1 // SPDX-License-Identifier: GPL-2.0
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
11 struct sugov_tunables {
12 struct gov_attr_set attr_set;
13 unsigned int rate_limit_us;
17 struct cpufreq_policy *policy;
19 struct sugov_tunables *tunables;
20 struct list_head tunables_hook;
22 raw_spinlock_t update_lock;
23 u64 last_freq_update_time;
24 s64 freq_update_delay_ns;
25 unsigned int next_freq;
26 unsigned int cached_raw_freq;
28 /* The next fields are only needed if fast switch cannot be used: */
29 struct irq_work irq_work;
30 struct kthread_work work;
31 struct mutex work_lock;
32 struct kthread_worker worker;
33 struct task_struct *thread;
34 bool work_in_progress;
37 bool need_freq_update;
41 struct update_util_data update_util;
42 struct sugov_policy *sg_policy;
45 bool iowait_boost_pending;
46 unsigned int iowait_boost;
52 /* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54 unsigned long saved_idle_calls;
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
60 /************************ Governor internals ***********************/
62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
67 * Since cpufreq_update_util() is called with rq->lock held for
68 * the @target_cpu, our per-CPU data is fully serialized.
70 * However, drivers cannot in general deal with cross-CPU
71 * requests, so while get_next_freq() will work, our
72 * sugov_update_commit() call may not for the fast switching platforms.
74 * Hence stop here for remote requests if they aren't supported
75 * by the hardware, as calculating the frequency is pointless if
76 * we cannot in fact act on it.
78 * This is needed on the slow switching platforms too to prevent CPUs
79 * going offline from leaving stale IRQ work items behind.
81 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
84 if (unlikely(sg_policy->limits_changed)) {
85 sg_policy->limits_changed = false;
86 sg_policy->need_freq_update = true;
90 delta_ns = time - sg_policy->last_freq_update_time;
92 return delta_ns >= sg_policy->freq_update_delay_ns;
95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96 unsigned int next_freq)
98 if (sg_policy->need_freq_update)
99 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100 else if (sg_policy->next_freq == next_freq)
103 sg_policy->next_freq = next_freq;
104 sg_policy->last_freq_update_time = time;
109 static void sugov_deferred_update(struct sugov_policy *sg_policy)
111 if (!sg_policy->work_in_progress) {
112 sg_policy->work_in_progress = true;
113 irq_work_queue(&sg_policy->irq_work);
118 * get_next_freq - Compute a new frequency for a given cpufreq policy.
119 * @sg_policy: schedutil policy object to compute the new frequency for.
120 * @util: Current CPU utilization.
121 * @max: CPU capacity.
123 * If the utilization is frequency-invariant, choose the new frequency to be
124 * proportional to it, that is
126 * next_freq = C * max_freq * util / max
128 * Otherwise, approximate the would-be frequency-invariant utilization by
129 * util_raw * (curr_freq / max_freq) which leads to
131 * next_freq = C * curr_freq * util_raw / max
133 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
135 * The lowest driver-supported frequency which is equal or greater than the raw
136 * next_freq (as calculated above) is returned, subject to policy min/max and
137 * cpufreq driver limitations.
139 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
140 unsigned long util, unsigned long max)
142 struct cpufreq_policy *policy = sg_policy->policy;
143 unsigned int freq = arch_scale_freq_invariant() ?
144 policy->cpuinfo.max_freq : policy->cur;
146 util = map_util_perf(util);
147 freq = map_util_freq(util, freq, max);
149 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
150 return sg_policy->next_freq;
152 sg_policy->cached_raw_freq = freq;
153 return cpufreq_driver_resolve_freq(policy, freq);
156 static void sugov_get_util(struct sugov_cpu *sg_cpu)
158 unsigned long util = cpu_util_cfs_boost(sg_cpu->cpu);
159 struct rq *rq = cpu_rq(sg_cpu->cpu);
161 sg_cpu->bw_dl = cpu_bw_dl(rq);
162 sg_cpu->util = effective_cpu_util(sg_cpu->cpu, util,
163 FREQUENCY_UTIL, NULL);
167 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
168 * @sg_cpu: the sugov data for the CPU to boost
169 * @time: the update time from the caller
170 * @set_iowait_boost: true if an IO boost has been requested
172 * The IO wait boost of a task is disabled after a tick since the last update
173 * of a CPU. If a new IO wait boost is requested after more then a tick, then
174 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
175 * efficiency by ignoring sporadic wakeups from IO.
177 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
178 bool set_iowait_boost)
180 s64 delta_ns = time - sg_cpu->last_update;
182 /* Reset boost only if a tick has elapsed since last request */
183 if (delta_ns <= TICK_NSEC)
186 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
187 sg_cpu->iowait_boost_pending = set_iowait_boost;
193 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
194 * @sg_cpu: the sugov data for the CPU to boost
195 * @time: the update time from the caller
196 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
198 * Each time a task wakes up after an IO operation, the CPU utilization can be
199 * boosted to a certain utilization which doubles at each "frequent and
200 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
201 * of the maximum OPP.
203 * To keep doubling, an IO boost has to be requested at least once per tick,
204 * otherwise we restart from the utilization of the minimum OPP.
206 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
209 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
211 /* Reset boost if the CPU appears to have been idle enough */
212 if (sg_cpu->iowait_boost &&
213 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
216 /* Boost only tasks waking up after IO */
217 if (!set_iowait_boost)
220 /* Ensure boost doubles only one time at each request */
221 if (sg_cpu->iowait_boost_pending)
223 sg_cpu->iowait_boost_pending = true;
225 /* Double the boost at each request */
226 if (sg_cpu->iowait_boost) {
227 sg_cpu->iowait_boost =
228 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
232 /* First wakeup after IO: start with minimum boost */
233 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
237 * sugov_iowait_apply() - Apply the IO boost to a CPU.
238 * @sg_cpu: the sugov data for the cpu to boost
239 * @time: the update time from the caller
240 * @max_cap: the max CPU capacity
242 * A CPU running a task which woken up after an IO operation can have its
243 * utilization boosted to speed up the completion of those IO operations.
244 * The IO boost value is increased each time a task wakes up from IO, in
245 * sugov_iowait_apply(), and it's instead decreased by this function,
246 * each time an increase has not been requested (!iowait_boost_pending).
248 * A CPU which also appears to have been idle for at least one tick has also
249 * its IO boost utilization reset.
251 * This mechanism is designed to boost high frequently IO waiting tasks, while
252 * being more conservative on tasks which does sporadic IO operations.
254 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
255 unsigned long max_cap)
259 /* No boost currently required */
260 if (!sg_cpu->iowait_boost)
263 /* Reset boost if the CPU appears to have been idle enough */
264 if (sugov_iowait_reset(sg_cpu, time, false))
267 if (!sg_cpu->iowait_boost_pending) {
269 * No boost pending; reduce the boost value.
271 sg_cpu->iowait_boost >>= 1;
272 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
273 sg_cpu->iowait_boost = 0;
278 sg_cpu->iowait_boost_pending = false;
281 * sg_cpu->util is already in capacity scale; convert iowait_boost
282 * into the same scale so we can compare.
284 boost = (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
285 boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
286 if (sg_cpu->util < boost)
287 sg_cpu->util = boost;
290 #ifdef CONFIG_NO_HZ_COMMON
291 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
293 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
294 bool ret = idle_calls == sg_cpu->saved_idle_calls;
296 sg_cpu->saved_idle_calls = idle_calls;
300 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
301 #endif /* CONFIG_NO_HZ_COMMON */
304 * Make sugov_should_update_freq() ignore the rate limit when DL
305 * has increased the utilization.
307 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
309 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
310 sg_cpu->sg_policy->limits_changed = true;
313 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
314 u64 time, unsigned long max_cap,
317 sugov_iowait_boost(sg_cpu, time, flags);
318 sg_cpu->last_update = time;
320 ignore_dl_rate_limit(sg_cpu);
322 if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
325 sugov_get_util(sg_cpu);
326 sugov_iowait_apply(sg_cpu, time, max_cap);
331 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
334 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
335 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
336 unsigned int cached_freq = sg_policy->cached_raw_freq;
337 unsigned long max_cap;
340 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
342 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
345 next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
347 * Do not reduce the frequency if the CPU has not been idle
348 * recently, as the reduction is likely to be premature then.
350 * Except when the rq is capped by uclamp_max.
352 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
353 sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
354 next_f = sg_policy->next_freq;
356 /* Restore cached freq as next_freq has changed */
357 sg_policy->cached_raw_freq = cached_freq;
360 if (!sugov_update_next_freq(sg_policy, time, next_f))
364 * This code runs under rq->lock for the target CPU, so it won't run
365 * concurrently on two different CPUs for the same target and it is not
366 * necessary to acquire the lock in the fast switch case.
368 if (sg_policy->policy->fast_switch_enabled) {
369 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
371 raw_spin_lock(&sg_policy->update_lock);
372 sugov_deferred_update(sg_policy);
373 raw_spin_unlock(&sg_policy->update_lock);
377 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
380 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
381 unsigned long prev_util = sg_cpu->util;
382 unsigned long max_cap;
385 * Fall back to the "frequency" path if frequency invariance is not
386 * supported, because the direct mapping between the utilization and
387 * the performance levels depends on the frequency invariance.
389 if (!arch_scale_freq_invariant()) {
390 sugov_update_single_freq(hook, time, flags);
394 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
396 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
400 * Do not reduce the target performance level if the CPU has not been
401 * idle recently, as the reduction is likely to be premature then.
403 * Except when the rq is capped by uclamp_max.
405 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
406 sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
407 sg_cpu->util = prev_util;
409 cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
410 map_util_perf(sg_cpu->util), max_cap);
412 sg_cpu->sg_policy->last_freq_update_time = time;
415 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
417 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
418 struct cpufreq_policy *policy = sg_policy->policy;
419 unsigned long util = 0, max_cap;
422 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
424 for_each_cpu(j, policy->cpus) {
425 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
427 sugov_get_util(j_sg_cpu);
428 sugov_iowait_apply(j_sg_cpu, time, max_cap);
430 util = max(j_sg_cpu->util, util);
433 return get_next_freq(sg_policy, util, max_cap);
437 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
439 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
440 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
443 raw_spin_lock(&sg_policy->update_lock);
445 sugov_iowait_boost(sg_cpu, time, flags);
446 sg_cpu->last_update = time;
448 ignore_dl_rate_limit(sg_cpu);
450 if (sugov_should_update_freq(sg_policy, time)) {
451 next_f = sugov_next_freq_shared(sg_cpu, time);
453 if (!sugov_update_next_freq(sg_policy, time, next_f))
456 if (sg_policy->policy->fast_switch_enabled)
457 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
459 sugov_deferred_update(sg_policy);
462 raw_spin_unlock(&sg_policy->update_lock);
465 static void sugov_work(struct kthread_work *work)
467 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
472 * Hold sg_policy->update_lock shortly to handle the case where:
473 * in case sg_policy->next_freq is read here, and then updated by
474 * sugov_deferred_update() just before work_in_progress is set to false
475 * here, we may miss queueing the new update.
477 * Note: If a work was queued after the update_lock is released,
478 * sugov_work() will just be called again by kthread_work code; and the
479 * request will be proceed before the sugov thread sleeps.
481 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
482 freq = sg_policy->next_freq;
483 sg_policy->work_in_progress = false;
484 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
486 mutex_lock(&sg_policy->work_lock);
487 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
488 mutex_unlock(&sg_policy->work_lock);
491 static void sugov_irq_work(struct irq_work *irq_work)
493 struct sugov_policy *sg_policy;
495 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
497 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
500 /************************** sysfs interface ************************/
502 static struct sugov_tunables *global_tunables;
503 static DEFINE_MUTEX(global_tunables_lock);
505 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
507 return container_of(attr_set, struct sugov_tunables, attr_set);
510 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
512 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
514 return sprintf(buf, "%u\n", tunables->rate_limit_us);
518 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
520 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
521 struct sugov_policy *sg_policy;
522 unsigned int rate_limit_us;
524 if (kstrtouint(buf, 10, &rate_limit_us))
527 tunables->rate_limit_us = rate_limit_us;
529 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
530 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
535 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
537 static struct attribute *sugov_attrs[] = {
541 ATTRIBUTE_GROUPS(sugov);
543 static void sugov_tunables_free(struct kobject *kobj)
545 struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
547 kfree(to_sugov_tunables(attr_set));
550 static const struct kobj_type sugov_tunables_ktype = {
551 .default_groups = sugov_groups,
552 .sysfs_ops = &governor_sysfs_ops,
553 .release = &sugov_tunables_free,
556 /********************** cpufreq governor interface *********************/
558 struct cpufreq_governor schedutil_gov;
560 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
562 struct sugov_policy *sg_policy;
564 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
568 sg_policy->policy = policy;
569 raw_spin_lock_init(&sg_policy->update_lock);
573 static void sugov_policy_free(struct sugov_policy *sg_policy)
578 static int sugov_kthread_create(struct sugov_policy *sg_policy)
580 struct task_struct *thread;
581 struct sched_attr attr = {
582 .size = sizeof(struct sched_attr),
583 .sched_policy = SCHED_DEADLINE,
584 .sched_flags = SCHED_FLAG_SUGOV,
588 * Fake (unused) bandwidth; workaround to "fix"
589 * priority inheritance.
591 .sched_runtime = 1000000,
592 .sched_deadline = 10000000,
593 .sched_period = 10000000,
595 struct cpufreq_policy *policy = sg_policy->policy;
598 /* kthread only required for slow path */
599 if (policy->fast_switch_enabled)
602 kthread_init_work(&sg_policy->work, sugov_work);
603 kthread_init_worker(&sg_policy->worker);
604 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
606 cpumask_first(policy->related_cpus));
607 if (IS_ERR(thread)) {
608 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
609 return PTR_ERR(thread);
612 ret = sched_setattr_nocheck(thread, &attr);
614 kthread_stop(thread);
615 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
619 sg_policy->thread = thread;
620 kthread_bind_mask(thread, policy->related_cpus);
621 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
622 mutex_init(&sg_policy->work_lock);
624 wake_up_process(thread);
629 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
631 /* kthread only required for slow path */
632 if (sg_policy->policy->fast_switch_enabled)
635 kthread_flush_worker(&sg_policy->worker);
636 kthread_stop(sg_policy->thread);
637 mutex_destroy(&sg_policy->work_lock);
640 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
642 struct sugov_tunables *tunables;
644 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
646 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
647 if (!have_governor_per_policy())
648 global_tunables = tunables;
653 static void sugov_clear_global_tunables(void)
655 if (!have_governor_per_policy())
656 global_tunables = NULL;
659 static int sugov_init(struct cpufreq_policy *policy)
661 struct sugov_policy *sg_policy;
662 struct sugov_tunables *tunables;
665 /* State should be equivalent to EXIT */
666 if (policy->governor_data)
669 cpufreq_enable_fast_switch(policy);
671 sg_policy = sugov_policy_alloc(policy);
674 goto disable_fast_switch;
677 ret = sugov_kthread_create(sg_policy);
681 mutex_lock(&global_tunables_lock);
683 if (global_tunables) {
684 if (WARN_ON(have_governor_per_policy())) {
688 policy->governor_data = sg_policy;
689 sg_policy->tunables = global_tunables;
691 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
695 tunables = sugov_tunables_alloc(sg_policy);
701 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
703 policy->governor_data = sg_policy;
704 sg_policy->tunables = tunables;
706 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
707 get_governor_parent_kobj(policy), "%s",
713 mutex_unlock(&global_tunables_lock);
717 kobject_put(&tunables->attr_set.kobj);
718 policy->governor_data = NULL;
719 sugov_clear_global_tunables();
722 sugov_kthread_stop(sg_policy);
723 mutex_unlock(&global_tunables_lock);
726 sugov_policy_free(sg_policy);
729 cpufreq_disable_fast_switch(policy);
731 pr_err("initialization failed (error %d)\n", ret);
735 static void sugov_exit(struct cpufreq_policy *policy)
737 struct sugov_policy *sg_policy = policy->governor_data;
738 struct sugov_tunables *tunables = sg_policy->tunables;
741 mutex_lock(&global_tunables_lock);
743 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
744 policy->governor_data = NULL;
746 sugov_clear_global_tunables();
748 mutex_unlock(&global_tunables_lock);
750 sugov_kthread_stop(sg_policy);
751 sugov_policy_free(sg_policy);
752 cpufreq_disable_fast_switch(policy);
755 static int sugov_start(struct cpufreq_policy *policy)
757 struct sugov_policy *sg_policy = policy->governor_data;
758 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
761 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
762 sg_policy->last_freq_update_time = 0;
763 sg_policy->next_freq = 0;
764 sg_policy->work_in_progress = false;
765 sg_policy->limits_changed = false;
766 sg_policy->cached_raw_freq = 0;
768 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
770 for_each_cpu(cpu, policy->cpus) {
771 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
773 memset(sg_cpu, 0, sizeof(*sg_cpu));
775 sg_cpu->sg_policy = sg_policy;
778 if (policy_is_shared(policy))
779 uu = sugov_update_shared;
780 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
781 uu = sugov_update_single_perf;
783 uu = sugov_update_single_freq;
785 for_each_cpu(cpu, policy->cpus) {
786 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
788 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
793 static void sugov_stop(struct cpufreq_policy *policy)
795 struct sugov_policy *sg_policy = policy->governor_data;
798 for_each_cpu(cpu, policy->cpus)
799 cpufreq_remove_update_util_hook(cpu);
803 if (!policy->fast_switch_enabled) {
804 irq_work_sync(&sg_policy->irq_work);
805 kthread_cancel_work_sync(&sg_policy->work);
809 static void sugov_limits(struct cpufreq_policy *policy)
811 struct sugov_policy *sg_policy = policy->governor_data;
813 if (!policy->fast_switch_enabled) {
814 mutex_lock(&sg_policy->work_lock);
815 cpufreq_policy_apply_limits(policy);
816 mutex_unlock(&sg_policy->work_lock);
819 sg_policy->limits_changed = true;
822 struct cpufreq_governor schedutil_gov = {
824 .owner = THIS_MODULE,
825 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
828 .start = sugov_start,
830 .limits = sugov_limits,
833 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
834 struct cpufreq_governor *cpufreq_default_governor(void)
836 return &schedutil_gov;
840 cpufreq_governor_init(schedutil_gov);
842 #ifdef CONFIG_ENERGY_MODEL
843 static void rebuild_sd_workfn(struct work_struct *work)
845 rebuild_sched_domains_energy();
847 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
850 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
851 * on governor changes to make sure the scheduler knows about it.
853 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
854 struct cpufreq_governor *old_gov)
856 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
858 * When called from the cpufreq_register_driver() path, the
859 * cpu_hotplug_lock is already held, so use a work item to
860 * avoid nested locking in rebuild_sched_domains().
862 schedule_work(&rebuild_sd_work);