2 * Deadline Scheduling Class (SCHED_DEADLINE)
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
19 #include <linux/slab.h>
21 struct dl_bandwidth def_dl_bandwidth;
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
25 return container_of(dl_se, struct task_struct, dl);
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
30 return container_of(dl_rq, struct rq, dl);
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
48 struct sched_dl_entity *dl_se = &p->dl;
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
60 void init_dl_bw(struct dl_bw *dl_b)
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 if (global_rt_runtime() == RUNTIME_INF)
67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
72 void init_dl_rq(struct dl_rq *dl_rq)
74 dl_rq->rb_root = RB_ROOT;
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
84 init_dl_bw(&dl_rq->dl_bw);
90 static inline int dl_overloaded(struct rq *rq)
92 return atomic_read(&rq->rd->dlo_count);
95 static inline void dl_set_overload(struct rq *rq)
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
105 * Matched by the barrier in pull_dl_task().
108 atomic_inc(&rq->rd->dlo_count);
111 static inline void dl_clear_overload(struct rq *rq)
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
120 static void update_dl_migration(struct dl_rq *dl_rq)
122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
135 struct task_struct *p = dl_task_of(dl_se);
137 if (tsk_nr_cpus_allowed(p) > 1)
138 dl_rq->dl_nr_migratory++;
140 update_dl_migration(dl_rq);
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
145 struct task_struct *p = dl_task_of(dl_se);
147 if (tsk_nr_cpus_allowed(p) > 1)
148 dl_rq->dl_nr_migratory--;
150 update_dl_migration(dl_rq);
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
169 entry = rb_entry(parent, struct task_struct,
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
174 link = &parent->rb_right;
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 dl_rq->earliest_dl.next = p->dl.deadline;
184 rb_link_node(&p->pushable_dl_tasks, parent, link);
185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
190 struct dl_rq *dl_rq = &rq->dl;
192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 struct rb_node *next_node;
198 next_node = rb_next(&p->pushable_dl_tasks);
199 dl_rq->pushable_dl_tasks_leftmost = next_node;
201 dl_rq->earliest_dl.next = rb_entry(next_node,
202 struct task_struct, pushable_dl_tasks)->dl.deadline;
206 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 RB_CLEAR_NODE(&p->pushable_dl_tasks);
210 static inline int has_pushable_dl_tasks(struct rq *rq)
212 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
215 static int push_dl_task(struct rq *rq);
217 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
219 return dl_task(prev);
222 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
223 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
225 static void push_dl_tasks(struct rq *);
226 static void pull_dl_task(struct rq *);
228 static inline void queue_push_tasks(struct rq *rq)
230 if (!has_pushable_dl_tasks(rq))
233 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
236 static inline void queue_pull_task(struct rq *rq)
238 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
241 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
243 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
245 struct rq *later_rq = NULL;
247 later_rq = find_lock_later_rq(p, rq);
252 * If we cannot preempt any rq, fall back to pick any
255 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
256 if (cpu >= nr_cpu_ids) {
258 * Fail to find any suitable cpu.
259 * The task will never come back!
261 BUG_ON(dl_bandwidth_enabled());
264 * If admission control is disabled we
265 * try a little harder to let the task
268 cpu = cpumask_any(cpu_active_mask);
270 later_rq = cpu_rq(cpu);
271 double_lock_balance(rq, later_rq);
274 set_task_cpu(p, later_rq->cpu);
275 double_unlock_balance(later_rq, rq);
283 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
288 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
293 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
298 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
302 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
307 static inline void pull_dl_task(struct rq *rq)
311 static inline void queue_push_tasks(struct rq *rq)
315 static inline void queue_pull_task(struct rq *rq)
318 #endif /* CONFIG_SMP */
320 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
321 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
322 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
326 * We are being explicitly informed that a new instance is starting,
327 * and this means that:
328 * - the absolute deadline of the entity has to be placed at
329 * current time + relative deadline;
330 * - the runtime of the entity has to be set to the maximum value.
332 * The capability of specifying such event is useful whenever a -deadline
333 * entity wants to (try to!) synchronize its behaviour with the scheduler's
334 * one, and to (try to!) reconcile itself with its own scheduling
337 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
339 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
340 struct rq *rq = rq_of_dl_rq(dl_rq);
342 WARN_ON(dl_se->dl_boosted);
343 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
346 * We are racing with the deadline timer. So, do nothing because
347 * the deadline timer handler will take care of properly recharging
348 * the runtime and postponing the deadline
350 if (dl_se->dl_throttled)
354 * We use the regular wall clock time to set deadlines in the
355 * future; in fact, we must consider execution overheads (time
356 * spent on hardirq context, etc.).
358 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
359 dl_se->runtime = dl_se->dl_runtime;
363 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
364 * possibility of a entity lasting more than what it declared, and thus
365 * exhausting its runtime.
367 * Here we are interested in making runtime overrun possible, but we do
368 * not want a entity which is misbehaving to affect the scheduling of all
370 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
371 * is used, in order to confine each entity within its own bandwidth.
373 * This function deals exactly with that, and ensures that when the runtime
374 * of a entity is replenished, its deadline is also postponed. That ensures
375 * the overrunning entity can't interfere with other entity in the system and
376 * can't make them miss their deadlines. Reasons why this kind of overruns
377 * could happen are, typically, a entity voluntarily trying to overcome its
378 * runtime, or it just underestimated it during sched_setattr().
380 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
381 struct sched_dl_entity *pi_se)
383 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
384 struct rq *rq = rq_of_dl_rq(dl_rq);
386 BUG_ON(pi_se->dl_runtime <= 0);
389 * This could be the case for a !-dl task that is boosted.
390 * Just go with full inherited parameters.
392 if (dl_se->dl_deadline == 0) {
393 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
394 dl_se->runtime = pi_se->dl_runtime;
397 if (dl_se->dl_yielded && dl_se->runtime > 0)
401 * We keep moving the deadline away until we get some
402 * available runtime for the entity. This ensures correct
403 * handling of situations where the runtime overrun is
406 while (dl_se->runtime <= 0) {
407 dl_se->deadline += pi_se->dl_period;
408 dl_se->runtime += pi_se->dl_runtime;
412 * At this point, the deadline really should be "in
413 * the future" with respect to rq->clock. If it's
414 * not, we are, for some reason, lagging too much!
415 * Anyway, after having warn userspace abut that,
416 * we still try to keep the things running by
417 * resetting the deadline and the budget of the
420 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
421 printk_deferred_once("sched: DL replenish lagged too much\n");
422 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
423 dl_se->runtime = pi_se->dl_runtime;
426 if (dl_se->dl_yielded)
427 dl_se->dl_yielded = 0;
428 if (dl_se->dl_throttled)
429 dl_se->dl_throttled = 0;
433 * Here we check if --at time t-- an entity (which is probably being
434 * [re]activated or, in general, enqueued) can use its remaining runtime
435 * and its current deadline _without_ exceeding the bandwidth it is
436 * assigned (function returns true if it can't). We are in fact applying
437 * one of the CBS rules: when a task wakes up, if the residual runtime
438 * over residual deadline fits within the allocated bandwidth, then we
439 * can keep the current (absolute) deadline and residual budget without
440 * disrupting the schedulability of the system. Otherwise, we should
441 * refill the runtime and set the deadline a period in the future,
442 * because keeping the current (absolute) deadline of the task would
443 * result in breaking guarantees promised to other tasks (refer to
444 * Documentation/scheduler/sched-deadline.txt for more informations).
446 * This function returns true if:
448 * runtime / (deadline - t) > dl_runtime / dl_period ,
450 * IOW we can't recycle current parameters.
452 * Notice that the bandwidth check is done against the period. For
453 * task with deadline equal to period this is the same of using
454 * dl_deadline instead of dl_period in the equation above.
456 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
457 struct sched_dl_entity *pi_se, u64 t)
462 * left and right are the two sides of the equation above,
463 * after a bit of shuffling to use multiplications instead
466 * Note that none of the time values involved in the two
467 * multiplications are absolute: dl_deadline and dl_runtime
468 * are the relative deadline and the maximum runtime of each
469 * instance, runtime is the runtime left for the last instance
470 * and (deadline - t), since t is rq->clock, is the time left
471 * to the (absolute) deadline. Even if overflowing the u64 type
472 * is very unlikely to occur in both cases, here we scale down
473 * as we want to avoid that risk at all. Scaling down by 10
474 * means that we reduce granularity to 1us. We are fine with it,
475 * since this is only a true/false check and, anyway, thinking
476 * of anything below microseconds resolution is actually fiction
477 * (but still we want to give the user that illusion >;).
479 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
480 right = ((dl_se->deadline - t) >> DL_SCALE) *
481 (pi_se->dl_runtime >> DL_SCALE);
483 return dl_time_before(right, left);
487 * When a -deadline entity is queued back on the runqueue, its runtime and
488 * deadline might need updating.
490 * The policy here is that we update the deadline of the entity only if:
491 * - the current deadline is in the past,
492 * - using the remaining runtime with the current deadline would make
493 * the entity exceed its bandwidth.
495 static void update_dl_entity(struct sched_dl_entity *dl_se,
496 struct sched_dl_entity *pi_se)
498 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
499 struct rq *rq = rq_of_dl_rq(dl_rq);
501 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
502 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
503 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
504 dl_se->runtime = pi_se->dl_runtime;
509 * If the entity depleted all its runtime, and if we want it to sleep
510 * while waiting for some new execution time to become available, we
511 * set the bandwidth enforcement timer to the replenishment instant
512 * and try to activate it.
514 * Notice that it is important for the caller to know if the timer
515 * actually started or not (i.e., the replenishment instant is in
516 * the future or in the past).
518 static int start_dl_timer(struct task_struct *p)
520 struct sched_dl_entity *dl_se = &p->dl;
521 struct hrtimer *timer = &dl_se->dl_timer;
522 struct rq *rq = task_rq(p);
526 lockdep_assert_held(&rq->lock);
529 * We want the timer to fire at the deadline, but considering
530 * that it is actually coming from rq->clock and not from
531 * hrtimer's time base reading.
533 act = ns_to_ktime(dl_se->deadline);
534 now = hrtimer_cb_get_time(timer);
535 delta = ktime_to_ns(now) - rq_clock(rq);
536 act = ktime_add_ns(act, delta);
539 * If the expiry time already passed, e.g., because the value
540 * chosen as the deadline is too small, don't even try to
541 * start the timer in the past!
543 if (ktime_us_delta(act, now) < 0)
547 * !enqueued will guarantee another callback; even if one is already in
548 * progress. This ensures a balanced {get,put}_task_struct().
550 * The race against __run_timer() clearing the enqueued state is
551 * harmless because we're holding task_rq()->lock, therefore the timer
552 * expiring after we've done the check will wait on its task_rq_lock()
553 * and observe our state.
555 if (!hrtimer_is_queued(timer)) {
557 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
564 * This is the bandwidth enforcement timer callback. If here, we know
565 * a task is not on its dl_rq, since the fact that the timer was running
566 * means the task is throttled and needs a runtime replenishment.
568 * However, what we actually do depends on the fact the task is active,
569 * (it is on its rq) or has been removed from there by a call to
570 * dequeue_task_dl(). In the former case we must issue the runtime
571 * replenishment and add the task back to the dl_rq; in the latter, we just
572 * do nothing but clearing dl_throttled, so that runtime and deadline
573 * updating (and the queueing back to dl_rq) will be done by the
574 * next call to enqueue_task_dl().
576 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
578 struct sched_dl_entity *dl_se = container_of(timer,
579 struct sched_dl_entity,
581 struct task_struct *p = dl_task_of(dl_se);
585 rq = task_rq_lock(p, &rf);
588 * The task might have changed its scheduling policy to something
589 * different than SCHED_DEADLINE (through switched_fromd_dl()).
592 __dl_clear_params(p);
597 * The task might have been boosted by someone else and might be in the
598 * boosting/deboosting path, its not throttled.
600 if (dl_se->dl_boosted)
604 * Spurious timer due to start_dl_timer() race; or we already received
605 * a replenishment from rt_mutex_setprio().
607 if (!dl_se->dl_throttled)
614 * If the throttle happened during sched-out; like:
621 * __dequeue_task_dl()
624 * We can be both throttled and !queued. Replenish the counter
625 * but do not enqueue -- wait for our wakeup to do that.
627 if (!task_on_rq_queued(p)) {
628 replenish_dl_entity(dl_se, dl_se);
633 if (unlikely(!rq->online)) {
635 * If the runqueue is no longer available, migrate the
636 * task elsewhere. This necessarily changes rq.
638 lockdep_unpin_lock(&rq->lock, rf.cookie);
639 rq = dl_task_offline_migration(rq, p);
640 rf.cookie = lockdep_pin_lock(&rq->lock);
643 * Now that the task has been migrated to the new RQ and we
644 * have that locked, proceed as normal and enqueue the task
650 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
651 if (dl_task(rq->curr))
652 check_preempt_curr_dl(rq, p, 0);
658 * Queueing this task back might have overloaded rq, check if we need
659 * to kick someone away.
661 if (has_pushable_dl_tasks(rq)) {
663 * Nothing relies on rq->lock after this, so its safe to drop
666 lockdep_unpin_lock(&rq->lock, rf.cookie);
668 lockdep_repin_lock(&rq->lock, rf.cookie);
673 task_rq_unlock(rq, p, &rf);
676 * This can free the task_struct, including this hrtimer, do not touch
677 * anything related to that after this.
681 return HRTIMER_NORESTART;
684 void init_dl_task_timer(struct sched_dl_entity *dl_se)
686 struct hrtimer *timer = &dl_se->dl_timer;
688 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
689 timer->function = dl_task_timer;
693 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
695 return (dl_se->runtime <= 0);
698 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
701 * Update the current task's runtime statistics (provided it is still
702 * a -deadline task and has not been removed from the dl_rq).
704 static void update_curr_dl(struct rq *rq)
706 struct task_struct *curr = rq->curr;
707 struct sched_dl_entity *dl_se = &curr->dl;
710 if (!dl_task(curr) || !on_dl_rq(dl_se))
714 * Consumed budget is computed considering the time as
715 * observed by schedulable tasks (excluding time spent
716 * in hardirq context, etc.). Deadlines are instead
717 * computed using hard walltime. This seems to be the more
718 * natural solution, but the full ramifications of this
719 * approach need further study.
721 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
722 if (unlikely((s64)delta_exec <= 0)) {
723 if (unlikely(dl_se->dl_yielded))
728 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
729 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_DL);
731 schedstat_set(curr->se.statistics.exec_max,
732 max(curr->se.statistics.exec_max, delta_exec));
734 curr->se.sum_exec_runtime += delta_exec;
735 account_group_exec_runtime(curr, delta_exec);
737 curr->se.exec_start = rq_clock_task(rq);
738 cpuacct_charge(curr, delta_exec);
740 sched_rt_avg_update(rq, delta_exec);
742 dl_se->runtime -= delta_exec;
745 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
746 dl_se->dl_throttled = 1;
747 __dequeue_task_dl(rq, curr, 0);
748 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
749 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
751 if (!is_leftmost(curr, &rq->dl))
756 * Because -- for now -- we share the rt bandwidth, we need to
757 * account our runtime there too, otherwise actual rt tasks
758 * would be able to exceed the shared quota.
760 * Account to the root rt group for now.
762 * The solution we're working towards is having the RT groups scheduled
763 * using deadline servers -- however there's a few nasties to figure
764 * out before that can happen.
766 if (rt_bandwidth_enabled()) {
767 struct rt_rq *rt_rq = &rq->rt;
769 raw_spin_lock(&rt_rq->rt_runtime_lock);
771 * We'll let actual RT tasks worry about the overflow here, we
772 * have our own CBS to keep us inline; only account when RT
773 * bandwidth is relevant.
775 if (sched_rt_bandwidth_account(rt_rq))
776 rt_rq->rt_time += delta_exec;
777 raw_spin_unlock(&rt_rq->rt_runtime_lock);
783 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
785 struct rq *rq = rq_of_dl_rq(dl_rq);
787 if (dl_rq->earliest_dl.curr == 0 ||
788 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
789 dl_rq->earliest_dl.curr = deadline;
790 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
794 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
796 struct rq *rq = rq_of_dl_rq(dl_rq);
799 * Since we may have removed our earliest (and/or next earliest)
800 * task we must recompute them.
802 if (!dl_rq->dl_nr_running) {
803 dl_rq->earliest_dl.curr = 0;
804 dl_rq->earliest_dl.next = 0;
805 cpudl_clear(&rq->rd->cpudl, rq->cpu);
807 struct rb_node *leftmost = dl_rq->rb_leftmost;
808 struct sched_dl_entity *entry;
810 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
811 dl_rq->earliest_dl.curr = entry->deadline;
812 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
818 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
819 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
821 #endif /* CONFIG_SMP */
824 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
826 int prio = dl_task_of(dl_se)->prio;
827 u64 deadline = dl_se->deadline;
829 WARN_ON(!dl_prio(prio));
830 dl_rq->dl_nr_running++;
831 add_nr_running(rq_of_dl_rq(dl_rq), 1);
833 inc_dl_deadline(dl_rq, deadline);
834 inc_dl_migration(dl_se, dl_rq);
838 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
840 int prio = dl_task_of(dl_se)->prio;
842 WARN_ON(!dl_prio(prio));
843 WARN_ON(!dl_rq->dl_nr_running);
844 dl_rq->dl_nr_running--;
845 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
847 dec_dl_deadline(dl_rq, dl_se->deadline);
848 dec_dl_migration(dl_se, dl_rq);
851 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
853 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
854 struct rb_node **link = &dl_rq->rb_root.rb_node;
855 struct rb_node *parent = NULL;
856 struct sched_dl_entity *entry;
859 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
863 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
864 if (dl_time_before(dl_se->deadline, entry->deadline))
865 link = &parent->rb_left;
867 link = &parent->rb_right;
873 dl_rq->rb_leftmost = &dl_se->rb_node;
875 rb_link_node(&dl_se->rb_node, parent, link);
876 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
878 inc_dl_tasks(dl_se, dl_rq);
881 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
883 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
885 if (RB_EMPTY_NODE(&dl_se->rb_node))
888 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
889 struct rb_node *next_node;
891 next_node = rb_next(&dl_se->rb_node);
892 dl_rq->rb_leftmost = next_node;
895 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
896 RB_CLEAR_NODE(&dl_se->rb_node);
898 dec_dl_tasks(dl_se, dl_rq);
902 enqueue_dl_entity(struct sched_dl_entity *dl_se,
903 struct sched_dl_entity *pi_se, int flags)
905 BUG_ON(on_dl_rq(dl_se));
908 * If this is a wakeup or a new instance, the scheduling
909 * parameters of the task might need updating. Otherwise,
910 * we want a replenishment of its runtime.
912 if (flags & ENQUEUE_WAKEUP)
913 update_dl_entity(dl_se, pi_se);
914 else if (flags & ENQUEUE_REPLENISH)
915 replenish_dl_entity(dl_se, pi_se);
917 __enqueue_dl_entity(dl_se);
920 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
922 __dequeue_dl_entity(dl_se);
925 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
927 struct task_struct *pi_task = rt_mutex_get_top_task(p);
928 struct sched_dl_entity *pi_se = &p->dl;
931 * Use the scheduling parameters of the top pi-waiter
932 * task if we have one and its (absolute) deadline is
933 * smaller than our one... OTW we keep our runtime and
936 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
937 pi_se = &pi_task->dl;
938 } else if (!dl_prio(p->normal_prio)) {
940 * Special case in which we have a !SCHED_DEADLINE task
941 * that is going to be deboosted, but exceedes its
942 * runtime while doing so. No point in replenishing
943 * it, as it's going to return back to its original
944 * scheduling class after this.
946 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
951 * If p is throttled, we do nothing. In fact, if it exhausted
952 * its budget it needs a replenishment and, since it now is on
953 * its rq, the bandwidth timer callback (which clearly has not
954 * run yet) will take care of this.
956 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
959 enqueue_dl_entity(&p->dl, pi_se, flags);
961 if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
962 enqueue_pushable_dl_task(rq, p);
965 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
967 dequeue_dl_entity(&p->dl);
968 dequeue_pushable_dl_task(rq, p);
971 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
974 __dequeue_task_dl(rq, p, flags);
978 * Yield task semantic for -deadline tasks is:
980 * get off from the CPU until our next instance, with
981 * a new runtime. This is of little use now, since we
982 * don't have a bandwidth reclaiming mechanism. Anyway,
983 * bandwidth reclaiming is planned for the future, and
984 * yield_task_dl will indicate that some spare budget
985 * is available for other task instances to use it.
987 static void yield_task_dl(struct rq *rq)
990 * We make the task go to sleep until its current deadline by
991 * forcing its runtime to zero. This way, update_curr_dl() stops
992 * it and the bandwidth timer will wake it up and will give it
993 * new scheduling parameters (thanks to dl_yielded=1).
995 rq->curr->dl.dl_yielded = 1;
1000 * Tell update_rq_clock() that we've just updated,
1001 * so we don't do microscopic update in schedule()
1002 * and double the fastpath cost.
1004 rq_clock_skip_update(rq, true);
1009 static int find_later_rq(struct task_struct *task);
1012 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1014 struct task_struct *curr;
1017 if (sd_flag != SD_BALANCE_WAKE)
1023 curr = READ_ONCE(rq->curr); /* unlocked access */
1026 * If we are dealing with a -deadline task, we must
1027 * decide where to wake it up.
1028 * If it has a later deadline and the current task
1029 * on this rq can't move (provided the waking task
1030 * can!) we prefer to send it somewhere else. On the
1031 * other hand, if it has a shorter deadline, we
1032 * try to make it stay here, it might be important.
1034 if (unlikely(dl_task(curr)) &&
1035 (tsk_nr_cpus_allowed(curr) < 2 ||
1036 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1037 (tsk_nr_cpus_allowed(p) > 1)) {
1038 int target = find_later_rq(p);
1041 (dl_time_before(p->dl.deadline,
1042 cpu_rq(target)->dl.earliest_dl.curr) ||
1043 (cpu_rq(target)->dl.dl_nr_running == 0)))
1052 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1055 * Current can't be migrated, useless to reschedule,
1056 * let's hope p can move out.
1058 if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1059 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1063 * p is migratable, so let's not schedule it and
1064 * see if it is pushed or pulled somewhere else.
1066 if (tsk_nr_cpus_allowed(p) != 1 &&
1067 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1073 #endif /* CONFIG_SMP */
1076 * Only called when both the current and waking task are -deadline
1079 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1082 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1089 * In the unlikely case current and p have the same deadline
1090 * let us try to decide what's the best thing to do...
1092 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1093 !test_tsk_need_resched(rq->curr))
1094 check_preempt_equal_dl(rq, p);
1095 #endif /* CONFIG_SMP */
1098 #ifdef CONFIG_SCHED_HRTICK
1099 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1101 hrtick_start(rq, p->dl.runtime);
1103 #else /* !CONFIG_SCHED_HRTICK */
1104 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1109 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1110 struct dl_rq *dl_rq)
1112 struct rb_node *left = dl_rq->rb_leftmost;
1117 return rb_entry(left, struct sched_dl_entity, rb_node);
1120 struct task_struct *
1121 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1123 struct sched_dl_entity *dl_se;
1124 struct task_struct *p;
1125 struct dl_rq *dl_rq;
1129 if (need_pull_dl_task(rq, prev)) {
1131 * This is OK, because current is on_cpu, which avoids it being
1132 * picked for load-balance and preemption/IRQs are still
1133 * disabled avoiding further scheduler activity on it and we're
1134 * being very careful to re-start the picking loop.
1136 lockdep_unpin_lock(&rq->lock, cookie);
1138 lockdep_repin_lock(&rq->lock, cookie);
1140 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1141 * means a stop task can slip in, in which case we need to
1142 * re-start task selection.
1144 if (rq->stop && task_on_rq_queued(rq->stop))
1149 * When prev is DL, we may throttle it in put_prev_task().
1150 * So, we update time before we check for dl_nr_running.
1152 if (prev->sched_class == &dl_sched_class)
1155 if (unlikely(!dl_rq->dl_nr_running))
1158 put_prev_task(rq, prev);
1160 dl_se = pick_next_dl_entity(rq, dl_rq);
1163 p = dl_task_of(dl_se);
1164 p->se.exec_start = rq_clock_task(rq);
1166 /* Running task will never be pushed. */
1167 dequeue_pushable_dl_task(rq, p);
1169 if (hrtick_enabled(rq))
1170 start_hrtick_dl(rq, p);
1172 queue_push_tasks(rq);
1177 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1181 if (on_dl_rq(&p->dl) && tsk_nr_cpus_allowed(p) > 1)
1182 enqueue_pushable_dl_task(rq, p);
1185 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1190 * Even when we have runtime, update_curr_dl() might have resulted in us
1191 * not being the leftmost task anymore. In that case NEED_RESCHED will
1192 * be set and schedule() will start a new hrtick for the next task.
1194 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1195 is_leftmost(p, &rq->dl))
1196 start_hrtick_dl(rq, p);
1199 static void task_fork_dl(struct task_struct *p)
1202 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1207 static void task_dead_dl(struct task_struct *p)
1209 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1212 * Since we are TASK_DEAD we won't slip out of the domain!
1214 raw_spin_lock_irq(&dl_b->lock);
1215 /* XXX we should retain the bw until 0-lag */
1216 dl_b->total_bw -= p->dl.dl_bw;
1217 raw_spin_unlock_irq(&dl_b->lock);
1220 static void set_curr_task_dl(struct rq *rq)
1222 struct task_struct *p = rq->curr;
1224 p->se.exec_start = rq_clock_task(rq);
1226 /* You can't push away the running task */
1227 dequeue_pushable_dl_task(rq, p);
1232 /* Only try algorithms three times */
1233 #define DL_MAX_TRIES 3
1235 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1237 if (!task_running(rq, p) &&
1238 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1244 * Return the earliest pushable rq's task, which is suitable to be executed
1245 * on the CPU, NULL otherwise:
1247 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1249 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1250 struct task_struct *p = NULL;
1252 if (!has_pushable_dl_tasks(rq))
1257 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1259 if (pick_dl_task(rq, p, cpu))
1262 next_node = rb_next(next_node);
1269 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1271 static int find_later_rq(struct task_struct *task)
1273 struct sched_domain *sd;
1274 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1275 int this_cpu = smp_processor_id();
1276 int best_cpu, cpu = task_cpu(task);
1278 /* Make sure the mask is initialized first */
1279 if (unlikely(!later_mask))
1282 if (tsk_nr_cpus_allowed(task) == 1)
1286 * We have to consider system topology and task affinity
1287 * first, then we can look for a suitable cpu.
1289 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1295 * If we are here, some target has been found,
1296 * the most suitable of which is cached in best_cpu.
1297 * This is, among the runqueues where the current tasks
1298 * have later deadlines than the task's one, the rq
1299 * with the latest possible one.
1301 * Now we check how well this matches with task's
1302 * affinity and system topology.
1304 * The last cpu where the task run is our first
1305 * guess, since it is most likely cache-hot there.
1307 if (cpumask_test_cpu(cpu, later_mask))
1310 * Check if this_cpu is to be skipped (i.e., it is
1311 * not in the mask) or not.
1313 if (!cpumask_test_cpu(this_cpu, later_mask))
1317 for_each_domain(cpu, sd) {
1318 if (sd->flags & SD_WAKE_AFFINE) {
1321 * If possible, preempting this_cpu is
1322 * cheaper than migrating.
1324 if (this_cpu != -1 &&
1325 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1331 * Last chance: if best_cpu is valid and is
1332 * in the mask, that becomes our choice.
1334 if (best_cpu < nr_cpu_ids &&
1335 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1344 * At this point, all our guesses failed, we just return
1345 * 'something', and let the caller sort the things out.
1350 cpu = cpumask_any(later_mask);
1351 if (cpu < nr_cpu_ids)
1357 /* Locks the rq it finds */
1358 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1360 struct rq *later_rq = NULL;
1364 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1365 cpu = find_later_rq(task);
1367 if ((cpu == -1) || (cpu == rq->cpu))
1370 later_rq = cpu_rq(cpu);
1372 if (later_rq->dl.dl_nr_running &&
1373 !dl_time_before(task->dl.deadline,
1374 later_rq->dl.earliest_dl.curr)) {
1376 * Target rq has tasks of equal or earlier deadline,
1377 * retrying does not release any lock and is unlikely
1378 * to yield a different result.
1384 /* Retry if something changed. */
1385 if (double_lock_balance(rq, later_rq)) {
1386 if (unlikely(task_rq(task) != rq ||
1387 !cpumask_test_cpu(later_rq->cpu,
1388 tsk_cpus_allowed(task)) ||
1389 task_running(rq, task) ||
1391 !task_on_rq_queued(task))) {
1392 double_unlock_balance(rq, later_rq);
1399 * If the rq we found has no -deadline task, or
1400 * its earliest one has a later deadline than our
1401 * task, the rq is a good one.
1403 if (!later_rq->dl.dl_nr_running ||
1404 dl_time_before(task->dl.deadline,
1405 later_rq->dl.earliest_dl.curr))
1408 /* Otherwise we try again. */
1409 double_unlock_balance(rq, later_rq);
1416 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1418 struct task_struct *p;
1420 if (!has_pushable_dl_tasks(rq))
1423 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1424 struct task_struct, pushable_dl_tasks);
1426 BUG_ON(rq->cpu != task_cpu(p));
1427 BUG_ON(task_current(rq, p));
1428 BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1430 BUG_ON(!task_on_rq_queued(p));
1431 BUG_ON(!dl_task(p));
1437 * See if the non running -deadline tasks on this rq
1438 * can be sent to some other CPU where they can preempt
1439 * and start executing.
1441 static int push_dl_task(struct rq *rq)
1443 struct task_struct *next_task;
1444 struct rq *later_rq;
1447 if (!rq->dl.overloaded)
1450 next_task = pick_next_pushable_dl_task(rq);
1455 if (unlikely(next_task == rq->curr)) {
1461 * If next_task preempts rq->curr, and rq->curr
1462 * can move away, it makes sense to just reschedule
1463 * without going further in pushing next_task.
1465 if (dl_task(rq->curr) &&
1466 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1467 tsk_nr_cpus_allowed(rq->curr) > 1) {
1472 /* We might release rq lock */
1473 get_task_struct(next_task);
1475 /* Will lock the rq it'll find */
1476 later_rq = find_lock_later_rq(next_task, rq);
1478 struct task_struct *task;
1481 * We must check all this again, since
1482 * find_lock_later_rq releases rq->lock and it is
1483 * then possible that next_task has migrated.
1485 task = pick_next_pushable_dl_task(rq);
1486 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1488 * The task is still there. We don't try
1489 * again, some other cpu will pull it when ready.
1498 put_task_struct(next_task);
1503 deactivate_task(rq, next_task, 0);
1504 set_task_cpu(next_task, later_rq->cpu);
1505 activate_task(later_rq, next_task, 0);
1508 resched_curr(later_rq);
1510 double_unlock_balance(rq, later_rq);
1513 put_task_struct(next_task);
1518 static void push_dl_tasks(struct rq *rq)
1520 /* push_dl_task() will return true if it moved a -deadline task */
1521 while (push_dl_task(rq))
1525 static void pull_dl_task(struct rq *this_rq)
1527 int this_cpu = this_rq->cpu, cpu;
1528 struct task_struct *p;
1529 bool resched = false;
1531 u64 dmin = LONG_MAX;
1533 if (likely(!dl_overloaded(this_rq)))
1537 * Match the barrier from dl_set_overloaded; this guarantees that if we
1538 * see overloaded we must also see the dlo_mask bit.
1542 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1543 if (this_cpu == cpu)
1546 src_rq = cpu_rq(cpu);
1549 * It looks racy, abd it is! However, as in sched_rt.c,
1550 * we are fine with this.
1552 if (this_rq->dl.dl_nr_running &&
1553 dl_time_before(this_rq->dl.earliest_dl.curr,
1554 src_rq->dl.earliest_dl.next))
1557 /* Might drop this_rq->lock */
1558 double_lock_balance(this_rq, src_rq);
1561 * If there are no more pullable tasks on the
1562 * rq, we're done with it.
1564 if (src_rq->dl.dl_nr_running <= 1)
1567 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1570 * We found a task to be pulled if:
1571 * - it preempts our current (if there's one),
1572 * - it will preempt the last one we pulled (if any).
1574 if (p && dl_time_before(p->dl.deadline, dmin) &&
1575 (!this_rq->dl.dl_nr_running ||
1576 dl_time_before(p->dl.deadline,
1577 this_rq->dl.earliest_dl.curr))) {
1578 WARN_ON(p == src_rq->curr);
1579 WARN_ON(!task_on_rq_queued(p));
1582 * Then we pull iff p has actually an earlier
1583 * deadline than the current task of its runqueue.
1585 if (dl_time_before(p->dl.deadline,
1586 src_rq->curr->dl.deadline))
1591 deactivate_task(src_rq, p, 0);
1592 set_task_cpu(p, this_cpu);
1593 activate_task(this_rq, p, 0);
1594 dmin = p->dl.deadline;
1596 /* Is there any other task even earlier? */
1599 double_unlock_balance(this_rq, src_rq);
1603 resched_curr(this_rq);
1607 * Since the task is not running and a reschedule is not going to happen
1608 * anytime soon on its runqueue, we try pushing it away now.
1610 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1612 if (!task_running(rq, p) &&
1613 !test_tsk_need_resched(rq->curr) &&
1614 tsk_nr_cpus_allowed(p) > 1 &&
1615 dl_task(rq->curr) &&
1616 (tsk_nr_cpus_allowed(rq->curr) < 2 ||
1617 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1622 static void set_cpus_allowed_dl(struct task_struct *p,
1623 const struct cpumask *new_mask)
1625 struct root_domain *src_rd;
1628 BUG_ON(!dl_task(p));
1633 * Migrating a SCHED_DEADLINE task between exclusive
1634 * cpusets (different root_domains) entails a bandwidth
1635 * update. We already made space for us in the destination
1636 * domain (see cpuset_can_attach()).
1638 if (!cpumask_intersects(src_rd->span, new_mask)) {
1639 struct dl_bw *src_dl_b;
1641 src_dl_b = dl_bw_of(cpu_of(rq));
1643 * We now free resources of the root_domain we are migrating
1644 * off. In the worst case, sched_setattr() may temporary fail
1645 * until we complete the update.
1647 raw_spin_lock(&src_dl_b->lock);
1648 __dl_clear(src_dl_b, p->dl.dl_bw);
1649 raw_spin_unlock(&src_dl_b->lock);
1652 set_cpus_allowed_common(p, new_mask);
1655 /* Assumes rq->lock is held */
1656 static void rq_online_dl(struct rq *rq)
1658 if (rq->dl.overloaded)
1659 dl_set_overload(rq);
1661 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1662 if (rq->dl.dl_nr_running > 0)
1663 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
1666 /* Assumes rq->lock is held */
1667 static void rq_offline_dl(struct rq *rq)
1669 if (rq->dl.overloaded)
1670 dl_clear_overload(rq);
1672 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1673 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1676 void __init init_sched_dl_class(void)
1680 for_each_possible_cpu(i)
1681 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1682 GFP_KERNEL, cpu_to_node(i));
1685 #endif /* CONFIG_SMP */
1687 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1690 * Start the deadline timer; if we switch back to dl before this we'll
1691 * continue consuming our current CBS slice. If we stay outside of
1692 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1695 if (!start_dl_timer(p))
1696 __dl_clear_params(p);
1699 * Since this might be the only -deadline task on the rq,
1700 * this is the right place to try to pull some other one
1701 * from an overloaded cpu, if any.
1703 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1706 queue_pull_task(rq);
1710 * When switching to -deadline, we may overload the rq, then
1711 * we try to push someone off, if possible.
1713 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1716 /* If p is not queued we will update its parameters at next wakeup. */
1717 if (!task_on_rq_queued(p))
1721 * If p is boosted we already updated its params in
1722 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
1723 * p's deadline being now already after rq_clock(rq).
1725 if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1726 setup_new_dl_entity(&p->dl);
1728 if (rq->curr != p) {
1730 if (tsk_nr_cpus_allowed(p) > 1 && rq->dl.overloaded)
1731 queue_push_tasks(rq);
1733 if (dl_task(rq->curr))
1734 check_preempt_curr_dl(rq, p, 0);
1742 * If the scheduling parameters of a -deadline task changed,
1743 * a push or pull operation might be needed.
1745 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1748 if (task_on_rq_queued(p) || rq->curr == p) {
1751 * This might be too much, but unfortunately
1752 * we don't have the old deadline value, and
1753 * we can't argue if the task is increasing
1754 * or lowering its prio, so...
1756 if (!rq->dl.overloaded)
1757 queue_pull_task(rq);
1760 * If we now have a earlier deadline task than p,
1761 * then reschedule, provided p is still on this
1764 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1768 * Again, we don't know if p has a earlier
1769 * or later deadline, so let's blindly set a
1770 * (maybe not needed) rescheduling point.
1773 #endif /* CONFIG_SMP */
1777 const struct sched_class dl_sched_class = {
1778 .next = &rt_sched_class,
1779 .enqueue_task = enqueue_task_dl,
1780 .dequeue_task = dequeue_task_dl,
1781 .yield_task = yield_task_dl,
1783 .check_preempt_curr = check_preempt_curr_dl,
1785 .pick_next_task = pick_next_task_dl,
1786 .put_prev_task = put_prev_task_dl,
1789 .select_task_rq = select_task_rq_dl,
1790 .set_cpus_allowed = set_cpus_allowed_dl,
1791 .rq_online = rq_online_dl,
1792 .rq_offline = rq_offline_dl,
1793 .task_woken = task_woken_dl,
1796 .set_curr_task = set_curr_task_dl,
1797 .task_tick = task_tick_dl,
1798 .task_fork = task_fork_dl,
1799 .task_dead = task_dead_dl,
1801 .prio_changed = prio_changed_dl,
1802 .switched_from = switched_from_dl,
1803 .switched_to = switched_to_dl,
1805 .update_curr = update_curr_dl,
1808 #ifdef CONFIG_SCHED_DEBUG
1809 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1811 void print_dl_stats(struct seq_file *m, int cpu)
1813 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1815 #endif /* CONFIG_SCHED_DEBUG */