4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/kasan.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
77 #include <asm/switch_to.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
92 DEFINE_MUTEX(sched_domains_mutex);
93 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 void update_rq_clock(struct rq *rq)
101 lockdep_assert_held(&rq->lock);
103 if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
110 update_rq_clock_task(rq, delta);
114 * Debugging: various feature bits
117 #define SCHED_FEAT(name, enabled) \
118 (1UL << __SCHED_FEAT_##name) * enabled |
120 const_debug unsigned int sysctl_sched_features =
121 #include "features.h"
127 * Number of tasks to iterate in a single balance run.
128 * Limited because this is done with IRQs disabled.
130 const_debug unsigned int sysctl_sched_nr_migrate = 32;
133 * period over which we average the RT time consumption, measured
138 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141 * period over which we measure -rt task cpu usage in us.
144 unsigned int sysctl_sched_rt_period = 1000000;
146 __read_mostly int scheduler_running;
149 * part of the period that we allow rt tasks to run in us.
152 int sysctl_sched_rt_runtime = 950000;
154 /* cpus with isolated domains */
155 cpumask_var_t cpu_isolated_map;
158 * this_rq_lock - lock this runqueue and disable interrupts.
160 static struct rq *this_rq_lock(void)
167 raw_spin_lock(&rq->lock);
172 #ifdef CONFIG_SCHED_HRTICK
174 * Use HR-timers to deliver accurate preemption points.
177 static void hrtick_clear(struct rq *rq)
179 if (hrtimer_active(&rq->hrtick_timer))
180 hrtimer_cancel(&rq->hrtick_timer);
184 * High-resolution timer tick.
185 * Runs from hardirq context with interrupts disabled.
187 static enum hrtimer_restart hrtick(struct hrtimer *timer)
189 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193 raw_spin_lock(&rq->lock);
195 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
196 raw_spin_unlock(&rq->lock);
198 return HRTIMER_NORESTART;
203 static void __hrtick_restart(struct rq *rq)
205 struct hrtimer *timer = &rq->hrtick_timer;
207 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
211 * called from hardirq (IPI) context
213 static void __hrtick_start(void *arg)
217 raw_spin_lock(&rq->lock);
218 __hrtick_restart(rq);
219 rq->hrtick_csd_pending = 0;
220 raw_spin_unlock(&rq->lock);
224 * Called to set the hrtick timer state.
226 * called with rq->lock held and irqs disabled
228 void hrtick_start(struct rq *rq, u64 delay)
230 struct hrtimer *timer = &rq->hrtick_timer;
235 * Don't schedule slices shorter than 10000ns, that just
236 * doesn't make sense and can cause timer DoS.
238 delta = max_t(s64, delay, 10000LL);
239 time = ktime_add_ns(timer->base->get_time(), delta);
241 hrtimer_set_expires(timer, time);
243 if (rq == this_rq()) {
244 __hrtick_restart(rq);
245 } else if (!rq->hrtick_csd_pending) {
246 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
247 rq->hrtick_csd_pending = 1;
252 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254 int cpu = (int)(long)hcpu;
257 case CPU_UP_CANCELED:
258 case CPU_UP_CANCELED_FROZEN:
259 case CPU_DOWN_PREPARE:
260 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD_FROZEN:
263 hrtick_clear(cpu_rq(cpu));
270 static __init void init_hrtick(void)
272 hotcpu_notifier(hotplug_hrtick, 0);
276 * Called to set the hrtick timer state.
278 * called with rq->lock held and irqs disabled
280 void hrtick_start(struct rq *rq, u64 delay)
283 * Don't schedule slices shorter than 10000ns, that just
284 * doesn't make sense. Rely on vruntime for fairness.
286 delay = max_t(u64, delay, 10000LL);
287 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
288 HRTIMER_MODE_REL_PINNED);
291 static inline void init_hrtick(void)
294 #endif /* CONFIG_SMP */
296 static void init_rq_hrtick(struct rq *rq)
299 rq->hrtick_csd_pending = 0;
301 rq->hrtick_csd.flags = 0;
302 rq->hrtick_csd.func = __hrtick_start;
303 rq->hrtick_csd.info = rq;
306 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
307 rq->hrtick_timer.function = hrtick;
309 #else /* CONFIG_SCHED_HRTICK */
310 static inline void hrtick_clear(struct rq *rq)
314 static inline void init_rq_hrtick(struct rq *rq)
318 static inline void init_hrtick(void)
321 #endif /* CONFIG_SCHED_HRTICK */
323 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
325 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
326 * this avoids any races wrt polling state changes and thereby avoids
329 static bool set_nr_and_not_polling(struct task_struct *p)
331 struct thread_info *ti = task_thread_info(p);
332 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
336 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
338 * If this returns true, then the idle task promises to call
339 * sched_ttwu_pending() and reschedule soon.
341 static bool set_nr_if_polling(struct task_struct *p)
343 struct thread_info *ti = task_thread_info(p);
344 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
347 if (!(val & _TIF_POLLING_NRFLAG))
349 if (val & _TIF_NEED_RESCHED)
351 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
360 static bool set_nr_and_not_polling(struct task_struct *p)
362 set_tsk_need_resched(p);
367 static bool set_nr_if_polling(struct task_struct *p)
374 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
376 struct wake_q_node *node = &task->wake_q;
379 * Atomically grab the task, if ->wake_q is !nil already it means
380 * its already queued (either by us or someone else) and will get the
381 * wakeup due to that.
383 * This cmpxchg() implies a full barrier, which pairs with the write
384 * barrier implied by the wakeup in wake_up_list().
386 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
389 get_task_struct(task);
392 * The head is context local, there can be no concurrency.
395 head->lastp = &node->next;
398 void wake_up_q(struct wake_q_head *head)
400 struct wake_q_node *node = head->first;
402 while (node != WAKE_Q_TAIL) {
403 struct task_struct *task;
405 task = container_of(node, struct task_struct, wake_q);
407 /* task can safely be re-inserted now */
409 task->wake_q.next = NULL;
412 * wake_up_process() implies a wmb() to pair with the queueing
413 * in wake_q_add() so as not to miss wakeups.
415 wake_up_process(task);
416 put_task_struct(task);
421 * resched_curr - mark rq's current task 'to be rescheduled now'.
423 * On UP this means the setting of the need_resched flag, on SMP it
424 * might also involve a cross-CPU call to trigger the scheduler on
427 void resched_curr(struct rq *rq)
429 struct task_struct *curr = rq->curr;
432 lockdep_assert_held(&rq->lock);
434 if (test_tsk_need_resched(curr))
439 if (cpu == smp_processor_id()) {
440 set_tsk_need_resched(curr);
441 set_preempt_need_resched();
445 if (set_nr_and_not_polling(curr))
446 smp_send_reschedule(cpu);
448 trace_sched_wake_idle_without_ipi(cpu);
451 void resched_cpu(int cpu)
453 struct rq *rq = cpu_rq(cpu);
456 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
459 raw_spin_unlock_irqrestore(&rq->lock, flags);
463 #ifdef CONFIG_NO_HZ_COMMON
465 * In the semi idle case, use the nearest busy cpu for migrating timers
466 * from an idle cpu. This is good for power-savings.
468 * We don't do similar optimization for completely idle system, as
469 * selecting an idle cpu will add more delays to the timers than intended
470 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
472 int get_nohz_timer_target(void)
474 int i, cpu = smp_processor_id();
475 struct sched_domain *sd;
477 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
481 for_each_domain(cpu, sd) {
482 for_each_cpu(i, sched_domain_span(sd)) {
483 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
490 if (!is_housekeeping_cpu(cpu))
491 cpu = housekeeping_any_cpu();
497 * When add_timer_on() enqueues a timer into the timer wheel of an
498 * idle CPU then this timer might expire before the next timer event
499 * which is scheduled to wake up that CPU. In case of a completely
500 * idle system the next event might even be infinite time into the
501 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
502 * leaves the inner idle loop so the newly added timer is taken into
503 * account when the CPU goes back to idle and evaluates the timer
504 * wheel for the next timer event.
506 static void wake_up_idle_cpu(int cpu)
508 struct rq *rq = cpu_rq(cpu);
510 if (cpu == smp_processor_id())
513 if (set_nr_and_not_polling(rq->idle))
514 smp_send_reschedule(cpu);
516 trace_sched_wake_idle_without_ipi(cpu);
519 static bool wake_up_full_nohz_cpu(int cpu)
522 * We just need the target to call irq_exit() and re-evaluate
523 * the next tick. The nohz full kick at least implies that.
524 * If needed we can still optimize that later with an
527 if (tick_nohz_full_cpu(cpu)) {
528 if (cpu != smp_processor_id() ||
529 tick_nohz_tick_stopped())
530 tick_nohz_full_kick_cpu(cpu);
537 void wake_up_nohz_cpu(int cpu)
539 if (!wake_up_full_nohz_cpu(cpu))
540 wake_up_idle_cpu(cpu);
543 static inline bool got_nohz_idle_kick(void)
545 int cpu = smp_processor_id();
547 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
550 if (idle_cpu(cpu) && !need_resched())
554 * We can't run Idle Load Balance on this CPU for this time so we
555 * cancel it and clear NOHZ_BALANCE_KICK
557 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
561 #else /* CONFIG_NO_HZ_COMMON */
563 static inline bool got_nohz_idle_kick(void)
568 #endif /* CONFIG_NO_HZ_COMMON */
570 #ifdef CONFIG_NO_HZ_FULL
571 bool sched_can_stop_tick(struct rq *rq)
575 /* Deadline tasks, even if single, need the tick */
576 if (rq->dl.dl_nr_running)
580 * FIFO realtime policy runs the highest priority task (after DEADLINE).
581 * Other runnable tasks are of a lower priority. The scheduler tick
584 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
589 * Round-robin realtime tasks time slice with other tasks at the same
592 if (rq->rt.rr_nr_running) {
593 if (rq->rt.rr_nr_running == 1)
599 /* Normal multitasking need periodic preemption checks */
600 if (rq->cfs.nr_running > 1)
605 #endif /* CONFIG_NO_HZ_FULL */
607 void sched_avg_update(struct rq *rq)
609 s64 period = sched_avg_period();
611 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
613 * Inline assembly required to prevent the compiler
614 * optimising this loop into a divmod call.
615 * See __iter_div_u64_rem() for another example of this.
617 asm("" : "+rm" (rq->age_stamp));
618 rq->age_stamp += period;
623 #endif /* CONFIG_SMP */
625 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
626 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
628 * Iterate task_group tree rooted at *from, calling @down when first entering a
629 * node and @up when leaving it for the final time.
631 * Caller must hold rcu_lock or sufficient equivalent.
633 int walk_tg_tree_from(struct task_group *from,
634 tg_visitor down, tg_visitor up, void *data)
636 struct task_group *parent, *child;
642 ret = (*down)(parent, data);
645 list_for_each_entry_rcu(child, &parent->children, siblings) {
652 ret = (*up)(parent, data);
653 if (ret || parent == from)
657 parent = parent->parent;
664 int tg_nop(struct task_group *tg, void *data)
670 static void set_load_weight(struct task_struct *p)
672 int prio = p->static_prio - MAX_RT_PRIO;
673 struct load_weight *load = &p->se.load;
676 * SCHED_IDLE tasks get minimal weight:
678 if (idle_policy(p->policy)) {
679 load->weight = scale_load(WEIGHT_IDLEPRIO);
680 load->inv_weight = WMULT_IDLEPRIO;
684 load->weight = scale_load(sched_prio_to_weight[prio]);
685 load->inv_weight = sched_prio_to_wmult[prio];
688 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
691 if (!(flags & ENQUEUE_RESTORE))
692 sched_info_queued(rq, p);
693 p->sched_class->enqueue_task(rq, p, flags);
696 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
699 if (!(flags & DEQUEUE_SAVE))
700 sched_info_dequeued(rq, p);
701 p->sched_class->dequeue_task(rq, p, flags);
704 void activate_task(struct rq *rq, struct task_struct *p, int flags)
706 if (task_contributes_to_load(p))
707 rq->nr_uninterruptible--;
709 enqueue_task(rq, p, flags);
712 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
714 if (task_contributes_to_load(p))
715 rq->nr_uninterruptible++;
717 dequeue_task(rq, p, flags);
720 static void update_rq_clock_task(struct rq *rq, s64 delta)
723 * In theory, the compile should just see 0 here, and optimize out the call
724 * to sched_rt_avg_update. But I don't trust it...
726 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
727 s64 steal = 0, irq_delta = 0;
729 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
730 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
733 * Since irq_time is only updated on {soft,}irq_exit, we might run into
734 * this case when a previous update_rq_clock() happened inside a
737 * When this happens, we stop ->clock_task and only update the
738 * prev_irq_time stamp to account for the part that fit, so that a next
739 * update will consume the rest. This ensures ->clock_task is
742 * It does however cause some slight miss-attribution of {soft,}irq
743 * time, a more accurate solution would be to update the irq_time using
744 * the current rq->clock timestamp, except that would require using
747 if (irq_delta > delta)
750 rq->prev_irq_time += irq_delta;
753 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
754 if (static_key_false((¶virt_steal_rq_enabled))) {
755 steal = paravirt_steal_clock(cpu_of(rq));
756 steal -= rq->prev_steal_time_rq;
758 if (unlikely(steal > delta))
761 rq->prev_steal_time_rq += steal;
766 rq->clock_task += delta;
768 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
769 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
770 sched_rt_avg_update(rq, irq_delta + steal);
774 void sched_set_stop_task(int cpu, struct task_struct *stop)
776 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
777 struct task_struct *old_stop = cpu_rq(cpu)->stop;
781 * Make it appear like a SCHED_FIFO task, its something
782 * userspace knows about and won't get confused about.
784 * Also, it will make PI more or less work without too
785 * much confusion -- but then, stop work should not
786 * rely on PI working anyway.
788 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
790 stop->sched_class = &stop_sched_class;
793 cpu_rq(cpu)->stop = stop;
797 * Reset it back to a normal scheduling class so that
798 * it can die in pieces.
800 old_stop->sched_class = &rt_sched_class;
805 * __normal_prio - return the priority that is based on the static prio
807 static inline int __normal_prio(struct task_struct *p)
809 return p->static_prio;
813 * Calculate the expected normal priority: i.e. priority
814 * without taking RT-inheritance into account. Might be
815 * boosted by interactivity modifiers. Changes upon fork,
816 * setprio syscalls, and whenever the interactivity
817 * estimator recalculates.
819 static inline int normal_prio(struct task_struct *p)
823 if (task_has_dl_policy(p))
824 prio = MAX_DL_PRIO-1;
825 else if (task_has_rt_policy(p))
826 prio = MAX_RT_PRIO-1 - p->rt_priority;
828 prio = __normal_prio(p);
833 * Calculate the current priority, i.e. the priority
834 * taken into account by the scheduler. This value might
835 * be boosted by RT tasks, or might be boosted by
836 * interactivity modifiers. Will be RT if the task got
837 * RT-boosted. If not then it returns p->normal_prio.
839 static int effective_prio(struct task_struct *p)
841 p->normal_prio = normal_prio(p);
843 * If we are RT tasks or we were boosted to RT priority,
844 * keep the priority unchanged. Otherwise, update priority
845 * to the normal priority:
847 if (!rt_prio(p->prio))
848 return p->normal_prio;
853 * task_curr - is this task currently executing on a CPU?
854 * @p: the task in question.
856 * Return: 1 if the task is currently executing. 0 otherwise.
858 inline int task_curr(const struct task_struct *p)
860 return cpu_curr(task_cpu(p)) == p;
864 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
865 * use the balance_callback list if you want balancing.
867 * this means any call to check_class_changed() must be followed by a call to
868 * balance_callback().
870 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
871 const struct sched_class *prev_class,
874 if (prev_class != p->sched_class) {
875 if (prev_class->switched_from)
876 prev_class->switched_from(rq, p);
878 p->sched_class->switched_to(rq, p);
879 } else if (oldprio != p->prio || dl_task(p))
880 p->sched_class->prio_changed(rq, p, oldprio);
883 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
885 const struct sched_class *class;
887 if (p->sched_class == rq->curr->sched_class) {
888 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
890 for_each_class(class) {
891 if (class == rq->curr->sched_class)
893 if (class == p->sched_class) {
901 * A queue event has occurred, and we're going to schedule. In
902 * this case, we can save a useless back to back clock update.
904 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
905 rq_clock_skip_update(rq, true);
910 * This is how migration works:
912 * 1) we invoke migration_cpu_stop() on the target CPU using
914 * 2) stopper starts to run (implicitly forcing the migrated thread
916 * 3) it checks whether the migrated task is still in the wrong runqueue.
917 * 4) if it's in the wrong runqueue then the migration thread removes
918 * it and puts it into the right queue.
919 * 5) stopper completes and stop_one_cpu() returns and the migration
924 * move_queued_task - move a queued task to new rq.
926 * Returns (locked) new rq. Old rq's lock is released.
928 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
930 lockdep_assert_held(&rq->lock);
932 p->on_rq = TASK_ON_RQ_MIGRATING;
933 dequeue_task(rq, p, 0);
934 set_task_cpu(p, new_cpu);
935 raw_spin_unlock(&rq->lock);
937 rq = cpu_rq(new_cpu);
939 raw_spin_lock(&rq->lock);
940 BUG_ON(task_cpu(p) != new_cpu);
941 enqueue_task(rq, p, 0);
942 p->on_rq = TASK_ON_RQ_QUEUED;
943 check_preempt_curr(rq, p, 0);
948 struct migration_arg {
949 struct task_struct *task;
954 * Move (not current) task off this cpu, onto dest cpu. We're doing
955 * this because either it can't run here any more (set_cpus_allowed()
956 * away from this CPU, or CPU going down), or because we're
957 * attempting to rebalance this task on exec (sched_exec).
959 * So we race with normal scheduler movements, but that's OK, as long
960 * as the task is no longer on this CPU.
962 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
964 if (unlikely(!cpu_active(dest_cpu)))
967 /* Affinity changed (again). */
968 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
971 rq = move_queued_task(rq, p, dest_cpu);
977 * migration_cpu_stop - this will be executed by a highprio stopper thread
978 * and performs thread migration by bumping thread off CPU then
979 * 'pushing' onto another runqueue.
981 static int migration_cpu_stop(void *data)
983 struct migration_arg *arg = data;
984 struct task_struct *p = arg->task;
985 struct rq *rq = this_rq();
988 * The original target cpu might have gone down and we might
989 * be on another cpu but it doesn't matter.
993 * We need to explicitly wake pending tasks before running
994 * __migrate_task() such that we will not miss enforcing cpus_allowed
995 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
997 sched_ttwu_pending();
999 raw_spin_lock(&p->pi_lock);
1000 raw_spin_lock(&rq->lock);
1002 * If task_rq(p) != rq, it cannot be migrated here, because we're
1003 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1004 * we're holding p->pi_lock.
1006 if (task_rq(p) == rq && task_on_rq_queued(p))
1007 rq = __migrate_task(rq, p, arg->dest_cpu);
1008 raw_spin_unlock(&rq->lock);
1009 raw_spin_unlock(&p->pi_lock);
1016 * sched_class::set_cpus_allowed must do the below, but is not required to
1017 * actually call this function.
1019 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1021 cpumask_copy(&p->cpus_allowed, new_mask);
1022 p->nr_cpus_allowed = cpumask_weight(new_mask);
1025 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1027 struct rq *rq = task_rq(p);
1028 bool queued, running;
1030 lockdep_assert_held(&p->pi_lock);
1032 queued = task_on_rq_queued(p);
1033 running = task_current(rq, p);
1037 * Because __kthread_bind() calls this on blocked tasks without
1040 lockdep_assert_held(&rq->lock);
1041 dequeue_task(rq, p, DEQUEUE_SAVE);
1044 put_prev_task(rq, p);
1046 p->sched_class->set_cpus_allowed(p, new_mask);
1049 p->sched_class->set_curr_task(rq);
1051 enqueue_task(rq, p, ENQUEUE_RESTORE);
1055 * Change a given task's CPU affinity. Migrate the thread to a
1056 * proper CPU and schedule it away if the CPU it's executing on
1057 * is removed from the allowed bitmask.
1059 * NOTE: the caller must have a valid reference to the task, the
1060 * task must not exit() & deallocate itself prematurely. The
1061 * call is not atomic; no spinlocks may be held.
1063 static int __set_cpus_allowed_ptr(struct task_struct *p,
1064 const struct cpumask *new_mask, bool check)
1066 unsigned long flags;
1068 unsigned int dest_cpu;
1071 rq = task_rq_lock(p, &flags);
1074 * Must re-check here, to close a race against __kthread_bind(),
1075 * sched_setaffinity() is not guaranteed to observe the flag.
1077 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1082 if (cpumask_equal(&p->cpus_allowed, new_mask))
1085 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1090 do_set_cpus_allowed(p, new_mask);
1092 /* Can the task run on the task's current CPU? If so, we're done */
1093 if (cpumask_test_cpu(task_cpu(p), new_mask))
1096 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1097 if (task_running(rq, p) || p->state == TASK_WAKING) {
1098 struct migration_arg arg = { p, dest_cpu };
1099 /* Need help from migration thread: drop lock and wait. */
1100 task_rq_unlock(rq, p, &flags);
1101 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1102 tlb_migrate_finish(p->mm);
1104 } else if (task_on_rq_queued(p)) {
1106 * OK, since we're going to drop the lock immediately
1107 * afterwards anyway.
1109 lockdep_unpin_lock(&rq->lock);
1110 rq = move_queued_task(rq, p, dest_cpu);
1111 lockdep_pin_lock(&rq->lock);
1114 task_rq_unlock(rq, p, &flags);
1119 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1121 return __set_cpus_allowed_ptr(p, new_mask, false);
1123 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1125 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1127 #ifdef CONFIG_SCHED_DEBUG
1129 * We should never call set_task_cpu() on a blocked task,
1130 * ttwu() will sort out the placement.
1132 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1136 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1137 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1138 * time relying on p->on_rq.
1140 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1141 p->sched_class == &fair_sched_class &&
1142 (p->on_rq && !task_on_rq_migrating(p)));
1144 #ifdef CONFIG_LOCKDEP
1146 * The caller should hold either p->pi_lock or rq->lock, when changing
1147 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1149 * sched_move_task() holds both and thus holding either pins the cgroup,
1152 * Furthermore, all task_rq users should acquire both locks, see
1155 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1156 lockdep_is_held(&task_rq(p)->lock)));
1160 trace_sched_migrate_task(p, new_cpu);
1162 if (task_cpu(p) != new_cpu) {
1163 if (p->sched_class->migrate_task_rq)
1164 p->sched_class->migrate_task_rq(p);
1165 p->se.nr_migrations++;
1166 perf_event_task_migrate(p);
1169 __set_task_cpu(p, new_cpu);
1172 static void __migrate_swap_task(struct task_struct *p, int cpu)
1174 if (task_on_rq_queued(p)) {
1175 struct rq *src_rq, *dst_rq;
1177 src_rq = task_rq(p);
1178 dst_rq = cpu_rq(cpu);
1180 p->on_rq = TASK_ON_RQ_MIGRATING;
1181 deactivate_task(src_rq, p, 0);
1182 set_task_cpu(p, cpu);
1183 activate_task(dst_rq, p, 0);
1184 p->on_rq = TASK_ON_RQ_QUEUED;
1185 check_preempt_curr(dst_rq, p, 0);
1188 * Task isn't running anymore; make it appear like we migrated
1189 * it before it went to sleep. This means on wakeup we make the
1190 * previous cpu our targer instead of where it really is.
1196 struct migration_swap_arg {
1197 struct task_struct *src_task, *dst_task;
1198 int src_cpu, dst_cpu;
1201 static int migrate_swap_stop(void *data)
1203 struct migration_swap_arg *arg = data;
1204 struct rq *src_rq, *dst_rq;
1207 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1210 src_rq = cpu_rq(arg->src_cpu);
1211 dst_rq = cpu_rq(arg->dst_cpu);
1213 double_raw_lock(&arg->src_task->pi_lock,
1214 &arg->dst_task->pi_lock);
1215 double_rq_lock(src_rq, dst_rq);
1217 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1220 if (task_cpu(arg->src_task) != arg->src_cpu)
1223 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1226 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1229 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1230 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1235 double_rq_unlock(src_rq, dst_rq);
1236 raw_spin_unlock(&arg->dst_task->pi_lock);
1237 raw_spin_unlock(&arg->src_task->pi_lock);
1243 * Cross migrate two tasks
1245 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1247 struct migration_swap_arg arg;
1250 arg = (struct migration_swap_arg){
1252 .src_cpu = task_cpu(cur),
1254 .dst_cpu = task_cpu(p),
1257 if (arg.src_cpu == arg.dst_cpu)
1261 * These three tests are all lockless; this is OK since all of them
1262 * will be re-checked with proper locks held further down the line.
1264 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1267 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1270 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1273 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1274 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1281 * wait_task_inactive - wait for a thread to unschedule.
1283 * If @match_state is nonzero, it's the @p->state value just checked and
1284 * not expected to change. If it changes, i.e. @p might have woken up,
1285 * then return zero. When we succeed in waiting for @p to be off its CPU,
1286 * we return a positive number (its total switch count). If a second call
1287 * a short while later returns the same number, the caller can be sure that
1288 * @p has remained unscheduled the whole time.
1290 * The caller must ensure that the task *will* unschedule sometime soon,
1291 * else this function might spin for a *long* time. This function can't
1292 * be called with interrupts off, or it may introduce deadlock with
1293 * smp_call_function() if an IPI is sent by the same process we are
1294 * waiting to become inactive.
1296 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1298 unsigned long flags;
1299 int running, queued;
1305 * We do the initial early heuristics without holding
1306 * any task-queue locks at all. We'll only try to get
1307 * the runqueue lock when things look like they will
1313 * If the task is actively running on another CPU
1314 * still, just relax and busy-wait without holding
1317 * NOTE! Since we don't hold any locks, it's not
1318 * even sure that "rq" stays as the right runqueue!
1319 * But we don't care, since "task_running()" will
1320 * return false if the runqueue has changed and p
1321 * is actually now running somewhere else!
1323 while (task_running(rq, p)) {
1324 if (match_state && unlikely(p->state != match_state))
1330 * Ok, time to look more closely! We need the rq
1331 * lock now, to be *sure*. If we're wrong, we'll
1332 * just go back and repeat.
1334 rq = task_rq_lock(p, &flags);
1335 trace_sched_wait_task(p);
1336 running = task_running(rq, p);
1337 queued = task_on_rq_queued(p);
1339 if (!match_state || p->state == match_state)
1340 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1341 task_rq_unlock(rq, p, &flags);
1344 * If it changed from the expected state, bail out now.
1346 if (unlikely(!ncsw))
1350 * Was it really running after all now that we
1351 * checked with the proper locks actually held?
1353 * Oops. Go back and try again..
1355 if (unlikely(running)) {
1361 * It's not enough that it's not actively running,
1362 * it must be off the runqueue _entirely_, and not
1365 * So if it was still runnable (but just not actively
1366 * running right now), it's preempted, and we should
1367 * yield - it could be a while.
1369 if (unlikely(queued)) {
1370 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1372 set_current_state(TASK_UNINTERRUPTIBLE);
1373 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1378 * Ahh, all good. It wasn't running, and it wasn't
1379 * runnable, which means that it will never become
1380 * running in the future either. We're all done!
1389 * kick_process - kick a running thread to enter/exit the kernel
1390 * @p: the to-be-kicked thread
1392 * Cause a process which is running on another CPU to enter
1393 * kernel-mode, without any delay. (to get signals handled.)
1395 * NOTE: this function doesn't have to take the runqueue lock,
1396 * because all it wants to ensure is that the remote task enters
1397 * the kernel. If the IPI races and the task has been migrated
1398 * to another CPU then no harm is done and the purpose has been
1401 void kick_process(struct task_struct *p)
1407 if ((cpu != smp_processor_id()) && task_curr(p))
1408 smp_send_reschedule(cpu);
1411 EXPORT_SYMBOL_GPL(kick_process);
1414 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1416 static int select_fallback_rq(int cpu, struct task_struct *p)
1418 int nid = cpu_to_node(cpu);
1419 const struct cpumask *nodemask = NULL;
1420 enum { cpuset, possible, fail } state = cpuset;
1424 * If the node that the cpu is on has been offlined, cpu_to_node()
1425 * will return -1. There is no cpu on the node, and we should
1426 * select the cpu on the other node.
1429 nodemask = cpumask_of_node(nid);
1431 /* Look for allowed, online CPU in same node. */
1432 for_each_cpu(dest_cpu, nodemask) {
1433 if (!cpu_online(dest_cpu))
1435 if (!cpu_active(dest_cpu))
1437 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1443 /* Any allowed, online CPU? */
1444 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1445 if (!cpu_online(dest_cpu))
1447 if (!cpu_active(dest_cpu))
1452 /* No more Mr. Nice Guy. */
1455 if (IS_ENABLED(CONFIG_CPUSETS)) {
1456 cpuset_cpus_allowed_fallback(p);
1462 do_set_cpus_allowed(p, cpu_possible_mask);
1473 if (state != cpuset) {
1475 * Don't tell them about moving exiting tasks or
1476 * kernel threads (both mm NULL), since they never
1479 if (p->mm && printk_ratelimit()) {
1480 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1481 task_pid_nr(p), p->comm, cpu);
1489 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1492 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1494 lockdep_assert_held(&p->pi_lock);
1496 if (p->nr_cpus_allowed > 1)
1497 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1500 * In order not to call set_task_cpu() on a blocking task we need
1501 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1504 * Since this is common to all placement strategies, this lives here.
1506 * [ this allows ->select_task() to simply return task_cpu(p) and
1507 * not worry about this generic constraint ]
1509 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1511 cpu = select_fallback_rq(task_cpu(p), p);
1516 static void update_avg(u64 *avg, u64 sample)
1518 s64 diff = sample - *avg;
1524 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1525 const struct cpumask *new_mask, bool check)
1527 return set_cpus_allowed_ptr(p, new_mask);
1530 #endif /* CONFIG_SMP */
1533 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1535 #ifdef CONFIG_SCHEDSTATS
1536 struct rq *rq = this_rq();
1539 int this_cpu = smp_processor_id();
1541 if (cpu == this_cpu) {
1542 schedstat_inc(rq, ttwu_local);
1543 schedstat_inc(p, se.statistics.nr_wakeups_local);
1545 struct sched_domain *sd;
1547 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1549 for_each_domain(this_cpu, sd) {
1550 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1551 schedstat_inc(sd, ttwu_wake_remote);
1558 if (wake_flags & WF_MIGRATED)
1559 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1561 #endif /* CONFIG_SMP */
1563 schedstat_inc(rq, ttwu_count);
1564 schedstat_inc(p, se.statistics.nr_wakeups);
1566 if (wake_flags & WF_SYNC)
1567 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1569 #endif /* CONFIG_SCHEDSTATS */
1572 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1574 activate_task(rq, p, en_flags);
1575 p->on_rq = TASK_ON_RQ_QUEUED;
1577 /* if a worker is waking up, notify workqueue */
1578 if (p->flags & PF_WQ_WORKER)
1579 wq_worker_waking_up(p, cpu_of(rq));
1583 * Mark the task runnable and perform wakeup-preemption.
1586 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1588 check_preempt_curr(rq, p, wake_flags);
1589 p->state = TASK_RUNNING;
1590 trace_sched_wakeup(p);
1593 if (p->sched_class->task_woken) {
1595 * Our task @p is fully woken up and running; so its safe to
1596 * drop the rq->lock, hereafter rq is only used for statistics.
1598 lockdep_unpin_lock(&rq->lock);
1599 p->sched_class->task_woken(rq, p);
1600 lockdep_pin_lock(&rq->lock);
1603 if (rq->idle_stamp) {
1604 u64 delta = rq_clock(rq) - rq->idle_stamp;
1605 u64 max = 2*rq->max_idle_balance_cost;
1607 update_avg(&rq->avg_idle, delta);
1609 if (rq->avg_idle > max)
1618 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1620 lockdep_assert_held(&rq->lock);
1623 if (p->sched_contributes_to_load)
1624 rq->nr_uninterruptible--;
1627 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1628 ttwu_do_wakeup(rq, p, wake_flags);
1632 * Called in case the task @p isn't fully descheduled from its runqueue,
1633 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1634 * since all we need to do is flip p->state to TASK_RUNNING, since
1635 * the task is still ->on_rq.
1637 static int ttwu_remote(struct task_struct *p, int wake_flags)
1642 rq = __task_rq_lock(p);
1643 if (task_on_rq_queued(p)) {
1644 /* check_preempt_curr() may use rq clock */
1645 update_rq_clock(rq);
1646 ttwu_do_wakeup(rq, p, wake_flags);
1649 __task_rq_unlock(rq);
1655 void sched_ttwu_pending(void)
1657 struct rq *rq = this_rq();
1658 struct llist_node *llist = llist_del_all(&rq->wake_list);
1659 struct task_struct *p;
1660 unsigned long flags;
1665 raw_spin_lock_irqsave(&rq->lock, flags);
1666 lockdep_pin_lock(&rq->lock);
1669 p = llist_entry(llist, struct task_struct, wake_entry);
1670 llist = llist_next(llist);
1671 ttwu_do_activate(rq, p, 0);
1674 lockdep_unpin_lock(&rq->lock);
1675 raw_spin_unlock_irqrestore(&rq->lock, flags);
1678 void scheduler_ipi(void)
1681 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1682 * TIF_NEED_RESCHED remotely (for the first time) will also send
1685 preempt_fold_need_resched();
1687 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1691 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1692 * traditionally all their work was done from the interrupt return
1693 * path. Now that we actually do some work, we need to make sure
1696 * Some archs already do call them, luckily irq_enter/exit nest
1699 * Arguably we should visit all archs and update all handlers,
1700 * however a fair share of IPIs are still resched only so this would
1701 * somewhat pessimize the simple resched case.
1704 sched_ttwu_pending();
1707 * Check if someone kicked us for doing the nohz idle load balance.
1709 if (unlikely(got_nohz_idle_kick())) {
1710 this_rq()->idle_balance = 1;
1711 raise_softirq_irqoff(SCHED_SOFTIRQ);
1716 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1718 struct rq *rq = cpu_rq(cpu);
1720 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1721 if (!set_nr_if_polling(rq->idle))
1722 smp_send_reschedule(cpu);
1724 trace_sched_wake_idle_without_ipi(cpu);
1728 void wake_up_if_idle(int cpu)
1730 struct rq *rq = cpu_rq(cpu);
1731 unsigned long flags;
1735 if (!is_idle_task(rcu_dereference(rq->curr)))
1738 if (set_nr_if_polling(rq->idle)) {
1739 trace_sched_wake_idle_without_ipi(cpu);
1741 raw_spin_lock_irqsave(&rq->lock, flags);
1742 if (is_idle_task(rq->curr))
1743 smp_send_reschedule(cpu);
1744 /* Else cpu is not in idle, do nothing here */
1745 raw_spin_unlock_irqrestore(&rq->lock, flags);
1752 bool cpus_share_cache(int this_cpu, int that_cpu)
1754 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1756 #endif /* CONFIG_SMP */
1758 static void ttwu_queue(struct task_struct *p, int cpu)
1760 struct rq *rq = cpu_rq(cpu);
1762 #if defined(CONFIG_SMP)
1763 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1764 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1765 ttwu_queue_remote(p, cpu);
1770 raw_spin_lock(&rq->lock);
1771 lockdep_pin_lock(&rq->lock);
1772 ttwu_do_activate(rq, p, 0);
1773 lockdep_unpin_lock(&rq->lock);
1774 raw_spin_unlock(&rq->lock);
1778 * Notes on Program-Order guarantees on SMP systems.
1782 * The basic program-order guarantee on SMP systems is that when a task [t]
1783 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1784 * execution on its new cpu [c1].
1786 * For migration (of runnable tasks) this is provided by the following means:
1788 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1789 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1790 * rq(c1)->lock (if not at the same time, then in that order).
1791 * C) LOCK of the rq(c1)->lock scheduling in task
1793 * Transitivity guarantees that B happens after A and C after B.
1794 * Note: we only require RCpc transitivity.
1795 * Note: the cpu doing B need not be c0 or c1
1804 * UNLOCK rq(0)->lock
1806 * LOCK rq(0)->lock // orders against CPU0
1808 * UNLOCK rq(0)->lock
1812 * UNLOCK rq(1)->lock
1814 * LOCK rq(1)->lock // orders against CPU2
1817 * UNLOCK rq(1)->lock
1820 * BLOCKING -- aka. SLEEP + WAKEUP
1822 * For blocking we (obviously) need to provide the same guarantee as for
1823 * migration. However the means are completely different as there is no lock
1824 * chain to provide order. Instead we do:
1826 * 1) smp_store_release(X->on_cpu, 0)
1827 * 2) smp_cond_acquire(!X->on_cpu)
1831 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1833 * LOCK rq(0)->lock LOCK X->pi_lock
1836 * smp_store_release(X->on_cpu, 0);
1838 * smp_cond_acquire(!X->on_cpu);
1844 * X->state = RUNNING
1845 * UNLOCK rq(2)->lock
1847 * LOCK rq(2)->lock // orders against CPU1
1850 * UNLOCK rq(2)->lock
1853 * UNLOCK rq(0)->lock
1856 * However; for wakeups there is a second guarantee we must provide, namely we
1857 * must observe the state that lead to our wakeup. That is, not only must our
1858 * task observe its own prior state, it must also observe the stores prior to
1861 * This means that any means of doing remote wakeups must order the CPU doing
1862 * the wakeup against the CPU the task is going to end up running on. This,
1863 * however, is already required for the regular Program-Order guarantee above,
1864 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1869 * try_to_wake_up - wake up a thread
1870 * @p: the thread to be awakened
1871 * @state: the mask of task states that can be woken
1872 * @wake_flags: wake modifier flags (WF_*)
1874 * Put it on the run-queue if it's not already there. The "current"
1875 * thread is always on the run-queue (except when the actual
1876 * re-schedule is in progress), and as such you're allowed to do
1877 * the simpler "current->state = TASK_RUNNING" to mark yourself
1878 * runnable without the overhead of this.
1880 * Return: %true if @p was woken up, %false if it was already running.
1881 * or @state didn't match @p's state.
1884 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1886 unsigned long flags;
1887 int cpu, success = 0;
1890 * If we are going to wake up a thread waiting for CONDITION we
1891 * need to ensure that CONDITION=1 done by the caller can not be
1892 * reordered with p->state check below. This pairs with mb() in
1893 * set_current_state() the waiting thread does.
1895 smp_mb__before_spinlock();
1896 raw_spin_lock_irqsave(&p->pi_lock, flags);
1897 if (!(p->state & state))
1900 trace_sched_waking(p);
1902 success = 1; /* we're going to change ->state */
1905 if (p->on_rq && ttwu_remote(p, wake_flags))
1910 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1911 * possible to, falsely, observe p->on_cpu == 0.
1913 * One must be running (->on_cpu == 1) in order to remove oneself
1914 * from the runqueue.
1916 * [S] ->on_cpu = 1; [L] ->on_rq
1920 * [S] ->on_rq = 0; [L] ->on_cpu
1922 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1923 * from the consecutive calls to schedule(); the first switching to our
1924 * task, the second putting it to sleep.
1929 * If the owning (remote) cpu is still in the middle of schedule() with
1930 * this task as prev, wait until its done referencing the task.
1932 * Pairs with the smp_store_release() in finish_lock_switch().
1934 * This ensures that tasks getting woken will be fully ordered against
1935 * their previous state and preserve Program Order.
1937 smp_cond_acquire(!p->on_cpu);
1939 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1940 p->state = TASK_WAKING;
1942 if (p->sched_class->task_waking)
1943 p->sched_class->task_waking(p);
1945 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1946 if (task_cpu(p) != cpu) {
1947 wake_flags |= WF_MIGRATED;
1948 set_task_cpu(p, cpu);
1950 #endif /* CONFIG_SMP */
1954 if (schedstat_enabled())
1955 ttwu_stat(p, cpu, wake_flags);
1957 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1963 * try_to_wake_up_local - try to wake up a local task with rq lock held
1964 * @p: the thread to be awakened
1966 * Put @p on the run-queue if it's not already there. The caller must
1967 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1970 static void try_to_wake_up_local(struct task_struct *p)
1972 struct rq *rq = task_rq(p);
1974 if (WARN_ON_ONCE(rq != this_rq()) ||
1975 WARN_ON_ONCE(p == current))
1978 lockdep_assert_held(&rq->lock);
1980 if (!raw_spin_trylock(&p->pi_lock)) {
1982 * This is OK, because current is on_cpu, which avoids it being
1983 * picked for load-balance and preemption/IRQs are still
1984 * disabled avoiding further scheduler activity on it and we've
1985 * not yet picked a replacement task.
1987 lockdep_unpin_lock(&rq->lock);
1988 raw_spin_unlock(&rq->lock);
1989 raw_spin_lock(&p->pi_lock);
1990 raw_spin_lock(&rq->lock);
1991 lockdep_pin_lock(&rq->lock);
1994 if (!(p->state & TASK_NORMAL))
1997 trace_sched_waking(p);
1999 if (!task_on_rq_queued(p))
2000 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2002 ttwu_do_wakeup(rq, p, 0);
2003 if (schedstat_enabled())
2004 ttwu_stat(p, smp_processor_id(), 0);
2006 raw_spin_unlock(&p->pi_lock);
2010 * wake_up_process - Wake up a specific process
2011 * @p: The process to be woken up.
2013 * Attempt to wake up the nominated process and move it to the set of runnable
2016 * Return: 1 if the process was woken up, 0 if it was already running.
2018 * It may be assumed that this function implies a write memory barrier before
2019 * changing the task state if and only if any tasks are woken up.
2021 int wake_up_process(struct task_struct *p)
2023 return try_to_wake_up(p, TASK_NORMAL, 0);
2025 EXPORT_SYMBOL(wake_up_process);
2027 int wake_up_state(struct task_struct *p, unsigned int state)
2029 return try_to_wake_up(p, state, 0);
2033 * This function clears the sched_dl_entity static params.
2035 void __dl_clear_params(struct task_struct *p)
2037 struct sched_dl_entity *dl_se = &p->dl;
2039 dl_se->dl_runtime = 0;
2040 dl_se->dl_deadline = 0;
2041 dl_se->dl_period = 0;
2045 dl_se->dl_throttled = 0;
2046 dl_se->dl_yielded = 0;
2050 * Perform scheduler related setup for a newly forked process p.
2051 * p is forked by current.
2053 * __sched_fork() is basic setup used by init_idle() too:
2055 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2060 p->se.exec_start = 0;
2061 p->se.sum_exec_runtime = 0;
2062 p->se.prev_sum_exec_runtime = 0;
2063 p->se.nr_migrations = 0;
2065 INIT_LIST_HEAD(&p->se.group_node);
2067 #ifdef CONFIG_FAIR_GROUP_SCHED
2068 p->se.cfs_rq = NULL;
2071 #ifdef CONFIG_SCHEDSTATS
2072 /* Even if schedstat is disabled, there should not be garbage */
2073 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2076 RB_CLEAR_NODE(&p->dl.rb_node);
2077 init_dl_task_timer(&p->dl);
2078 __dl_clear_params(p);
2080 INIT_LIST_HEAD(&p->rt.run_list);
2082 p->rt.time_slice = sched_rr_timeslice;
2086 #ifdef CONFIG_PREEMPT_NOTIFIERS
2087 INIT_HLIST_HEAD(&p->preempt_notifiers);
2090 #ifdef CONFIG_NUMA_BALANCING
2091 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2092 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2093 p->mm->numa_scan_seq = 0;
2096 if (clone_flags & CLONE_VM)
2097 p->numa_preferred_nid = current->numa_preferred_nid;
2099 p->numa_preferred_nid = -1;
2101 p->node_stamp = 0ULL;
2102 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2103 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2104 p->numa_work.next = &p->numa_work;
2105 p->numa_faults = NULL;
2106 p->last_task_numa_placement = 0;
2107 p->last_sum_exec_runtime = 0;
2109 p->numa_group = NULL;
2110 #endif /* CONFIG_NUMA_BALANCING */
2113 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2115 #ifdef CONFIG_NUMA_BALANCING
2117 void set_numabalancing_state(bool enabled)
2120 static_branch_enable(&sched_numa_balancing);
2122 static_branch_disable(&sched_numa_balancing);
2125 #ifdef CONFIG_PROC_SYSCTL
2126 int sysctl_numa_balancing(struct ctl_table *table, int write,
2127 void __user *buffer, size_t *lenp, loff_t *ppos)
2131 int state = static_branch_likely(&sched_numa_balancing);
2133 if (write && !capable(CAP_SYS_ADMIN))
2138 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2142 set_numabalancing_state(state);
2148 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2150 #ifdef CONFIG_SCHEDSTATS
2151 static void set_schedstats(bool enabled)
2154 static_branch_enable(&sched_schedstats);
2156 static_branch_disable(&sched_schedstats);
2159 void force_schedstat_enabled(void)
2161 if (!schedstat_enabled()) {
2162 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2163 static_branch_enable(&sched_schedstats);
2167 static int __init setup_schedstats(char *str)
2173 if (!strcmp(str, "enable")) {
2174 set_schedstats(true);
2176 } else if (!strcmp(str, "disable")) {
2177 set_schedstats(false);
2182 pr_warn("Unable to parse schedstats=\n");
2186 __setup("schedstats=", setup_schedstats);
2188 #ifdef CONFIG_PROC_SYSCTL
2189 int sysctl_schedstats(struct ctl_table *table, int write,
2190 void __user *buffer, size_t *lenp, loff_t *ppos)
2194 int state = static_branch_likely(&sched_schedstats);
2196 if (write && !capable(CAP_SYS_ADMIN))
2201 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2205 set_schedstats(state);
2212 * fork()/clone()-time setup:
2214 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2216 unsigned long flags;
2217 int cpu = get_cpu();
2219 __sched_fork(clone_flags, p);
2221 * We mark the process as running here. This guarantees that
2222 * nobody will actually run it, and a signal or other external
2223 * event cannot wake it up and insert it on the runqueue either.
2225 p->state = TASK_RUNNING;
2228 * Make sure we do not leak PI boosting priority to the child.
2230 p->prio = current->normal_prio;
2233 * Revert to default priority/policy on fork if requested.
2235 if (unlikely(p->sched_reset_on_fork)) {
2236 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2237 p->policy = SCHED_NORMAL;
2238 p->static_prio = NICE_TO_PRIO(0);
2240 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2241 p->static_prio = NICE_TO_PRIO(0);
2243 p->prio = p->normal_prio = __normal_prio(p);
2247 * We don't need the reset flag anymore after the fork. It has
2248 * fulfilled its duty:
2250 p->sched_reset_on_fork = 0;
2253 if (dl_prio(p->prio)) {
2256 } else if (rt_prio(p->prio)) {
2257 p->sched_class = &rt_sched_class;
2259 p->sched_class = &fair_sched_class;
2262 if (p->sched_class->task_fork)
2263 p->sched_class->task_fork(p);
2266 * The child is not yet in the pid-hash so no cgroup attach races,
2267 * and the cgroup is pinned to this child due to cgroup_fork()
2268 * is ran before sched_fork().
2270 * Silence PROVE_RCU.
2272 raw_spin_lock_irqsave(&p->pi_lock, flags);
2273 set_task_cpu(p, cpu);
2274 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2276 #ifdef CONFIG_SCHED_INFO
2277 if (likely(sched_info_on()))
2278 memset(&p->sched_info, 0, sizeof(p->sched_info));
2280 #if defined(CONFIG_SMP)
2283 init_task_preempt_count(p);
2285 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2286 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2293 unsigned long to_ratio(u64 period, u64 runtime)
2295 if (runtime == RUNTIME_INF)
2299 * Doing this here saves a lot of checks in all
2300 * the calling paths, and returning zero seems
2301 * safe for them anyway.
2306 return div64_u64(runtime << 20, period);
2310 inline struct dl_bw *dl_bw_of(int i)
2312 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2313 "sched RCU must be held");
2314 return &cpu_rq(i)->rd->dl_bw;
2317 static inline int dl_bw_cpus(int i)
2319 struct root_domain *rd = cpu_rq(i)->rd;
2322 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2323 "sched RCU must be held");
2324 for_each_cpu_and(i, rd->span, cpu_active_mask)
2330 inline struct dl_bw *dl_bw_of(int i)
2332 return &cpu_rq(i)->dl.dl_bw;
2335 static inline int dl_bw_cpus(int i)
2342 * We must be sure that accepting a new task (or allowing changing the
2343 * parameters of an existing one) is consistent with the bandwidth
2344 * constraints. If yes, this function also accordingly updates the currently
2345 * allocated bandwidth to reflect the new situation.
2347 * This function is called while holding p's rq->lock.
2349 * XXX we should delay bw change until the task's 0-lag point, see
2352 static int dl_overflow(struct task_struct *p, int policy,
2353 const struct sched_attr *attr)
2356 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2357 u64 period = attr->sched_period ?: attr->sched_deadline;
2358 u64 runtime = attr->sched_runtime;
2359 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2362 if (new_bw == p->dl.dl_bw)
2366 * Either if a task, enters, leave, or stays -deadline but changes
2367 * its parameters, we may need to update accordingly the total
2368 * allocated bandwidth of the container.
2370 raw_spin_lock(&dl_b->lock);
2371 cpus = dl_bw_cpus(task_cpu(p));
2372 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2373 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2374 __dl_add(dl_b, new_bw);
2376 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2377 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2378 __dl_clear(dl_b, p->dl.dl_bw);
2379 __dl_add(dl_b, new_bw);
2381 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2382 __dl_clear(dl_b, p->dl.dl_bw);
2385 raw_spin_unlock(&dl_b->lock);
2390 extern void init_dl_bw(struct dl_bw *dl_b);
2393 * wake_up_new_task - wake up a newly created task for the first time.
2395 * This function will do some initial scheduler statistics housekeeping
2396 * that must be done for every newly created context, then puts the task
2397 * on the runqueue and wakes it.
2399 void wake_up_new_task(struct task_struct *p)
2401 unsigned long flags;
2404 raw_spin_lock_irqsave(&p->pi_lock, flags);
2405 /* Initialize new task's runnable average */
2406 init_entity_runnable_average(&p->se);
2409 * Fork balancing, do it here and not earlier because:
2410 * - cpus_allowed can change in the fork path
2411 * - any previously selected cpu might disappear through hotplug
2413 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2416 rq = __task_rq_lock(p);
2417 activate_task(rq, p, 0);
2418 p->on_rq = TASK_ON_RQ_QUEUED;
2419 trace_sched_wakeup_new(p);
2420 check_preempt_curr(rq, p, WF_FORK);
2422 if (p->sched_class->task_woken) {
2424 * Nothing relies on rq->lock after this, so its fine to
2427 lockdep_unpin_lock(&rq->lock);
2428 p->sched_class->task_woken(rq, p);
2429 lockdep_pin_lock(&rq->lock);
2432 task_rq_unlock(rq, p, &flags);
2435 #ifdef CONFIG_PREEMPT_NOTIFIERS
2437 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2439 void preempt_notifier_inc(void)
2441 static_key_slow_inc(&preempt_notifier_key);
2443 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2445 void preempt_notifier_dec(void)
2447 static_key_slow_dec(&preempt_notifier_key);
2449 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2452 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2453 * @notifier: notifier struct to register
2455 void preempt_notifier_register(struct preempt_notifier *notifier)
2457 if (!static_key_false(&preempt_notifier_key))
2458 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2460 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2462 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2465 * preempt_notifier_unregister - no longer interested in preemption notifications
2466 * @notifier: notifier struct to unregister
2468 * This is *not* safe to call from within a preemption notifier.
2470 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2472 hlist_del(¬ifier->link);
2474 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2476 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2478 struct preempt_notifier *notifier;
2480 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2481 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2484 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2486 if (static_key_false(&preempt_notifier_key))
2487 __fire_sched_in_preempt_notifiers(curr);
2491 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2492 struct task_struct *next)
2494 struct preempt_notifier *notifier;
2496 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2497 notifier->ops->sched_out(notifier, next);
2500 static __always_inline void
2501 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2502 struct task_struct *next)
2504 if (static_key_false(&preempt_notifier_key))
2505 __fire_sched_out_preempt_notifiers(curr, next);
2508 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2510 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2515 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2516 struct task_struct *next)
2520 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2523 * prepare_task_switch - prepare to switch tasks
2524 * @rq: the runqueue preparing to switch
2525 * @prev: the current task that is being switched out
2526 * @next: the task we are going to switch to.
2528 * This is called with the rq lock held and interrupts off. It must
2529 * be paired with a subsequent finish_task_switch after the context
2532 * prepare_task_switch sets up locking and calls architecture specific
2536 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2537 struct task_struct *next)
2539 sched_info_switch(rq, prev, next);
2540 perf_event_task_sched_out(prev, next);
2541 fire_sched_out_preempt_notifiers(prev, next);
2542 prepare_lock_switch(rq, next);
2543 prepare_arch_switch(next);
2547 * finish_task_switch - clean up after a task-switch
2548 * @prev: the thread we just switched away from.
2550 * finish_task_switch must be called after the context switch, paired
2551 * with a prepare_task_switch call before the context switch.
2552 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2553 * and do any other architecture-specific cleanup actions.
2555 * Note that we may have delayed dropping an mm in context_switch(). If
2556 * so, we finish that here outside of the runqueue lock. (Doing it
2557 * with the lock held can cause deadlocks; see schedule() for
2560 * The context switch have flipped the stack from under us and restored the
2561 * local variables which were saved when this task called schedule() in the
2562 * past. prev == current is still correct but we need to recalculate this_rq
2563 * because prev may have moved to another CPU.
2565 static struct rq *finish_task_switch(struct task_struct *prev)
2566 __releases(rq->lock)
2568 struct rq *rq = this_rq();
2569 struct mm_struct *mm = rq->prev_mm;
2573 * The previous task will have left us with a preempt_count of 2
2574 * because it left us after:
2577 * preempt_disable(); // 1
2579 * raw_spin_lock_irq(&rq->lock) // 2
2581 * Also, see FORK_PREEMPT_COUNT.
2583 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2584 "corrupted preempt_count: %s/%d/0x%x\n",
2585 current->comm, current->pid, preempt_count()))
2586 preempt_count_set(FORK_PREEMPT_COUNT);
2591 * A task struct has one reference for the use as "current".
2592 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2593 * schedule one last time. The schedule call will never return, and
2594 * the scheduled task must drop that reference.
2596 * We must observe prev->state before clearing prev->on_cpu (in
2597 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2598 * running on another CPU and we could rave with its RUNNING -> DEAD
2599 * transition, resulting in a double drop.
2601 prev_state = prev->state;
2602 vtime_task_switch(prev);
2603 perf_event_task_sched_in(prev, current);
2604 finish_lock_switch(rq, prev);
2605 finish_arch_post_lock_switch();
2607 fire_sched_in_preempt_notifiers(current);
2610 if (unlikely(prev_state == TASK_DEAD)) {
2611 if (prev->sched_class->task_dead)
2612 prev->sched_class->task_dead(prev);
2615 * Remove function-return probe instances associated with this
2616 * task and put them back on the free list.
2618 kprobe_flush_task(prev);
2619 put_task_struct(prev);
2622 tick_nohz_task_switch();
2628 /* rq->lock is NOT held, but preemption is disabled */
2629 static void __balance_callback(struct rq *rq)
2631 struct callback_head *head, *next;
2632 void (*func)(struct rq *rq);
2633 unsigned long flags;
2635 raw_spin_lock_irqsave(&rq->lock, flags);
2636 head = rq->balance_callback;
2637 rq->balance_callback = NULL;
2639 func = (void (*)(struct rq *))head->func;
2646 raw_spin_unlock_irqrestore(&rq->lock, flags);
2649 static inline void balance_callback(struct rq *rq)
2651 if (unlikely(rq->balance_callback))
2652 __balance_callback(rq);
2657 static inline void balance_callback(struct rq *rq)
2664 * schedule_tail - first thing a freshly forked thread must call.
2665 * @prev: the thread we just switched away from.
2667 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2668 __releases(rq->lock)
2673 * New tasks start with FORK_PREEMPT_COUNT, see there and
2674 * finish_task_switch() for details.
2676 * finish_task_switch() will drop rq->lock() and lower preempt_count
2677 * and the preempt_enable() will end up enabling preemption (on
2678 * PREEMPT_COUNT kernels).
2681 rq = finish_task_switch(prev);
2682 balance_callback(rq);
2685 if (current->set_child_tid)
2686 put_user(task_pid_vnr(current), current->set_child_tid);
2690 * context_switch - switch to the new MM and the new thread's register state.
2692 static inline struct rq *
2693 context_switch(struct rq *rq, struct task_struct *prev,
2694 struct task_struct *next)
2696 struct mm_struct *mm, *oldmm;
2698 prepare_task_switch(rq, prev, next);
2701 oldmm = prev->active_mm;
2703 * For paravirt, this is coupled with an exit in switch_to to
2704 * combine the page table reload and the switch backend into
2707 arch_start_context_switch(prev);
2710 next->active_mm = oldmm;
2711 atomic_inc(&oldmm->mm_count);
2712 enter_lazy_tlb(oldmm, next);
2714 switch_mm(oldmm, mm, next);
2717 prev->active_mm = NULL;
2718 rq->prev_mm = oldmm;
2721 * Since the runqueue lock will be released by the next
2722 * task (which is an invalid locking op but in the case
2723 * of the scheduler it's an obvious special-case), so we
2724 * do an early lockdep release here:
2726 lockdep_unpin_lock(&rq->lock);
2727 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2729 /* Here we just switch the register state and the stack. */
2730 switch_to(prev, next, prev);
2733 return finish_task_switch(prev);
2737 * nr_running and nr_context_switches:
2739 * externally visible scheduler statistics: current number of runnable
2740 * threads, total number of context switches performed since bootup.
2742 unsigned long nr_running(void)
2744 unsigned long i, sum = 0;
2746 for_each_online_cpu(i)
2747 sum += cpu_rq(i)->nr_running;
2753 * Check if only the current task is running on the cpu.
2755 * Caution: this function does not check that the caller has disabled
2756 * preemption, thus the result might have a time-of-check-to-time-of-use
2757 * race. The caller is responsible to use it correctly, for example:
2759 * - from a non-preemptable section (of course)
2761 * - from a thread that is bound to a single CPU
2763 * - in a loop with very short iterations (e.g. a polling loop)
2765 bool single_task_running(void)
2767 return raw_rq()->nr_running == 1;
2769 EXPORT_SYMBOL(single_task_running);
2771 unsigned long long nr_context_switches(void)
2774 unsigned long long sum = 0;
2776 for_each_possible_cpu(i)
2777 sum += cpu_rq(i)->nr_switches;
2782 unsigned long nr_iowait(void)
2784 unsigned long i, sum = 0;
2786 for_each_possible_cpu(i)
2787 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2792 unsigned long nr_iowait_cpu(int cpu)
2794 struct rq *this = cpu_rq(cpu);
2795 return atomic_read(&this->nr_iowait);
2798 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2800 struct rq *rq = this_rq();
2801 *nr_waiters = atomic_read(&rq->nr_iowait);
2802 *load = rq->load.weight;
2808 * sched_exec - execve() is a valuable balancing opportunity, because at
2809 * this point the task has the smallest effective memory and cache footprint.
2811 void sched_exec(void)
2813 struct task_struct *p = current;
2814 unsigned long flags;
2817 raw_spin_lock_irqsave(&p->pi_lock, flags);
2818 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2819 if (dest_cpu == smp_processor_id())
2822 if (likely(cpu_active(dest_cpu))) {
2823 struct migration_arg arg = { p, dest_cpu };
2825 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2826 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2830 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2835 DEFINE_PER_CPU(struct kernel_stat, kstat);
2836 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2838 EXPORT_PER_CPU_SYMBOL(kstat);
2839 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2842 * Return accounted runtime for the task.
2843 * In case the task is currently running, return the runtime plus current's
2844 * pending runtime that have not been accounted yet.
2846 unsigned long long task_sched_runtime(struct task_struct *p)
2848 unsigned long flags;
2852 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2854 * 64-bit doesn't need locks to atomically read a 64bit value.
2855 * So we have a optimization chance when the task's delta_exec is 0.
2856 * Reading ->on_cpu is racy, but this is ok.
2858 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2859 * If we race with it entering cpu, unaccounted time is 0. This is
2860 * indistinguishable from the read occurring a few cycles earlier.
2861 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2862 * been accounted, so we're correct here as well.
2864 if (!p->on_cpu || !task_on_rq_queued(p))
2865 return p->se.sum_exec_runtime;
2868 rq = task_rq_lock(p, &flags);
2870 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2871 * project cycles that may never be accounted to this
2872 * thread, breaking clock_gettime().
2874 if (task_current(rq, p) && task_on_rq_queued(p)) {
2875 update_rq_clock(rq);
2876 p->sched_class->update_curr(rq);
2878 ns = p->se.sum_exec_runtime;
2879 task_rq_unlock(rq, p, &flags);
2885 * This function gets called by the timer code, with HZ frequency.
2886 * We call it with interrupts disabled.
2888 void scheduler_tick(void)
2890 int cpu = smp_processor_id();
2891 struct rq *rq = cpu_rq(cpu);
2892 struct task_struct *curr = rq->curr;
2896 raw_spin_lock(&rq->lock);
2897 update_rq_clock(rq);
2898 curr->sched_class->task_tick(rq, curr, 0);
2899 update_cpu_load_active(rq);
2900 calc_global_load_tick(rq);
2901 raw_spin_unlock(&rq->lock);
2903 perf_event_task_tick();
2906 rq->idle_balance = idle_cpu(cpu);
2907 trigger_load_balance(rq);
2909 rq_last_tick_reset(rq);
2912 #ifdef CONFIG_NO_HZ_FULL
2914 * scheduler_tick_max_deferment
2916 * Keep at least one tick per second when a single
2917 * active task is running because the scheduler doesn't
2918 * yet completely support full dynticks environment.
2920 * This makes sure that uptime, CFS vruntime, load
2921 * balancing, etc... continue to move forward, even
2922 * with a very low granularity.
2924 * Return: Maximum deferment in nanoseconds.
2926 u64 scheduler_tick_max_deferment(void)
2928 struct rq *rq = this_rq();
2929 unsigned long next, now = READ_ONCE(jiffies);
2931 next = rq->last_sched_tick + HZ;
2933 if (time_before_eq(next, now))
2936 return jiffies_to_nsecs(next - now);
2940 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2941 defined(CONFIG_PREEMPT_TRACER))
2943 void preempt_count_add(int val)
2945 #ifdef CONFIG_DEBUG_PREEMPT
2949 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2952 __preempt_count_add(val);
2953 #ifdef CONFIG_DEBUG_PREEMPT
2955 * Spinlock count overflowing soon?
2957 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2960 if (preempt_count() == val) {
2961 unsigned long ip = get_lock_parent_ip();
2962 #ifdef CONFIG_DEBUG_PREEMPT
2963 current->preempt_disable_ip = ip;
2965 trace_preempt_off(CALLER_ADDR0, ip);
2968 EXPORT_SYMBOL(preempt_count_add);
2969 NOKPROBE_SYMBOL(preempt_count_add);
2971 void preempt_count_sub(int val)
2973 #ifdef CONFIG_DEBUG_PREEMPT
2977 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2980 * Is the spinlock portion underflowing?
2982 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2983 !(preempt_count() & PREEMPT_MASK)))
2987 if (preempt_count() == val)
2988 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
2989 __preempt_count_sub(val);
2991 EXPORT_SYMBOL(preempt_count_sub);
2992 NOKPROBE_SYMBOL(preempt_count_sub);
2997 * Print scheduling while atomic bug:
2999 static noinline void __schedule_bug(struct task_struct *prev)
3001 if (oops_in_progress)
3004 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3005 prev->comm, prev->pid, preempt_count());
3007 debug_show_held_locks(prev);
3009 if (irqs_disabled())
3010 print_irqtrace_events(prev);
3011 #ifdef CONFIG_DEBUG_PREEMPT
3012 if (in_atomic_preempt_off()) {
3013 pr_err("Preemption disabled at:");
3014 print_ip_sym(current->preempt_disable_ip);
3019 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3023 * Various schedule()-time debugging checks and statistics:
3025 static inline void schedule_debug(struct task_struct *prev)
3027 #ifdef CONFIG_SCHED_STACK_END_CHECK
3028 BUG_ON(task_stack_end_corrupted(prev));
3031 if (unlikely(in_atomic_preempt_off())) {
3032 __schedule_bug(prev);
3033 preempt_count_set(PREEMPT_DISABLED);
3037 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3039 schedstat_inc(this_rq(), sched_count);
3043 * Pick up the highest-prio task:
3045 static inline struct task_struct *
3046 pick_next_task(struct rq *rq, struct task_struct *prev)
3048 const struct sched_class *class = &fair_sched_class;
3049 struct task_struct *p;
3052 * Optimization: we know that if all tasks are in
3053 * the fair class we can call that function directly:
3055 if (likely(prev->sched_class == class &&
3056 rq->nr_running == rq->cfs.h_nr_running)) {
3057 p = fair_sched_class.pick_next_task(rq, prev);
3058 if (unlikely(p == RETRY_TASK))
3061 /* assumes fair_sched_class->next == idle_sched_class */
3063 p = idle_sched_class.pick_next_task(rq, prev);
3069 for_each_class(class) {
3070 p = class->pick_next_task(rq, prev);
3072 if (unlikely(p == RETRY_TASK))
3078 BUG(); /* the idle class will always have a runnable task */
3082 * __schedule() is the main scheduler function.
3084 * The main means of driving the scheduler and thus entering this function are:
3086 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3088 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3089 * paths. For example, see arch/x86/entry_64.S.
3091 * To drive preemption between tasks, the scheduler sets the flag in timer
3092 * interrupt handler scheduler_tick().
3094 * 3. Wakeups don't really cause entry into schedule(). They add a
3095 * task to the run-queue and that's it.
3097 * Now, if the new task added to the run-queue preempts the current
3098 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3099 * called on the nearest possible occasion:
3101 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3103 * - in syscall or exception context, at the next outmost
3104 * preempt_enable(). (this might be as soon as the wake_up()'s
3107 * - in IRQ context, return from interrupt-handler to
3108 * preemptible context
3110 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3113 * - cond_resched() call
3114 * - explicit schedule() call
3115 * - return from syscall or exception to user-space
3116 * - return from interrupt-handler to user-space
3118 * WARNING: must be called with preemption disabled!
3120 static void __sched notrace __schedule(bool preempt)
3122 struct task_struct *prev, *next;
3123 unsigned long *switch_count;
3127 cpu = smp_processor_id();
3132 * do_exit() calls schedule() with preemption disabled as an exception;
3133 * however we must fix that up, otherwise the next task will see an
3134 * inconsistent (higher) preempt count.
3136 * It also avoids the below schedule_debug() test from complaining
3139 if (unlikely(prev->state == TASK_DEAD))
3140 preempt_enable_no_resched_notrace();
3142 schedule_debug(prev);
3144 if (sched_feat(HRTICK))
3147 local_irq_disable();
3148 rcu_note_context_switch();
3151 * Make sure that signal_pending_state()->signal_pending() below
3152 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3153 * done by the caller to avoid the race with signal_wake_up().
3155 smp_mb__before_spinlock();
3156 raw_spin_lock(&rq->lock);
3157 lockdep_pin_lock(&rq->lock);
3159 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3161 switch_count = &prev->nivcsw;
3162 if (!preempt && prev->state) {
3163 if (unlikely(signal_pending_state(prev->state, prev))) {
3164 prev->state = TASK_RUNNING;
3166 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3170 * If a worker went to sleep, notify and ask workqueue
3171 * whether it wants to wake up a task to maintain
3174 if (prev->flags & PF_WQ_WORKER) {
3175 struct task_struct *to_wakeup;
3177 to_wakeup = wq_worker_sleeping(prev, cpu);
3179 try_to_wake_up_local(to_wakeup);
3182 switch_count = &prev->nvcsw;
3185 if (task_on_rq_queued(prev))
3186 update_rq_clock(rq);
3188 next = pick_next_task(rq, prev);
3189 clear_tsk_need_resched(prev);
3190 clear_preempt_need_resched();
3191 rq->clock_skip_update = 0;
3193 if (likely(prev != next)) {
3198 trace_sched_switch(preempt, prev, next);
3199 rq = context_switch(rq, prev, next); /* unlocks the rq */
3201 lockdep_unpin_lock(&rq->lock);
3202 raw_spin_unlock_irq(&rq->lock);
3205 balance_callback(rq);
3208 static inline void sched_submit_work(struct task_struct *tsk)
3210 if (!tsk->state || tsk_is_pi_blocked(tsk))
3213 * If we are going to sleep and we have plugged IO queued,
3214 * make sure to submit it to avoid deadlocks.
3216 if (blk_needs_flush_plug(tsk))
3217 blk_schedule_flush_plug(tsk);
3220 asmlinkage __visible void __sched schedule(void)
3222 struct task_struct *tsk = current;
3224 sched_submit_work(tsk);
3228 sched_preempt_enable_no_resched();
3229 } while (need_resched());
3231 EXPORT_SYMBOL(schedule);
3233 #ifdef CONFIG_CONTEXT_TRACKING
3234 asmlinkage __visible void __sched schedule_user(void)
3237 * If we come here after a random call to set_need_resched(),
3238 * or we have been woken up remotely but the IPI has not yet arrived,
3239 * we haven't yet exited the RCU idle mode. Do it here manually until
3240 * we find a better solution.
3242 * NB: There are buggy callers of this function. Ideally we
3243 * should warn if prev_state != CONTEXT_USER, but that will trigger
3244 * too frequently to make sense yet.
3246 enum ctx_state prev_state = exception_enter();
3248 exception_exit(prev_state);
3253 * schedule_preempt_disabled - called with preemption disabled
3255 * Returns with preemption disabled. Note: preempt_count must be 1
3257 void __sched schedule_preempt_disabled(void)
3259 sched_preempt_enable_no_resched();
3264 static void __sched notrace preempt_schedule_common(void)
3267 preempt_disable_notrace();
3269 preempt_enable_no_resched_notrace();
3272 * Check again in case we missed a preemption opportunity
3273 * between schedule and now.
3275 } while (need_resched());
3278 #ifdef CONFIG_PREEMPT
3280 * this is the entry point to schedule() from in-kernel preemption
3281 * off of preempt_enable. Kernel preemptions off return from interrupt
3282 * occur there and call schedule directly.
3284 asmlinkage __visible void __sched notrace preempt_schedule(void)
3287 * If there is a non-zero preempt_count or interrupts are disabled,
3288 * we do not want to preempt the current task. Just return..
3290 if (likely(!preemptible()))
3293 preempt_schedule_common();
3295 NOKPROBE_SYMBOL(preempt_schedule);
3296 EXPORT_SYMBOL(preempt_schedule);
3299 * preempt_schedule_notrace - preempt_schedule called by tracing
3301 * The tracing infrastructure uses preempt_enable_notrace to prevent
3302 * recursion and tracing preempt enabling caused by the tracing
3303 * infrastructure itself. But as tracing can happen in areas coming
3304 * from userspace or just about to enter userspace, a preempt enable
3305 * can occur before user_exit() is called. This will cause the scheduler
3306 * to be called when the system is still in usermode.
3308 * To prevent this, the preempt_enable_notrace will use this function
3309 * instead of preempt_schedule() to exit user context if needed before
3310 * calling the scheduler.
3312 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3314 enum ctx_state prev_ctx;
3316 if (likely(!preemptible()))
3320 preempt_disable_notrace();
3322 * Needs preempt disabled in case user_exit() is traced
3323 * and the tracer calls preempt_enable_notrace() causing
3324 * an infinite recursion.
3326 prev_ctx = exception_enter();
3328 exception_exit(prev_ctx);
3330 preempt_enable_no_resched_notrace();
3331 } while (need_resched());
3333 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3335 #endif /* CONFIG_PREEMPT */
3338 * this is the entry point to schedule() from kernel preemption
3339 * off of irq context.
3340 * Note, that this is called and return with irqs disabled. This will
3341 * protect us against recursive calling from irq.
3343 asmlinkage __visible void __sched preempt_schedule_irq(void)
3345 enum ctx_state prev_state;
3347 /* Catch callers which need to be fixed */
3348 BUG_ON(preempt_count() || !irqs_disabled());
3350 prev_state = exception_enter();
3356 local_irq_disable();
3357 sched_preempt_enable_no_resched();
3358 } while (need_resched());
3360 exception_exit(prev_state);
3363 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3366 return try_to_wake_up(curr->private, mode, wake_flags);
3368 EXPORT_SYMBOL(default_wake_function);
3370 #ifdef CONFIG_RT_MUTEXES
3373 * rt_mutex_setprio - set the current priority of a task
3375 * @prio: prio value (kernel-internal form)
3377 * This function changes the 'effective' priority of a task. It does
3378 * not touch ->normal_prio like __setscheduler().
3380 * Used by the rt_mutex code to implement priority inheritance
3381 * logic. Call site only calls if the priority of the task changed.
3383 void rt_mutex_setprio(struct task_struct *p, int prio)
3385 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3387 const struct sched_class *prev_class;
3389 BUG_ON(prio > MAX_PRIO);
3391 rq = __task_rq_lock(p);
3394 * Idle task boosting is a nono in general. There is one
3395 * exception, when PREEMPT_RT and NOHZ is active:
3397 * The idle task calls get_next_timer_interrupt() and holds
3398 * the timer wheel base->lock on the CPU and another CPU wants
3399 * to access the timer (probably to cancel it). We can safely
3400 * ignore the boosting request, as the idle CPU runs this code
3401 * with interrupts disabled and will complete the lock
3402 * protected section without being interrupted. So there is no
3403 * real need to boost.
3405 if (unlikely(p == rq->idle)) {
3406 WARN_ON(p != rq->curr);
3407 WARN_ON(p->pi_blocked_on);
3411 trace_sched_pi_setprio(p, prio);
3414 if (oldprio == prio)
3415 queue_flag &= ~DEQUEUE_MOVE;
3417 prev_class = p->sched_class;
3418 queued = task_on_rq_queued(p);
3419 running = task_current(rq, p);
3421 dequeue_task(rq, p, queue_flag);
3423 put_prev_task(rq, p);
3426 * Boosting condition are:
3427 * 1. -rt task is running and holds mutex A
3428 * --> -dl task blocks on mutex A
3430 * 2. -dl task is running and holds mutex A
3431 * --> -dl task blocks on mutex A and could preempt the
3434 if (dl_prio(prio)) {
3435 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3436 if (!dl_prio(p->normal_prio) ||
3437 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3438 p->dl.dl_boosted = 1;
3439 queue_flag |= ENQUEUE_REPLENISH;
3441 p->dl.dl_boosted = 0;
3442 p->sched_class = &dl_sched_class;
3443 } else if (rt_prio(prio)) {
3444 if (dl_prio(oldprio))
3445 p->dl.dl_boosted = 0;
3447 queue_flag |= ENQUEUE_HEAD;
3448 p->sched_class = &rt_sched_class;
3450 if (dl_prio(oldprio))
3451 p->dl.dl_boosted = 0;
3452 if (rt_prio(oldprio))
3454 p->sched_class = &fair_sched_class;
3460 p->sched_class->set_curr_task(rq);
3462 enqueue_task(rq, p, queue_flag);
3464 check_class_changed(rq, p, prev_class, oldprio);
3466 preempt_disable(); /* avoid rq from going away on us */
3467 __task_rq_unlock(rq);
3469 balance_callback(rq);
3474 void set_user_nice(struct task_struct *p, long nice)
3476 int old_prio, delta, queued;
3477 unsigned long flags;
3480 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3483 * We have to be careful, if called from sys_setpriority(),
3484 * the task might be in the middle of scheduling on another CPU.
3486 rq = task_rq_lock(p, &flags);
3488 * The RT priorities are set via sched_setscheduler(), but we still
3489 * allow the 'normal' nice value to be set - but as expected
3490 * it wont have any effect on scheduling until the task is
3491 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3493 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3494 p->static_prio = NICE_TO_PRIO(nice);
3497 queued = task_on_rq_queued(p);
3499 dequeue_task(rq, p, DEQUEUE_SAVE);
3501 p->static_prio = NICE_TO_PRIO(nice);
3504 p->prio = effective_prio(p);
3505 delta = p->prio - old_prio;
3508 enqueue_task(rq, p, ENQUEUE_RESTORE);
3510 * If the task increased its priority or is running and
3511 * lowered its priority, then reschedule its CPU:
3513 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3517 task_rq_unlock(rq, p, &flags);
3519 EXPORT_SYMBOL(set_user_nice);
3522 * can_nice - check if a task can reduce its nice value
3526 int can_nice(const struct task_struct *p, const int nice)
3528 /* convert nice value [19,-20] to rlimit style value [1,40] */
3529 int nice_rlim = nice_to_rlimit(nice);
3531 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3532 capable(CAP_SYS_NICE));
3535 #ifdef __ARCH_WANT_SYS_NICE
3538 * sys_nice - change the priority of the current process.
3539 * @increment: priority increment
3541 * sys_setpriority is a more generic, but much slower function that
3542 * does similar things.
3544 SYSCALL_DEFINE1(nice, int, increment)
3549 * Setpriority might change our priority at the same moment.
3550 * We don't have to worry. Conceptually one call occurs first
3551 * and we have a single winner.
3553 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3554 nice = task_nice(current) + increment;
3556 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3557 if (increment < 0 && !can_nice(current, nice))
3560 retval = security_task_setnice(current, nice);
3564 set_user_nice(current, nice);
3571 * task_prio - return the priority value of a given task.
3572 * @p: the task in question.
3574 * Return: The priority value as seen by users in /proc.
3575 * RT tasks are offset by -200. Normal tasks are centered
3576 * around 0, value goes from -16 to +15.
3578 int task_prio(const struct task_struct *p)
3580 return p->prio - MAX_RT_PRIO;
3584 * idle_cpu - is a given cpu idle currently?
3585 * @cpu: the processor in question.
3587 * Return: 1 if the CPU is currently idle. 0 otherwise.
3589 int idle_cpu(int cpu)
3591 struct rq *rq = cpu_rq(cpu);
3593 if (rq->curr != rq->idle)
3600 if (!llist_empty(&rq->wake_list))
3608 * idle_task - return the idle task for a given cpu.
3609 * @cpu: the processor in question.
3611 * Return: The idle task for the cpu @cpu.
3613 struct task_struct *idle_task(int cpu)
3615 return cpu_rq(cpu)->idle;
3619 * find_process_by_pid - find a process with a matching PID value.
3620 * @pid: the pid in question.
3622 * The task of @pid, if found. %NULL otherwise.
3624 static struct task_struct *find_process_by_pid(pid_t pid)
3626 return pid ? find_task_by_vpid(pid) : current;
3630 * This function initializes the sched_dl_entity of a newly becoming
3631 * SCHED_DEADLINE task.
3633 * Only the static values are considered here, the actual runtime and the
3634 * absolute deadline will be properly calculated when the task is enqueued
3635 * for the first time with its new policy.
3638 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3640 struct sched_dl_entity *dl_se = &p->dl;
3642 dl_se->dl_runtime = attr->sched_runtime;
3643 dl_se->dl_deadline = attr->sched_deadline;
3644 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3645 dl_se->flags = attr->sched_flags;
3646 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3649 * Changing the parameters of a task is 'tricky' and we're not doing
3650 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3652 * What we SHOULD do is delay the bandwidth release until the 0-lag
3653 * point. This would include retaining the task_struct until that time
3654 * and change dl_overflow() to not immediately decrement the current
3657 * Instead we retain the current runtime/deadline and let the new
3658 * parameters take effect after the current reservation period lapses.
3659 * This is safe (albeit pessimistic) because the 0-lag point is always
3660 * before the current scheduling deadline.
3662 * We can still have temporary overloads because we do not delay the
3663 * change in bandwidth until that time; so admission control is
3664 * not on the safe side. It does however guarantee tasks will never
3665 * consume more than promised.
3670 * sched_setparam() passes in -1 for its policy, to let the functions
3671 * it calls know not to change it.
3673 #define SETPARAM_POLICY -1
3675 static void __setscheduler_params(struct task_struct *p,
3676 const struct sched_attr *attr)
3678 int policy = attr->sched_policy;
3680 if (policy == SETPARAM_POLICY)
3685 if (dl_policy(policy))
3686 __setparam_dl(p, attr);
3687 else if (fair_policy(policy))
3688 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3691 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3692 * !rt_policy. Always setting this ensures that things like
3693 * getparam()/getattr() don't report silly values for !rt tasks.
3695 p->rt_priority = attr->sched_priority;
3696 p->normal_prio = normal_prio(p);
3700 /* Actually do priority change: must hold pi & rq lock. */
3701 static void __setscheduler(struct rq *rq, struct task_struct *p,
3702 const struct sched_attr *attr, bool keep_boost)
3704 __setscheduler_params(p, attr);
3707 * Keep a potential priority boosting if called from
3708 * sched_setscheduler().
3711 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3713 p->prio = normal_prio(p);
3715 if (dl_prio(p->prio))
3716 p->sched_class = &dl_sched_class;
3717 else if (rt_prio(p->prio))
3718 p->sched_class = &rt_sched_class;
3720 p->sched_class = &fair_sched_class;
3724 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3726 struct sched_dl_entity *dl_se = &p->dl;
3728 attr->sched_priority = p->rt_priority;
3729 attr->sched_runtime = dl_se->dl_runtime;
3730 attr->sched_deadline = dl_se->dl_deadline;
3731 attr->sched_period = dl_se->dl_period;
3732 attr->sched_flags = dl_se->flags;
3736 * This function validates the new parameters of a -deadline task.
3737 * We ask for the deadline not being zero, and greater or equal
3738 * than the runtime, as well as the period of being zero or
3739 * greater than deadline. Furthermore, we have to be sure that
3740 * user parameters are above the internal resolution of 1us (we
3741 * check sched_runtime only since it is always the smaller one) and
3742 * below 2^63 ns (we have to check both sched_deadline and
3743 * sched_period, as the latter can be zero).
3746 __checkparam_dl(const struct sched_attr *attr)
3749 if (attr->sched_deadline == 0)
3753 * Since we truncate DL_SCALE bits, make sure we're at least
3756 if (attr->sched_runtime < (1ULL << DL_SCALE))
3760 * Since we use the MSB for wrap-around and sign issues, make
3761 * sure it's not set (mind that period can be equal to zero).
3763 if (attr->sched_deadline & (1ULL << 63) ||
3764 attr->sched_period & (1ULL << 63))
3767 /* runtime <= deadline <= period (if period != 0) */
3768 if ((attr->sched_period != 0 &&
3769 attr->sched_period < attr->sched_deadline) ||
3770 attr->sched_deadline < attr->sched_runtime)
3777 * check the target process has a UID that matches the current process's
3779 static bool check_same_owner(struct task_struct *p)
3781 const struct cred *cred = current_cred(), *pcred;
3785 pcred = __task_cred(p);
3786 match = (uid_eq(cred->euid, pcred->euid) ||
3787 uid_eq(cred->euid, pcred->uid));
3792 static bool dl_param_changed(struct task_struct *p,
3793 const struct sched_attr *attr)
3795 struct sched_dl_entity *dl_se = &p->dl;
3797 if (dl_se->dl_runtime != attr->sched_runtime ||
3798 dl_se->dl_deadline != attr->sched_deadline ||
3799 dl_se->dl_period != attr->sched_period ||
3800 dl_se->flags != attr->sched_flags)
3806 static int __sched_setscheduler(struct task_struct *p,
3807 const struct sched_attr *attr,
3810 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3811 MAX_RT_PRIO - 1 - attr->sched_priority;
3812 int retval, oldprio, oldpolicy = -1, queued, running;
3813 int new_effective_prio, policy = attr->sched_policy;
3814 unsigned long flags;
3815 const struct sched_class *prev_class;
3818 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3820 /* may grab non-irq protected spin_locks */
3821 BUG_ON(in_interrupt());
3823 /* double check policy once rq lock held */
3825 reset_on_fork = p->sched_reset_on_fork;
3826 policy = oldpolicy = p->policy;
3828 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3830 if (!valid_policy(policy))
3834 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3838 * Valid priorities for SCHED_FIFO and SCHED_RR are
3839 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3840 * SCHED_BATCH and SCHED_IDLE is 0.
3842 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3843 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3845 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3846 (rt_policy(policy) != (attr->sched_priority != 0)))
3850 * Allow unprivileged RT tasks to decrease priority:
3852 if (user && !capable(CAP_SYS_NICE)) {
3853 if (fair_policy(policy)) {
3854 if (attr->sched_nice < task_nice(p) &&
3855 !can_nice(p, attr->sched_nice))
3859 if (rt_policy(policy)) {
3860 unsigned long rlim_rtprio =
3861 task_rlimit(p, RLIMIT_RTPRIO);
3863 /* can't set/change the rt policy */
3864 if (policy != p->policy && !rlim_rtprio)
3867 /* can't increase priority */
3868 if (attr->sched_priority > p->rt_priority &&
3869 attr->sched_priority > rlim_rtprio)
3874 * Can't set/change SCHED_DEADLINE policy at all for now
3875 * (safest behavior); in the future we would like to allow
3876 * unprivileged DL tasks to increase their relative deadline
3877 * or reduce their runtime (both ways reducing utilization)
3879 if (dl_policy(policy))
3883 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3884 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3886 if (idle_policy(p->policy) && !idle_policy(policy)) {
3887 if (!can_nice(p, task_nice(p)))
3891 /* can't change other user's priorities */
3892 if (!check_same_owner(p))
3895 /* Normal users shall not reset the sched_reset_on_fork flag */
3896 if (p->sched_reset_on_fork && !reset_on_fork)
3901 retval = security_task_setscheduler(p);
3907 * make sure no PI-waiters arrive (or leave) while we are
3908 * changing the priority of the task:
3910 * To be able to change p->policy safely, the appropriate
3911 * runqueue lock must be held.
3913 rq = task_rq_lock(p, &flags);
3916 * Changing the policy of the stop threads its a very bad idea
3918 if (p == rq->stop) {
3919 task_rq_unlock(rq, p, &flags);
3924 * If not changing anything there's no need to proceed further,
3925 * but store a possible modification of reset_on_fork.
3927 if (unlikely(policy == p->policy)) {
3928 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3930 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3932 if (dl_policy(policy) && dl_param_changed(p, attr))
3935 p->sched_reset_on_fork = reset_on_fork;
3936 task_rq_unlock(rq, p, &flags);
3942 #ifdef CONFIG_RT_GROUP_SCHED
3944 * Do not allow realtime tasks into groups that have no runtime
3947 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3948 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3949 !task_group_is_autogroup(task_group(p))) {
3950 task_rq_unlock(rq, p, &flags);
3955 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3956 cpumask_t *span = rq->rd->span;
3959 * Don't allow tasks with an affinity mask smaller than
3960 * the entire root_domain to become SCHED_DEADLINE. We
3961 * will also fail if there's no bandwidth available.
3963 if (!cpumask_subset(span, &p->cpus_allowed) ||
3964 rq->rd->dl_bw.bw == 0) {
3965 task_rq_unlock(rq, p, &flags);
3972 /* recheck policy now with rq lock held */
3973 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3974 policy = oldpolicy = -1;
3975 task_rq_unlock(rq, p, &flags);
3980 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3981 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3984 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3985 task_rq_unlock(rq, p, &flags);
3989 p->sched_reset_on_fork = reset_on_fork;
3994 * Take priority boosted tasks into account. If the new
3995 * effective priority is unchanged, we just store the new
3996 * normal parameters and do not touch the scheduler class and
3997 * the runqueue. This will be done when the task deboost
4000 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4001 if (new_effective_prio == oldprio)
4002 queue_flags &= ~DEQUEUE_MOVE;
4005 queued = task_on_rq_queued(p);
4006 running = task_current(rq, p);
4008 dequeue_task(rq, p, queue_flags);
4010 put_prev_task(rq, p);
4012 prev_class = p->sched_class;
4013 __setscheduler(rq, p, attr, pi);
4016 p->sched_class->set_curr_task(rq);
4019 * We enqueue to tail when the priority of a task is
4020 * increased (user space view).
4022 if (oldprio < p->prio)
4023 queue_flags |= ENQUEUE_HEAD;
4025 enqueue_task(rq, p, queue_flags);
4028 check_class_changed(rq, p, prev_class, oldprio);
4029 preempt_disable(); /* avoid rq from going away on us */
4030 task_rq_unlock(rq, p, &flags);
4033 rt_mutex_adjust_pi(p);
4036 * Run balance callbacks after we've adjusted the PI chain.
4038 balance_callback(rq);
4044 static int _sched_setscheduler(struct task_struct *p, int policy,
4045 const struct sched_param *param, bool check)
4047 struct sched_attr attr = {
4048 .sched_policy = policy,
4049 .sched_priority = param->sched_priority,
4050 .sched_nice = PRIO_TO_NICE(p->static_prio),
4053 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4054 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4055 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4056 policy &= ~SCHED_RESET_ON_FORK;
4057 attr.sched_policy = policy;
4060 return __sched_setscheduler(p, &attr, check, true);
4063 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4064 * @p: the task in question.
4065 * @policy: new policy.
4066 * @param: structure containing the new RT priority.
4068 * Return: 0 on success. An error code otherwise.
4070 * NOTE that the task may be already dead.
4072 int sched_setscheduler(struct task_struct *p, int policy,
4073 const struct sched_param *param)
4075 return _sched_setscheduler(p, policy, param, true);
4077 EXPORT_SYMBOL_GPL(sched_setscheduler);
4079 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4081 return __sched_setscheduler(p, attr, true, true);
4083 EXPORT_SYMBOL_GPL(sched_setattr);
4086 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4087 * @p: the task in question.
4088 * @policy: new policy.
4089 * @param: structure containing the new RT priority.
4091 * Just like sched_setscheduler, only don't bother checking if the
4092 * current context has permission. For example, this is needed in
4093 * stop_machine(): we create temporary high priority worker threads,
4094 * but our caller might not have that capability.
4096 * Return: 0 on success. An error code otherwise.
4098 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4099 const struct sched_param *param)
4101 return _sched_setscheduler(p, policy, param, false);
4103 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4106 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4108 struct sched_param lparam;
4109 struct task_struct *p;
4112 if (!param || pid < 0)
4114 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4119 p = find_process_by_pid(pid);
4121 retval = sched_setscheduler(p, policy, &lparam);
4128 * Mimics kernel/events/core.c perf_copy_attr().
4130 static int sched_copy_attr(struct sched_attr __user *uattr,
4131 struct sched_attr *attr)
4136 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4140 * zero the full structure, so that a short copy will be nice.
4142 memset(attr, 0, sizeof(*attr));
4144 ret = get_user(size, &uattr->size);
4148 if (size > PAGE_SIZE) /* silly large */
4151 if (!size) /* abi compat */
4152 size = SCHED_ATTR_SIZE_VER0;
4154 if (size < SCHED_ATTR_SIZE_VER0)
4158 * If we're handed a bigger struct than we know of,
4159 * ensure all the unknown bits are 0 - i.e. new
4160 * user-space does not rely on any kernel feature
4161 * extensions we dont know about yet.
4163 if (size > sizeof(*attr)) {
4164 unsigned char __user *addr;
4165 unsigned char __user *end;
4168 addr = (void __user *)uattr + sizeof(*attr);
4169 end = (void __user *)uattr + size;
4171 for (; addr < end; addr++) {
4172 ret = get_user(val, addr);
4178 size = sizeof(*attr);
4181 ret = copy_from_user(attr, uattr, size);
4186 * XXX: do we want to be lenient like existing syscalls; or do we want
4187 * to be strict and return an error on out-of-bounds values?
4189 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4194 put_user(sizeof(*attr), &uattr->size);
4199 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4200 * @pid: the pid in question.
4201 * @policy: new policy.
4202 * @param: structure containing the new RT priority.
4204 * Return: 0 on success. An error code otherwise.
4206 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4207 struct sched_param __user *, param)
4209 /* negative values for policy are not valid */
4213 return do_sched_setscheduler(pid, policy, param);
4217 * sys_sched_setparam - set/change the RT priority of a thread
4218 * @pid: the pid in question.
4219 * @param: structure containing the new RT priority.
4221 * Return: 0 on success. An error code otherwise.
4223 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4225 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4229 * sys_sched_setattr - same as above, but with extended sched_attr
4230 * @pid: the pid in question.
4231 * @uattr: structure containing the extended parameters.
4232 * @flags: for future extension.
4234 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4235 unsigned int, flags)
4237 struct sched_attr attr;
4238 struct task_struct *p;
4241 if (!uattr || pid < 0 || flags)
4244 retval = sched_copy_attr(uattr, &attr);
4248 if ((int)attr.sched_policy < 0)
4253 p = find_process_by_pid(pid);
4255 retval = sched_setattr(p, &attr);
4262 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4263 * @pid: the pid in question.
4265 * Return: On success, the policy of the thread. Otherwise, a negative error
4268 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4270 struct task_struct *p;
4278 p = find_process_by_pid(pid);
4280 retval = security_task_getscheduler(p);
4283 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4290 * sys_sched_getparam - get the RT priority of a thread
4291 * @pid: the pid in question.
4292 * @param: structure containing the RT priority.
4294 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4297 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4299 struct sched_param lp = { .sched_priority = 0 };
4300 struct task_struct *p;
4303 if (!param || pid < 0)
4307 p = find_process_by_pid(pid);
4312 retval = security_task_getscheduler(p);
4316 if (task_has_rt_policy(p))
4317 lp.sched_priority = p->rt_priority;
4321 * This one might sleep, we cannot do it with a spinlock held ...
4323 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4332 static int sched_read_attr(struct sched_attr __user *uattr,
4333 struct sched_attr *attr,
4338 if (!access_ok(VERIFY_WRITE, uattr, usize))
4342 * If we're handed a smaller struct than we know of,
4343 * ensure all the unknown bits are 0 - i.e. old
4344 * user-space does not get uncomplete information.
4346 if (usize < sizeof(*attr)) {
4347 unsigned char *addr;
4350 addr = (void *)attr + usize;
4351 end = (void *)attr + sizeof(*attr);
4353 for (; addr < end; addr++) {
4361 ret = copy_to_user(uattr, attr, attr->size);
4369 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4370 * @pid: the pid in question.
4371 * @uattr: structure containing the extended parameters.
4372 * @size: sizeof(attr) for fwd/bwd comp.
4373 * @flags: for future extension.
4375 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4376 unsigned int, size, unsigned int, flags)
4378 struct sched_attr attr = {
4379 .size = sizeof(struct sched_attr),
4381 struct task_struct *p;
4384 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4385 size < SCHED_ATTR_SIZE_VER0 || flags)
4389 p = find_process_by_pid(pid);
4394 retval = security_task_getscheduler(p);
4398 attr.sched_policy = p->policy;
4399 if (p->sched_reset_on_fork)
4400 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4401 if (task_has_dl_policy(p))
4402 __getparam_dl(p, &attr);
4403 else if (task_has_rt_policy(p))
4404 attr.sched_priority = p->rt_priority;
4406 attr.sched_nice = task_nice(p);
4410 retval = sched_read_attr(uattr, &attr, size);
4418 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4420 cpumask_var_t cpus_allowed, new_mask;
4421 struct task_struct *p;
4426 p = find_process_by_pid(pid);
4432 /* Prevent p going away */
4436 if (p->flags & PF_NO_SETAFFINITY) {
4440 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4444 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4446 goto out_free_cpus_allowed;
4449 if (!check_same_owner(p)) {
4451 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4453 goto out_free_new_mask;
4458 retval = security_task_setscheduler(p);
4460 goto out_free_new_mask;
4463 cpuset_cpus_allowed(p, cpus_allowed);
4464 cpumask_and(new_mask, in_mask, cpus_allowed);
4467 * Since bandwidth control happens on root_domain basis,
4468 * if admission test is enabled, we only admit -deadline
4469 * tasks allowed to run on all the CPUs in the task's
4473 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4475 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4478 goto out_free_new_mask;
4484 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4487 cpuset_cpus_allowed(p, cpus_allowed);
4488 if (!cpumask_subset(new_mask, cpus_allowed)) {
4490 * We must have raced with a concurrent cpuset
4491 * update. Just reset the cpus_allowed to the
4492 * cpuset's cpus_allowed
4494 cpumask_copy(new_mask, cpus_allowed);
4499 free_cpumask_var(new_mask);
4500 out_free_cpus_allowed:
4501 free_cpumask_var(cpus_allowed);
4507 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4508 struct cpumask *new_mask)
4510 if (len < cpumask_size())
4511 cpumask_clear(new_mask);
4512 else if (len > cpumask_size())
4513 len = cpumask_size();
4515 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4519 * sys_sched_setaffinity - set the cpu affinity of a process
4520 * @pid: pid of the process
4521 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4522 * @user_mask_ptr: user-space pointer to the new cpu mask
4524 * Return: 0 on success. An error code otherwise.
4526 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4527 unsigned long __user *, user_mask_ptr)
4529 cpumask_var_t new_mask;
4532 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4535 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4537 retval = sched_setaffinity(pid, new_mask);
4538 free_cpumask_var(new_mask);
4542 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4544 struct task_struct *p;
4545 unsigned long flags;
4551 p = find_process_by_pid(pid);
4555 retval = security_task_getscheduler(p);
4559 raw_spin_lock_irqsave(&p->pi_lock, flags);
4560 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4561 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4570 * sys_sched_getaffinity - get the cpu affinity of a process
4571 * @pid: pid of the process
4572 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4573 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4575 * Return: 0 on success. An error code otherwise.
4577 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4578 unsigned long __user *, user_mask_ptr)
4583 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4585 if (len & (sizeof(unsigned long)-1))
4588 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4591 ret = sched_getaffinity(pid, mask);
4593 size_t retlen = min_t(size_t, len, cpumask_size());
4595 if (copy_to_user(user_mask_ptr, mask, retlen))
4600 free_cpumask_var(mask);
4606 * sys_sched_yield - yield the current processor to other threads.
4608 * This function yields the current CPU to other tasks. If there are no
4609 * other threads running on this CPU then this function will return.
4613 SYSCALL_DEFINE0(sched_yield)
4615 struct rq *rq = this_rq_lock();
4617 schedstat_inc(rq, yld_count);
4618 current->sched_class->yield_task(rq);
4621 * Since we are going to call schedule() anyway, there's
4622 * no need to preempt or enable interrupts:
4624 __release(rq->lock);
4625 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4626 do_raw_spin_unlock(&rq->lock);
4627 sched_preempt_enable_no_resched();
4634 int __sched _cond_resched(void)
4636 if (should_resched(0)) {
4637 preempt_schedule_common();
4642 EXPORT_SYMBOL(_cond_resched);
4645 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4646 * call schedule, and on return reacquire the lock.
4648 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4649 * operations here to prevent schedule() from being called twice (once via
4650 * spin_unlock(), once by hand).
4652 int __cond_resched_lock(spinlock_t *lock)
4654 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4657 lockdep_assert_held(lock);
4659 if (spin_needbreak(lock) || resched) {
4662 preempt_schedule_common();
4670 EXPORT_SYMBOL(__cond_resched_lock);
4672 int __sched __cond_resched_softirq(void)
4674 BUG_ON(!in_softirq());
4676 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4678 preempt_schedule_common();
4684 EXPORT_SYMBOL(__cond_resched_softirq);
4687 * yield - yield the current processor to other threads.
4689 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4691 * The scheduler is at all times free to pick the calling task as the most
4692 * eligible task to run, if removing the yield() call from your code breaks
4693 * it, its already broken.
4695 * Typical broken usage is:
4700 * where one assumes that yield() will let 'the other' process run that will
4701 * make event true. If the current task is a SCHED_FIFO task that will never
4702 * happen. Never use yield() as a progress guarantee!!
4704 * If you want to use yield() to wait for something, use wait_event().
4705 * If you want to use yield() to be 'nice' for others, use cond_resched().
4706 * If you still want to use yield(), do not!
4708 void __sched yield(void)
4710 set_current_state(TASK_RUNNING);
4713 EXPORT_SYMBOL(yield);
4716 * yield_to - yield the current processor to another thread in
4717 * your thread group, or accelerate that thread toward the
4718 * processor it's on.
4720 * @preempt: whether task preemption is allowed or not
4722 * It's the caller's job to ensure that the target task struct
4723 * can't go away on us before we can do any checks.
4726 * true (>0) if we indeed boosted the target task.
4727 * false (0) if we failed to boost the target.
4728 * -ESRCH if there's no task to yield to.
4730 int __sched yield_to(struct task_struct *p, bool preempt)
4732 struct task_struct *curr = current;
4733 struct rq *rq, *p_rq;
4734 unsigned long flags;
4737 local_irq_save(flags);
4743 * If we're the only runnable task on the rq and target rq also
4744 * has only one task, there's absolutely no point in yielding.
4746 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4751 double_rq_lock(rq, p_rq);
4752 if (task_rq(p) != p_rq) {
4753 double_rq_unlock(rq, p_rq);
4757 if (!curr->sched_class->yield_to_task)
4760 if (curr->sched_class != p->sched_class)
4763 if (task_running(p_rq, p) || p->state)
4766 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4768 schedstat_inc(rq, yld_count);
4770 * Make p's CPU reschedule; pick_next_entity takes care of
4773 if (preempt && rq != p_rq)
4778 double_rq_unlock(rq, p_rq);
4780 local_irq_restore(flags);
4787 EXPORT_SYMBOL_GPL(yield_to);
4790 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4791 * that process accounting knows that this is a task in IO wait state.
4793 long __sched io_schedule_timeout(long timeout)
4795 int old_iowait = current->in_iowait;
4799 current->in_iowait = 1;
4800 blk_schedule_flush_plug(current);
4802 delayacct_blkio_start();
4804 atomic_inc(&rq->nr_iowait);
4805 ret = schedule_timeout(timeout);
4806 current->in_iowait = old_iowait;
4807 atomic_dec(&rq->nr_iowait);
4808 delayacct_blkio_end();
4812 EXPORT_SYMBOL(io_schedule_timeout);
4815 * sys_sched_get_priority_max - return maximum RT priority.
4816 * @policy: scheduling class.
4818 * Return: On success, this syscall returns the maximum
4819 * rt_priority that can be used by a given scheduling class.
4820 * On failure, a negative error code is returned.
4822 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4829 ret = MAX_USER_RT_PRIO-1;
4831 case SCHED_DEADLINE:
4842 * sys_sched_get_priority_min - return minimum RT priority.
4843 * @policy: scheduling class.
4845 * Return: On success, this syscall returns the minimum
4846 * rt_priority that can be used by a given scheduling class.
4847 * On failure, a negative error code is returned.
4849 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4858 case SCHED_DEADLINE:
4868 * sys_sched_rr_get_interval - return the default timeslice of a process.
4869 * @pid: pid of the process.
4870 * @interval: userspace pointer to the timeslice value.
4872 * this syscall writes the default timeslice value of a given process
4873 * into the user-space timespec buffer. A value of '0' means infinity.
4875 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4878 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4879 struct timespec __user *, interval)
4881 struct task_struct *p;
4882 unsigned int time_slice;
4883 unsigned long flags;
4893 p = find_process_by_pid(pid);
4897 retval = security_task_getscheduler(p);
4901 rq = task_rq_lock(p, &flags);
4903 if (p->sched_class->get_rr_interval)
4904 time_slice = p->sched_class->get_rr_interval(rq, p);
4905 task_rq_unlock(rq, p, &flags);
4908 jiffies_to_timespec(time_slice, &t);
4909 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4917 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4919 void sched_show_task(struct task_struct *p)
4921 unsigned long free = 0;
4923 unsigned long state = p->state;
4926 state = __ffs(state) + 1;
4927 printk(KERN_INFO "%-15.15s %c", p->comm,
4928 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4929 #if BITS_PER_LONG == 32
4930 if (state == TASK_RUNNING)
4931 printk(KERN_CONT " running ");
4933 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4935 if (state == TASK_RUNNING)
4936 printk(KERN_CONT " running task ");
4938 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4940 #ifdef CONFIG_DEBUG_STACK_USAGE
4941 free = stack_not_used(p);
4946 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4948 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4949 task_pid_nr(p), ppid,
4950 (unsigned long)task_thread_info(p)->flags);
4952 print_worker_info(KERN_INFO, p);
4953 show_stack(p, NULL);
4956 void show_state_filter(unsigned long state_filter)
4958 struct task_struct *g, *p;
4960 #if BITS_PER_LONG == 32
4962 " task PC stack pid father\n");
4965 " task PC stack pid father\n");
4968 for_each_process_thread(g, p) {
4970 * reset the NMI-timeout, listing all files on a slow
4971 * console might take a lot of time:
4973 touch_nmi_watchdog();
4974 if (!state_filter || (p->state & state_filter))
4978 touch_all_softlockup_watchdogs();
4980 #ifdef CONFIG_SCHED_DEBUG
4981 sysrq_sched_debug_show();
4985 * Only show locks if all tasks are dumped:
4988 debug_show_all_locks();
4991 void init_idle_bootup_task(struct task_struct *idle)
4993 idle->sched_class = &idle_sched_class;
4997 * init_idle - set up an idle thread for a given CPU
4998 * @idle: task in question
4999 * @cpu: cpu the idle task belongs to
5001 * NOTE: this function does not set the idle thread's NEED_RESCHED
5002 * flag, to make booting more robust.
5004 void init_idle(struct task_struct *idle, int cpu)
5006 struct rq *rq = cpu_rq(cpu);
5007 unsigned long flags;
5009 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5010 raw_spin_lock(&rq->lock);
5012 __sched_fork(0, idle);
5013 idle->state = TASK_RUNNING;
5014 idle->se.exec_start = sched_clock();
5016 kasan_unpoison_task_stack(idle);
5020 * Its possible that init_idle() gets called multiple times on a task,
5021 * in that case do_set_cpus_allowed() will not do the right thing.
5023 * And since this is boot we can forgo the serialization.
5025 set_cpus_allowed_common(idle, cpumask_of(cpu));
5028 * We're having a chicken and egg problem, even though we are
5029 * holding rq->lock, the cpu isn't yet set to this cpu so the
5030 * lockdep check in task_group() will fail.
5032 * Similar case to sched_fork(). / Alternatively we could
5033 * use task_rq_lock() here and obtain the other rq->lock.
5038 __set_task_cpu(idle, cpu);
5041 rq->curr = rq->idle = idle;
5042 idle->on_rq = TASK_ON_RQ_QUEUED;
5046 raw_spin_unlock(&rq->lock);
5047 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5049 /* Set the preempt count _outside_ the spinlocks! */
5050 init_idle_preempt_count(idle, cpu);
5053 * The idle tasks have their own, simple scheduling class:
5055 idle->sched_class = &idle_sched_class;
5056 ftrace_graph_init_idle_task(idle, cpu);
5057 vtime_init_idle(idle, cpu);
5059 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5063 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5064 const struct cpumask *trial)
5066 int ret = 1, trial_cpus;
5067 struct dl_bw *cur_dl_b;
5068 unsigned long flags;
5070 if (!cpumask_weight(cur))
5073 rcu_read_lock_sched();
5074 cur_dl_b = dl_bw_of(cpumask_any(cur));
5075 trial_cpus = cpumask_weight(trial);
5077 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5078 if (cur_dl_b->bw != -1 &&
5079 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5081 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5082 rcu_read_unlock_sched();
5087 int task_can_attach(struct task_struct *p,
5088 const struct cpumask *cs_cpus_allowed)
5093 * Kthreads which disallow setaffinity shouldn't be moved
5094 * to a new cpuset; we don't want to change their cpu
5095 * affinity and isolating such threads by their set of
5096 * allowed nodes is unnecessary. Thus, cpusets are not
5097 * applicable for such threads. This prevents checking for
5098 * success of set_cpus_allowed_ptr() on all attached tasks
5099 * before cpus_allowed may be changed.
5101 if (p->flags & PF_NO_SETAFFINITY) {
5107 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5109 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5114 unsigned long flags;
5116 rcu_read_lock_sched();
5117 dl_b = dl_bw_of(dest_cpu);
5118 raw_spin_lock_irqsave(&dl_b->lock, flags);
5119 cpus = dl_bw_cpus(dest_cpu);
5120 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5125 * We reserve space for this task in the destination
5126 * root_domain, as we can't fail after this point.
5127 * We will free resources in the source root_domain
5128 * later on (see set_cpus_allowed_dl()).
5130 __dl_add(dl_b, p->dl.dl_bw);
5132 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5133 rcu_read_unlock_sched();
5143 #ifdef CONFIG_NUMA_BALANCING
5144 /* Migrate current task p to target_cpu */
5145 int migrate_task_to(struct task_struct *p, int target_cpu)
5147 struct migration_arg arg = { p, target_cpu };
5148 int curr_cpu = task_cpu(p);
5150 if (curr_cpu == target_cpu)
5153 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5156 /* TODO: This is not properly updating schedstats */
5158 trace_sched_move_numa(p, curr_cpu, target_cpu);
5159 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5163 * Requeue a task on a given node and accurately track the number of NUMA
5164 * tasks on the runqueues
5166 void sched_setnuma(struct task_struct *p, int nid)
5169 unsigned long flags;
5170 bool queued, running;
5172 rq = task_rq_lock(p, &flags);
5173 queued = task_on_rq_queued(p);
5174 running = task_current(rq, p);
5177 dequeue_task(rq, p, DEQUEUE_SAVE);
5179 put_prev_task(rq, p);
5181 p->numa_preferred_nid = nid;
5184 p->sched_class->set_curr_task(rq);
5186 enqueue_task(rq, p, ENQUEUE_RESTORE);
5187 task_rq_unlock(rq, p, &flags);
5189 #endif /* CONFIG_NUMA_BALANCING */
5191 #ifdef CONFIG_HOTPLUG_CPU
5193 * Ensures that the idle task is using init_mm right before its cpu goes
5196 void idle_task_exit(void)
5198 struct mm_struct *mm = current->active_mm;
5200 BUG_ON(cpu_online(smp_processor_id()));
5202 if (mm != &init_mm) {
5203 switch_mm(mm, &init_mm, current);
5204 finish_arch_post_lock_switch();
5210 * Since this CPU is going 'away' for a while, fold any nr_active delta
5211 * we might have. Assumes we're called after migrate_tasks() so that the
5212 * nr_active count is stable.
5214 * Also see the comment "Global load-average calculations".
5216 static void calc_load_migrate(struct rq *rq)
5218 long delta = calc_load_fold_active(rq);
5220 atomic_long_add(delta, &calc_load_tasks);
5223 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5227 static const struct sched_class fake_sched_class = {
5228 .put_prev_task = put_prev_task_fake,
5231 static struct task_struct fake_task = {
5233 * Avoid pull_{rt,dl}_task()
5235 .prio = MAX_PRIO + 1,
5236 .sched_class = &fake_sched_class,
5240 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5241 * try_to_wake_up()->select_task_rq().
5243 * Called with rq->lock held even though we'er in stop_machine() and
5244 * there's no concurrency possible, we hold the required locks anyway
5245 * because of lock validation efforts.
5247 static void migrate_tasks(struct rq *dead_rq)
5249 struct rq *rq = dead_rq;
5250 struct task_struct *next, *stop = rq->stop;
5254 * Fudge the rq selection such that the below task selection loop
5255 * doesn't get stuck on the currently eligible stop task.
5257 * We're currently inside stop_machine() and the rq is either stuck
5258 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5259 * either way we should never end up calling schedule() until we're
5265 * put_prev_task() and pick_next_task() sched
5266 * class method both need to have an up-to-date
5267 * value of rq->clock[_task]
5269 update_rq_clock(rq);
5273 * There's this thread running, bail when that's the only
5276 if (rq->nr_running == 1)
5280 * pick_next_task assumes pinned rq->lock.
5282 lockdep_pin_lock(&rq->lock);
5283 next = pick_next_task(rq, &fake_task);
5285 next->sched_class->put_prev_task(rq, next);
5288 * Rules for changing task_struct::cpus_allowed are holding
5289 * both pi_lock and rq->lock, such that holding either
5290 * stabilizes the mask.
5292 * Drop rq->lock is not quite as disastrous as it usually is
5293 * because !cpu_active at this point, which means load-balance
5294 * will not interfere. Also, stop-machine.
5296 lockdep_unpin_lock(&rq->lock);
5297 raw_spin_unlock(&rq->lock);
5298 raw_spin_lock(&next->pi_lock);
5299 raw_spin_lock(&rq->lock);
5302 * Since we're inside stop-machine, _nothing_ should have
5303 * changed the task, WARN if weird stuff happened, because in
5304 * that case the above rq->lock drop is a fail too.
5306 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5307 raw_spin_unlock(&next->pi_lock);
5311 /* Find suitable destination for @next, with force if needed. */
5312 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5314 rq = __migrate_task(rq, next, dest_cpu);
5315 if (rq != dead_rq) {
5316 raw_spin_unlock(&rq->lock);
5318 raw_spin_lock(&rq->lock);
5320 raw_spin_unlock(&next->pi_lock);
5325 #endif /* CONFIG_HOTPLUG_CPU */
5327 static void set_rq_online(struct rq *rq)
5330 const struct sched_class *class;
5332 cpumask_set_cpu(rq->cpu, rq->rd->online);
5335 for_each_class(class) {
5336 if (class->rq_online)
5337 class->rq_online(rq);
5342 static void set_rq_offline(struct rq *rq)
5345 const struct sched_class *class;
5347 for_each_class(class) {
5348 if (class->rq_offline)
5349 class->rq_offline(rq);
5352 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5358 * migration_call - callback that gets triggered when a CPU is added.
5359 * Here we can start up the necessary migration thread for the new CPU.
5362 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5364 int cpu = (long)hcpu;
5365 unsigned long flags;
5366 struct rq *rq = cpu_rq(cpu);
5368 switch (action & ~CPU_TASKS_FROZEN) {
5370 case CPU_UP_PREPARE:
5371 rq->calc_load_update = calc_load_update;
5375 /* Update our root-domain */
5376 raw_spin_lock_irqsave(&rq->lock, flags);
5378 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5382 raw_spin_unlock_irqrestore(&rq->lock, flags);
5385 #ifdef CONFIG_HOTPLUG_CPU
5387 sched_ttwu_pending();
5388 /* Update our root-domain */
5389 raw_spin_lock_irqsave(&rq->lock, flags);
5391 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5395 BUG_ON(rq->nr_running != 1); /* the migration thread */
5396 raw_spin_unlock_irqrestore(&rq->lock, flags);
5400 calc_load_migrate(rq);
5405 update_max_interval();
5411 * Register at high priority so that task migration (migrate_all_tasks)
5412 * happens before everything else. This has to be lower priority than
5413 * the notifier in the perf_event subsystem, though.
5415 static struct notifier_block migration_notifier = {
5416 .notifier_call = migration_call,
5417 .priority = CPU_PRI_MIGRATION,
5420 static void set_cpu_rq_start_time(void)
5422 int cpu = smp_processor_id();
5423 struct rq *rq = cpu_rq(cpu);
5424 rq->age_stamp = sched_clock_cpu(cpu);
5427 static int sched_cpu_active(struct notifier_block *nfb,
5428 unsigned long action, void *hcpu)
5430 int cpu = (long)hcpu;
5432 switch (action & ~CPU_TASKS_FROZEN) {
5434 set_cpu_rq_start_time();
5437 case CPU_DOWN_FAILED:
5438 set_cpu_active(cpu, true);
5446 static int sched_cpu_inactive(struct notifier_block *nfb,
5447 unsigned long action, void *hcpu)
5449 switch (action & ~CPU_TASKS_FROZEN) {
5450 case CPU_DOWN_PREPARE:
5451 set_cpu_active((long)hcpu, false);
5458 static int __init migration_init(void)
5460 void *cpu = (void *)(long)smp_processor_id();
5463 /* Initialize migration for the boot CPU */
5464 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5465 BUG_ON(err == NOTIFY_BAD);
5466 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5467 register_cpu_notifier(&migration_notifier);
5469 /* Register cpu active notifiers */
5470 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5471 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5475 early_initcall(migration_init);
5477 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5479 #ifdef CONFIG_SCHED_DEBUG
5481 static __read_mostly int sched_debug_enabled;
5483 static int __init sched_debug_setup(char *str)
5485 sched_debug_enabled = 1;
5489 early_param("sched_debug", sched_debug_setup);
5491 static inline bool sched_debug(void)
5493 return sched_debug_enabled;
5496 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5497 struct cpumask *groupmask)
5499 struct sched_group *group = sd->groups;
5501 cpumask_clear(groupmask);
5503 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5505 if (!(sd->flags & SD_LOAD_BALANCE)) {
5506 printk("does not load-balance\n");
5508 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5513 printk(KERN_CONT "span %*pbl level %s\n",
5514 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5516 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5517 printk(KERN_ERR "ERROR: domain->span does not contain "
5520 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5521 printk(KERN_ERR "ERROR: domain->groups does not contain"
5525 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5529 printk(KERN_ERR "ERROR: group is NULL\n");
5533 if (!cpumask_weight(sched_group_cpus(group))) {
5534 printk(KERN_CONT "\n");
5535 printk(KERN_ERR "ERROR: empty group\n");
5539 if (!(sd->flags & SD_OVERLAP) &&
5540 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5541 printk(KERN_CONT "\n");
5542 printk(KERN_ERR "ERROR: repeated CPUs\n");
5546 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5548 printk(KERN_CONT " %*pbl",
5549 cpumask_pr_args(sched_group_cpus(group)));
5550 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5551 printk(KERN_CONT " (cpu_capacity = %d)",
5552 group->sgc->capacity);
5555 group = group->next;
5556 } while (group != sd->groups);
5557 printk(KERN_CONT "\n");
5559 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5560 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5563 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5564 printk(KERN_ERR "ERROR: parent span is not a superset "
5565 "of domain->span\n");
5569 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5573 if (!sched_debug_enabled)
5577 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5581 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5584 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5592 #else /* !CONFIG_SCHED_DEBUG */
5593 # define sched_domain_debug(sd, cpu) do { } while (0)
5594 static inline bool sched_debug(void)
5598 #endif /* CONFIG_SCHED_DEBUG */
5600 static int sd_degenerate(struct sched_domain *sd)
5602 if (cpumask_weight(sched_domain_span(sd)) == 1)
5605 /* Following flags need at least 2 groups */
5606 if (sd->flags & (SD_LOAD_BALANCE |
5607 SD_BALANCE_NEWIDLE |
5610 SD_SHARE_CPUCAPACITY |
5611 SD_SHARE_PKG_RESOURCES |
5612 SD_SHARE_POWERDOMAIN)) {
5613 if (sd->groups != sd->groups->next)
5617 /* Following flags don't use groups */
5618 if (sd->flags & (SD_WAKE_AFFINE))
5625 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5627 unsigned long cflags = sd->flags, pflags = parent->flags;
5629 if (sd_degenerate(parent))
5632 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5635 /* Flags needing groups don't count if only 1 group in parent */
5636 if (parent->groups == parent->groups->next) {
5637 pflags &= ~(SD_LOAD_BALANCE |
5638 SD_BALANCE_NEWIDLE |
5641 SD_SHARE_CPUCAPACITY |
5642 SD_SHARE_PKG_RESOURCES |
5644 SD_SHARE_POWERDOMAIN);
5645 if (nr_node_ids == 1)
5646 pflags &= ~SD_SERIALIZE;
5648 if (~cflags & pflags)
5654 static void free_rootdomain(struct rcu_head *rcu)
5656 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5658 cpupri_cleanup(&rd->cpupri);
5659 cpudl_cleanup(&rd->cpudl);
5660 free_cpumask_var(rd->dlo_mask);
5661 free_cpumask_var(rd->rto_mask);
5662 free_cpumask_var(rd->online);
5663 free_cpumask_var(rd->span);
5667 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5669 struct root_domain *old_rd = NULL;
5670 unsigned long flags;
5672 raw_spin_lock_irqsave(&rq->lock, flags);
5677 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5680 cpumask_clear_cpu(rq->cpu, old_rd->span);
5683 * If we dont want to free the old_rd yet then
5684 * set old_rd to NULL to skip the freeing later
5687 if (!atomic_dec_and_test(&old_rd->refcount))
5691 atomic_inc(&rd->refcount);
5694 cpumask_set_cpu(rq->cpu, rd->span);
5695 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5698 raw_spin_unlock_irqrestore(&rq->lock, flags);
5701 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5704 static int init_rootdomain(struct root_domain *rd)
5706 memset(rd, 0, sizeof(*rd));
5708 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5710 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5712 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5714 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5717 init_dl_bw(&rd->dl_bw);
5718 if (cpudl_init(&rd->cpudl) != 0)
5721 if (cpupri_init(&rd->cpupri) != 0)
5726 free_cpumask_var(rd->rto_mask);
5728 free_cpumask_var(rd->dlo_mask);
5730 free_cpumask_var(rd->online);
5732 free_cpumask_var(rd->span);
5738 * By default the system creates a single root-domain with all cpus as
5739 * members (mimicking the global state we have today).
5741 struct root_domain def_root_domain;
5743 static void init_defrootdomain(void)
5745 init_rootdomain(&def_root_domain);
5747 atomic_set(&def_root_domain.refcount, 1);
5750 static struct root_domain *alloc_rootdomain(void)
5752 struct root_domain *rd;
5754 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5758 if (init_rootdomain(rd) != 0) {
5766 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5768 struct sched_group *tmp, *first;
5777 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5782 } while (sg != first);
5785 static void free_sched_domain(struct rcu_head *rcu)
5787 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5790 * If its an overlapping domain it has private groups, iterate and
5793 if (sd->flags & SD_OVERLAP) {
5794 free_sched_groups(sd->groups, 1);
5795 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5796 kfree(sd->groups->sgc);
5802 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5804 call_rcu(&sd->rcu, free_sched_domain);
5807 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5809 for (; sd; sd = sd->parent)
5810 destroy_sched_domain(sd, cpu);
5814 * Keep a special pointer to the highest sched_domain that has
5815 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5816 * allows us to avoid some pointer chasing select_idle_sibling().
5818 * Also keep a unique ID per domain (we use the first cpu number in
5819 * the cpumask of the domain), this allows us to quickly tell if
5820 * two cpus are in the same cache domain, see cpus_share_cache().
5822 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5823 DEFINE_PER_CPU(int, sd_llc_size);
5824 DEFINE_PER_CPU(int, sd_llc_id);
5825 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5826 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5827 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5829 static void update_top_cache_domain(int cpu)
5831 struct sched_domain *sd;
5832 struct sched_domain *busy_sd = NULL;
5836 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5838 id = cpumask_first(sched_domain_span(sd));
5839 size = cpumask_weight(sched_domain_span(sd));
5840 busy_sd = sd->parent; /* sd_busy */
5842 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5844 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5845 per_cpu(sd_llc_size, cpu) = size;
5846 per_cpu(sd_llc_id, cpu) = id;
5848 sd = lowest_flag_domain(cpu, SD_NUMA);
5849 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5851 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5852 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5856 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5857 * hold the hotplug lock.
5860 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5862 struct rq *rq = cpu_rq(cpu);
5863 struct sched_domain *tmp;
5865 /* Remove the sched domains which do not contribute to scheduling. */
5866 for (tmp = sd; tmp; ) {
5867 struct sched_domain *parent = tmp->parent;
5871 if (sd_parent_degenerate(tmp, parent)) {
5872 tmp->parent = parent->parent;
5874 parent->parent->child = tmp;
5876 * Transfer SD_PREFER_SIBLING down in case of a
5877 * degenerate parent; the spans match for this
5878 * so the property transfers.
5880 if (parent->flags & SD_PREFER_SIBLING)
5881 tmp->flags |= SD_PREFER_SIBLING;
5882 destroy_sched_domain(parent, cpu);
5887 if (sd && sd_degenerate(sd)) {
5890 destroy_sched_domain(tmp, cpu);
5895 sched_domain_debug(sd, cpu);
5897 rq_attach_root(rq, rd);
5899 rcu_assign_pointer(rq->sd, sd);
5900 destroy_sched_domains(tmp, cpu);
5902 update_top_cache_domain(cpu);
5905 /* Setup the mask of cpus configured for isolated domains */
5906 static int __init isolated_cpu_setup(char *str)
5910 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5911 ret = cpulist_parse(str, cpu_isolated_map);
5913 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5918 __setup("isolcpus=", isolated_cpu_setup);
5921 struct sched_domain ** __percpu sd;
5922 struct root_domain *rd;
5933 * Build an iteration mask that can exclude certain CPUs from the upwards
5936 * Asymmetric node setups can result in situations where the domain tree is of
5937 * unequal depth, make sure to skip domains that already cover the entire
5940 * In that case build_sched_domains() will have terminated the iteration early
5941 * and our sibling sd spans will be empty. Domains should always include the
5942 * cpu they're built on, so check that.
5945 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5947 const struct cpumask *span = sched_domain_span(sd);
5948 struct sd_data *sdd = sd->private;
5949 struct sched_domain *sibling;
5952 for_each_cpu(i, span) {
5953 sibling = *per_cpu_ptr(sdd->sd, i);
5954 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5957 cpumask_set_cpu(i, sched_group_mask(sg));
5962 * Return the canonical balance cpu for this group, this is the first cpu
5963 * of this group that's also in the iteration mask.
5965 int group_balance_cpu(struct sched_group *sg)
5967 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5971 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5973 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5974 const struct cpumask *span = sched_domain_span(sd);
5975 struct cpumask *covered = sched_domains_tmpmask;
5976 struct sd_data *sdd = sd->private;
5977 struct sched_domain *sibling;
5980 cpumask_clear(covered);
5982 for_each_cpu(i, span) {
5983 struct cpumask *sg_span;
5985 if (cpumask_test_cpu(i, covered))
5988 sibling = *per_cpu_ptr(sdd->sd, i);
5990 /* See the comment near build_group_mask(). */
5991 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5994 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5995 GFP_KERNEL, cpu_to_node(cpu));
6000 sg_span = sched_group_cpus(sg);
6002 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6004 cpumask_set_cpu(i, sg_span);
6006 cpumask_or(covered, covered, sg_span);
6008 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6009 if (atomic_inc_return(&sg->sgc->ref) == 1)
6010 build_group_mask(sd, sg);
6013 * Initialize sgc->capacity such that even if we mess up the
6014 * domains and no possible iteration will get us here, we won't
6017 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6020 * Make sure the first group of this domain contains the
6021 * canonical balance cpu. Otherwise the sched_domain iteration
6022 * breaks. See update_sg_lb_stats().
6024 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6025 group_balance_cpu(sg) == cpu)
6035 sd->groups = groups;
6040 free_sched_groups(first, 0);
6045 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6047 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6048 struct sched_domain *child = sd->child;
6051 cpu = cpumask_first(sched_domain_span(child));
6054 *sg = *per_cpu_ptr(sdd->sg, cpu);
6055 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6056 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6063 * build_sched_groups will build a circular linked list of the groups
6064 * covered by the given span, and will set each group's ->cpumask correctly,
6065 * and ->cpu_capacity to 0.
6067 * Assumes the sched_domain tree is fully constructed
6070 build_sched_groups(struct sched_domain *sd, int cpu)
6072 struct sched_group *first = NULL, *last = NULL;
6073 struct sd_data *sdd = sd->private;
6074 const struct cpumask *span = sched_domain_span(sd);
6075 struct cpumask *covered;
6078 get_group(cpu, sdd, &sd->groups);
6079 atomic_inc(&sd->groups->ref);
6081 if (cpu != cpumask_first(span))
6084 lockdep_assert_held(&sched_domains_mutex);
6085 covered = sched_domains_tmpmask;
6087 cpumask_clear(covered);
6089 for_each_cpu(i, span) {
6090 struct sched_group *sg;
6093 if (cpumask_test_cpu(i, covered))
6096 group = get_group(i, sdd, &sg);
6097 cpumask_setall(sched_group_mask(sg));
6099 for_each_cpu(j, span) {
6100 if (get_group(j, sdd, NULL) != group)
6103 cpumask_set_cpu(j, covered);
6104 cpumask_set_cpu(j, sched_group_cpus(sg));
6119 * Initialize sched groups cpu_capacity.
6121 * cpu_capacity indicates the capacity of sched group, which is used while
6122 * distributing the load between different sched groups in a sched domain.
6123 * Typically cpu_capacity for all the groups in a sched domain will be same
6124 * unless there are asymmetries in the topology. If there are asymmetries,
6125 * group having more cpu_capacity will pickup more load compared to the
6126 * group having less cpu_capacity.
6128 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6130 struct sched_group *sg = sd->groups;
6135 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6137 } while (sg != sd->groups);
6139 if (cpu != group_balance_cpu(sg))
6142 update_group_capacity(sd, cpu);
6143 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6147 * Initializers for schedule domains
6148 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6151 static int default_relax_domain_level = -1;
6152 int sched_domain_level_max;
6154 static int __init setup_relax_domain_level(char *str)
6156 if (kstrtoint(str, 0, &default_relax_domain_level))
6157 pr_warn("Unable to set relax_domain_level\n");
6161 __setup("relax_domain_level=", setup_relax_domain_level);
6163 static void set_domain_attribute(struct sched_domain *sd,
6164 struct sched_domain_attr *attr)
6168 if (!attr || attr->relax_domain_level < 0) {
6169 if (default_relax_domain_level < 0)
6172 request = default_relax_domain_level;
6174 request = attr->relax_domain_level;
6175 if (request < sd->level) {
6176 /* turn off idle balance on this domain */
6177 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6179 /* turn on idle balance on this domain */
6180 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6184 static void __sdt_free(const struct cpumask *cpu_map);
6185 static int __sdt_alloc(const struct cpumask *cpu_map);
6187 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6188 const struct cpumask *cpu_map)
6192 if (!atomic_read(&d->rd->refcount))
6193 free_rootdomain(&d->rd->rcu); /* fall through */
6195 free_percpu(d->sd); /* fall through */
6197 __sdt_free(cpu_map); /* fall through */
6203 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6204 const struct cpumask *cpu_map)
6206 memset(d, 0, sizeof(*d));
6208 if (__sdt_alloc(cpu_map))
6209 return sa_sd_storage;
6210 d->sd = alloc_percpu(struct sched_domain *);
6212 return sa_sd_storage;
6213 d->rd = alloc_rootdomain();
6216 return sa_rootdomain;
6220 * NULL the sd_data elements we've used to build the sched_domain and
6221 * sched_group structure so that the subsequent __free_domain_allocs()
6222 * will not free the data we're using.
6224 static void claim_allocations(int cpu, struct sched_domain *sd)
6226 struct sd_data *sdd = sd->private;
6228 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6229 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6231 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6232 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6234 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6235 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6239 static int sched_domains_numa_levels;
6240 enum numa_topology_type sched_numa_topology_type;
6241 static int *sched_domains_numa_distance;
6242 int sched_max_numa_distance;
6243 static struct cpumask ***sched_domains_numa_masks;
6244 static int sched_domains_curr_level;
6248 * SD_flags allowed in topology descriptions.
6250 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6251 * SD_SHARE_PKG_RESOURCES - describes shared caches
6252 * SD_NUMA - describes NUMA topologies
6253 * SD_SHARE_POWERDOMAIN - describes shared power domain
6256 * SD_ASYM_PACKING - describes SMT quirks
6258 #define TOPOLOGY_SD_FLAGS \
6259 (SD_SHARE_CPUCAPACITY | \
6260 SD_SHARE_PKG_RESOURCES | \
6263 SD_SHARE_POWERDOMAIN)
6265 static struct sched_domain *
6266 sd_init(struct sched_domain_topology_level *tl, int cpu)
6268 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6269 int sd_weight, sd_flags = 0;
6273 * Ugly hack to pass state to sd_numa_mask()...
6275 sched_domains_curr_level = tl->numa_level;
6278 sd_weight = cpumask_weight(tl->mask(cpu));
6281 sd_flags = (*tl->sd_flags)();
6282 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6283 "wrong sd_flags in topology description\n"))
6284 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6286 *sd = (struct sched_domain){
6287 .min_interval = sd_weight,
6288 .max_interval = 2*sd_weight,
6290 .imbalance_pct = 125,
6292 .cache_nice_tries = 0,
6299 .flags = 1*SD_LOAD_BALANCE
6300 | 1*SD_BALANCE_NEWIDLE
6305 | 0*SD_SHARE_CPUCAPACITY
6306 | 0*SD_SHARE_PKG_RESOURCES
6308 | 0*SD_PREFER_SIBLING
6313 .last_balance = jiffies,
6314 .balance_interval = sd_weight,
6316 .max_newidle_lb_cost = 0,
6317 .next_decay_max_lb_cost = jiffies,
6318 #ifdef CONFIG_SCHED_DEBUG
6324 * Convert topological properties into behaviour.
6327 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6328 sd->flags |= SD_PREFER_SIBLING;
6329 sd->imbalance_pct = 110;
6330 sd->smt_gain = 1178; /* ~15% */
6332 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6333 sd->imbalance_pct = 117;
6334 sd->cache_nice_tries = 1;
6338 } else if (sd->flags & SD_NUMA) {
6339 sd->cache_nice_tries = 2;
6343 sd->flags |= SD_SERIALIZE;
6344 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6345 sd->flags &= ~(SD_BALANCE_EXEC |
6352 sd->flags |= SD_PREFER_SIBLING;
6353 sd->cache_nice_tries = 1;
6358 sd->private = &tl->data;
6364 * Topology list, bottom-up.
6366 static struct sched_domain_topology_level default_topology[] = {
6367 #ifdef CONFIG_SCHED_SMT
6368 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6370 #ifdef CONFIG_SCHED_MC
6371 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6373 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6377 static struct sched_domain_topology_level *sched_domain_topology =
6380 #define for_each_sd_topology(tl) \
6381 for (tl = sched_domain_topology; tl->mask; tl++)
6383 void set_sched_topology(struct sched_domain_topology_level *tl)
6385 sched_domain_topology = tl;
6390 static const struct cpumask *sd_numa_mask(int cpu)
6392 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6395 static void sched_numa_warn(const char *str)
6397 static int done = false;
6405 printk(KERN_WARNING "ERROR: %s\n\n", str);
6407 for (i = 0; i < nr_node_ids; i++) {
6408 printk(KERN_WARNING " ");
6409 for (j = 0; j < nr_node_ids; j++)
6410 printk(KERN_CONT "%02d ", node_distance(i,j));
6411 printk(KERN_CONT "\n");
6413 printk(KERN_WARNING "\n");
6416 bool find_numa_distance(int distance)
6420 if (distance == node_distance(0, 0))
6423 for (i = 0; i < sched_domains_numa_levels; i++) {
6424 if (sched_domains_numa_distance[i] == distance)
6432 * A system can have three types of NUMA topology:
6433 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6434 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6435 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6437 * The difference between a glueless mesh topology and a backplane
6438 * topology lies in whether communication between not directly
6439 * connected nodes goes through intermediary nodes (where programs
6440 * could run), or through backplane controllers. This affects
6441 * placement of programs.
6443 * The type of topology can be discerned with the following tests:
6444 * - If the maximum distance between any nodes is 1 hop, the system
6445 * is directly connected.
6446 * - If for two nodes A and B, located N > 1 hops away from each other,
6447 * there is an intermediary node C, which is < N hops away from both
6448 * nodes A and B, the system is a glueless mesh.
6450 static void init_numa_topology_type(void)
6454 n = sched_max_numa_distance;
6456 if (sched_domains_numa_levels <= 1) {
6457 sched_numa_topology_type = NUMA_DIRECT;
6461 for_each_online_node(a) {
6462 for_each_online_node(b) {
6463 /* Find two nodes furthest removed from each other. */
6464 if (node_distance(a, b) < n)
6467 /* Is there an intermediary node between a and b? */
6468 for_each_online_node(c) {
6469 if (node_distance(a, c) < n &&
6470 node_distance(b, c) < n) {
6471 sched_numa_topology_type =
6477 sched_numa_topology_type = NUMA_BACKPLANE;
6483 static void sched_init_numa(void)
6485 int next_distance, curr_distance = node_distance(0, 0);
6486 struct sched_domain_topology_level *tl;
6490 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6491 if (!sched_domains_numa_distance)
6495 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6496 * unique distances in the node_distance() table.
6498 * Assumes node_distance(0,j) includes all distances in
6499 * node_distance(i,j) in order to avoid cubic time.
6501 next_distance = curr_distance;
6502 for (i = 0; i < nr_node_ids; i++) {
6503 for (j = 0; j < nr_node_ids; j++) {
6504 for (k = 0; k < nr_node_ids; k++) {
6505 int distance = node_distance(i, k);
6507 if (distance > curr_distance &&
6508 (distance < next_distance ||
6509 next_distance == curr_distance))
6510 next_distance = distance;
6513 * While not a strong assumption it would be nice to know
6514 * about cases where if node A is connected to B, B is not
6515 * equally connected to A.
6517 if (sched_debug() && node_distance(k, i) != distance)
6518 sched_numa_warn("Node-distance not symmetric");
6520 if (sched_debug() && i && !find_numa_distance(distance))
6521 sched_numa_warn("Node-0 not representative");
6523 if (next_distance != curr_distance) {
6524 sched_domains_numa_distance[level++] = next_distance;
6525 sched_domains_numa_levels = level;
6526 curr_distance = next_distance;
6531 * In case of sched_debug() we verify the above assumption.
6541 * 'level' contains the number of unique distances, excluding the
6542 * identity distance node_distance(i,i).
6544 * The sched_domains_numa_distance[] array includes the actual distance
6549 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6550 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6551 * the array will contain less then 'level' members. This could be
6552 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6553 * in other functions.
6555 * We reset it to 'level' at the end of this function.
6557 sched_domains_numa_levels = 0;
6559 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6560 if (!sched_domains_numa_masks)
6564 * Now for each level, construct a mask per node which contains all
6565 * cpus of nodes that are that many hops away from us.
6567 for (i = 0; i < level; i++) {
6568 sched_domains_numa_masks[i] =
6569 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6570 if (!sched_domains_numa_masks[i])
6573 for (j = 0; j < nr_node_ids; j++) {
6574 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6578 sched_domains_numa_masks[i][j] = mask;
6581 if (node_distance(j, k) > sched_domains_numa_distance[i])
6584 cpumask_or(mask, mask, cpumask_of_node(k));
6589 /* Compute default topology size */
6590 for (i = 0; sched_domain_topology[i].mask; i++);
6592 tl = kzalloc((i + level + 1) *
6593 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6598 * Copy the default topology bits..
6600 for (i = 0; sched_domain_topology[i].mask; i++)
6601 tl[i] = sched_domain_topology[i];
6604 * .. and append 'j' levels of NUMA goodness.
6606 for (j = 0; j < level; i++, j++) {
6607 tl[i] = (struct sched_domain_topology_level){
6608 .mask = sd_numa_mask,
6609 .sd_flags = cpu_numa_flags,
6610 .flags = SDTL_OVERLAP,
6616 sched_domain_topology = tl;
6618 sched_domains_numa_levels = level;
6619 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6621 init_numa_topology_type();
6624 static void sched_domains_numa_masks_set(int cpu)
6627 int node = cpu_to_node(cpu);
6629 for (i = 0; i < sched_domains_numa_levels; i++) {
6630 for (j = 0; j < nr_node_ids; j++) {
6631 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6632 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6637 static void sched_domains_numa_masks_clear(int cpu)
6640 for (i = 0; i < sched_domains_numa_levels; i++) {
6641 for (j = 0; j < nr_node_ids; j++)
6642 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6647 * Update sched_domains_numa_masks[level][node] array when new cpus
6650 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6651 unsigned long action,
6654 int cpu = (long)hcpu;
6656 switch (action & ~CPU_TASKS_FROZEN) {
6658 sched_domains_numa_masks_set(cpu);
6662 sched_domains_numa_masks_clear(cpu);
6672 static inline void sched_init_numa(void)
6676 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6677 unsigned long action,
6682 #endif /* CONFIG_NUMA */
6684 static int __sdt_alloc(const struct cpumask *cpu_map)
6686 struct sched_domain_topology_level *tl;
6689 for_each_sd_topology(tl) {
6690 struct sd_data *sdd = &tl->data;
6692 sdd->sd = alloc_percpu(struct sched_domain *);
6696 sdd->sg = alloc_percpu(struct sched_group *);
6700 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6704 for_each_cpu(j, cpu_map) {
6705 struct sched_domain *sd;
6706 struct sched_group *sg;
6707 struct sched_group_capacity *sgc;
6709 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6710 GFP_KERNEL, cpu_to_node(j));
6714 *per_cpu_ptr(sdd->sd, j) = sd;
6716 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6717 GFP_KERNEL, cpu_to_node(j));
6723 *per_cpu_ptr(sdd->sg, j) = sg;
6725 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6726 GFP_KERNEL, cpu_to_node(j));
6730 *per_cpu_ptr(sdd->sgc, j) = sgc;
6737 static void __sdt_free(const struct cpumask *cpu_map)
6739 struct sched_domain_topology_level *tl;
6742 for_each_sd_topology(tl) {
6743 struct sd_data *sdd = &tl->data;
6745 for_each_cpu(j, cpu_map) {
6746 struct sched_domain *sd;
6749 sd = *per_cpu_ptr(sdd->sd, j);
6750 if (sd && (sd->flags & SD_OVERLAP))
6751 free_sched_groups(sd->groups, 0);
6752 kfree(*per_cpu_ptr(sdd->sd, j));
6756 kfree(*per_cpu_ptr(sdd->sg, j));
6758 kfree(*per_cpu_ptr(sdd->sgc, j));
6760 free_percpu(sdd->sd);
6762 free_percpu(sdd->sg);
6764 free_percpu(sdd->sgc);
6769 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6770 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6771 struct sched_domain *child, int cpu)
6773 struct sched_domain *sd = sd_init(tl, cpu);
6777 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6779 sd->level = child->level + 1;
6780 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6784 if (!cpumask_subset(sched_domain_span(child),
6785 sched_domain_span(sd))) {
6786 pr_err("BUG: arch topology borken\n");
6787 #ifdef CONFIG_SCHED_DEBUG
6788 pr_err(" the %s domain not a subset of the %s domain\n",
6789 child->name, sd->name);
6791 /* Fixup, ensure @sd has at least @child cpus. */
6792 cpumask_or(sched_domain_span(sd),
6793 sched_domain_span(sd),
6794 sched_domain_span(child));
6798 set_domain_attribute(sd, attr);
6804 * Build sched domains for a given set of cpus and attach the sched domains
6805 * to the individual cpus
6807 static int build_sched_domains(const struct cpumask *cpu_map,
6808 struct sched_domain_attr *attr)
6810 enum s_alloc alloc_state;
6811 struct sched_domain *sd;
6813 int i, ret = -ENOMEM;
6815 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6816 if (alloc_state != sa_rootdomain)
6819 /* Set up domains for cpus specified by the cpu_map. */
6820 for_each_cpu(i, cpu_map) {
6821 struct sched_domain_topology_level *tl;
6824 for_each_sd_topology(tl) {
6825 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6826 if (tl == sched_domain_topology)
6827 *per_cpu_ptr(d.sd, i) = sd;
6828 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6829 sd->flags |= SD_OVERLAP;
6830 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6835 /* Build the groups for the domains */
6836 for_each_cpu(i, cpu_map) {
6837 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6838 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6839 if (sd->flags & SD_OVERLAP) {
6840 if (build_overlap_sched_groups(sd, i))
6843 if (build_sched_groups(sd, i))
6849 /* Calculate CPU capacity for physical packages and nodes */
6850 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6851 if (!cpumask_test_cpu(i, cpu_map))
6854 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6855 claim_allocations(i, sd);
6856 init_sched_groups_capacity(i, sd);
6860 /* Attach the domains */
6862 for_each_cpu(i, cpu_map) {
6863 sd = *per_cpu_ptr(d.sd, i);
6864 cpu_attach_domain(sd, d.rd, i);
6870 __free_domain_allocs(&d, alloc_state, cpu_map);
6874 static cpumask_var_t *doms_cur; /* current sched domains */
6875 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6876 static struct sched_domain_attr *dattr_cur;
6877 /* attribues of custom domains in 'doms_cur' */
6880 * Special case: If a kmalloc of a doms_cur partition (array of
6881 * cpumask) fails, then fallback to a single sched domain,
6882 * as determined by the single cpumask fallback_doms.
6884 static cpumask_var_t fallback_doms;
6887 * arch_update_cpu_topology lets virtualized architectures update the
6888 * cpu core maps. It is supposed to return 1 if the topology changed
6889 * or 0 if it stayed the same.
6891 int __weak arch_update_cpu_topology(void)
6896 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6899 cpumask_var_t *doms;
6901 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6904 for (i = 0; i < ndoms; i++) {
6905 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6906 free_sched_domains(doms, i);
6913 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6916 for (i = 0; i < ndoms; i++)
6917 free_cpumask_var(doms[i]);
6922 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6923 * For now this just excludes isolated cpus, but could be used to
6924 * exclude other special cases in the future.
6926 static int init_sched_domains(const struct cpumask *cpu_map)
6930 arch_update_cpu_topology();
6932 doms_cur = alloc_sched_domains(ndoms_cur);
6934 doms_cur = &fallback_doms;
6935 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6936 err = build_sched_domains(doms_cur[0], NULL);
6937 register_sched_domain_sysctl();
6943 * Detach sched domains from a group of cpus specified in cpu_map
6944 * These cpus will now be attached to the NULL domain
6946 static void detach_destroy_domains(const struct cpumask *cpu_map)
6951 for_each_cpu(i, cpu_map)
6952 cpu_attach_domain(NULL, &def_root_domain, i);
6956 /* handle null as "default" */
6957 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6958 struct sched_domain_attr *new, int idx_new)
6960 struct sched_domain_attr tmp;
6967 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6968 new ? (new + idx_new) : &tmp,
6969 sizeof(struct sched_domain_attr));
6973 * Partition sched domains as specified by the 'ndoms_new'
6974 * cpumasks in the array doms_new[] of cpumasks. This compares
6975 * doms_new[] to the current sched domain partitioning, doms_cur[].
6976 * It destroys each deleted domain and builds each new domain.
6978 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6979 * The masks don't intersect (don't overlap.) We should setup one
6980 * sched domain for each mask. CPUs not in any of the cpumasks will
6981 * not be load balanced. If the same cpumask appears both in the
6982 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6985 * The passed in 'doms_new' should be allocated using
6986 * alloc_sched_domains. This routine takes ownership of it and will
6987 * free_sched_domains it when done with it. If the caller failed the
6988 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6989 * and partition_sched_domains() will fallback to the single partition
6990 * 'fallback_doms', it also forces the domains to be rebuilt.
6992 * If doms_new == NULL it will be replaced with cpu_online_mask.
6993 * ndoms_new == 0 is a special case for destroying existing domains,
6994 * and it will not create the default domain.
6996 * Call with hotplug lock held
6998 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6999 struct sched_domain_attr *dattr_new)
7004 mutex_lock(&sched_domains_mutex);
7006 /* always unregister in case we don't destroy any domains */
7007 unregister_sched_domain_sysctl();
7009 /* Let architecture update cpu core mappings. */
7010 new_topology = arch_update_cpu_topology();
7012 n = doms_new ? ndoms_new : 0;
7014 /* Destroy deleted domains */
7015 for (i = 0; i < ndoms_cur; i++) {
7016 for (j = 0; j < n && !new_topology; j++) {
7017 if (cpumask_equal(doms_cur[i], doms_new[j])
7018 && dattrs_equal(dattr_cur, i, dattr_new, j))
7021 /* no match - a current sched domain not in new doms_new[] */
7022 detach_destroy_domains(doms_cur[i]);
7028 if (doms_new == NULL) {
7030 doms_new = &fallback_doms;
7031 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7032 WARN_ON_ONCE(dattr_new);
7035 /* Build new domains */
7036 for (i = 0; i < ndoms_new; i++) {
7037 for (j = 0; j < n && !new_topology; j++) {
7038 if (cpumask_equal(doms_new[i], doms_cur[j])
7039 && dattrs_equal(dattr_new, i, dattr_cur, j))
7042 /* no match - add a new doms_new */
7043 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7048 /* Remember the new sched domains */
7049 if (doms_cur != &fallback_doms)
7050 free_sched_domains(doms_cur, ndoms_cur);
7051 kfree(dattr_cur); /* kfree(NULL) is safe */
7052 doms_cur = doms_new;
7053 dattr_cur = dattr_new;
7054 ndoms_cur = ndoms_new;
7056 register_sched_domain_sysctl();
7058 mutex_unlock(&sched_domains_mutex);
7061 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7064 * Update cpusets according to cpu_active mask. If cpusets are
7065 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7066 * around partition_sched_domains().
7068 * If we come here as part of a suspend/resume, don't touch cpusets because we
7069 * want to restore it back to its original state upon resume anyway.
7071 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7075 case CPU_ONLINE_FROZEN:
7076 case CPU_DOWN_FAILED_FROZEN:
7079 * num_cpus_frozen tracks how many CPUs are involved in suspend
7080 * resume sequence. As long as this is not the last online
7081 * operation in the resume sequence, just build a single sched
7082 * domain, ignoring cpusets.
7085 if (likely(num_cpus_frozen)) {
7086 partition_sched_domains(1, NULL, NULL);
7091 * This is the last CPU online operation. So fall through and
7092 * restore the original sched domains by considering the
7093 * cpuset configurations.
7097 cpuset_update_active_cpus(true);
7105 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7108 unsigned long flags;
7109 long cpu = (long)hcpu;
7115 case CPU_DOWN_PREPARE:
7116 rcu_read_lock_sched();
7117 dl_b = dl_bw_of(cpu);
7119 raw_spin_lock_irqsave(&dl_b->lock, flags);
7120 cpus = dl_bw_cpus(cpu);
7121 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7122 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7124 rcu_read_unlock_sched();
7127 return notifier_from_errno(-EBUSY);
7128 cpuset_update_active_cpus(false);
7130 case CPU_DOWN_PREPARE_FROZEN:
7132 partition_sched_domains(1, NULL, NULL);
7140 void __init sched_init_smp(void)
7142 cpumask_var_t non_isolated_cpus;
7144 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7145 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7150 * There's no userspace yet to cause hotplug operations; hence all the
7151 * cpu masks are stable and all blatant races in the below code cannot
7154 mutex_lock(&sched_domains_mutex);
7155 init_sched_domains(cpu_active_mask);
7156 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7157 if (cpumask_empty(non_isolated_cpus))
7158 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7159 mutex_unlock(&sched_domains_mutex);
7161 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7162 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7163 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7167 /* Move init over to a non-isolated CPU */
7168 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7170 sched_init_granularity();
7171 free_cpumask_var(non_isolated_cpus);
7173 init_sched_rt_class();
7174 init_sched_dl_class();
7177 void __init sched_init_smp(void)
7179 sched_init_granularity();
7181 #endif /* CONFIG_SMP */
7183 int in_sched_functions(unsigned long addr)
7185 return in_lock_functions(addr) ||
7186 (addr >= (unsigned long)__sched_text_start
7187 && addr < (unsigned long)__sched_text_end);
7190 #ifdef CONFIG_CGROUP_SCHED
7192 * Default task group.
7193 * Every task in system belongs to this group at bootup.
7195 struct task_group root_task_group;
7196 LIST_HEAD(task_groups);
7198 /* Cacheline aligned slab cache for task_group */
7199 static struct kmem_cache *task_group_cache __read_mostly;
7202 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7204 void __init sched_init(void)
7207 unsigned long alloc_size = 0, ptr;
7209 #ifdef CONFIG_FAIR_GROUP_SCHED
7210 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7212 #ifdef CONFIG_RT_GROUP_SCHED
7213 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7216 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7218 #ifdef CONFIG_FAIR_GROUP_SCHED
7219 root_task_group.se = (struct sched_entity **)ptr;
7220 ptr += nr_cpu_ids * sizeof(void **);
7222 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7223 ptr += nr_cpu_ids * sizeof(void **);
7225 #endif /* CONFIG_FAIR_GROUP_SCHED */
7226 #ifdef CONFIG_RT_GROUP_SCHED
7227 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7228 ptr += nr_cpu_ids * sizeof(void **);
7230 root_task_group.rt_rq = (struct rt_rq **)ptr;
7231 ptr += nr_cpu_ids * sizeof(void **);
7233 #endif /* CONFIG_RT_GROUP_SCHED */
7235 #ifdef CONFIG_CPUMASK_OFFSTACK
7236 for_each_possible_cpu(i) {
7237 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7238 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7240 #endif /* CONFIG_CPUMASK_OFFSTACK */
7242 init_rt_bandwidth(&def_rt_bandwidth,
7243 global_rt_period(), global_rt_runtime());
7244 init_dl_bandwidth(&def_dl_bandwidth,
7245 global_rt_period(), global_rt_runtime());
7248 init_defrootdomain();
7251 #ifdef CONFIG_RT_GROUP_SCHED
7252 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7253 global_rt_period(), global_rt_runtime());
7254 #endif /* CONFIG_RT_GROUP_SCHED */
7256 #ifdef CONFIG_CGROUP_SCHED
7257 task_group_cache = KMEM_CACHE(task_group, 0);
7259 list_add(&root_task_group.list, &task_groups);
7260 INIT_LIST_HEAD(&root_task_group.children);
7261 INIT_LIST_HEAD(&root_task_group.siblings);
7262 autogroup_init(&init_task);
7263 #endif /* CONFIG_CGROUP_SCHED */
7265 for_each_possible_cpu(i) {
7269 raw_spin_lock_init(&rq->lock);
7271 rq->calc_load_active = 0;
7272 rq->calc_load_update = jiffies + LOAD_FREQ;
7273 init_cfs_rq(&rq->cfs);
7274 init_rt_rq(&rq->rt);
7275 init_dl_rq(&rq->dl);
7276 #ifdef CONFIG_FAIR_GROUP_SCHED
7277 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7278 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7280 * How much cpu bandwidth does root_task_group get?
7282 * In case of task-groups formed thr' the cgroup filesystem, it
7283 * gets 100% of the cpu resources in the system. This overall
7284 * system cpu resource is divided among the tasks of
7285 * root_task_group and its child task-groups in a fair manner,
7286 * based on each entity's (task or task-group's) weight
7287 * (se->load.weight).
7289 * In other words, if root_task_group has 10 tasks of weight
7290 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7291 * then A0's share of the cpu resource is:
7293 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7295 * We achieve this by letting root_task_group's tasks sit
7296 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7298 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7299 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7300 #endif /* CONFIG_FAIR_GROUP_SCHED */
7302 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7303 #ifdef CONFIG_RT_GROUP_SCHED
7304 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7307 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7308 rq->cpu_load[j] = 0;
7310 rq->last_load_update_tick = jiffies;
7315 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7316 rq->balance_callback = NULL;
7317 rq->active_balance = 0;
7318 rq->next_balance = jiffies;
7323 rq->avg_idle = 2*sysctl_sched_migration_cost;
7324 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7326 INIT_LIST_HEAD(&rq->cfs_tasks);
7328 rq_attach_root(rq, &def_root_domain);
7329 #ifdef CONFIG_NO_HZ_COMMON
7332 #ifdef CONFIG_NO_HZ_FULL
7333 rq->last_sched_tick = 0;
7337 atomic_set(&rq->nr_iowait, 0);
7340 set_load_weight(&init_task);
7342 #ifdef CONFIG_PREEMPT_NOTIFIERS
7343 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7347 * The boot idle thread does lazy MMU switching as well:
7349 atomic_inc(&init_mm.mm_count);
7350 enter_lazy_tlb(&init_mm, current);
7353 * During early bootup we pretend to be a normal task:
7355 current->sched_class = &fair_sched_class;
7358 * Make us the idle thread. Technically, schedule() should not be
7359 * called from this thread, however somewhere below it might be,
7360 * but because we are the idle thread, we just pick up running again
7361 * when this runqueue becomes "idle".
7363 init_idle(current, smp_processor_id());
7365 calc_load_update = jiffies + LOAD_FREQ;
7368 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7369 /* May be allocated at isolcpus cmdline parse time */
7370 if (cpu_isolated_map == NULL)
7371 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7372 idle_thread_set_boot_cpu();
7373 set_cpu_rq_start_time();
7375 init_sched_fair_class();
7377 scheduler_running = 1;
7380 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7381 static inline int preempt_count_equals(int preempt_offset)
7383 int nested = preempt_count() + rcu_preempt_depth();
7385 return (nested == preempt_offset);
7388 void __might_sleep(const char *file, int line, int preempt_offset)
7391 * Blocking primitives will set (and therefore destroy) current->state,
7392 * since we will exit with TASK_RUNNING make sure we enter with it,
7393 * otherwise we will destroy state.
7395 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7396 "do not call blocking ops when !TASK_RUNNING; "
7397 "state=%lx set at [<%p>] %pS\n",
7399 (void *)current->task_state_change,
7400 (void *)current->task_state_change);
7402 ___might_sleep(file, line, preempt_offset);
7404 EXPORT_SYMBOL(__might_sleep);
7406 void ___might_sleep(const char *file, int line, int preempt_offset)
7408 static unsigned long prev_jiffy; /* ratelimiting */
7410 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7411 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7412 !is_idle_task(current)) ||
7413 system_state != SYSTEM_RUNNING || oops_in_progress)
7415 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7417 prev_jiffy = jiffies;
7420 "BUG: sleeping function called from invalid context at %s:%d\n",
7423 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7424 in_atomic(), irqs_disabled(),
7425 current->pid, current->comm);
7427 if (task_stack_end_corrupted(current))
7428 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7430 debug_show_held_locks(current);
7431 if (irqs_disabled())
7432 print_irqtrace_events(current);
7433 #ifdef CONFIG_DEBUG_PREEMPT
7434 if (!preempt_count_equals(preempt_offset)) {
7435 pr_err("Preemption disabled at:");
7436 print_ip_sym(current->preempt_disable_ip);
7442 EXPORT_SYMBOL(___might_sleep);
7445 #ifdef CONFIG_MAGIC_SYSRQ
7446 void normalize_rt_tasks(void)
7448 struct task_struct *g, *p;
7449 struct sched_attr attr = {
7450 .sched_policy = SCHED_NORMAL,
7453 read_lock(&tasklist_lock);
7454 for_each_process_thread(g, p) {
7456 * Only normalize user tasks:
7458 if (p->flags & PF_KTHREAD)
7461 p->se.exec_start = 0;
7462 #ifdef CONFIG_SCHEDSTATS
7463 p->se.statistics.wait_start = 0;
7464 p->se.statistics.sleep_start = 0;
7465 p->se.statistics.block_start = 0;
7468 if (!dl_task(p) && !rt_task(p)) {
7470 * Renice negative nice level userspace
7473 if (task_nice(p) < 0)
7474 set_user_nice(p, 0);
7478 __sched_setscheduler(p, &attr, false, false);
7480 read_unlock(&tasklist_lock);
7483 #endif /* CONFIG_MAGIC_SYSRQ */
7485 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7487 * These functions are only useful for the IA64 MCA handling, or kdb.
7489 * They can only be called when the whole system has been
7490 * stopped - every CPU needs to be quiescent, and no scheduling
7491 * activity can take place. Using them for anything else would
7492 * be a serious bug, and as a result, they aren't even visible
7493 * under any other configuration.
7497 * curr_task - return the current task for a given cpu.
7498 * @cpu: the processor in question.
7500 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7502 * Return: The current task for @cpu.
7504 struct task_struct *curr_task(int cpu)
7506 return cpu_curr(cpu);
7509 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7513 * set_curr_task - set the current task for a given cpu.
7514 * @cpu: the processor in question.
7515 * @p: the task pointer to set.
7517 * Description: This function must only be used when non-maskable interrupts
7518 * are serviced on a separate stack. It allows the architecture to switch the
7519 * notion of the current task on a cpu in a non-blocking manner. This function
7520 * must be called with all CPU's synchronized, and interrupts disabled, the
7521 * and caller must save the original value of the current task (see
7522 * curr_task() above) and restore that value before reenabling interrupts and
7523 * re-starting the system.
7525 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7527 void set_curr_task(int cpu, struct task_struct *p)
7534 #ifdef CONFIG_CGROUP_SCHED
7535 /* task_group_lock serializes the addition/removal of task groups */
7536 static DEFINE_SPINLOCK(task_group_lock);
7538 static void free_sched_group(struct task_group *tg)
7540 free_fair_sched_group(tg);
7541 free_rt_sched_group(tg);
7543 kmem_cache_free(task_group_cache, tg);
7546 /* allocate runqueue etc for a new task group */
7547 struct task_group *sched_create_group(struct task_group *parent)
7549 struct task_group *tg;
7551 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7553 return ERR_PTR(-ENOMEM);
7555 if (!alloc_fair_sched_group(tg, parent))
7558 if (!alloc_rt_sched_group(tg, parent))
7564 free_sched_group(tg);
7565 return ERR_PTR(-ENOMEM);
7568 void sched_online_group(struct task_group *tg, struct task_group *parent)
7570 unsigned long flags;
7572 spin_lock_irqsave(&task_group_lock, flags);
7573 list_add_rcu(&tg->list, &task_groups);
7575 WARN_ON(!parent); /* root should already exist */
7577 tg->parent = parent;
7578 INIT_LIST_HEAD(&tg->children);
7579 list_add_rcu(&tg->siblings, &parent->children);
7580 spin_unlock_irqrestore(&task_group_lock, flags);
7583 /* rcu callback to free various structures associated with a task group */
7584 static void free_sched_group_rcu(struct rcu_head *rhp)
7586 /* now it should be safe to free those cfs_rqs */
7587 free_sched_group(container_of(rhp, struct task_group, rcu));
7590 /* Destroy runqueue etc associated with a task group */
7591 void sched_destroy_group(struct task_group *tg)
7593 /* wait for possible concurrent references to cfs_rqs complete */
7594 call_rcu(&tg->rcu, free_sched_group_rcu);
7597 void sched_offline_group(struct task_group *tg)
7599 unsigned long flags;
7601 /* end participation in shares distribution */
7602 unregister_fair_sched_group(tg);
7604 spin_lock_irqsave(&task_group_lock, flags);
7605 list_del_rcu(&tg->list);
7606 list_del_rcu(&tg->siblings);
7607 spin_unlock_irqrestore(&task_group_lock, flags);
7610 /* change task's runqueue when it moves between groups.
7611 * The caller of this function should have put the task in its new group
7612 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7613 * reflect its new group.
7615 void sched_move_task(struct task_struct *tsk)
7617 struct task_group *tg;
7618 int queued, running;
7619 unsigned long flags;
7622 rq = task_rq_lock(tsk, &flags);
7624 running = task_current(rq, tsk);
7625 queued = task_on_rq_queued(tsk);
7628 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7629 if (unlikely(running))
7630 put_prev_task(rq, tsk);
7633 * All callers are synchronized by task_rq_lock(); we do not use RCU
7634 * which is pointless here. Thus, we pass "true" to task_css_check()
7635 * to prevent lockdep warnings.
7637 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7638 struct task_group, css);
7639 tg = autogroup_task_group(tsk, tg);
7640 tsk->sched_task_group = tg;
7642 #ifdef CONFIG_FAIR_GROUP_SCHED
7643 if (tsk->sched_class->task_move_group)
7644 tsk->sched_class->task_move_group(tsk);
7647 set_task_rq(tsk, task_cpu(tsk));
7649 if (unlikely(running))
7650 tsk->sched_class->set_curr_task(rq);
7652 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7654 task_rq_unlock(rq, tsk, &flags);
7656 #endif /* CONFIG_CGROUP_SCHED */
7658 #ifdef CONFIG_RT_GROUP_SCHED
7660 * Ensure that the real time constraints are schedulable.
7662 static DEFINE_MUTEX(rt_constraints_mutex);
7664 /* Must be called with tasklist_lock held */
7665 static inline int tg_has_rt_tasks(struct task_group *tg)
7667 struct task_struct *g, *p;
7670 * Autogroups do not have RT tasks; see autogroup_create().
7672 if (task_group_is_autogroup(tg))
7675 for_each_process_thread(g, p) {
7676 if (rt_task(p) && task_group(p) == tg)
7683 struct rt_schedulable_data {
7684 struct task_group *tg;
7689 static int tg_rt_schedulable(struct task_group *tg, void *data)
7691 struct rt_schedulable_data *d = data;
7692 struct task_group *child;
7693 unsigned long total, sum = 0;
7694 u64 period, runtime;
7696 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7697 runtime = tg->rt_bandwidth.rt_runtime;
7700 period = d->rt_period;
7701 runtime = d->rt_runtime;
7705 * Cannot have more runtime than the period.
7707 if (runtime > period && runtime != RUNTIME_INF)
7711 * Ensure we don't starve existing RT tasks.
7713 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7716 total = to_ratio(period, runtime);
7719 * Nobody can have more than the global setting allows.
7721 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7725 * The sum of our children's runtime should not exceed our own.
7727 list_for_each_entry_rcu(child, &tg->children, siblings) {
7728 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7729 runtime = child->rt_bandwidth.rt_runtime;
7731 if (child == d->tg) {
7732 period = d->rt_period;
7733 runtime = d->rt_runtime;
7736 sum += to_ratio(period, runtime);
7745 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7749 struct rt_schedulable_data data = {
7751 .rt_period = period,
7752 .rt_runtime = runtime,
7756 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7762 static int tg_set_rt_bandwidth(struct task_group *tg,
7763 u64 rt_period, u64 rt_runtime)
7768 * Disallowing the root group RT runtime is BAD, it would disallow the
7769 * kernel creating (and or operating) RT threads.
7771 if (tg == &root_task_group && rt_runtime == 0)
7774 /* No period doesn't make any sense. */
7778 mutex_lock(&rt_constraints_mutex);
7779 read_lock(&tasklist_lock);
7780 err = __rt_schedulable(tg, rt_period, rt_runtime);
7784 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7785 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7786 tg->rt_bandwidth.rt_runtime = rt_runtime;
7788 for_each_possible_cpu(i) {
7789 struct rt_rq *rt_rq = tg->rt_rq[i];
7791 raw_spin_lock(&rt_rq->rt_runtime_lock);
7792 rt_rq->rt_runtime = rt_runtime;
7793 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7795 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7797 read_unlock(&tasklist_lock);
7798 mutex_unlock(&rt_constraints_mutex);
7803 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7805 u64 rt_runtime, rt_period;
7807 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7808 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7809 if (rt_runtime_us < 0)
7810 rt_runtime = RUNTIME_INF;
7812 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7815 static long sched_group_rt_runtime(struct task_group *tg)
7819 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7822 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7823 do_div(rt_runtime_us, NSEC_PER_USEC);
7824 return rt_runtime_us;
7827 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7829 u64 rt_runtime, rt_period;
7831 rt_period = rt_period_us * NSEC_PER_USEC;
7832 rt_runtime = tg->rt_bandwidth.rt_runtime;
7834 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7837 static long sched_group_rt_period(struct task_group *tg)
7841 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7842 do_div(rt_period_us, NSEC_PER_USEC);
7843 return rt_period_us;
7845 #endif /* CONFIG_RT_GROUP_SCHED */
7847 #ifdef CONFIG_RT_GROUP_SCHED
7848 static int sched_rt_global_constraints(void)
7852 mutex_lock(&rt_constraints_mutex);
7853 read_lock(&tasklist_lock);
7854 ret = __rt_schedulable(NULL, 0, 0);
7855 read_unlock(&tasklist_lock);
7856 mutex_unlock(&rt_constraints_mutex);
7861 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7863 /* Don't accept realtime tasks when there is no way for them to run */
7864 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7870 #else /* !CONFIG_RT_GROUP_SCHED */
7871 static int sched_rt_global_constraints(void)
7873 unsigned long flags;
7876 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7877 for_each_possible_cpu(i) {
7878 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7880 raw_spin_lock(&rt_rq->rt_runtime_lock);
7881 rt_rq->rt_runtime = global_rt_runtime();
7882 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7884 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7888 #endif /* CONFIG_RT_GROUP_SCHED */
7890 static int sched_dl_global_validate(void)
7892 u64 runtime = global_rt_runtime();
7893 u64 period = global_rt_period();
7894 u64 new_bw = to_ratio(period, runtime);
7897 unsigned long flags;
7900 * Here we want to check the bandwidth not being set to some
7901 * value smaller than the currently allocated bandwidth in
7902 * any of the root_domains.
7904 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7905 * cycling on root_domains... Discussion on different/better
7906 * solutions is welcome!
7908 for_each_possible_cpu(cpu) {
7909 rcu_read_lock_sched();
7910 dl_b = dl_bw_of(cpu);
7912 raw_spin_lock_irqsave(&dl_b->lock, flags);
7913 if (new_bw < dl_b->total_bw)
7915 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7917 rcu_read_unlock_sched();
7926 static void sched_dl_do_global(void)
7931 unsigned long flags;
7933 def_dl_bandwidth.dl_period = global_rt_period();
7934 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7936 if (global_rt_runtime() != RUNTIME_INF)
7937 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7940 * FIXME: As above...
7942 for_each_possible_cpu(cpu) {
7943 rcu_read_lock_sched();
7944 dl_b = dl_bw_of(cpu);
7946 raw_spin_lock_irqsave(&dl_b->lock, flags);
7948 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7950 rcu_read_unlock_sched();
7954 static int sched_rt_global_validate(void)
7956 if (sysctl_sched_rt_period <= 0)
7959 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7960 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7966 static void sched_rt_do_global(void)
7968 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7969 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7972 int sched_rt_handler(struct ctl_table *table, int write,
7973 void __user *buffer, size_t *lenp,
7976 int old_period, old_runtime;
7977 static DEFINE_MUTEX(mutex);
7981 old_period = sysctl_sched_rt_period;
7982 old_runtime = sysctl_sched_rt_runtime;
7984 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7986 if (!ret && write) {
7987 ret = sched_rt_global_validate();
7991 ret = sched_dl_global_validate();
7995 ret = sched_rt_global_constraints();
7999 sched_rt_do_global();
8000 sched_dl_do_global();
8004 sysctl_sched_rt_period = old_period;
8005 sysctl_sched_rt_runtime = old_runtime;
8007 mutex_unlock(&mutex);
8012 int sched_rr_handler(struct ctl_table *table, int write,
8013 void __user *buffer, size_t *lenp,
8017 static DEFINE_MUTEX(mutex);
8020 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8021 /* make sure that internally we keep jiffies */
8022 /* also, writing zero resets timeslice to default */
8023 if (!ret && write) {
8024 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8025 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8027 mutex_unlock(&mutex);
8031 #ifdef CONFIG_CGROUP_SCHED
8033 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8035 return css ? container_of(css, struct task_group, css) : NULL;
8038 static struct cgroup_subsys_state *
8039 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8041 struct task_group *parent = css_tg(parent_css);
8042 struct task_group *tg;
8045 /* This is early initialization for the top cgroup */
8046 return &root_task_group.css;
8049 tg = sched_create_group(parent);
8051 return ERR_PTR(-ENOMEM);
8056 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8058 struct task_group *tg = css_tg(css);
8059 struct task_group *parent = css_tg(css->parent);
8062 sched_online_group(tg, parent);
8066 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8068 struct task_group *tg = css_tg(css);
8070 sched_destroy_group(tg);
8073 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8075 struct task_group *tg = css_tg(css);
8077 sched_offline_group(tg);
8080 static void cpu_cgroup_fork(struct task_struct *task)
8082 sched_move_task(task);
8085 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8087 struct task_struct *task;
8088 struct cgroup_subsys_state *css;
8090 cgroup_taskset_for_each(task, css, tset) {
8091 #ifdef CONFIG_RT_GROUP_SCHED
8092 if (!sched_rt_can_attach(css_tg(css), task))
8095 /* We don't support RT-tasks being in separate groups */
8096 if (task->sched_class != &fair_sched_class)
8103 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8105 struct task_struct *task;
8106 struct cgroup_subsys_state *css;
8108 cgroup_taskset_for_each(task, css, tset)
8109 sched_move_task(task);
8112 #ifdef CONFIG_FAIR_GROUP_SCHED
8113 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8114 struct cftype *cftype, u64 shareval)
8116 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8119 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8122 struct task_group *tg = css_tg(css);
8124 return (u64) scale_load_down(tg->shares);
8127 #ifdef CONFIG_CFS_BANDWIDTH
8128 static DEFINE_MUTEX(cfs_constraints_mutex);
8130 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8131 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8133 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8135 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8137 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8138 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8140 if (tg == &root_task_group)
8144 * Ensure we have at some amount of bandwidth every period. This is
8145 * to prevent reaching a state of large arrears when throttled via
8146 * entity_tick() resulting in prolonged exit starvation.
8148 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8152 * Likewise, bound things on the otherside by preventing insane quota
8153 * periods. This also allows us to normalize in computing quota
8156 if (period > max_cfs_quota_period)
8160 * Prevent race between setting of cfs_rq->runtime_enabled and
8161 * unthrottle_offline_cfs_rqs().
8164 mutex_lock(&cfs_constraints_mutex);
8165 ret = __cfs_schedulable(tg, period, quota);
8169 runtime_enabled = quota != RUNTIME_INF;
8170 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8172 * If we need to toggle cfs_bandwidth_used, off->on must occur
8173 * before making related changes, and on->off must occur afterwards
8175 if (runtime_enabled && !runtime_was_enabled)
8176 cfs_bandwidth_usage_inc();
8177 raw_spin_lock_irq(&cfs_b->lock);
8178 cfs_b->period = ns_to_ktime(period);
8179 cfs_b->quota = quota;
8181 __refill_cfs_bandwidth_runtime(cfs_b);
8182 /* restart the period timer (if active) to handle new period expiry */
8183 if (runtime_enabled)
8184 start_cfs_bandwidth(cfs_b);
8185 raw_spin_unlock_irq(&cfs_b->lock);
8187 for_each_online_cpu(i) {
8188 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8189 struct rq *rq = cfs_rq->rq;
8191 raw_spin_lock_irq(&rq->lock);
8192 cfs_rq->runtime_enabled = runtime_enabled;
8193 cfs_rq->runtime_remaining = 0;
8195 if (cfs_rq->throttled)
8196 unthrottle_cfs_rq(cfs_rq);
8197 raw_spin_unlock_irq(&rq->lock);
8199 if (runtime_was_enabled && !runtime_enabled)
8200 cfs_bandwidth_usage_dec();
8202 mutex_unlock(&cfs_constraints_mutex);
8208 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8212 period = ktime_to_ns(tg->cfs_bandwidth.period);
8213 if (cfs_quota_us < 0)
8214 quota = RUNTIME_INF;
8216 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8218 return tg_set_cfs_bandwidth(tg, period, quota);
8221 long tg_get_cfs_quota(struct task_group *tg)
8225 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8228 quota_us = tg->cfs_bandwidth.quota;
8229 do_div(quota_us, NSEC_PER_USEC);
8234 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8238 period = (u64)cfs_period_us * NSEC_PER_USEC;
8239 quota = tg->cfs_bandwidth.quota;
8241 return tg_set_cfs_bandwidth(tg, period, quota);
8244 long tg_get_cfs_period(struct task_group *tg)
8248 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8249 do_div(cfs_period_us, NSEC_PER_USEC);
8251 return cfs_period_us;
8254 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8257 return tg_get_cfs_quota(css_tg(css));
8260 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8261 struct cftype *cftype, s64 cfs_quota_us)
8263 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8266 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8269 return tg_get_cfs_period(css_tg(css));
8272 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8273 struct cftype *cftype, u64 cfs_period_us)
8275 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8278 struct cfs_schedulable_data {
8279 struct task_group *tg;
8284 * normalize group quota/period to be quota/max_period
8285 * note: units are usecs
8287 static u64 normalize_cfs_quota(struct task_group *tg,
8288 struct cfs_schedulable_data *d)
8296 period = tg_get_cfs_period(tg);
8297 quota = tg_get_cfs_quota(tg);
8300 /* note: these should typically be equivalent */
8301 if (quota == RUNTIME_INF || quota == -1)
8304 return to_ratio(period, quota);
8307 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8309 struct cfs_schedulable_data *d = data;
8310 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8311 s64 quota = 0, parent_quota = -1;
8314 quota = RUNTIME_INF;
8316 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8318 quota = normalize_cfs_quota(tg, d);
8319 parent_quota = parent_b->hierarchical_quota;
8322 * ensure max(child_quota) <= parent_quota, inherit when no
8325 if (quota == RUNTIME_INF)
8326 quota = parent_quota;
8327 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8330 cfs_b->hierarchical_quota = quota;
8335 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8338 struct cfs_schedulable_data data = {
8344 if (quota != RUNTIME_INF) {
8345 do_div(data.period, NSEC_PER_USEC);
8346 do_div(data.quota, NSEC_PER_USEC);
8350 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8356 static int cpu_stats_show(struct seq_file *sf, void *v)
8358 struct task_group *tg = css_tg(seq_css(sf));
8359 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8361 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8362 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8363 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8367 #endif /* CONFIG_CFS_BANDWIDTH */
8368 #endif /* CONFIG_FAIR_GROUP_SCHED */
8370 #ifdef CONFIG_RT_GROUP_SCHED
8371 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8372 struct cftype *cft, s64 val)
8374 return sched_group_set_rt_runtime(css_tg(css), val);
8377 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8380 return sched_group_rt_runtime(css_tg(css));
8383 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8384 struct cftype *cftype, u64 rt_period_us)
8386 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8389 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8392 return sched_group_rt_period(css_tg(css));
8394 #endif /* CONFIG_RT_GROUP_SCHED */
8396 static struct cftype cpu_files[] = {
8397 #ifdef CONFIG_FAIR_GROUP_SCHED
8400 .read_u64 = cpu_shares_read_u64,
8401 .write_u64 = cpu_shares_write_u64,
8404 #ifdef CONFIG_CFS_BANDWIDTH
8406 .name = "cfs_quota_us",
8407 .read_s64 = cpu_cfs_quota_read_s64,
8408 .write_s64 = cpu_cfs_quota_write_s64,
8411 .name = "cfs_period_us",
8412 .read_u64 = cpu_cfs_period_read_u64,
8413 .write_u64 = cpu_cfs_period_write_u64,
8417 .seq_show = cpu_stats_show,
8420 #ifdef CONFIG_RT_GROUP_SCHED
8422 .name = "rt_runtime_us",
8423 .read_s64 = cpu_rt_runtime_read,
8424 .write_s64 = cpu_rt_runtime_write,
8427 .name = "rt_period_us",
8428 .read_u64 = cpu_rt_period_read_uint,
8429 .write_u64 = cpu_rt_period_write_uint,
8435 struct cgroup_subsys cpu_cgrp_subsys = {
8436 .css_alloc = cpu_cgroup_css_alloc,
8437 .css_free = cpu_cgroup_css_free,
8438 .css_online = cpu_cgroup_css_online,
8439 .css_offline = cpu_cgroup_css_offline,
8440 .fork = cpu_cgroup_fork,
8441 .can_attach = cpu_cgroup_can_attach,
8442 .attach = cpu_cgroup_attach,
8443 .legacy_cftypes = cpu_files,
8447 #endif /* CONFIG_CGROUP_SCHED */
8449 void dump_cpu_task(int cpu)
8451 pr_info("Task dump for CPU %d:\n", cpu);
8452 sched_show_task(cpu_curr(cpu));
8456 * Nice levels are multiplicative, with a gentle 10% change for every
8457 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8458 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8459 * that remained on nice 0.
8461 * The "10% effect" is relative and cumulative: from _any_ nice level,
8462 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8463 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8464 * If a task goes up by ~10% and another task goes down by ~10% then
8465 * the relative distance between them is ~25%.)
8467 const int sched_prio_to_weight[40] = {
8468 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8469 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8470 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8471 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8472 /* 0 */ 1024, 820, 655, 526, 423,
8473 /* 5 */ 335, 272, 215, 172, 137,
8474 /* 10 */ 110, 87, 70, 56, 45,
8475 /* 15 */ 36, 29, 23, 18, 15,
8479 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8481 * In cases where the weight does not change often, we can use the
8482 * precalculated inverse to speed up arithmetics by turning divisions
8483 * into multiplications:
8485 const u32 sched_prio_to_wmult[40] = {
8486 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8487 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8488 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8489 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8490 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8491 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8492 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8493 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,