1 // SPDX-License-Identifier: GPL-2.0
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
11 struct sugov_tunables {
12 struct gov_attr_set attr_set;
13 unsigned int rate_limit_us;
17 struct cpufreq_policy *policy;
19 struct sugov_tunables *tunables;
20 struct list_head tunables_hook;
22 raw_spinlock_t update_lock;
23 u64 last_freq_update_time;
24 s64 freq_update_delay_ns;
25 unsigned int next_freq;
26 unsigned int cached_raw_freq;
28 /* The next fields are only needed if fast switch cannot be used: */
29 struct irq_work irq_work;
30 struct kthread_work work;
31 struct mutex work_lock;
32 struct kthread_worker worker;
33 struct task_struct *thread;
34 bool work_in_progress;
37 bool need_freq_update;
41 struct update_util_data update_util;
42 struct sugov_policy *sg_policy;
45 bool iowait_boost_pending;
46 unsigned int iowait_boost;
52 /* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54 unsigned long saved_idle_calls;
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
60 /************************ Governor internals ***********************/
62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
67 * Since cpufreq_update_util() is called with rq->lock held for
68 * the @target_cpu, our per-CPU data is fully serialized.
70 * However, drivers cannot in general deal with cross-CPU
71 * requests, so while get_next_freq() will work, our
72 * sugov_update_commit() call may not for the fast switching platforms.
74 * Hence stop here for remote requests if they aren't supported
75 * by the hardware, as calculating the frequency is pointless if
76 * we cannot in fact act on it.
78 * This is needed on the slow switching platforms too to prevent CPUs
79 * going offline from leaving stale IRQ work items behind.
81 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
84 if (unlikely(sg_policy->limits_changed)) {
85 sg_policy->limits_changed = false;
86 sg_policy->need_freq_update = true;
90 delta_ns = time - sg_policy->last_freq_update_time;
92 return delta_ns >= sg_policy->freq_update_delay_ns;
95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96 unsigned int next_freq)
98 if (sg_policy->need_freq_update)
99 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100 else if (sg_policy->next_freq == next_freq)
103 sg_policy->next_freq = next_freq;
104 sg_policy->last_freq_update_time = time;
109 static void sugov_deferred_update(struct sugov_policy *sg_policy)
111 if (!sg_policy->work_in_progress) {
112 sg_policy->work_in_progress = true;
113 irq_work_queue(&sg_policy->irq_work);
118 * get_next_freq - Compute a new frequency for a given cpufreq policy.
119 * @sg_policy: schedutil policy object to compute the new frequency for.
120 * @util: Current CPU utilization.
121 * @max: CPU capacity.
123 * If the utilization is frequency-invariant, choose the new frequency to be
124 * proportional to it, that is
126 * next_freq = C * max_freq * util / max
128 * Otherwise, approximate the would-be frequency-invariant utilization by
129 * util_raw * (curr_freq / max_freq) which leads to
131 * next_freq = C * curr_freq * util_raw / max
133 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
135 * The lowest driver-supported frequency which is equal or greater than the raw
136 * next_freq (as calculated above) is returned, subject to policy min/max and
137 * cpufreq driver limitations.
139 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
140 unsigned long util, unsigned long max)
142 struct cpufreq_policy *policy = sg_policy->policy;
143 unsigned int freq = arch_scale_freq_invariant() ?
144 policy->cpuinfo.max_freq : policy->cur;
146 util = map_util_perf(util);
147 freq = map_util_freq(util, freq, max);
149 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
150 return sg_policy->next_freq;
152 sg_policy->cached_raw_freq = freq;
153 return cpufreq_driver_resolve_freq(policy, freq);
156 static void sugov_get_util(struct sugov_cpu *sg_cpu)
158 unsigned long util = cpu_util_cfs_boost(sg_cpu->cpu);
159 struct rq *rq = cpu_rq(sg_cpu->cpu);
161 sg_cpu->bw_dl = cpu_bw_dl(rq);
162 sg_cpu->util = effective_cpu_util(sg_cpu->cpu, util,
163 FREQUENCY_UTIL, NULL);
167 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
168 * @sg_cpu: the sugov data for the CPU to boost
169 * @time: the update time from the caller
170 * @set_iowait_boost: true if an IO boost has been requested
172 * The IO wait boost of a task is disabled after a tick since the last update
173 * of a CPU. If a new IO wait boost is requested after more then a tick, then
174 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
175 * efficiency by ignoring sporadic wakeups from IO.
177 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
178 bool set_iowait_boost)
180 s64 delta_ns = time - sg_cpu->last_update;
182 /* Reset boost only if a tick has elapsed since last request */
183 if (delta_ns <= TICK_NSEC)
186 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
187 sg_cpu->iowait_boost_pending = set_iowait_boost;
193 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
194 * @sg_cpu: the sugov data for the CPU to boost
195 * @time: the update time from the caller
196 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
198 * Each time a task wakes up after an IO operation, the CPU utilization can be
199 * boosted to a certain utilization which doubles at each "frequent and
200 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
201 * of the maximum OPP.
203 * To keep doubling, an IO boost has to be requested at least once per tick,
204 * otherwise we restart from the utilization of the minimum OPP.
206 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
209 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
211 /* Reset boost if the CPU appears to have been idle enough */
212 if (sg_cpu->iowait_boost &&
213 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
216 /* Boost only tasks waking up after IO */
217 if (!set_iowait_boost)
220 /* Ensure boost doubles only one time at each request */
221 if (sg_cpu->iowait_boost_pending)
223 sg_cpu->iowait_boost_pending = true;
225 /* Double the boost at each request */
226 if (sg_cpu->iowait_boost) {
227 sg_cpu->iowait_boost =
228 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
232 /* First wakeup after IO: start with minimum boost */
233 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
237 * sugov_iowait_apply() - Apply the IO boost to a CPU.
238 * @sg_cpu: the sugov data for the cpu to boost
239 * @time: the update time from the caller
240 * @max_cap: the max CPU capacity
242 * A CPU running a task which woken up after an IO operation can have its
243 * utilization boosted to speed up the completion of those IO operations.
244 * The IO boost value is increased each time a task wakes up from IO, in
245 * sugov_iowait_apply(), and it's instead decreased by this function,
246 * each time an increase has not been requested (!iowait_boost_pending).
248 * A CPU which also appears to have been idle for at least one tick has also
249 * its IO boost utilization reset.
251 * This mechanism is designed to boost high frequently IO waiting tasks, while
252 * being more conservative on tasks which does sporadic IO operations.
254 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
255 unsigned long max_cap)
259 /* No boost currently required */
260 if (!sg_cpu->iowait_boost)
263 /* Reset boost if the CPU appears to have been idle enough */
264 if (sugov_iowait_reset(sg_cpu, time, false))
267 if (!sg_cpu->iowait_boost_pending) {
269 * No boost pending; reduce the boost value.
271 sg_cpu->iowait_boost >>= 1;
272 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
273 sg_cpu->iowait_boost = 0;
278 sg_cpu->iowait_boost_pending = false;
281 * sg_cpu->util is already in capacity scale; convert iowait_boost
282 * into the same scale so we can compare.
284 boost = (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
285 boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
286 if (sg_cpu->util < boost)
287 sg_cpu->util = boost;
290 #ifdef CONFIG_NO_HZ_COMMON
291 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
293 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
294 bool ret = idle_calls == sg_cpu->saved_idle_calls;
296 sg_cpu->saved_idle_calls = idle_calls;
300 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
301 #endif /* CONFIG_NO_HZ_COMMON */
304 * Make sugov_should_update_freq() ignore the rate limit when DL
305 * has increased the utilization.
307 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
309 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
310 sg_cpu->sg_policy->limits_changed = true;
313 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
314 u64 time, unsigned long max_cap,
317 sugov_iowait_boost(sg_cpu, time, flags);
318 sg_cpu->last_update = time;
320 ignore_dl_rate_limit(sg_cpu);
322 if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
325 sugov_get_util(sg_cpu);
326 sugov_iowait_apply(sg_cpu, time, max_cap);
331 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
334 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
335 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
336 unsigned int cached_freq = sg_policy->cached_raw_freq;
337 unsigned long max_cap;
340 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
342 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
345 next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
347 * Do not reduce the frequency if the CPU has not been idle
348 * recently, as the reduction is likely to be premature then.
350 * Except when the rq is capped by uclamp_max.
352 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
353 sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq &&
354 !sg_policy->need_freq_update) {
355 next_f = sg_policy->next_freq;
357 /* Restore cached freq as next_freq has changed */
358 sg_policy->cached_raw_freq = cached_freq;
361 if (!sugov_update_next_freq(sg_policy, time, next_f))
365 * This code runs under rq->lock for the target CPU, so it won't run
366 * concurrently on two different CPUs for the same target and it is not
367 * necessary to acquire the lock in the fast switch case.
369 if (sg_policy->policy->fast_switch_enabled) {
370 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
372 raw_spin_lock(&sg_policy->update_lock);
373 sugov_deferred_update(sg_policy);
374 raw_spin_unlock(&sg_policy->update_lock);
378 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
381 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
382 unsigned long prev_util = sg_cpu->util;
383 unsigned long max_cap;
386 * Fall back to the "frequency" path if frequency invariance is not
387 * supported, because the direct mapping between the utilization and
388 * the performance levels depends on the frequency invariance.
390 if (!arch_scale_freq_invariant()) {
391 sugov_update_single_freq(hook, time, flags);
395 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
397 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
401 * Do not reduce the target performance level if the CPU has not been
402 * idle recently, as the reduction is likely to be premature then.
404 * Except when the rq is capped by uclamp_max.
406 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
407 sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
408 sg_cpu->util = prev_util;
410 cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
411 map_util_perf(sg_cpu->util), max_cap);
413 sg_cpu->sg_policy->last_freq_update_time = time;
416 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
418 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
419 struct cpufreq_policy *policy = sg_policy->policy;
420 unsigned long util = 0, max_cap;
423 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
425 for_each_cpu(j, policy->cpus) {
426 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
428 sugov_get_util(j_sg_cpu);
429 sugov_iowait_apply(j_sg_cpu, time, max_cap);
431 util = max(j_sg_cpu->util, util);
434 return get_next_freq(sg_policy, util, max_cap);
438 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
440 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
441 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
444 raw_spin_lock(&sg_policy->update_lock);
446 sugov_iowait_boost(sg_cpu, time, flags);
447 sg_cpu->last_update = time;
449 ignore_dl_rate_limit(sg_cpu);
451 if (sugov_should_update_freq(sg_policy, time)) {
452 next_f = sugov_next_freq_shared(sg_cpu, time);
454 if (!sugov_update_next_freq(sg_policy, time, next_f))
457 if (sg_policy->policy->fast_switch_enabled)
458 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
460 sugov_deferred_update(sg_policy);
463 raw_spin_unlock(&sg_policy->update_lock);
466 static void sugov_work(struct kthread_work *work)
468 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
473 * Hold sg_policy->update_lock shortly to handle the case where:
474 * in case sg_policy->next_freq is read here, and then updated by
475 * sugov_deferred_update() just before work_in_progress is set to false
476 * here, we may miss queueing the new update.
478 * Note: If a work was queued after the update_lock is released,
479 * sugov_work() will just be called again by kthread_work code; and the
480 * request will be proceed before the sugov thread sleeps.
482 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
483 freq = sg_policy->next_freq;
484 sg_policy->work_in_progress = false;
485 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
487 mutex_lock(&sg_policy->work_lock);
488 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
489 mutex_unlock(&sg_policy->work_lock);
492 static void sugov_irq_work(struct irq_work *irq_work)
494 struct sugov_policy *sg_policy;
496 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
498 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
501 /************************** sysfs interface ************************/
503 static struct sugov_tunables *global_tunables;
504 static DEFINE_MUTEX(global_tunables_lock);
506 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
508 return container_of(attr_set, struct sugov_tunables, attr_set);
511 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
513 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
515 return sprintf(buf, "%u\n", tunables->rate_limit_us);
519 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
521 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
522 struct sugov_policy *sg_policy;
523 unsigned int rate_limit_us;
525 if (kstrtouint(buf, 10, &rate_limit_us))
528 tunables->rate_limit_us = rate_limit_us;
530 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
531 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
536 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
538 static struct attribute *sugov_attrs[] = {
542 ATTRIBUTE_GROUPS(sugov);
544 static void sugov_tunables_free(struct kobject *kobj)
546 struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
548 kfree(to_sugov_tunables(attr_set));
551 static const struct kobj_type sugov_tunables_ktype = {
552 .default_groups = sugov_groups,
553 .sysfs_ops = &governor_sysfs_ops,
554 .release = &sugov_tunables_free,
557 /********************** cpufreq governor interface *********************/
559 struct cpufreq_governor schedutil_gov;
561 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
563 struct sugov_policy *sg_policy;
565 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
569 sg_policy->policy = policy;
570 raw_spin_lock_init(&sg_policy->update_lock);
574 static void sugov_policy_free(struct sugov_policy *sg_policy)
579 static int sugov_kthread_create(struct sugov_policy *sg_policy)
581 struct task_struct *thread;
582 struct sched_attr attr = {
583 .size = sizeof(struct sched_attr),
584 .sched_policy = SCHED_DEADLINE,
585 .sched_flags = SCHED_FLAG_SUGOV,
589 * Fake (unused) bandwidth; workaround to "fix"
590 * priority inheritance.
592 .sched_runtime = 1000000,
593 .sched_deadline = 10000000,
594 .sched_period = 10000000,
596 struct cpufreq_policy *policy = sg_policy->policy;
599 /* kthread only required for slow path */
600 if (policy->fast_switch_enabled)
603 kthread_init_work(&sg_policy->work, sugov_work);
604 kthread_init_worker(&sg_policy->worker);
605 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
607 cpumask_first(policy->related_cpus));
608 if (IS_ERR(thread)) {
609 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
610 return PTR_ERR(thread);
613 ret = sched_setattr_nocheck(thread, &attr);
615 kthread_stop(thread);
616 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
620 sg_policy->thread = thread;
621 kthread_bind_mask(thread, policy->related_cpus);
622 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
623 mutex_init(&sg_policy->work_lock);
625 wake_up_process(thread);
630 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
632 /* kthread only required for slow path */
633 if (sg_policy->policy->fast_switch_enabled)
636 kthread_flush_worker(&sg_policy->worker);
637 kthread_stop(sg_policy->thread);
638 mutex_destroy(&sg_policy->work_lock);
641 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
643 struct sugov_tunables *tunables;
645 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
647 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
648 if (!have_governor_per_policy())
649 global_tunables = tunables;
654 static void sugov_clear_global_tunables(void)
656 if (!have_governor_per_policy())
657 global_tunables = NULL;
660 static int sugov_init(struct cpufreq_policy *policy)
662 struct sugov_policy *sg_policy;
663 struct sugov_tunables *tunables;
666 /* State should be equivalent to EXIT */
667 if (policy->governor_data)
670 cpufreq_enable_fast_switch(policy);
672 sg_policy = sugov_policy_alloc(policy);
675 goto disable_fast_switch;
678 ret = sugov_kthread_create(sg_policy);
682 mutex_lock(&global_tunables_lock);
684 if (global_tunables) {
685 if (WARN_ON(have_governor_per_policy())) {
689 policy->governor_data = sg_policy;
690 sg_policy->tunables = global_tunables;
692 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
696 tunables = sugov_tunables_alloc(sg_policy);
702 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
704 policy->governor_data = sg_policy;
705 sg_policy->tunables = tunables;
707 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
708 get_governor_parent_kobj(policy), "%s",
714 mutex_unlock(&global_tunables_lock);
718 kobject_put(&tunables->attr_set.kobj);
719 policy->governor_data = NULL;
720 sugov_clear_global_tunables();
723 sugov_kthread_stop(sg_policy);
724 mutex_unlock(&global_tunables_lock);
727 sugov_policy_free(sg_policy);
730 cpufreq_disable_fast_switch(policy);
732 pr_err("initialization failed (error %d)\n", ret);
736 static void sugov_exit(struct cpufreq_policy *policy)
738 struct sugov_policy *sg_policy = policy->governor_data;
739 struct sugov_tunables *tunables = sg_policy->tunables;
742 mutex_lock(&global_tunables_lock);
744 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
745 policy->governor_data = NULL;
747 sugov_clear_global_tunables();
749 mutex_unlock(&global_tunables_lock);
751 sugov_kthread_stop(sg_policy);
752 sugov_policy_free(sg_policy);
753 cpufreq_disable_fast_switch(policy);
756 static int sugov_start(struct cpufreq_policy *policy)
758 struct sugov_policy *sg_policy = policy->governor_data;
759 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
762 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
763 sg_policy->last_freq_update_time = 0;
764 sg_policy->next_freq = 0;
765 sg_policy->work_in_progress = false;
766 sg_policy->limits_changed = false;
767 sg_policy->cached_raw_freq = 0;
769 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
771 for_each_cpu(cpu, policy->cpus) {
772 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
774 memset(sg_cpu, 0, sizeof(*sg_cpu));
776 sg_cpu->sg_policy = sg_policy;
779 if (policy_is_shared(policy))
780 uu = sugov_update_shared;
781 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
782 uu = sugov_update_single_perf;
784 uu = sugov_update_single_freq;
786 for_each_cpu(cpu, policy->cpus) {
787 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
789 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
794 static void sugov_stop(struct cpufreq_policy *policy)
796 struct sugov_policy *sg_policy = policy->governor_data;
799 for_each_cpu(cpu, policy->cpus)
800 cpufreq_remove_update_util_hook(cpu);
804 if (!policy->fast_switch_enabled) {
805 irq_work_sync(&sg_policy->irq_work);
806 kthread_cancel_work_sync(&sg_policy->work);
810 static void sugov_limits(struct cpufreq_policy *policy)
812 struct sugov_policy *sg_policy = policy->governor_data;
814 if (!policy->fast_switch_enabled) {
815 mutex_lock(&sg_policy->work_lock);
816 cpufreq_policy_apply_limits(policy);
817 mutex_unlock(&sg_policy->work_lock);
820 sg_policy->limits_changed = true;
823 struct cpufreq_governor schedutil_gov = {
825 .owner = THIS_MODULE,
826 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
829 .start = sugov_start,
831 .limits = sugov_limits,
834 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
835 struct cpufreq_governor *cpufreq_default_governor(void)
837 return &schedutil_gov;
841 cpufreq_governor_init(schedutil_gov);
843 #ifdef CONFIG_ENERGY_MODEL
844 static void rebuild_sd_workfn(struct work_struct *work)
846 rebuild_sched_domains_energy();
848 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
851 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
852 * on governor changes to make sure the scheduler knows about it.
854 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
855 struct cpufreq_governor *old_gov)
857 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
859 * When called from the cpufreq_register_driver() path, the
860 * cpu_hotplug_lock is already held, so use a work item to
861 * avoid nested locking in rebuild_sched_domains().
863 schedule_work(&rebuild_sd_work);