Revert "cpufreq: schedutil: Move max CPU capacity to sugov_policy"
[platform/kernel/linux-starfive.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
10
11 struct sugov_tunables {
12         struct gov_attr_set     attr_set;
13         unsigned int            rate_limit_us;
14 };
15
16 struct sugov_policy {
17         struct cpufreq_policy   *policy;
18
19         struct sugov_tunables   *tunables;
20         struct list_head        tunables_hook;
21
22         raw_spinlock_t          update_lock;
23         u64                     last_freq_update_time;
24         s64                     freq_update_delay_ns;
25         unsigned int            next_freq;
26         unsigned int            cached_raw_freq;
27
28         /* The next fields are only needed if fast switch cannot be used: */
29         struct                  irq_work irq_work;
30         struct                  kthread_work work;
31         struct                  mutex work_lock;
32         struct                  kthread_worker worker;
33         struct task_struct      *thread;
34         bool                    work_in_progress;
35
36         bool                    limits_changed;
37         bool                    need_freq_update;
38 };
39
40 struct sugov_cpu {
41         struct update_util_data update_util;
42         struct sugov_policy     *sg_policy;
43         unsigned int            cpu;
44
45         bool                    iowait_boost_pending;
46         unsigned int            iowait_boost;
47         u64                     last_update;
48
49         unsigned long           util;
50         unsigned long           bw_dl;
51         unsigned long           max;
52
53         /* The field below is for single-CPU policies only: */
54 #ifdef CONFIG_NO_HZ_COMMON
55         unsigned long           saved_idle_calls;
56 #endif
57 };
58
59 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
60
61 /************************ Governor internals ***********************/
62
63 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
64 {
65         s64 delta_ns;
66
67         /*
68          * Since cpufreq_update_util() is called with rq->lock held for
69          * the @target_cpu, our per-CPU data is fully serialized.
70          *
71          * However, drivers cannot in general deal with cross-CPU
72          * requests, so while get_next_freq() will work, our
73          * sugov_update_commit() call may not for the fast switching platforms.
74          *
75          * Hence stop here for remote requests if they aren't supported
76          * by the hardware, as calculating the frequency is pointless if
77          * we cannot in fact act on it.
78          *
79          * This is needed on the slow switching platforms too to prevent CPUs
80          * going offline from leaving stale IRQ work items behind.
81          */
82         if (!cpufreq_this_cpu_can_update(sg_policy->policy))
83                 return false;
84
85         if (unlikely(sg_policy->limits_changed)) {
86                 sg_policy->limits_changed = false;
87                 sg_policy->need_freq_update = true;
88                 return true;
89         }
90
91         delta_ns = time - sg_policy->last_freq_update_time;
92
93         return delta_ns >= sg_policy->freq_update_delay_ns;
94 }
95
96 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
97                                    unsigned int next_freq)
98 {
99         if (sg_policy->need_freq_update)
100                 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
101         else if (sg_policy->next_freq == next_freq)
102                 return false;
103
104         sg_policy->next_freq = next_freq;
105         sg_policy->last_freq_update_time = time;
106
107         return true;
108 }
109
110 static void sugov_deferred_update(struct sugov_policy *sg_policy)
111 {
112         if (!sg_policy->work_in_progress) {
113                 sg_policy->work_in_progress = true;
114                 irq_work_queue(&sg_policy->irq_work);
115         }
116 }
117
118 /**
119  * get_next_freq - Compute a new frequency for a given cpufreq policy.
120  * @sg_policy: schedutil policy object to compute the new frequency for.
121  * @util: Current CPU utilization.
122  * @max: CPU capacity.
123  *
124  * If the utilization is frequency-invariant, choose the new frequency to be
125  * proportional to it, that is
126  *
127  * next_freq = C * max_freq * util / max
128  *
129  * Otherwise, approximate the would-be frequency-invariant utilization by
130  * util_raw * (curr_freq / max_freq) which leads to
131  *
132  * next_freq = C * curr_freq * util_raw / max
133  *
134  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
135  *
136  * The lowest driver-supported frequency which is equal or greater than the raw
137  * next_freq (as calculated above) is returned, subject to policy min/max and
138  * cpufreq driver limitations.
139  */
140 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
141                                   unsigned long util, unsigned long max)
142 {
143         struct cpufreq_policy *policy = sg_policy->policy;
144         unsigned int freq = arch_scale_freq_invariant() ?
145                                 policy->cpuinfo.max_freq : policy->cur;
146
147         util = map_util_perf(util);
148         freq = map_util_freq(util, freq, max);
149
150         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
151                 return sg_policy->next_freq;
152
153         sg_policy->cached_raw_freq = freq;
154         return cpufreq_driver_resolve_freq(policy, freq);
155 }
156
157 static void sugov_get_util(struct sugov_cpu *sg_cpu)
158 {
159         struct rq *rq = cpu_rq(sg_cpu->cpu);
160
161         sg_cpu->max = arch_scale_cpu_capacity(sg_cpu->cpu);
162         sg_cpu->bw_dl = cpu_bw_dl(rq);
163         sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(sg_cpu->cpu),
164                                           FREQUENCY_UTIL, NULL);
165 }
166
167 /**
168  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
169  * @sg_cpu: the sugov data for the CPU to boost
170  * @time: the update time from the caller
171  * @set_iowait_boost: true if an IO boost has been requested
172  *
173  * The IO wait boost of a task is disabled after a tick since the last update
174  * of a CPU. If a new IO wait boost is requested after more then a tick, then
175  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
176  * efficiency by ignoring sporadic wakeups from IO.
177  */
178 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
179                                bool set_iowait_boost)
180 {
181         s64 delta_ns = time - sg_cpu->last_update;
182
183         /* Reset boost only if a tick has elapsed since last request */
184         if (delta_ns <= TICK_NSEC)
185                 return false;
186
187         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
188         sg_cpu->iowait_boost_pending = set_iowait_boost;
189
190         return true;
191 }
192
193 /**
194  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
195  * @sg_cpu: the sugov data for the CPU to boost
196  * @time: the update time from the caller
197  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
198  *
199  * Each time a task wakes up after an IO operation, the CPU utilization can be
200  * boosted to a certain utilization which doubles at each "frequent and
201  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
202  * of the maximum OPP.
203  *
204  * To keep doubling, an IO boost has to be requested at least once per tick,
205  * otherwise we restart from the utilization of the minimum OPP.
206  */
207 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
208                                unsigned int flags)
209 {
210         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
211
212         /* Reset boost if the CPU appears to have been idle enough */
213         if (sg_cpu->iowait_boost &&
214             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
215                 return;
216
217         /* Boost only tasks waking up after IO */
218         if (!set_iowait_boost)
219                 return;
220
221         /* Ensure boost doubles only one time at each request */
222         if (sg_cpu->iowait_boost_pending)
223                 return;
224         sg_cpu->iowait_boost_pending = true;
225
226         /* Double the boost at each request */
227         if (sg_cpu->iowait_boost) {
228                 sg_cpu->iowait_boost =
229                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
230                 return;
231         }
232
233         /* First wakeup after IO: start with minimum boost */
234         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
235 }
236
237 /**
238  * sugov_iowait_apply() - Apply the IO boost to a CPU.
239  * @sg_cpu: the sugov data for the cpu to boost
240  * @time: the update time from the caller
241  *
242  * A CPU running a task which woken up after an IO operation can have its
243  * utilization boosted to speed up the completion of those IO operations.
244  * The IO boost value is increased each time a task wakes up from IO, in
245  * sugov_iowait_apply(), and it's instead decreased by this function,
246  * each time an increase has not been requested (!iowait_boost_pending).
247  *
248  * A CPU which also appears to have been idle for at least one tick has also
249  * its IO boost utilization reset.
250  *
251  * This mechanism is designed to boost high frequently IO waiting tasks, while
252  * being more conservative on tasks which does sporadic IO operations.
253  */
254 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time)
255 {
256         unsigned long boost;
257
258         /* No boost currently required */
259         if (!sg_cpu->iowait_boost)
260                 return;
261
262         /* Reset boost if the CPU appears to have been idle enough */
263         if (sugov_iowait_reset(sg_cpu, time, false))
264                 return;
265
266         if (!sg_cpu->iowait_boost_pending) {
267                 /*
268                  * No boost pending; reduce the boost value.
269                  */
270                 sg_cpu->iowait_boost >>= 1;
271                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
272                         sg_cpu->iowait_boost = 0;
273                         return;
274                 }
275         }
276
277         sg_cpu->iowait_boost_pending = false;
278
279         /*
280          * sg_cpu->util is already in capacity scale; convert iowait_boost
281          * into the same scale so we can compare.
282          */
283         boost = (sg_cpu->iowait_boost * sg_cpu->max) >> SCHED_CAPACITY_SHIFT;
284         boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
285         if (sg_cpu->util < boost)
286                 sg_cpu->util = boost;
287 }
288
289 #ifdef CONFIG_NO_HZ_COMMON
290 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
291 {
292         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
293         bool ret = idle_calls == sg_cpu->saved_idle_calls;
294
295         sg_cpu->saved_idle_calls = idle_calls;
296         return ret;
297 }
298 #else
299 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
300 #endif /* CONFIG_NO_HZ_COMMON */
301
302 /*
303  * Make sugov_should_update_freq() ignore the rate limit when DL
304  * has increased the utilization.
305  */
306 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
307 {
308         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
309                 sg_cpu->sg_policy->limits_changed = true;
310 }
311
312 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
313                                               u64 time, unsigned int flags)
314 {
315         sugov_iowait_boost(sg_cpu, time, flags);
316         sg_cpu->last_update = time;
317
318         ignore_dl_rate_limit(sg_cpu);
319
320         if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
321                 return false;
322
323         sugov_get_util(sg_cpu);
324         sugov_iowait_apply(sg_cpu, time);
325
326         return true;
327 }
328
329 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
330                                      unsigned int flags)
331 {
332         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
333         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
334         unsigned int cached_freq = sg_policy->cached_raw_freq;
335         unsigned int next_f;
336
337         if (!sugov_update_single_common(sg_cpu, time, flags))
338                 return;
339
340         next_f = get_next_freq(sg_policy, sg_cpu->util, sg_cpu->max);
341         /*
342          * Do not reduce the frequency if the CPU has not been idle
343          * recently, as the reduction is likely to be premature then.
344          *
345          * Except when the rq is capped by uclamp_max.
346          */
347         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
348             sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
349                 next_f = sg_policy->next_freq;
350
351                 /* Restore cached freq as next_freq has changed */
352                 sg_policy->cached_raw_freq = cached_freq;
353         }
354
355         if (!sugov_update_next_freq(sg_policy, time, next_f))
356                 return;
357
358         /*
359          * This code runs under rq->lock for the target CPU, so it won't run
360          * concurrently on two different CPUs for the same target and it is not
361          * necessary to acquire the lock in the fast switch case.
362          */
363         if (sg_policy->policy->fast_switch_enabled) {
364                 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
365         } else {
366                 raw_spin_lock(&sg_policy->update_lock);
367                 sugov_deferred_update(sg_policy);
368                 raw_spin_unlock(&sg_policy->update_lock);
369         }
370 }
371
372 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
373                                      unsigned int flags)
374 {
375         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
376         unsigned long prev_util = sg_cpu->util;
377
378         /*
379          * Fall back to the "frequency" path if frequency invariance is not
380          * supported, because the direct mapping between the utilization and
381          * the performance levels depends on the frequency invariance.
382          */
383         if (!arch_scale_freq_invariant()) {
384                 sugov_update_single_freq(hook, time, flags);
385                 return;
386         }
387
388         if (!sugov_update_single_common(sg_cpu, time, flags))
389                 return;
390
391         /*
392          * Do not reduce the target performance level if the CPU has not been
393          * idle recently, as the reduction is likely to be premature then.
394          *
395          * Except when the rq is capped by uclamp_max.
396          */
397         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
398             sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
399                 sg_cpu->util = prev_util;
400
401         cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
402                                    map_util_perf(sg_cpu->util), sg_cpu->max);
403
404         sg_cpu->sg_policy->last_freq_update_time = time;
405 }
406
407 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
408 {
409         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
410         struct cpufreq_policy *policy = sg_policy->policy;
411         unsigned long util = 0, max = 1;
412         unsigned int j;
413
414         for_each_cpu(j, policy->cpus) {
415                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
416                 unsigned long j_util, j_max;
417
418                 sugov_get_util(j_sg_cpu);
419                 sugov_iowait_apply(j_sg_cpu, time);
420                 j_util = j_sg_cpu->util;
421                 j_max = j_sg_cpu->max;
422
423                 if (j_util * max > j_max * util) {
424                         util = j_util;
425                         max = j_max;
426                 }
427         }
428
429         return get_next_freq(sg_policy, util, max);
430 }
431
432 static void
433 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
434 {
435         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
436         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
437         unsigned int next_f;
438
439         raw_spin_lock(&sg_policy->update_lock);
440
441         sugov_iowait_boost(sg_cpu, time, flags);
442         sg_cpu->last_update = time;
443
444         ignore_dl_rate_limit(sg_cpu);
445
446         if (sugov_should_update_freq(sg_policy, time)) {
447                 next_f = sugov_next_freq_shared(sg_cpu, time);
448
449                 if (!sugov_update_next_freq(sg_policy, time, next_f))
450                         goto unlock;
451
452                 if (sg_policy->policy->fast_switch_enabled)
453                         cpufreq_driver_fast_switch(sg_policy->policy, next_f);
454                 else
455                         sugov_deferred_update(sg_policy);
456         }
457 unlock:
458         raw_spin_unlock(&sg_policy->update_lock);
459 }
460
461 static void sugov_work(struct kthread_work *work)
462 {
463         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
464         unsigned int freq;
465         unsigned long flags;
466
467         /*
468          * Hold sg_policy->update_lock shortly to handle the case where:
469          * in case sg_policy->next_freq is read here, and then updated by
470          * sugov_deferred_update() just before work_in_progress is set to false
471          * here, we may miss queueing the new update.
472          *
473          * Note: If a work was queued after the update_lock is released,
474          * sugov_work() will just be called again by kthread_work code; and the
475          * request will be proceed before the sugov thread sleeps.
476          */
477         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
478         freq = sg_policy->next_freq;
479         sg_policy->work_in_progress = false;
480         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
481
482         mutex_lock(&sg_policy->work_lock);
483         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
484         mutex_unlock(&sg_policy->work_lock);
485 }
486
487 static void sugov_irq_work(struct irq_work *irq_work)
488 {
489         struct sugov_policy *sg_policy;
490
491         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
492
493         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
494 }
495
496 /************************** sysfs interface ************************/
497
498 static struct sugov_tunables *global_tunables;
499 static DEFINE_MUTEX(global_tunables_lock);
500
501 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
502 {
503         return container_of(attr_set, struct sugov_tunables, attr_set);
504 }
505
506 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
507 {
508         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
509
510         return sprintf(buf, "%u\n", tunables->rate_limit_us);
511 }
512
513 static ssize_t
514 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
515 {
516         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
517         struct sugov_policy *sg_policy;
518         unsigned int rate_limit_us;
519
520         if (kstrtouint(buf, 10, &rate_limit_us))
521                 return -EINVAL;
522
523         tunables->rate_limit_us = rate_limit_us;
524
525         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
526                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
527
528         return count;
529 }
530
531 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
532
533 static struct attribute *sugov_attrs[] = {
534         &rate_limit_us.attr,
535         NULL
536 };
537 ATTRIBUTE_GROUPS(sugov);
538
539 static void sugov_tunables_free(struct kobject *kobj)
540 {
541         struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
542
543         kfree(to_sugov_tunables(attr_set));
544 }
545
546 static struct kobj_type sugov_tunables_ktype = {
547         .default_groups = sugov_groups,
548         .sysfs_ops = &governor_sysfs_ops,
549         .release = &sugov_tunables_free,
550 };
551
552 /********************** cpufreq governor interface *********************/
553
554 struct cpufreq_governor schedutil_gov;
555
556 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
557 {
558         struct sugov_policy *sg_policy;
559
560         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
561         if (!sg_policy)
562                 return NULL;
563
564         sg_policy->policy = policy;
565         raw_spin_lock_init(&sg_policy->update_lock);
566         return sg_policy;
567 }
568
569 static void sugov_policy_free(struct sugov_policy *sg_policy)
570 {
571         kfree(sg_policy);
572 }
573
574 static int sugov_kthread_create(struct sugov_policy *sg_policy)
575 {
576         struct task_struct *thread;
577         struct sched_attr attr = {
578                 .size           = sizeof(struct sched_attr),
579                 .sched_policy   = SCHED_DEADLINE,
580                 .sched_flags    = SCHED_FLAG_SUGOV,
581                 .sched_nice     = 0,
582                 .sched_priority = 0,
583                 /*
584                  * Fake (unused) bandwidth; workaround to "fix"
585                  * priority inheritance.
586                  */
587                 .sched_runtime  =  1000000,
588                 .sched_deadline = 10000000,
589                 .sched_period   = 10000000,
590         };
591         struct cpufreq_policy *policy = sg_policy->policy;
592         int ret;
593
594         /* kthread only required for slow path */
595         if (policy->fast_switch_enabled)
596                 return 0;
597
598         kthread_init_work(&sg_policy->work, sugov_work);
599         kthread_init_worker(&sg_policy->worker);
600         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
601                                 "sugov:%d",
602                                 cpumask_first(policy->related_cpus));
603         if (IS_ERR(thread)) {
604                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
605                 return PTR_ERR(thread);
606         }
607
608         ret = sched_setattr_nocheck(thread, &attr);
609         if (ret) {
610                 kthread_stop(thread);
611                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
612                 return ret;
613         }
614
615         sg_policy->thread = thread;
616         kthread_bind_mask(thread, policy->related_cpus);
617         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
618         mutex_init(&sg_policy->work_lock);
619
620         wake_up_process(thread);
621
622         return 0;
623 }
624
625 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
626 {
627         /* kthread only required for slow path */
628         if (sg_policy->policy->fast_switch_enabled)
629                 return;
630
631         kthread_flush_worker(&sg_policy->worker);
632         kthread_stop(sg_policy->thread);
633         mutex_destroy(&sg_policy->work_lock);
634 }
635
636 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
637 {
638         struct sugov_tunables *tunables;
639
640         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
641         if (tunables) {
642                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
643                 if (!have_governor_per_policy())
644                         global_tunables = tunables;
645         }
646         return tunables;
647 }
648
649 static void sugov_clear_global_tunables(void)
650 {
651         if (!have_governor_per_policy())
652                 global_tunables = NULL;
653 }
654
655 static int sugov_init(struct cpufreq_policy *policy)
656 {
657         struct sugov_policy *sg_policy;
658         struct sugov_tunables *tunables;
659         int ret = 0;
660
661         /* State should be equivalent to EXIT */
662         if (policy->governor_data)
663                 return -EBUSY;
664
665         cpufreq_enable_fast_switch(policy);
666
667         sg_policy = sugov_policy_alloc(policy);
668         if (!sg_policy) {
669                 ret = -ENOMEM;
670                 goto disable_fast_switch;
671         }
672
673         ret = sugov_kthread_create(sg_policy);
674         if (ret)
675                 goto free_sg_policy;
676
677         mutex_lock(&global_tunables_lock);
678
679         if (global_tunables) {
680                 if (WARN_ON(have_governor_per_policy())) {
681                         ret = -EINVAL;
682                         goto stop_kthread;
683                 }
684                 policy->governor_data = sg_policy;
685                 sg_policy->tunables = global_tunables;
686
687                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
688                 goto out;
689         }
690
691         tunables = sugov_tunables_alloc(sg_policy);
692         if (!tunables) {
693                 ret = -ENOMEM;
694                 goto stop_kthread;
695         }
696
697         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
698
699         policy->governor_data = sg_policy;
700         sg_policy->tunables = tunables;
701
702         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
703                                    get_governor_parent_kobj(policy), "%s",
704                                    schedutil_gov.name);
705         if (ret)
706                 goto fail;
707
708 out:
709         mutex_unlock(&global_tunables_lock);
710         return 0;
711
712 fail:
713         kobject_put(&tunables->attr_set.kobj);
714         policy->governor_data = NULL;
715         sugov_clear_global_tunables();
716
717 stop_kthread:
718         sugov_kthread_stop(sg_policy);
719         mutex_unlock(&global_tunables_lock);
720
721 free_sg_policy:
722         sugov_policy_free(sg_policy);
723
724 disable_fast_switch:
725         cpufreq_disable_fast_switch(policy);
726
727         pr_err("initialization failed (error %d)\n", ret);
728         return ret;
729 }
730
731 static void sugov_exit(struct cpufreq_policy *policy)
732 {
733         struct sugov_policy *sg_policy = policy->governor_data;
734         struct sugov_tunables *tunables = sg_policy->tunables;
735         unsigned int count;
736
737         mutex_lock(&global_tunables_lock);
738
739         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
740         policy->governor_data = NULL;
741         if (!count)
742                 sugov_clear_global_tunables();
743
744         mutex_unlock(&global_tunables_lock);
745
746         sugov_kthread_stop(sg_policy);
747         sugov_policy_free(sg_policy);
748         cpufreq_disable_fast_switch(policy);
749 }
750
751 static int sugov_start(struct cpufreq_policy *policy)
752 {
753         struct sugov_policy *sg_policy = policy->governor_data;
754         void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
755         unsigned int cpu;
756
757         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
758         sg_policy->last_freq_update_time        = 0;
759         sg_policy->next_freq                    = 0;
760         sg_policy->work_in_progress             = false;
761         sg_policy->limits_changed               = false;
762         sg_policy->cached_raw_freq              = 0;
763
764         sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
765
766         for_each_cpu(cpu, policy->cpus) {
767                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
768
769                 memset(sg_cpu, 0, sizeof(*sg_cpu));
770                 sg_cpu->cpu                     = cpu;
771                 sg_cpu->sg_policy               = sg_policy;
772         }
773
774         if (policy_is_shared(policy))
775                 uu = sugov_update_shared;
776         else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
777                 uu = sugov_update_single_perf;
778         else
779                 uu = sugov_update_single_freq;
780
781         for_each_cpu(cpu, policy->cpus) {
782                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
783
784                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
785         }
786         return 0;
787 }
788
789 static void sugov_stop(struct cpufreq_policy *policy)
790 {
791         struct sugov_policy *sg_policy = policy->governor_data;
792         unsigned int cpu;
793
794         for_each_cpu(cpu, policy->cpus)
795                 cpufreq_remove_update_util_hook(cpu);
796
797         synchronize_rcu();
798
799         if (!policy->fast_switch_enabled) {
800                 irq_work_sync(&sg_policy->irq_work);
801                 kthread_cancel_work_sync(&sg_policy->work);
802         }
803 }
804
805 static void sugov_limits(struct cpufreq_policy *policy)
806 {
807         struct sugov_policy *sg_policy = policy->governor_data;
808
809         if (!policy->fast_switch_enabled) {
810                 mutex_lock(&sg_policy->work_lock);
811                 cpufreq_policy_apply_limits(policy);
812                 mutex_unlock(&sg_policy->work_lock);
813         }
814
815         sg_policy->limits_changed = true;
816 }
817
818 struct cpufreq_governor schedutil_gov = {
819         .name                   = "schedutil",
820         .owner                  = THIS_MODULE,
821         .flags                  = CPUFREQ_GOV_DYNAMIC_SWITCHING,
822         .init                   = sugov_init,
823         .exit                   = sugov_exit,
824         .start                  = sugov_start,
825         .stop                   = sugov_stop,
826         .limits                 = sugov_limits,
827 };
828
829 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
830 struct cpufreq_governor *cpufreq_default_governor(void)
831 {
832         return &schedutil_gov;
833 }
834 #endif
835
836 cpufreq_governor_init(schedutil_gov);
837
838 #ifdef CONFIG_ENERGY_MODEL
839 static void rebuild_sd_workfn(struct work_struct *work)
840 {
841         rebuild_sched_domains_energy();
842 }
843 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
844
845 /*
846  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
847  * on governor changes to make sure the scheduler knows about it.
848  */
849 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
850                                   struct cpufreq_governor *old_gov)
851 {
852         if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
853                 /*
854                  * When called from the cpufreq_register_driver() path, the
855                  * cpu_hotplug_lock is already held, so use a work item to
856                  * avoid nested locking in rebuild_sched_domains().
857                  */
858                 schedule_work(&rebuild_sd_work);
859         }
860
861 }
862 #endif