4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
77 #include <asm/switch_to.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
95 ktime_t soft, hard, now;
98 if (hrtimer_active(period_timer))
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 void update_rq_clock(struct rq *rq)
121 if (rq->skip_clock_update > 0)
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 update_rq_clock_task(rq, delta);
130 * Debugging: various feature bits
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
152 static int sched_feat_show(struct seq_file *m, void *v)
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
159 seq_printf(m, "%s ", sched_feat_names[i]);
166 #ifdef HAVE_JUMP_LABEL
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
180 static void sched_feat_disable(int i)
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
186 static void sched_feat_enable(int i)
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
196 static int sched_feat_set(char *cmp)
201 if (strncmp(cmp, "NO_", 3) == 0) {
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
233 if (copy_from_user(&buf, ubuf, cnt))
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
248 static int sched_feat_open(struct inode *inode, struct file *filp)
250 return single_open(filp, sched_feat_show, NULL);
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
258 .release = single_release,
261 static __init int sched_init_debug(void)
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
278 * period over which we average the RT time consumption, measured
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
286 * period over which we measure -rt task cpu usage in us.
289 unsigned int sysctl_sched_rt_period = 1000000;
291 __read_mostly int scheduler_running;
294 * part of the period that we allow rt tasks to run in us.
297 int sysctl_sched_rt_runtime = 950000;
302 * __task_rq_lock - lock the rq @p resides on.
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
309 lockdep_assert_held(&p->pi_lock);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
316 raw_spin_unlock(&rq->lock);
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
340 static void __task_rq_unlock(struct rq *rq)
343 raw_spin_unlock(&rq->lock);
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
349 __releases(p->pi_lock)
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
356 * this_rq_lock - lock this runqueue and disable interrupts.
358 static struct rq *this_rq_lock(void)
365 raw_spin_lock(&rq->lock);
370 #ifdef CONFIG_SCHED_HRTICK
372 * Use HR-timers to deliver accurate preemption points.
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
382 static void hrtick_clear(struct rq *rq)
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
398 raw_spin_lock(&rq->lock);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
403 return HRTIMER_NORESTART;
408 * called from hardirq (IPI) context
410 static void __hrtick_start(void *arg)
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
421 * Called to set the hrtick timer state.
423 * called with rq->lock held and irqs disabled
425 void hrtick_start(struct rq *rq, u64 delay)
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430 hrtimer_set_expires(timer, time);
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443 int cpu = (int)(long)hcpu;
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
459 static __init void init_hrtick(void)
461 hotcpu_notifier(hotplug_hrtick, 0);
465 * Called to set the hrtick timer state.
467 * called with rq->lock held and irqs disabled
469 void hrtick_start(struct rq *rq, u64 delay)
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
475 static inline void init_hrtick(void)
478 #endif /* CONFIG_SMP */
480 static void init_rq_hrtick(struct rq *rq)
483 rq->hrtick_csd_pending = 0;
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
498 static inline void init_rq_hrtick(struct rq *rq)
502 static inline void init_hrtick(void)
505 #endif /* CONFIG_SCHED_HRTICK */
508 * resched_task - mark a task 'to be rescheduled now'.
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
520 void resched_task(struct task_struct *p)
524 assert_raw_spin_locked(&task_rq(p)->lock);
526 if (test_tsk_need_resched(p))
529 set_tsk_need_resched(p);
532 if (cpu == smp_processor_id())
535 /* NEED_RESCHED must be visible before we test polling */
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
541 void resched_cpu(int cpu)
543 struct rq *rq = cpu_rq(cpu);
546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
548 resched_task(cpu_curr(cpu));
549 raw_spin_unlock_irqrestore(&rq->lock, flags);
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
561 int get_nohz_timer_target(void)
563 int cpu = smp_processor_id();
565 struct sched_domain *sd;
568 for_each_domain(cpu, sd) {
569 for_each_cpu(i, sched_domain_span(sd)) {
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
590 void wake_up_idle_cpu(int cpu)
592 struct rq *rq = cpu_rq(cpu);
594 if (cpu == smp_processor_id())
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
604 if (rq->curr != rq->idle)
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
612 set_tsk_need_resched(rq->idle);
614 /* NEED_RESCHED must be visible before we test polling */
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
620 static inline bool got_nohz_idle_kick(void)
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
626 #else /* CONFIG_NO_HZ */
628 static inline bool got_nohz_idle_kick(void)
633 #endif /* CONFIG_NO_HZ */
635 void sched_avg_update(struct rq *rq)
637 s64 period = sched_avg_period();
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
645 asm("" : "+rm" (rq->age_stamp));
646 rq->age_stamp += period;
651 #else /* !CONFIG_SMP */
652 void resched_task(struct task_struct *p)
654 assert_raw_spin_locked(&task_rq(p)->lock);
655 set_tsk_need_resched(p);
657 #endif /* CONFIG_SMP */
659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
665 * Caller must hold rcu_lock or sufficient equivalent.
667 int walk_tg_tree_from(struct task_group *from,
668 tg_visitor down, tg_visitor up, void *data)
670 struct task_group *parent, *child;
676 ret = (*down)(parent, data);
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
686 ret = (*up)(parent, data);
687 if (ret || parent == from)
691 parent = parent->parent;
698 int tg_nop(struct task_group *tg, void *data)
704 static void set_load_weight(struct task_struct *p)
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
710 * SCHED_IDLE tasks get minimal weight:
712 if (p->policy == SCHED_IDLE) {
713 load->weight = scale_load(WEIGHT_IDLEPRIO);
714 load->inv_weight = WMULT_IDLEPRIO;
718 load->weight = scale_load(prio_to_weight[prio]);
719 load->inv_weight = prio_to_wmult[prio];
722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
725 sched_info_queued(p);
726 p->sched_class->enqueue_task(rq, p, flags);
729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
732 sched_info_dequeued(p);
733 p->sched_class->dequeue_task(rq, p, flags);
736 void activate_task(struct rq *rq, struct task_struct *p, int flags)
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
741 enqueue_task(rq, p, flags);
744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
749 dequeue_task(rq, p, flags);
752 static void update_rq_clock_task(struct rq *rq, s64 delta)
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
779 if (irq_delta > delta)
782 rq->prev_irq_time += irq_delta;
785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786 if (static_key_false((¶virt_steal_rq_enabled))) {
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
792 if (unlikely(steal > delta))
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
798 rq->prev_steal_time_rq += steal;
804 rq->clock_task += delta;
806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
812 void sched_set_stop_task(int cpu, struct task_struct *stop)
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
828 stop->sched_class = &stop_sched_class;
831 cpu_rq(cpu)->stop = stop;
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
838 old_stop->sched_class = &rt_sched_class;
843 * __normal_prio - return the priority that is based on the static prio
845 static inline int __normal_prio(struct task_struct *p)
847 return p->static_prio;
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
857 static inline int normal_prio(struct task_struct *p)
861 if (task_has_rt_policy(p))
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
864 prio = __normal_prio(p);
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
875 static int effective_prio(struct task_struct *p)
877 p->normal_prio = normal_prio(p);
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
892 inline int task_curr(const struct task_struct *p)
894 return cpu_curr(task_cpu(p)) == p;
897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
911 const struct sched_class *class;
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 rq->skip_clock_update = 1;
934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
936 void register_task_migration_notifier(struct notifier_block *n)
938 atomic_notifier_chain_register(&task_migration_notifier, n);
942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
944 #ifdef CONFIG_SCHED_DEBUG
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
952 #ifdef CONFIG_LOCKDEP
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
957 * sched_move_task() holds both and thus holding either pins the cgroup,
960 * Furthermore, all task_rq users should acquire both locks, see
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
968 trace_sched_migrate_task(p, new_cpu);
970 if (task_cpu(p) != new_cpu) {
971 struct task_migration_notifier tmn;
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
975 p->se.nr_migrations++;
976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
985 __set_task_cpu(p, new_cpu);
988 struct migration_arg {
989 struct task_struct *task;
993 static int migration_cpu_stop(void *data);
996 * wait_task_inactive - wait for a thread to unschedule.
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1013 unsigned long flags;
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1049 rq = task_rq_lock(p, &flags);
1050 trace_sched_wait_task(p);
1051 running = task_running(rq, p);
1054 if (!match_state || p->state == match_state)
1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056 task_rq_unlock(rq, p, &flags);
1059 * If it changed from the expected state, bail out now.
1061 if (unlikely(!ncsw))
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1068 * Oops. Go back and try again..
1070 if (unlikely(running)) {
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1080 * So if it was still runnable (but just not actively
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1084 if (unlikely(on_rq)) {
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1110 * NOTE: this function doesn't have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1116 void kick_process(struct task_struct *p)
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1126 EXPORT_SYMBOL_GPL(kick_process);
1127 #endif /* CONFIG_SMP */
1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1133 static int select_fallback_rq(int cpu, struct task_struct *p)
1135 int nid = cpu_to_node(cpu);
1136 const struct cpumask *nodemask = NULL;
1137 enum { cpuset, possible, fail } state = cpuset;
1141 * If the node that the cpu is on has been offlined, cpu_to_node()
1142 * will return -1. There is no cpu on the node, and we should
1143 * select the cpu on the other node.
1146 nodemask = cpumask_of_node(nid);
1148 /* Look for allowed, online CPU in same node. */
1149 for_each_cpu(dest_cpu, nodemask) {
1150 if (!cpu_online(dest_cpu))
1152 if (!cpu_active(dest_cpu))
1154 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1160 /* Any allowed, online CPU? */
1161 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1162 if (!cpu_online(dest_cpu))
1164 if (!cpu_active(dest_cpu))
1171 /* No more Mr. Nice Guy. */
1172 cpuset_cpus_allowed_fallback(p);
1177 do_set_cpus_allowed(p, cpu_possible_mask);
1188 if (state != cpuset) {
1190 * Don't tell them about moving exiting tasks or
1191 * kernel threads (both mm NULL), since they never
1194 if (p->mm && printk_ratelimit()) {
1195 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1196 task_pid_nr(p), p->comm, cpu);
1204 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1207 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1209 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1212 * In order not to call set_task_cpu() on a blocking task we need
1213 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1216 * Since this is common to all placement strategies, this lives here.
1218 * [ this allows ->select_task() to simply return task_cpu(p) and
1219 * not worry about this generic constraint ]
1221 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1223 cpu = select_fallback_rq(task_cpu(p), p);
1228 static void update_avg(u64 *avg, u64 sample)
1230 s64 diff = sample - *avg;
1236 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1238 #ifdef CONFIG_SCHEDSTATS
1239 struct rq *rq = this_rq();
1242 int this_cpu = smp_processor_id();
1244 if (cpu == this_cpu) {
1245 schedstat_inc(rq, ttwu_local);
1246 schedstat_inc(p, se.statistics.nr_wakeups_local);
1248 struct sched_domain *sd;
1250 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1252 for_each_domain(this_cpu, sd) {
1253 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1254 schedstat_inc(sd, ttwu_wake_remote);
1261 if (wake_flags & WF_MIGRATED)
1262 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1264 #endif /* CONFIG_SMP */
1266 schedstat_inc(rq, ttwu_count);
1267 schedstat_inc(p, se.statistics.nr_wakeups);
1269 if (wake_flags & WF_SYNC)
1270 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1272 #endif /* CONFIG_SCHEDSTATS */
1275 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1277 activate_task(rq, p, en_flags);
1280 /* if a worker is waking up, notify workqueue */
1281 if (p->flags & PF_WQ_WORKER)
1282 wq_worker_waking_up(p, cpu_of(rq));
1286 * Mark the task runnable and perform wakeup-preemption.
1289 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1291 trace_sched_wakeup(p, true);
1292 check_preempt_curr(rq, p, wake_flags);
1294 p->state = TASK_RUNNING;
1296 if (p->sched_class->task_woken)
1297 p->sched_class->task_woken(rq, p);
1299 if (rq->idle_stamp) {
1300 u64 delta = rq->clock - rq->idle_stamp;
1301 u64 max = 2*sysctl_sched_migration_cost;
1306 update_avg(&rq->avg_idle, delta);
1313 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1316 if (p->sched_contributes_to_load)
1317 rq->nr_uninterruptible--;
1320 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1321 ttwu_do_wakeup(rq, p, wake_flags);
1325 * Called in case the task @p isn't fully descheduled from its runqueue,
1326 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1327 * since all we need to do is flip p->state to TASK_RUNNING, since
1328 * the task is still ->on_rq.
1330 static int ttwu_remote(struct task_struct *p, int wake_flags)
1335 rq = __task_rq_lock(p);
1337 ttwu_do_wakeup(rq, p, wake_flags);
1340 __task_rq_unlock(rq);
1346 static void sched_ttwu_pending(void)
1348 struct rq *rq = this_rq();
1349 struct llist_node *llist = llist_del_all(&rq->wake_list);
1350 struct task_struct *p;
1352 raw_spin_lock(&rq->lock);
1355 p = llist_entry(llist, struct task_struct, wake_entry);
1356 llist = llist_next(llist);
1357 ttwu_do_activate(rq, p, 0);
1360 raw_spin_unlock(&rq->lock);
1363 void scheduler_ipi(void)
1365 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1369 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1370 * traditionally all their work was done from the interrupt return
1371 * path. Now that we actually do some work, we need to make sure
1374 * Some archs already do call them, luckily irq_enter/exit nest
1377 * Arguably we should visit all archs and update all handlers,
1378 * however a fair share of IPIs are still resched only so this would
1379 * somewhat pessimize the simple resched case.
1382 sched_ttwu_pending();
1385 * Check if someone kicked us for doing the nohz idle load balance.
1387 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1388 this_rq()->idle_balance = 1;
1389 raise_softirq_irqoff(SCHED_SOFTIRQ);
1394 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1396 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1397 smp_send_reschedule(cpu);
1400 bool cpus_share_cache(int this_cpu, int that_cpu)
1402 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1404 #endif /* CONFIG_SMP */
1406 static void ttwu_queue(struct task_struct *p, int cpu)
1408 struct rq *rq = cpu_rq(cpu);
1410 #if defined(CONFIG_SMP)
1411 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1412 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1413 ttwu_queue_remote(p, cpu);
1418 raw_spin_lock(&rq->lock);
1419 ttwu_do_activate(rq, p, 0);
1420 raw_spin_unlock(&rq->lock);
1424 * try_to_wake_up - wake up a thread
1425 * @p: the thread to be awakened
1426 * @state: the mask of task states that can be woken
1427 * @wake_flags: wake modifier flags (WF_*)
1429 * Put it on the run-queue if it's not already there. The "current"
1430 * thread is always on the run-queue (except when the actual
1431 * re-schedule is in progress), and as such you're allowed to do
1432 * the simpler "current->state = TASK_RUNNING" to mark yourself
1433 * runnable without the overhead of this.
1435 * Returns %true if @p was woken up, %false if it was already running
1436 * or @state didn't match @p's state.
1439 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1441 unsigned long flags;
1442 int cpu, success = 0;
1445 raw_spin_lock_irqsave(&p->pi_lock, flags);
1446 if (!(p->state & state))
1449 success = 1; /* we're going to change ->state */
1452 if (p->on_rq && ttwu_remote(p, wake_flags))
1457 * If the owning (remote) cpu is still in the middle of schedule() with
1458 * this task as prev, wait until its done referencing the task.
1463 * Pairs with the smp_wmb() in finish_lock_switch().
1467 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1468 p->state = TASK_WAKING;
1470 if (p->sched_class->task_waking)
1471 p->sched_class->task_waking(p);
1473 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1474 if (task_cpu(p) != cpu) {
1475 wake_flags |= WF_MIGRATED;
1476 set_task_cpu(p, cpu);
1478 #endif /* CONFIG_SMP */
1482 ttwu_stat(p, cpu, wake_flags);
1484 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1490 * try_to_wake_up_local - try to wake up a local task with rq lock held
1491 * @p: the thread to be awakened
1493 * Put @p on the run-queue if it's not already there. The caller must
1494 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1497 static void try_to_wake_up_local(struct task_struct *p)
1499 struct rq *rq = task_rq(p);
1501 BUG_ON(rq != this_rq());
1502 BUG_ON(p == current);
1503 lockdep_assert_held(&rq->lock);
1505 if (!raw_spin_trylock(&p->pi_lock)) {
1506 raw_spin_unlock(&rq->lock);
1507 raw_spin_lock(&p->pi_lock);
1508 raw_spin_lock(&rq->lock);
1511 if (!(p->state & TASK_NORMAL))
1515 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1517 ttwu_do_wakeup(rq, p, 0);
1518 ttwu_stat(p, smp_processor_id(), 0);
1520 raw_spin_unlock(&p->pi_lock);
1524 * wake_up_process - Wake up a specific process
1525 * @p: The process to be woken up.
1527 * Attempt to wake up the nominated process and move it to the set of runnable
1528 * processes. Returns 1 if the process was woken up, 0 if it was already
1531 * It may be assumed that this function implies a write memory barrier before
1532 * changing the task state if and only if any tasks are woken up.
1534 int wake_up_process(struct task_struct *p)
1536 WARN_ON(task_is_stopped_or_traced(p));
1537 return try_to_wake_up(p, TASK_NORMAL, 0);
1539 EXPORT_SYMBOL(wake_up_process);
1541 int wake_up_state(struct task_struct *p, unsigned int state)
1543 return try_to_wake_up(p, state, 0);
1547 * Perform scheduler related setup for a newly forked process p.
1548 * p is forked by current.
1550 * __sched_fork() is basic setup used by init_idle() too:
1552 static void __sched_fork(struct task_struct *p)
1557 p->se.exec_start = 0;
1558 p->se.sum_exec_runtime = 0;
1559 p->se.prev_sum_exec_runtime = 0;
1560 p->se.nr_migrations = 0;
1562 INIT_LIST_HEAD(&p->se.group_node);
1565 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1566 * removed when useful for applications beyond shares distribution (e.g.
1569 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1570 p->se.avg.runnable_avg_period = 0;
1571 p->se.avg.runnable_avg_sum = 0;
1573 #ifdef CONFIG_SCHEDSTATS
1574 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1577 INIT_LIST_HEAD(&p->rt.run_list);
1579 #ifdef CONFIG_PREEMPT_NOTIFIERS
1580 INIT_HLIST_HEAD(&p->preempt_notifiers);
1583 #ifdef CONFIG_NUMA_BALANCING
1584 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1585 p->mm->numa_next_scan = jiffies;
1586 p->mm->numa_next_reset = jiffies;
1587 p->mm->numa_scan_seq = 0;
1590 p->node_stamp = 0ULL;
1591 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1592 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1593 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1594 p->numa_work.next = &p->numa_work;
1595 #endif /* CONFIG_NUMA_BALANCING */
1598 #ifdef CONFIG_NUMA_BALANCING
1599 #ifdef CONFIG_SCHED_DEBUG
1600 void set_numabalancing_state(bool enabled)
1603 sched_feat_set("NUMA");
1605 sched_feat_set("NO_NUMA");
1608 __read_mostly bool numabalancing_enabled;
1610 void set_numabalancing_state(bool enabled)
1612 numabalancing_enabled = enabled;
1614 #endif /* CONFIG_SCHED_DEBUG */
1615 #endif /* CONFIG_NUMA_BALANCING */
1618 * fork()/clone()-time setup:
1620 void sched_fork(struct task_struct *p)
1622 unsigned long flags;
1623 int cpu = get_cpu();
1627 * We mark the process as running here. This guarantees that
1628 * nobody will actually run it, and a signal or other external
1629 * event cannot wake it up and insert it on the runqueue either.
1631 p->state = TASK_RUNNING;
1634 * Make sure we do not leak PI boosting priority to the child.
1636 p->prio = current->normal_prio;
1639 * Revert to default priority/policy on fork if requested.
1641 if (unlikely(p->sched_reset_on_fork)) {
1642 if (task_has_rt_policy(p)) {
1643 p->policy = SCHED_NORMAL;
1644 p->static_prio = NICE_TO_PRIO(0);
1646 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1647 p->static_prio = NICE_TO_PRIO(0);
1649 p->prio = p->normal_prio = __normal_prio(p);
1653 * We don't need the reset flag anymore after the fork. It has
1654 * fulfilled its duty:
1656 p->sched_reset_on_fork = 0;
1659 if (!rt_prio(p->prio))
1660 p->sched_class = &fair_sched_class;
1662 if (p->sched_class->task_fork)
1663 p->sched_class->task_fork(p);
1666 * The child is not yet in the pid-hash so no cgroup attach races,
1667 * and the cgroup is pinned to this child due to cgroup_fork()
1668 * is ran before sched_fork().
1670 * Silence PROVE_RCU.
1672 raw_spin_lock_irqsave(&p->pi_lock, flags);
1673 set_task_cpu(p, cpu);
1674 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1676 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1677 if (likely(sched_info_on()))
1678 memset(&p->sched_info, 0, sizeof(p->sched_info));
1680 #if defined(CONFIG_SMP)
1683 #ifdef CONFIG_PREEMPT_COUNT
1684 /* Want to start with kernel preemption disabled. */
1685 task_thread_info(p)->preempt_count = 1;
1688 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1695 * wake_up_new_task - wake up a newly created task for the first time.
1697 * This function will do some initial scheduler statistics housekeeping
1698 * that must be done for every newly created context, then puts the task
1699 * on the runqueue and wakes it.
1701 void wake_up_new_task(struct task_struct *p)
1703 unsigned long flags;
1706 raw_spin_lock_irqsave(&p->pi_lock, flags);
1709 * Fork balancing, do it here and not earlier because:
1710 * - cpus_allowed can change in the fork path
1711 * - any previously selected cpu might disappear through hotplug
1713 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1716 rq = __task_rq_lock(p);
1717 activate_task(rq, p, 0);
1719 trace_sched_wakeup_new(p, true);
1720 check_preempt_curr(rq, p, WF_FORK);
1722 if (p->sched_class->task_woken)
1723 p->sched_class->task_woken(rq, p);
1725 task_rq_unlock(rq, p, &flags);
1728 #ifdef CONFIG_PREEMPT_NOTIFIERS
1731 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1732 * @notifier: notifier struct to register
1734 void preempt_notifier_register(struct preempt_notifier *notifier)
1736 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
1738 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1741 * preempt_notifier_unregister - no longer interested in preemption notifications
1742 * @notifier: notifier struct to unregister
1744 * This is safe to call from within a preemption notifier.
1746 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1748 hlist_del(¬ifier->link);
1750 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1752 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1754 struct preempt_notifier *notifier;
1756 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1757 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1761 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1762 struct task_struct *next)
1764 struct preempt_notifier *notifier;
1766 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1767 notifier->ops->sched_out(notifier, next);
1770 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1772 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1777 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1778 struct task_struct *next)
1782 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1785 * prepare_task_switch - prepare to switch tasks
1786 * @rq: the runqueue preparing to switch
1787 * @prev: the current task that is being switched out
1788 * @next: the task we are going to switch to.
1790 * This is called with the rq lock held and interrupts off. It must
1791 * be paired with a subsequent finish_task_switch after the context
1794 * prepare_task_switch sets up locking and calls architecture specific
1798 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1799 struct task_struct *next)
1801 trace_sched_switch(prev, next);
1802 sched_info_switch(prev, next);
1803 perf_event_task_sched_out(prev, next);
1804 fire_sched_out_preempt_notifiers(prev, next);
1805 prepare_lock_switch(rq, next);
1806 prepare_arch_switch(next);
1810 * finish_task_switch - clean up after a task-switch
1811 * @rq: runqueue associated with task-switch
1812 * @prev: the thread we just switched away from.
1814 * finish_task_switch must be called after the context switch, paired
1815 * with a prepare_task_switch call before the context switch.
1816 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1817 * and do any other architecture-specific cleanup actions.
1819 * Note that we may have delayed dropping an mm in context_switch(). If
1820 * so, we finish that here outside of the runqueue lock. (Doing it
1821 * with the lock held can cause deadlocks; see schedule() for
1824 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1825 __releases(rq->lock)
1827 struct mm_struct *mm = rq->prev_mm;
1833 * A task struct has one reference for the use as "current".
1834 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1835 * schedule one last time. The schedule call will never return, and
1836 * the scheduled task must drop that reference.
1837 * The test for TASK_DEAD must occur while the runqueue locks are
1838 * still held, otherwise prev could be scheduled on another cpu, die
1839 * there before we look at prev->state, and then the reference would
1841 * Manfred Spraul <manfred@colorfullife.com>
1843 prev_state = prev->state;
1844 vtime_task_switch(prev);
1845 finish_arch_switch(prev);
1846 perf_event_task_sched_in(prev, current);
1847 finish_lock_switch(rq, prev);
1848 finish_arch_post_lock_switch();
1850 fire_sched_in_preempt_notifiers(current);
1853 if (unlikely(prev_state == TASK_DEAD)) {
1855 * Remove function-return probe instances associated with this
1856 * task and put them back on the free list.
1858 kprobe_flush_task(prev);
1859 put_task_struct(prev);
1865 /* assumes rq->lock is held */
1866 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1868 if (prev->sched_class->pre_schedule)
1869 prev->sched_class->pre_schedule(rq, prev);
1872 /* rq->lock is NOT held, but preemption is disabled */
1873 static inline void post_schedule(struct rq *rq)
1875 if (rq->post_schedule) {
1876 unsigned long flags;
1878 raw_spin_lock_irqsave(&rq->lock, flags);
1879 if (rq->curr->sched_class->post_schedule)
1880 rq->curr->sched_class->post_schedule(rq);
1881 raw_spin_unlock_irqrestore(&rq->lock, flags);
1883 rq->post_schedule = 0;
1889 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1893 static inline void post_schedule(struct rq *rq)
1900 * schedule_tail - first thing a freshly forked thread must call.
1901 * @prev: the thread we just switched away from.
1903 asmlinkage void schedule_tail(struct task_struct *prev)
1904 __releases(rq->lock)
1906 struct rq *rq = this_rq();
1908 finish_task_switch(rq, prev);
1911 * FIXME: do we need to worry about rq being invalidated by the
1916 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1917 /* In this case, finish_task_switch does not reenable preemption */
1920 if (current->set_child_tid)
1921 put_user(task_pid_vnr(current), current->set_child_tid);
1925 * context_switch - switch to the new MM and the new
1926 * thread's register state.
1929 context_switch(struct rq *rq, struct task_struct *prev,
1930 struct task_struct *next)
1932 struct mm_struct *mm, *oldmm;
1934 prepare_task_switch(rq, prev, next);
1937 oldmm = prev->active_mm;
1939 * For paravirt, this is coupled with an exit in switch_to to
1940 * combine the page table reload and the switch backend into
1943 arch_start_context_switch(prev);
1946 next->active_mm = oldmm;
1947 atomic_inc(&oldmm->mm_count);
1948 enter_lazy_tlb(oldmm, next);
1950 switch_mm(oldmm, mm, next);
1953 prev->active_mm = NULL;
1954 rq->prev_mm = oldmm;
1957 * Since the runqueue lock will be released by the next
1958 * task (which is an invalid locking op but in the case
1959 * of the scheduler it's an obvious special-case), so we
1960 * do an early lockdep release here:
1962 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1963 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1966 context_tracking_task_switch(prev, next);
1967 /* Here we just switch the register state and the stack. */
1968 switch_to(prev, next, prev);
1972 * this_rq must be evaluated again because prev may have moved
1973 * CPUs since it called schedule(), thus the 'rq' on its stack
1974 * frame will be invalid.
1976 finish_task_switch(this_rq(), prev);
1980 * nr_running and nr_context_switches:
1982 * externally visible scheduler statistics: current number of runnable
1983 * threads, total number of context switches performed since bootup.
1985 unsigned long nr_running(void)
1987 unsigned long i, sum = 0;
1989 for_each_online_cpu(i)
1990 sum += cpu_rq(i)->nr_running;
1995 unsigned long long nr_context_switches(void)
1998 unsigned long long sum = 0;
2000 for_each_possible_cpu(i)
2001 sum += cpu_rq(i)->nr_switches;
2006 unsigned long nr_iowait(void)
2008 unsigned long i, sum = 0;
2010 for_each_possible_cpu(i)
2011 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2016 unsigned long nr_iowait_cpu(int cpu)
2018 struct rq *this = cpu_rq(cpu);
2019 return atomic_read(&this->nr_iowait);
2022 unsigned long this_cpu_load(void)
2024 struct rq *this = this_rq();
2025 return this->cpu_load[0];
2030 * Global load-average calculations
2032 * We take a distributed and async approach to calculating the global load-avg
2033 * in order to minimize overhead.
2035 * The global load average is an exponentially decaying average of nr_running +
2036 * nr_uninterruptible.
2038 * Once every LOAD_FREQ:
2041 * for_each_possible_cpu(cpu)
2042 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2044 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2046 * Due to a number of reasons the above turns in the mess below:
2048 * - for_each_possible_cpu() is prohibitively expensive on machines with
2049 * serious number of cpus, therefore we need to take a distributed approach
2050 * to calculating nr_active.
2052 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2053 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2055 * So assuming nr_active := 0 when we start out -- true per definition, we
2056 * can simply take per-cpu deltas and fold those into a global accumulate
2057 * to obtain the same result. See calc_load_fold_active().
2059 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2060 * across the machine, we assume 10 ticks is sufficient time for every
2061 * cpu to have completed this task.
2063 * This places an upper-bound on the IRQ-off latency of the machine. Then
2064 * again, being late doesn't loose the delta, just wrecks the sample.
2066 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2067 * this would add another cross-cpu cacheline miss and atomic operation
2068 * to the wakeup path. Instead we increment on whatever cpu the task ran
2069 * when it went into uninterruptible state and decrement on whatever cpu
2070 * did the wakeup. This means that only the sum of nr_uninterruptible over
2071 * all cpus yields the correct result.
2073 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2076 /* Variables and functions for calc_load */
2077 static atomic_long_t calc_load_tasks;
2078 static unsigned long calc_load_update;
2079 unsigned long avenrun[3];
2080 EXPORT_SYMBOL(avenrun); /* should be removed */
2083 * get_avenrun - get the load average array
2084 * @loads: pointer to dest load array
2085 * @offset: offset to add
2086 * @shift: shift count to shift the result left
2088 * These values are estimates at best, so no need for locking.
2090 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2092 loads[0] = (avenrun[0] + offset) << shift;
2093 loads[1] = (avenrun[1] + offset) << shift;
2094 loads[2] = (avenrun[2] + offset) << shift;
2097 static long calc_load_fold_active(struct rq *this_rq)
2099 long nr_active, delta = 0;
2101 nr_active = this_rq->nr_running;
2102 nr_active += (long) this_rq->nr_uninterruptible;
2104 if (nr_active != this_rq->calc_load_active) {
2105 delta = nr_active - this_rq->calc_load_active;
2106 this_rq->calc_load_active = nr_active;
2113 * a1 = a0 * e + a * (1 - e)
2115 static unsigned long
2116 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2119 load += active * (FIXED_1 - exp);
2120 load += 1UL << (FSHIFT - 1);
2121 return load >> FSHIFT;
2126 * Handle NO_HZ for the global load-average.
2128 * Since the above described distributed algorithm to compute the global
2129 * load-average relies on per-cpu sampling from the tick, it is affected by
2132 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2133 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2134 * when we read the global state.
2136 * Obviously reality has to ruin such a delightfully simple scheme:
2138 * - When we go NO_HZ idle during the window, we can negate our sample
2139 * contribution, causing under-accounting.
2141 * We avoid this by keeping two idle-delta counters and flipping them
2142 * when the window starts, thus separating old and new NO_HZ load.
2144 * The only trick is the slight shift in index flip for read vs write.
2148 * |-|-----------|-|-----------|-|-----------|-|
2149 * r:0 0 1 1 0 0 1 1 0
2150 * w:0 1 1 0 0 1 1 0 0
2152 * This ensures we'll fold the old idle contribution in this window while
2153 * accumlating the new one.
2155 * - When we wake up from NO_HZ idle during the window, we push up our
2156 * contribution, since we effectively move our sample point to a known
2159 * This is solved by pushing the window forward, and thus skipping the
2160 * sample, for this cpu (effectively using the idle-delta for this cpu which
2161 * was in effect at the time the window opened). This also solves the issue
2162 * of having to deal with a cpu having been in NOHZ idle for multiple
2163 * LOAD_FREQ intervals.
2165 * When making the ILB scale, we should try to pull this in as well.
2167 static atomic_long_t calc_load_idle[2];
2168 static int calc_load_idx;
2170 static inline int calc_load_write_idx(void)
2172 int idx = calc_load_idx;
2175 * See calc_global_nohz(), if we observe the new index, we also
2176 * need to observe the new update time.
2181 * If the folding window started, make sure we start writing in the
2184 if (!time_before(jiffies, calc_load_update))
2190 static inline int calc_load_read_idx(void)
2192 return calc_load_idx & 1;
2195 void calc_load_enter_idle(void)
2197 struct rq *this_rq = this_rq();
2201 * We're going into NOHZ mode, if there's any pending delta, fold it
2202 * into the pending idle delta.
2204 delta = calc_load_fold_active(this_rq);
2206 int idx = calc_load_write_idx();
2207 atomic_long_add(delta, &calc_load_idle[idx]);
2211 void calc_load_exit_idle(void)
2213 struct rq *this_rq = this_rq();
2216 * If we're still before the sample window, we're done.
2218 if (time_before(jiffies, this_rq->calc_load_update))
2222 * We woke inside or after the sample window, this means we're already
2223 * accounted through the nohz accounting, so skip the entire deal and
2224 * sync up for the next window.
2226 this_rq->calc_load_update = calc_load_update;
2227 if (time_before(jiffies, this_rq->calc_load_update + 10))
2228 this_rq->calc_load_update += LOAD_FREQ;
2231 static long calc_load_fold_idle(void)
2233 int idx = calc_load_read_idx();
2236 if (atomic_long_read(&calc_load_idle[idx]))
2237 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2243 * fixed_power_int - compute: x^n, in O(log n) time
2245 * @x: base of the power
2246 * @frac_bits: fractional bits of @x
2247 * @n: power to raise @x to.
2249 * By exploiting the relation between the definition of the natural power
2250 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2251 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2252 * (where: n_i \elem {0, 1}, the binary vector representing n),
2253 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2254 * of course trivially computable in O(log_2 n), the length of our binary
2257 static unsigned long
2258 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2260 unsigned long result = 1UL << frac_bits;
2265 result += 1UL << (frac_bits - 1);
2266 result >>= frac_bits;
2272 x += 1UL << (frac_bits - 1);
2280 * a1 = a0 * e + a * (1 - e)
2282 * a2 = a1 * e + a * (1 - e)
2283 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2284 * = a0 * e^2 + a * (1 - e) * (1 + e)
2286 * a3 = a2 * e + a * (1 - e)
2287 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2288 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2292 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2293 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2294 * = a0 * e^n + a * (1 - e^n)
2296 * [1] application of the geometric series:
2299 * S_n := \Sum x^i = -------------
2302 static unsigned long
2303 calc_load_n(unsigned long load, unsigned long exp,
2304 unsigned long active, unsigned int n)
2307 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2311 * NO_HZ can leave us missing all per-cpu ticks calling
2312 * calc_load_account_active(), but since an idle CPU folds its delta into
2313 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2314 * in the pending idle delta if our idle period crossed a load cycle boundary.
2316 * Once we've updated the global active value, we need to apply the exponential
2317 * weights adjusted to the number of cycles missed.
2319 static void calc_global_nohz(void)
2321 long delta, active, n;
2323 if (!time_before(jiffies, calc_load_update + 10)) {
2325 * Catch-up, fold however many we are behind still
2327 delta = jiffies - calc_load_update - 10;
2328 n = 1 + (delta / LOAD_FREQ);
2330 active = atomic_long_read(&calc_load_tasks);
2331 active = active > 0 ? active * FIXED_1 : 0;
2333 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2334 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2335 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2337 calc_load_update += n * LOAD_FREQ;
2341 * Flip the idle index...
2343 * Make sure we first write the new time then flip the index, so that
2344 * calc_load_write_idx() will see the new time when it reads the new
2345 * index, this avoids a double flip messing things up.
2350 #else /* !CONFIG_NO_HZ */
2352 static inline long calc_load_fold_idle(void) { return 0; }
2353 static inline void calc_global_nohz(void) { }
2355 #endif /* CONFIG_NO_HZ */
2358 * calc_load - update the avenrun load estimates 10 ticks after the
2359 * CPUs have updated calc_load_tasks.
2361 void calc_global_load(unsigned long ticks)
2365 if (time_before(jiffies, calc_load_update + 10))
2369 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2371 delta = calc_load_fold_idle();
2373 atomic_long_add(delta, &calc_load_tasks);
2375 active = atomic_long_read(&calc_load_tasks);
2376 active = active > 0 ? active * FIXED_1 : 0;
2378 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2379 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2380 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2382 calc_load_update += LOAD_FREQ;
2385 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2391 * Called from update_cpu_load() to periodically update this CPU's
2394 static void calc_load_account_active(struct rq *this_rq)
2398 if (time_before(jiffies, this_rq->calc_load_update))
2401 delta = calc_load_fold_active(this_rq);
2403 atomic_long_add(delta, &calc_load_tasks);
2405 this_rq->calc_load_update += LOAD_FREQ;
2409 * End of global load-average stuff
2413 * The exact cpuload at various idx values, calculated at every tick would be
2414 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2416 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2417 * on nth tick when cpu may be busy, then we have:
2418 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2419 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2421 * decay_load_missed() below does efficient calculation of
2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2425 * The calculation is approximated on a 128 point scale.
2426 * degrade_zero_ticks is the number of ticks after which load at any
2427 * particular idx is approximated to be zero.
2428 * degrade_factor is a precomputed table, a row for each load idx.
2429 * Each column corresponds to degradation factor for a power of two ticks,
2430 * based on 128 point scale.
2432 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2433 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2435 * With this power of 2 load factors, we can degrade the load n times
2436 * by looking at 1 bits in n and doing as many mult/shift instead of
2437 * n mult/shifts needed by the exact degradation.
2439 #define DEGRADE_SHIFT 7
2440 static const unsigned char
2441 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2442 static const unsigned char
2443 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2444 {0, 0, 0, 0, 0, 0, 0, 0},
2445 {64, 32, 8, 0, 0, 0, 0, 0},
2446 {96, 72, 40, 12, 1, 0, 0},
2447 {112, 98, 75, 43, 15, 1, 0},
2448 {120, 112, 98, 76, 45, 16, 2} };
2451 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2452 * would be when CPU is idle and so we just decay the old load without
2453 * adding any new load.
2455 static unsigned long
2456 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2460 if (!missed_updates)
2463 if (missed_updates >= degrade_zero_ticks[idx])
2467 return load >> missed_updates;
2469 while (missed_updates) {
2470 if (missed_updates % 2)
2471 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2473 missed_updates >>= 1;
2480 * Update rq->cpu_load[] statistics. This function is usually called every
2481 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2482 * every tick. We fix it up based on jiffies.
2484 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2485 unsigned long pending_updates)
2489 this_rq->nr_load_updates++;
2491 /* Update our load: */
2492 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2493 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2494 unsigned long old_load, new_load;
2496 /* scale is effectively 1 << i now, and >> i divides by scale */
2498 old_load = this_rq->cpu_load[i];
2499 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2500 new_load = this_load;
2502 * Round up the averaging division if load is increasing. This
2503 * prevents us from getting stuck on 9 if the load is 10, for
2506 if (new_load > old_load)
2507 new_load += scale - 1;
2509 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2512 sched_avg_update(this_rq);
2517 * There is no sane way to deal with nohz on smp when using jiffies because the
2518 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2519 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2521 * Therefore we cannot use the delta approach from the regular tick since that
2522 * would seriously skew the load calculation. However we'll make do for those
2523 * updates happening while idle (nohz_idle_balance) or coming out of idle
2524 * (tick_nohz_idle_exit).
2526 * This means we might still be one tick off for nohz periods.
2530 * Called from nohz_idle_balance() to update the load ratings before doing the
2533 void update_idle_cpu_load(struct rq *this_rq)
2535 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2536 unsigned long load = this_rq->load.weight;
2537 unsigned long pending_updates;
2540 * bail if there's load or we're actually up-to-date.
2542 if (load || curr_jiffies == this_rq->last_load_update_tick)
2545 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2546 this_rq->last_load_update_tick = curr_jiffies;
2548 __update_cpu_load(this_rq, load, pending_updates);
2552 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2554 void update_cpu_load_nohz(void)
2556 struct rq *this_rq = this_rq();
2557 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2558 unsigned long pending_updates;
2560 if (curr_jiffies == this_rq->last_load_update_tick)
2563 raw_spin_lock(&this_rq->lock);
2564 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2565 if (pending_updates) {
2566 this_rq->last_load_update_tick = curr_jiffies;
2568 * We were idle, this means load 0, the current load might be
2569 * !0 due to remote wakeups and the sort.
2571 __update_cpu_load(this_rq, 0, pending_updates);
2573 raw_spin_unlock(&this_rq->lock);
2575 #endif /* CONFIG_NO_HZ */
2578 * Called from scheduler_tick()
2580 static void update_cpu_load_active(struct rq *this_rq)
2583 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2585 this_rq->last_load_update_tick = jiffies;
2586 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2588 calc_load_account_active(this_rq);
2594 * sched_exec - execve() is a valuable balancing opportunity, because at
2595 * this point the task has the smallest effective memory and cache footprint.
2597 void sched_exec(void)
2599 struct task_struct *p = current;
2600 unsigned long flags;
2603 raw_spin_lock_irqsave(&p->pi_lock, flags);
2604 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2605 if (dest_cpu == smp_processor_id())
2608 if (likely(cpu_active(dest_cpu))) {
2609 struct migration_arg arg = { p, dest_cpu };
2611 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2612 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2616 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2621 DEFINE_PER_CPU(struct kernel_stat, kstat);
2622 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2624 EXPORT_PER_CPU_SYMBOL(kstat);
2625 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2628 * Return any ns on the sched_clock that have not yet been accounted in
2629 * @p in case that task is currently running.
2631 * Called with task_rq_lock() held on @rq.
2633 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2637 if (task_current(rq, p)) {
2638 update_rq_clock(rq);
2639 ns = rq->clock_task - p->se.exec_start;
2647 unsigned long long task_delta_exec(struct task_struct *p)
2649 unsigned long flags;
2653 rq = task_rq_lock(p, &flags);
2654 ns = do_task_delta_exec(p, rq);
2655 task_rq_unlock(rq, p, &flags);
2661 * Return accounted runtime for the task.
2662 * In case the task is currently running, return the runtime plus current's
2663 * pending runtime that have not been accounted yet.
2665 unsigned long long task_sched_runtime(struct task_struct *p)
2667 unsigned long flags;
2671 rq = task_rq_lock(p, &flags);
2672 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2673 task_rq_unlock(rq, p, &flags);
2679 * This function gets called by the timer code, with HZ frequency.
2680 * We call it with interrupts disabled.
2682 void scheduler_tick(void)
2684 int cpu = smp_processor_id();
2685 struct rq *rq = cpu_rq(cpu);
2686 struct task_struct *curr = rq->curr;
2690 raw_spin_lock(&rq->lock);
2691 update_rq_clock(rq);
2692 update_cpu_load_active(rq);
2693 curr->sched_class->task_tick(rq, curr, 0);
2694 raw_spin_unlock(&rq->lock);
2696 perf_event_task_tick();
2699 rq->idle_balance = idle_cpu(cpu);
2700 trigger_load_balance(rq, cpu);
2704 notrace unsigned long get_parent_ip(unsigned long addr)
2706 if (in_lock_functions(addr)) {
2707 addr = CALLER_ADDR2;
2708 if (in_lock_functions(addr))
2709 addr = CALLER_ADDR3;
2714 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2715 defined(CONFIG_PREEMPT_TRACER))
2717 void __kprobes add_preempt_count(int val)
2719 #ifdef CONFIG_DEBUG_PREEMPT
2723 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2726 preempt_count() += val;
2727 #ifdef CONFIG_DEBUG_PREEMPT
2729 * Spinlock count overflowing soon?
2731 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2734 if (preempt_count() == val)
2735 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2737 EXPORT_SYMBOL(add_preempt_count);
2739 void __kprobes sub_preempt_count(int val)
2741 #ifdef CONFIG_DEBUG_PREEMPT
2745 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2748 * Is the spinlock portion underflowing?
2750 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2751 !(preempt_count() & PREEMPT_MASK)))
2755 if (preempt_count() == val)
2756 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2757 preempt_count() -= val;
2759 EXPORT_SYMBOL(sub_preempt_count);
2764 * Print scheduling while atomic bug:
2766 static noinline void __schedule_bug(struct task_struct *prev)
2768 if (oops_in_progress)
2771 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2772 prev->comm, prev->pid, preempt_count());
2774 debug_show_held_locks(prev);
2776 if (irqs_disabled())
2777 print_irqtrace_events(prev);
2779 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2783 * Various schedule()-time debugging checks and statistics:
2785 static inline void schedule_debug(struct task_struct *prev)
2788 * Test if we are atomic. Since do_exit() needs to call into
2789 * schedule() atomically, we ignore that path for now.
2790 * Otherwise, whine if we are scheduling when we should not be.
2792 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2793 __schedule_bug(prev);
2796 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2798 schedstat_inc(this_rq(), sched_count);
2801 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2803 if (prev->on_rq || rq->skip_clock_update < 0)
2804 update_rq_clock(rq);
2805 prev->sched_class->put_prev_task(rq, prev);
2809 * Pick up the highest-prio task:
2811 static inline struct task_struct *
2812 pick_next_task(struct rq *rq)
2814 const struct sched_class *class;
2815 struct task_struct *p;
2818 * Optimization: we know that if all tasks are in
2819 * the fair class we can call that function directly:
2821 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2822 p = fair_sched_class.pick_next_task(rq);
2827 for_each_class(class) {
2828 p = class->pick_next_task(rq);
2833 BUG(); /* the idle class will always have a runnable task */
2837 * __schedule() is the main scheduler function.
2839 * The main means of driving the scheduler and thus entering this function are:
2841 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2843 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2844 * paths. For example, see arch/x86/entry_64.S.
2846 * To drive preemption between tasks, the scheduler sets the flag in timer
2847 * interrupt handler scheduler_tick().
2849 * 3. Wakeups don't really cause entry into schedule(). They add a
2850 * task to the run-queue and that's it.
2852 * Now, if the new task added to the run-queue preempts the current
2853 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2854 * called on the nearest possible occasion:
2856 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2858 * - in syscall or exception context, at the next outmost
2859 * preempt_enable(). (this might be as soon as the wake_up()'s
2862 * - in IRQ context, return from interrupt-handler to
2863 * preemptible context
2865 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2868 * - cond_resched() call
2869 * - explicit schedule() call
2870 * - return from syscall or exception to user-space
2871 * - return from interrupt-handler to user-space
2873 static void __sched __schedule(void)
2875 struct task_struct *prev, *next;
2876 unsigned long *switch_count;
2882 cpu = smp_processor_id();
2884 rcu_note_context_switch(cpu);
2887 schedule_debug(prev);
2889 if (sched_feat(HRTICK))
2892 raw_spin_lock_irq(&rq->lock);
2894 switch_count = &prev->nivcsw;
2895 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2896 if (unlikely(signal_pending_state(prev->state, prev))) {
2897 prev->state = TASK_RUNNING;
2899 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2903 * If a worker went to sleep, notify and ask workqueue
2904 * whether it wants to wake up a task to maintain
2907 if (prev->flags & PF_WQ_WORKER) {
2908 struct task_struct *to_wakeup;
2910 to_wakeup = wq_worker_sleeping(prev, cpu);
2912 try_to_wake_up_local(to_wakeup);
2915 switch_count = &prev->nvcsw;
2918 pre_schedule(rq, prev);
2920 if (unlikely(!rq->nr_running))
2921 idle_balance(cpu, rq);
2923 put_prev_task(rq, prev);
2924 next = pick_next_task(rq);
2925 clear_tsk_need_resched(prev);
2926 rq->skip_clock_update = 0;
2928 if (likely(prev != next)) {
2933 context_switch(rq, prev, next); /* unlocks the rq */
2935 * The context switch have flipped the stack from under us
2936 * and restored the local variables which were saved when
2937 * this task called schedule() in the past. prev == current
2938 * is still correct, but it can be moved to another cpu/rq.
2940 cpu = smp_processor_id();
2943 raw_spin_unlock_irq(&rq->lock);
2947 sched_preempt_enable_no_resched();
2952 static inline void sched_submit_work(struct task_struct *tsk)
2954 if (!tsk->state || tsk_is_pi_blocked(tsk))
2957 * If we are going to sleep and we have plugged IO queued,
2958 * make sure to submit it to avoid deadlocks.
2960 if (blk_needs_flush_plug(tsk))
2961 blk_schedule_flush_plug(tsk);
2964 asmlinkage void __sched schedule(void)
2966 struct task_struct *tsk = current;
2968 sched_submit_work(tsk);
2971 EXPORT_SYMBOL(schedule);
2973 #ifdef CONFIG_CONTEXT_TRACKING
2974 asmlinkage void __sched schedule_user(void)
2977 * If we come here after a random call to set_need_resched(),
2978 * or we have been woken up remotely but the IPI has not yet arrived,
2979 * we haven't yet exited the RCU idle mode. Do it here manually until
2980 * we find a better solution.
2989 * schedule_preempt_disabled - called with preemption disabled
2991 * Returns with preemption disabled. Note: preempt_count must be 1
2993 void __sched schedule_preempt_disabled(void)
2995 sched_preempt_enable_no_resched();
3000 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3002 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3004 if (lock->owner != owner)
3008 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3009 * lock->owner still matches owner, if that fails, owner might
3010 * point to free()d memory, if it still matches, the rcu_read_lock()
3011 * ensures the memory stays valid.
3015 return owner->on_cpu;
3019 * Look out! "owner" is an entirely speculative pointer
3020 * access and not reliable.
3022 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3024 if (!sched_feat(OWNER_SPIN))
3028 while (owner_running(lock, owner)) {
3032 arch_mutex_cpu_relax();
3037 * We break out the loop above on need_resched() and when the
3038 * owner changed, which is a sign for heavy contention. Return
3039 * success only when lock->owner is NULL.
3041 return lock->owner == NULL;
3045 #ifdef CONFIG_PREEMPT
3047 * this is the entry point to schedule() from in-kernel preemption
3048 * off of preempt_enable. Kernel preemptions off return from interrupt
3049 * occur there and call schedule directly.
3051 asmlinkage void __sched notrace preempt_schedule(void)
3053 struct thread_info *ti = current_thread_info();
3056 * If there is a non-zero preempt_count or interrupts are disabled,
3057 * we do not want to preempt the current task. Just return..
3059 if (likely(ti->preempt_count || irqs_disabled()))
3063 add_preempt_count_notrace(PREEMPT_ACTIVE);
3065 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3068 * Check again in case we missed a preemption opportunity
3069 * between schedule and now.
3072 } while (need_resched());
3074 EXPORT_SYMBOL(preempt_schedule);
3077 * this is the entry point to schedule() from kernel preemption
3078 * off of irq context.
3079 * Note, that this is called and return with irqs disabled. This will
3080 * protect us against recursive calling from irq.
3082 asmlinkage void __sched preempt_schedule_irq(void)
3084 struct thread_info *ti = current_thread_info();
3086 /* Catch callers which need to be fixed */
3087 BUG_ON(ti->preempt_count || !irqs_disabled());
3091 add_preempt_count(PREEMPT_ACTIVE);
3094 local_irq_disable();
3095 sub_preempt_count(PREEMPT_ACTIVE);
3098 * Check again in case we missed a preemption opportunity
3099 * between schedule and now.
3102 } while (need_resched());
3105 #endif /* CONFIG_PREEMPT */
3107 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3110 return try_to_wake_up(curr->private, mode, wake_flags);
3112 EXPORT_SYMBOL(default_wake_function);
3115 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3116 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3117 * number) then we wake all the non-exclusive tasks and one exclusive task.
3119 * There are circumstances in which we can try to wake a task which has already
3120 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3121 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3123 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3124 int nr_exclusive, int wake_flags, void *key)
3126 wait_queue_t *curr, *next;
3128 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3129 unsigned flags = curr->flags;
3131 if (curr->func(curr, mode, wake_flags, key) &&
3132 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3138 * __wake_up - wake up threads blocked on a waitqueue.
3140 * @mode: which threads
3141 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3142 * @key: is directly passed to the wakeup function
3144 * It may be assumed that this function implies a write memory barrier before
3145 * changing the task state if and only if any tasks are woken up.
3147 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3148 int nr_exclusive, void *key)
3150 unsigned long flags;
3152 spin_lock_irqsave(&q->lock, flags);
3153 __wake_up_common(q, mode, nr_exclusive, 0, key);
3154 spin_unlock_irqrestore(&q->lock, flags);
3156 EXPORT_SYMBOL(__wake_up);
3159 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3161 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3163 __wake_up_common(q, mode, nr, 0, NULL);
3165 EXPORT_SYMBOL_GPL(__wake_up_locked);
3167 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3169 __wake_up_common(q, mode, 1, 0, key);
3171 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3174 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3176 * @mode: which threads
3177 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3178 * @key: opaque value to be passed to wakeup targets
3180 * The sync wakeup differs that the waker knows that it will schedule
3181 * away soon, so while the target thread will be woken up, it will not
3182 * be migrated to another CPU - ie. the two threads are 'synchronized'
3183 * with each other. This can prevent needless bouncing between CPUs.
3185 * On UP it can prevent extra preemption.
3187 * It may be assumed that this function implies a write memory barrier before
3188 * changing the task state if and only if any tasks are woken up.
3190 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3191 int nr_exclusive, void *key)
3193 unsigned long flags;
3194 int wake_flags = WF_SYNC;
3199 if (unlikely(!nr_exclusive))
3202 spin_lock_irqsave(&q->lock, flags);
3203 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3204 spin_unlock_irqrestore(&q->lock, flags);
3206 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3209 * __wake_up_sync - see __wake_up_sync_key()
3211 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3213 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3215 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3218 * complete: - signals a single thread waiting on this completion
3219 * @x: holds the state of this particular completion
3221 * This will wake up a single thread waiting on this completion. Threads will be
3222 * awakened in the same order in which they were queued.
3224 * See also complete_all(), wait_for_completion() and related routines.
3226 * It may be assumed that this function implies a write memory barrier before
3227 * changing the task state if and only if any tasks are woken up.
3229 void complete(struct completion *x)
3231 unsigned long flags;
3233 spin_lock_irqsave(&x->wait.lock, flags);
3235 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3236 spin_unlock_irqrestore(&x->wait.lock, flags);
3238 EXPORT_SYMBOL(complete);
3241 * complete_all: - signals all threads waiting on this completion
3242 * @x: holds the state of this particular completion
3244 * This will wake up all threads waiting on this particular completion event.
3246 * It may be assumed that this function implies a write memory barrier before
3247 * changing the task state if and only if any tasks are woken up.
3249 void complete_all(struct completion *x)
3251 unsigned long flags;
3253 spin_lock_irqsave(&x->wait.lock, flags);
3254 x->done += UINT_MAX/2;
3255 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3256 spin_unlock_irqrestore(&x->wait.lock, flags);
3258 EXPORT_SYMBOL(complete_all);
3260 static inline long __sched
3261 do_wait_for_common(struct completion *x,
3262 long (*action)(long), long timeout, int state)
3265 DECLARE_WAITQUEUE(wait, current);
3267 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3269 if (signal_pending_state(state, current)) {
3270 timeout = -ERESTARTSYS;
3273 __set_current_state(state);
3274 spin_unlock_irq(&x->wait.lock);
3275 timeout = action(timeout);
3276 spin_lock_irq(&x->wait.lock);
3277 } while (!x->done && timeout);
3278 __remove_wait_queue(&x->wait, &wait);
3283 return timeout ?: 1;
3286 static inline long __sched
3287 __wait_for_common(struct completion *x,
3288 long (*action)(long), long timeout, int state)
3292 spin_lock_irq(&x->wait.lock);
3293 timeout = do_wait_for_common(x, action, timeout, state);
3294 spin_unlock_irq(&x->wait.lock);
3299 wait_for_common(struct completion *x, long timeout, int state)
3301 return __wait_for_common(x, schedule_timeout, timeout, state);
3305 wait_for_common_io(struct completion *x, long timeout, int state)
3307 return __wait_for_common(x, io_schedule_timeout, timeout, state);
3311 * wait_for_completion: - waits for completion of a task
3312 * @x: holds the state of this particular completion
3314 * This waits to be signaled for completion of a specific task. It is NOT
3315 * interruptible and there is no timeout.
3317 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3318 * and interrupt capability. Also see complete().
3320 void __sched wait_for_completion(struct completion *x)
3322 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3324 EXPORT_SYMBOL(wait_for_completion);
3327 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3328 * @x: holds the state of this particular completion
3329 * @timeout: timeout value in jiffies
3331 * This waits for either a completion of a specific task to be signaled or for a
3332 * specified timeout to expire. The timeout is in jiffies. It is not
3335 * The return value is 0 if timed out, and positive (at least 1, or number of
3336 * jiffies left till timeout) if completed.
3338 unsigned long __sched
3339 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3341 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3343 EXPORT_SYMBOL(wait_for_completion_timeout);
3346 * wait_for_completion_io: - waits for completion of a task
3347 * @x: holds the state of this particular completion
3349 * This waits to be signaled for completion of a specific task. It is NOT
3350 * interruptible and there is no timeout. The caller is accounted as waiting
3353 void __sched wait_for_completion_io(struct completion *x)
3355 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3357 EXPORT_SYMBOL(wait_for_completion_io);
3360 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3361 * @x: holds the state of this particular completion
3362 * @timeout: timeout value in jiffies
3364 * This waits for either a completion of a specific task to be signaled or for a
3365 * specified timeout to expire. The timeout is in jiffies. It is not
3366 * interruptible. The caller is accounted as waiting for IO.
3368 * The return value is 0 if timed out, and positive (at least 1, or number of
3369 * jiffies left till timeout) if completed.
3371 unsigned long __sched
3372 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3374 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3376 EXPORT_SYMBOL(wait_for_completion_io_timeout);
3379 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3380 * @x: holds the state of this particular completion
3382 * This waits for completion of a specific task to be signaled. It is
3385 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3387 int __sched wait_for_completion_interruptible(struct completion *x)
3389 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3390 if (t == -ERESTARTSYS)
3394 EXPORT_SYMBOL(wait_for_completion_interruptible);
3397 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3398 * @x: holds the state of this particular completion
3399 * @timeout: timeout value in jiffies
3401 * This waits for either a completion of a specific task to be signaled or for a
3402 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3404 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3405 * positive (at least 1, or number of jiffies left till timeout) if completed.
3408 wait_for_completion_interruptible_timeout(struct completion *x,
3409 unsigned long timeout)
3411 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3413 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3416 * wait_for_completion_killable: - waits for completion of a task (killable)
3417 * @x: holds the state of this particular completion
3419 * This waits to be signaled for completion of a specific task. It can be
3420 * interrupted by a kill signal.
3422 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3424 int __sched wait_for_completion_killable(struct completion *x)
3426 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3427 if (t == -ERESTARTSYS)
3431 EXPORT_SYMBOL(wait_for_completion_killable);
3434 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3435 * @x: holds the state of this particular completion
3436 * @timeout: timeout value in jiffies
3438 * This waits for either a completion of a specific task to be
3439 * signaled or for a specified timeout to expire. It can be
3440 * interrupted by a kill signal. The timeout is in jiffies.
3442 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3443 * positive (at least 1, or number of jiffies left till timeout) if completed.
3446 wait_for_completion_killable_timeout(struct completion *x,
3447 unsigned long timeout)
3449 return wait_for_common(x, timeout, TASK_KILLABLE);
3451 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3454 * try_wait_for_completion - try to decrement a completion without blocking
3455 * @x: completion structure
3457 * Returns: 0 if a decrement cannot be done without blocking
3458 * 1 if a decrement succeeded.
3460 * If a completion is being used as a counting completion,
3461 * attempt to decrement the counter without blocking. This
3462 * enables us to avoid waiting if the resource the completion
3463 * is protecting is not available.
3465 bool try_wait_for_completion(struct completion *x)
3467 unsigned long flags;
3470 spin_lock_irqsave(&x->wait.lock, flags);
3475 spin_unlock_irqrestore(&x->wait.lock, flags);
3478 EXPORT_SYMBOL(try_wait_for_completion);
3481 * completion_done - Test to see if a completion has any waiters
3482 * @x: completion structure
3484 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3485 * 1 if there are no waiters.
3488 bool completion_done(struct completion *x)
3490 unsigned long flags;
3493 spin_lock_irqsave(&x->wait.lock, flags);
3496 spin_unlock_irqrestore(&x->wait.lock, flags);
3499 EXPORT_SYMBOL(completion_done);
3502 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3504 unsigned long flags;
3507 init_waitqueue_entry(&wait, current);
3509 __set_current_state(state);
3511 spin_lock_irqsave(&q->lock, flags);
3512 __add_wait_queue(q, &wait);
3513 spin_unlock(&q->lock);
3514 timeout = schedule_timeout(timeout);
3515 spin_lock_irq(&q->lock);
3516 __remove_wait_queue(q, &wait);
3517 spin_unlock_irqrestore(&q->lock, flags);
3522 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3524 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3526 EXPORT_SYMBOL(interruptible_sleep_on);
3529 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3531 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3533 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3535 void __sched sleep_on(wait_queue_head_t *q)
3537 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3539 EXPORT_SYMBOL(sleep_on);
3541 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3543 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3545 EXPORT_SYMBOL(sleep_on_timeout);
3547 #ifdef CONFIG_RT_MUTEXES
3550 * rt_mutex_setprio - set the current priority of a task
3552 * @prio: prio value (kernel-internal form)
3554 * This function changes the 'effective' priority of a task. It does
3555 * not touch ->normal_prio like __setscheduler().
3557 * Used by the rt_mutex code to implement priority inheritance logic.
3559 void rt_mutex_setprio(struct task_struct *p, int prio)
3561 int oldprio, on_rq, running;
3563 const struct sched_class *prev_class;
3565 BUG_ON(prio < 0 || prio > MAX_PRIO);
3567 rq = __task_rq_lock(p);
3570 * Idle task boosting is a nono in general. There is one
3571 * exception, when PREEMPT_RT and NOHZ is active:
3573 * The idle task calls get_next_timer_interrupt() and holds
3574 * the timer wheel base->lock on the CPU and another CPU wants
3575 * to access the timer (probably to cancel it). We can safely
3576 * ignore the boosting request, as the idle CPU runs this code
3577 * with interrupts disabled and will complete the lock
3578 * protected section without being interrupted. So there is no
3579 * real need to boost.
3581 if (unlikely(p == rq->idle)) {
3582 WARN_ON(p != rq->curr);
3583 WARN_ON(p->pi_blocked_on);
3587 trace_sched_pi_setprio(p, prio);
3589 prev_class = p->sched_class;
3591 running = task_current(rq, p);
3593 dequeue_task(rq, p, 0);
3595 p->sched_class->put_prev_task(rq, p);
3598 p->sched_class = &rt_sched_class;
3600 p->sched_class = &fair_sched_class;
3605 p->sched_class->set_curr_task(rq);
3607 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3609 check_class_changed(rq, p, prev_class, oldprio);
3611 __task_rq_unlock(rq);
3614 void set_user_nice(struct task_struct *p, long nice)
3616 int old_prio, delta, on_rq;
3617 unsigned long flags;
3620 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3623 * We have to be careful, if called from sys_setpriority(),
3624 * the task might be in the middle of scheduling on another CPU.
3626 rq = task_rq_lock(p, &flags);
3628 * The RT priorities are set via sched_setscheduler(), but we still
3629 * allow the 'normal' nice value to be set - but as expected
3630 * it wont have any effect on scheduling until the task is
3631 * SCHED_FIFO/SCHED_RR:
3633 if (task_has_rt_policy(p)) {
3634 p->static_prio = NICE_TO_PRIO(nice);
3639 dequeue_task(rq, p, 0);
3641 p->static_prio = NICE_TO_PRIO(nice);
3644 p->prio = effective_prio(p);
3645 delta = p->prio - old_prio;
3648 enqueue_task(rq, p, 0);
3650 * If the task increased its priority or is running and
3651 * lowered its priority, then reschedule its CPU:
3653 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3654 resched_task(rq->curr);
3657 task_rq_unlock(rq, p, &flags);
3659 EXPORT_SYMBOL(set_user_nice);
3662 * can_nice - check if a task can reduce its nice value
3666 int can_nice(const struct task_struct *p, const int nice)
3668 /* convert nice value [19,-20] to rlimit style value [1,40] */
3669 int nice_rlim = 20 - nice;
3671 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3672 capable(CAP_SYS_NICE));
3675 #ifdef __ARCH_WANT_SYS_NICE
3678 * sys_nice - change the priority of the current process.
3679 * @increment: priority increment
3681 * sys_setpriority is a more generic, but much slower function that
3682 * does similar things.
3684 SYSCALL_DEFINE1(nice, int, increment)
3689 * Setpriority might change our priority at the same moment.
3690 * We don't have to worry. Conceptually one call occurs first
3691 * and we have a single winner.
3693 if (increment < -40)
3698 nice = TASK_NICE(current) + increment;
3704 if (increment < 0 && !can_nice(current, nice))
3707 retval = security_task_setnice(current, nice);
3711 set_user_nice(current, nice);
3718 * task_prio - return the priority value of a given task.
3719 * @p: the task in question.
3721 * This is the priority value as seen by users in /proc.
3722 * RT tasks are offset by -200. Normal tasks are centered
3723 * around 0, value goes from -16 to +15.
3725 int task_prio(const struct task_struct *p)
3727 return p->prio - MAX_RT_PRIO;
3731 * task_nice - return the nice value of a given task.
3732 * @p: the task in question.
3734 int task_nice(const struct task_struct *p)
3736 return TASK_NICE(p);
3738 EXPORT_SYMBOL(task_nice);
3741 * idle_cpu - is a given cpu idle currently?
3742 * @cpu: the processor in question.
3744 int idle_cpu(int cpu)
3746 struct rq *rq = cpu_rq(cpu);
3748 if (rq->curr != rq->idle)
3755 if (!llist_empty(&rq->wake_list))
3763 * idle_task - return the idle task for a given cpu.
3764 * @cpu: the processor in question.
3766 struct task_struct *idle_task(int cpu)
3768 return cpu_rq(cpu)->idle;
3772 * find_process_by_pid - find a process with a matching PID value.
3773 * @pid: the pid in question.
3775 static struct task_struct *find_process_by_pid(pid_t pid)
3777 return pid ? find_task_by_vpid(pid) : current;
3780 /* Actually do priority change: must hold rq lock. */
3782 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3785 p->rt_priority = prio;
3786 p->normal_prio = normal_prio(p);
3787 /* we are holding p->pi_lock already */
3788 p->prio = rt_mutex_getprio(p);
3789 if (rt_prio(p->prio))
3790 p->sched_class = &rt_sched_class;
3792 p->sched_class = &fair_sched_class;
3797 * check the target process has a UID that matches the current process's
3799 static bool check_same_owner(struct task_struct *p)
3801 const struct cred *cred = current_cred(), *pcred;
3805 pcred = __task_cred(p);
3806 match = (uid_eq(cred->euid, pcred->euid) ||
3807 uid_eq(cred->euid, pcred->uid));
3812 static int __sched_setscheduler(struct task_struct *p, int policy,
3813 const struct sched_param *param, bool user)
3815 int retval, oldprio, oldpolicy = -1, on_rq, running;
3816 unsigned long flags;
3817 const struct sched_class *prev_class;
3821 /* may grab non-irq protected spin_locks */
3822 BUG_ON(in_interrupt());
3824 /* double check policy once rq lock held */
3826 reset_on_fork = p->sched_reset_on_fork;
3827 policy = oldpolicy = p->policy;
3829 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3830 policy &= ~SCHED_RESET_ON_FORK;
3832 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3833 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3834 policy != SCHED_IDLE)
3839 * Valid priorities for SCHED_FIFO and SCHED_RR are
3840 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3841 * SCHED_BATCH and SCHED_IDLE is 0.
3843 if (param->sched_priority < 0 ||
3844 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3845 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3847 if (rt_policy(policy) != (param->sched_priority != 0))
3851 * Allow unprivileged RT tasks to decrease priority:
3853 if (user && !capable(CAP_SYS_NICE)) {
3854 if (rt_policy(policy)) {
3855 unsigned long rlim_rtprio =
3856 task_rlimit(p, RLIMIT_RTPRIO);
3858 /* can't set/change the rt policy */
3859 if (policy != p->policy && !rlim_rtprio)
3862 /* can't increase priority */
3863 if (param->sched_priority > p->rt_priority &&
3864 param->sched_priority > rlim_rtprio)
3869 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3870 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3872 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3873 if (!can_nice(p, TASK_NICE(p)))
3877 /* can't change other user's priorities */
3878 if (!check_same_owner(p))
3881 /* Normal users shall not reset the sched_reset_on_fork flag */
3882 if (p->sched_reset_on_fork && !reset_on_fork)
3887 retval = security_task_setscheduler(p);
3893 * make sure no PI-waiters arrive (or leave) while we are
3894 * changing the priority of the task:
3896 * To be able to change p->policy safely, the appropriate
3897 * runqueue lock must be held.
3899 rq = task_rq_lock(p, &flags);
3902 * Changing the policy of the stop threads its a very bad idea
3904 if (p == rq->stop) {
3905 task_rq_unlock(rq, p, &flags);
3910 * If not changing anything there's no need to proceed further:
3912 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3913 param->sched_priority == p->rt_priority))) {
3914 task_rq_unlock(rq, p, &flags);
3918 #ifdef CONFIG_RT_GROUP_SCHED
3921 * Do not allow realtime tasks into groups that have no runtime
3924 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3925 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3926 !task_group_is_autogroup(task_group(p))) {
3927 task_rq_unlock(rq, p, &flags);
3933 /* recheck policy now with rq lock held */
3934 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3935 policy = oldpolicy = -1;
3936 task_rq_unlock(rq, p, &flags);
3940 running = task_current(rq, p);
3942 dequeue_task(rq, p, 0);
3944 p->sched_class->put_prev_task(rq, p);
3946 p->sched_reset_on_fork = reset_on_fork;
3949 prev_class = p->sched_class;
3950 __setscheduler(rq, p, policy, param->sched_priority);
3953 p->sched_class->set_curr_task(rq);
3955 enqueue_task(rq, p, 0);
3957 check_class_changed(rq, p, prev_class, oldprio);
3958 task_rq_unlock(rq, p, &flags);
3960 rt_mutex_adjust_pi(p);
3966 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3967 * @p: the task in question.
3968 * @policy: new policy.
3969 * @param: structure containing the new RT priority.
3971 * NOTE that the task may be already dead.
3973 int sched_setscheduler(struct task_struct *p, int policy,
3974 const struct sched_param *param)
3976 return __sched_setscheduler(p, policy, param, true);
3978 EXPORT_SYMBOL_GPL(sched_setscheduler);
3981 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3982 * @p: the task in question.
3983 * @policy: new policy.
3984 * @param: structure containing the new RT priority.
3986 * Just like sched_setscheduler, only don't bother checking if the
3987 * current context has permission. For example, this is needed in
3988 * stop_machine(): we create temporary high priority worker threads,
3989 * but our caller might not have that capability.
3991 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3992 const struct sched_param *param)
3994 return __sched_setscheduler(p, policy, param, false);
3998 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4000 struct sched_param lparam;
4001 struct task_struct *p;
4004 if (!param || pid < 0)
4006 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4011 p = find_process_by_pid(pid);
4013 retval = sched_setscheduler(p, policy, &lparam);
4020 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4021 * @pid: the pid in question.
4022 * @policy: new policy.
4023 * @param: structure containing the new RT priority.
4025 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4026 struct sched_param __user *, param)
4028 /* negative values for policy are not valid */
4032 return do_sched_setscheduler(pid, policy, param);
4036 * sys_sched_setparam - set/change the RT priority of a thread
4037 * @pid: the pid in question.
4038 * @param: structure containing the new RT priority.
4040 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4042 return do_sched_setscheduler(pid, -1, param);
4046 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4047 * @pid: the pid in question.
4049 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4051 struct task_struct *p;
4059 p = find_process_by_pid(pid);
4061 retval = security_task_getscheduler(p);
4064 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4071 * sys_sched_getparam - get the RT priority of a thread
4072 * @pid: the pid in question.
4073 * @param: structure containing the RT priority.
4075 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4077 struct sched_param lp;
4078 struct task_struct *p;
4081 if (!param || pid < 0)
4085 p = find_process_by_pid(pid);
4090 retval = security_task_getscheduler(p);
4094 lp.sched_priority = p->rt_priority;
4098 * This one might sleep, we cannot do it with a spinlock held ...
4100 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4109 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4111 cpumask_var_t cpus_allowed, new_mask;
4112 struct task_struct *p;
4118 p = find_process_by_pid(pid);
4125 /* Prevent p going away */
4129 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4133 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4135 goto out_free_cpus_allowed;
4138 if (!check_same_owner(p)) {
4140 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4147 retval = security_task_setscheduler(p);
4151 cpuset_cpus_allowed(p, cpus_allowed);
4152 cpumask_and(new_mask, in_mask, cpus_allowed);
4154 retval = set_cpus_allowed_ptr(p, new_mask);
4157 cpuset_cpus_allowed(p, cpus_allowed);
4158 if (!cpumask_subset(new_mask, cpus_allowed)) {
4160 * We must have raced with a concurrent cpuset
4161 * update. Just reset the cpus_allowed to the
4162 * cpuset's cpus_allowed
4164 cpumask_copy(new_mask, cpus_allowed);
4169 free_cpumask_var(new_mask);
4170 out_free_cpus_allowed:
4171 free_cpumask_var(cpus_allowed);
4178 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4179 struct cpumask *new_mask)
4181 if (len < cpumask_size())
4182 cpumask_clear(new_mask);
4183 else if (len > cpumask_size())
4184 len = cpumask_size();
4186 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4190 * sys_sched_setaffinity - set the cpu affinity of a process
4191 * @pid: pid of the process
4192 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4193 * @user_mask_ptr: user-space pointer to the new cpu mask
4195 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4196 unsigned long __user *, user_mask_ptr)
4198 cpumask_var_t new_mask;
4201 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4204 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4206 retval = sched_setaffinity(pid, new_mask);
4207 free_cpumask_var(new_mask);
4211 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4213 struct task_struct *p;
4214 unsigned long flags;
4221 p = find_process_by_pid(pid);
4225 retval = security_task_getscheduler(p);
4229 raw_spin_lock_irqsave(&p->pi_lock, flags);
4230 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4231 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4241 * sys_sched_getaffinity - get the cpu affinity of a process
4242 * @pid: pid of the process
4243 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4244 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4246 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4247 unsigned long __user *, user_mask_ptr)
4252 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4254 if (len & (sizeof(unsigned long)-1))
4257 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4260 ret = sched_getaffinity(pid, mask);
4262 size_t retlen = min_t(size_t, len, cpumask_size());
4264 if (copy_to_user(user_mask_ptr, mask, retlen))
4269 free_cpumask_var(mask);
4275 * sys_sched_yield - yield the current processor to other threads.
4277 * This function yields the current CPU to other tasks. If there are no
4278 * other threads running on this CPU then this function will return.
4280 SYSCALL_DEFINE0(sched_yield)
4282 struct rq *rq = this_rq_lock();
4284 schedstat_inc(rq, yld_count);
4285 current->sched_class->yield_task(rq);
4288 * Since we are going to call schedule() anyway, there's
4289 * no need to preempt or enable interrupts:
4291 __release(rq->lock);
4292 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4293 do_raw_spin_unlock(&rq->lock);
4294 sched_preempt_enable_no_resched();
4301 static inline int should_resched(void)
4303 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4306 static void __cond_resched(void)
4308 add_preempt_count(PREEMPT_ACTIVE);
4310 sub_preempt_count(PREEMPT_ACTIVE);
4313 int __sched _cond_resched(void)
4315 if (should_resched()) {
4321 EXPORT_SYMBOL(_cond_resched);
4324 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4325 * call schedule, and on return reacquire the lock.
4327 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4328 * operations here to prevent schedule() from being called twice (once via
4329 * spin_unlock(), once by hand).
4331 int __cond_resched_lock(spinlock_t *lock)
4333 int resched = should_resched();
4336 lockdep_assert_held(lock);
4338 if (spin_needbreak(lock) || resched) {
4349 EXPORT_SYMBOL(__cond_resched_lock);
4351 int __sched __cond_resched_softirq(void)
4353 BUG_ON(!in_softirq());
4355 if (should_resched()) {
4363 EXPORT_SYMBOL(__cond_resched_softirq);
4366 * yield - yield the current processor to other threads.
4368 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4370 * The scheduler is at all times free to pick the calling task as the most
4371 * eligible task to run, if removing the yield() call from your code breaks
4372 * it, its already broken.
4374 * Typical broken usage is:
4379 * where one assumes that yield() will let 'the other' process run that will
4380 * make event true. If the current task is a SCHED_FIFO task that will never
4381 * happen. Never use yield() as a progress guarantee!!
4383 * If you want to use yield() to wait for something, use wait_event().
4384 * If you want to use yield() to be 'nice' for others, use cond_resched().
4385 * If you still want to use yield(), do not!
4387 void __sched yield(void)
4389 set_current_state(TASK_RUNNING);
4392 EXPORT_SYMBOL(yield);
4395 * yield_to - yield the current processor to another thread in
4396 * your thread group, or accelerate that thread toward the
4397 * processor it's on.
4399 * @preempt: whether task preemption is allowed or not
4401 * It's the caller's job to ensure that the target task struct
4402 * can't go away on us before we can do any checks.
4405 * true (>0) if we indeed boosted the target task.
4406 * false (0) if we failed to boost the target.
4407 * -ESRCH if there's no task to yield to.
4409 bool __sched yield_to(struct task_struct *p, bool preempt)
4411 struct task_struct *curr = current;
4412 struct rq *rq, *p_rq;
4413 unsigned long flags;
4416 local_irq_save(flags);
4422 * If we're the only runnable task on the rq and target rq also
4423 * has only one task, there's absolutely no point in yielding.
4425 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4430 double_rq_lock(rq, p_rq);
4431 while (task_rq(p) != p_rq) {
4432 double_rq_unlock(rq, p_rq);
4436 if (!curr->sched_class->yield_to_task)
4439 if (curr->sched_class != p->sched_class)
4442 if (task_running(p_rq, p) || p->state)
4445 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4447 schedstat_inc(rq, yld_count);
4449 * Make p's CPU reschedule; pick_next_entity takes care of
4452 if (preempt && rq != p_rq)
4453 resched_task(p_rq->curr);
4457 double_rq_unlock(rq, p_rq);
4459 local_irq_restore(flags);
4466 EXPORT_SYMBOL_GPL(yield_to);
4469 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4470 * that process accounting knows that this is a task in IO wait state.
4472 void __sched io_schedule(void)
4474 struct rq *rq = raw_rq();
4476 delayacct_blkio_start();
4477 atomic_inc(&rq->nr_iowait);
4478 blk_flush_plug(current);
4479 current->in_iowait = 1;
4481 current->in_iowait = 0;
4482 atomic_dec(&rq->nr_iowait);
4483 delayacct_blkio_end();
4485 EXPORT_SYMBOL(io_schedule);
4487 long __sched io_schedule_timeout(long timeout)
4489 struct rq *rq = raw_rq();
4492 delayacct_blkio_start();
4493 atomic_inc(&rq->nr_iowait);
4494 blk_flush_plug(current);
4495 current->in_iowait = 1;
4496 ret = schedule_timeout(timeout);
4497 current->in_iowait = 0;
4498 atomic_dec(&rq->nr_iowait);
4499 delayacct_blkio_end();
4504 * sys_sched_get_priority_max - return maximum RT priority.
4505 * @policy: scheduling class.
4507 * this syscall returns the maximum rt_priority that can be used
4508 * by a given scheduling class.
4510 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4517 ret = MAX_USER_RT_PRIO-1;
4529 * sys_sched_get_priority_min - return minimum RT priority.
4530 * @policy: scheduling class.
4532 * this syscall returns the minimum rt_priority that can be used
4533 * by a given scheduling class.
4535 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4553 * sys_sched_rr_get_interval - return the default timeslice of a process.
4554 * @pid: pid of the process.
4555 * @interval: userspace pointer to the timeslice value.
4557 * this syscall writes the default timeslice value of a given process
4558 * into the user-space timespec buffer. A value of '0' means infinity.
4560 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4561 struct timespec __user *, interval)
4563 struct task_struct *p;
4564 unsigned int time_slice;
4565 unsigned long flags;
4575 p = find_process_by_pid(pid);
4579 retval = security_task_getscheduler(p);
4583 rq = task_rq_lock(p, &flags);
4584 time_slice = p->sched_class->get_rr_interval(rq, p);
4585 task_rq_unlock(rq, p, &flags);
4588 jiffies_to_timespec(time_slice, &t);
4589 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4597 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4599 void sched_show_task(struct task_struct *p)
4601 unsigned long free = 0;
4605 state = p->state ? __ffs(p->state) + 1 : 0;
4606 printk(KERN_INFO "%-15.15s %c", p->comm,
4607 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4608 #if BITS_PER_LONG == 32
4609 if (state == TASK_RUNNING)
4610 printk(KERN_CONT " running ");
4612 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4614 if (state == TASK_RUNNING)
4615 printk(KERN_CONT " running task ");
4617 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4619 #ifdef CONFIG_DEBUG_STACK_USAGE
4620 free = stack_not_used(p);
4623 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4625 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4626 task_pid_nr(p), ppid,
4627 (unsigned long)task_thread_info(p)->flags);
4629 show_stack(p, NULL);
4632 void show_state_filter(unsigned long state_filter)
4634 struct task_struct *g, *p;
4636 #if BITS_PER_LONG == 32
4638 " task PC stack pid father\n");
4641 " task PC stack pid father\n");
4644 do_each_thread(g, p) {
4646 * reset the NMI-timeout, listing all files on a slow
4647 * console might take a lot of time:
4649 touch_nmi_watchdog();
4650 if (!state_filter || (p->state & state_filter))
4652 } while_each_thread(g, p);
4654 touch_all_softlockup_watchdogs();
4656 #ifdef CONFIG_SCHED_DEBUG
4657 sysrq_sched_debug_show();
4661 * Only show locks if all tasks are dumped:
4664 debug_show_all_locks();
4667 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4669 idle->sched_class = &idle_sched_class;
4673 * init_idle - set up an idle thread for a given CPU
4674 * @idle: task in question
4675 * @cpu: cpu the idle task belongs to
4677 * NOTE: this function does not set the idle thread's NEED_RESCHED
4678 * flag, to make booting more robust.
4680 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4682 struct rq *rq = cpu_rq(cpu);
4683 unsigned long flags;
4685 raw_spin_lock_irqsave(&rq->lock, flags);
4688 idle->state = TASK_RUNNING;
4689 idle->se.exec_start = sched_clock();
4691 do_set_cpus_allowed(idle, cpumask_of(cpu));
4693 * We're having a chicken and egg problem, even though we are
4694 * holding rq->lock, the cpu isn't yet set to this cpu so the
4695 * lockdep check in task_group() will fail.
4697 * Similar case to sched_fork(). / Alternatively we could
4698 * use task_rq_lock() here and obtain the other rq->lock.
4703 __set_task_cpu(idle, cpu);
4706 rq->curr = rq->idle = idle;
4707 #if defined(CONFIG_SMP)
4710 raw_spin_unlock_irqrestore(&rq->lock, flags);
4712 /* Set the preempt count _outside_ the spinlocks! */
4713 task_thread_info(idle)->preempt_count = 0;
4716 * The idle tasks have their own, simple scheduling class:
4718 idle->sched_class = &idle_sched_class;
4719 ftrace_graph_init_idle_task(idle, cpu);
4720 vtime_init_idle(idle);
4721 #if defined(CONFIG_SMP)
4722 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4727 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4729 if (p->sched_class && p->sched_class->set_cpus_allowed)
4730 p->sched_class->set_cpus_allowed(p, new_mask);
4732 cpumask_copy(&p->cpus_allowed, new_mask);
4733 p->nr_cpus_allowed = cpumask_weight(new_mask);
4737 * This is how migration works:
4739 * 1) we invoke migration_cpu_stop() on the target CPU using
4741 * 2) stopper starts to run (implicitly forcing the migrated thread
4743 * 3) it checks whether the migrated task is still in the wrong runqueue.
4744 * 4) if it's in the wrong runqueue then the migration thread removes
4745 * it and puts it into the right queue.
4746 * 5) stopper completes and stop_one_cpu() returns and the migration
4751 * Change a given task's CPU affinity. Migrate the thread to a
4752 * proper CPU and schedule it away if the CPU it's executing on
4753 * is removed from the allowed bitmask.
4755 * NOTE: the caller must have a valid reference to the task, the
4756 * task must not exit() & deallocate itself prematurely. The
4757 * call is not atomic; no spinlocks may be held.
4759 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4761 unsigned long flags;
4763 unsigned int dest_cpu;
4766 rq = task_rq_lock(p, &flags);
4768 if (cpumask_equal(&p->cpus_allowed, new_mask))
4771 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4776 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4781 do_set_cpus_allowed(p, new_mask);
4783 /* Can the task run on the task's current CPU? If so, we're done */
4784 if (cpumask_test_cpu(task_cpu(p), new_mask))
4787 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4789 struct migration_arg arg = { p, dest_cpu };
4790 /* Need help from migration thread: drop lock and wait. */
4791 task_rq_unlock(rq, p, &flags);
4792 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4793 tlb_migrate_finish(p->mm);
4797 task_rq_unlock(rq, p, &flags);
4801 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4804 * Move (not current) task off this cpu, onto dest cpu. We're doing
4805 * this because either it can't run here any more (set_cpus_allowed()
4806 * away from this CPU, or CPU going down), or because we're
4807 * attempting to rebalance this task on exec (sched_exec).
4809 * So we race with normal scheduler movements, but that's OK, as long
4810 * as the task is no longer on this CPU.
4812 * Returns non-zero if task was successfully migrated.
4814 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4816 struct rq *rq_dest, *rq_src;
4819 if (unlikely(!cpu_active(dest_cpu)))
4822 rq_src = cpu_rq(src_cpu);
4823 rq_dest = cpu_rq(dest_cpu);
4825 raw_spin_lock(&p->pi_lock);
4826 double_rq_lock(rq_src, rq_dest);
4827 /* Already moved. */
4828 if (task_cpu(p) != src_cpu)
4830 /* Affinity changed (again). */
4831 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4835 * If we're not on a rq, the next wake-up will ensure we're
4839 dequeue_task(rq_src, p, 0);
4840 set_task_cpu(p, dest_cpu);
4841 enqueue_task(rq_dest, p, 0);
4842 check_preempt_curr(rq_dest, p, 0);
4847 double_rq_unlock(rq_src, rq_dest);
4848 raw_spin_unlock(&p->pi_lock);
4853 * migration_cpu_stop - this will be executed by a highprio stopper thread
4854 * and performs thread migration by bumping thread off CPU then
4855 * 'pushing' onto another runqueue.
4857 static int migration_cpu_stop(void *data)
4859 struct migration_arg *arg = data;
4862 * The original target cpu might have gone down and we might
4863 * be on another cpu but it doesn't matter.
4865 local_irq_disable();
4866 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4871 #ifdef CONFIG_HOTPLUG_CPU
4874 * Ensures that the idle task is using init_mm right before its cpu goes
4877 void idle_task_exit(void)
4879 struct mm_struct *mm = current->active_mm;
4881 BUG_ON(cpu_online(smp_processor_id()));
4884 switch_mm(mm, &init_mm, current);
4889 * Since this CPU is going 'away' for a while, fold any nr_active delta
4890 * we might have. Assumes we're called after migrate_tasks() so that the
4891 * nr_active count is stable.
4893 * Also see the comment "Global load-average calculations".
4895 static void calc_load_migrate(struct rq *rq)
4897 long delta = calc_load_fold_active(rq);
4899 atomic_long_add(delta, &calc_load_tasks);
4903 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4904 * try_to_wake_up()->select_task_rq().
4906 * Called with rq->lock held even though we'er in stop_machine() and
4907 * there's no concurrency possible, we hold the required locks anyway
4908 * because of lock validation efforts.
4910 static void migrate_tasks(unsigned int dead_cpu)
4912 struct rq *rq = cpu_rq(dead_cpu);
4913 struct task_struct *next, *stop = rq->stop;
4917 * Fudge the rq selection such that the below task selection loop
4918 * doesn't get stuck on the currently eligible stop task.
4920 * We're currently inside stop_machine() and the rq is either stuck
4921 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4922 * either way we should never end up calling schedule() until we're
4929 * There's this thread running, bail when that's the only
4932 if (rq->nr_running == 1)
4935 next = pick_next_task(rq);
4937 next->sched_class->put_prev_task(rq, next);
4939 /* Find suitable destination for @next, with force if needed. */
4940 dest_cpu = select_fallback_rq(dead_cpu, next);
4941 raw_spin_unlock(&rq->lock);
4943 __migrate_task(next, dead_cpu, dest_cpu);
4945 raw_spin_lock(&rq->lock);
4951 #endif /* CONFIG_HOTPLUG_CPU */
4953 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4955 static struct ctl_table sd_ctl_dir[] = {
4957 .procname = "sched_domain",
4963 static struct ctl_table sd_ctl_root[] = {
4965 .procname = "kernel",
4967 .child = sd_ctl_dir,
4972 static struct ctl_table *sd_alloc_ctl_entry(int n)
4974 struct ctl_table *entry =
4975 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4980 static void sd_free_ctl_entry(struct ctl_table **tablep)
4982 struct ctl_table *entry;
4985 * In the intermediate directories, both the child directory and
4986 * procname are dynamically allocated and could fail but the mode
4987 * will always be set. In the lowest directory the names are
4988 * static strings and all have proc handlers.
4990 for (entry = *tablep; entry->mode; entry++) {
4992 sd_free_ctl_entry(&entry->child);
4993 if (entry->proc_handler == NULL)
4994 kfree(entry->procname);
5001 static int min_load_idx = 0;
5002 static int max_load_idx = CPU_LOAD_IDX_MAX;
5005 set_table_entry(struct ctl_table *entry,
5006 const char *procname, void *data, int maxlen,
5007 umode_t mode, proc_handler *proc_handler,
5010 entry->procname = procname;
5012 entry->maxlen = maxlen;
5014 entry->proc_handler = proc_handler;
5017 entry->extra1 = &min_load_idx;
5018 entry->extra2 = &max_load_idx;
5022 static struct ctl_table *
5023 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5025 struct ctl_table *table = sd_alloc_ctl_entry(13);
5030 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5031 sizeof(long), 0644, proc_doulongvec_minmax, false);
5032 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5033 sizeof(long), 0644, proc_doulongvec_minmax, false);
5034 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5035 sizeof(int), 0644, proc_dointvec_minmax, true);
5036 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5037 sizeof(int), 0644, proc_dointvec_minmax, true);
5038 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5039 sizeof(int), 0644, proc_dointvec_minmax, true);
5040 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5041 sizeof(int), 0644, proc_dointvec_minmax, true);
5042 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5043 sizeof(int), 0644, proc_dointvec_minmax, true);
5044 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5045 sizeof(int), 0644, proc_dointvec_minmax, false);
5046 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5047 sizeof(int), 0644, proc_dointvec_minmax, false);
5048 set_table_entry(&table[9], "cache_nice_tries",
5049 &sd->cache_nice_tries,
5050 sizeof(int), 0644, proc_dointvec_minmax, false);
5051 set_table_entry(&table[10], "flags", &sd->flags,
5052 sizeof(int), 0644, proc_dointvec_minmax, false);
5053 set_table_entry(&table[11], "name", sd->name,
5054 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5055 /* &table[12] is terminator */
5060 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5062 struct ctl_table *entry, *table;
5063 struct sched_domain *sd;
5064 int domain_num = 0, i;
5067 for_each_domain(cpu, sd)
5069 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5074 for_each_domain(cpu, sd) {
5075 snprintf(buf, 32, "domain%d", i);
5076 entry->procname = kstrdup(buf, GFP_KERNEL);
5078 entry->child = sd_alloc_ctl_domain_table(sd);
5085 static struct ctl_table_header *sd_sysctl_header;
5086 static void register_sched_domain_sysctl(void)
5088 int i, cpu_num = num_possible_cpus();
5089 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5092 WARN_ON(sd_ctl_dir[0].child);
5093 sd_ctl_dir[0].child = entry;
5098 for_each_possible_cpu(i) {
5099 snprintf(buf, 32, "cpu%d", i);
5100 entry->procname = kstrdup(buf, GFP_KERNEL);
5102 entry->child = sd_alloc_ctl_cpu_table(i);
5106 WARN_ON(sd_sysctl_header);
5107 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5110 /* may be called multiple times per register */
5111 static void unregister_sched_domain_sysctl(void)
5113 if (sd_sysctl_header)
5114 unregister_sysctl_table(sd_sysctl_header);
5115 sd_sysctl_header = NULL;
5116 if (sd_ctl_dir[0].child)
5117 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5120 static void register_sched_domain_sysctl(void)
5123 static void unregister_sched_domain_sysctl(void)
5128 static void set_rq_online(struct rq *rq)
5131 const struct sched_class *class;
5133 cpumask_set_cpu(rq->cpu, rq->rd->online);
5136 for_each_class(class) {
5137 if (class->rq_online)
5138 class->rq_online(rq);
5143 static void set_rq_offline(struct rq *rq)
5146 const struct sched_class *class;
5148 for_each_class(class) {
5149 if (class->rq_offline)
5150 class->rq_offline(rq);
5153 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5159 * migration_call - callback that gets triggered when a CPU is added.
5160 * Here we can start up the necessary migration thread for the new CPU.
5162 static int __cpuinit
5163 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5165 int cpu = (long)hcpu;
5166 unsigned long flags;
5167 struct rq *rq = cpu_rq(cpu);
5169 switch (action & ~CPU_TASKS_FROZEN) {
5171 case CPU_UP_PREPARE:
5172 rq->calc_load_update = calc_load_update;
5176 /* Update our root-domain */
5177 raw_spin_lock_irqsave(&rq->lock, flags);
5179 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5183 raw_spin_unlock_irqrestore(&rq->lock, flags);
5186 #ifdef CONFIG_HOTPLUG_CPU
5188 sched_ttwu_pending();
5189 /* Update our root-domain */
5190 raw_spin_lock_irqsave(&rq->lock, flags);
5192 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5196 BUG_ON(rq->nr_running != 1); /* the migration thread */
5197 raw_spin_unlock_irqrestore(&rq->lock, flags);
5201 calc_load_migrate(rq);
5206 update_max_interval();
5212 * Register at high priority so that task migration (migrate_all_tasks)
5213 * happens before everything else. This has to be lower priority than
5214 * the notifier in the perf_event subsystem, though.
5216 static struct notifier_block __cpuinitdata migration_notifier = {
5217 .notifier_call = migration_call,
5218 .priority = CPU_PRI_MIGRATION,
5221 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5222 unsigned long action, void *hcpu)
5224 switch (action & ~CPU_TASKS_FROZEN) {
5226 case CPU_DOWN_FAILED:
5227 set_cpu_active((long)hcpu, true);
5234 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5235 unsigned long action, void *hcpu)
5237 switch (action & ~CPU_TASKS_FROZEN) {
5238 case CPU_DOWN_PREPARE:
5239 set_cpu_active((long)hcpu, false);
5246 static int __init migration_init(void)
5248 void *cpu = (void *)(long)smp_processor_id();
5251 /* Initialize migration for the boot CPU */
5252 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5253 BUG_ON(err == NOTIFY_BAD);
5254 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5255 register_cpu_notifier(&migration_notifier);
5257 /* Register cpu active notifiers */
5258 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5259 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5263 early_initcall(migration_init);
5268 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5270 #ifdef CONFIG_SCHED_DEBUG
5272 static __read_mostly int sched_debug_enabled;
5274 static int __init sched_debug_setup(char *str)
5276 sched_debug_enabled = 1;
5280 early_param("sched_debug", sched_debug_setup);
5282 static inline bool sched_debug(void)
5284 return sched_debug_enabled;
5287 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5288 struct cpumask *groupmask)
5290 struct sched_group *group = sd->groups;
5293 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5294 cpumask_clear(groupmask);
5296 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5298 if (!(sd->flags & SD_LOAD_BALANCE)) {
5299 printk("does not load-balance\n");
5301 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5306 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5308 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5309 printk(KERN_ERR "ERROR: domain->span does not contain "
5312 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5313 printk(KERN_ERR "ERROR: domain->groups does not contain"
5317 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5321 printk(KERN_ERR "ERROR: group is NULL\n");
5326 * Even though we initialize ->power to something semi-sane,
5327 * we leave power_orig unset. This allows us to detect if
5328 * domain iteration is still funny without causing /0 traps.
5330 if (!group->sgp->power_orig) {
5331 printk(KERN_CONT "\n");
5332 printk(KERN_ERR "ERROR: domain->cpu_power not "
5337 if (!cpumask_weight(sched_group_cpus(group))) {
5338 printk(KERN_CONT "\n");
5339 printk(KERN_ERR "ERROR: empty group\n");
5343 if (!(sd->flags & SD_OVERLAP) &&
5344 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5345 printk(KERN_CONT "\n");
5346 printk(KERN_ERR "ERROR: repeated CPUs\n");
5350 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5352 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5354 printk(KERN_CONT " %s", str);
5355 if (group->sgp->power != SCHED_POWER_SCALE) {
5356 printk(KERN_CONT " (cpu_power = %d)",
5360 group = group->next;
5361 } while (group != sd->groups);
5362 printk(KERN_CONT "\n");
5364 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5365 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5368 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5369 printk(KERN_ERR "ERROR: parent span is not a superset "
5370 "of domain->span\n");
5374 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5378 if (!sched_debug_enabled)
5382 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5386 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5389 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5397 #else /* !CONFIG_SCHED_DEBUG */
5398 # define sched_domain_debug(sd, cpu) do { } while (0)
5399 static inline bool sched_debug(void)
5403 #endif /* CONFIG_SCHED_DEBUG */
5405 static int sd_degenerate(struct sched_domain *sd)
5407 if (cpumask_weight(sched_domain_span(sd)) == 1)
5410 /* Following flags need at least 2 groups */
5411 if (sd->flags & (SD_LOAD_BALANCE |
5412 SD_BALANCE_NEWIDLE |
5416 SD_SHARE_PKG_RESOURCES)) {
5417 if (sd->groups != sd->groups->next)
5421 /* Following flags don't use groups */
5422 if (sd->flags & (SD_WAKE_AFFINE))
5429 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5431 unsigned long cflags = sd->flags, pflags = parent->flags;
5433 if (sd_degenerate(parent))
5436 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5439 /* Flags needing groups don't count if only 1 group in parent */
5440 if (parent->groups == parent->groups->next) {
5441 pflags &= ~(SD_LOAD_BALANCE |
5442 SD_BALANCE_NEWIDLE |
5446 SD_SHARE_PKG_RESOURCES);
5447 if (nr_node_ids == 1)
5448 pflags &= ~SD_SERIALIZE;
5450 if (~cflags & pflags)
5456 static void free_rootdomain(struct rcu_head *rcu)
5458 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5460 cpupri_cleanup(&rd->cpupri);
5461 free_cpumask_var(rd->rto_mask);
5462 free_cpumask_var(rd->online);
5463 free_cpumask_var(rd->span);
5467 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5469 struct root_domain *old_rd = NULL;
5470 unsigned long flags;
5472 raw_spin_lock_irqsave(&rq->lock, flags);
5477 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5480 cpumask_clear_cpu(rq->cpu, old_rd->span);
5483 * If we dont want to free the old_rt yet then
5484 * set old_rd to NULL to skip the freeing later
5487 if (!atomic_dec_and_test(&old_rd->refcount))
5491 atomic_inc(&rd->refcount);
5494 cpumask_set_cpu(rq->cpu, rd->span);
5495 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5498 raw_spin_unlock_irqrestore(&rq->lock, flags);
5501 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5504 static int init_rootdomain(struct root_domain *rd)
5506 memset(rd, 0, sizeof(*rd));
5508 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5510 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5512 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5515 if (cpupri_init(&rd->cpupri) != 0)
5520 free_cpumask_var(rd->rto_mask);
5522 free_cpumask_var(rd->online);
5524 free_cpumask_var(rd->span);
5530 * By default the system creates a single root-domain with all cpus as
5531 * members (mimicking the global state we have today).
5533 struct root_domain def_root_domain;
5535 static void init_defrootdomain(void)
5537 init_rootdomain(&def_root_domain);
5539 atomic_set(&def_root_domain.refcount, 1);
5542 static struct root_domain *alloc_rootdomain(void)
5544 struct root_domain *rd;
5546 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5550 if (init_rootdomain(rd) != 0) {
5558 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5560 struct sched_group *tmp, *first;
5569 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5574 } while (sg != first);
5577 static void free_sched_domain(struct rcu_head *rcu)
5579 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5582 * If its an overlapping domain it has private groups, iterate and
5585 if (sd->flags & SD_OVERLAP) {
5586 free_sched_groups(sd->groups, 1);
5587 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5588 kfree(sd->groups->sgp);
5594 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5596 call_rcu(&sd->rcu, free_sched_domain);
5599 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5601 for (; sd; sd = sd->parent)
5602 destroy_sched_domain(sd, cpu);
5606 * Keep a special pointer to the highest sched_domain that has
5607 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5608 * allows us to avoid some pointer chasing select_idle_sibling().
5610 * Also keep a unique ID per domain (we use the first cpu number in
5611 * the cpumask of the domain), this allows us to quickly tell if
5612 * two cpus are in the same cache domain, see cpus_share_cache().
5614 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5615 DEFINE_PER_CPU(int, sd_llc_id);
5617 static void update_top_cache_domain(int cpu)
5619 struct sched_domain *sd;
5622 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5624 id = cpumask_first(sched_domain_span(sd));
5626 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5627 per_cpu(sd_llc_id, cpu) = id;
5631 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5632 * hold the hotplug lock.
5635 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5637 struct rq *rq = cpu_rq(cpu);
5638 struct sched_domain *tmp;
5640 /* Remove the sched domains which do not contribute to scheduling. */
5641 for (tmp = sd; tmp; ) {
5642 struct sched_domain *parent = tmp->parent;
5646 if (sd_parent_degenerate(tmp, parent)) {
5647 tmp->parent = parent->parent;
5649 parent->parent->child = tmp;
5650 destroy_sched_domain(parent, cpu);
5655 if (sd && sd_degenerate(sd)) {
5658 destroy_sched_domain(tmp, cpu);
5663 sched_domain_debug(sd, cpu);
5665 rq_attach_root(rq, rd);
5667 rcu_assign_pointer(rq->sd, sd);
5668 destroy_sched_domains(tmp, cpu);
5670 update_top_cache_domain(cpu);
5673 /* cpus with isolated domains */
5674 static cpumask_var_t cpu_isolated_map;
5676 /* Setup the mask of cpus configured for isolated domains */
5677 static int __init isolated_cpu_setup(char *str)
5679 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5680 cpulist_parse(str, cpu_isolated_map);
5684 __setup("isolcpus=", isolated_cpu_setup);
5686 static const struct cpumask *cpu_cpu_mask(int cpu)
5688 return cpumask_of_node(cpu_to_node(cpu));
5692 struct sched_domain **__percpu sd;
5693 struct sched_group **__percpu sg;
5694 struct sched_group_power **__percpu sgp;
5698 struct sched_domain ** __percpu sd;
5699 struct root_domain *rd;
5709 struct sched_domain_topology_level;
5711 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5712 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5714 #define SDTL_OVERLAP 0x01
5716 struct sched_domain_topology_level {
5717 sched_domain_init_f init;
5718 sched_domain_mask_f mask;
5721 struct sd_data data;
5725 * Build an iteration mask that can exclude certain CPUs from the upwards
5728 * Asymmetric node setups can result in situations where the domain tree is of
5729 * unequal depth, make sure to skip domains that already cover the entire
5732 * In that case build_sched_domains() will have terminated the iteration early
5733 * and our sibling sd spans will be empty. Domains should always include the
5734 * cpu they're built on, so check that.
5737 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5739 const struct cpumask *span = sched_domain_span(sd);
5740 struct sd_data *sdd = sd->private;
5741 struct sched_domain *sibling;
5744 for_each_cpu(i, span) {
5745 sibling = *per_cpu_ptr(sdd->sd, i);
5746 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5749 cpumask_set_cpu(i, sched_group_mask(sg));
5754 * Return the canonical balance cpu for this group, this is the first cpu
5755 * of this group that's also in the iteration mask.
5757 int group_balance_cpu(struct sched_group *sg)
5759 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5763 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5765 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5766 const struct cpumask *span = sched_domain_span(sd);
5767 struct cpumask *covered = sched_domains_tmpmask;
5768 struct sd_data *sdd = sd->private;
5769 struct sched_domain *child;
5772 cpumask_clear(covered);
5774 for_each_cpu(i, span) {
5775 struct cpumask *sg_span;
5777 if (cpumask_test_cpu(i, covered))
5780 child = *per_cpu_ptr(sdd->sd, i);
5782 /* See the comment near build_group_mask(). */
5783 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5786 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5787 GFP_KERNEL, cpu_to_node(cpu));
5792 sg_span = sched_group_cpus(sg);
5794 child = child->child;
5795 cpumask_copy(sg_span, sched_domain_span(child));
5797 cpumask_set_cpu(i, sg_span);
5799 cpumask_or(covered, covered, sg_span);
5801 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5802 if (atomic_inc_return(&sg->sgp->ref) == 1)
5803 build_group_mask(sd, sg);
5806 * Initialize sgp->power such that even if we mess up the
5807 * domains and no possible iteration will get us here, we won't
5810 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5813 * Make sure the first group of this domain contains the
5814 * canonical balance cpu. Otherwise the sched_domain iteration
5815 * breaks. See update_sg_lb_stats().
5817 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5818 group_balance_cpu(sg) == cpu)
5828 sd->groups = groups;
5833 free_sched_groups(first, 0);
5838 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5840 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5841 struct sched_domain *child = sd->child;
5844 cpu = cpumask_first(sched_domain_span(child));
5847 *sg = *per_cpu_ptr(sdd->sg, cpu);
5848 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5849 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5856 * build_sched_groups will build a circular linked list of the groups
5857 * covered by the given span, and will set each group's ->cpumask correctly,
5858 * and ->cpu_power to 0.
5860 * Assumes the sched_domain tree is fully constructed
5863 build_sched_groups(struct sched_domain *sd, int cpu)
5865 struct sched_group *first = NULL, *last = NULL;
5866 struct sd_data *sdd = sd->private;
5867 const struct cpumask *span = sched_domain_span(sd);
5868 struct cpumask *covered;
5871 get_group(cpu, sdd, &sd->groups);
5872 atomic_inc(&sd->groups->ref);
5874 if (cpu != cpumask_first(sched_domain_span(sd)))
5877 lockdep_assert_held(&sched_domains_mutex);
5878 covered = sched_domains_tmpmask;
5880 cpumask_clear(covered);
5882 for_each_cpu(i, span) {
5883 struct sched_group *sg;
5884 int group = get_group(i, sdd, &sg);
5887 if (cpumask_test_cpu(i, covered))
5890 cpumask_clear(sched_group_cpus(sg));
5892 cpumask_setall(sched_group_mask(sg));
5894 for_each_cpu(j, span) {
5895 if (get_group(j, sdd, NULL) != group)
5898 cpumask_set_cpu(j, covered);
5899 cpumask_set_cpu(j, sched_group_cpus(sg));
5914 * Initialize sched groups cpu_power.
5916 * cpu_power indicates the capacity of sched group, which is used while
5917 * distributing the load between different sched groups in a sched domain.
5918 * Typically cpu_power for all the groups in a sched domain will be same unless
5919 * there are asymmetries in the topology. If there are asymmetries, group
5920 * having more cpu_power will pickup more load compared to the group having
5923 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5925 struct sched_group *sg = sd->groups;
5927 WARN_ON(!sd || !sg);
5930 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5932 } while (sg != sd->groups);
5934 if (cpu != group_balance_cpu(sg))
5937 update_group_power(sd, cpu);
5938 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5941 int __weak arch_sd_sibling_asym_packing(void)
5943 return 0*SD_ASYM_PACKING;
5947 * Initializers for schedule domains
5948 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5951 #ifdef CONFIG_SCHED_DEBUG
5952 # define SD_INIT_NAME(sd, type) sd->name = #type
5954 # define SD_INIT_NAME(sd, type) do { } while (0)
5957 #define SD_INIT_FUNC(type) \
5958 static noinline struct sched_domain * \
5959 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5961 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5962 *sd = SD_##type##_INIT; \
5963 SD_INIT_NAME(sd, type); \
5964 sd->private = &tl->data; \
5969 #ifdef CONFIG_SCHED_SMT
5970 SD_INIT_FUNC(SIBLING)
5972 #ifdef CONFIG_SCHED_MC
5975 #ifdef CONFIG_SCHED_BOOK
5979 static int default_relax_domain_level = -1;
5980 int sched_domain_level_max;
5982 static int __init setup_relax_domain_level(char *str)
5984 if (kstrtoint(str, 0, &default_relax_domain_level))
5985 pr_warn("Unable to set relax_domain_level\n");
5989 __setup("relax_domain_level=", setup_relax_domain_level);
5991 static void set_domain_attribute(struct sched_domain *sd,
5992 struct sched_domain_attr *attr)
5996 if (!attr || attr->relax_domain_level < 0) {
5997 if (default_relax_domain_level < 0)
6000 request = default_relax_domain_level;
6002 request = attr->relax_domain_level;
6003 if (request < sd->level) {
6004 /* turn off idle balance on this domain */
6005 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6007 /* turn on idle balance on this domain */
6008 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6012 static void __sdt_free(const struct cpumask *cpu_map);
6013 static int __sdt_alloc(const struct cpumask *cpu_map);
6015 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6016 const struct cpumask *cpu_map)
6020 if (!atomic_read(&d->rd->refcount))
6021 free_rootdomain(&d->rd->rcu); /* fall through */
6023 free_percpu(d->sd); /* fall through */
6025 __sdt_free(cpu_map); /* fall through */
6031 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6032 const struct cpumask *cpu_map)
6034 memset(d, 0, sizeof(*d));
6036 if (__sdt_alloc(cpu_map))
6037 return sa_sd_storage;
6038 d->sd = alloc_percpu(struct sched_domain *);
6040 return sa_sd_storage;
6041 d->rd = alloc_rootdomain();
6044 return sa_rootdomain;
6048 * NULL the sd_data elements we've used to build the sched_domain and
6049 * sched_group structure so that the subsequent __free_domain_allocs()
6050 * will not free the data we're using.
6052 static void claim_allocations(int cpu, struct sched_domain *sd)
6054 struct sd_data *sdd = sd->private;
6056 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6057 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6059 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6060 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6062 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6063 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6066 #ifdef CONFIG_SCHED_SMT
6067 static const struct cpumask *cpu_smt_mask(int cpu)
6069 return topology_thread_cpumask(cpu);
6074 * Topology list, bottom-up.
6076 static struct sched_domain_topology_level default_topology[] = {
6077 #ifdef CONFIG_SCHED_SMT
6078 { sd_init_SIBLING, cpu_smt_mask, },
6080 #ifdef CONFIG_SCHED_MC
6081 { sd_init_MC, cpu_coregroup_mask, },
6083 #ifdef CONFIG_SCHED_BOOK
6084 { sd_init_BOOK, cpu_book_mask, },
6086 { sd_init_CPU, cpu_cpu_mask, },
6090 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6094 static int sched_domains_numa_levels;
6095 static int *sched_domains_numa_distance;
6096 static struct cpumask ***sched_domains_numa_masks;
6097 static int sched_domains_curr_level;
6099 static inline int sd_local_flags(int level)
6101 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6104 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6107 static struct sched_domain *
6108 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6110 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6111 int level = tl->numa_level;
6112 int sd_weight = cpumask_weight(
6113 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6115 *sd = (struct sched_domain){
6116 .min_interval = sd_weight,
6117 .max_interval = 2*sd_weight,
6119 .imbalance_pct = 125,
6120 .cache_nice_tries = 2,
6127 .flags = 1*SD_LOAD_BALANCE
6128 | 1*SD_BALANCE_NEWIDLE
6133 | 0*SD_SHARE_CPUPOWER
6134 | 0*SD_SHARE_PKG_RESOURCES
6136 | 0*SD_PREFER_SIBLING
6137 | sd_local_flags(level)
6139 .last_balance = jiffies,
6140 .balance_interval = sd_weight,
6142 SD_INIT_NAME(sd, NUMA);
6143 sd->private = &tl->data;
6146 * Ugly hack to pass state to sd_numa_mask()...
6148 sched_domains_curr_level = tl->numa_level;
6153 static const struct cpumask *sd_numa_mask(int cpu)
6155 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6158 static void sched_numa_warn(const char *str)
6160 static int done = false;
6168 printk(KERN_WARNING "ERROR: %s\n\n", str);
6170 for (i = 0; i < nr_node_ids; i++) {
6171 printk(KERN_WARNING " ");
6172 for (j = 0; j < nr_node_ids; j++)
6173 printk(KERN_CONT "%02d ", node_distance(i,j));
6174 printk(KERN_CONT "\n");
6176 printk(KERN_WARNING "\n");
6179 static bool find_numa_distance(int distance)
6183 if (distance == node_distance(0, 0))
6186 for (i = 0; i < sched_domains_numa_levels; i++) {
6187 if (sched_domains_numa_distance[i] == distance)
6194 static void sched_init_numa(void)
6196 int next_distance, curr_distance = node_distance(0, 0);
6197 struct sched_domain_topology_level *tl;
6201 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6202 if (!sched_domains_numa_distance)
6206 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6207 * unique distances in the node_distance() table.
6209 * Assumes node_distance(0,j) includes all distances in
6210 * node_distance(i,j) in order to avoid cubic time.
6212 next_distance = curr_distance;
6213 for (i = 0; i < nr_node_ids; i++) {
6214 for (j = 0; j < nr_node_ids; j++) {
6215 for (k = 0; k < nr_node_ids; k++) {
6216 int distance = node_distance(i, k);
6218 if (distance > curr_distance &&
6219 (distance < next_distance ||
6220 next_distance == curr_distance))
6221 next_distance = distance;
6224 * While not a strong assumption it would be nice to know
6225 * about cases where if node A is connected to B, B is not
6226 * equally connected to A.
6228 if (sched_debug() && node_distance(k, i) != distance)
6229 sched_numa_warn("Node-distance not symmetric");
6231 if (sched_debug() && i && !find_numa_distance(distance))
6232 sched_numa_warn("Node-0 not representative");
6234 if (next_distance != curr_distance) {
6235 sched_domains_numa_distance[level++] = next_distance;
6236 sched_domains_numa_levels = level;
6237 curr_distance = next_distance;
6242 * In case of sched_debug() we verify the above assumption.
6248 * 'level' contains the number of unique distances, excluding the
6249 * identity distance node_distance(i,i).
6251 * The sched_domains_nume_distance[] array includes the actual distance
6256 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6257 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6258 * the array will contain less then 'level' members. This could be
6259 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6260 * in other functions.
6262 * We reset it to 'level' at the end of this function.
6264 sched_domains_numa_levels = 0;
6266 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6267 if (!sched_domains_numa_masks)
6271 * Now for each level, construct a mask per node which contains all
6272 * cpus of nodes that are that many hops away from us.
6274 for (i = 0; i < level; i++) {
6275 sched_domains_numa_masks[i] =
6276 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6277 if (!sched_domains_numa_masks[i])
6280 for (j = 0; j < nr_node_ids; j++) {
6281 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6285 sched_domains_numa_masks[i][j] = mask;
6287 for (k = 0; k < nr_node_ids; k++) {
6288 if (node_distance(j, k) > sched_domains_numa_distance[i])
6291 cpumask_or(mask, mask, cpumask_of_node(k));
6296 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6297 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6302 * Copy the default topology bits..
6304 for (i = 0; default_topology[i].init; i++)
6305 tl[i] = default_topology[i];
6308 * .. and append 'j' levels of NUMA goodness.
6310 for (j = 0; j < level; i++, j++) {
6311 tl[i] = (struct sched_domain_topology_level){
6312 .init = sd_numa_init,
6313 .mask = sd_numa_mask,
6314 .flags = SDTL_OVERLAP,
6319 sched_domain_topology = tl;
6321 sched_domains_numa_levels = level;
6324 static void sched_domains_numa_masks_set(int cpu)
6327 int node = cpu_to_node(cpu);
6329 for (i = 0; i < sched_domains_numa_levels; i++) {
6330 for (j = 0; j < nr_node_ids; j++) {
6331 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6332 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6337 static void sched_domains_numa_masks_clear(int cpu)
6340 for (i = 0; i < sched_domains_numa_levels; i++) {
6341 for (j = 0; j < nr_node_ids; j++)
6342 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6347 * Update sched_domains_numa_masks[level][node] array when new cpus
6350 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6351 unsigned long action,
6354 int cpu = (long)hcpu;
6356 switch (action & ~CPU_TASKS_FROZEN) {
6358 sched_domains_numa_masks_set(cpu);
6362 sched_domains_numa_masks_clear(cpu);
6372 static inline void sched_init_numa(void)
6376 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6377 unsigned long action,
6382 #endif /* CONFIG_NUMA */
6384 static int __sdt_alloc(const struct cpumask *cpu_map)
6386 struct sched_domain_topology_level *tl;
6389 for (tl = sched_domain_topology; tl->init; tl++) {
6390 struct sd_data *sdd = &tl->data;
6392 sdd->sd = alloc_percpu(struct sched_domain *);
6396 sdd->sg = alloc_percpu(struct sched_group *);
6400 sdd->sgp = alloc_percpu(struct sched_group_power *);
6404 for_each_cpu(j, cpu_map) {
6405 struct sched_domain *sd;
6406 struct sched_group *sg;
6407 struct sched_group_power *sgp;
6409 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6410 GFP_KERNEL, cpu_to_node(j));
6414 *per_cpu_ptr(sdd->sd, j) = sd;
6416 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6417 GFP_KERNEL, cpu_to_node(j));
6423 *per_cpu_ptr(sdd->sg, j) = sg;
6425 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6426 GFP_KERNEL, cpu_to_node(j));
6430 *per_cpu_ptr(sdd->sgp, j) = sgp;
6437 static void __sdt_free(const struct cpumask *cpu_map)
6439 struct sched_domain_topology_level *tl;
6442 for (tl = sched_domain_topology; tl->init; tl++) {
6443 struct sd_data *sdd = &tl->data;
6445 for_each_cpu(j, cpu_map) {
6446 struct sched_domain *sd;
6449 sd = *per_cpu_ptr(sdd->sd, j);
6450 if (sd && (sd->flags & SD_OVERLAP))
6451 free_sched_groups(sd->groups, 0);
6452 kfree(*per_cpu_ptr(sdd->sd, j));
6456 kfree(*per_cpu_ptr(sdd->sg, j));
6458 kfree(*per_cpu_ptr(sdd->sgp, j));
6460 free_percpu(sdd->sd);
6462 free_percpu(sdd->sg);
6464 free_percpu(sdd->sgp);
6469 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6470 struct s_data *d, const struct cpumask *cpu_map,
6471 struct sched_domain_attr *attr, struct sched_domain *child,
6474 struct sched_domain *sd = tl->init(tl, cpu);
6478 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6480 sd->level = child->level + 1;
6481 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6485 set_domain_attribute(sd, attr);
6491 * Build sched domains for a given set of cpus and attach the sched domains
6492 * to the individual cpus
6494 static int build_sched_domains(const struct cpumask *cpu_map,
6495 struct sched_domain_attr *attr)
6497 enum s_alloc alloc_state = sa_none;
6498 struct sched_domain *sd;
6500 int i, ret = -ENOMEM;
6502 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6503 if (alloc_state != sa_rootdomain)
6506 /* Set up domains for cpus specified by the cpu_map. */
6507 for_each_cpu(i, cpu_map) {
6508 struct sched_domain_topology_level *tl;
6511 for (tl = sched_domain_topology; tl->init; tl++) {
6512 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6513 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6514 sd->flags |= SD_OVERLAP;
6515 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6522 *per_cpu_ptr(d.sd, i) = sd;
6525 /* Build the groups for the domains */
6526 for_each_cpu(i, cpu_map) {
6527 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6528 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6529 if (sd->flags & SD_OVERLAP) {
6530 if (build_overlap_sched_groups(sd, i))
6533 if (build_sched_groups(sd, i))
6539 /* Calculate CPU power for physical packages and nodes */
6540 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6541 if (!cpumask_test_cpu(i, cpu_map))
6544 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6545 claim_allocations(i, sd);
6546 init_sched_groups_power(i, sd);
6550 /* Attach the domains */
6552 for_each_cpu(i, cpu_map) {
6553 sd = *per_cpu_ptr(d.sd, i);
6554 cpu_attach_domain(sd, d.rd, i);
6560 __free_domain_allocs(&d, alloc_state, cpu_map);
6564 static cpumask_var_t *doms_cur; /* current sched domains */
6565 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6566 static struct sched_domain_attr *dattr_cur;
6567 /* attribues of custom domains in 'doms_cur' */
6570 * Special case: If a kmalloc of a doms_cur partition (array of
6571 * cpumask) fails, then fallback to a single sched domain,
6572 * as determined by the single cpumask fallback_doms.
6574 static cpumask_var_t fallback_doms;
6577 * arch_update_cpu_topology lets virtualized architectures update the
6578 * cpu core maps. It is supposed to return 1 if the topology changed
6579 * or 0 if it stayed the same.
6581 int __attribute__((weak)) arch_update_cpu_topology(void)
6586 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6589 cpumask_var_t *doms;
6591 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6594 for (i = 0; i < ndoms; i++) {
6595 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6596 free_sched_domains(doms, i);
6603 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6606 for (i = 0; i < ndoms; i++)
6607 free_cpumask_var(doms[i]);
6612 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6613 * For now this just excludes isolated cpus, but could be used to
6614 * exclude other special cases in the future.
6616 static int init_sched_domains(const struct cpumask *cpu_map)
6620 arch_update_cpu_topology();
6622 doms_cur = alloc_sched_domains(ndoms_cur);
6624 doms_cur = &fallback_doms;
6625 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6626 err = build_sched_domains(doms_cur[0], NULL);
6627 register_sched_domain_sysctl();
6633 * Detach sched domains from a group of cpus specified in cpu_map
6634 * These cpus will now be attached to the NULL domain
6636 static void detach_destroy_domains(const struct cpumask *cpu_map)
6641 for_each_cpu(i, cpu_map)
6642 cpu_attach_domain(NULL, &def_root_domain, i);
6646 /* handle null as "default" */
6647 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6648 struct sched_domain_attr *new, int idx_new)
6650 struct sched_domain_attr tmp;
6657 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6658 new ? (new + idx_new) : &tmp,
6659 sizeof(struct sched_domain_attr));
6663 * Partition sched domains as specified by the 'ndoms_new'
6664 * cpumasks in the array doms_new[] of cpumasks. This compares
6665 * doms_new[] to the current sched domain partitioning, doms_cur[].
6666 * It destroys each deleted domain and builds each new domain.
6668 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6669 * The masks don't intersect (don't overlap.) We should setup one
6670 * sched domain for each mask. CPUs not in any of the cpumasks will
6671 * not be load balanced. If the same cpumask appears both in the
6672 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6675 * The passed in 'doms_new' should be allocated using
6676 * alloc_sched_domains. This routine takes ownership of it and will
6677 * free_sched_domains it when done with it. If the caller failed the
6678 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6679 * and partition_sched_domains() will fallback to the single partition
6680 * 'fallback_doms', it also forces the domains to be rebuilt.
6682 * If doms_new == NULL it will be replaced with cpu_online_mask.
6683 * ndoms_new == 0 is a special case for destroying existing domains,
6684 * and it will not create the default domain.
6686 * Call with hotplug lock held
6688 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6689 struct sched_domain_attr *dattr_new)
6694 mutex_lock(&sched_domains_mutex);
6696 /* always unregister in case we don't destroy any domains */
6697 unregister_sched_domain_sysctl();
6699 /* Let architecture update cpu core mappings. */
6700 new_topology = arch_update_cpu_topology();
6702 n = doms_new ? ndoms_new : 0;
6704 /* Destroy deleted domains */
6705 for (i = 0; i < ndoms_cur; i++) {
6706 for (j = 0; j < n && !new_topology; j++) {
6707 if (cpumask_equal(doms_cur[i], doms_new[j])
6708 && dattrs_equal(dattr_cur, i, dattr_new, j))
6711 /* no match - a current sched domain not in new doms_new[] */
6712 detach_destroy_domains(doms_cur[i]);
6717 if (doms_new == NULL) {
6719 doms_new = &fallback_doms;
6720 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6721 WARN_ON_ONCE(dattr_new);
6724 /* Build new domains */
6725 for (i = 0; i < ndoms_new; i++) {
6726 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6727 if (cpumask_equal(doms_new[i], doms_cur[j])
6728 && dattrs_equal(dattr_new, i, dattr_cur, j))
6731 /* no match - add a new doms_new */
6732 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6737 /* Remember the new sched domains */
6738 if (doms_cur != &fallback_doms)
6739 free_sched_domains(doms_cur, ndoms_cur);
6740 kfree(dattr_cur); /* kfree(NULL) is safe */
6741 doms_cur = doms_new;
6742 dattr_cur = dattr_new;
6743 ndoms_cur = ndoms_new;
6745 register_sched_domain_sysctl();
6747 mutex_unlock(&sched_domains_mutex);
6750 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6753 * Update cpusets according to cpu_active mask. If cpusets are
6754 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6755 * around partition_sched_domains().
6757 * If we come here as part of a suspend/resume, don't touch cpusets because we
6758 * want to restore it back to its original state upon resume anyway.
6760 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6764 case CPU_ONLINE_FROZEN:
6765 case CPU_DOWN_FAILED_FROZEN:
6768 * num_cpus_frozen tracks how many CPUs are involved in suspend
6769 * resume sequence. As long as this is not the last online
6770 * operation in the resume sequence, just build a single sched
6771 * domain, ignoring cpusets.
6774 if (likely(num_cpus_frozen)) {
6775 partition_sched_domains(1, NULL, NULL);
6780 * This is the last CPU online operation. So fall through and
6781 * restore the original sched domains by considering the
6782 * cpuset configurations.
6786 case CPU_DOWN_FAILED:
6787 cpuset_update_active_cpus(true);
6795 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6799 case CPU_DOWN_PREPARE:
6800 cpuset_update_active_cpus(false);
6802 case CPU_DOWN_PREPARE_FROZEN:
6804 partition_sched_domains(1, NULL, NULL);
6812 void __init sched_init_smp(void)
6814 cpumask_var_t non_isolated_cpus;
6816 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6817 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6822 mutex_lock(&sched_domains_mutex);
6823 init_sched_domains(cpu_active_mask);
6824 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6825 if (cpumask_empty(non_isolated_cpus))
6826 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6827 mutex_unlock(&sched_domains_mutex);
6830 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6831 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6832 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6834 /* RT runtime code needs to handle some hotplug events */
6835 hotcpu_notifier(update_runtime, 0);
6839 /* Move init over to a non-isolated CPU */
6840 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6842 sched_init_granularity();
6843 free_cpumask_var(non_isolated_cpus);
6845 init_sched_rt_class();
6848 void __init sched_init_smp(void)
6850 sched_init_granularity();
6852 #endif /* CONFIG_SMP */
6854 const_debug unsigned int sysctl_timer_migration = 1;
6856 int in_sched_functions(unsigned long addr)
6858 return in_lock_functions(addr) ||
6859 (addr >= (unsigned long)__sched_text_start
6860 && addr < (unsigned long)__sched_text_end);
6863 #ifdef CONFIG_CGROUP_SCHED
6864 struct task_group root_task_group;
6865 LIST_HEAD(task_groups);
6868 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6870 void __init sched_init(void)
6873 unsigned long alloc_size = 0, ptr;
6875 #ifdef CONFIG_FAIR_GROUP_SCHED
6876 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6878 #ifdef CONFIG_RT_GROUP_SCHED
6879 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6881 #ifdef CONFIG_CPUMASK_OFFSTACK
6882 alloc_size += num_possible_cpus() * cpumask_size();
6885 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6887 #ifdef CONFIG_FAIR_GROUP_SCHED
6888 root_task_group.se = (struct sched_entity **)ptr;
6889 ptr += nr_cpu_ids * sizeof(void **);
6891 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6892 ptr += nr_cpu_ids * sizeof(void **);
6894 #endif /* CONFIG_FAIR_GROUP_SCHED */
6895 #ifdef CONFIG_RT_GROUP_SCHED
6896 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6897 ptr += nr_cpu_ids * sizeof(void **);
6899 root_task_group.rt_rq = (struct rt_rq **)ptr;
6900 ptr += nr_cpu_ids * sizeof(void **);
6902 #endif /* CONFIG_RT_GROUP_SCHED */
6903 #ifdef CONFIG_CPUMASK_OFFSTACK
6904 for_each_possible_cpu(i) {
6905 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6906 ptr += cpumask_size();
6908 #endif /* CONFIG_CPUMASK_OFFSTACK */
6912 init_defrootdomain();
6915 init_rt_bandwidth(&def_rt_bandwidth,
6916 global_rt_period(), global_rt_runtime());
6918 #ifdef CONFIG_RT_GROUP_SCHED
6919 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6920 global_rt_period(), global_rt_runtime());
6921 #endif /* CONFIG_RT_GROUP_SCHED */
6923 #ifdef CONFIG_CGROUP_SCHED
6924 list_add(&root_task_group.list, &task_groups);
6925 INIT_LIST_HEAD(&root_task_group.children);
6926 INIT_LIST_HEAD(&root_task_group.siblings);
6927 autogroup_init(&init_task);
6929 #endif /* CONFIG_CGROUP_SCHED */
6931 #ifdef CONFIG_CGROUP_CPUACCT
6932 root_cpuacct.cpustat = &kernel_cpustat;
6933 root_cpuacct.cpuusage = alloc_percpu(u64);
6934 /* Too early, not expected to fail */
6935 BUG_ON(!root_cpuacct.cpuusage);
6937 for_each_possible_cpu(i) {
6941 raw_spin_lock_init(&rq->lock);
6943 rq->calc_load_active = 0;
6944 rq->calc_load_update = jiffies + LOAD_FREQ;
6945 init_cfs_rq(&rq->cfs);
6946 init_rt_rq(&rq->rt, rq);
6947 #ifdef CONFIG_FAIR_GROUP_SCHED
6948 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6949 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6951 * How much cpu bandwidth does root_task_group get?
6953 * In case of task-groups formed thr' the cgroup filesystem, it
6954 * gets 100% of the cpu resources in the system. This overall
6955 * system cpu resource is divided among the tasks of
6956 * root_task_group and its child task-groups in a fair manner,
6957 * based on each entity's (task or task-group's) weight
6958 * (se->load.weight).
6960 * In other words, if root_task_group has 10 tasks of weight
6961 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6962 * then A0's share of the cpu resource is:
6964 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6966 * We achieve this by letting root_task_group's tasks sit
6967 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6969 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6970 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6971 #endif /* CONFIG_FAIR_GROUP_SCHED */
6973 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6974 #ifdef CONFIG_RT_GROUP_SCHED
6975 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6976 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6979 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6980 rq->cpu_load[j] = 0;
6982 rq->last_load_update_tick = jiffies;
6987 rq->cpu_power = SCHED_POWER_SCALE;
6988 rq->post_schedule = 0;
6989 rq->active_balance = 0;
6990 rq->next_balance = jiffies;
6995 rq->avg_idle = 2*sysctl_sched_migration_cost;
6997 INIT_LIST_HEAD(&rq->cfs_tasks);
6999 rq_attach_root(rq, &def_root_domain);
7005 atomic_set(&rq->nr_iowait, 0);
7008 set_load_weight(&init_task);
7010 #ifdef CONFIG_PREEMPT_NOTIFIERS
7011 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7014 #ifdef CONFIG_RT_MUTEXES
7015 plist_head_init(&init_task.pi_waiters);
7019 * The boot idle thread does lazy MMU switching as well:
7021 atomic_inc(&init_mm.mm_count);
7022 enter_lazy_tlb(&init_mm, current);
7025 * Make us the idle thread. Technically, schedule() should not be
7026 * called from this thread, however somewhere below it might be,
7027 * but because we are the idle thread, we just pick up running again
7028 * when this runqueue becomes "idle".
7030 init_idle(current, smp_processor_id());
7032 calc_load_update = jiffies + LOAD_FREQ;
7035 * During early bootup we pretend to be a normal task:
7037 current->sched_class = &fair_sched_class;
7040 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7041 /* May be allocated at isolcpus cmdline parse time */
7042 if (cpu_isolated_map == NULL)
7043 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7044 idle_thread_set_boot_cpu();
7046 init_sched_fair_class();
7048 scheduler_running = 1;
7051 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7052 static inline int preempt_count_equals(int preempt_offset)
7054 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7056 return (nested == preempt_offset);
7059 void __might_sleep(const char *file, int line, int preempt_offset)
7061 static unsigned long prev_jiffy; /* ratelimiting */
7063 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7064 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7065 system_state != SYSTEM_RUNNING || oops_in_progress)
7067 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7069 prev_jiffy = jiffies;
7072 "BUG: sleeping function called from invalid context at %s:%d\n",
7075 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7076 in_atomic(), irqs_disabled(),
7077 current->pid, current->comm);
7079 debug_show_held_locks(current);
7080 if (irqs_disabled())
7081 print_irqtrace_events(current);
7084 EXPORT_SYMBOL(__might_sleep);
7087 #ifdef CONFIG_MAGIC_SYSRQ
7088 static void normalize_task(struct rq *rq, struct task_struct *p)
7090 const struct sched_class *prev_class = p->sched_class;
7091 int old_prio = p->prio;
7096 dequeue_task(rq, p, 0);
7097 __setscheduler(rq, p, SCHED_NORMAL, 0);
7099 enqueue_task(rq, p, 0);
7100 resched_task(rq->curr);
7103 check_class_changed(rq, p, prev_class, old_prio);
7106 void normalize_rt_tasks(void)
7108 struct task_struct *g, *p;
7109 unsigned long flags;
7112 read_lock_irqsave(&tasklist_lock, flags);
7113 do_each_thread(g, p) {
7115 * Only normalize user tasks:
7120 p->se.exec_start = 0;
7121 #ifdef CONFIG_SCHEDSTATS
7122 p->se.statistics.wait_start = 0;
7123 p->se.statistics.sleep_start = 0;
7124 p->se.statistics.block_start = 0;
7129 * Renice negative nice level userspace
7132 if (TASK_NICE(p) < 0 && p->mm)
7133 set_user_nice(p, 0);
7137 raw_spin_lock(&p->pi_lock);
7138 rq = __task_rq_lock(p);
7140 normalize_task(rq, p);
7142 __task_rq_unlock(rq);
7143 raw_spin_unlock(&p->pi_lock);
7144 } while_each_thread(g, p);
7146 read_unlock_irqrestore(&tasklist_lock, flags);
7149 #endif /* CONFIG_MAGIC_SYSRQ */
7151 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7153 * These functions are only useful for the IA64 MCA handling, or kdb.
7155 * They can only be called when the whole system has been
7156 * stopped - every CPU needs to be quiescent, and no scheduling
7157 * activity can take place. Using them for anything else would
7158 * be a serious bug, and as a result, they aren't even visible
7159 * under any other configuration.
7163 * curr_task - return the current task for a given cpu.
7164 * @cpu: the processor in question.
7166 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7168 struct task_struct *curr_task(int cpu)
7170 return cpu_curr(cpu);
7173 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7177 * set_curr_task - set the current task for a given cpu.
7178 * @cpu: the processor in question.
7179 * @p: the task pointer to set.
7181 * Description: This function must only be used when non-maskable interrupts
7182 * are serviced on a separate stack. It allows the architecture to switch the
7183 * notion of the current task on a cpu in a non-blocking manner. This function
7184 * must be called with all CPU's synchronized, and interrupts disabled, the
7185 * and caller must save the original value of the current task (see
7186 * curr_task() above) and restore that value before reenabling interrupts and
7187 * re-starting the system.
7189 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7191 void set_curr_task(int cpu, struct task_struct *p)
7198 #ifdef CONFIG_CGROUP_SCHED
7199 /* task_group_lock serializes the addition/removal of task groups */
7200 static DEFINE_SPINLOCK(task_group_lock);
7202 static void free_sched_group(struct task_group *tg)
7204 free_fair_sched_group(tg);
7205 free_rt_sched_group(tg);
7210 /* allocate runqueue etc for a new task group */
7211 struct task_group *sched_create_group(struct task_group *parent)
7213 struct task_group *tg;
7215 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7217 return ERR_PTR(-ENOMEM);
7219 if (!alloc_fair_sched_group(tg, parent))
7222 if (!alloc_rt_sched_group(tg, parent))
7228 free_sched_group(tg);
7229 return ERR_PTR(-ENOMEM);
7232 void sched_online_group(struct task_group *tg, struct task_group *parent)
7234 unsigned long flags;
7236 spin_lock_irqsave(&task_group_lock, flags);
7237 list_add_rcu(&tg->list, &task_groups);
7239 WARN_ON(!parent); /* root should already exist */
7241 tg->parent = parent;
7242 INIT_LIST_HEAD(&tg->children);
7243 list_add_rcu(&tg->siblings, &parent->children);
7244 spin_unlock_irqrestore(&task_group_lock, flags);
7247 /* rcu callback to free various structures associated with a task group */
7248 static void free_sched_group_rcu(struct rcu_head *rhp)
7250 /* now it should be safe to free those cfs_rqs */
7251 free_sched_group(container_of(rhp, struct task_group, rcu));
7254 /* Destroy runqueue etc associated with a task group */
7255 void sched_destroy_group(struct task_group *tg)
7257 /* wait for possible concurrent references to cfs_rqs complete */
7258 call_rcu(&tg->rcu, free_sched_group_rcu);
7261 void sched_offline_group(struct task_group *tg)
7263 unsigned long flags;
7266 /* end participation in shares distribution */
7267 for_each_possible_cpu(i)
7268 unregister_fair_sched_group(tg, i);
7270 spin_lock_irqsave(&task_group_lock, flags);
7271 list_del_rcu(&tg->list);
7272 list_del_rcu(&tg->siblings);
7273 spin_unlock_irqrestore(&task_group_lock, flags);
7276 /* change task's runqueue when it moves between groups.
7277 * The caller of this function should have put the task in its new group
7278 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7279 * reflect its new group.
7281 void sched_move_task(struct task_struct *tsk)
7283 struct task_group *tg;
7285 unsigned long flags;
7288 rq = task_rq_lock(tsk, &flags);
7290 running = task_current(rq, tsk);
7294 dequeue_task(rq, tsk, 0);
7295 if (unlikely(running))
7296 tsk->sched_class->put_prev_task(rq, tsk);
7298 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7299 lockdep_is_held(&tsk->sighand->siglock)),
7300 struct task_group, css);
7301 tg = autogroup_task_group(tsk, tg);
7302 tsk->sched_task_group = tg;
7304 #ifdef CONFIG_FAIR_GROUP_SCHED
7305 if (tsk->sched_class->task_move_group)
7306 tsk->sched_class->task_move_group(tsk, on_rq);
7309 set_task_rq(tsk, task_cpu(tsk));
7311 if (unlikely(running))
7312 tsk->sched_class->set_curr_task(rq);
7314 enqueue_task(rq, tsk, 0);
7316 task_rq_unlock(rq, tsk, &flags);
7318 #endif /* CONFIG_CGROUP_SCHED */
7320 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7321 static unsigned long to_ratio(u64 period, u64 runtime)
7323 if (runtime == RUNTIME_INF)
7326 return div64_u64(runtime << 20, period);
7330 #ifdef CONFIG_RT_GROUP_SCHED
7332 * Ensure that the real time constraints are schedulable.
7334 static DEFINE_MUTEX(rt_constraints_mutex);
7336 /* Must be called with tasklist_lock held */
7337 static inline int tg_has_rt_tasks(struct task_group *tg)
7339 struct task_struct *g, *p;
7341 do_each_thread(g, p) {
7342 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7344 } while_each_thread(g, p);
7349 struct rt_schedulable_data {
7350 struct task_group *tg;
7355 static int tg_rt_schedulable(struct task_group *tg, void *data)
7357 struct rt_schedulable_data *d = data;
7358 struct task_group *child;
7359 unsigned long total, sum = 0;
7360 u64 period, runtime;
7362 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7363 runtime = tg->rt_bandwidth.rt_runtime;
7366 period = d->rt_period;
7367 runtime = d->rt_runtime;
7371 * Cannot have more runtime than the period.
7373 if (runtime > period && runtime != RUNTIME_INF)
7377 * Ensure we don't starve existing RT tasks.
7379 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7382 total = to_ratio(period, runtime);
7385 * Nobody can have more than the global setting allows.
7387 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7391 * The sum of our children's runtime should not exceed our own.
7393 list_for_each_entry_rcu(child, &tg->children, siblings) {
7394 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7395 runtime = child->rt_bandwidth.rt_runtime;
7397 if (child == d->tg) {
7398 period = d->rt_period;
7399 runtime = d->rt_runtime;
7402 sum += to_ratio(period, runtime);
7411 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7415 struct rt_schedulable_data data = {
7417 .rt_period = period,
7418 .rt_runtime = runtime,
7422 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7428 static int tg_set_rt_bandwidth(struct task_group *tg,
7429 u64 rt_period, u64 rt_runtime)
7433 mutex_lock(&rt_constraints_mutex);
7434 read_lock(&tasklist_lock);
7435 err = __rt_schedulable(tg, rt_period, rt_runtime);
7439 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7440 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7441 tg->rt_bandwidth.rt_runtime = rt_runtime;
7443 for_each_possible_cpu(i) {
7444 struct rt_rq *rt_rq = tg->rt_rq[i];
7446 raw_spin_lock(&rt_rq->rt_runtime_lock);
7447 rt_rq->rt_runtime = rt_runtime;
7448 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7450 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7452 read_unlock(&tasklist_lock);
7453 mutex_unlock(&rt_constraints_mutex);
7458 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7460 u64 rt_runtime, rt_period;
7462 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7463 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7464 if (rt_runtime_us < 0)
7465 rt_runtime = RUNTIME_INF;
7467 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7470 long sched_group_rt_runtime(struct task_group *tg)
7474 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7477 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7478 do_div(rt_runtime_us, NSEC_PER_USEC);
7479 return rt_runtime_us;
7482 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7484 u64 rt_runtime, rt_period;
7486 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7487 rt_runtime = tg->rt_bandwidth.rt_runtime;
7492 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7495 long sched_group_rt_period(struct task_group *tg)
7499 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7500 do_div(rt_period_us, NSEC_PER_USEC);
7501 return rt_period_us;
7504 static int sched_rt_global_constraints(void)
7506 u64 runtime, period;
7509 if (sysctl_sched_rt_period <= 0)
7512 runtime = global_rt_runtime();
7513 period = global_rt_period();
7516 * Sanity check on the sysctl variables.
7518 if (runtime > period && runtime != RUNTIME_INF)
7521 mutex_lock(&rt_constraints_mutex);
7522 read_lock(&tasklist_lock);
7523 ret = __rt_schedulable(NULL, 0, 0);
7524 read_unlock(&tasklist_lock);
7525 mutex_unlock(&rt_constraints_mutex);
7530 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7532 /* Don't accept realtime tasks when there is no way for them to run */
7533 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7539 #else /* !CONFIG_RT_GROUP_SCHED */
7540 static int sched_rt_global_constraints(void)
7542 unsigned long flags;
7545 if (sysctl_sched_rt_period <= 0)
7549 * There's always some RT tasks in the root group
7550 * -- migration, kstopmachine etc..
7552 if (sysctl_sched_rt_runtime == 0)
7555 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7556 for_each_possible_cpu(i) {
7557 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7559 raw_spin_lock(&rt_rq->rt_runtime_lock);
7560 rt_rq->rt_runtime = global_rt_runtime();
7561 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7563 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7567 #endif /* CONFIG_RT_GROUP_SCHED */
7569 int sched_rr_handler(struct ctl_table *table, int write,
7570 void __user *buffer, size_t *lenp,
7574 static DEFINE_MUTEX(mutex);
7577 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7578 /* make sure that internally we keep jiffies */
7579 /* also, writing zero resets timeslice to default */
7580 if (!ret && write) {
7581 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7582 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7584 mutex_unlock(&mutex);
7588 int sched_rt_handler(struct ctl_table *table, int write,
7589 void __user *buffer, size_t *lenp,
7593 int old_period, old_runtime;
7594 static DEFINE_MUTEX(mutex);
7597 old_period = sysctl_sched_rt_period;
7598 old_runtime = sysctl_sched_rt_runtime;
7600 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7602 if (!ret && write) {
7603 ret = sched_rt_global_constraints();
7605 sysctl_sched_rt_period = old_period;
7606 sysctl_sched_rt_runtime = old_runtime;
7608 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7609 def_rt_bandwidth.rt_period =
7610 ns_to_ktime(global_rt_period());
7613 mutex_unlock(&mutex);
7618 #ifdef CONFIG_CGROUP_SCHED
7620 /* return corresponding task_group object of a cgroup */
7621 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7623 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7624 struct task_group, css);
7627 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7629 struct task_group *tg, *parent;
7631 if (!cgrp->parent) {
7632 /* This is early initialization for the top cgroup */
7633 return &root_task_group.css;
7636 parent = cgroup_tg(cgrp->parent);
7637 tg = sched_create_group(parent);
7639 return ERR_PTR(-ENOMEM);
7644 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7646 struct task_group *tg = cgroup_tg(cgrp);
7647 struct task_group *parent;
7652 parent = cgroup_tg(cgrp->parent);
7653 sched_online_group(tg, parent);
7657 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7659 struct task_group *tg = cgroup_tg(cgrp);
7661 sched_destroy_group(tg);
7664 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7666 struct task_group *tg = cgroup_tg(cgrp);
7668 sched_offline_group(tg);
7671 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7672 struct cgroup_taskset *tset)
7674 struct task_struct *task;
7676 cgroup_taskset_for_each(task, cgrp, tset) {
7677 #ifdef CONFIG_RT_GROUP_SCHED
7678 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7681 /* We don't support RT-tasks being in separate groups */
7682 if (task->sched_class != &fair_sched_class)
7689 static void cpu_cgroup_attach(struct cgroup *cgrp,
7690 struct cgroup_taskset *tset)
7692 struct task_struct *task;
7694 cgroup_taskset_for_each(task, cgrp, tset)
7695 sched_move_task(task);
7699 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7700 struct task_struct *task)
7703 * cgroup_exit() is called in the copy_process() failure path.
7704 * Ignore this case since the task hasn't ran yet, this avoids
7705 * trying to poke a half freed task state from generic code.
7707 if (!(task->flags & PF_EXITING))
7710 sched_move_task(task);
7713 #ifdef CONFIG_FAIR_GROUP_SCHED
7714 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7717 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7720 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7722 struct task_group *tg = cgroup_tg(cgrp);
7724 return (u64) scale_load_down(tg->shares);
7727 #ifdef CONFIG_CFS_BANDWIDTH
7728 static DEFINE_MUTEX(cfs_constraints_mutex);
7730 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7731 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7733 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7735 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7737 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7738 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7740 if (tg == &root_task_group)
7744 * Ensure we have at some amount of bandwidth every period. This is
7745 * to prevent reaching a state of large arrears when throttled via
7746 * entity_tick() resulting in prolonged exit starvation.
7748 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7752 * Likewise, bound things on the otherside by preventing insane quota
7753 * periods. This also allows us to normalize in computing quota
7756 if (period > max_cfs_quota_period)
7759 mutex_lock(&cfs_constraints_mutex);
7760 ret = __cfs_schedulable(tg, period, quota);
7764 runtime_enabled = quota != RUNTIME_INF;
7765 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7766 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7767 raw_spin_lock_irq(&cfs_b->lock);
7768 cfs_b->period = ns_to_ktime(period);
7769 cfs_b->quota = quota;
7771 __refill_cfs_bandwidth_runtime(cfs_b);
7772 /* restart the period timer (if active) to handle new period expiry */
7773 if (runtime_enabled && cfs_b->timer_active) {
7774 /* force a reprogram */
7775 cfs_b->timer_active = 0;
7776 __start_cfs_bandwidth(cfs_b);
7778 raw_spin_unlock_irq(&cfs_b->lock);
7780 for_each_possible_cpu(i) {
7781 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7782 struct rq *rq = cfs_rq->rq;
7784 raw_spin_lock_irq(&rq->lock);
7785 cfs_rq->runtime_enabled = runtime_enabled;
7786 cfs_rq->runtime_remaining = 0;
7788 if (cfs_rq->throttled)
7789 unthrottle_cfs_rq(cfs_rq);
7790 raw_spin_unlock_irq(&rq->lock);
7793 mutex_unlock(&cfs_constraints_mutex);
7798 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7802 period = ktime_to_ns(tg->cfs_bandwidth.period);
7803 if (cfs_quota_us < 0)
7804 quota = RUNTIME_INF;
7806 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7808 return tg_set_cfs_bandwidth(tg, period, quota);
7811 long tg_get_cfs_quota(struct task_group *tg)
7815 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7818 quota_us = tg->cfs_bandwidth.quota;
7819 do_div(quota_us, NSEC_PER_USEC);
7824 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7828 period = (u64)cfs_period_us * NSEC_PER_USEC;
7829 quota = tg->cfs_bandwidth.quota;
7831 return tg_set_cfs_bandwidth(tg, period, quota);
7834 long tg_get_cfs_period(struct task_group *tg)
7838 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7839 do_div(cfs_period_us, NSEC_PER_USEC);
7841 return cfs_period_us;
7844 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7846 return tg_get_cfs_quota(cgroup_tg(cgrp));
7849 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7852 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7855 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7857 return tg_get_cfs_period(cgroup_tg(cgrp));
7860 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7863 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7866 struct cfs_schedulable_data {
7867 struct task_group *tg;
7872 * normalize group quota/period to be quota/max_period
7873 * note: units are usecs
7875 static u64 normalize_cfs_quota(struct task_group *tg,
7876 struct cfs_schedulable_data *d)
7884 period = tg_get_cfs_period(tg);
7885 quota = tg_get_cfs_quota(tg);
7888 /* note: these should typically be equivalent */
7889 if (quota == RUNTIME_INF || quota == -1)
7892 return to_ratio(period, quota);
7895 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7897 struct cfs_schedulable_data *d = data;
7898 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7899 s64 quota = 0, parent_quota = -1;
7902 quota = RUNTIME_INF;
7904 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7906 quota = normalize_cfs_quota(tg, d);
7907 parent_quota = parent_b->hierarchal_quota;
7910 * ensure max(child_quota) <= parent_quota, inherit when no
7913 if (quota == RUNTIME_INF)
7914 quota = parent_quota;
7915 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7918 cfs_b->hierarchal_quota = quota;
7923 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7926 struct cfs_schedulable_data data = {
7932 if (quota != RUNTIME_INF) {
7933 do_div(data.period, NSEC_PER_USEC);
7934 do_div(data.quota, NSEC_PER_USEC);
7938 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7944 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7945 struct cgroup_map_cb *cb)
7947 struct task_group *tg = cgroup_tg(cgrp);
7948 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7950 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7951 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7952 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7956 #endif /* CONFIG_CFS_BANDWIDTH */
7957 #endif /* CONFIG_FAIR_GROUP_SCHED */
7959 #ifdef CONFIG_RT_GROUP_SCHED
7960 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7963 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7966 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7968 return sched_group_rt_runtime(cgroup_tg(cgrp));
7971 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7974 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7977 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7979 return sched_group_rt_period(cgroup_tg(cgrp));
7981 #endif /* CONFIG_RT_GROUP_SCHED */
7983 static struct cftype cpu_files[] = {
7984 #ifdef CONFIG_FAIR_GROUP_SCHED
7987 .read_u64 = cpu_shares_read_u64,
7988 .write_u64 = cpu_shares_write_u64,
7991 #ifdef CONFIG_CFS_BANDWIDTH
7993 .name = "cfs_quota_us",
7994 .read_s64 = cpu_cfs_quota_read_s64,
7995 .write_s64 = cpu_cfs_quota_write_s64,
7998 .name = "cfs_period_us",
7999 .read_u64 = cpu_cfs_period_read_u64,
8000 .write_u64 = cpu_cfs_period_write_u64,
8004 .read_map = cpu_stats_show,
8007 #ifdef CONFIG_RT_GROUP_SCHED
8009 .name = "rt_runtime_us",
8010 .read_s64 = cpu_rt_runtime_read,
8011 .write_s64 = cpu_rt_runtime_write,
8014 .name = "rt_period_us",
8015 .read_u64 = cpu_rt_period_read_uint,
8016 .write_u64 = cpu_rt_period_write_uint,
8022 struct cgroup_subsys cpu_cgroup_subsys = {
8024 .css_alloc = cpu_cgroup_css_alloc,
8025 .css_free = cpu_cgroup_css_free,
8026 .css_online = cpu_cgroup_css_online,
8027 .css_offline = cpu_cgroup_css_offline,
8028 .can_attach = cpu_cgroup_can_attach,
8029 .attach = cpu_cgroup_attach,
8030 .exit = cpu_cgroup_exit,
8031 .subsys_id = cpu_cgroup_subsys_id,
8032 .base_cftypes = cpu_files,
8036 #endif /* CONFIG_CGROUP_SCHED */
8038 #ifdef CONFIG_CGROUP_CPUACCT
8041 * CPU accounting code for task groups.
8043 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8044 * (balbir@in.ibm.com).
8047 struct cpuacct root_cpuacct;
8049 /* create a new cpu accounting group */
8050 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8055 return &root_cpuacct.css;
8057 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8061 ca->cpuusage = alloc_percpu(u64);
8065 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8067 goto out_free_cpuusage;
8072 free_percpu(ca->cpuusage);
8076 return ERR_PTR(-ENOMEM);
8079 /* destroy an existing cpu accounting group */
8080 static void cpuacct_css_free(struct cgroup *cgrp)
8082 struct cpuacct *ca = cgroup_ca(cgrp);
8084 free_percpu(ca->cpustat);
8085 free_percpu(ca->cpuusage);
8089 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8091 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8094 #ifndef CONFIG_64BIT
8096 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8098 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8100 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8108 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8110 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8112 #ifndef CONFIG_64BIT
8114 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8116 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8118 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8124 /* return total cpu usage (in nanoseconds) of a group */
8125 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8127 struct cpuacct *ca = cgroup_ca(cgrp);
8128 u64 totalcpuusage = 0;
8131 for_each_present_cpu(i)
8132 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8134 return totalcpuusage;
8137 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8140 struct cpuacct *ca = cgroup_ca(cgrp);
8149 for_each_present_cpu(i)
8150 cpuacct_cpuusage_write(ca, i, 0);
8156 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8159 struct cpuacct *ca = cgroup_ca(cgroup);
8163 for_each_present_cpu(i) {
8164 percpu = cpuacct_cpuusage_read(ca, i);
8165 seq_printf(m, "%llu ", (unsigned long long) percpu);
8167 seq_printf(m, "\n");
8171 static const char *cpuacct_stat_desc[] = {
8172 [CPUACCT_STAT_USER] = "user",
8173 [CPUACCT_STAT_SYSTEM] = "system",
8176 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8177 struct cgroup_map_cb *cb)
8179 struct cpuacct *ca = cgroup_ca(cgrp);
8183 for_each_online_cpu(cpu) {
8184 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8185 val += kcpustat->cpustat[CPUTIME_USER];
8186 val += kcpustat->cpustat[CPUTIME_NICE];
8188 val = cputime64_to_clock_t(val);
8189 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8192 for_each_online_cpu(cpu) {
8193 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8194 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8195 val += kcpustat->cpustat[CPUTIME_IRQ];
8196 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8199 val = cputime64_to_clock_t(val);
8200 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8205 static struct cftype files[] = {
8208 .read_u64 = cpuusage_read,
8209 .write_u64 = cpuusage_write,
8212 .name = "usage_percpu",
8213 .read_seq_string = cpuacct_percpu_seq_read,
8217 .read_map = cpuacct_stats_show,
8223 * charge this task's execution time to its accounting group.
8225 * called with rq->lock held.
8227 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8232 if (unlikely(!cpuacct_subsys.active))
8235 cpu = task_cpu(tsk);
8241 for (; ca; ca = parent_ca(ca)) {
8242 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8243 *cpuusage += cputime;
8249 struct cgroup_subsys cpuacct_subsys = {
8251 .css_alloc = cpuacct_css_alloc,
8252 .css_free = cpuacct_css_free,
8253 .subsys_id = cpuacct_subsys_id,
8254 .base_cftypes = files,
8256 #endif /* CONFIG_CGROUP_CPUACCT */
8258 void dump_cpu_task(int cpu)
8260 pr_info("Task dump for CPU %d:\n", cpu);
8261 sched_show_task(cpu_curr(cpu));