Merge tag 'asoc-fix-v6.5-merge-window' of https://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-rpi.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
10
11 struct sugov_tunables {
12         struct gov_attr_set     attr_set;
13         unsigned int            rate_limit_us;
14 };
15
16 struct sugov_policy {
17         struct cpufreq_policy   *policy;
18
19         struct sugov_tunables   *tunables;
20         struct list_head        tunables_hook;
21
22         raw_spinlock_t          update_lock;
23         u64                     last_freq_update_time;
24         s64                     freq_update_delay_ns;
25         unsigned int            next_freq;
26         unsigned int            cached_raw_freq;
27
28         /* The next fields are only needed if fast switch cannot be used: */
29         struct                  irq_work irq_work;
30         struct                  kthread_work work;
31         struct                  mutex work_lock;
32         struct                  kthread_worker worker;
33         struct task_struct      *thread;
34         bool                    work_in_progress;
35
36         bool                    limits_changed;
37         bool                    need_freq_update;
38 };
39
40 struct sugov_cpu {
41         struct update_util_data update_util;
42         struct sugov_policy     *sg_policy;
43         unsigned int            cpu;
44
45         bool                    iowait_boost_pending;
46         unsigned int            iowait_boost;
47         u64                     last_update;
48
49         unsigned long           util;
50         unsigned long           bw_dl;
51
52         /* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54         unsigned long           saved_idle_calls;
55 #endif
56 };
57
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59
60 /************************ Governor internals ***********************/
61
62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63 {
64         s64 delta_ns;
65
66         /*
67          * Since cpufreq_update_util() is called with rq->lock held for
68          * the @target_cpu, our per-CPU data is fully serialized.
69          *
70          * However, drivers cannot in general deal with cross-CPU
71          * requests, so while get_next_freq() will work, our
72          * sugov_update_commit() call may not for the fast switching platforms.
73          *
74          * Hence stop here for remote requests if they aren't supported
75          * by the hardware, as calculating the frequency is pointless if
76          * we cannot in fact act on it.
77          *
78          * This is needed on the slow switching platforms too to prevent CPUs
79          * going offline from leaving stale IRQ work items behind.
80          */
81         if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82                 return false;
83
84         if (unlikely(sg_policy->limits_changed)) {
85                 sg_policy->limits_changed = false;
86                 sg_policy->need_freq_update = true;
87                 return true;
88         }
89
90         delta_ns = time - sg_policy->last_freq_update_time;
91
92         return delta_ns >= sg_policy->freq_update_delay_ns;
93 }
94
95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96                                    unsigned int next_freq)
97 {
98         if (sg_policy->need_freq_update)
99                 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100         else if (sg_policy->next_freq == next_freq)
101                 return false;
102
103         sg_policy->next_freq = next_freq;
104         sg_policy->last_freq_update_time = time;
105
106         return true;
107 }
108
109 static void sugov_deferred_update(struct sugov_policy *sg_policy)
110 {
111         if (!sg_policy->work_in_progress) {
112                 sg_policy->work_in_progress = true;
113                 irq_work_queue(&sg_policy->irq_work);
114         }
115 }
116
117 /**
118  * get_next_freq - Compute a new frequency for a given cpufreq policy.
119  * @sg_policy: schedutil policy object to compute the new frequency for.
120  * @util: Current CPU utilization.
121  * @max: CPU capacity.
122  *
123  * If the utilization is frequency-invariant, choose the new frequency to be
124  * proportional to it, that is
125  *
126  * next_freq = C * max_freq * util / max
127  *
128  * Otherwise, approximate the would-be frequency-invariant utilization by
129  * util_raw * (curr_freq / max_freq) which leads to
130  *
131  * next_freq = C * curr_freq * util_raw / max
132  *
133  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
134  *
135  * The lowest driver-supported frequency which is equal or greater than the raw
136  * next_freq (as calculated above) is returned, subject to policy min/max and
137  * cpufreq driver limitations.
138  */
139 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
140                                   unsigned long util, unsigned long max)
141 {
142         struct cpufreq_policy *policy = sg_policy->policy;
143         unsigned int freq = arch_scale_freq_invariant() ?
144                                 policy->cpuinfo.max_freq : policy->cur;
145
146         util = map_util_perf(util);
147         freq = map_util_freq(util, freq, max);
148
149         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
150                 return sg_policy->next_freq;
151
152         sg_policy->cached_raw_freq = freq;
153         return cpufreq_driver_resolve_freq(policy, freq);
154 }
155
156 static void sugov_get_util(struct sugov_cpu *sg_cpu)
157 {
158         unsigned long util = cpu_util_cfs_boost(sg_cpu->cpu);
159         struct rq *rq = cpu_rq(sg_cpu->cpu);
160
161         sg_cpu->bw_dl = cpu_bw_dl(rq);
162         sg_cpu->util = effective_cpu_util(sg_cpu->cpu, util,
163                                           FREQUENCY_UTIL, NULL);
164 }
165
166 /**
167  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
168  * @sg_cpu: the sugov data for the CPU to boost
169  * @time: the update time from the caller
170  * @set_iowait_boost: true if an IO boost has been requested
171  *
172  * The IO wait boost of a task is disabled after a tick since the last update
173  * of a CPU. If a new IO wait boost is requested after more then a tick, then
174  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
175  * efficiency by ignoring sporadic wakeups from IO.
176  */
177 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
178                                bool set_iowait_boost)
179 {
180         s64 delta_ns = time - sg_cpu->last_update;
181
182         /* Reset boost only if a tick has elapsed since last request */
183         if (delta_ns <= TICK_NSEC)
184                 return false;
185
186         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
187         sg_cpu->iowait_boost_pending = set_iowait_boost;
188
189         return true;
190 }
191
192 /**
193  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
194  * @sg_cpu: the sugov data for the CPU to boost
195  * @time: the update time from the caller
196  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
197  *
198  * Each time a task wakes up after an IO operation, the CPU utilization can be
199  * boosted to a certain utilization which doubles at each "frequent and
200  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
201  * of the maximum OPP.
202  *
203  * To keep doubling, an IO boost has to be requested at least once per tick,
204  * otherwise we restart from the utilization of the minimum OPP.
205  */
206 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
207                                unsigned int flags)
208 {
209         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
210
211         /* Reset boost if the CPU appears to have been idle enough */
212         if (sg_cpu->iowait_boost &&
213             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
214                 return;
215
216         /* Boost only tasks waking up after IO */
217         if (!set_iowait_boost)
218                 return;
219
220         /* Ensure boost doubles only one time at each request */
221         if (sg_cpu->iowait_boost_pending)
222                 return;
223         sg_cpu->iowait_boost_pending = true;
224
225         /* Double the boost at each request */
226         if (sg_cpu->iowait_boost) {
227                 sg_cpu->iowait_boost =
228                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
229                 return;
230         }
231
232         /* First wakeup after IO: start with minimum boost */
233         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
234 }
235
236 /**
237  * sugov_iowait_apply() - Apply the IO boost to a CPU.
238  * @sg_cpu: the sugov data for the cpu to boost
239  * @time: the update time from the caller
240  * @max_cap: the max CPU capacity
241  *
242  * A CPU running a task which woken up after an IO operation can have its
243  * utilization boosted to speed up the completion of those IO operations.
244  * The IO boost value is increased each time a task wakes up from IO, in
245  * sugov_iowait_apply(), and it's instead decreased by this function,
246  * each time an increase has not been requested (!iowait_boost_pending).
247  *
248  * A CPU which also appears to have been idle for at least one tick has also
249  * its IO boost utilization reset.
250  *
251  * This mechanism is designed to boost high frequently IO waiting tasks, while
252  * being more conservative on tasks which does sporadic IO operations.
253  */
254 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
255                                unsigned long max_cap)
256 {
257         unsigned long boost;
258
259         /* No boost currently required */
260         if (!sg_cpu->iowait_boost)
261                 return;
262
263         /* Reset boost if the CPU appears to have been idle enough */
264         if (sugov_iowait_reset(sg_cpu, time, false))
265                 return;
266
267         if (!sg_cpu->iowait_boost_pending) {
268                 /*
269                  * No boost pending; reduce the boost value.
270                  */
271                 sg_cpu->iowait_boost >>= 1;
272                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
273                         sg_cpu->iowait_boost = 0;
274                         return;
275                 }
276         }
277
278         sg_cpu->iowait_boost_pending = false;
279
280         /*
281          * sg_cpu->util is already in capacity scale; convert iowait_boost
282          * into the same scale so we can compare.
283          */
284         boost = (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
285         boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
286         if (sg_cpu->util < boost)
287                 sg_cpu->util = boost;
288 }
289
290 #ifdef CONFIG_NO_HZ_COMMON
291 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
292 {
293         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
294         bool ret = idle_calls == sg_cpu->saved_idle_calls;
295
296         sg_cpu->saved_idle_calls = idle_calls;
297         return ret;
298 }
299 #else
300 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
301 #endif /* CONFIG_NO_HZ_COMMON */
302
303 /*
304  * Make sugov_should_update_freq() ignore the rate limit when DL
305  * has increased the utilization.
306  */
307 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
308 {
309         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
310                 sg_cpu->sg_policy->limits_changed = true;
311 }
312
313 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
314                                               u64 time, unsigned long max_cap,
315                                               unsigned int flags)
316 {
317         sugov_iowait_boost(sg_cpu, time, flags);
318         sg_cpu->last_update = time;
319
320         ignore_dl_rate_limit(sg_cpu);
321
322         if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
323                 return false;
324
325         sugov_get_util(sg_cpu);
326         sugov_iowait_apply(sg_cpu, time, max_cap);
327
328         return true;
329 }
330
331 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
332                                      unsigned int flags)
333 {
334         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
335         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
336         unsigned int cached_freq = sg_policy->cached_raw_freq;
337         unsigned long max_cap;
338         unsigned int next_f;
339
340         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
341
342         if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
343                 return;
344
345         next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
346         /*
347          * Do not reduce the frequency if the CPU has not been idle
348          * recently, as the reduction is likely to be premature then.
349          *
350          * Except when the rq is capped by uclamp_max.
351          */
352         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
353             sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
354                 next_f = sg_policy->next_freq;
355
356                 /* Restore cached freq as next_freq has changed */
357                 sg_policy->cached_raw_freq = cached_freq;
358         }
359
360         if (!sugov_update_next_freq(sg_policy, time, next_f))
361                 return;
362
363         /*
364          * This code runs under rq->lock for the target CPU, so it won't run
365          * concurrently on two different CPUs for the same target and it is not
366          * necessary to acquire the lock in the fast switch case.
367          */
368         if (sg_policy->policy->fast_switch_enabled) {
369                 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
370         } else {
371                 raw_spin_lock(&sg_policy->update_lock);
372                 sugov_deferred_update(sg_policy);
373                 raw_spin_unlock(&sg_policy->update_lock);
374         }
375 }
376
377 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
378                                      unsigned int flags)
379 {
380         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
381         unsigned long prev_util = sg_cpu->util;
382         unsigned long max_cap;
383
384         /*
385          * Fall back to the "frequency" path if frequency invariance is not
386          * supported, because the direct mapping between the utilization and
387          * the performance levels depends on the frequency invariance.
388          */
389         if (!arch_scale_freq_invariant()) {
390                 sugov_update_single_freq(hook, time, flags);
391                 return;
392         }
393
394         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
395
396         if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
397                 return;
398
399         /*
400          * Do not reduce the target performance level if the CPU has not been
401          * idle recently, as the reduction is likely to be premature then.
402          *
403          * Except when the rq is capped by uclamp_max.
404          */
405         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
406             sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
407                 sg_cpu->util = prev_util;
408
409         cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
410                                    map_util_perf(sg_cpu->util), max_cap);
411
412         sg_cpu->sg_policy->last_freq_update_time = time;
413 }
414
415 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
416 {
417         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
418         struct cpufreq_policy *policy = sg_policy->policy;
419         unsigned long util = 0, max_cap;
420         unsigned int j;
421
422         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
423
424         for_each_cpu(j, policy->cpus) {
425                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
426
427                 sugov_get_util(j_sg_cpu);
428                 sugov_iowait_apply(j_sg_cpu, time, max_cap);
429
430                 util = max(j_sg_cpu->util, util);
431         }
432
433         return get_next_freq(sg_policy, util, max_cap);
434 }
435
436 static void
437 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
438 {
439         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
440         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
441         unsigned int next_f;
442
443         raw_spin_lock(&sg_policy->update_lock);
444
445         sugov_iowait_boost(sg_cpu, time, flags);
446         sg_cpu->last_update = time;
447
448         ignore_dl_rate_limit(sg_cpu);
449
450         if (sugov_should_update_freq(sg_policy, time)) {
451                 next_f = sugov_next_freq_shared(sg_cpu, time);
452
453                 if (!sugov_update_next_freq(sg_policy, time, next_f))
454                         goto unlock;
455
456                 if (sg_policy->policy->fast_switch_enabled)
457                         cpufreq_driver_fast_switch(sg_policy->policy, next_f);
458                 else
459                         sugov_deferred_update(sg_policy);
460         }
461 unlock:
462         raw_spin_unlock(&sg_policy->update_lock);
463 }
464
465 static void sugov_work(struct kthread_work *work)
466 {
467         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
468         unsigned int freq;
469         unsigned long flags;
470
471         /*
472          * Hold sg_policy->update_lock shortly to handle the case where:
473          * in case sg_policy->next_freq is read here, and then updated by
474          * sugov_deferred_update() just before work_in_progress is set to false
475          * here, we may miss queueing the new update.
476          *
477          * Note: If a work was queued after the update_lock is released,
478          * sugov_work() will just be called again by kthread_work code; and the
479          * request will be proceed before the sugov thread sleeps.
480          */
481         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
482         freq = sg_policy->next_freq;
483         sg_policy->work_in_progress = false;
484         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
485
486         mutex_lock(&sg_policy->work_lock);
487         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
488         mutex_unlock(&sg_policy->work_lock);
489 }
490
491 static void sugov_irq_work(struct irq_work *irq_work)
492 {
493         struct sugov_policy *sg_policy;
494
495         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
496
497         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
498 }
499
500 /************************** sysfs interface ************************/
501
502 static struct sugov_tunables *global_tunables;
503 static DEFINE_MUTEX(global_tunables_lock);
504
505 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
506 {
507         return container_of(attr_set, struct sugov_tunables, attr_set);
508 }
509
510 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
511 {
512         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
513
514         return sprintf(buf, "%u\n", tunables->rate_limit_us);
515 }
516
517 static ssize_t
518 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
519 {
520         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
521         struct sugov_policy *sg_policy;
522         unsigned int rate_limit_us;
523
524         if (kstrtouint(buf, 10, &rate_limit_us))
525                 return -EINVAL;
526
527         tunables->rate_limit_us = rate_limit_us;
528
529         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
530                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
531
532         return count;
533 }
534
535 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
536
537 static struct attribute *sugov_attrs[] = {
538         &rate_limit_us.attr,
539         NULL
540 };
541 ATTRIBUTE_GROUPS(sugov);
542
543 static void sugov_tunables_free(struct kobject *kobj)
544 {
545         struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
546
547         kfree(to_sugov_tunables(attr_set));
548 }
549
550 static const struct kobj_type sugov_tunables_ktype = {
551         .default_groups = sugov_groups,
552         .sysfs_ops = &governor_sysfs_ops,
553         .release = &sugov_tunables_free,
554 };
555
556 /********************** cpufreq governor interface *********************/
557
558 struct cpufreq_governor schedutil_gov;
559
560 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
561 {
562         struct sugov_policy *sg_policy;
563
564         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
565         if (!sg_policy)
566                 return NULL;
567
568         sg_policy->policy = policy;
569         raw_spin_lock_init(&sg_policy->update_lock);
570         return sg_policy;
571 }
572
573 static void sugov_policy_free(struct sugov_policy *sg_policy)
574 {
575         kfree(sg_policy);
576 }
577
578 static int sugov_kthread_create(struct sugov_policy *sg_policy)
579 {
580         struct task_struct *thread;
581         struct sched_attr attr = {
582                 .size           = sizeof(struct sched_attr),
583                 .sched_policy   = SCHED_DEADLINE,
584                 .sched_flags    = SCHED_FLAG_SUGOV,
585                 .sched_nice     = 0,
586                 .sched_priority = 0,
587                 /*
588                  * Fake (unused) bandwidth; workaround to "fix"
589                  * priority inheritance.
590                  */
591                 .sched_runtime  =  1000000,
592                 .sched_deadline = 10000000,
593                 .sched_period   = 10000000,
594         };
595         struct cpufreq_policy *policy = sg_policy->policy;
596         int ret;
597
598         /* kthread only required for slow path */
599         if (policy->fast_switch_enabled)
600                 return 0;
601
602         kthread_init_work(&sg_policy->work, sugov_work);
603         kthread_init_worker(&sg_policy->worker);
604         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
605                                 "sugov:%d",
606                                 cpumask_first(policy->related_cpus));
607         if (IS_ERR(thread)) {
608                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
609                 return PTR_ERR(thread);
610         }
611
612         ret = sched_setattr_nocheck(thread, &attr);
613         if (ret) {
614                 kthread_stop(thread);
615                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
616                 return ret;
617         }
618
619         sg_policy->thread = thread;
620         kthread_bind_mask(thread, policy->related_cpus);
621         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
622         mutex_init(&sg_policy->work_lock);
623
624         wake_up_process(thread);
625
626         return 0;
627 }
628
629 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
630 {
631         /* kthread only required for slow path */
632         if (sg_policy->policy->fast_switch_enabled)
633                 return;
634
635         kthread_flush_worker(&sg_policy->worker);
636         kthread_stop(sg_policy->thread);
637         mutex_destroy(&sg_policy->work_lock);
638 }
639
640 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
641 {
642         struct sugov_tunables *tunables;
643
644         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
645         if (tunables) {
646                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
647                 if (!have_governor_per_policy())
648                         global_tunables = tunables;
649         }
650         return tunables;
651 }
652
653 static void sugov_clear_global_tunables(void)
654 {
655         if (!have_governor_per_policy())
656                 global_tunables = NULL;
657 }
658
659 static int sugov_init(struct cpufreq_policy *policy)
660 {
661         struct sugov_policy *sg_policy;
662         struct sugov_tunables *tunables;
663         int ret = 0;
664
665         /* State should be equivalent to EXIT */
666         if (policy->governor_data)
667                 return -EBUSY;
668
669         cpufreq_enable_fast_switch(policy);
670
671         sg_policy = sugov_policy_alloc(policy);
672         if (!sg_policy) {
673                 ret = -ENOMEM;
674                 goto disable_fast_switch;
675         }
676
677         ret = sugov_kthread_create(sg_policy);
678         if (ret)
679                 goto free_sg_policy;
680
681         mutex_lock(&global_tunables_lock);
682
683         if (global_tunables) {
684                 if (WARN_ON(have_governor_per_policy())) {
685                         ret = -EINVAL;
686                         goto stop_kthread;
687                 }
688                 policy->governor_data = sg_policy;
689                 sg_policy->tunables = global_tunables;
690
691                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
692                 goto out;
693         }
694
695         tunables = sugov_tunables_alloc(sg_policy);
696         if (!tunables) {
697                 ret = -ENOMEM;
698                 goto stop_kthread;
699         }
700
701         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
702
703         policy->governor_data = sg_policy;
704         sg_policy->tunables = tunables;
705
706         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
707                                    get_governor_parent_kobj(policy), "%s",
708                                    schedutil_gov.name);
709         if (ret)
710                 goto fail;
711
712 out:
713         mutex_unlock(&global_tunables_lock);
714         return 0;
715
716 fail:
717         kobject_put(&tunables->attr_set.kobj);
718         policy->governor_data = NULL;
719         sugov_clear_global_tunables();
720
721 stop_kthread:
722         sugov_kthread_stop(sg_policy);
723         mutex_unlock(&global_tunables_lock);
724
725 free_sg_policy:
726         sugov_policy_free(sg_policy);
727
728 disable_fast_switch:
729         cpufreq_disable_fast_switch(policy);
730
731         pr_err("initialization failed (error %d)\n", ret);
732         return ret;
733 }
734
735 static void sugov_exit(struct cpufreq_policy *policy)
736 {
737         struct sugov_policy *sg_policy = policy->governor_data;
738         struct sugov_tunables *tunables = sg_policy->tunables;
739         unsigned int count;
740
741         mutex_lock(&global_tunables_lock);
742
743         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
744         policy->governor_data = NULL;
745         if (!count)
746                 sugov_clear_global_tunables();
747
748         mutex_unlock(&global_tunables_lock);
749
750         sugov_kthread_stop(sg_policy);
751         sugov_policy_free(sg_policy);
752         cpufreq_disable_fast_switch(policy);
753 }
754
755 static int sugov_start(struct cpufreq_policy *policy)
756 {
757         struct sugov_policy *sg_policy = policy->governor_data;
758         void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
759         unsigned int cpu;
760
761         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
762         sg_policy->last_freq_update_time        = 0;
763         sg_policy->next_freq                    = 0;
764         sg_policy->work_in_progress             = false;
765         sg_policy->limits_changed               = false;
766         sg_policy->cached_raw_freq              = 0;
767
768         sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
769
770         for_each_cpu(cpu, policy->cpus) {
771                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
772
773                 memset(sg_cpu, 0, sizeof(*sg_cpu));
774                 sg_cpu->cpu                     = cpu;
775                 sg_cpu->sg_policy               = sg_policy;
776         }
777
778         if (policy_is_shared(policy))
779                 uu = sugov_update_shared;
780         else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
781                 uu = sugov_update_single_perf;
782         else
783                 uu = sugov_update_single_freq;
784
785         for_each_cpu(cpu, policy->cpus) {
786                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
787
788                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
789         }
790         return 0;
791 }
792
793 static void sugov_stop(struct cpufreq_policy *policy)
794 {
795         struct sugov_policy *sg_policy = policy->governor_data;
796         unsigned int cpu;
797
798         for_each_cpu(cpu, policy->cpus)
799                 cpufreq_remove_update_util_hook(cpu);
800
801         synchronize_rcu();
802
803         if (!policy->fast_switch_enabled) {
804                 irq_work_sync(&sg_policy->irq_work);
805                 kthread_cancel_work_sync(&sg_policy->work);
806         }
807 }
808
809 static void sugov_limits(struct cpufreq_policy *policy)
810 {
811         struct sugov_policy *sg_policy = policy->governor_data;
812
813         if (!policy->fast_switch_enabled) {
814                 mutex_lock(&sg_policy->work_lock);
815                 cpufreq_policy_apply_limits(policy);
816                 mutex_unlock(&sg_policy->work_lock);
817         }
818
819         sg_policy->limits_changed = true;
820 }
821
822 struct cpufreq_governor schedutil_gov = {
823         .name                   = "schedutil",
824         .owner                  = THIS_MODULE,
825         .flags                  = CPUFREQ_GOV_DYNAMIC_SWITCHING,
826         .init                   = sugov_init,
827         .exit                   = sugov_exit,
828         .start                  = sugov_start,
829         .stop                   = sugov_stop,
830         .limits                 = sugov_limits,
831 };
832
833 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
834 struct cpufreq_governor *cpufreq_default_governor(void)
835 {
836         return &schedutil_gov;
837 }
838 #endif
839
840 cpufreq_governor_init(schedutil_gov);
841
842 #ifdef CONFIG_ENERGY_MODEL
843 static void rebuild_sd_workfn(struct work_struct *work)
844 {
845         rebuild_sched_domains_energy();
846 }
847 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
848
849 /*
850  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
851  * on governor changes to make sure the scheduler knows about it.
852  */
853 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
854                                   struct cpufreq_governor *old_gov)
855 {
856         if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
857                 /*
858                  * When called from the cpufreq_register_driver() path, the
859                  * cpu_hotplug_lock is already held, so use a work item to
860                  * avoid nested locking in rebuild_sched_domains().
861                  */
862                 schedule_work(&rebuild_sd_work);
863         }
864
865 }
866 #endif