched_features &= ~(1UL << i);
114                 sched_feat_disable(i);
115         } else {
116                 sysctl_sched_features |= (1UL << i);
117                 sched_feat_enable(i);
118         }
119
120         return 0;
121 }
122
123 static ssize_t
124 sched_feat_write(struct file *filp, const char __user *ubuf,
125                 size_t cnt, loff_t *ppos)
126 {
127         char buf[64];
128         char *cmp;
129         int ret;
130         struct inode *inode;
131
132         if (cnt > 63)
133                 cnt = 63;
134
135         if (copy_from_user(&buf, ubuf, cnt))
136                 return -EFAULT;
137
138         buf[cnt] = 0;
139         cmp = strstrip(buf);
140
141         /* Ensure the static_key remains in a consistent state */
142         inode = file_inode(filp);
143         cpus_read_lock();
144         inode_lock(inode);
145         ret = sched_feat_set(cmp);
146         inode_unlock(inode);
147         cpus_read_unlock();
148         if (ret < 0)
149                 return ret;
150
151         *ppos += cnt;
152
153         return cnt;
154 }
155
156 static int sched_feat_open(struct inode *inode, struct file *filp)
157 {
158         return single_open(filp, sched_feat_show, NULL);
159 }
160
161 static const struct file_operations sched_feat_fops = {
162         .open           = sched_feat_open,
163         .write          = sched_feat_write,
164         .read           = seq_read,
165         .llseek         = seq_lseek,
166         .release        = single_release,
167 };
168
169 #ifdef CONFIG_SMP
170
171 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
172                                    size_t cnt, loff_t *ppos)
173 {
174         char buf[16];
175         unsigned int scaling;
176
177         if (cnt > 15)
178                 cnt = 15;
179
180         if (copy_from_user(&buf, ubuf, cnt))
181                 return -EFAULT;
182         buf[cnt] = '\0';
183
184         if (kstrtouint(buf, 10, &scaling))
185                 return -EINVAL;
186
187         if (scaling >= SCHED_TUNABLESCALING_END)
188                 return -EINVAL;
189
190         sysctl_sched_tunable_scaling = scaling;
191         if (sched_update_scaling())
192                 return -EINVAL;
193
194         *ppos += cnt;
195         return cnt;
196 }
197
198 static int sched_scaling_show(struct seq_file *m, void *v)
199 {
200         seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
201         return 0;
202 }
203
204 static int sched_scaling_open(struct inode *inode, struct file *filp)
205 {
206         return single_open(filp, sched_scaling_show, NULL);
207 }
208
209 static const struct file_operations sched_scaling_fops = {
210         .open           = sched_scaling_open,
211         .write          = sched_scaling_write,
212         .read           = seq_read,
213         .llseek         = seq_lseek,
214         .release        = single_release,
215 };
216
217 #endif /* SMP */
218
219 #ifdef CONFIG_PREEMPT_DYNAMIC
220
221 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
222                                    size_t cnt, loff_t *ppos)
223 {
224         char buf[16];
225         int mode;
226
227         if (cnt > 15)
228                 cnt = 15;
229
230         if (copy_from_user(&buf, ubuf, cnt))
231                 return -EFAULT;
232
233         buf[cnt] = 0;
234         mode = sched_dynamic_mode(strstrip(buf));
235         if (mode < 0)
236                 return mode;
237
238         sched_dynamic_update(mode);
239
240         *ppos += cnt;
241
242         return cnt;
243 }
244
245 static int sched_dynamic_show(struct seq_file *m, void *v)
246 {
247         static const char * preempt_modes[] = {
248                 "none", "voluntary", "full"
249         };
250         int i;
251
252         for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
253                 if (preempt_dynamic_mode == i)
254                         seq_puts(m, "(");
255                 seq_puts(m, preempt_modes[i]);
256                 if (preempt_dynamic_mode == i)
257                         seq_puts(m, ")");
258
259                 seq_puts(m, " ");
260         }
261
262         seq_puts(m, "\n");
263         return 0;
264 }
265
266 static int sched_dynamic_open(struct inode *inode, struct file *filp)
267 {
268         return single_open(filp, sched_dynamic_show, NULL);
269 }
270
271 static const struct file_operations sched_dynamic_fops = {
272         .open           = sched_dynamic_open,
273         .write          = sched_dynamic_write,
274         .read           = seq_read,
275         .llseek         = seq_lseek,
276         .release        = single_release,
277 };
278
279 #endif /* CONFIG_PREEMPT_DYNAMIC */
280
281 __read_mostly bool sched_debug_verbose;
282
283 #ifdef CONFIG_SMP
284 static struct dentry           *sd_dentry;
285
286
287 static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf,
288                                   size_t cnt, loff_t *ppos)
289 {
290         ssize_t result;
291         bool orig;
292
293         cpus_read_lock();
294         mutex_lock(&sched_domains_mutex);
295
296         orig = sched_debug_verbose;
297         result = debugfs_write_file_bool(filp, ubuf, cnt, ppos);
298
299         if (sched_debug_verbose && !orig)
300                 update_sched_domain_debugfs();
301         else if (!sched_debug_verbose && orig) {
302                 debugfs_remove(sd_dentry);
303                 sd_dentry = NULL;
304         }
305
306         mutex_unlock(&sched_domains_mutex);
307         cpus_read_unlock();
308
309         return result;
310 }
311 #else
312 #define sched_verbose_write debugfs_write_file_bool
313 #endif
314
315 static const struct file_operations sched_verbose_fops = {
316         .read =         debugfs_read_file_bool,
317         .write =        sched_verbose_write,
318         .open =         simple_open,
319         .llseek =       default_llseek,
320 };
321
322 static const struct seq_operations sched_debug_sops;
323
324 static int sched_debug_open(struct inode *inode, struct file *filp)
325 {
326         return seq_open(filp, &sched_debug_sops);
327 }
328
329 static const struct file_operations sched_debug_fops = {
330         .open           = sched_debug_open,
331         .read           = seq_read,
332         .llseek         = seq_lseek,
333         .release        = seq_release,
334 };
335
336 static struct dentry *debugfs_sched;
337
338 static __init int sched_init_debug(void)
339 {
340         struct dentry __maybe_unused *numa;
341
342         debugfs_sched = debugfs_create_dir("sched", NULL);
343
344         debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
345         debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops);
346 #ifdef CONFIG_PREEMPT_DYNAMIC
347         debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
348 #endif
349
350         debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice);
351
352         debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
353         debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
354
355 #ifdef CONFIG_SMP
356         debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
357         debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
358         debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
359
360         mutex_lock(&sched_domains_mutex);
361         update_sched_domain_debugfs();
362         mutex_unlock(&sched_domains_mutex);
363 #endif
364
365 #ifdef CONFIG_NUMA_BALANCING
366         numa = debugfs_create_dir("numa_balancing", debugfs_sched);
367
368         debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
369         debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
370         debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
371         debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
372         debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold);
373 #endif
374
375         debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
376
377         return 0;
378 }
379 late_initcall(sched_init_debug);
380
381 #ifdef CONFIG_SMP
382
383 static cpumask_var_t            sd_sysctl_cpus;
384
385 static int sd_flags_show(struct seq_file *m, void *v)
386 {
387         unsigned long flags = *(unsigned int *)m->private;
388         int idx;
389
390         for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
391                 seq_puts(m, sd_flag_debug[idx].name);
392                 seq_puts(m, " ");
393         }
394         seq_puts(m, "\n");
395
396         return 0;
397 }
398
399 static int sd_flags_open(struct inode *inode, struct file *file)
400 {
401         return single_open(file, sd_flags_show, inode->i_private);
402 }
403
404 static const struct file_operations sd_flags_fops = {
405         .open           = sd_flags_open,
406         .read           = seq_read,
407         .llseek         = seq_lseek,
408         .release        = single_release,
409 };
410
411 static void register_sd(struct sched_domain *sd, struct dentry *parent)
412 {
413 #define SDM(type, mode, member) \
414         debugfs_create_##type(#member, mode, parent, &sd->member)
415
416         SDM(ulong, 0644, min_interval);
417         SDM(ulong, 0644, max_interval);
418         SDM(u64,   0644, max_newidle_lb_cost);
419         SDM(u32,   0644, busy_factor);
420         SDM(u32,   0644, imbalance_pct);
421         SDM(u32,   0644, cache_nice_tries);
422         SDM(str,   0444, name);
423
424 #undef SDM
425
426         debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
427         debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops);
428 }
429
430 void update_sched_domain_debugfs(void)
431 {
432         int cpu, i;
433
434         /*
435          * This can unfortunately be invoked before sched_debug_init() creates
436          * the debug directory. Don't touch sd_sysctl_cpus until then.
437          */
438         if (!debugfs_sched)
439                 return;
440
441         if (!sched_debug_verbose)
442                 return;
443
444         if (!cpumask_available(sd_sysctl_cpus)) {
445                 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
446                         return;
447                 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
448         }
449
450         if (!sd_dentry) {
451                 sd_dentry = debugfs_create_dir("domains", debugfs_sched);
452
453                 /* rebuild sd_sysctl_cpus if empty since it gets cleared below */
454                 if (cpumask_empty(sd_sysctl_cpus))
455                         cpumask_copy(sd_sysctl_cpus, cpu_online_mask);
456         }
457
458         for_each_cpu(cpu, sd_sysctl_cpus) {
459                 struct sched_domain *sd;
460                 struct dentry *d_cpu;
461                 char buf[32];
462
463                 snprintf(buf, sizeof(buf), "cpu%d", cpu);
464                 debugfs_lookup_and_remove(buf, sd_dentry);
465                 d_cpu = debugfs_create_dir(buf, sd_dentry);
466
467                 i = 0;
468                 for_each_domain(cpu, sd) {
469                         struct dentry *d_sd;
470
471                         snprintf(buf, sizeof(buf), "domain%d", i);
472                         d_sd = debugfs_create_dir(buf, d_cpu);
473
474                         register_sd(sd, d_sd);
475                         i++;
476                 }
477
478                 __cpumask_clear_cpu(cpu, sd_sysctl_cpus);
479         }
480 }
481
482 void dirty_sched_domain_sysctl(int cpu)
483 {
484         if (cpumask_available(sd_sysctl_cpus))
485                 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
486 }
487
488 #endif /* CONFIG_SMP */
489
490 #ifdef CONFIG_FAIR_GROUP_SCHED
491 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
492 {
493         struct sched_entity *se = tg->se[cpu];
494
495 #define P(F)            SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)F)
496 #define P_SCHEDSTAT(F)  SEQ_printf(m, "  .%-30s: %lld\n",       \
497                 #F, (long long)schedstat_val(stats->F))
498 #define PN(F)           SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
499 #define PN_SCHEDSTAT(F) SEQ_printf(m, "  .%-30s: %lld.%06ld\n", \
500                 #F, SPLIT_NS((long long)schedstat_val(stats->F)))
501
502         if (!se)
503                 return;
504
505         PN(se->exec_start);
506         PN(se->vruntime);
507         PN(se->sum_exec_runtime);
508
509         if (schedstat_enabled()) {
510                 struct sched_statistics *stats;
511                 stats = __schedstats_from_se(se);
512
513                 PN_SCHEDSTAT(wait_start);
514                 PN_SCHEDSTAT(sleep_start);
515                 PN_SCHEDSTAT(block_start);
516                 PN_SCHEDSTAT(sleep_max);
517                 PN_SCHEDSTAT(block_max);
518                 PN_SCHEDSTAT(exec_max);
519                 PN_SCHEDSTAT(slice_max);
520                 PN_SCHEDSTAT(wait_max);
521                 PN_SCHEDSTAT(wait_sum);
522                 P_SCHEDSTAT(wait_count);
523         }
524
525         P(se->load.weight);
526 #ifdef CONFIG_SMP
527         P(se->avg.load_avg);
528         P(se->avg.util_avg);
529         P(se->avg.runnable_avg);
530 #endif
531
532 #undef PN_SCHEDSTAT
533 #undef PN
534 #undef P_SCHEDSTAT
535 #undef P
536 }
537 #endif
538
539 #ifdef CONFIG_CGROUP_SCHED
540 static DEFINE_SPINLOCK(sched_debug_lock);
541 static char group_path[PATH_MAX];
542
543 static void task_group_path(struct task_group *tg, char *path, int plen)
544 {
545         if (autogroup_path(tg, path, plen))
546                 return;
547
548         cgroup_path(tg->css.cgroup, path, plen);
549 }
550
551 /*
552  * Only 1 SEQ_printf_task_group_path() caller can use the full length
553  * group_path[] for cgroup path. Other simultaneous callers will have
554  * to use a shorter stack buffer. A "..." suffix is appended at the end
555  * of the stack buffer so that it will show up in case the output length
556  * matches the given buffer size to indicate possible path name truncation.
557  */
558 #define SEQ_printf_task_group_path(m, tg, fmt...)                       \
559 {                                                                       \
560         if (spin_trylock(&sched_debug_lock)) {                          \
561                 task_group_path(tg, group_path, sizeof(group_path));    \
562                 SEQ_printf(m, fmt, group_path);                         \
563                 spin_unlock(&sched_debug_lock);                         \
564         } else {                                                        \
565                 char buf[128];                                          \
566                 char *bufend = buf + sizeof(buf) - 3;                   \
567                 task_group_path(tg, buf, bufend - buf);                 \
568                 strcpy(bufend - 1, "...");                              \
569                 SEQ_printf(m, fmt, buf);                                \
570         }                                                               \
571 }
572 #endif
573
574 static void
575 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
576 {
577         if (task_current(rq, p))
578                 SEQ_printf(m, ">R");
579         else
580                 SEQ_printf(m, " %c", task_state_to_char(p));
581
582         SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
583                 p->comm, task_pid_nr(p),
584                 SPLIT_NS(p->se.vruntime),
585                 entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N',
586                 SPLIT_NS(p->se.deadline),
587                 SPLIT_NS(p->se.slice),
588                 SPLIT_NS(p->se.sum_exec_runtime),
589                 (long long)(p->nvcsw + p->nivcsw),
590                 p->prio);
591
592         SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld",
593                 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
594                 SPLIT_NS(p->se.sum_exec_runtime),
595                 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
596                 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
597
598 #ifdef CONFIG_NUMA_BALANCING
599         SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
600 #endif
601 #ifdef CONFIG_CGROUP_SCHED
602         SEQ_printf_task_group_path(m, task_group(p), " %s")
603 #endif
604
605         SEQ_printf(m, "\n");
606 }
607
608 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
609 {
610         struct task_struct *g, *p;
611
612         SEQ_printf(m, "\n");
613         SEQ_printf(m, "runnable tasks:\n");
614         SEQ_printf(m, " S            task   PID         tree-key  switches  prio"
615                    "     wait-time             sum-exec        sum-sleep\n");
616         SEQ_printf(m, "-------------------------------------------------------"
617                    "------------------------------------------------------\n");
618
619         rcu_read_lock();
620         for_each_process_thread(g, p) {
621                 if (task_cpu(p) != rq_cpu)
622                         continue;
623
624                 print_task(m, rq, p);
625         }
626         rcu_read_unlock();
627 }
628
629 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
630 {
631         s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, spread;
632         struct sched_entity *last, *first;
633         struct rq *rq = cpu_rq(cpu);
634         unsigned long flags;
635
636 #ifdef CONFIG_FAIR_GROUP_SCHED
637         SEQ_printf(m, "\n");
638         SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
639 #else
640         SEQ_printf(m, "\n");
641         SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
642 #endif
643         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
644                         SPLIT_NS(cfs_rq->exec_clock));
645
646         raw_spin_rq_lock_irqsave(rq, flags);
647         first = __pick_first_entity(cfs_rq);
648         if (first)
649                 left_vruntime = first->vruntime;
650         last = __pick_last_entity(cfs_rq);
651         if (last)
652                 right_vruntime = last->vruntime;
653         min_vruntime = cfs_rq->min_vruntime;
654         raw_spin_rq_unlock_irqrestore(rq, flags);
655
656         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "left_vruntime",
657                         SPLIT_NS(left_vruntime));
658         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
659                         SPLIT_NS(min_vruntime));
660         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "avg_vruntime",
661                         SPLIT_NS(avg_vruntime(cfs_rq)));
662         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "right_vruntime",
663                         SPLIT_NS(right_vruntime));
664         spread = right_vruntime - left_vruntime;
665         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread));
666         SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
667                         cfs_rq->nr_spread_over);
668         SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
669         SEQ_printf(m, "  .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
670         SEQ_printf(m, "  .%-30s: %d\n", "idle_nr_running",
671                         cfs_rq->idle_nr_running);
672         SEQ_printf(m, "  .%-30s: %d\n", "idle_h_nr_running",
673                         cfs_rq->idle_h_nr_running);
674         SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
675 #ifdef CONFIG_SMP
676         SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
677                         cfs_rq->avg.load_avg);
678         SEQ_printf(m, "  .%-30s: %lu\n", "runnable_avg",
679                         cfs_rq->avg.runnable_avg);
680         SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
681                         cfs_rq->avg.util_avg);
682         SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
683                         cfs_rq->avg.util_est.enqueued);
684         SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
685                         cfs_rq->removed.load_avg);
686         SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
687                         cfs_rq->removed.util_avg);
688         SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_avg",
689                         cfs_rq->removed.runnable_avg);
690 #ifdef CONFIG_FAIR_GROUP_SCHED
691         SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
692                         cfs_rq->tg_load_avg_contrib);
693         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
694                         atomic_long_read(&cfs_rq->tg->load_avg));
695 #endif
696 #endif
697 #ifdef CONFIG_CFS_BANDWIDTH
698         SEQ_printf(m, "  .%-30s: %d\n", "throttled",
699                         cfs_rq->throttled);
700         SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
701                         cfs_rq->throttle_count);
702 #endif
703
704 #ifdef CONFIG_FAIR_GROUP_SCHED
705         print_cfs_group_stats(m, cpu, cfs_rq->tg);
706 #endif
707 }
708
709 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
710 {
711 #ifdef CONFIG_RT_GROUP_SCHED
712         SEQ_printf(m, "\n");
713         SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
714 #else
715         SEQ_printf(m, "\n");
716         SEQ_printf(m, "rt_rq[%d]:\n", cpu);
717 #endif
718
719 #define P(x) \
720         SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
721 #define PU(x) \
722         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
723 #define PN(x) \
724         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
725
726         PU(rt_nr_running);
727 #ifdef CONFIG_SMP
728         PU(rt_nr_migratory);
729 #endif
730         P(rt_throttled);
731         PN(rt_time);
732         PN(rt_runtime);
733
734 #undef PN
735 #undef PU
736 #undef P
737 }
738
739 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
740 {
741         struct dl_bw *dl_bw;
742
743         SEQ_printf(m, "\n");
744         SEQ_printf(m, "dl_rq[%d]:\n", cpu);
745
746 #define PU(x) \
747         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
748
749         PU(dl_nr_running);
750 #ifdef CONFIG_SMP
751         PU(dl_nr_migratory);
752         dl_bw = &cpu_rq(cpu)->rd->dl_bw;
753 #else
754         dl_bw = &dl_rq->dl_bw;
755 #endif
756         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
757         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
758
759 #undef PU
760 }
761
762 static void print_cpu(struct seq_file *m, int cpu)
763 {
764         struct rq *rq = cpu_rq(cpu);
765
766 #ifdef CONFIG_X86
767         {
768                 unsigned int freq = cpu_khz ? : 1;
769
770                 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
771                            cpu, freq / 1000, (freq % 1000));
772         }
773 #else
774         SEQ_printf(m, "cpu#%d\n", cpu);
775 #endif
776
777 #define P(x)                                                            \
778 do {                                                                    \
779         if (sizeof(rq->x) == 4)                                         \
780                 SEQ_printf(m, "  .%-30s: %d\n", #x, (int)(rq->x));      \
781         else                                                            \
782                 SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
783 } while (0)
784
785 #define PN(x) \
786         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
787
788         P(nr_running);
789         P(nr_switches);
790         P(nr_uninterruptible);
791         PN(next_balance);
792         SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
793         PN(clock);
794         PN(clock_task);
795 #undef P
796 #undef PN
797
798 #ifdef CONFIG_SMP
799 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
800         P64(avg_idle);
801         P64(max_idle_balance_cost);
802 #undef P64
803 #endif
804
805 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
806         if (schedstat_enabled()) {
807                 P(yld_count);
808                 P(sched_count);
809                 P(sched_goidle);
810                 P(ttwu_count);
811                 P(ttwu_local);
812         }
813 #undef P
814
815         print_cfs_stats(m, cpu);
816         print_rt_stats(m, cpu);
817         print_dl_stats(m, cpu);
818
819         print_rq(m, rq, cpu);
820         SEQ_printf(m, "\n");
821 }
822
823 static const char *sched_tunable_scaling_names[] = {
824         "none",
825         "logarithmic",
826         "linear"
827 };
828
829 static void sched_debug_header(struct seq_file *m)
830 {
831         u64 ktime, sched_clk, cpu_clk;
832         unsigned long flags;
833
834         local_irq_save(flags);
835         ktime = ktime_to_ns(ktime_get());
836         sched_clk = sched_clock();
837         cpu_clk = local_clock();
838         local_irq_restore(flags);
839
840         SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
841                 init_utsname()->release,
842                 (int)strcspn(init_utsname()->version, " "),
843                 init_utsname()->version);
844
845 #define P(x) \
846         SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
847 #define PN(x) \
848         SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
849         PN(ktime);
850         PN(sched_clk);
851         PN(cpu_clk);
852         P(jiffies);
853 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
854         P(sched_clock_stable());
855 #endif
856 #undef PN
857 #undef P
858
859         SEQ_printf(m, "\n");
860         SEQ_printf(m, "sysctl_sched\n");
861
862 #define P(x) \
863         SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
864 #define PN(x) \
865         SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
866         PN(sysctl_sched_base_slice);
867         P(sysctl_sched_child_runs_first);
868         P(sysctl_sched_features);
869 #undef PN
870 #undef P
871
872         SEQ_printf(m, "  .%-40s: %d (%s)\n",
873                 "sysctl_sched_tunable_scaling",
874                 sysctl_sched_tunable_scaling,
875                 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
876         SEQ_printf(m, "\n");
877 }
878
879 static int sched_debug_show(struct seq_file *m, void *v)
880 {
881         int cpu = (unsigned long)(v - 2);
882
883         if (cpu != -1)
884                 print_cpu(m, cpu);
885         else
886                 sched_debug_header(m);
887
888         return 0;
889 }
890
891 void sysrq_sched_debug_show(void)
892 {
893         int cpu;
894
895         sched_debug_header(NULL);
896         for_each_online_cpu(cpu) {
897                 /*
898                  * Need to reset softlockup watchdogs on all CPUs, because
899                  * another CPU might be blocked waiting for us to process
900                  * an IPI or stop_machine.
901                  */
902                 touch_nmi_watchdog();
903                 touch_all_softlockup_watchdogs();
904                 print_cpu(NULL, cpu);
905         }
906 }
907
908 /*
909  * This iterator needs some explanation.
910  * It returns 1 for the header position.
911  * This means 2 is CPU 0.
912  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
913  * to use cpumask_* to iterate over the CPUs.
914  */
915 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
916 {
917         unsigned long n = *offset;
918
919         if (n == 0)
920                 return (void *) 1;
921
922         n--;
923
924         if (n > 0)
925                 n = cpumask_next(n - 1, cpu_online_mask);
926         else
927                 n = cpumask_first(cpu_online_mask);
928
929         *offset = n + 1;
930
931         if (n < nr_cpu_ids)
932                 return (void *)(unsigned long)(n + 2);
933
934         return NULL;
935 }
936
937 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
938 {
939         (*offset)++;
940         return sched_debug_start(file, offset);
941 }
942
943 static void sched_debug_stop(struct seq_file *file, void *data)
944 {
945 }
946
947 static const struct seq_operations sched_debug_sops = {
948         .start          = sched_debug_start,
949         .next           = sched_debug_next,
950         .stop           = sched_debug_stop,
951         .show           = sched_debug_show,
952 };
953
954 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
955 #define __P(F) __PS(#F, F)
956 #define   P(F) __PS(#F, p->F)
957 #define   PM(F, M) __PS(#F, p->F & (M))
958 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
959 #define __PN(F) __PSN(#F, F)
960 #define   PN(F) __PSN(#F, p->F)
961
962
963 #ifdef CONFIG_NUMA_BALANCING
964 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
965                 unsigned long tpf, unsigned long gsf, unsigned long gpf)
966 {
967         SEQ_printf(m, "numa_faults node=%d ", node);
968         SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
969         SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
970 }
971 #endif
972
973
974 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
975 {
976 #ifdef CONFIG_NUMA_BALANCING
977         if (p->mm)
978                 P(mm->numa_scan_seq);
979
980         P(numa_pages_migrated);
981         P(numa_preferred_nid);
982         P(total_numa_faults);
983         SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
984                         task_node(p), task_numa_group_id(p));
985         show_numa_stats(p, m);
986 #endif
987 }
988
989 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
990                                                   struct seq_file *m)
991 {
992         unsigned long nr_switches;
993
994         SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
995                                                 get_nr_threads(p));
996         SEQ_printf(m,
997                 "---------------------------------------------------------"
998                 "----------\n");
999
1000 #define P_SCHEDSTAT(F)  __PS(#F, schedstat_val(p->stats.F))
1001 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
1002
1003         PN(se.exec_start);
1004         PN(se.vruntime);
1005         PN(se.sum_exec_runtime);
1006
1007         nr_switches = p->nvcsw + p->nivcsw;
1008
1009         P(se.nr_migrations);
1010
1011         if (schedstat_enabled()) {
1012                 u64 avg_atom, avg_per_cpu;
1013
1014                 PN_SCHEDSTAT(sum_sleep_runtime);
1015                 PN_SCHEDSTAT(sum_block_runtime);
1016                 PN_SCHEDSTAT(wait_start);
1017                 PN_SCHEDSTAT(sleep_start);
1018                 PN_SCHEDSTAT(block_start);
1019                 PN_SCHEDSTAT(sleep_max);
1020                 PN_SCHEDSTAT(block_max);
1021                 PN_SCHEDSTAT(exec_max);
1022                 PN_SCHEDSTAT(slice_max);
1023                 PN_SCHEDSTAT(wait_max);
1024                 PN_SCHEDSTAT(wait_sum);
1025                 P_SCHEDSTAT(wait_count);
1026                 PN_SCHEDSTAT(iowait_sum);
1027                 P_SCHEDSTAT(iowait_count);
1028                 P_SCHEDSTAT(nr_migrations_cold);
1029                 P_SCHEDSTAT(nr_failed_migrations_affine);
1030                 P_SCHEDSTAT(nr_failed_migrations_running);
1031                 P_SCHEDSTAT(nr_failed_migrations_hot);
1032                 P_SCHEDSTAT(nr_forced_migrations);
1033                 P_SCHEDSTAT(nr_wakeups);
1034                 P_SCHEDSTAT(nr_wakeups_sync);
1035                 P_SCHEDSTAT(nr_wakeups_migrate);
1036                 P_SCHEDSTAT(nr_wakeups_local);
1037                 P_SCHEDSTAT(nr_wakeups_remote);
1038                 P_SCHEDSTAT(nr_wakeups_affine);
1039                 P_SCHEDSTAT(nr_wakeups_affine_attempts);
1040                 P_SCHEDSTAT(nr_wakeups_passive);
1041                 P_SCHEDSTAT(nr_wakeups_idle);
1042
1043                 avg_atom = p->se.sum_exec_runtime;
1044                 if (nr_switches)
1045                         avg_atom = div64_ul(avg_atom, nr_switches);
1046                 else
1047                         avg_atom = -1LL;
1048
1049                 avg_per_cpu = p->se.sum_exec_runtime;
1050                 if (p->se.nr_migrations) {
1051                         avg_per_cpu = div64_u64(avg_per_cpu,
1052                                                 p->se.nr_migrations);
1053                 } else {
1054                         avg_per_cpu = -1LL;
1055                 }
1056
1057                 __PN(avg_atom);
1058                 __PN(avg_per_cpu);
1059
1060 #ifdef CONFIG_SCHED_CORE
1061                 PN_SCHEDSTAT(core_forceidle_sum);
1062 #endif
1063         }
1064
1065         __P(nr_switches);
1066         __PS("nr_voluntary_switches", p->nvcsw);
1067         __PS("nr_involuntary_switches", p->nivcsw);
1068
1069         P(se.load.weight);
1070 #ifdef CONFIG_SMP
1071         P(se.avg.load_sum);
1072         P(se.avg.runnable_sum);
1073         P(se.avg.util_sum);
1074         P(se.avg.load_avg);
1075         P(se.avg.runnable_avg);
1076         P(se.avg.util_avg);
1077         P(se.avg.last_update_time);
1078         P(se.avg.util_est.ewma);
1079         PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED);
1080 #endif
1081 #ifdef CONFIG_UCLAMP_TASK
1082         __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1083         __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1084         __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1085         __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1086 #endif
1087         P(policy);
1088         P(prio);
1089         if (task_has_dl_policy(p)) {
1090                 P(dl.runtime);
1091                 P(dl.deadline);
1092         }
1093 #undef PN_SCHEDSTAT
1094 #undef P_SCHEDSTAT
1095
1096         {
1097                 unsigned int this_cpu = raw_smp_processor_id();
1098                 u64 t0, t1;
1099
1100                 t0 = cpu_clock(this_cpu);
1101                 t1 = cpu_clock(this_cpu);
1102                 __PS("clock-delta", t1-t0);
1103         }
1104
1105         sched_show_numa(p, m);
1106 }
1107
1108 void proc_sched_set_task(struct task_struct *p)
1109 {
1110 #ifdef CONFIG_SCHEDSTATS
1111         memset(&p->stats, 0, sizeof(p->stats));
1112 #endif
1113 }
1114
1115 void resched_latency_warn(int cpu, u64 latency)
1116 {
1117         static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1118
1119         WARN(__ratelimit(&latency_check_ratelimit),
1120              "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1121              "without schedule\n",
1122              cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1123 }