Merge tag '6.6-rc4-ksmbd-server-fixes' of git://git.samba.org/ksmbd
[platform/kernel/linux-starfive.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
10
11 struct sugov_tunables {
12         struct gov_attr_set     attr_set;
13         unsigned int            rate_limit_us;
14 };
15
16 struct sugov_policy {
17         struct cpufreq_policy   *policy;
18
19         struct sugov_tunables   *tunables;
20         struct list_head        tunables_hook;
21
22         raw_spinlock_t          update_lock;
23         u64                     last_freq_update_time;
24         s64                     freq_update_delay_ns;
25         unsigned int            next_freq;
26         unsigned int            cached_raw_freq;
27
28         /* The next fields are only needed if fast switch cannot be used: */
29         struct                  irq_work irq_work;
30         struct                  kthread_work work;
31         struct                  mutex work_lock;
32         struct                  kthread_worker worker;
33         struct task_struct      *thread;
34         bool                    work_in_progress;
35
36         bool                    limits_changed;
37         bool                    need_freq_update;
38 };
39
40 struct sugov_cpu {
41         struct update_util_data update_util;
42         struct sugov_policy     *sg_policy;
43         unsigned int            cpu;
44
45         bool                    iowait_boost_pending;
46         unsigned int            iowait_boost;
47         u64                     last_update;
48
49         unsigned long           util;
50         unsigned long           bw_dl;
51
52         /* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54         unsigned long           saved_idle_calls;
55 #endif
56 };
57
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59
60 /************************ Governor internals ***********************/
61
62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63 {
64         s64 delta_ns;
65
66         /*
67          * Since cpufreq_update_util() is called with rq->lock held for
68          * the @target_cpu, our per-CPU data is fully serialized.
69          *
70          * However, drivers cannot in general deal with cross-CPU
71          * requests, so while get_next_freq() will work, our
72          * sugov_update_commit() call may not for the fast switching platforms.
73          *
74          * Hence stop here for remote requests if they aren't supported
75          * by the hardware, as calculating the frequency is pointless if
76          * we cannot in fact act on it.
77          *
78          * This is needed on the slow switching platforms too to prevent CPUs
79          * going offline from leaving stale IRQ work items behind.
80          */
81         if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82                 return false;
83
84         if (unlikely(sg_policy->limits_changed)) {
85                 sg_policy->limits_changed = false;
86                 sg_policy->need_freq_update = true;
87                 return true;
88         }
89
90         delta_ns = time - sg_policy->last_freq_update_time;
91
92         return delta_ns >= sg_policy->freq_update_delay_ns;
93 }
94
95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96                                    unsigned int next_freq)
97 {
98         if (sg_policy->need_freq_update)
99                 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100         else if (sg_policy->next_freq == next_freq)
101                 return false;
102
103         sg_policy->next_freq = next_freq;
104         sg_policy->last_freq_update_time = time;
105
106         return true;
107 }
108
109 static void sugov_deferred_update(struct sugov_policy *sg_policy)
110 {
111         if (!sg_policy->work_in_progress) {
112                 sg_policy->work_in_progress = true;
113                 irq_work_queue(&sg_policy->irq_work);
114         }
115 }
116
117 /**
118  * get_next_freq - Compute a new frequency for a given cpufreq policy.
119  * @sg_policy: schedutil policy object to compute the new frequency for.
120  * @util: Current CPU utilization.
121  * @max: CPU capacity.
122  *
123  * If the utilization is frequency-invariant, choose the new frequency to be
124  * proportional to it, that is
125  *
126  * next_freq = C * max_freq * util / max
127  *
128  * Otherwise, approximate the would-be frequency-invariant utilization by
129  * util_raw * (curr_freq / max_freq) which leads to
130  *
131  * next_freq = C * curr_freq * util_raw / max
132  *
133  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
134  *
135  * The lowest driver-supported frequency which is equal or greater than the raw
136  * next_freq (as calculated above) is returned, subject to policy min/max and
137  * cpufreq driver limitations.
138  */
139 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
140                                   unsigned long util, unsigned long max)
141 {
142         struct cpufreq_policy *policy = sg_policy->policy;
143         unsigned int freq = arch_scale_freq_invariant() ?
144                                 policy->cpuinfo.max_freq : policy->cur;
145
146         util = map_util_perf(util);
147         freq = map_util_freq(util, freq, max);
148
149         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
150                 return sg_policy->next_freq;
151
152         sg_policy->cached_raw_freq = freq;
153         return cpufreq_driver_resolve_freq(policy, freq);
154 }
155
156 static void sugov_get_util(struct sugov_cpu *sg_cpu)
157 {
158         unsigned long util = cpu_util_cfs_boost(sg_cpu->cpu);
159         struct rq *rq = cpu_rq(sg_cpu->cpu);
160
161         sg_cpu->bw_dl = cpu_bw_dl(rq);
162         sg_cpu->util = effective_cpu_util(sg_cpu->cpu, util,
163                                           FREQUENCY_UTIL, NULL);
164 }
165
166 /**
167  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
168  * @sg_cpu: the sugov data for the CPU to boost
169  * @time: the update time from the caller
170  * @set_iowait_boost: true if an IO boost has been requested
171  *
172  * The IO wait boost of a task is disabled after a tick since the last update
173  * of a CPU. If a new IO wait boost is requested after more then a tick, then
174  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
175  * efficiency by ignoring sporadic wakeups from IO.
176  */
177 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
178                                bool set_iowait_boost)
179 {
180         s64 delta_ns = time - sg_cpu->last_update;
181
182         /* Reset boost only if a tick has elapsed since last request */
183         if (delta_ns <= TICK_NSEC)
184                 return false;
185
186         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
187         sg_cpu->iowait_boost_pending = set_iowait_boost;
188
189         return true;
190 }
191
192 /**
193  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
194  * @sg_cpu: the sugov data for the CPU to boost
195  * @time: the update time from the caller
196  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
197  *
198  * Each time a task wakes up after an IO operation, the CPU utilization can be
199  * boosted to a certain utilization which doubles at each "frequent and
200  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
201  * of the maximum OPP.
202  *
203  * To keep doubling, an IO boost has to be requested at least once per tick,
204  * otherwise we restart from the utilization of the minimum OPP.
205  */
206 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
207                                unsigned int flags)
208 {
209         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
210
211         /* Reset boost if the CPU appears to have been idle enough */
212         if (sg_cpu->iowait_boost &&
213             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
214                 return;
215
216         /* Boost only tasks waking up after IO */
217         if (!set_iowait_boost)
218                 return;
219
220         /* Ensure boost doubles only one time at each request */
221         if (sg_cpu->iowait_boost_pending)
222                 return;
223         sg_cpu->iowait_boost_pending = true;
224
225         /* Double the boost at each request */
226         if (sg_cpu->iowait_boost) {
227                 sg_cpu->iowait_boost =
228                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
229                 return;
230         }
231
232         /* First wakeup after IO: start with minimum boost */
233         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
234 }
235
236 /**
237  * sugov_iowait_apply() - Apply the IO boost to a CPU.
238  * @sg_cpu: the sugov data for the cpu to boost
239  * @time: the update time from the caller
240  * @max_cap: the max CPU capacity
241  *
242  * A CPU running a task which woken up after an IO operation can have its
243  * utilization boosted to speed up the completion of those IO operations.
244  * The IO boost value is increased each time a task wakes up from IO, in
245  * sugov_iowait_apply(), and it's instead decreased by this function,
246  * each time an increase has not been requested (!iowait_boost_pending).
247  *
248  * A CPU which also appears to have been idle for at least one tick has also
249  * its IO boost utilization reset.
250  *
251  * This mechanism is designed to boost high frequently IO waiting tasks, while
252  * being more conservative on tasks which does sporadic IO operations.
253  */
254 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
255                                unsigned long max_cap)
256 {
257         unsigned long boost;
258
259         /* No boost currently required */
260         if (!sg_cpu->iowait_boost)
261                 return;
262
263         /* Reset boost if the CPU appears to have been idle enough */
264         if (sugov_iowait_reset(sg_cpu, time, false))
265                 return;
266
267         if (!sg_cpu->iowait_boost_pending) {
268                 /*
269                  * No boost pending; reduce the boost value.
270                  */
271                 sg_cpu->iowait_boost >>= 1;
272                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
273                         sg_cpu->iowait_boost = 0;
274                         return;
275                 }
276         }
277
278         sg_cpu->iowait_boost_pending = false;
279
280         /*
281          * sg_cpu->util is already in capacity scale; convert iowait_boost
282          * into the same scale so we can compare.
283          */
284         boost = (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
285         boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
286         if (sg_cpu->util < boost)
287                 sg_cpu->util = boost;
288 }
289
290 #ifdef CONFIG_NO_HZ_COMMON
291 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
292 {
293         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
294         bool ret = idle_calls == sg_cpu->saved_idle_calls;
295
296         sg_cpu->saved_idle_calls = idle_calls;
297         return ret;
298 }
299 #else
300 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
301 #endif /* CONFIG_NO_HZ_COMMON */
302
303 /*
304  * Make sugov_should_update_freq() ignore the rate limit when DL
305  * has increased the utilization.
306  */
307 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
308 {
309         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
310                 sg_cpu->sg_policy->limits_changed = true;
311 }
312
313 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
314                                               u64 time, unsigned long max_cap,
315                                               unsigned int flags)
316 {
317         sugov_iowait_boost(sg_cpu, time, flags);
318         sg_cpu->last_update = time;
319
320         ignore_dl_rate_limit(sg_cpu);
321
322         if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
323                 return false;
324
325         sugov_get_util(sg_cpu);
326         sugov_iowait_apply(sg_cpu, time, max_cap);
327
328         return true;
329 }
330
331 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
332                                      unsigned int flags)
333 {
334         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
335         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
336         unsigned int cached_freq = sg_policy->cached_raw_freq;
337         unsigned long max_cap;
338         unsigned int next_f;
339
340         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
341
342         if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
343                 return;
344
345         next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
346         /*
347          * Do not reduce the frequency if the CPU has not been idle
348          * recently, as the reduction is likely to be premature then.
349          *
350          * Except when the rq is capped by uclamp_max.
351          */
352         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
353             sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq &&
354             !sg_policy->need_freq_update) {
355                 next_f = sg_policy->next_freq;
356
357                 /* Restore cached freq as next_freq has changed */
358                 sg_policy->cached_raw_freq = cached_freq;
359         }
360
361         if (!sugov_update_next_freq(sg_policy, time, next_f))
362                 return;
363
364         /*
365          * This code runs under rq->lock for the target CPU, so it won't run
366          * concurrently on two different CPUs for the same target and it is not
367          * necessary to acquire the lock in the fast switch case.
368          */
369         if (sg_policy->policy->fast_switch_enabled) {
370                 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
371         } else {
372                 raw_spin_lock(&sg_policy->update_lock);
373                 sugov_deferred_update(sg_policy);
374                 raw_spin_unlock(&sg_policy->update_lock);
375         }
376 }
377
378 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
379                                      unsigned int flags)
380 {
381         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
382         unsigned long prev_util = sg_cpu->util;
383         unsigned long max_cap;
384
385         /*
386          * Fall back to the "frequency" path if frequency invariance is not
387          * supported, because the direct mapping between the utilization and
388          * the performance levels depends on the frequency invariance.
389          */
390         if (!arch_scale_freq_invariant()) {
391                 sugov_update_single_freq(hook, time, flags);
392                 return;
393         }
394
395         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
396
397         if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
398                 return;
399
400         /*
401          * Do not reduce the target performance level if the CPU has not been
402          * idle recently, as the reduction is likely to be premature then.
403          *
404          * Except when the rq is capped by uclamp_max.
405          */
406         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
407             sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
408                 sg_cpu->util = prev_util;
409
410         cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
411                                    map_util_perf(sg_cpu->util), max_cap);
412
413         sg_cpu->sg_policy->last_freq_update_time = time;
414 }
415
416 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
417 {
418         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
419         struct cpufreq_policy *policy = sg_policy->policy;
420         unsigned long util = 0, max_cap;
421         unsigned int j;
422
423         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
424
425         for_each_cpu(j, policy->cpus) {
426                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
427
428                 sugov_get_util(j_sg_cpu);
429                 sugov_iowait_apply(j_sg_cpu, time, max_cap);
430
431                 util = max(j_sg_cpu->util, util);
432         }
433
434         return get_next_freq(sg_policy, util, max_cap);
435 }
436
437 static void
438 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
439 {
440         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
441         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
442         unsigned int next_f;
443
444         raw_spin_lock(&sg_policy->update_lock);
445
446         sugov_iowait_boost(sg_cpu, time, flags);
447         sg_cpu->last_update = time;
448
449         ignore_dl_rate_limit(sg_cpu);
450
451         if (sugov_should_update_freq(sg_policy, time)) {
452                 next_f = sugov_next_freq_shared(sg_cpu, time);
453
454                 if (!sugov_update_next_freq(sg_policy, time, next_f))
455                         goto unlock;
456
457                 if (sg_policy->policy->fast_switch_enabled)
458                         cpufreq_driver_fast_switch(sg_policy->policy, next_f);
459                 else
460                         sugov_deferred_update(sg_policy);
461         }
462 unlock:
463         raw_spin_unlock(&sg_policy->update_lock);
464 }
465
466 static void sugov_work(struct kthread_work *work)
467 {
468         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
469         unsigned int freq;
470         unsigned long flags;
471
472         /*
473          * Hold sg_policy->update_lock shortly to handle the case where:
474          * in case sg_policy->next_freq is read here, and then updated by
475          * sugov_deferred_update() just before work_in_progress is set to false
476          * here, we may miss queueing the new update.
477          *
478          * Note: If a work was queued after the update_lock is released,
479          * sugov_work() will just be called again by kthread_work code; and the
480          * request will be proceed before the sugov thread sleeps.
481          */
482         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
483         freq = sg_policy->next_freq;
484         sg_policy->work_in_progress = false;
485         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
486
487         mutex_lock(&sg_policy->work_lock);
488         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
489         mutex_unlock(&sg_policy->work_lock);
490 }
491
492 static void sugov_irq_work(struct irq_work *irq_work)
493 {
494         struct sugov_policy *sg_policy;
495
496         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
497
498         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
499 }
500
501 /************************** sysfs interface ************************/
502
503 static struct sugov_tunables *global_tunables;
504 static DEFINE_MUTEX(global_tunables_lock);
505
506 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
507 {
508         return container_of(attr_set, struct sugov_tunables, attr_set);
509 }
510
511 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
512 {
513         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
514
515         return sprintf(buf, "%u\n", tunables->rate_limit_us);
516 }
517
518 static ssize_t
519 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
520 {
521         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
522         struct sugov_policy *sg_policy;
523         unsigned int rate_limit_us;
524
525         if (kstrtouint(buf, 10, &rate_limit_us))
526                 return -EINVAL;
527
528         tunables->rate_limit_us = rate_limit_us;
529
530         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
531                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
532
533         return count;
534 }
535
536 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
537
538 static struct attribute *sugov_attrs[] = {
539         &rate_limit_us.attr,
540         NULL
541 };
542 ATTRIBUTE_GROUPS(sugov);
543
544 static void sugov_tunables_free(struct kobject *kobj)
545 {
546         struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
547
548         kfree(to_sugov_tunables(attr_set));
549 }
550
551 static const struct kobj_type sugov_tunables_ktype = {
552         .default_groups = sugov_groups,
553         .sysfs_ops = &governor_sysfs_ops,
554         .release = &sugov_tunables_free,
555 };
556
557 /********************** cpufreq governor interface *********************/
558
559 struct cpufreq_governor schedutil_gov;
560
561 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
562 {
563         struct sugov_policy *sg_policy;
564
565         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
566         if (!sg_policy)
567                 return NULL;
568
569         sg_policy->policy = policy;
570         raw_spin_lock_init(&sg_policy->update_lock);
571         return sg_policy;
572 }
573
574 static void sugov_policy_free(struct sugov_policy *sg_policy)
575 {
576         kfree(sg_policy);
577 }
578
579 static int sugov_kthread_create(struct sugov_policy *sg_policy)
580 {
581         struct task_struct *thread;
582         struct sched_attr attr = {
583                 .size           = sizeof(struct sched_attr),
584                 .sched_policy   = SCHED_DEADLINE,
585                 .sched_flags    = SCHED_FLAG_SUGOV,
586                 .sched_nice     = 0,
587                 .sched_priority = 0,
588                 /*
589                  * Fake (unused) bandwidth; workaround to "fix"
590                  * priority inheritance.
591                  */
592                 .sched_runtime  =  1000000,
593                 .sched_deadline = 10000000,
594                 .sched_period   = 10000000,
595         };
596         struct cpufreq_policy *policy = sg_policy->policy;
597         int ret;
598
599         /* kthread only required for slow path */
600         if (policy->fast_switch_enabled)
601                 return 0;
602
603         kthread_init_work(&sg_policy->work, sugov_work);
604         kthread_init_worker(&sg_policy->worker);
605         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
606                                 "sugov:%d",
607                                 cpumask_first(policy->related_cpus));
608         if (IS_ERR(thread)) {
609                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
610                 return PTR_ERR(thread);
611         }
612
613         ret = sched_setattr_nocheck(thread, &attr);
614         if (ret) {
615                 kthread_stop(thread);
616                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
617                 return ret;
618         }
619
620         sg_policy->thread = thread;
621         kthread_bind_mask(thread, policy->related_cpus);
622         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
623         mutex_init(&sg_policy->work_lock);
624
625         wake_up_process(thread);
626
627         return 0;
628 }
629
630 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
631 {
632         /* kthread only required for slow path */
633         if (sg_policy->policy->fast_switch_enabled)
634                 return;
635
636         kthread_flush_worker(&sg_policy->worker);
637         kthread_stop(sg_policy->thread);
638         mutex_destroy(&sg_policy->work_lock);
639 }
640
641 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
642 {
643         struct sugov_tunables *tunables;
644
645         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
646         if (tunables) {
647                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
648                 if (!have_governor_per_policy())
649                         global_tunables = tunables;
650         }
651         return tunables;
652 }
653
654 static void sugov_clear_global_tunables(void)
655 {
656         if (!have_governor_per_policy())
657                 global_tunables = NULL;
658 }
659
660 static int sugov_init(struct cpufreq_policy *policy)
661 {
662         struct sugov_policy *sg_policy;
663         struct sugov_tunables *tunables;
664         int ret = 0;
665
666         /* State should be equivalent to EXIT */
667         if (policy->governor_data)
668                 return -EBUSY;
669
670         cpufreq_enable_fast_switch(policy);
671
672         sg_policy = sugov_policy_alloc(policy);
673         if (!sg_policy) {
674                 ret = -ENOMEM;
675                 goto disable_fast_switch;
676         }
677
678         ret = sugov_kthread_create(sg_policy);
679         if (ret)
680                 goto free_sg_policy;
681
682         mutex_lock(&global_tunables_lock);
683
684         if (global_tunables) {
685                 if (WARN_ON(have_governor_per_policy())) {
686                         ret = -EINVAL;
687                         goto stop_kthread;
688                 }
689                 policy->governor_data = sg_policy;
690                 sg_policy->tunables = global_tunables;
691
692                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
693                 goto out;
694         }
695
696         tunables = sugov_tunables_alloc(sg_policy);
697         if (!tunables) {
698                 ret = -ENOMEM;
699                 goto stop_kthread;
700         }
701
702         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
703
704         policy->governor_data = sg_policy;
705         sg_policy->tunables = tunables;
706
707         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
708                                    get_governor_parent_kobj(policy), "%s",
709                                    schedutil_gov.name);
710         if (ret)
711                 goto fail;
712
713 out:
714         mutex_unlock(&global_tunables_lock);
715         return 0;
716
717 fail:
718         kobject_put(&tunables->attr_set.kobj);
719         policy->governor_data = NULL;
720         sugov_clear_global_tunables();
721
722 stop_kthread:
723         sugov_kthread_stop(sg_policy);
724         mutex_unlock(&global_tunables_lock);
725
726 free_sg_policy:
727         sugov_policy_free(sg_policy);
728
729 disable_fast_switch:
730         cpufreq_disable_fast_switch(policy);
731
732         pr_err("initialization failed (error %d)\n", ret);
733         return ret;
734 }
735
736 static void sugov_exit(struct cpufreq_policy *policy)
737 {
738         struct sugov_policy *sg_policy = policy->governor_data;
739         struct sugov_tunables *tunables = sg_policy->tunables;
740         unsigned int count;
741
742         mutex_lock(&global_tunables_lock);
743
744         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
745         policy->governor_data = NULL;
746         if (!count)
747                 sugov_clear_global_tunables();
748
749         mutex_unlock(&global_tunables_lock);
750
751         sugov_kthread_stop(sg_policy);
752         sugov_policy_free(sg_policy);
753         cpufreq_disable_fast_switch(policy);
754 }
755
756 static int sugov_start(struct cpufreq_policy *policy)
757 {
758         struct sugov_policy *sg_policy = policy->governor_data;
759         void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
760         unsigned int cpu;
761
762         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
763         sg_policy->last_freq_update_time        = 0;
764         sg_policy->next_freq                    = 0;
765         sg_policy->work_in_progress             = false;
766         sg_policy->limits_changed               = false;
767         sg_policy->cached_raw_freq              = 0;
768
769         sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
770
771         for_each_cpu(cpu, policy->cpus) {
772                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
773
774                 memset(sg_cpu, 0, sizeof(*sg_cpu));
775                 sg_cpu->cpu                     = cpu;
776                 sg_cpu->sg_policy               = sg_policy;
777         }
778
779         if (policy_is_shared(policy))
780                 uu = sugov_update_shared;
781         else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
782                 uu = sugov_update_single_perf;
783         else
784                 uu = sugov_update_single_freq;
785
786         for_each_cpu(cpu, policy->cpus) {
787                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
788
789                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
790         }
791         return 0;
792 }
793
794 static void sugov_stop(struct cpufreq_policy *policy)
795 {
796         struct sugov_policy *sg_policy = policy->governor_data;
797         unsigned int cpu;
798
799         for_each_cpu(cpu, policy->cpus)
800                 cpufreq_remove_update_util_hook(cpu);
801
802         synchronize_rcu();
803
804         if (!policy->fast_switch_enabled) {
805                 irq_work_sync(&sg_policy->irq_work);
806                 kthread_cancel_work_sync(&sg_policy->work);
807         }
808 }
809
810 static void sugov_limits(struct cpufreq_policy *policy)
811 {
812         struct sugov_policy *sg_policy = policy->governor_data;
813
814         if (!policy->fast_switch_enabled) {
815                 mutex_lock(&sg_policy->work_lock);
816                 cpufreq_policy_apply_limits(policy);
817                 mutex_unlock(&sg_policy->work_lock);
818         }
819
820         sg_policy->limits_changed = true;
821 }
822
823 struct cpufreq_governor schedutil_gov = {
824         .name                   = "schedutil",
825         .owner                  = THIS_MODULE,
826         .flags                  = CPUFREQ_GOV_DYNAMIC_SWITCHING,
827         .init                   = sugov_init,
828         .exit                   = sugov_exit,
829         .start                  = sugov_start,
830         .stop                   = sugov_stop,
831         .limits                 = sugov_limits,
832 };
833
834 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
835 struct cpufreq_governor *cpufreq_default_governor(void)
836 {
837         return &schedutil_gov;
838 }
839 #endif
840
841 cpufreq_governor_init(schedutil_gov);
842
843 #ifdef CONFIG_ENERGY_MODEL
844 static void rebuild_sd_workfn(struct work_struct *work)
845 {
846         rebuild_sched_domains_energy();
847 }
848 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
849
850 /*
851  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
852  * on governor changes to make sure the scheduler knows about it.
853  */
854 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
855                                   struct cpufreq_governor *old_gov)
856 {
857         if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
858                 /*
859                  * When called from the cpufreq_register_driver() path, the
860                  * cpu_hotplug_lock is already held, so use a work item to
861                  * avoid nested locking in rebuild_sched_domains().
862                  */
863                 schedule_work(&rebuild_sd_work);
864         }
865
866 }
867 #endif