1 // SPDX-License-Identifier: GPL-2.0-only
5 * Print the CFS rbtree and other debugging details
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
11 * This allows printing both to /proc/sched_debug and
14 #define SEQ_printf(m, x...) \
23 * Ease the printing of nsec fields:
25 static long long nsec_high(unsigned long long nsec)
27 if ((long long)nsec < 0) {
29 do_div(nsec, 1000000);
32 do_div(nsec, 1000000);
37 static unsigned long nsec_low(unsigned long long nsec)
39 if ((long long)nsec < 0)
42 return do_div(nsec, 1000000);
45 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
47 #define SCHED_FEAT(name, enabled) \
50 static const char * const sched_feat_names[] = {
56 static int sched_feat_show(struct seq_file *m, void *v)
60 for (i = 0; i < __SCHED_FEAT_NR; i++) {
61 if (!(sysctl_sched_features & (1UL << i)))
63 seq_printf(m, "%s ", sched_feat_names[i]);
70 #ifdef CONFIG_JUMP_LABEL
72 #define jump_label_key__true STATIC_KEY_INIT_TRUE
73 #define jump_label_key__false STATIC_KEY_INIT_FALSE
75 #define SCHED_FEAT(name, enabled) \
76 jump_label_key__##enabled ,
78 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
84 static void sched_feat_disable(int i)
86 static_key_disable_cpuslocked(&sched_feat_keys[i]);
89 static void sched_feat_enable(int i)
91 static_key_enable_cpuslocked(&sched_feat_keys[i]);
94 static void sched_feat_disable(int i) { };
95 static void sched_feat_enable(int i) { };
96 #endif /* CONFIG_JUMP_LABEL */
98 static int sched_feat_set(char *cmp)
103 if (strncmp(cmp, "NO_", 3) == 0) {
108 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
113 sysctl_sched_features &= ~(1UL << i);
114 sched_feat_disable(i);
116 sysctl_sched_features |= (1UL << i);
117 sched_feat_enable(i);
124 sched_feat_write(struct file *filp, const char __user *ubuf,
125 size_t cnt, loff_t *ppos)
135 if (copy_from_user(&buf, ubuf, cnt))
141 /* Ensure the static_key remains in a consistent state */
142 inode = file_inode(filp);
145 ret = sched_feat_set(cmp);
156 static int sched_feat_open(struct inode *inode, struct file *filp)
158 return single_open(filp, sched_feat_show, NULL);
161 static const struct file_operations sched_feat_fops = {
162 .open = sched_feat_open,
163 .write = sched_feat_write,
166 .release = single_release,
171 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
172 size_t cnt, loff_t *ppos)
175 unsigned int scaling;
180 if (copy_from_user(&buf, ubuf, cnt))
184 if (kstrtouint(buf, 10, &scaling))
187 if (scaling >= SCHED_TUNABLESCALING_END)
190 sysctl_sched_tunable_scaling = scaling;
191 if (sched_update_scaling())
198 static int sched_scaling_show(struct seq_file *m, void *v)
200 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
204 static int sched_scaling_open(struct inode *inode, struct file *filp)
206 return single_open(filp, sched_scaling_show, NULL);
209 static const struct file_operations sched_scaling_fops = {
210 .open = sched_scaling_open,
211 .write = sched_scaling_write,
214 .release = single_release,
219 #ifdef CONFIG_PREEMPT_DYNAMIC
221 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
222 size_t cnt, loff_t *ppos)
230 if (copy_from_user(&buf, ubuf, cnt))
234 mode = sched_dynamic_mode(strstrip(buf));
238 sched_dynamic_update(mode);
245 static int sched_dynamic_show(struct seq_file *m, void *v)
247 static const char * preempt_modes[] = {
248 "none", "voluntary", "full"
252 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
253 if (preempt_dynamic_mode == i)
255 seq_puts(m, preempt_modes[i]);
256 if (preempt_dynamic_mode == i)
266 static int sched_dynamic_open(struct inode *inode, struct file *filp)
268 return single_open(filp, sched_dynamic_show, NULL);
271 static const struct file_operations sched_dynamic_fops = {
272 .open = sched_dynamic_open,
273 .write = sched_dynamic_write,
276 .release = single_release,
279 #endif /* CONFIG_PREEMPT_DYNAMIC */
281 __read_mostly bool sched_debug_verbose;
284 static struct dentry *sd_dentry;
287 static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf,
288 size_t cnt, loff_t *ppos)
294 mutex_lock(&sched_domains_mutex);
296 orig = sched_debug_verbose;
297 result = debugfs_write_file_bool(filp, ubuf, cnt, ppos);
299 if (sched_debug_verbose && !orig)
300 update_sched_domain_debugfs();
301 else if (!sched_debug_verbose && orig) {
302 debugfs_remove(sd_dentry);
306 mutex_unlock(&sched_domains_mutex);
312 #define sched_verbose_write debugfs_write_file_bool
315 static const struct file_operations sched_verbose_fops = {
316 .read = debugfs_read_file_bool,
317 .write = sched_verbose_write,
319 .llseek = default_llseek,
322 static const struct seq_operations sched_debug_sops;
324 static int sched_debug_open(struct inode *inode, struct file *filp)
326 return seq_open(filp, &sched_debug_sops);
329 static const struct file_operations sched_debug_fops = {
330 .open = sched_debug_open,
333 .release = seq_release,
336 static struct dentry *debugfs_sched;
338 static __init int sched_init_debug(void)
340 struct dentry __maybe_unused *numa;
342 debugfs_sched = debugfs_create_dir("sched", NULL);
344 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
345 debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops);
346 #ifdef CONFIG_PREEMPT_DYNAMIC
347 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
350 debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice);
352 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
353 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
356 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
357 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
358 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
360 mutex_lock(&sched_domains_mutex);
361 update_sched_domain_debugfs();
362 mutex_unlock(&sched_domains_mutex);
365 #ifdef CONFIG_NUMA_BALANCING
366 numa = debugfs_create_dir("numa_balancing", debugfs_sched);
368 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
369 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
370 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
371 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
372 debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold);
375 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
379 late_initcall(sched_init_debug);
383 static cpumask_var_t sd_sysctl_cpus;
385 static int sd_flags_show(struct seq_file *m, void *v)
387 unsigned long flags = *(unsigned int *)m->private;
390 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
391 seq_puts(m, sd_flag_debug[idx].name);
399 static int sd_flags_open(struct inode *inode, struct file *file)
401 return single_open(file, sd_flags_show, inode->i_private);
404 static const struct file_operations sd_flags_fops = {
405 .open = sd_flags_open,
408 .release = single_release,
411 static void register_sd(struct sched_domain *sd, struct dentry *parent)
413 #define SDM(type, mode, member) \
414 debugfs_create_##type(#member, mode, parent, &sd->member)
416 SDM(ulong, 0644, min_interval);
417 SDM(ulong, 0644, max_interval);
418 SDM(u64, 0644, max_newidle_lb_cost);
419 SDM(u32, 0644, busy_factor);
420 SDM(u32, 0644, imbalance_pct);
421 SDM(u32, 0644, cache_nice_tries);
422 SDM(str, 0444, name);
426 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
427 debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops);
430 void update_sched_domain_debugfs(void)
435 * This can unfortunately be invoked before sched_debug_init() creates
436 * the debug directory. Don't touch sd_sysctl_cpus until then.
441 if (!sched_debug_verbose)
444 if (!cpumask_available(sd_sysctl_cpus)) {
445 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
447 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
451 sd_dentry = debugfs_create_dir("domains", debugfs_sched);
453 /* rebuild sd_sysctl_cpus if empty since it gets cleared below */
454 if (cpumask_empty(sd_sysctl_cpus))
455 cpumask_copy(sd_sysctl_cpus, cpu_online_mask);
458 for_each_cpu(cpu, sd_sysctl_cpus) {
459 struct sched_domain *sd;
460 struct dentry *d_cpu;
463 snprintf(buf, sizeof(buf), "cpu%d", cpu);
464 debugfs_lookup_and_remove(buf, sd_dentry);
465 d_cpu = debugfs_create_dir(buf, sd_dentry);
468 for_each_domain(cpu, sd) {
471 snprintf(buf, sizeof(buf), "domain%d", i);
472 d_sd = debugfs_create_dir(buf, d_cpu);
474 register_sd(sd, d_sd);
478 __cpumask_clear_cpu(cpu, sd_sysctl_cpus);
482 void dirty_sched_domain_sysctl(int cpu)
484 if (cpumask_available(sd_sysctl_cpus))
485 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
488 #endif /* CONFIG_SMP */
490 #ifdef CONFIG_FAIR_GROUP_SCHED
491 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
493 struct sched_entity *se = tg->se[cpu];
495 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
496 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \
497 #F, (long long)schedstat_val(stats->F))
498 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
499 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \
500 #F, SPLIT_NS((long long)schedstat_val(stats->F)))
507 PN(se->sum_exec_runtime);
509 if (schedstat_enabled()) {
510 struct sched_statistics *stats;
511 stats = __schedstats_from_se(se);
513 PN_SCHEDSTAT(wait_start);
514 PN_SCHEDSTAT(sleep_start);
515 PN_SCHEDSTAT(block_start);
516 PN_SCHEDSTAT(sleep_max);
517 PN_SCHEDSTAT(block_max);
518 PN_SCHEDSTAT(exec_max);
519 PN_SCHEDSTAT(slice_max);
520 PN_SCHEDSTAT(wait_max);
521 PN_SCHEDSTAT(wait_sum);
522 P_SCHEDSTAT(wait_count);
529 P(se->avg.runnable_avg);
539 #ifdef CONFIG_CGROUP_SCHED
540 static DEFINE_SPINLOCK(sched_debug_lock);
541 static char group_path[PATH_MAX];
543 static void task_group_path(struct task_group *tg, char *path, int plen)
545 if (autogroup_path(tg, path, plen))
548 cgroup_path(tg->css.cgroup, path, plen);
552 * Only 1 SEQ_printf_task_group_path() caller can use the full length
553 * group_path[] for cgroup path. Other simultaneous callers will have
554 * to use a shorter stack buffer. A "..." suffix is appended at the end
555 * of the stack buffer so that it will show up in case the output length
556 * matches the given buffer size to indicate possible path name truncation.
558 #define SEQ_printf_task_group_path(m, tg, fmt...) \
560 if (spin_trylock(&sched_debug_lock)) { \
561 task_group_path(tg, group_path, sizeof(group_path)); \
562 SEQ_printf(m, fmt, group_path); \
563 spin_unlock(&sched_debug_lock); \
566 char *bufend = buf + sizeof(buf) - 3; \
567 task_group_path(tg, buf, bufend - buf); \
568 strcpy(bufend - 1, "..."); \
569 SEQ_printf(m, fmt, buf); \
575 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
577 if (task_current(rq, p))
580 SEQ_printf(m, " %c", task_state_to_char(p));
582 SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
583 p->comm, task_pid_nr(p),
584 SPLIT_NS(p->se.vruntime),
585 entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N',
586 SPLIT_NS(p->se.deadline),
587 SPLIT_NS(p->se.slice),
588 SPLIT_NS(p->se.sum_exec_runtime),
589 (long long)(p->nvcsw + p->nivcsw),
592 SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld",
593 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
594 SPLIT_NS(p->se.sum_exec_runtime),
595 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
596 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
598 #ifdef CONFIG_NUMA_BALANCING
599 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
601 #ifdef CONFIG_CGROUP_SCHED
602 SEQ_printf_task_group_path(m, task_group(p), " %s")
608 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
610 struct task_struct *g, *p;
613 SEQ_printf(m, "runnable tasks:\n");
614 SEQ_printf(m, " S task PID tree-key switches prio"
615 " wait-time sum-exec sum-sleep\n");
616 SEQ_printf(m, "-------------------------------------------------------"
617 "------------------------------------------------------\n");
620 for_each_process_thread(g, p) {
621 if (task_cpu(p) != rq_cpu)
624 print_task(m, rq, p);
629 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
631 s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, spread;
632 struct sched_entity *last, *first;
633 struct rq *rq = cpu_rq(cpu);
636 #ifdef CONFIG_FAIR_GROUP_SCHED
638 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
641 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
643 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
644 SPLIT_NS(cfs_rq->exec_clock));
646 raw_spin_rq_lock_irqsave(rq, flags);
647 first = __pick_first_entity(cfs_rq);
649 left_vruntime = first->vruntime;
650 last = __pick_last_entity(cfs_rq);
652 right_vruntime = last->vruntime;
653 min_vruntime = cfs_rq->min_vruntime;
654 raw_spin_rq_unlock_irqrestore(rq, flags);
656 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_vruntime",
657 SPLIT_NS(left_vruntime));
658 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
659 SPLIT_NS(min_vruntime));
660 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "avg_vruntime",
661 SPLIT_NS(avg_vruntime(cfs_rq)));
662 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "right_vruntime",
663 SPLIT_NS(right_vruntime));
664 spread = right_vruntime - left_vruntime;
665 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread));
666 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
667 cfs_rq->nr_spread_over);
668 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
669 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
670 SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running",
671 cfs_rq->idle_nr_running);
672 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running",
673 cfs_rq->idle_h_nr_running);
674 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
676 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
677 cfs_rq->avg.load_avg);
678 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
679 cfs_rq->avg.runnable_avg);
680 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
681 cfs_rq->avg.util_avg);
682 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
683 cfs_rq->avg.util_est.enqueued);
684 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
685 cfs_rq->removed.load_avg);
686 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
687 cfs_rq->removed.util_avg);
688 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
689 cfs_rq->removed.runnable_avg);
690 #ifdef CONFIG_FAIR_GROUP_SCHED
691 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
692 cfs_rq->tg_load_avg_contrib);
693 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
694 atomic_long_read(&cfs_rq->tg->load_avg));
697 #ifdef CONFIG_CFS_BANDWIDTH
698 SEQ_printf(m, " .%-30s: %d\n", "throttled",
700 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
701 cfs_rq->throttle_count);
704 #ifdef CONFIG_FAIR_GROUP_SCHED
705 print_cfs_group_stats(m, cpu, cfs_rq->tg);
709 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
711 #ifdef CONFIG_RT_GROUP_SCHED
713 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
716 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
720 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
722 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
724 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
739 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
744 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
747 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
752 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
754 dl_bw = &dl_rq->dl_bw;
756 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
757 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
762 static void print_cpu(struct seq_file *m, int cpu)
764 struct rq *rq = cpu_rq(cpu);
768 unsigned int freq = cpu_khz ? : 1;
770 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
771 cpu, freq / 1000, (freq % 1000));
774 SEQ_printf(m, "cpu#%d\n", cpu);
779 if (sizeof(rq->x) == 4) \
780 SEQ_printf(m, " .%-30s: %d\n", #x, (int)(rq->x)); \
782 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
786 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
790 P(nr_uninterruptible);
792 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
799 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
801 P64(max_idle_balance_cost);
805 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
806 if (schedstat_enabled()) {
815 print_cfs_stats(m, cpu);
816 print_rt_stats(m, cpu);
817 print_dl_stats(m, cpu);
819 print_rq(m, rq, cpu);
823 static const char *sched_tunable_scaling_names[] = {
829 static void sched_debug_header(struct seq_file *m)
831 u64 ktime, sched_clk, cpu_clk;
834 local_irq_save(flags);
835 ktime = ktime_to_ns(ktime_get());
836 sched_clk = sched_clock();
837 cpu_clk = local_clock();
838 local_irq_restore(flags);
840 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
841 init_utsname()->release,
842 (int)strcspn(init_utsname()->version, " "),
843 init_utsname()->version);
846 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
848 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
853 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
854 P(sched_clock_stable());
860 SEQ_printf(m, "sysctl_sched\n");
863 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
865 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
866 PN(sysctl_sched_base_slice);
867 P(sysctl_sched_child_runs_first);
868 P(sysctl_sched_features);
872 SEQ_printf(m, " .%-40s: %d (%s)\n",
873 "sysctl_sched_tunable_scaling",
874 sysctl_sched_tunable_scaling,
875 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
879 static int sched_debug_show(struct seq_file *m, void *v)
881 int cpu = (unsigned long)(v - 2);
886 sched_debug_header(m);
891 void sysrq_sched_debug_show(void)
895 sched_debug_header(NULL);
896 for_each_online_cpu(cpu) {
898 * Need to reset softlockup watchdogs on all CPUs, because
899 * another CPU might be blocked waiting for us to process
900 * an IPI or stop_machine.
902 touch_nmi_watchdog();
903 touch_all_softlockup_watchdogs();
904 print_cpu(NULL, cpu);
909 * This iterator needs some explanation.
910 * It returns 1 for the header position.
911 * This means 2 is CPU 0.
912 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
913 * to use cpumask_* to iterate over the CPUs.
915 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
917 unsigned long n = *offset;
925 n = cpumask_next(n - 1, cpu_online_mask);
927 n = cpumask_first(cpu_online_mask);
932 return (void *)(unsigned long)(n + 2);
937 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
940 return sched_debug_start(file, offset);
943 static void sched_debug_stop(struct seq_file *file, void *data)
947 static const struct seq_operations sched_debug_sops = {
948 .start = sched_debug_start,
949 .next = sched_debug_next,
950 .stop = sched_debug_stop,
951 .show = sched_debug_show,
954 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
955 #define __P(F) __PS(#F, F)
956 #define P(F) __PS(#F, p->F)
957 #define PM(F, M) __PS(#F, p->F & (M))
958 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
959 #define __PN(F) __PSN(#F, F)
960 #define PN(F) __PSN(#F, p->F)
963 #ifdef CONFIG_NUMA_BALANCING
964 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
965 unsigned long tpf, unsigned long gsf, unsigned long gpf)
967 SEQ_printf(m, "numa_faults node=%d ", node);
968 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
969 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
974 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
976 #ifdef CONFIG_NUMA_BALANCING
978 P(mm->numa_scan_seq);
980 P(numa_pages_migrated);
981 P(numa_preferred_nid);
982 P(total_numa_faults);
983 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
984 task_node(p), task_numa_group_id(p));
985 show_numa_stats(p, m);
989 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
992 unsigned long nr_switches;
994 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
997 "---------------------------------------------------------"
1000 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F))
1001 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
1005 PN(se.sum_exec_runtime);
1007 nr_switches = p->nvcsw + p->nivcsw;
1009 P(se.nr_migrations);
1011 if (schedstat_enabled()) {
1012 u64 avg_atom, avg_per_cpu;
1014 PN_SCHEDSTAT(sum_sleep_runtime);
1015 PN_SCHEDSTAT(sum_block_runtime);
1016 PN_SCHEDSTAT(wait_start);
1017 PN_SCHEDSTAT(sleep_start);
1018 PN_SCHEDSTAT(block_start);
1019 PN_SCHEDSTAT(sleep_max);
1020 PN_SCHEDSTAT(block_max);
1021 PN_SCHEDSTAT(exec_max);
1022 PN_SCHEDSTAT(slice_max);
1023 PN_SCHEDSTAT(wait_max);
1024 PN_SCHEDSTAT(wait_sum);
1025 P_SCHEDSTAT(wait_count);
1026 PN_SCHEDSTAT(iowait_sum);
1027 P_SCHEDSTAT(iowait_count);
1028 P_SCHEDSTAT(nr_migrations_cold);
1029 P_SCHEDSTAT(nr_failed_migrations_affine);
1030 P_SCHEDSTAT(nr_failed_migrations_running);
1031 P_SCHEDSTAT(nr_failed_migrations_hot);
1032 P_SCHEDSTAT(nr_forced_migrations);
1033 P_SCHEDSTAT(nr_wakeups);
1034 P_SCHEDSTAT(nr_wakeups_sync);
1035 P_SCHEDSTAT(nr_wakeups_migrate);
1036 P_SCHEDSTAT(nr_wakeups_local);
1037 P_SCHEDSTAT(nr_wakeups_remote);
1038 P_SCHEDSTAT(nr_wakeups_affine);
1039 P_SCHEDSTAT(nr_wakeups_affine_attempts);
1040 P_SCHEDSTAT(nr_wakeups_passive);
1041 P_SCHEDSTAT(nr_wakeups_idle);
1043 avg_atom = p->se.sum_exec_runtime;
1045 avg_atom = div64_ul(avg_atom, nr_switches);
1049 avg_per_cpu = p->se.sum_exec_runtime;
1050 if (p->se.nr_migrations) {
1051 avg_per_cpu = div64_u64(avg_per_cpu,
1052 p->se.nr_migrations);
1060 #ifdef CONFIG_SCHED_CORE
1061 PN_SCHEDSTAT(core_forceidle_sum);
1066 __PS("nr_voluntary_switches", p->nvcsw);
1067 __PS("nr_involuntary_switches", p->nivcsw);
1072 P(se.avg.runnable_sum);
1075 P(se.avg.runnable_avg);
1077 P(se.avg.last_update_time);
1078 P(se.avg.util_est.ewma);
1079 PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED);
1081 #ifdef CONFIG_UCLAMP_TASK
1082 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1083 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1084 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1085 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1089 if (task_has_dl_policy(p)) {
1097 unsigned int this_cpu = raw_smp_processor_id();
1100 t0 = cpu_clock(this_cpu);
1101 t1 = cpu_clock(this_cpu);
1102 __PS("clock-delta", t1-t0);
1105 sched_show_numa(p, m);
1108 void proc_sched_set_task(struct task_struct *p)
1110 #ifdef CONFIG_SCHEDSTATS
1111 memset(&p->stats, 0, sizeof(p->stats));
1115 void resched_latency_warn(int cpu, u64 latency)
1117 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1119 WARN(__ratelimit(&latency_check_ratelimit),
1120 "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1121 "without schedule\n",
1122 cpu, latency, cpu_rq(cpu)->ticks_without_resched);