Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[platform/kernel/linux-rpi.git] / kernel / sched / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12
13 #include "sched.h"
14
15 #include <linux/nospec.h>
16
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26
27 #include "pelt.h"
28 #include "smp.h"
29
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)       \
56         (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59         0;
60 #undef SCHED_FEAT
61
62 /*
63  * Print a warning if need_resched is set for the given duration (if
64  * LATENCY_WARN is enabled).
65  *
66  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67  * per boot.
68  */
69 __read_mostly int sysctl_resched_latency_warn_ms = 100;
70 __read_mostly int sysctl_resched_latency_warn_once = 1;
71 #endif /* CONFIG_SCHED_DEBUG */
72
73 /*
74  * Number of tasks to iterate in a single balance run.
75  * Limited because this is done with IRQs disabled.
76  */
77 const_debug unsigned int sysctl_sched_nr_migrate = 32;
78
79 /*
80  * period over which we measure -rt task CPU usage in us.
81  * default: 1s
82  */
83 unsigned int sysctl_sched_rt_period = 1000000;
84
85 __read_mostly int scheduler_running;
86
87 #ifdef CONFIG_SCHED_CORE
88
89 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90
91 /* kernel prio, less is more */
92 static inline int __task_prio(struct task_struct *p)
93 {
94         if (p->sched_class == &stop_sched_class) /* trumps deadline */
95                 return -2;
96
97         if (rt_prio(p->prio)) /* includes deadline */
98                 return p->prio; /* [-1, 99] */
99
100         if (p->sched_class == &idle_sched_class)
101                 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102
103         return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104 }
105
106 /*
107  * l(a,b)
108  * le(a,b) := !l(b,a)
109  * g(a,b)  := l(b,a)
110  * ge(a,b) := !l(a,b)
111  */
112
113 /* real prio, less is less */
114 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
115 {
116
117         int pa = __task_prio(a), pb = __task_prio(b);
118
119         if (-pa < -pb)
120                 return true;
121
122         if (-pb < -pa)
123                 return false;
124
125         if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126                 return !dl_time_before(a->dl.deadline, b->dl.deadline);
127
128         if (pa == MAX_RT_PRIO + MAX_NICE)       /* fair */
129                 return cfs_prio_less(a, b, in_fi);
130
131         return false;
132 }
133
134 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135 {
136         if (a->core_cookie < b->core_cookie)
137                 return true;
138
139         if (a->core_cookie > b->core_cookie)
140                 return false;
141
142         /* flip prio, so high prio is leftmost */
143         if (prio_less(b, a, task_rq(a)->core->core_forceidle))
144                 return true;
145
146         return false;
147 }
148
149 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150
151 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152 {
153         return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154 }
155
156 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157 {
158         const struct task_struct *p = __node_2_sc(node);
159         unsigned long cookie = (unsigned long)key;
160
161         if (cookie < p->core_cookie)
162                 return -1;
163
164         if (cookie > p->core_cookie)
165                 return 1;
166
167         return 0;
168 }
169
170 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
171 {
172         rq->core->core_task_seq++;
173
174         if (!p->core_cookie)
175                 return;
176
177         rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178 }
179
180 void sched_core_dequeue(struct rq *rq, struct task_struct *p)
181 {
182         rq->core->core_task_seq++;
183
184         if (!sched_core_enqueued(p))
185                 return;
186
187         rb_erase(&p->core_node, &rq->core_tree);
188         RB_CLEAR_NODE(&p->core_node);
189 }
190
191 /*
192  * Find left-most (aka, highest priority) task matching @cookie.
193  */
194 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195 {
196         struct rb_node *node;
197
198         node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199         /*
200          * The idle task always matches any cookie!
201          */
202         if (!node)
203                 return idle_sched_class.pick_task(rq);
204
205         return __node_2_sc(node);
206 }
207
208 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209 {
210         struct rb_node *node = &p->core_node;
211
212         node = rb_next(node);
213         if (!node)
214                 return NULL;
215
216         p = container_of(node, struct task_struct, core_node);
217         if (p->core_cookie != cookie)
218                 return NULL;
219
220         return p;
221 }
222
223 /*
224  * Magic required such that:
225  *
226  *      raw_spin_rq_lock(rq);
227  *      ...
228  *      raw_spin_rq_unlock(rq);
229  *
230  * ends up locking and unlocking the _same_ lock, and all CPUs
231  * always agree on what rq has what lock.
232  *
233  * XXX entirely possible to selectively enable cores, don't bother for now.
234  */
235
236 static DEFINE_MUTEX(sched_core_mutex);
237 static atomic_t sched_core_count;
238 static struct cpumask sched_core_mask;
239
240 static void sched_core_lock(int cpu, unsigned long *flags)
241 {
242         const struct cpumask *smt_mask = cpu_smt_mask(cpu);
243         int t, i = 0;
244
245         local_irq_save(*flags);
246         for_each_cpu(t, smt_mask)
247                 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
248 }
249
250 static void sched_core_unlock(int cpu, unsigned long *flags)
251 {
252         const struct cpumask *smt_mask = cpu_smt_mask(cpu);
253         int t;
254
255         for_each_cpu(t, smt_mask)
256                 raw_spin_unlock(&cpu_rq(t)->__lock);
257         local_irq_restore(*flags);
258 }
259
260 static void __sched_core_flip(bool enabled)
261 {
262         unsigned long flags;
263         int cpu, t;
264
265         cpus_read_lock();
266
267         /*
268          * Toggle the online cores, one by one.
269          */
270         cpumask_copy(&sched_core_mask, cpu_online_mask);
271         for_each_cpu(cpu, &sched_core_mask) {
272                 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
273
274                 sched_core_lock(cpu, &flags);
275
276                 for_each_cpu(t, smt_mask)
277                         cpu_rq(t)->core_enabled = enabled;
278
279                 sched_core_unlock(cpu, &flags);
280
281                 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
282         }
283
284         /*
285          * Toggle the offline CPUs.
286          */
287         cpumask_copy(&sched_core_mask, cpu_possible_mask);
288         cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
289
290         for_each_cpu(cpu, &sched_core_mask)
291                 cpu_rq(cpu)->core_enabled = enabled;
292
293         cpus_read_unlock();
294 }
295
296 static void sched_core_assert_empty(void)
297 {
298         int cpu;
299
300         for_each_possible_cpu(cpu)
301                 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
302 }
303
304 static void __sched_core_enable(void)
305 {
306         static_branch_enable(&__sched_core_enabled);
307         /*
308          * Ensure all previous instances of raw_spin_rq_*lock() have finished
309          * and future ones will observe !sched_core_disabled().
310          */
311         synchronize_rcu();
312         __sched_core_flip(true);
313         sched_core_assert_empty();
314 }
315
316 static void __sched_core_disable(void)
317 {
318         sched_core_assert_empty();
319         __sched_core_flip(false);
320         static_branch_disable(&__sched_core_enabled);
321 }
322
323 void sched_core_get(void)
324 {
325         if (atomic_inc_not_zero(&sched_core_count))
326                 return;
327
328         mutex_lock(&sched_core_mutex);
329         if (!atomic_read(&sched_core_count))
330                 __sched_core_enable();
331
332         smp_mb__before_atomic();
333         atomic_inc(&sched_core_count);
334         mutex_unlock(&sched_core_mutex);
335 }
336
337 static void __sched_core_put(struct work_struct *work)
338 {
339         if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
340                 __sched_core_disable();
341                 mutex_unlock(&sched_core_mutex);
342         }
343 }
344
345 void sched_core_put(void)
346 {
347         static DECLARE_WORK(_work, __sched_core_put);
348
349         /*
350          * "There can be only one"
351          *
352          * Either this is the last one, or we don't actually need to do any
353          * 'work'. If it is the last *again*, we rely on
354          * WORK_STRUCT_PENDING_BIT.
355          */
356         if (!atomic_add_unless(&sched_core_count, -1, 1))
357                 schedule_work(&_work);
358 }
359
360 #else /* !CONFIG_SCHED_CORE */
361
362 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
363 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
364
365 #endif /* CONFIG_SCHED_CORE */
366
367 /*
368  * part of the period that we allow rt tasks to run in us.
369  * default: 0.95s
370  */
371 int sysctl_sched_rt_runtime = 950000;
372
373
374 /*
375  * Serialization rules:
376  *
377  * Lock order:
378  *
379  *   p->pi_lock
380  *     rq->lock
381  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
382  *
383  *  rq1->lock
384  *    rq2->lock  where: rq1 < rq2
385  *
386  * Regular state:
387  *
388  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
389  * local CPU's rq->lock, it optionally removes the task from the runqueue and
390  * always looks at the local rq data structures to find the most eligible task
391  * to run next.
392  *
393  * Task enqueue is also under rq->lock, possibly taken from another CPU.
394  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
395  * the local CPU to avoid bouncing the runqueue state around [ see
396  * ttwu_queue_wakelist() ]
397  *
398  * Task wakeup, specifically wakeups that involve migration, are horribly
399  * complicated to avoid having to take two rq->locks.
400  *
401  * Special state:
402  *
403  * System-calls and anything external will use task_rq_lock() which acquires
404  * both p->pi_lock and rq->lock. As a consequence the state they change is
405  * stable while holding either lock:
406  *
407  *  - sched_setaffinity()/
408  *    set_cpus_allowed_ptr():   p->cpus_ptr, p->nr_cpus_allowed
409  *  - set_user_nice():          p->se.load, p->*prio
410  *  - __sched_setscheduler():   p->sched_class, p->policy, p->*prio,
411  *                              p->se.load, p->rt_priority,
412  *                              p->dl.dl_{runtime, deadline, period, flags, bw, density}
413  *  - sched_setnuma():          p->numa_preferred_nid
414  *  - sched_move_task()/
415  *    cpu_cgroup_fork():        p->sched_task_group
416  *  - uclamp_update_active()    p->uclamp*
417  *
418  * p->state <- TASK_*:
419  *
420  *   is changed locklessly using set_current_state(), __set_current_state() or
421  *   set_special_state(), see their respective comments, or by
422  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
423  *   concurrent self.
424  *
425  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
426  *
427  *   is set by activate_task() and cleared by deactivate_task(), under
428  *   rq->lock. Non-zero indicates the task is runnable, the special
429  *   ON_RQ_MIGRATING state is used for migration without holding both
430  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
431  *
432  * p->on_cpu <- { 0, 1 }:
433  *
434  *   is set by prepare_task() and cleared by finish_task() such that it will be
435  *   set before p is scheduled-in and cleared after p is scheduled-out, both
436  *   under rq->lock. Non-zero indicates the task is running on its CPU.
437  *
438  *   [ The astute reader will observe that it is possible for two tasks on one
439  *     CPU to have ->on_cpu = 1 at the same time. ]
440  *
441  * task_cpu(p): is changed by set_task_cpu(), the rules are:
442  *
443  *  - Don't call set_task_cpu() on a blocked task:
444  *
445  *    We don't care what CPU we're not running on, this simplifies hotplug,
446  *    the CPU assignment of blocked tasks isn't required to be valid.
447  *
448  *  - for try_to_wake_up(), called under p->pi_lock:
449  *
450  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
451  *
452  *  - for migration called under rq->lock:
453  *    [ see task_on_rq_migrating() in task_rq_lock() ]
454  *
455  *    o move_queued_task()
456  *    o detach_task()
457  *
458  *  - for migration called under double_rq_lock():
459  *
460  *    o __migrate_swap_task()
461  *    o push_rt_task() / pull_rt_task()
462  *    o push_dl_task() / pull_dl_task()
463  *    o dl_task_offline_migration()
464  *
465  */
466
467 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
468 {
469         raw_spinlock_t *lock;
470
471         /* Matches synchronize_rcu() in __sched_core_enable() */
472         preempt_disable();
473         if (sched_core_disabled()) {
474                 raw_spin_lock_nested(&rq->__lock, subclass);
475                 /* preempt_count *MUST* be > 1 */
476                 preempt_enable_no_resched();
477                 return;
478         }
479
480         for (;;) {
481                 lock = __rq_lockp(rq);
482                 raw_spin_lock_nested(lock, subclass);
483                 if (likely(lock == __rq_lockp(rq))) {
484                         /* preempt_count *MUST* be > 1 */
485                         preempt_enable_no_resched();
486                         return;
487                 }
488                 raw_spin_unlock(lock);
489         }
490 }
491
492 bool raw_spin_rq_trylock(struct rq *rq)
493 {
494         raw_spinlock_t *lock;
495         bool ret;
496
497         /* Matches synchronize_rcu() in __sched_core_enable() */
498         preempt_disable();
499         if (sched_core_disabled()) {
500                 ret = raw_spin_trylock(&rq->__lock);
501                 preempt_enable();
502                 return ret;
503         }
504
505         for (;;) {
506                 lock = __rq_lockp(rq);
507                 ret = raw_spin_trylock(lock);
508                 if (!ret || (likely(lock == __rq_lockp(rq)))) {
509                         preempt_enable();
510                         return ret;
511                 }
512                 raw_spin_unlock(lock);
513         }
514 }
515
516 void raw_spin_rq_unlock(struct rq *rq)
517 {
518         raw_spin_unlock(rq_lockp(rq));
519 }
520
521 #ifdef CONFIG_SMP
522 /*
523  * double_rq_lock - safely lock two runqueues
524  */
525 void double_rq_lock(struct rq *rq1, struct rq *rq2)
526 {
527         lockdep_assert_irqs_disabled();
528
529         if (rq_order_less(rq2, rq1))
530                 swap(rq1, rq2);
531
532         raw_spin_rq_lock(rq1);
533         if (__rq_lockp(rq1) == __rq_lockp(rq2))
534                 return;
535
536         raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
537 }
538 #endif
539
540 /*
541  * __task_rq_lock - lock the rq @p resides on.
542  */
543 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
544         __acquires(rq->lock)
545 {
546         struct rq *rq;
547
548         lockdep_assert_held(&p->pi_lock);
549
550         for (;;) {
551                 rq = task_rq(p);
552                 raw_spin_rq_lock(rq);
553                 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
554                         rq_pin_lock(rq, rf);
555                         return rq;
556                 }
557                 raw_spin_rq_unlock(rq);
558
559                 while (unlikely(task_on_rq_migrating(p)))
560                         cpu_relax();
561         }
562 }
563
564 /*
565  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
566  */
567 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
568         __acquires(p->pi_lock)
569         __acquires(rq->lock)
570 {
571         struct rq *rq;
572
573         for (;;) {
574                 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
575                 rq = task_rq(p);
576                 raw_spin_rq_lock(rq);
577                 /*
578                  *      move_queued_task()              task_rq_lock()
579                  *
580                  *      ACQUIRE (rq->lock)
581                  *      [S] ->on_rq = MIGRATING         [L] rq = task_rq()
582                  *      WMB (__set_task_cpu())          ACQUIRE (rq->lock);
583                  *      [S] ->cpu = new_cpu             [L] task_rq()
584                  *                                      [L] ->on_rq
585                  *      RELEASE (rq->lock)
586                  *
587                  * If we observe the old CPU in task_rq_lock(), the acquire of
588                  * the old rq->lock will fully serialize against the stores.
589                  *
590                  * If we observe the new CPU in task_rq_lock(), the address
591                  * dependency headed by '[L] rq = task_rq()' and the acquire
592                  * will pair with the WMB to ensure we then also see migrating.
593                  */
594                 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
595                         rq_pin_lock(rq, rf);
596                         return rq;
597                 }
598                 raw_spin_rq_unlock(rq);
599                 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
600
601                 while (unlikely(task_on_rq_migrating(p)))
602                         cpu_relax();
603         }
604 }
605
606 /*
607  * RQ-clock updating methods:
608  */
609
610 static void update_rq_clock_task(struct rq *rq, s64 delta)
611 {
612 /*
613  * In theory, the compile should just see 0 here, and optimize out the call
614  * to sched_rt_avg_update. But I don't trust it...
615  */
616         s64 __maybe_unused steal = 0, irq_delta = 0;
617
618 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
619         irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
620
621         /*
622          * Since irq_time is only updated on {soft,}irq_exit, we might run into
623          * this case when a previous update_rq_clock() happened inside a
624          * {soft,}irq region.
625          *
626          * When this happens, we stop ->clock_task and only update the
627          * prev_irq_time stamp to account for the part that fit, so that a next
628          * update will consume the rest. This ensures ->clock_task is
629          * monotonic.
630          *
631          * It does however cause some slight miss-attribution of {soft,}irq
632          * time, a more accurate solution would be to update the irq_time using
633          * the current rq->clock timestamp, except that would require using
634          * atomic ops.
635          */
636         if (irq_delta > delta)
637                 irq_delta = delta;
638
639         rq->prev_irq_time += irq_delta;
640         delta -= irq_delta;
641 #endif
642 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
643         if (static_key_false((&paravirt_steal_rq_enabled))) {
644                 steal = paravirt_steal_clock(cpu_of(rq));
645                 steal -= rq->prev_steal_time_rq;
646
647                 if (unlikely(steal > delta))
648                         steal = delta;
649
650                 rq->prev_steal_time_rq += steal;
651                 delta -= steal;
652         }
653 #endif
654
655         rq->clock_task += delta;
656
657 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
658         if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
659                 update_irq_load_avg(rq, irq_delta + steal);
660 #endif
661         update_rq_clock_pelt(rq, delta);
662 }
663
664 void update_rq_clock(struct rq *rq)
665 {
666         s64 delta;
667
668         lockdep_assert_rq_held(rq);
669
670         if (rq->clock_update_flags & RQCF_ACT_SKIP)
671                 return;
672
673 #ifdef CONFIG_SCHED_DEBUG
674         if (sched_feat(WARN_DOUBLE_CLOCK))
675                 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
676         rq->clock_update_flags |= RQCF_UPDATED;
677 #endif
678
679         delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
680         if (delta < 0)
681                 return;
682         rq->clock += delta;
683         update_rq_clock_task(rq, delta);
684 }
685
686 #ifdef CONFIG_SCHED_HRTICK
687 /*
688  * Use HR-timers to deliver accurate preemption points.
689  */
690
691 static void hrtick_clear(struct rq *rq)
692 {
693         if (hrtimer_active(&rq->hrtick_timer))
694                 hrtimer_cancel(&rq->hrtick_timer);
695 }
696
697 /*
698  * High-resolution timer tick.
699  * Runs from hardirq context with interrupts disabled.
700  */
701 static enum hrtimer_restart hrtick(struct hrtimer *timer)
702 {
703         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
704         struct rq_flags rf;
705
706         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
707
708         rq_lock(rq, &rf);
709         update_rq_clock(rq);
710         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
711         rq_unlock(rq, &rf);
712
713         return HRTIMER_NORESTART;
714 }
715
716 #ifdef CONFIG_SMP
717
718 static void __hrtick_restart(struct rq *rq)
719 {
720         struct hrtimer *timer = &rq->hrtick_timer;
721         ktime_t time = rq->hrtick_time;
722
723         hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
724 }
725
726 /*
727  * called from hardirq (IPI) context
728  */
729 static void __hrtick_start(void *arg)
730 {
731         struct rq *rq = arg;
732         struct rq_flags rf;
733
734         rq_lock(rq, &rf);
735         __hrtick_restart(rq);
736         rq_unlock(rq, &rf);
737 }
738
739 /*
740  * Called to set the hrtick timer state.
741  *
742  * called with rq->lock held and irqs disabled
743  */
744 void hrtick_start(struct rq *rq, u64 delay)
745 {
746         struct hrtimer *timer = &rq->hrtick_timer;
747         s64 delta;
748
749         /*
750          * Don't schedule slices shorter than 10000ns, that just
751          * doesn't make sense and can cause timer DoS.
752          */
753         delta = max_t(s64, delay, 10000LL);
754         rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
755
756         if (rq == this_rq())
757                 __hrtick_restart(rq);
758         else
759                 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
760 }
761
762 #else
763 /*
764  * Called to set the hrtick timer state.
765  *
766  * called with rq->lock held and irqs disabled
767  */
768 void hrtick_start(struct rq *rq, u64 delay)
769 {
770         /*
771          * Don't schedule slices shorter than 10000ns, that just
772          * doesn't make sense. Rely on vruntime for fairness.
773          */
774         delay = max_t(u64, delay, 10000LL);
775         hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
776                       HRTIMER_MODE_REL_PINNED_HARD);
777 }
778
779 #endif /* CONFIG_SMP */
780
781 static void hrtick_rq_init(struct rq *rq)
782 {
783 #ifdef CONFIG_SMP
784         INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
785 #endif
786         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
787         rq->hrtick_timer.function = hrtick;
788 }
789 #else   /* CONFIG_SCHED_HRTICK */
790 static inline void hrtick_clear(struct rq *rq)
791 {
792 }
793
794 static inline void hrtick_rq_init(struct rq *rq)
795 {
796 }
797 #endif  /* CONFIG_SCHED_HRTICK */
798
799 /*
800  * cmpxchg based fetch_or, macro so it works for different integer types
801  */
802 #define fetch_or(ptr, mask)                                             \
803         ({                                                              \
804                 typeof(ptr) _ptr = (ptr);                               \
805                 typeof(mask) _mask = (mask);                            \
806                 typeof(*_ptr) _old, _val = *_ptr;                       \
807                                                                         \
808                 for (;;) {                                              \
809                         _old = cmpxchg(_ptr, _val, _val | _mask);       \
810                         if (_old == _val)                               \
811                                 break;                                  \
812                         _val = _old;                                    \
813                 }                                                       \
814         _old;                                                           \
815 })
816
817 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
818 /*
819  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
820  * this avoids any races wrt polling state changes and thereby avoids
821  * spurious IPIs.
822  */
823 static bool set_nr_and_not_polling(struct task_struct *p)
824 {
825         struct thread_info *ti = task_thread_info(p);
826         return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
827 }
828
829 /*
830  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
831  *
832  * If this returns true, then the idle task promises to call
833  * sched_ttwu_pending() and reschedule soon.
834  */
835 static bool set_nr_if_polling(struct task_struct *p)
836 {
837         struct thread_info *ti = task_thread_info(p);
838         typeof(ti->flags) old, val = READ_ONCE(ti->flags);
839
840         for (;;) {
841                 if (!(val & _TIF_POLLING_NRFLAG))
842                         return false;
843                 if (val & _TIF_NEED_RESCHED)
844                         return true;
845                 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
846                 if (old == val)
847                         break;
848                 val = old;
849         }
850         return true;
851 }
852
853 #else
854 static bool set_nr_and_not_polling(struct task_struct *p)
855 {
856         set_tsk_need_resched(p);
857         return true;
858 }
859
860 #ifdef CONFIG_SMP
861 static bool set_nr_if_polling(struct task_struct *p)
862 {
863         return false;
864 }
865 #endif
866 #endif
867
868 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
869 {
870         struct wake_q_node *node = &task->wake_q;
871
872         /*
873          * Atomically grab the task, if ->wake_q is !nil already it means
874          * it's already queued (either by us or someone else) and will get the
875          * wakeup due to that.
876          *
877          * In order to ensure that a pending wakeup will observe our pending
878          * state, even in the failed case, an explicit smp_mb() must be used.
879          */
880         smp_mb__before_atomic();
881         if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
882                 return false;
883
884         /*
885          * The head is context local, there can be no concurrency.
886          */
887         *head->lastp = node;
888         head->lastp = &node->next;
889         return true;
890 }
891
892 /**
893  * wake_q_add() - queue a wakeup for 'later' waking.
894  * @head: the wake_q_head to add @task to
895  * @task: the task to queue for 'later' wakeup
896  *
897  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
898  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
899  * instantly.
900  *
901  * This function must be used as-if it were wake_up_process(); IOW the task
902  * must be ready to be woken at this location.
903  */
904 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
905 {
906         if (__wake_q_add(head, task))
907                 get_task_struct(task);
908 }
909
910 /**
911  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
912  * @head: the wake_q_head to add @task to
913  * @task: the task to queue for 'later' wakeup
914  *
915  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
916  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
917  * instantly.
918  *
919  * This function must be used as-if it were wake_up_process(); IOW the task
920  * must be ready to be woken at this location.
921  *
922  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
923  * that already hold reference to @task can call the 'safe' version and trust
924  * wake_q to do the right thing depending whether or not the @task is already
925  * queued for wakeup.
926  */
927 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
928 {
929         if (!__wake_q_add(head, task))
930                 put_task_struct(task);
931 }
932
933 void wake_up_q(struct wake_q_head *head)
934 {
935         struct wake_q_node *node = head->first;
936
937         while (node != WAKE_Q_TAIL) {
938                 struct task_struct *task;
939
940                 task = container_of(node, struct task_struct, wake_q);
941                 /* Task can safely be re-inserted now: */
942                 node = node->next;
943                 task->wake_q.next = NULL;
944
945                 /*
946                  * wake_up_process() executes a full barrier, which pairs with
947                  * the queueing in wake_q_add() so as not to miss wakeups.
948                  */
949                 wake_up_process(task);
950                 put_task_struct(task);
951         }
952 }
953
954 /*
955  * resched_curr - mark rq's current task 'to be rescheduled now'.
956  *
957  * On UP this means the setting of the need_resched flag, on SMP it
958  * might also involve a cross-CPU call to trigger the scheduler on
959  * the target CPU.
960  */
961 void resched_curr(struct rq *rq)
962 {
963         struct task_struct *curr = rq->curr;
964         int cpu;
965
966         lockdep_assert_rq_held(rq);
967
968         if (test_tsk_need_resched(curr))
969                 return;
970
971         cpu = cpu_of(rq);
972
973         if (cpu == smp_processor_id()) {
974                 set_tsk_need_resched(curr);
975                 set_preempt_need_resched();
976                 return;
977         }
978
979         if (set_nr_and_not_polling(curr))
980                 smp_send_reschedule(cpu);
981         else
982                 trace_sched_wake_idle_without_ipi(cpu);
983 }
984
985 void resched_cpu(int cpu)
986 {
987         struct rq *rq = cpu_rq(cpu);
988         unsigned long flags;
989
990         raw_spin_rq_lock_irqsave(rq, flags);
991         if (cpu_online(cpu) || cpu == smp_processor_id())
992                 resched_curr(rq);
993         raw_spin_rq_unlock_irqrestore(rq, flags);
994 }
995
996 #ifdef CONFIG_SMP
997 #ifdef CONFIG_NO_HZ_COMMON
998 /*
999  * In the semi idle case, use the nearest busy CPU for migrating timers
1000  * from an idle CPU.  This is good for power-savings.
1001  *
1002  * We don't do similar optimization for completely idle system, as
1003  * selecting an idle CPU will add more delays to the timers than intended
1004  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1005  */
1006 int get_nohz_timer_target(void)
1007 {
1008         int i, cpu = smp_processor_id(), default_cpu = -1;
1009         struct sched_domain *sd;
1010         const struct cpumask *hk_mask;
1011
1012         if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1013                 if (!idle_cpu(cpu))
1014                         return cpu;
1015                 default_cpu = cpu;
1016         }
1017
1018         hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1019
1020         rcu_read_lock();
1021         for_each_domain(cpu, sd) {
1022                 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1023                         if (cpu == i)
1024                                 continue;
1025
1026                         if (!idle_cpu(i)) {
1027                                 cpu = i;
1028                                 goto unlock;
1029                         }
1030                 }
1031         }
1032
1033         if (default_cpu == -1)
1034                 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1035         cpu = default_cpu;
1036 unlock:
1037         rcu_read_unlock();
1038         return cpu;
1039 }
1040
1041 /*
1042  * When add_timer_on() enqueues a timer into the timer wheel of an
1043  * idle CPU then this timer might expire before the next timer event
1044  * which is scheduled to wake up that CPU. In case of a completely
1045  * idle system the next event might even be infinite time into the
1046  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1047  * leaves the inner idle loop so the newly added timer is taken into
1048  * account when the CPU goes back to idle and evaluates the timer
1049  * wheel for the next timer event.
1050  */
1051 static void wake_up_idle_cpu(int cpu)
1052 {
1053         struct rq *rq = cpu_rq(cpu);
1054
1055         if (cpu == smp_processor_id())
1056                 return;
1057
1058         if (set_nr_and_not_polling(rq->idle))
1059                 smp_send_reschedule(cpu);
1060         else
1061                 trace_sched_wake_idle_without_ipi(cpu);
1062 }
1063
1064 static bool wake_up_full_nohz_cpu(int cpu)
1065 {
1066         /*
1067          * We just need the target to call irq_exit() and re-evaluate
1068          * the next tick. The nohz full kick at least implies that.
1069          * If needed we can still optimize that later with an
1070          * empty IRQ.
1071          */
1072         if (cpu_is_offline(cpu))
1073                 return true;  /* Don't try to wake offline CPUs. */
1074         if (tick_nohz_full_cpu(cpu)) {
1075                 if (cpu != smp_processor_id() ||
1076                     tick_nohz_tick_stopped())
1077                         tick_nohz_full_kick_cpu(cpu);
1078                 return true;
1079         }
1080
1081         return false;
1082 }
1083
1084 /*
1085  * Wake up the specified CPU.  If the CPU is going offline, it is the
1086  * caller's responsibility to deal with the lost wakeup, for example,
1087  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1088  */
1089 void wake_up_nohz_cpu(int cpu)
1090 {
1091         if (!wake_up_full_nohz_cpu(cpu))
1092                 wake_up_idle_cpu(cpu);
1093 }
1094
1095 static void nohz_csd_func(void *info)
1096 {
1097         struct rq *rq = info;
1098         int cpu = cpu_of(rq);
1099         unsigned int flags;
1100
1101         /*
1102          * Release the rq::nohz_csd.
1103          */
1104         flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1105         WARN_ON(!(flags & NOHZ_KICK_MASK));
1106
1107         rq->idle_balance = idle_cpu(cpu);
1108         if (rq->idle_balance && !need_resched()) {
1109                 rq->nohz_idle_balance = flags;
1110                 raise_softirq_irqoff(SCHED_SOFTIRQ);
1111         }
1112 }
1113
1114 #endif /* CONFIG_NO_HZ_COMMON */
1115
1116 #ifdef CONFIG_NO_HZ_FULL
1117 bool sched_can_stop_tick(struct rq *rq)
1118 {
1119         int fifo_nr_running;
1120
1121         /* Deadline tasks, even if single, need the tick */
1122         if (rq->dl.dl_nr_running)
1123                 return false;
1124
1125         /*
1126          * If there are more than one RR tasks, we need the tick to affect the
1127          * actual RR behaviour.
1128          */
1129         if (rq->rt.rr_nr_running) {
1130                 if (rq->rt.rr_nr_running == 1)
1131                         return true;
1132                 else
1133                         return false;
1134         }
1135
1136         /*
1137          * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1138          * forced preemption between FIFO tasks.
1139          */
1140         fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1141         if (fifo_nr_running)
1142                 return true;
1143
1144         /*
1145          * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1146          * if there's more than one we need the tick for involuntary
1147          * preemption.
1148          */
1149         if (rq->nr_running > 1)
1150                 return false;
1151
1152         return true;
1153 }
1154 #endif /* CONFIG_NO_HZ_FULL */
1155 #endif /* CONFIG_SMP */
1156
1157 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1158                         (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1159 /*
1160  * Iterate task_group tree rooted at *from, calling @down when first entering a
1161  * node and @up when leaving it for the final time.
1162  *
1163  * Caller must hold rcu_lock or sufficient equivalent.
1164  */
1165 int walk_tg_tree_from(struct task_group *from,
1166                              tg_visitor down, tg_visitor up, void *data)
1167 {
1168         struct task_group *parent, *child;
1169         int ret;
1170
1171         parent = from;
1172
1173 down:
1174         ret = (*down)(parent, data);
1175         if (ret)
1176                 goto out;
1177         list_for_each_entry_rcu(child, &parent->children, siblings) {
1178                 parent = child;
1179                 goto down;
1180
1181 up:
1182                 continue;
1183         }
1184         ret = (*up)(parent, data);
1185         if (ret || parent == from)
1186                 goto out;
1187
1188         child = parent;
1189         parent = parent->parent;
1190         if (parent)
1191                 goto up;
1192 out:
1193         return ret;
1194 }
1195
1196 int tg_nop(struct task_group *tg, void *data)
1197 {
1198         return 0;
1199 }
1200 #endif
1201
1202 static void set_load_weight(struct task_struct *p, bool update_load)
1203 {
1204         int prio = p->static_prio - MAX_RT_PRIO;
1205         struct load_weight *load = &p->se.load;
1206
1207         /*
1208          * SCHED_IDLE tasks get minimal weight:
1209          */
1210         if (task_has_idle_policy(p)) {
1211                 load->weight = scale_load(WEIGHT_IDLEPRIO);
1212                 load->inv_weight = WMULT_IDLEPRIO;
1213                 return;
1214         }
1215
1216         /*
1217          * SCHED_OTHER tasks have to update their load when changing their
1218          * weight
1219          */
1220         if (update_load && p->sched_class == &fair_sched_class) {
1221                 reweight_task(p, prio);
1222         } else {
1223                 load->weight = scale_load(sched_prio_to_weight[prio]);
1224                 load->inv_weight = sched_prio_to_wmult[prio];
1225         }
1226 }
1227
1228 #ifdef CONFIG_UCLAMP_TASK
1229 /*
1230  * Serializes updates of utilization clamp values
1231  *
1232  * The (slow-path) user-space triggers utilization clamp value updates which
1233  * can require updates on (fast-path) scheduler's data structures used to
1234  * support enqueue/dequeue operations.
1235  * While the per-CPU rq lock protects fast-path update operations, user-space
1236  * requests are serialized using a mutex to reduce the risk of conflicting
1237  * updates or API abuses.
1238  */
1239 static DEFINE_MUTEX(uclamp_mutex);
1240
1241 /* Max allowed minimum utilization */
1242 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1243
1244 /* Max allowed maximum utilization */
1245 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1246
1247 /*
1248  * By default RT tasks run at the maximum performance point/capacity of the
1249  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1250  * SCHED_CAPACITY_SCALE.
1251  *
1252  * This knob allows admins to change the default behavior when uclamp is being
1253  * used. In battery powered devices, particularly, running at the maximum
1254  * capacity and frequency will increase energy consumption and shorten the
1255  * battery life.
1256  *
1257  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1258  *
1259  * This knob will not override the system default sched_util_clamp_min defined
1260  * above.
1261  */
1262 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1263
1264 /* All clamps are required to be less or equal than these values */
1265 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1266
1267 /*
1268  * This static key is used to reduce the uclamp overhead in the fast path. It
1269  * primarily disables the call to uclamp_rq_{inc, dec}() in
1270  * enqueue/dequeue_task().
1271  *
1272  * This allows users to continue to enable uclamp in their kernel config with
1273  * minimum uclamp overhead in the fast path.
1274  *
1275  * As soon as userspace modifies any of the uclamp knobs, the static key is
1276  * enabled, since we have an actual users that make use of uclamp
1277  * functionality.
1278  *
1279  * The knobs that would enable this static key are:
1280  *
1281  *   * A task modifying its uclamp value with sched_setattr().
1282  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1283  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1284  */
1285 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1286
1287 /* Integer rounded range for each bucket */
1288 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1289
1290 #define for_each_clamp_id(clamp_id) \
1291         for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1292
1293 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1294 {
1295         return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1296 }
1297
1298 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1299 {
1300         if (clamp_id == UCLAMP_MIN)
1301                 return 0;
1302         return SCHED_CAPACITY_SCALE;
1303 }
1304
1305 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1306                                  unsigned int value, bool user_defined)
1307 {
1308         uc_se->value = value;
1309         uc_se->bucket_id = uclamp_bucket_id(value);
1310         uc_se->user_defined = user_defined;
1311 }
1312
1313 static inline unsigned int
1314 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1315                   unsigned int clamp_value)
1316 {
1317         /*
1318          * Avoid blocked utilization pushing up the frequency when we go
1319          * idle (which drops the max-clamp) by retaining the last known
1320          * max-clamp.
1321          */
1322         if (clamp_id == UCLAMP_MAX) {
1323                 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1324                 return clamp_value;
1325         }
1326
1327         return uclamp_none(UCLAMP_MIN);
1328 }
1329
1330 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1331                                      unsigned int clamp_value)
1332 {
1333         /* Reset max-clamp retention only on idle exit */
1334         if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1335                 return;
1336
1337         WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1338 }
1339
1340 static inline
1341 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1342                                    unsigned int clamp_value)
1343 {
1344         struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1345         int bucket_id = UCLAMP_BUCKETS - 1;
1346
1347         /*
1348          * Since both min and max clamps are max aggregated, find the
1349          * top most bucket with tasks in.
1350          */
1351         for ( ; bucket_id >= 0; bucket_id--) {
1352                 if (!bucket[bucket_id].tasks)
1353                         continue;
1354                 return bucket[bucket_id].value;
1355         }
1356
1357         /* No tasks -- default clamp values */
1358         return uclamp_idle_value(rq, clamp_id, clamp_value);
1359 }
1360
1361 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1362 {
1363         unsigned int default_util_min;
1364         struct uclamp_se *uc_se;
1365
1366         lockdep_assert_held(&p->pi_lock);
1367
1368         uc_se = &p->uclamp_req[UCLAMP_MIN];
1369
1370         /* Only sync if user didn't override the default */
1371         if (uc_se->user_defined)
1372                 return;
1373
1374         default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1375         uclamp_se_set(uc_se, default_util_min, false);
1376 }
1377
1378 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1379 {
1380         struct rq_flags rf;
1381         struct rq *rq;
1382
1383         if (!rt_task(p))
1384                 return;
1385
1386         /* Protect updates to p->uclamp_* */
1387         rq = task_rq_lock(p, &rf);
1388         __uclamp_update_util_min_rt_default(p);
1389         task_rq_unlock(rq, p, &rf);
1390 }
1391
1392 static void uclamp_sync_util_min_rt_default(void)
1393 {
1394         struct task_struct *g, *p;
1395
1396         /*
1397          * copy_process()                       sysctl_uclamp
1398          *                                        uclamp_min_rt = X;
1399          *   write_lock(&tasklist_lock)           read_lock(&tasklist_lock)
1400          *   // link thread                       smp_mb__after_spinlock()
1401          *   write_unlock(&tasklist_lock)         read_unlock(&tasklist_lock);
1402          *   sched_post_fork()                    for_each_process_thread()
1403          *     __uclamp_sync_rt()                   __uclamp_sync_rt()
1404          *
1405          * Ensures that either sched_post_fork() will observe the new
1406          * uclamp_min_rt or for_each_process_thread() will observe the new
1407          * task.
1408          */
1409         read_lock(&tasklist_lock);
1410         smp_mb__after_spinlock();
1411         read_unlock(&tasklist_lock);
1412
1413         rcu_read_lock();
1414         for_each_process_thread(g, p)
1415                 uclamp_update_util_min_rt_default(p);
1416         rcu_read_unlock();
1417 }
1418
1419 static inline struct uclamp_se
1420 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1421 {
1422         /* Copy by value as we could modify it */
1423         struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1424 #ifdef CONFIG_UCLAMP_TASK_GROUP
1425         unsigned int tg_min, tg_max, value;
1426
1427         /*
1428          * Tasks in autogroups or root task group will be
1429          * restricted by system defaults.
1430          */
1431         if (task_group_is_autogroup(task_group(p)))
1432                 return uc_req;
1433         if (task_group(p) == &root_task_group)
1434                 return uc_req;
1435
1436         tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1437         tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1438         value = uc_req.value;
1439         value = clamp(value, tg_min, tg_max);
1440         uclamp_se_set(&uc_req, value, false);
1441 #endif
1442
1443         return uc_req;
1444 }
1445
1446 /*
1447  * The effective clamp bucket index of a task depends on, by increasing
1448  * priority:
1449  * - the task specific clamp value, when explicitly requested from userspace
1450  * - the task group effective clamp value, for tasks not either in the root
1451  *   group or in an autogroup
1452  * - the system default clamp value, defined by the sysadmin
1453  */
1454 static inline struct uclamp_se
1455 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1456 {
1457         struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1458         struct uclamp_se uc_max = uclamp_default[clamp_id];
1459
1460         /* System default restrictions always apply */
1461         if (unlikely(uc_req.value > uc_max.value))
1462                 return uc_max;
1463
1464         return uc_req;
1465 }
1466
1467 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1468 {
1469         struct uclamp_se uc_eff;
1470
1471         /* Task currently refcounted: use back-annotated (effective) value */
1472         if (p->uclamp[clamp_id].active)
1473                 return (unsigned long)p->uclamp[clamp_id].value;
1474
1475         uc_eff = uclamp_eff_get(p, clamp_id);
1476
1477         return (unsigned long)uc_eff.value;
1478 }
1479
1480 /*
1481  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1482  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1483  * updates the rq's clamp value if required.
1484  *
1485  * Tasks can have a task-specific value requested from user-space, track
1486  * within each bucket the maximum value for tasks refcounted in it.
1487  * This "local max aggregation" allows to track the exact "requested" value
1488  * for each bucket when all its RUNNABLE tasks require the same clamp.
1489  */
1490 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1491                                     enum uclamp_id clamp_id)
1492 {
1493         struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1494         struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1495         struct uclamp_bucket *bucket;
1496
1497         lockdep_assert_rq_held(rq);
1498
1499         /* Update task effective clamp */
1500         p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1501
1502         bucket = &uc_rq->bucket[uc_se->bucket_id];
1503         bucket->tasks++;
1504         uc_se->active = true;
1505
1506         uclamp_idle_reset(rq, clamp_id, uc_se->value);
1507
1508         /*
1509          * Local max aggregation: rq buckets always track the max
1510          * "requested" clamp value of its RUNNABLE tasks.
1511          */
1512         if (bucket->tasks == 1 || uc_se->value > bucket->value)
1513                 bucket->value = uc_se->value;
1514
1515         if (uc_se->value > READ_ONCE(uc_rq->value))
1516                 WRITE_ONCE(uc_rq->value, uc_se->value);
1517 }
1518
1519 /*
1520  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1521  * is released. If this is the last task reference counting the rq's max
1522  * active clamp value, then the rq's clamp value is updated.
1523  *
1524  * Both refcounted tasks and rq's cached clamp values are expected to be
1525  * always valid. If it's detected they are not, as defensive programming,
1526  * enforce the expected state and warn.
1527  */
1528 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1529                                     enum uclamp_id clamp_id)
1530 {
1531         struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1532         struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1533         struct uclamp_bucket *bucket;
1534         unsigned int bkt_clamp;
1535         unsigned int rq_clamp;
1536
1537         lockdep_assert_rq_held(rq);
1538
1539         /*
1540          * If sched_uclamp_used was enabled after task @p was enqueued,
1541          * we could end up with unbalanced call to uclamp_rq_dec_id().
1542          *
1543          * In this case the uc_se->active flag should be false since no uclamp
1544          * accounting was performed at enqueue time and we can just return
1545          * here.
1546          *
1547          * Need to be careful of the following enqueue/dequeue ordering
1548          * problem too
1549          *
1550          *      enqueue(taskA)
1551          *      // sched_uclamp_used gets enabled
1552          *      enqueue(taskB)
1553          *      dequeue(taskA)
1554          *      // Must not decrement bucket->tasks here
1555          *      dequeue(taskB)
1556          *
1557          * where we could end up with stale data in uc_se and
1558          * bucket[uc_se->bucket_id].
1559          *
1560          * The following check here eliminates the possibility of such race.
1561          */
1562         if (unlikely(!uc_se->active))
1563                 return;
1564
1565         bucket = &uc_rq->bucket[uc_se->bucket_id];
1566
1567         SCHED_WARN_ON(!bucket->tasks);
1568         if (likely(bucket->tasks))
1569                 bucket->tasks--;
1570
1571         uc_se->active = false;
1572
1573         /*
1574          * Keep "local max aggregation" simple and accept to (possibly)
1575          * overboost some RUNNABLE tasks in the same bucket.
1576          * The rq clamp bucket value is reset to its base value whenever
1577          * there are no more RUNNABLE tasks refcounting it.
1578          */
1579         if (likely(bucket->tasks))
1580                 return;
1581
1582         rq_clamp = READ_ONCE(uc_rq->value);
1583         /*
1584          * Defensive programming: this should never happen. If it happens,
1585          * e.g. due to future modification, warn and fixup the expected value.
1586          */
1587         SCHED_WARN_ON(bucket->value > rq_clamp);
1588         if (bucket->value >= rq_clamp) {
1589                 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1590                 WRITE_ONCE(uc_rq->value, bkt_clamp);
1591         }
1592 }
1593
1594 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1595 {
1596         enum uclamp_id clamp_id;
1597
1598         /*
1599          * Avoid any overhead until uclamp is actually used by the userspace.
1600          *
1601          * The condition is constructed such that a NOP is generated when
1602          * sched_uclamp_used is disabled.
1603          */
1604         if (!static_branch_unlikely(&sched_uclamp_used))
1605                 return;
1606
1607         if (unlikely(!p->sched_class->uclamp_enabled))
1608                 return;
1609
1610         for_each_clamp_id(clamp_id)
1611                 uclamp_rq_inc_id(rq, p, clamp_id);
1612
1613         /* Reset clamp idle holding when there is one RUNNABLE task */
1614         if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1615                 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1616 }
1617
1618 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1619 {
1620         enum uclamp_id clamp_id;
1621
1622         /*
1623          * Avoid any overhead until uclamp is actually used by the userspace.
1624          *
1625          * The condition is constructed such that a NOP is generated when
1626          * sched_uclamp_used is disabled.
1627          */
1628         if (!static_branch_unlikely(&sched_uclamp_used))
1629                 return;
1630
1631         if (unlikely(!p->sched_class->uclamp_enabled))
1632                 return;
1633
1634         for_each_clamp_id(clamp_id)
1635                 uclamp_rq_dec_id(rq, p, clamp_id);
1636 }
1637
1638 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1639                                       enum uclamp_id clamp_id)
1640 {
1641         if (!p->uclamp[clamp_id].active)
1642                 return;
1643
1644         uclamp_rq_dec_id(rq, p, clamp_id);
1645         uclamp_rq_inc_id(rq, p, clamp_id);
1646
1647         /*
1648          * Make sure to clear the idle flag if we've transiently reached 0
1649          * active tasks on rq.
1650          */
1651         if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1652                 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1653 }
1654
1655 static inline void
1656 uclamp_update_active(struct task_struct *p)
1657 {
1658         enum uclamp_id clamp_id;
1659         struct rq_flags rf;
1660         struct rq *rq;
1661
1662         /*
1663          * Lock the task and the rq where the task is (or was) queued.
1664          *
1665          * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1666          * price to pay to safely serialize util_{min,max} updates with
1667          * enqueues, dequeues and migration operations.
1668          * This is the same locking schema used by __set_cpus_allowed_ptr().
1669          */
1670         rq = task_rq_lock(p, &rf);
1671
1672         /*
1673          * Setting the clamp bucket is serialized by task_rq_lock().
1674          * If the task is not yet RUNNABLE and its task_struct is not
1675          * affecting a valid clamp bucket, the next time it's enqueued,
1676          * it will already see the updated clamp bucket value.
1677          */
1678         for_each_clamp_id(clamp_id)
1679                 uclamp_rq_reinc_id(rq, p, clamp_id);
1680
1681         task_rq_unlock(rq, p, &rf);
1682 }
1683
1684 #ifdef CONFIG_UCLAMP_TASK_GROUP
1685 static inline void
1686 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1687 {
1688         struct css_task_iter it;
1689         struct task_struct *p;
1690
1691         css_task_iter_start(css, 0, &it);
1692         while ((p = css_task_iter_next(&it)))
1693                 uclamp_update_active(p);
1694         css_task_iter_end(&it);
1695 }
1696
1697 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1698 static void uclamp_update_root_tg(void)
1699 {
1700         struct task_group *tg = &root_task_group;
1701
1702         uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1703                       sysctl_sched_uclamp_util_min, false);
1704         uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1705                       sysctl_sched_uclamp_util_max, false);
1706
1707         rcu_read_lock();
1708         cpu_util_update_eff(&root_task_group.css);
1709         rcu_read_unlock();
1710 }
1711 #else
1712 static void uclamp_update_root_tg(void) { }
1713 #endif
1714
1715 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1716                                 void *buffer, size_t *lenp, loff_t *ppos)
1717 {
1718         bool update_root_tg = false;
1719         int old_min, old_max, old_min_rt;
1720         int result;
1721
1722         mutex_lock(&uclamp_mutex);
1723         old_min = sysctl_sched_uclamp_util_min;
1724         old_max = sysctl_sched_uclamp_util_max;
1725         old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1726
1727         result = proc_dointvec(table, write, buffer, lenp, ppos);
1728         if (result)
1729                 goto undo;
1730         if (!write)
1731                 goto done;
1732
1733         if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1734             sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1735             sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1736
1737                 result = -EINVAL;
1738                 goto undo;
1739         }
1740
1741         if (old_min != sysctl_sched_uclamp_util_min) {
1742                 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1743                               sysctl_sched_uclamp_util_min, false);
1744                 update_root_tg = true;
1745         }
1746         if (old_max != sysctl_sched_uclamp_util_max) {
1747                 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1748                               sysctl_sched_uclamp_util_max, false);
1749                 update_root_tg = true;
1750         }
1751
1752         if (update_root_tg) {
1753                 static_branch_enable(&sched_uclamp_used);
1754                 uclamp_update_root_tg();
1755         }
1756
1757         if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1758                 static_branch_enable(&sched_uclamp_used);
1759                 uclamp_sync_util_min_rt_default();
1760         }
1761
1762         /*
1763          * We update all RUNNABLE tasks only when task groups are in use.
1764          * Otherwise, keep it simple and do just a lazy update at each next
1765          * task enqueue time.
1766          */
1767
1768         goto done;
1769
1770 undo:
1771         sysctl_sched_uclamp_util_min = old_min;
1772         sysctl_sched_uclamp_util_max = old_max;
1773         sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1774 done:
1775         mutex_unlock(&uclamp_mutex);
1776
1777         return result;
1778 }
1779
1780 static int uclamp_validate(struct task_struct *p,
1781                            const struct sched_attr *attr)
1782 {
1783         int util_min = p->uclamp_req[UCLAMP_MIN].value;
1784         int util_max = p->uclamp_req[UCLAMP_MAX].value;
1785
1786         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1787                 util_min = attr->sched_util_min;
1788
1789                 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1790                         return -EINVAL;
1791         }
1792
1793         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1794                 util_max = attr->sched_util_max;
1795
1796                 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1797                         return -EINVAL;
1798         }
1799
1800         if (util_min != -1 && util_max != -1 && util_min > util_max)
1801                 return -EINVAL;
1802
1803         /*
1804          * We have valid uclamp attributes; make sure uclamp is enabled.
1805          *
1806          * We need to do that here, because enabling static branches is a
1807          * blocking operation which obviously cannot be done while holding
1808          * scheduler locks.
1809          */
1810         static_branch_enable(&sched_uclamp_used);
1811
1812         return 0;
1813 }
1814
1815 static bool uclamp_reset(const struct sched_attr *attr,
1816                          enum uclamp_id clamp_id,
1817                          struct uclamp_se *uc_se)
1818 {
1819         /* Reset on sched class change for a non user-defined clamp value. */
1820         if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1821             !uc_se->user_defined)
1822                 return true;
1823
1824         /* Reset on sched_util_{min,max} == -1. */
1825         if (clamp_id == UCLAMP_MIN &&
1826             attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1827             attr->sched_util_min == -1) {
1828                 return true;
1829         }
1830
1831         if (clamp_id == UCLAMP_MAX &&
1832             attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1833             attr->sched_util_max == -1) {
1834                 return true;
1835         }
1836
1837         return false;
1838 }
1839
1840 static void __setscheduler_uclamp(struct task_struct *p,
1841                                   const struct sched_attr *attr)
1842 {
1843         enum uclamp_id clamp_id;
1844
1845         for_each_clamp_id(clamp_id) {
1846                 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1847                 unsigned int value;
1848
1849                 if (!uclamp_reset(attr, clamp_id, uc_se))
1850                         continue;
1851
1852                 /*
1853                  * RT by default have a 100% boost value that could be modified
1854                  * at runtime.
1855                  */
1856                 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1857                         value = sysctl_sched_uclamp_util_min_rt_default;
1858                 else
1859                         value = uclamp_none(clamp_id);
1860
1861                 uclamp_se_set(uc_se, value, false);
1862
1863         }
1864
1865         if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1866                 return;
1867
1868         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1869             attr->sched_util_min != -1) {
1870                 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1871                               attr->sched_util_min, true);
1872         }
1873
1874         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1875             attr->sched_util_max != -1) {
1876                 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1877                               attr->sched_util_max, true);
1878         }
1879 }
1880
1881 static void uclamp_fork(struct task_struct *p)
1882 {
1883         enum uclamp_id clamp_id;
1884
1885         /*
1886          * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1887          * as the task is still at its early fork stages.
1888          */
1889         for_each_clamp_id(clamp_id)
1890                 p->uclamp[clamp_id].active = false;
1891
1892         if (likely(!p->sched_reset_on_fork))
1893                 return;
1894
1895         for_each_clamp_id(clamp_id) {
1896                 uclamp_se_set(&p->uclamp_req[clamp_id],
1897                               uclamp_none(clamp_id), false);
1898         }
1899 }
1900
1901 static void uclamp_post_fork(struct task_struct *p)
1902 {
1903         uclamp_update_util_min_rt_default(p);
1904 }
1905
1906 static void __init init_uclamp_rq(struct rq *rq)
1907 {
1908         enum uclamp_id clamp_id;
1909         struct uclamp_rq *uc_rq = rq->uclamp;
1910
1911         for_each_clamp_id(clamp_id) {
1912                 uc_rq[clamp_id] = (struct uclamp_rq) {
1913                         .value = uclamp_none(clamp_id)
1914                 };
1915         }
1916
1917         rq->uclamp_flags = 0;
1918 }
1919
1920 static void __init init_uclamp(void)
1921 {
1922         struct uclamp_se uc_max = {};
1923         enum uclamp_id clamp_id;
1924         int cpu;
1925
1926         for_each_possible_cpu(cpu)
1927                 init_uclamp_rq(cpu_rq(cpu));
1928
1929         for_each_clamp_id(clamp_id) {
1930                 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1931                               uclamp_none(clamp_id), false);
1932         }
1933
1934         /* System defaults allow max clamp values for both indexes */
1935         uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1936         for_each_clamp_id(clamp_id) {
1937                 uclamp_default[clamp_id] = uc_max;
1938 #ifdef CONFIG_UCLAMP_TASK_GROUP
1939                 root_task_group.uclamp_req[clamp_id] = uc_max;
1940                 root_task_group.uclamp[clamp_id] = uc_max;
1941 #endif
1942         }
1943 }
1944
1945 #else /* CONFIG_UCLAMP_TASK */
1946 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1947 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1948 static inline int uclamp_validate(struct task_struct *p,
1949                                   const struct sched_attr *attr)
1950 {
1951         return -EOPNOTSUPP;
1952 }
1953 static void __setscheduler_uclamp(struct task_struct *p,
1954                                   const struct sched_attr *attr) { }
1955 static inline void uclamp_fork(struct task_struct *p) { }
1956 static inline void uclamp_post_fork(struct task_struct *p) { }
1957 static inline void init_uclamp(void) { }
1958 #endif /* CONFIG_UCLAMP_TASK */
1959
1960 bool sched_task_on_rq(struct task_struct *p)
1961 {
1962         return task_on_rq_queued(p);
1963 }
1964
1965 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1966 {
1967         if (!(flags & ENQUEUE_NOCLOCK))
1968                 update_rq_clock(rq);
1969
1970         if (!(flags & ENQUEUE_RESTORE)) {
1971                 sched_info_enqueue(rq, p);
1972                 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1973         }
1974
1975         uclamp_rq_inc(rq, p);
1976         p->sched_class->enqueue_task(rq, p, flags);
1977
1978         if (sched_core_enabled(rq))
1979                 sched_core_enqueue(rq, p);
1980 }
1981
1982 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1983 {
1984         if (sched_core_enabled(rq))
1985                 sched_core_dequeue(rq, p);
1986
1987         if (!(flags & DEQUEUE_NOCLOCK))
1988                 update_rq_clock(rq);
1989
1990         if (!(flags & DEQUEUE_SAVE)) {
1991                 sched_info_dequeue(rq, p);
1992                 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1993         }
1994
1995         uclamp_rq_dec(rq, p);
1996         p->sched_class->dequeue_task(rq, p, flags);
1997 }
1998
1999 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2000 {
2001         enqueue_task(rq, p, flags);
2002
2003         p->on_rq = TASK_ON_RQ_QUEUED;
2004 }
2005
2006 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2007 {
2008         p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2009
2010         dequeue_task(rq, p, flags);
2011 }
2012
2013 static inline int __normal_prio(int policy, int rt_prio, int nice)
2014 {
2015         int prio;
2016
2017         if (dl_policy(policy))
2018                 prio = MAX_DL_PRIO - 1;
2019         else if (rt_policy(policy))
2020                 prio = MAX_RT_PRIO - 1 - rt_prio;
2021         else
2022                 prio = NICE_TO_PRIO(nice);
2023
2024         return prio;
2025 }
2026
2027 /*
2028  * Calculate the expected normal priority: i.e. priority
2029  * without taking RT-inheritance into account. Might be
2030  * boosted by interactivity modifiers. Changes upon fork,
2031  * setprio syscalls, and whenever the interactivity
2032  * estimator recalculates.
2033  */
2034 static inline int normal_prio(struct task_struct *p)
2035 {
2036         return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2037 }
2038
2039 /*
2040  * Calculate the current priority, i.e. the priority
2041  * taken into account by the scheduler. This value might
2042  * be boosted by RT tasks, or might be boosted by
2043  * interactivity modifiers. Will be RT if the task got
2044  * RT-boosted. If not then it returns p->normal_prio.
2045  */
2046 static int effective_prio(struct task_struct *p)
2047 {
2048         p->normal_prio = normal_prio(p);
2049         /*
2050          * If we are RT tasks or we were boosted to RT priority,
2051          * keep the priority unchanged. Otherwise, update priority
2052          * to the normal priority:
2053          */
2054         if (!rt_prio(p->prio))
2055                 return p->normal_prio;
2056         return p->prio;
2057 }
2058
2059 /**
2060  * task_curr - is this task currently executing on a CPU?
2061  * @p: the task in question.
2062  *
2063  * Return: 1 if the task is currently executing. 0 otherwise.
2064  */
2065 inline int task_curr(const struct task_struct *p)
2066 {
2067         return cpu_curr(task_cpu(p)) == p;
2068 }
2069
2070 /*
2071  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2072  * use the balance_callback list if you want balancing.
2073  *
2074  * this means any call to check_class_changed() must be followed by a call to
2075  * balance_callback().
2076  */
2077 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2078                                        const struct sched_class *prev_class,
2079                                        int oldprio)
2080 {
2081         if (prev_class != p->sched_class) {
2082                 if (prev_class->switched_from)
2083                         prev_class->switched_from(rq, p);
2084
2085                 p->sched_class->switched_to(rq, p);
2086         } else if (oldprio != p->prio || dl_task(p))
2087                 p->sched_class->prio_changed(rq, p, oldprio);
2088 }
2089
2090 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2091 {
2092         if (p->sched_class == rq->curr->sched_class)
2093                 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2094         else if (p->sched_class > rq->curr->sched_class)
2095                 resched_curr(rq);
2096
2097         /*
2098          * A queue event has occurred, and we're going to schedule.  In
2099          * this case, we can save a useless back to back clock update.
2100          */
2101         if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2102                 rq_clock_skip_update(rq);
2103 }
2104
2105 #ifdef CONFIG_SMP
2106
2107 static void
2108 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2109
2110 static int __set_cpus_allowed_ptr(struct task_struct *p,
2111                                   const struct cpumask *new_mask,
2112                                   u32 flags);
2113
2114 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2115 {
2116         if (likely(!p->migration_disabled))
2117                 return;
2118
2119         if (p->cpus_ptr != &p->cpus_mask)
2120                 return;
2121
2122         /*
2123          * Violates locking rules! see comment in __do_set_cpus_allowed().
2124          */
2125         __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2126 }
2127
2128 void migrate_disable(void)
2129 {
2130         struct task_struct *p = current;
2131
2132         if (p->migration_disabled) {
2133                 p->migration_disabled++;
2134                 return;
2135         }
2136
2137         preempt_disable();
2138         this_rq()->nr_pinned++;
2139         p->migration_disabled = 1;
2140         preempt_enable();
2141 }
2142 EXPORT_SYMBOL_GPL(migrate_disable);
2143
2144 void migrate_enable(void)
2145 {
2146         struct task_struct *p = current;
2147
2148         if (p->migration_disabled > 1) {
2149                 p->migration_disabled--;
2150                 return;
2151         }
2152
2153         /*
2154          * Ensure stop_task runs either before or after this, and that
2155          * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2156          */
2157         preempt_disable();
2158         if (p->cpus_ptr != &p->cpus_mask)
2159                 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2160         /*
2161          * Mustn't clear migration_disabled() until cpus_ptr points back at the
2162          * regular cpus_mask, otherwise things that race (eg.
2163          * select_fallback_rq) get confused.
2164          */
2165         barrier();
2166         p->migration_disabled = 0;
2167         this_rq()->nr_pinned--;
2168         preempt_enable();
2169 }
2170 EXPORT_SYMBOL_GPL(migrate_enable);
2171
2172 static inline bool rq_has_pinned_tasks(struct rq *rq)
2173 {
2174         return rq->nr_pinned;
2175 }
2176
2177 /*
2178  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2179  * __set_cpus_allowed_ptr() and select_fallback_rq().
2180  */
2181 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2182 {
2183         /* When not in the task's cpumask, no point in looking further. */
2184         if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2185                 return false;
2186
2187         /* migrate_disabled() must be allowed to finish. */
2188         if (is_migration_disabled(p))
2189                 return cpu_online(cpu);
2190
2191         /* Non kernel threads are not allowed during either online or offline. */
2192         if (!(p->flags & PF_KTHREAD))
2193                 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2194
2195         /* KTHREAD_IS_PER_CPU is always allowed. */
2196         if (kthread_is_per_cpu(p))
2197                 return cpu_online(cpu);
2198
2199         /* Regular kernel threads don't get to stay during offline. */
2200         if (cpu_dying(cpu))
2201                 return false;
2202
2203         /* But are allowed during online. */
2204         return cpu_online(cpu);
2205 }
2206
2207 /*
2208  * This is how migration works:
2209  *
2210  * 1) we invoke migration_cpu_stop() on the target CPU using
2211  *    stop_one_cpu().
2212  * 2) stopper starts to run (implicitly forcing the migrated thread
2213  *    off the CPU)
2214  * 3) it checks whether the migrated task is still in the wrong runqueue.
2215  * 4) if it's in the wrong runqueue then the migration thread removes
2216  *    it and puts it into the right queue.
2217  * 5) stopper completes and stop_one_cpu() returns and the migration
2218  *    is done.
2219  */
2220
2221 /*
2222  * move_queued_task - move a queued task to new rq.
2223  *
2224  * Returns (locked) new rq. Old rq's lock is released.
2225  */
2226 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2227                                    struct task_struct *p, int new_cpu)
2228 {
2229         lockdep_assert_rq_held(rq);
2230
2231         deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2232         set_task_cpu(p, new_cpu);
2233         rq_unlock(rq, rf);
2234
2235         rq = cpu_rq(new_cpu);
2236
2237         rq_lock(rq, rf);
2238         BUG_ON(task_cpu(p) != new_cpu);
2239         activate_task(rq, p, 0);
2240         check_preempt_curr(rq, p, 0);
2241
2242         return rq;
2243 }
2244
2245 struct migration_arg {
2246         struct task_struct              *task;
2247         int                             dest_cpu;
2248         struct set_affinity_pending     *pending;
2249 };
2250
2251 /*
2252  * @refs: number of wait_for_completion()
2253  * @stop_pending: is @stop_work in use
2254  */
2255 struct set_affinity_pending {
2256         refcount_t              refs;
2257         unsigned int            stop_pending;
2258         struct completion       done;
2259         struct cpu_stop_work    stop_work;
2260         struct migration_arg    arg;
2261 };
2262
2263 /*
2264  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2265  * this because either it can't run here any more (set_cpus_allowed()
2266  * away from this CPU, or CPU going down), or because we're
2267  * attempting to rebalance this task on exec (sched_exec).
2268  *
2269  * So we race with normal scheduler movements, but that's OK, as long
2270  * as the task is no longer on this CPU.
2271  */
2272 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2273                                  struct task_struct *p, int dest_cpu)
2274 {
2275         /* Affinity changed (again). */
2276         if (!is_cpu_allowed(p, dest_cpu))
2277                 return rq;
2278
2279         update_rq_clock(rq);
2280         rq = move_queued_task(rq, rf, p, dest_cpu);
2281
2282         return rq;
2283 }
2284
2285 /*
2286  * migration_cpu_stop - this will be executed by a highprio stopper thread
2287  * and performs thread migration by bumping thread off CPU then
2288  * 'pushing' onto another runqueue.
2289  */
2290 static int migration_cpu_stop(void *data)
2291 {
2292         struct migration_arg *arg = data;
2293         struct set_affinity_pending *pending = arg->pending;
2294         struct task_struct *p = arg->task;
2295         struct rq *rq = this_rq();
2296         bool complete = false;
2297         struct rq_flags rf;
2298
2299         /*
2300          * The original target CPU might have gone down and we might
2301          * be on another CPU but it doesn't matter.
2302          */
2303         local_irq_save(rf.flags);
2304         /*
2305          * We need to explicitly wake pending tasks before running
2306          * __migrate_task() such that we will not miss enforcing cpus_ptr
2307          * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2308          */
2309         flush_smp_call_function_from_idle();
2310
2311         raw_spin_lock(&p->pi_lock);
2312         rq_lock(rq, &rf);
2313
2314         /*
2315          * If we were passed a pending, then ->stop_pending was set, thus
2316          * p->migration_pending must have remained stable.
2317          */
2318         WARN_ON_ONCE(pending && pending != p->migration_pending);
2319
2320         /*
2321          * If task_rq(p) != rq, it cannot be migrated here, because we're
2322          * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2323          * we're holding p->pi_lock.
2324          */
2325         if (task_rq(p) == rq) {
2326                 if (is_migration_disabled(p))
2327                         goto out;
2328
2329                 if (pending) {
2330                         p->migration_pending = NULL;
2331                         complete = true;
2332
2333                         if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2334                                 goto out;
2335                 }
2336
2337                 if (task_on_rq_queued(p))
2338                         rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2339                 else
2340                         p->wake_cpu = arg->dest_cpu;
2341
2342                 /*
2343                  * XXX __migrate_task() can fail, at which point we might end
2344                  * up running on a dodgy CPU, AFAICT this can only happen
2345                  * during CPU hotplug, at which point we'll get pushed out
2346                  * anyway, so it's probably not a big deal.
2347                  */
2348
2349         } else if (pending) {
2350                 /*
2351                  * This happens when we get migrated between migrate_enable()'s
2352                  * preempt_enable() and scheduling the stopper task. At that
2353                  * point we're a regular task again and not current anymore.
2354                  *
2355                  * A !PREEMPT kernel has a giant hole here, which makes it far
2356                  * more likely.
2357                  */
2358
2359                 /*
2360                  * The task moved before the stopper got to run. We're holding
2361                  * ->pi_lock, so the allowed mask is stable - if it got
2362                  * somewhere allowed, we're done.
2363                  */
2364                 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2365                         p->migration_pending = NULL;
2366                         complete = true;
2367                         goto out;
2368                 }
2369
2370                 /*
2371                  * When migrate_enable() hits a rq mis-match we can't reliably
2372                  * determine is_migration_disabled() and so have to chase after
2373                  * it.
2374                  */
2375                 WARN_ON_ONCE(!pending->stop_pending);
2376                 task_rq_unlock(rq, p, &rf);
2377                 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2378                                     &pending->arg, &pending->stop_work);
2379                 return 0;
2380         }
2381 out:
2382         if (pending)
2383                 pending->stop_pending = false;
2384         task_rq_unlock(rq, p, &rf);
2385
2386         if (complete)
2387                 complete_all(&pending->done);
2388
2389         return 0;
2390 }
2391
2392 int push_cpu_stop(void *arg)
2393 {
2394         struct rq *lowest_rq = NULL, *rq = this_rq();
2395         struct task_struct *p = arg;
2396
2397         raw_spin_lock_irq(&p->pi_lock);
2398         raw_spin_rq_lock(rq);
2399
2400         if (task_rq(p) != rq)
2401                 goto out_unlock;
2402
2403         if (is_migration_disabled(p)) {
2404                 p->migration_flags |= MDF_PUSH;
2405                 goto out_unlock;
2406         }
2407
2408         p->migration_flags &= ~MDF_PUSH;
2409
2410         if (p->sched_class->find_lock_rq)
2411                 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2412
2413         if (!lowest_rq)
2414                 goto out_unlock;
2415
2416         // XXX validate p is still the highest prio task
2417         if (task_rq(p) == rq) {
2418                 deactivate_task(rq, p, 0);
2419                 set_task_cpu(p, lowest_rq->cpu);
2420                 activate_task(lowest_rq, p, 0);
2421                 resched_curr(lowest_rq);
2422         }
2423
2424         double_unlock_balance(rq, lowest_rq);
2425
2426 out_unlock:
2427         rq->push_busy = false;
2428         raw_spin_rq_unlock(rq);
2429         raw_spin_unlock_irq(&p->pi_lock);
2430
2431         put_task_struct(p);
2432         return 0;
2433 }
2434
2435 /*
2436  * sched_class::set_cpus_allowed must do the below, but is not required to
2437  * actually call this function.
2438  */
2439 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2440 {
2441         if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2442                 p->cpus_ptr = new_mask;
2443                 return;
2444         }
2445
2446         cpumask_copy(&p->cpus_mask, new_mask);
2447         p->nr_cpus_allowed = cpumask_weight(new_mask);
2448 }
2449
2450 static void
2451 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2452 {
2453         struct rq *rq = task_rq(p);
2454         bool queued, running;
2455
2456         /*
2457          * This here violates the locking rules for affinity, since we're only
2458          * supposed to change these variables while holding both rq->lock and
2459          * p->pi_lock.
2460          *
2461          * HOWEVER, it magically works, because ttwu() is the only code that
2462          * accesses these variables under p->pi_lock and only does so after
2463          * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2464          * before finish_task().
2465          *
2466          * XXX do further audits, this smells like something putrid.
2467          */
2468         if (flags & SCA_MIGRATE_DISABLE)
2469                 SCHED_WARN_ON(!p->on_cpu);
2470         else
2471                 lockdep_assert_held(&p->pi_lock);
2472
2473         queued = task_on_rq_queued(p);
2474         running = task_current(rq, p);
2475
2476         if (queued) {
2477                 /*
2478                  * Because __kthread_bind() calls this on blocked tasks without
2479                  * holding rq->lock.
2480                  */
2481                 lockdep_assert_rq_held(rq);
2482                 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2483         }
2484         if (running)
2485                 put_prev_task(rq, p);
2486
2487         p->sched_class->set_cpus_allowed(p, new_mask, flags);
2488
2489         if (queued)
2490                 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2491         if (running)
2492                 set_next_task(rq, p);
2493 }
2494
2495 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2496 {
2497         __do_set_cpus_allowed(p, new_mask, 0);
2498 }
2499
2500 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2501                       int node)
2502 {
2503         if (!src->user_cpus_ptr)
2504                 return 0;
2505
2506         dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2507         if (!dst->user_cpus_ptr)
2508                 return -ENOMEM;
2509
2510         cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2511         return 0;
2512 }
2513
2514 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2515 {
2516         struct cpumask *user_mask = NULL;
2517
2518         swap(p->user_cpus_ptr, user_mask);
2519
2520         return user_mask;
2521 }
2522
2523 void release_user_cpus_ptr(struct task_struct *p)
2524 {
2525         kfree(clear_user_cpus_ptr(p));
2526 }
2527
2528 /*
2529  * This function is wildly self concurrent; here be dragons.
2530  *
2531  *
2532  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2533  * designated task is enqueued on an allowed CPU. If that task is currently
2534  * running, we have to kick it out using the CPU stopper.
2535  *
2536  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2537  * Consider:
2538  *
2539  *     Initial conditions: P0->cpus_mask = [0, 1]
2540  *
2541  *     P0@CPU0                  P1
2542  *
2543  *     migrate_disable();
2544  *     <preempted>
2545  *                              set_cpus_allowed_ptr(P0, [1]);
2546  *
2547  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2548  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2549  * This means we need the following scheme:
2550  *
2551  *     P0@CPU0                  P1
2552  *
2553  *     migrate_disable();
2554  *     <preempted>
2555  *                              set_cpus_allowed_ptr(P0, [1]);
2556  *                                <blocks>
2557  *     <resumes>
2558  *     migrate_enable();
2559  *       __set_cpus_allowed_ptr();
2560  *       <wakes local stopper>
2561  *                         `--> <woken on migration completion>
2562  *
2563  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2564  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2565  * task p are serialized by p->pi_lock, which we can leverage: the one that
2566  * should come into effect at the end of the Migrate-Disable region is the last
2567  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2568  * but we still need to properly signal those waiting tasks at the appropriate
2569  * moment.
2570  *
2571  * This is implemented using struct set_affinity_pending. The first
2572  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2573  * setup an instance of that struct and install it on the targeted task_struct.
2574  * Any and all further callers will reuse that instance. Those then wait for
2575  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2576  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2577  *
2578  *
2579  * (1) In the cases covered above. There is one more where the completion is
2580  * signaled within affine_move_task() itself: when a subsequent affinity request
2581  * occurs after the stopper bailed out due to the targeted task still being
2582  * Migrate-Disable. Consider:
2583  *
2584  *     Initial conditions: P0->cpus_mask = [0, 1]
2585  *
2586  *     CPU0               P1                            P2
2587  *     <P0>
2588  *       migrate_disable();
2589  *       <preempted>
2590  *                        set_cpus_allowed_ptr(P0, [1]);
2591  *                          <blocks>
2592  *     <migration/0>
2593  *       migration_cpu_stop()
2594  *         is_migration_disabled()
2595  *           <bails>
2596  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2597  *                                                         <signal completion>
2598  *                          <awakes>
2599  *
2600  * Note that the above is safe vs a concurrent migrate_enable(), as any
2601  * pending affinity completion is preceded by an uninstallation of
2602  * p->migration_pending done with p->pi_lock held.
2603  */
2604 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2605                             int dest_cpu, unsigned int flags)
2606 {
2607         struct set_affinity_pending my_pending = { }, *pending = NULL;
2608         bool stop_pending, complete = false;
2609
2610         /* Can the task run on the task's current CPU? If so, we're done */
2611         if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2612                 struct task_struct *push_task = NULL;
2613
2614                 if ((flags & SCA_MIGRATE_ENABLE) &&
2615                     (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2616                         rq->push_busy = true;
2617                         push_task = get_task_struct(p);
2618                 }
2619
2620                 /*
2621                  * If there are pending waiters, but no pending stop_work,
2622                  * then complete now.
2623                  */
2624                 pending = p->migration_pending;
2625                 if (pending && !pending->stop_pending) {
2626                         p->migration_pending = NULL;
2627                         complete = true;
2628                 }
2629
2630                 task_rq_unlock(rq, p, rf);
2631
2632                 if (push_task) {
2633                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2634                                             p, &rq->push_work);
2635                 }
2636
2637                 if (complete)
2638                         complete_all(&pending->done);
2639
2640                 return 0;
2641         }
2642
2643         if (!(flags & SCA_MIGRATE_ENABLE)) {
2644                 /* serialized by p->pi_lock */
2645                 if (!p->migration_pending) {
2646                         /* Install the request */
2647                         refcount_set(&my_pending.refs, 1);
2648                         init_completion(&my_pending.done);
2649                         my_pending.arg = (struct migration_arg) {
2650                                 .task = p,
2651                                 .dest_cpu = dest_cpu,
2652                                 .pending = &my_pending,
2653                         };
2654
2655                         p->migration_pending = &my_pending;
2656                 } else {
2657                         pending = p->migration_pending;
2658                         refcount_inc(&pending->refs);
2659                         /*
2660                          * Affinity has changed, but we've already installed a
2661                          * pending. migration_cpu_stop() *must* see this, else
2662                          * we risk a completion of the pending despite having a
2663                          * task on a disallowed CPU.
2664                          *
2665                          * Serialized by p->pi_lock, so this is safe.
2666                          */
2667                         pending->arg.dest_cpu = dest_cpu;
2668                 }
2669         }
2670         pending = p->migration_pending;
2671         /*
2672          * - !MIGRATE_ENABLE:
2673          *   we'll have installed a pending if there wasn't one already.
2674          *
2675          * - MIGRATE_ENABLE:
2676          *   we're here because the current CPU isn't matching anymore,
2677          *   the only way that can happen is because of a concurrent
2678          *   set_cpus_allowed_ptr() call, which should then still be
2679          *   pending completion.
2680          *
2681          * Either way, we really should have a @pending here.
2682          */
2683         if (WARN_ON_ONCE(!pending)) {
2684                 task_rq_unlock(rq, p, rf);
2685                 return -EINVAL;
2686         }
2687
2688         if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2689                 /*
2690                  * MIGRATE_ENABLE gets here because 'p == current', but for
2691                  * anything else we cannot do is_migration_disabled(), punt
2692                  * and have the stopper function handle it all race-free.
2693                  */
2694                 stop_pending = pending->stop_pending;
2695                 if (!stop_pending)
2696                         pending->stop_pending = true;
2697
2698                 if (flags & SCA_MIGRATE_ENABLE)
2699                         p->migration_flags &= ~MDF_PUSH;
2700
2701                 task_rq_unlock(rq, p, rf);
2702
2703                 if (!stop_pending) {
2704                         stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2705                                             &pending->arg, &pending->stop_work);
2706                 }
2707
2708                 if (flags & SCA_MIGRATE_ENABLE)
2709                         return 0;
2710         } else {
2711
2712                 if (!is_migration_disabled(p)) {
2713                         if (task_on_rq_queued(p))
2714                                 rq = move_queued_task(rq, rf, p, dest_cpu);
2715
2716                         if (!pending->stop_pending) {
2717                                 p->migration_pending = NULL;
2718                                 complete = true;
2719                         }
2720                 }
2721                 task_rq_unlock(rq, p, rf);
2722
2723                 if (complete)
2724                         complete_all(&pending->done);
2725         }
2726
2727         wait_for_completion(&pending->done);
2728
2729         if (refcount_dec_and_test(&pending->refs))
2730                 wake_up_var(&pending->refs); /* No UaF, just an address */
2731
2732         /*
2733          * Block the original owner of &pending until all subsequent callers
2734          * have seen the completion and decremented the refcount
2735          */
2736         wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2737
2738         /* ARGH */
2739         WARN_ON_ONCE(my_pending.stop_pending);
2740
2741         return 0;
2742 }
2743
2744 /*
2745  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2746  */
2747 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2748                                          const struct cpumask *new_mask,
2749                                          u32 flags,
2750                                          struct rq *rq,
2751                                          struct rq_flags *rf)
2752         __releases(rq->lock)
2753         __releases(p->pi_lock)
2754 {
2755         const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2756         const struct cpumask *cpu_valid_mask = cpu_active_mask;
2757         bool kthread = p->flags & PF_KTHREAD;
2758         struct cpumask *user_mask = NULL;
2759         unsigned int dest_cpu;
2760         int ret = 0;
2761
2762         update_rq_clock(rq);
2763
2764         if (kthread || is_migration_disabled(p)) {
2765                 /*
2766                  * Kernel threads are allowed on online && !active CPUs,
2767                  * however, during cpu-hot-unplug, even these might get pushed
2768                  * away if not KTHREAD_IS_PER_CPU.
2769                  *
2770                  * Specifically, migration_disabled() tasks must not fail the
2771                  * cpumask_any_and_distribute() pick below, esp. so on
2772                  * SCA_MIGRATE_ENABLE, otherwise we'll not call
2773                  * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2774                  */
2775                 cpu_valid_mask = cpu_online_mask;
2776         }
2777
2778         if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2779                 ret = -EINVAL;
2780                 goto out;
2781         }
2782
2783         /*
2784          * Must re-check here, to close a race against __kthread_bind(),
2785          * sched_setaffinity() is not guaranteed to observe the flag.
2786          */
2787         if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2788                 ret = -EINVAL;
2789                 goto out;
2790         }
2791
2792         if (!(flags & SCA_MIGRATE_ENABLE)) {
2793                 if (cpumask_equal(&p->cpus_mask, new_mask))
2794                         goto out;
2795
2796                 if (WARN_ON_ONCE(p == current &&
2797                                  is_migration_disabled(p) &&
2798                                  !cpumask_test_cpu(task_cpu(p), new_mask))) {
2799                         ret = -EBUSY;
2800                         goto out;
2801                 }
2802         }
2803
2804         /*
2805          * Picking a ~random cpu helps in cases where we are changing affinity
2806          * for groups of tasks (ie. cpuset), so that load balancing is not
2807          * immediately required to distribute the tasks within their new mask.
2808          */
2809         dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2810         if (dest_cpu >= nr_cpu_ids) {
2811                 ret = -EINVAL;
2812                 goto out;
2813         }
2814
2815         __do_set_cpus_allowed(p, new_mask, flags);
2816
2817         if (flags & SCA_USER)
2818                 user_mask = clear_user_cpus_ptr(p);
2819
2820         ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2821
2822         kfree(user_mask);
2823
2824         return ret;
2825
2826 out:
2827         task_rq_unlock(rq, p, rf);
2828
2829         return ret;
2830 }
2831
2832 /*
2833  * Change a given task's CPU affinity. Migrate the thread to a
2834  * proper CPU and schedule it away if the CPU it's executing on
2835  * is removed from the allowed bitmask.
2836  *
2837  * NOTE: the caller must have a valid reference to the task, the
2838  * task must not exit() & deallocate itself prematurely. The
2839  * call is not atomic; no spinlocks may be held.
2840  */
2841 static int __set_cpus_allowed_ptr(struct task_struct *p,
2842                                   const struct cpumask *new_mask, u32 flags)
2843 {
2844         struct rq_flags rf;
2845         struct rq *rq;
2846
2847         rq = task_rq_lock(p, &rf);
2848         return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2849 }
2850
2851 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2852 {
2853         return __set_cpus_allowed_ptr(p, new_mask, 0);
2854 }
2855 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2856
2857 /*
2858  * Change a given task's CPU affinity to the intersection of its current
2859  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2860  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2861  * If the resulting mask is empty, leave the affinity unchanged and return
2862  * -EINVAL.
2863  */
2864 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2865                                      struct cpumask *new_mask,
2866                                      const struct cpumask *subset_mask)
2867 {
2868         struct cpumask *user_mask = NULL;
2869         struct rq_flags rf;
2870         struct rq *rq;
2871         int err;
2872
2873         if (!p->user_cpus_ptr) {
2874                 user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2875                 if (!user_mask)
2876                         return -ENOMEM;
2877         }
2878
2879         rq = task_rq_lock(p, &rf);
2880
2881         /*
2882          * Forcefully restricting the affinity of a deadline task is
2883          * likely to cause problems, so fail and noisily override the
2884          * mask entirely.
2885          */
2886         if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2887                 err = -EPERM;
2888                 goto err_unlock;
2889         }
2890
2891         if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2892                 err = -EINVAL;
2893                 goto err_unlock;
2894         }
2895
2896         /*
2897          * We're about to butcher the task affinity, so keep track of what
2898          * the user asked for in case we're able to restore it later on.
2899          */
2900         if (user_mask) {
2901                 cpumask_copy(user_mask, p->cpus_ptr);
2902                 p->user_cpus_ptr = user_mask;
2903         }
2904
2905         return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2906
2907 err_unlock:
2908         task_rq_unlock(rq, p, &rf);
2909         kfree(user_mask);
2910         return err;
2911 }
2912
2913 /*
2914  * Restrict the CPU affinity of task @p so that it is a subset of
2915  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
2916  * old affinity mask. If the resulting mask is empty, we warn and walk
2917  * up the cpuset hierarchy until we find a suitable mask.
2918  */
2919 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
2920 {
2921         cpumask_var_t new_mask;
2922         const struct cpumask *override_mask = task_cpu_possible_mask(p);
2923
2924         alloc_cpumask_var(&new_mask, GFP_KERNEL);
2925
2926         /*
2927          * __migrate_task() can fail silently in the face of concurrent
2928          * offlining of the chosen destination CPU, so take the hotplug
2929          * lock to ensure that the migration succeeds.
2930          */
2931         cpus_read_lock();
2932         if (!cpumask_available(new_mask))
2933                 goto out_set_mask;
2934
2935         if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
2936                 goto out_free_mask;
2937
2938         /*
2939          * We failed to find a valid subset of the affinity mask for the
2940          * task, so override it based on its cpuset hierarchy.
2941          */
2942         cpuset_cpus_allowed(p, new_mask);
2943         override_mask = new_mask;
2944
2945 out_set_mask:
2946         if (printk_ratelimit()) {
2947                 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
2948                                 task_pid_nr(p), p->comm,
2949                                 cpumask_pr_args(override_mask));
2950         }
2951
2952         WARN_ON(set_cpus_allowed_ptr(p, override_mask));
2953 out_free_mask:
2954         cpus_read_unlock();
2955         free_cpumask_var(new_mask);
2956 }
2957
2958 static int
2959 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
2960
2961 /*
2962  * Restore the affinity of a task @p which was previously restricted by a
2963  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
2964  * @p->user_cpus_ptr.
2965  *
2966  * It is the caller's responsibility to serialise this with any calls to
2967  * force_compatible_cpus_allowed_ptr(@p).
2968  */
2969 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
2970 {
2971         struct cpumask *user_mask = p->user_cpus_ptr;
2972         unsigned long flags;
2973
2974         /*
2975          * Try to restore the old affinity mask. If this fails, then
2976          * we free the mask explicitly to avoid it being inherited across
2977          * a subsequent fork().
2978          */
2979         if (!user_mask || !__sched_setaffinity(p, user_mask))
2980                 return;
2981
2982         raw_spin_lock_irqsave(&p->pi_lock, flags);
2983         user_mask = clear_user_cpus_ptr(p);
2984         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2985
2986         kfree(user_mask);
2987 }
2988
2989 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2990 {
2991 #ifdef CONFIG_SCHED_DEBUG
2992         unsigned int state = READ_ONCE(p->__state);
2993
2994         /*
2995          * We should never call set_task_cpu() on a blocked task,
2996          * ttwu() will sort out the placement.
2997          */
2998         WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
2999
3000         /*
3001          * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3002          * because schedstat_wait_{start,end} rebase migrating task's wait_start
3003          * time relying on p->on_rq.
3004          */
3005         WARN_ON_ONCE(state == TASK_RUNNING &&
3006                      p->sched_class == &fair_sched_class &&
3007                      (p->on_rq && !task_on_rq_migrating(p)));
3008
3009 #ifdef CONFIG_LOCKDEP
3010         /*
3011          * The caller should hold either p->pi_lock or rq->lock, when changing
3012          * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3013          *
3014          * sched_move_task() holds both and thus holding either pins the cgroup,
3015          * see task_group().
3016          *
3017          * Furthermore, all task_rq users should acquire both locks, see
3018          * task_rq_lock().
3019          */
3020         WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3021                                       lockdep_is_held(__rq_lockp(task_rq(p)))));
3022 #endif
3023         /*
3024          * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3025          */
3026         WARN_ON_ONCE(!cpu_online(new_cpu));
3027
3028         WARN_ON_ONCE(is_migration_disabled(p));
3029 #endif
3030
3031         trace_sched_migrate_task(p, new_cpu);
3032
3033         if (task_cpu(p) != new_cpu) {
3034                 if (p->sched_class->migrate_task_rq)
3035                         p->sched_class->migrate_task_rq(p, new_cpu);
3036                 p->se.nr_migrations++;
3037                 rseq_migrate(p);
3038                 perf_event_task_migrate(p);
3039         }
3040
3041         __set_task_cpu(p, new_cpu);
3042 }
3043
3044 #ifdef CONFIG_NUMA_BALANCING
3045 static void __migrate_swap_task(struct task_struct *p, int cpu)
3046 {
3047         if (task_on_rq_queued(p)) {
3048                 struct rq *src_rq, *dst_rq;
3049                 struct rq_flags srf, drf;
3050
3051                 src_rq = task_rq(p);
3052                 dst_rq = cpu_rq(cpu);
3053
3054                 rq_pin_lock(src_rq, &srf);
3055                 rq_pin_lock(dst_rq, &drf);
3056
3057                 deactivate_task(src_rq, p, 0);
3058                 set_task_cpu(p, cpu);
3059                 activate_task(dst_rq, p, 0);
3060                 check_preempt_curr(dst_rq, p, 0);
3061
3062                 rq_unpin_lock(dst_rq, &drf);
3063                 rq_unpin_lock(src_rq, &srf);
3064
3065         } else {
3066                 /*
3067                  * Task isn't running anymore; make it appear like we migrated
3068                  * it before it went to sleep. This means on wakeup we make the
3069                  * previous CPU our target instead of where it really is.
3070                  */
3071                 p->wake_cpu = cpu;
3072         }
3073 }
3074
3075 struct migration_swap_arg {
3076         struct task_struct *src_task, *dst_task;
3077         int src_cpu, dst_cpu;
3078 };
3079
3080 static int migrate_swap_stop(void *data)
3081 {
3082         struct migration_swap_arg *arg = data;
3083         struct rq *src_rq, *dst_rq;
3084         int ret = -EAGAIN;
3085
3086         if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3087                 return -EAGAIN;
3088
3089         src_rq = cpu_rq(arg->src_cpu);
3090         dst_rq = cpu_rq(arg->dst_cpu);
3091
3092         double_raw_lock(&arg->src_task->pi_lock,
3093                         &arg->dst_task->pi_lock);
3094         double_rq_lock(src_rq, dst_rq);
3095
3096         if (task_cpu(arg->dst_task) != arg->dst_cpu)
3097                 goto unlock;
3098
3099         if (task_cpu(arg->src_task) != arg->src_cpu)
3100                 goto unlock;
3101
3102         if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3103                 goto unlock;
3104
3105         if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3106                 goto unlock;
3107
3108         __migrate_swap_task(arg->src_task, arg->dst_cpu);
3109         __migrate_swap_task(arg->dst_task, arg->src_cpu);
3110
3111         ret = 0;
3112
3113 unlock:
3114         double_rq_unlock(src_rq, dst_rq);
3115         raw_spin_unlock(&arg->dst_task->pi_lock);
3116         raw_spin_unlock(&arg->src_task->pi_lock);
3117
3118         return ret;
3119 }
3120
3121 /*
3122  * Cross migrate two tasks
3123  */
3124 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3125                 int target_cpu, int curr_cpu)
3126 {
3127         struct migration_swap_arg arg;
3128         int ret = -EINVAL;
3129
3130         arg = (struct migration_swap_arg){
3131                 .src_task = cur,
3132                 .src_cpu = curr_cpu,
3133                 .dst_task = p,
3134                 .dst_cpu = target_cpu,
3135         };
3136
3137         if (arg.src_cpu == arg.dst_cpu)
3138                 goto out;
3139
3140         /*
3141          * These three tests are all lockless; this is OK since all of them
3142          * will be re-checked with proper locks held further down the line.
3143          */
3144         if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3145                 goto out;
3146
3147         if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3148                 goto out;
3149
3150         if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3151                 goto out;
3152
3153         trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3154         ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3155
3156 out:
3157         return ret;
3158 }
3159 #endif /* CONFIG_NUMA_BALANCING */
3160
3161 /*
3162  * wait_task_inactive - wait for a thread to unschedule.
3163  *
3164  * If @match_state is nonzero, it's the @p->state value just checked and
3165  * not expected to change.  If it changes, i.e. @p might have woken up,
3166  * then return zero.  When we succeed in waiting for @p to be off its CPU,
3167  * we return a positive number (its total switch count).  If a second call
3168  * a short while later returns the same number, the caller can be sure that
3169  * @p has remained unscheduled the whole time.
3170  *
3171  * The caller must ensure that the task *will* unschedule sometime soon,
3172  * else this function might spin for a *long* time. This function can't
3173  * be called with interrupts off, or it may introduce deadlock with
3174  * smp_call_function() if an IPI is sent by the same process we are
3175  * waiting to become inactive.
3176  */
3177 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3178 {
3179         int running, queued;
3180         struct rq_flags rf;
3181         unsigned long ncsw;
3182         struct rq *rq;
3183
3184         for (;;) {
3185                 /*
3186                  * We do the initial early heuristics without holding
3187                  * any task-queue locks at all. We'll only try to get
3188                  * the runqueue lock when things look like they will
3189                  * work out!
3190                  */
3191                 rq = task_rq(p);
3192
3193                 /*
3194                  * If the task is actively running on another CPU
3195                  * still, just relax and busy-wait without holding
3196                  * any locks.
3197                  *
3198                  * NOTE! Since we don't hold any locks, it's not
3199                  * even sure that "rq" stays as the right runqueue!
3200                  * But we don't care, since "task_running()" will
3201                  * return false if the runqueue has changed and p
3202                  * is actually now running somewhere else!
3203                  */
3204                 while (task_running(rq, p)) {
3205                         if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3206                                 return 0;
3207                         cpu_relax();
3208                 }
3209
3210                 /*
3211                  * Ok, time to look more closely! We need the rq
3212                  * lock now, to be *sure*. If we're wrong, we'll
3213                  * just go back and repeat.
3214                  */
3215                 rq = task_rq_lock(p, &rf);
3216                 trace_sched_wait_task(p);
3217                 running = task_running(rq, p);
3218                 queued = task_on_rq_queued(p);
3219                 ncsw = 0;
3220                 if (!match_state || READ_ONCE(p->__state) == match_state)
3221                         ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3222                 task_rq_unlock(rq, p, &rf);
3223
3224                 /*
3225                  * If it changed from the expected state, bail out now.
3226                  */
3227                 if (unlikely(!ncsw))
3228                         break;
3229
3230                 /*
3231                  * Was it really running after all now that we
3232                  * checked with the proper locks actually held?
3233                  *
3234                  * Oops. Go back and try again..
3235                  */
3236                 if (unlikely(running)) {
3237                         cpu_relax();
3238                         continue;
3239                 }
3240
3241                 /*
3242                  * It's not enough that it's not actively running,
3243                  * it must be off the runqueue _entirely_, and not
3244                  * preempted!
3245                  *
3246                  * So if it was still runnable (but just not actively
3247                  * running right now), it's preempted, and we should
3248                  * yield - it could be a while.
3249                  */
3250                 if (unlikely(queued)) {
3251                         ktime_t to = NSEC_PER_SEC / HZ;
3252
3253                         set_current_state(TASK_UNINTERRUPTIBLE);
3254                         schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3255                         continue;
3256                 }
3257
3258                 /*
3259                  * Ahh, all good. It wasn't running, and it wasn't
3260                  * runnable, which means that it will never become
3261                  * running in the future either. We're all done!
3262                  */
3263                 break;
3264         }
3265
3266         return ncsw;
3267 }
3268
3269 /***
3270  * kick_process - kick a running thread to enter/exit the kernel
3271  * @p: the to-be-kicked thread
3272  *
3273  * Cause a process which is running on another CPU to enter
3274  * kernel-mode, without any delay. (to get signals handled.)
3275  *
3276  * NOTE: this function doesn't have to take the runqueue lock,
3277  * because all it wants to ensure is that the remote task enters
3278  * the kernel. If the IPI races and the task has been migrated
3279  * to another CPU then no harm is done and the purpose has been
3280  * achieved as well.
3281  */
3282 void kick_process(struct task_struct *p)
3283 {
3284         int cpu;
3285
3286         preempt_disable();
3287         cpu = task_cpu(p);
3288         if ((cpu != smp_processor_id()) && task_curr(p))
3289                 smp_send_reschedule(cpu);
3290         preempt_enable();
3291 }
3292 EXPORT_SYMBOL_GPL(kick_process);
3293
3294 /*
3295  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3296  *
3297  * A few notes on cpu_active vs cpu_online:
3298  *
3299  *  - cpu_active must be a subset of cpu_online
3300  *
3301  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3302  *    see __set_cpus_allowed_ptr(). At this point the newly online
3303  *    CPU isn't yet part of the sched domains, and balancing will not
3304  *    see it.
3305  *
3306  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3307  *    avoid the load balancer to place new tasks on the to be removed
3308  *    CPU. Existing tasks will remain running there and will be taken
3309  *    off.
3310  *
3311  * This means that fallback selection must not select !active CPUs.
3312  * And can assume that any active CPU must be online. Conversely
3313  * select_task_rq() below may allow selection of !active CPUs in order
3314  * to satisfy the above rules.
3315  */
3316 static int select_fallback_rq(int cpu, struct task_struct *p)
3317 {
3318         int nid = cpu_to_node(cpu);
3319         const struct cpumask *nodemask = NULL;
3320         enum { cpuset, possible, fail } state = cpuset;
3321         int dest_cpu;
3322
3323         /*
3324          * If the node that the CPU is on has been offlined, cpu_to_node()
3325          * will return -1. There is no CPU on the node, and we should
3326          * select the CPU on the other node.
3327          */
3328         if (nid != -1) {
3329                 nodemask = cpumask_of_node(nid);
3330
3331                 /* Look for allowed, online CPU in same node. */
3332                 for_each_cpu(dest_cpu, nodemask) {
3333                         if (is_cpu_allowed(p, dest_cpu))
3334                                 return dest_cpu;
3335                 }
3336         }
3337
3338         for (;;) {
3339                 /* Any allowed, online CPU? */
3340                 for_each_cpu(dest_cpu, p->cpus_ptr) {
3341                         if (!is_cpu_allowed(p, dest_cpu))
3342                                 continue;
3343
3344                         goto out;
3345                 }
3346
3347                 /* No more Mr. Nice Guy. */
3348                 switch (state) {
3349                 case cpuset:
3350                         if (cpuset_cpus_allowed_fallback(p)) {
3351                                 state = possible;
3352                                 break;
3353                         }
3354                         fallthrough;
3355                 case possible:
3356                         /*
3357                          * XXX When called from select_task_rq() we only
3358                          * hold p->pi_lock and again violate locking order.
3359                          *
3360                          * More yuck to audit.
3361                          */
3362                         do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3363                         state = fail;
3364                         break;
3365                 case fail:
3366                         BUG();
3367                         break;
3368                 }
3369         }
3370
3371 out:
3372         if (state != cpuset) {
3373                 /*
3374                  * Don't tell them about moving exiting tasks or
3375                  * kernel threads (both mm NULL), since they never
3376                  * leave kernel.
3377                  */
3378                 if (p->mm && printk_ratelimit()) {
3379                         printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3380                                         task_pid_nr(p), p->comm, cpu);
3381                 }
3382         }
3383
3384         return dest_cpu;
3385 }
3386
3387 /*
3388  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3389  */
3390 static inline
3391 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3392 {
3393         lockdep_assert_held(&p->pi_lock);
3394
3395         if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3396                 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3397         else
3398                 cpu = cpumask_any(p->cpus_ptr);
3399
3400         /*
3401          * In order not to call set_task_cpu() on a blocking task we need
3402          * to rely on ttwu() to place the task on a valid ->cpus_ptr
3403          * CPU.
3404          *
3405          * Since this is common to all placement strategies, this lives here.
3406          *
3407          * [ this allows ->select_task() to simply return task_cpu(p) and
3408          *   not worry about this generic constraint ]
3409          */
3410         if (unlikely(!is_cpu_allowed(p, cpu)))
3411                 cpu = select_fallback_rq(task_cpu(p), p);
3412
3413         return cpu;
3414 }
3415
3416 void sched_set_stop_task(int cpu, struct task_struct *stop)
3417 {
3418         static struct lock_class_key stop_pi_lock;
3419         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3420         struct task_struct *old_stop = cpu_rq(cpu)->stop;
3421
3422         if (stop) {
3423                 /*
3424                  * Make it appear like a SCHED_FIFO task, its something
3425                  * userspace knows about and won't get confused about.
3426                  *
3427                  * Also, it will make PI more or less work without too
3428                  * much confusion -- but then, stop work should not
3429                  * rely on PI working anyway.
3430                  */
3431                 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3432
3433                 stop->sched_class = &stop_sched_class;
3434
3435                 /*
3436                  * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3437                  * adjust the effective priority of a task. As a result,
3438                  * rt_mutex_setprio() can trigger (RT) balancing operations,
3439                  * which can then trigger wakeups of the stop thread to push
3440                  * around the current task.
3441                  *
3442                  * The stop task itself will never be part of the PI-chain, it
3443                  * never blocks, therefore that ->pi_lock recursion is safe.
3444                  * Tell lockdep about this by placing the stop->pi_lock in its
3445                  * own class.
3446                  */
3447                 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3448         }
3449
3450         cpu_rq(cpu)->stop = stop;
3451
3452         if (old_stop) {
3453                 /*
3454                  * Reset it back to a normal scheduling class so that
3455                  * it can die in pieces.
3456                  */
3457                 old_stop->sched_class = &rt_sched_class;
3458         }
3459 }
3460
3461 #else /* CONFIG_SMP */
3462
3463 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3464                                          const struct cpumask *new_mask,
3465                                          u32 flags)
3466 {
3467         return set_cpus_allowed_ptr(p, new_mask);
3468 }
3469
3470 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3471
3472 static inline bool rq_has_pinned_tasks(struct rq *rq)
3473 {
3474         return false;
3475 }
3476
3477 #endif /* !CONFIG_SMP */
3478
3479 static void
3480 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3481 {
3482         struct rq *rq;
3483
3484         if (!schedstat_enabled())
3485                 return;
3486
3487         rq = this_rq();
3488
3489 #ifdef CONFIG_SMP
3490         if (cpu == rq->cpu) {
3491                 __schedstat_inc(rq->ttwu_local);
3492                 __schedstat_inc(p->se.statistics.nr_wakeups_local);
3493         } else {
3494                 struct sched_domain *sd;
3495
3496                 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
3497                 rcu_read_lock();
3498                 for_each_domain(rq->cpu, sd) {
3499                         if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3500                                 __schedstat_inc(sd->ttwu_wake_remote);
3501                                 break;
3502                         }
3503                 }
3504                 rcu_read_unlock();
3505         }
3506
3507         if (wake_flags & WF_MIGRATED)
3508                 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
3509 #endif /* CONFIG_SMP */
3510
3511         __schedstat_inc(rq->ttwu_count);
3512         __schedstat_inc(p->se.statistics.nr_wakeups);
3513
3514         if (wake_flags & WF_SYNC)
3515                 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
3516 }
3517
3518 /*
3519  * Mark the task runnable and perform wakeup-preemption.
3520  */
3521 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3522                            struct rq_flags *rf)
3523 {
3524         check_preempt_curr(rq, p, wake_flags);
3525         WRITE_ONCE(p->__state, TASK_RUNNING);
3526         trace_sched_wakeup(p);
3527
3528 #ifdef CONFIG_SMP
3529         if (p->sched_class->task_woken) {
3530                 /*
3531                  * Our task @p is fully woken up and running; so it's safe to
3532                  * drop the rq->lock, hereafter rq is only used for statistics.
3533                  */
3534                 rq_unpin_lock(rq, rf);
3535                 p->sched_class->task_woken(rq, p);
3536                 rq_repin_lock(rq, rf);
3537         }
3538
3539         if (rq->idle_stamp) {
3540                 u64 delta = rq_clock(rq) - rq->idle_stamp;
3541                 u64 max = 2*rq->max_idle_balance_cost;
3542
3543                 update_avg(&rq->avg_idle, delta);
3544
3545                 if (rq->avg_idle > max)
3546                         rq->avg_idle = max;
3547
3548                 rq->wake_stamp = jiffies;
3549                 rq->wake_avg_idle = rq->avg_idle / 2;
3550
3551                 rq->idle_stamp = 0;
3552         }
3553 #endif
3554 }
3555
3556 static void
3557 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3558                  struct rq_flags *rf)
3559 {
3560         int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3561
3562         lockdep_assert_rq_held(rq);
3563
3564         if (p->sched_contributes_to_load)
3565                 rq->nr_uninterruptible--;
3566
3567 #ifdef CONFIG_SMP
3568         if (wake_flags & WF_MIGRATED)
3569                 en_flags |= ENQUEUE_MIGRATED;
3570         else
3571 #endif
3572         if (p->in_iowait) {
3573                 delayacct_blkio_end(p);
3574                 atomic_dec(&task_rq(p)->nr_iowait);
3575         }
3576
3577         activate_task(rq, p, en_flags);
3578         ttwu_do_wakeup(rq, p, wake_flags, rf);
3579 }
3580
3581 /*
3582  * Consider @p being inside a wait loop:
3583  *
3584  *   for (;;) {
3585  *      set_current_state(TASK_UNINTERRUPTIBLE);
3586  *
3587  *      if (CONDITION)
3588  *         break;
3589  *
3590  *      schedule();
3591  *   }
3592  *   __set_current_state(TASK_RUNNING);
3593  *
3594  * between set_current_state() and schedule(). In this case @p is still
3595  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3596  * an atomic manner.
3597  *
3598  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3599  * then schedule() must still happen and p->state can be changed to
3600  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3601  * need to do a full wakeup with enqueue.
3602  *
3603  * Returns: %true when the wakeup is done,
3604  *          %false otherwise.
3605  */
3606 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3607 {
3608         struct rq_flags rf;
3609         struct rq *rq;
3610         int ret = 0;
3611
3612         rq = __task_rq_lock(p, &rf);
3613         if (task_on_rq_queued(p)) {
3614                 /* check_preempt_curr() may use rq clock */
3615                 update_rq_clock(rq);
3616                 ttwu_do_wakeup(rq, p, wake_flags, &rf);
3617                 ret = 1;
3618         }
3619         __task_rq_unlock(rq, &rf);
3620
3621         return ret;
3622 }
3623
3624 #ifdef CONFIG_SMP
3625 void sched_ttwu_pending(void *arg)
3626 {
3627         struct llist_node *llist = arg;
3628         struct rq *rq = this_rq();
3629         struct task_struct *p, *t;
3630         struct rq_flags rf;
3631
3632         if (!llist)
3633                 return;
3634
3635         /*
3636          * rq::ttwu_pending racy indication of out-standing wakeups.
3637          * Races such that false-negatives are possible, since they
3638          * are shorter lived that false-positives would be.
3639          */
3640         WRITE_ONCE(rq->ttwu_pending, 0);
3641
3642         rq_lock_irqsave(rq, &rf);
3643         update_rq_clock(rq);
3644
3645         llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3646                 if (WARN_ON_ONCE(p->on_cpu))
3647                         smp_cond_load_acquire(&p->on_cpu, !VAL);
3648
3649                 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3650                         set_task_cpu(p, cpu_of(rq));
3651
3652                 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3653         }
3654
3655         rq_unlock_irqrestore(rq, &rf);
3656 }
3657
3658 void send_call_function_single_ipi(int cpu)
3659 {
3660         struct rq *rq = cpu_rq(cpu);
3661
3662         if (!set_nr_if_polling(rq->idle))
3663                 arch_send_call_function_single_ipi(cpu);
3664         else
3665                 trace_sched_wake_idle_without_ipi(cpu);
3666 }
3667
3668 /*
3669  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3670  * necessary. The wakee CPU on receipt of the IPI will queue the task
3671  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3672  * of the wakeup instead of the waker.
3673  */
3674 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3675 {
3676         struct rq *rq = cpu_rq(cpu);
3677
3678         p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3679
3680         WRITE_ONCE(rq->ttwu_pending, 1);
3681         __smp_call_single_queue(cpu, &p->wake_entry.llist);
3682 }
3683
3684 void wake_up_if_idle(int cpu)
3685 {
3686         struct rq *rq = cpu_rq(cpu);
3687         struct rq_flags rf;
3688
3689         rcu_read_lock();
3690
3691         if (!is_idle_task(rcu_dereference(rq->curr)))
3692                 goto out;
3693
3694         if (set_nr_if_polling(rq->idle)) {
3695                 trace_sched_wake_idle_without_ipi(cpu);
3696         } else {
3697                 rq_lock_irqsave(rq, &rf);
3698                 if (is_idle_task(rq->curr))
3699                         smp_send_reschedule(cpu);
3700                 /* Else CPU is not idle, do nothing here: */
3701                 rq_unlock_irqrestore(rq, &rf);
3702         }
3703
3704 out:
3705         rcu_read_unlock();
3706 }
3707
3708 bool cpus_share_cache(int this_cpu, int that_cpu)
3709 {
3710         return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3711 }
3712
3713 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3714 {
3715         /*
3716          * Do not complicate things with the async wake_list while the CPU is
3717          * in hotplug state.
3718          */
3719         if (!cpu_active(cpu))
3720                 return false;
3721
3722         /*
3723          * If the CPU does not share cache, then queue the task on the
3724          * remote rqs wakelist to avoid accessing remote data.
3725          */
3726         if (!cpus_share_cache(smp_processor_id(), cpu))
3727                 return true;
3728
3729         /*
3730          * If the task is descheduling and the only running task on the
3731          * CPU then use the wakelist to offload the task activation to
3732          * the soon-to-be-idle CPU as the current CPU is likely busy.
3733          * nr_running is checked to avoid unnecessary task stacking.
3734          */
3735         if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3736                 return true;
3737
3738         return false;
3739 }
3740
3741 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3742 {
3743         if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3744                 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3745                         return false;
3746
3747                 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3748                 __ttwu_queue_wakelist(p, cpu, wake_flags);
3749                 return true;
3750         }
3751
3752         return false;
3753 }
3754
3755 #else /* !CONFIG_SMP */
3756
3757 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3758 {
3759         return false;
3760 }
3761
3762 #endif /* CONFIG_SMP */
3763
3764 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3765 {
3766         struct rq *rq = cpu_rq(cpu);
3767         struct rq_flags rf;
3768
3769         if (ttwu_queue_wakelist(p, cpu, wake_flags))
3770                 return;
3771
3772         rq_lock(rq, &rf);
3773         update_rq_clock(rq);
3774         ttwu_do_activate(rq, p, wake_flags, &rf);
3775         rq_unlock(rq, &rf);
3776 }
3777
3778 /*
3779  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3780  *
3781  * The caller holds p::pi_lock if p != current or has preemption
3782  * disabled when p == current.
3783  *
3784  * The rules of PREEMPT_RT saved_state:
3785  *
3786  *   The related locking code always holds p::pi_lock when updating
3787  *   p::saved_state, which means the code is fully serialized in both cases.
3788  *
3789  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3790  *   bits set. This allows to distinguish all wakeup scenarios.
3791  */
3792 static __always_inline
3793 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3794 {
3795         if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3796                 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3797                              state != TASK_RTLOCK_WAIT);
3798         }
3799
3800         if (READ_ONCE(p->__state) & state) {
3801                 *success = 1;
3802                 return true;
3803         }
3804
3805 #ifdef CONFIG_PREEMPT_RT
3806         /*
3807          * Saved state preserves the task state across blocking on
3808          * an RT lock.  If the state matches, set p::saved_state to
3809          * TASK_RUNNING, but do not wake the task because it waits
3810          * for a lock wakeup. Also indicate success because from
3811          * the regular waker's point of view this has succeeded.
3812          *
3813          * After acquiring the lock the task will restore p::__state
3814          * from p::saved_state which ensures that the regular
3815          * wakeup is not lost. The restore will also set
3816          * p::saved_state to TASK_RUNNING so any further tests will
3817          * not result in false positives vs. @success
3818          */
3819         if (p->saved_state & state) {
3820                 p->saved_state = TASK_RUNNING;
3821                 *success = 1;
3822         }
3823 #endif
3824         return false;
3825 }
3826
3827 /*
3828  * Notes on Program-Order guarantees on SMP systems.
3829  *
3830  *  MIGRATION
3831  *
3832  * The basic program-order guarantee on SMP systems is that when a task [t]
3833  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3834  * execution on its new CPU [c1].
3835  *
3836  * For migration (of runnable tasks) this is provided by the following means:
3837  *
3838  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3839  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3840  *     rq(c1)->lock (if not at the same time, then in that order).
3841  *  C) LOCK of the rq(c1)->lock scheduling in task
3842  *
3843  * Release/acquire chaining guarantees that B happens after A and C after B.
3844  * Note: the CPU doing B need not be c0 or c1
3845  *
3846  * Example:
3847  *
3848  *   CPU0            CPU1            CPU2
3849  *
3850  *   LOCK rq(0)->lock
3851  *   sched-out X
3852  *   sched-in Y
3853  *   UNLOCK rq(0)->lock
3854  *
3855  *                                   LOCK rq(0)->lock // orders against CPU0
3856  *                                   dequeue X
3857  *                                   UNLOCK rq(0)->lock
3858  *
3859  *                                   LOCK rq(1)->lock
3860  *                                   enqueue X
3861  *                                   UNLOCK rq(1)->lock
3862  *
3863  *                   LOCK rq(1)->lock // orders against CPU2
3864  *                   sched-out Z
3865  *                   sched-in X
3866  *                   UNLOCK rq(1)->lock
3867  *
3868  *
3869  *  BLOCKING -- aka. SLEEP + WAKEUP
3870  *
3871  * For blocking we (obviously) need to provide the same guarantee as for
3872  * migration. However the means are completely different as there is no lock
3873  * chain to provide order. Instead we do:
3874  *
3875  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3876  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3877  *
3878  * Example:
3879  *
3880  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3881  *
3882  *   LOCK rq(0)->lock LOCK X->pi_lock
3883  *   dequeue X
3884  *   sched-out X
3885  *   smp_store_release(X->on_cpu, 0);
3886  *
3887  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3888  *                    X->state = WAKING
3889  *                    set_task_cpu(X,2)
3890  *
3891  *                    LOCK rq(2)->lock
3892  *                    enqueue X
3893  *                    X->state = RUNNING
3894  *                    UNLOCK rq(2)->lock
3895  *
3896  *                                          LOCK rq(2)->lock // orders against CPU1
3897  *                                          sched-out Z
3898  *                                          sched-in X
3899  *                                          UNLOCK rq(2)->lock
3900  *
3901  *                    UNLOCK X->pi_lock
3902  *   UNLOCK rq(0)->lock
3903  *
3904  *
3905  * However, for wakeups there is a second guarantee we must provide, namely we
3906  * must ensure that CONDITION=1 done by the caller can not be reordered with
3907  * accesses to the task state; see try_to_wake_up() and set_current_state().
3908  */
3909
3910 /**
3911  * try_to_wake_up - wake up a thread
3912  * @p: the thread to be awakened
3913  * @state: the mask of task states that can be woken
3914  * @wake_flags: wake modifier flags (WF_*)
3915  *
3916  * Conceptually does:
3917  *
3918  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3919  *
3920  * If the task was not queued/runnable, also place it back on a runqueue.
3921  *
3922  * This function is atomic against schedule() which would dequeue the task.
3923  *
3924  * It issues a full memory barrier before accessing @p->state, see the comment
3925  * with set_current_state().
3926  *
3927  * Uses p->pi_lock to serialize against concurrent wake-ups.
3928  *
3929  * Relies on p->pi_lock stabilizing:
3930  *  - p->sched_class
3931  *  - p->cpus_ptr
3932  *  - p->sched_task_group
3933  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3934  *
3935  * Tries really hard to only take one task_rq(p)->lock for performance.
3936  * Takes rq->lock in:
3937  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3938  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3939  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3940  *
3941  * As a consequence we race really badly with just about everything. See the
3942  * many memory barriers and their comments for details.
3943  *
3944  * Return: %true if @p->state changes (an actual wakeup was done),
3945  *         %false otherwise.
3946  */
3947 static int
3948 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3949 {
3950         unsigned long flags;
3951         int cpu, success = 0;
3952
3953         preempt_disable();
3954         if (p == current) {
3955                 /*
3956                  * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3957                  * == smp_processor_id()'. Together this means we can special
3958                  * case the whole 'p->on_rq && ttwu_runnable()' case below
3959                  * without taking any locks.
3960                  *
3961                  * In particular:
3962                  *  - we rely on Program-Order guarantees for all the ordering,
3963                  *  - we're serialized against set_special_state() by virtue of
3964                  *    it disabling IRQs (this allows not taking ->pi_lock).
3965                  */
3966                 if (!ttwu_state_match(p, state, &success))
3967                         goto out;
3968
3969                 trace_sched_waking(p);
3970                 WRITE_ONCE(p->__state, TASK_RUNNING);
3971                 trace_sched_wakeup(p);
3972                 goto out;
3973         }
3974
3975         /*
3976          * If we are going to wake up a thread waiting for CONDITION we
3977          * need to ensure that CONDITION=1 done by the caller can not be
3978          * reordered with p->state check below. This pairs with smp_store_mb()
3979          * in set_current_state() that the waiting thread does.
3980          */
3981         raw_spin_lock_irqsave(&p->pi_lock, flags);
3982         smp_mb__after_spinlock();
3983         if (!ttwu_state_match(p, state, &success))
3984                 goto unlock;
3985
3986         trace_sched_waking(p);
3987
3988         /*
3989          * Ensure we load p->on_rq _after_ p->state, otherwise it would
3990          * be possible to, falsely, observe p->on_rq == 0 and get stuck
3991          * in smp_cond_load_acquire() below.
3992          *
3993          * sched_ttwu_pending()                 try_to_wake_up()
3994          *   STORE p->on_rq = 1                   LOAD p->state
3995          *   UNLOCK rq->lock
3996          *
3997          * __schedule() (switch to task 'p')
3998          *   LOCK rq->lock                        smp_rmb();
3999          *   smp_mb__after_spinlock();
4000          *   UNLOCK rq->lock
4001          *
4002          * [task p]
4003          *   STORE p->state = UNINTERRUPTIBLE     LOAD p->on_rq
4004          *
4005          * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4006          * __schedule().  See the comment for smp_mb__after_spinlock().
4007          *
4008          * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4009          */
4010         smp_rmb();
4011         if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4012                 goto unlock;
4013
4014 #ifdef CONFIG_SMP
4015         /*
4016          * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4017          * possible to, falsely, observe p->on_cpu == 0.
4018          *
4019          * One must be running (->on_cpu == 1) in order to remove oneself
4020          * from the runqueue.
4021          *
4022          * __schedule() (switch to task 'p')    try_to_wake_up()
4023          *   STORE p->on_cpu = 1                  LOAD p->on_rq
4024          *   UNLOCK rq->lock
4025          *
4026          * __schedule() (put 'p' to sleep)
4027          *   LOCK rq->lock                        smp_rmb();
4028          *   smp_mb__after_spinlock();
4029          *   STORE p->on_rq = 0                   LOAD p->on_cpu
4030          *
4031          * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4032          * __schedule().  See the comment for smp_mb__after_spinlock().
4033          *
4034          * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4035          * schedule()'s deactivate_task() has 'happened' and p will no longer
4036          * care about it's own p->state. See the comment in __schedule().
4037          */
4038         smp_acquire__after_ctrl_dep();
4039
4040         /*
4041          * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4042          * == 0), which means we need to do an enqueue, change p->state to
4043          * TASK_WAKING such that we can unlock p->pi_lock before doing the
4044          * enqueue, such as ttwu_queue_wakelist().
4045          */
4046         WRITE_ONCE(p->__state, TASK_WAKING);
4047
4048         /*
4049          * If the owning (remote) CPU is still in the middle of schedule() with
4050          * this task as prev, considering queueing p on the remote CPUs wake_list
4051          * which potentially sends an IPI instead of spinning on p->on_cpu to
4052          * let the waker make forward progress. This is safe because IRQs are
4053          * disabled and the IPI will deliver after on_cpu is cleared.
4054          *
4055          * Ensure we load task_cpu(p) after p->on_cpu:
4056          *
4057          * set_task_cpu(p, cpu);
4058          *   STORE p->cpu = @cpu
4059          * __schedule() (switch to task 'p')
4060          *   LOCK rq->lock
4061          *   smp_mb__after_spin_lock()          smp_cond_load_acquire(&p->on_cpu)
4062          *   STORE p->on_cpu = 1                LOAD p->cpu
4063          *
4064          * to ensure we observe the correct CPU on which the task is currently
4065          * scheduling.
4066          */
4067         if (smp_load_acquire(&p->on_cpu) &&
4068             ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
4069                 goto unlock;
4070
4071         /*
4072          * If the owning (remote) CPU is still in the middle of schedule() with
4073          * this task as prev, wait until it's done referencing the task.
4074          *
4075          * Pairs with the smp_store_release() in finish_task().
4076          *
4077          * This ensures that tasks getting woken will be fully ordered against
4078          * their previous state and preserve Program Order.
4079          */
4080         smp_cond_load_acquire(&p->on_cpu, !VAL);
4081
4082         cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4083         if (task_cpu(p) != cpu) {
4084                 if (p->in_iowait) {
4085                         delayacct_blkio_end(p);
4086                         atomic_dec(&task_rq(p)->nr_iowait);
4087                 }
4088
4089                 wake_flags |= WF_MIGRATED;
4090                 psi_ttwu_dequeue(p);
4091                 set_task_cpu(p, cpu);
4092         }
4093 #else
4094         cpu = task_cpu(p);
4095 #endif /* CONFIG_SMP */
4096
4097         ttwu_queue(p, cpu, wake_flags);
4098 unlock:
4099         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4100 out:
4101         if (success)
4102                 ttwu_stat(p, task_cpu(p), wake_flags);
4103         preempt_enable();
4104
4105         return success;
4106 }
4107
4108 /**
4109  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
4110  * @p: Process for which the function is to be invoked, can be @current.
4111  * @func: Function to invoke.
4112  * @arg: Argument to function.
4113  *
4114  * If the specified task can be quickly locked into a definite state
4115  * (either sleeping or on a given runqueue), arrange to keep it in that
4116  * state while invoking @func(@arg).  This function can use ->on_rq and
4117  * task_curr() to work out what the state is, if required.  Given that
4118  * @func can be invoked with a runqueue lock held, it had better be quite
4119  * lightweight.
4120  *
4121  * Returns:
4122  *      @false if the task slipped out from under the locks.
4123  *      @true if the task was locked onto a runqueue or is sleeping.
4124  *              However, @func can override this by returning @false.
4125  */
4126 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
4127 {
4128         struct rq_flags rf;
4129         bool ret = false;
4130         struct rq *rq;
4131
4132         raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4133         if (p->on_rq) {
4134                 rq = __task_rq_lock(p, &rf);
4135                 if (task_rq(p) == rq)
4136                         ret = func(p, arg);
4137                 rq_unlock(rq, &rf);
4138         } else {
4139                 switch (READ_ONCE(p->__state)) {
4140                 case TASK_RUNNING:
4141                 case TASK_WAKING:
4142                         break;
4143                 default:
4144                         smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
4145                         if (!p->on_rq)
4146                                 ret = func(p, arg);
4147                 }
4148         }
4149         raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4150         return ret;
4151 }
4152
4153 /**
4154  * wake_up_process - Wake up a specific process
4155  * @p: The process to be woken up.
4156  *
4157  * Attempt to wake up the nominated process and move it to the set of runnable
4158  * processes.
4159  *
4160  * Return: 1 if the process was woken up, 0 if it was already running.
4161  *
4162  * This function executes a full memory barrier before accessing the task state.
4163  */
4164 int wake_up_process(struct task_struct *p)
4165 {
4166         return try_to_wake_up(p, TASK_NORMAL, 0);
4167 }
4168 EXPORT_SYMBOL(wake_up_process);
4169
4170 int wake_up_state(struct task_struct *p, unsigned int state)
4171 {
4172         return try_to_wake_up(p, state, 0);
4173 }
4174
4175 /*
4176  * Perform scheduler related setup for a newly forked process p.
4177  * p is forked by current.
4178  *
4179  * __sched_fork() is basic setup used by init_idle() too:
4180  */
4181 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4182 {
4183         p->on_rq                        = 0;
4184
4185         p->se.on_rq                     = 0;
4186         p->se.exec_start                = 0;
4187         p->se.sum_exec_runtime          = 0;
4188         p->se.prev_sum_exec_runtime     = 0;
4189         p->se.nr_migrations             = 0;
4190         p->se.vruntime                  = 0;
4191         INIT_LIST_HEAD(&p->se.group_node);
4192
4193 #ifdef CONFIG_FAIR_GROUP_SCHED
4194         p->se.cfs_rq                    = NULL;
4195 #endif
4196
4197 #ifdef CONFIG_SCHEDSTATS
4198         /* Even if schedstat is disabled, there should not be garbage */
4199         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
4200 #endif
4201
4202         RB_CLEAR_NODE(&p->dl.rb_node);
4203         init_dl_task_timer(&p->dl);
4204         init_dl_inactive_task_timer(&p->dl);
4205         __dl_clear_params(p);
4206
4207         INIT_LIST_HEAD(&p->rt.run_list);
4208         p->rt.timeout           = 0;
4209         p->rt.time_slice        = sched_rr_timeslice;
4210         p->rt.on_rq             = 0;
4211         p->rt.on_list           = 0;
4212
4213 #ifdef CONFIG_PREEMPT_NOTIFIERS
4214         INIT_HLIST_HEAD(&p->preempt_notifiers);
4215 #endif
4216
4217 #ifdef CONFIG_COMPACTION
4218         p->capture_control = NULL;
4219 #endif
4220         init_numa_balancing(clone_flags, p);
4221 #ifdef CONFIG_SMP
4222         p->wake_entry.u_flags = CSD_TYPE_TTWU;
4223         p->migration_pending = NULL;
4224 #endif
4225 }
4226
4227 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4228
4229 #ifdef CONFIG_NUMA_BALANCING
4230
4231 void set_numabalancing_state(bool enabled)
4232 {
4233         if (enabled)
4234                 static_branch_enable(&sched_numa_balancing);
4235         else
4236                 static_branch_disable(&sched_numa_balancing);
4237 }
4238
4239 #ifdef CONFIG_PROC_SYSCTL
4240 int sysctl_numa_balancing(struct ctl_table *table, int write,
4241                           void *buffer, size_t *lenp, loff_t *ppos)
4242 {
4243         struct ctl_table t;
4244         int err;
4245         int state = static_branch_likely(&sched_numa_balancing);
4246
4247         if (write && !capable(CAP_SYS_ADMIN))
4248                 return -EPERM;
4249
4250         t = *table;
4251         t.data = &state;
4252         err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4253         if (err < 0)
4254                 return err;
4255         if (write)
4256                 set_numabalancing_state(state);
4257         return err;
4258 }
4259 #endif
4260 #endif
4261
4262 #ifdef CONFIG_SCHEDSTATS
4263
4264 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4265
4266 static void set_schedstats(bool enabled)
4267 {
4268         if (enabled)
4269                 static_branch_enable(&sched_schedstats);
4270         else
4271                 static_branch_disable(&sched_schedstats);
4272 }
4273
4274 void force_schedstat_enabled(void)
4275 {
4276         if (!schedstat_enabled()) {
4277                 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4278                 static_branch_enable(&sched_schedstats);
4279         }
4280 }
4281
4282 static int __init setup_schedstats(char *str)
4283 {
4284         int ret = 0;
4285         if (!str)
4286                 goto out;
4287
4288         if (!strcmp(str, "enable")) {
4289                 set_schedstats(true);
4290                 ret = 1;
4291         } else if (!strcmp(str, "disable")) {
4292                 set_schedstats(false);
4293                 ret = 1;
4294         }
4295 out:
4296         if (!ret)
4297                 pr_warn("Unable to parse schedstats=\n");
4298
4299         return ret;
4300 }
4301 __setup("schedstats=", setup_schedstats);
4302
4303 #ifdef CONFIG_PROC_SYSCTL
4304 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4305                 size_t *lenp, loff_t *ppos)
4306 {
4307         struct ctl_table t;
4308         int err;
4309         int state = static_branch_likely(&sched_schedstats);
4310
4311         if (write && !capable(CAP_SYS_ADMIN))
4312                 return -EPERM;
4313
4314         t = *table;
4315         t.data = &state;
4316         err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4317         if (err < 0)
4318                 return err;
4319         if (write)
4320                 set_schedstats(state);
4321         return err;
4322 }
4323 #endif /* CONFIG_PROC_SYSCTL */
4324 #endif /* CONFIG_SCHEDSTATS */
4325
4326 /*
4327  * fork()/clone()-time setup:
4328  */
4329 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4330 {
4331         unsigned long flags;
4332
4333         __sched_fork(clone_flags, p);
4334         /*
4335          * We mark the process as NEW here. This guarantees that
4336          * nobody will actually run it, and a signal or other external
4337          * event cannot wake it up and insert it on the runqueue either.
4338          */
4339         p->__state = TASK_NEW;
4340
4341         /*
4342          * Make sure we do not leak PI boosting priority to the child.
4343          */
4344         p->prio = current->normal_prio;
4345
4346         uclamp_fork(p);
4347
4348         /*
4349          * Revert to default priority/policy on fork if requested.
4350          */
4351         if (unlikely(p->sched_reset_on_fork)) {
4352                 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4353                         p->policy = SCHED_NORMAL;
4354                         p->static_prio = NICE_TO_PRIO(0);
4355                         p->rt_priority = 0;
4356                 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4357                         p->static_prio = NICE_TO_PRIO(0);
4358
4359                 p->prio = p->normal_prio = p->static_prio;
4360                 set_load_weight(p, false);
4361
4362                 /*
4363                  * We don't need the reset flag anymore after the fork. It has
4364                  * fulfilled its duty:
4365                  */
4366                 p->sched_reset_on_fork = 0;
4367         }
4368
4369         if (dl_prio(p->prio))
4370                 return -EAGAIN;
4371         else if (rt_prio(p->prio))
4372                 p->sched_class = &rt_sched_class;
4373         else
4374                 p->sched_class = &fair_sched_class;
4375
4376         init_entity_runnable_average(&p->se);
4377
4378         /*
4379          * The child is not yet in the pid-hash so no cgroup attach races,
4380          * and the cgroup is pinned to this child due to cgroup_fork()
4381          * is ran before sched_fork().
4382          *
4383          * Silence PROVE_RCU.
4384          */
4385         raw_spin_lock_irqsave(&p->pi_lock, flags);
4386         rseq_migrate(p);
4387         /*
4388          * We're setting the CPU for the first time, we don't migrate,
4389          * so use __set_task_cpu().
4390          */
4391         __set_task_cpu(p, smp_processor_id());
4392         if (p->sched_class->task_fork)
4393                 p->sched_class->task_fork(p);
4394         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4395
4396 #ifdef CONFIG_SCHED_INFO
4397         if (likely(sched_info_on()))
4398                 memset(&p->sched_info, 0, sizeof(p->sched_info));
4399 #endif
4400 #if defined(CONFIG_SMP)
4401         p->on_cpu = 0;
4402 #endif
4403         init_task_preempt_count(p);
4404 #ifdef CONFIG_SMP
4405         plist_node_init(&p->pushable_tasks, MAX_PRIO);
4406         RB_CLEAR_NODE(&p->pushable_dl_tasks);
4407 #endif
4408         return 0;
4409 }
4410
4411 void sched_post_fork(struct task_struct *p)
4412 {
4413         uclamp_post_fork(p);
4414 }
4415
4416 unsigned long to_ratio(u64 period, u64 runtime)
4417 {
4418         if (runtime == RUNTIME_INF)
4419                 return BW_UNIT;
4420
4421         /*
4422          * Doing this here saves a lot of checks in all
4423          * the calling paths, and returning zero seems
4424          * safe for them anyway.
4425          */
4426         if (period == 0)
4427                 return 0;
4428
4429         return div64_u64(runtime << BW_SHIFT, period);
4430 }
4431
4432 /*
4433  * wake_up_new_task - wake up a newly created task for the first time.
4434  *
4435  * This function will do some initial scheduler statistics housekeeping
4436  * that must be done for every newly created context, then puts the task
4437  * on the runqueue and wakes it.
4438  */
4439 void wake_up_new_task(struct task_struct *p)
4440 {
4441         struct rq_flags rf;
4442         struct rq *rq;
4443
4444         raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4445         WRITE_ONCE(p->__state, TASK_RUNNING);
4446 #ifdef CONFIG_SMP
4447         /*
4448          * Fork balancing, do it here and not earlier because:
4449          *  - cpus_ptr can change in the fork path
4450          *  - any previously selected CPU might disappear through hotplug
4451          *
4452          * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4453          * as we're not fully set-up yet.
4454          */
4455         p->recent_used_cpu = task_cpu(p);
4456         rseq_migrate(p);
4457         __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4458 #endif
4459         rq = __task_rq_lock(p, &rf);
4460         update_rq_clock(rq);
4461         post_init_entity_util_avg(p);
4462
4463         activate_task(rq, p, ENQUEUE_NOCLOCK);
4464         trace_sched_wakeup_new(p);
4465         check_preempt_curr(rq, p, WF_FORK);
4466 #ifdef CONFIG_SMP
4467         if (p->sched_class->task_woken) {
4468                 /*
4469                  * Nothing relies on rq->lock after this, so it's fine to
4470                  * drop it.
4471                  */
4472                 rq_unpin_lock(rq, &rf);
4473                 p->sched_class->task_woken(rq, p);
4474                 rq_repin_lock(rq, &rf);
4475         }
4476 #endif
4477         task_rq_unlock(rq, p, &rf);
4478 }
4479
4480 #ifdef CONFIG_PREEMPT_NOTIFIERS
4481
4482 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4483
4484 void preempt_notifier_inc(void)
4485 {
4486         static_branch_inc(&preempt_notifier_key);
4487 }
4488 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4489
4490 void preempt_notifier_dec(void)
4491 {
4492         static_branch_dec(&preempt_notifier_key);
4493 }
4494 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4495
4496 /**
4497  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4498  * @notifier: notifier struct to register
4499  */
4500 void preempt_notifier_register(struct preempt_notifier *notifier)
4501 {
4502         if (!static_branch_unlikely(&preempt_notifier_key))
4503                 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4504
4505         hlist_add_head(&notifier->link, &current->preempt_notifiers);
4506 }
4507 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4508
4509 /**
4510  * preempt_notifier_unregister - no longer interested in preemption notifications
4511  * @notifier: notifier struct to unregister
4512  *
4513  * This is *not* safe to call from within a preemption notifier.
4514  */
4515 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4516 {
4517         hlist_del(&notifier->link);
4518 }
4519 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4520
4521 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4522 {
4523         struct preempt_notifier *notifier;
4524
4525         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4526                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4527 }
4528
4529 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4530 {
4531         if (static_branch_unlikely(&preempt_notifier_key))
4532                 __fire_sched_in_preempt_notifiers(curr);
4533 }
4534
4535 static void
4536 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4537                                    struct task_struct *next)
4538 {
4539         struct preempt_notifier *notifier;
4540
4541         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4542                 notifier->ops->sched_out(notifier, next);
4543 }
4544
4545 static __always_inline void
4546 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4547                                  struct task_struct *next)
4548 {
4549         if (static_branch_unlikely(&preempt_notifier_key))
4550                 __fire_sched_out_preempt_notifiers(curr, next);
4551 }
4552
4553 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4554
4555 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4556 {
4557 }
4558
4559 static inline void
4560 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4561                                  struct task_struct *next)
4562 {
4563 }
4564
4565 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4566
4567 static inline void prepare_task(struct task_struct *next)
4568 {
4569 #ifdef CONFIG_SMP
4570         /*
4571          * Claim the task as running, we do this before switching to it
4572          * such that any running task will have this set.
4573          *
4574          * See the ttwu() WF_ON_CPU case and its ordering comment.
4575          */
4576         WRITE_ONCE(next->on_cpu, 1);
4577 #endif
4578 }
4579
4580 static inline void finish_task(struct task_struct *prev)
4581 {
4582 #ifdef CONFIG_SMP
4583         /*
4584          * This must be the very last reference to @prev from this CPU. After
4585          * p->on_cpu is cleared, the task can be moved to a different CPU. We
4586          * must ensure this doesn't happen until the switch is completely
4587          * finished.
4588          *
4589          * In particular, the load of prev->state in finish_task_switch() must
4590          * happen before this.
4591          *
4592          * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4593          */
4594         smp_store_release(&prev->on_cpu, 0);
4595 #endif
4596 }
4597
4598 #ifdef CONFIG_SMP
4599
4600 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4601 {
4602         void (*func)(struct rq *rq);
4603         struct callback_head *next;
4604
4605         lockdep_assert_rq_held(rq);
4606
4607         while (head) {
4608                 func = (void (*)(struct rq *))head->func;
4609                 next = head->next;
4610                 head->next = NULL;
4611                 head = next;
4612
4613                 func(rq);
4614         }
4615 }
4616
4617 static void balance_push(struct rq *rq);
4618
4619 struct callback_head balance_push_callback = {
4620         .next = NULL,
4621         .func = (void (*)(struct callback_head *))balance_push,
4622 };
4623
4624 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4625 {
4626         struct callback_head *head = rq->balance_callback;
4627
4628         lockdep_assert_rq_held(rq);
4629         if (head)
4630                 rq->balance_callback = NULL;
4631
4632         return head;
4633 }
4634
4635 static void __balance_callbacks(struct rq *rq)
4636 {
4637         do_balance_callbacks(rq, splice_balance_callbacks(rq));
4638 }
4639
4640 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4641 {
4642         unsigned long flags;
4643
4644         if (unlikely(head)) {
4645                 raw_spin_rq_lock_irqsave(rq, flags);
4646                 do_balance_callbacks(rq, head);
4647                 raw_spin_rq_unlock_irqrestore(rq, flags);
4648         }
4649 }
4650
4651 #else
4652
4653 static inline void __balance_callbacks(struct rq *rq)
4654 {
4655 }
4656
4657 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4658 {
4659         return NULL;
4660 }
4661
4662 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4663 {
4664 }
4665
4666 #endif
4667
4668 static inline void
4669 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4670 {
4671         /*
4672          * Since the runqueue lock will be released by the next
4673          * task (which is an invalid locking op but in the case
4674          * of the scheduler it's an obvious special-case), so we
4675          * do an early lockdep release here:
4676          */
4677         rq_unpin_lock(rq, rf);
4678         spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4679 #ifdef CONFIG_DEBUG_SPINLOCK
4680         /* this is a valid case when another task releases the spinlock */
4681         rq_lockp(rq)->owner = next;
4682 #endif
4683 }
4684
4685 static inline void finish_lock_switch(struct rq *rq)
4686 {
4687         /*
4688          * If we are tracking spinlock dependencies then we have to
4689          * fix up the runqueue lock - which gets 'carried over' from
4690          * prev into current:
4691          */
4692         spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4693         __balance_callbacks(rq);
4694         raw_spin_rq_unlock_irq(rq);
4695 }
4696
4697 /*
4698  * NOP if the arch has not defined these:
4699  */
4700
4701 #ifndef prepare_arch_switch
4702 # define prepare_arch_switch(next)      do { } while (0)
4703 #endif
4704
4705 #ifndef finish_arch_post_lock_switch
4706 # define finish_arch_post_lock_switch() do { } while (0)
4707 #endif
4708
4709 static inline void kmap_local_sched_out(void)
4710 {
4711 #ifdef CONFIG_KMAP_LOCAL
4712         if (unlikely(current->kmap_ctrl.idx))
4713                 __kmap_local_sched_out();
4714 #endif
4715 }
4716
4717 static inline void kmap_local_sched_in(void)
4718 {
4719 #ifdef CONFIG_KMAP_LOCAL
4720         if (unlikely(current->kmap_ctrl.idx))
4721                 __kmap_local_sched_in();
4722 #endif
4723 }
4724
4725 /**
4726  * prepare_task_switch - prepare to switch tasks
4727  * @rq: the runqueue preparing to switch
4728  * @prev: the current task that is being switched out
4729  * @next: the task we are going to switch to.
4730  *
4731  * This is called with the rq lock held and interrupts off. It must
4732  * be paired with a subsequent finish_task_switch after the context
4733  * switch.
4734  *
4735  * prepare_task_switch sets up locking and calls architecture specific
4736  * hooks.
4737  */
4738 static inline void
4739 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4740                     struct task_struct *next)
4741 {
4742         kcov_prepare_switch(prev);
4743         sched_info_switch(rq, prev, next);
4744         perf_event_task_sched_out(prev, next);
4745         rseq_preempt(prev);
4746         fire_sched_out_preempt_notifiers(prev, next);
4747         kmap_local_sched_out();
4748         prepare_task(next);
4749         prepare_arch_switch(next);
4750 }
4751
4752 /**
4753  * finish_task_switch - clean up after a task-switch
4754  * @prev: the thread we just switched away from.
4755  *
4756  * finish_task_switch must be called after the context switch, paired
4757  * with a prepare_task_switch call before the context switch.
4758  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4759  * and do any other architecture-specific cleanup actions.
4760  *
4761  * Note that we may have delayed dropping an mm in context_switch(). If
4762  * so, we finish that here outside of the runqueue lock. (Doing it
4763  * with the lock held can cause deadlocks; see schedule() for
4764  * details.)
4765  *
4766  * The context switch have flipped the stack from under us and restored the
4767  * local variables which were saved when this task called schedule() in the
4768  * past. prev == current is still correct but we need to recalculate this_rq
4769  * because prev may have moved to another CPU.
4770  */
4771 static struct rq *finish_task_switch(struct task_struct *prev)
4772         __releases(rq->lock)
4773 {
4774         struct rq *rq = this_rq();
4775         struct mm_struct *mm = rq->prev_mm;
4776         long prev_state;
4777
4778         /*
4779          * The previous task will have left us with a preempt_count of 2
4780          * because it left us after:
4781          *
4782          *      schedule()
4783          *        preempt_disable();                    // 1
4784          *        __schedule()
4785          *          raw_spin_lock_irq(&rq->lock)        // 2
4786          *
4787          * Also, see FORK_PREEMPT_COUNT.
4788          */
4789         if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4790                       "corrupted preempt_count: %s/%d/0x%x\n",
4791                       current->comm, current->pid, preempt_count()))
4792                 preempt_count_set(FORK_PREEMPT_COUNT);
4793
4794         rq->prev_mm = NULL;
4795
4796         /*
4797          * A task struct has one reference for the use as "current".
4798          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4799          * schedule one last time. The schedule call will never return, and
4800          * the scheduled task must drop that reference.
4801          *
4802          * We must observe prev->state before clearing prev->on_cpu (in
4803          * finish_task), otherwise a concurrent wakeup can get prev
4804          * running on another CPU and we could rave with its RUNNING -> DEAD
4805          * transition, resulting in a double drop.
4806          */
4807         prev_state = READ_ONCE(prev->__state);
4808         vtime_task_switch(prev);
4809         perf_event_task_sched_in(prev, current);
4810         finish_task(prev);
4811         tick_nohz_task_switch();
4812         finish_lock_switch(rq);
4813         finish_arch_post_lock_switch();
4814         kcov_finish_switch(current);
4815         /*
4816          * kmap_local_sched_out() is invoked with rq::lock held and
4817          * interrupts disabled. There is no requirement for that, but the
4818          * sched out code does not have an interrupt enabled section.
4819          * Restoring the maps on sched in does not require interrupts being
4820          * disabled either.
4821          */
4822         kmap_local_sched_in();
4823
4824         fire_sched_in_preempt_notifiers(current);
4825         /*
4826          * When switching through a kernel thread, the loop in
4827          * membarrier_{private,global}_expedited() may have observed that
4828          * kernel thread and not issued an IPI. It is therefore possible to
4829          * schedule between user->kernel->user threads without passing though
4830          * switch_mm(). Membarrier requires a barrier after storing to
4831          * rq->curr, before returning to userspace, so provide them here:
4832          *
4833          * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4834          *   provided by mmdrop(),
4835          * - a sync_core for SYNC_CORE.
4836          */
4837         if (mm) {
4838                 membarrier_mm_sync_core_before_usermode(mm);
4839                 mmdrop(mm);
4840         }
4841         if (unlikely(prev_state == TASK_DEAD)) {
4842                 if (prev->sched_class->task_dead)
4843                         prev->sched_class->task_dead(prev);
4844
4845                 /*
4846                  * Remove function-return probe instances associated with this
4847                  * task and put them back on the free list.
4848                  */
4849                 kprobe_flush_task(prev);
4850
4851                 /* Task is done with its stack. */
4852                 put_task_stack(prev);
4853
4854                 put_task_struct_rcu_user(prev);
4855         }
4856
4857         return rq;
4858 }
4859
4860 /**
4861  * schedule_tail - first thing a freshly forked thread must call.
4862  * @prev: the thread we just switched away from.
4863  */
4864 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4865         __releases(rq->lock)
4866 {
4867         /*
4868          * New tasks start with FORK_PREEMPT_COUNT, see there and
4869          * finish_task_switch() for details.
4870          *
4871          * finish_task_switch() will drop rq->lock() and lower preempt_count
4872          * and the preempt_enable() will end up enabling preemption (on
4873          * PREEMPT_COUNT kernels).
4874          */
4875
4876         finish_task_switch(prev);
4877         preempt_enable();
4878
4879         if (current->set_child_tid)
4880                 put_user(task_pid_vnr(current), current->set_child_tid);
4881
4882         calculate_sigpending();
4883 }
4884
4885 /*
4886  * context_switch - switch to the new MM and the new thread's register state.
4887  */
4888 static __always_inline struct rq *
4889 context_switch(struct rq *rq, struct task_struct *prev,
4890                struct task_struct *next, struct rq_flags *rf)
4891 {
4892         prepare_task_switch(rq, prev, next);
4893
4894         /*
4895          * For paravirt, this is coupled with an exit in switch_to to
4896          * combine the page table reload and the switch backend into
4897          * one hypercall.
4898          */
4899         arch_start_context_switch(prev);
4900
4901         /*
4902          * kernel -> kernel   lazy + transfer active
4903          *   user -> kernel   lazy + mmgrab() active
4904          *
4905          * kernel ->   user   switch + mmdrop() active
4906          *   user ->   user   switch
4907          */
4908         if (!next->mm) {                                // to kernel
4909                 enter_lazy_tlb(prev->active_mm, next);
4910
4911                 next->active_mm = prev->active_mm;
4912                 if (prev->mm)                           // from user
4913                         mmgrab(prev->active_mm);
4914                 else
4915                         prev->active_mm = NULL;
4916         } else {                                        // to user
4917                 membarrier_switch_mm(rq, prev->active_mm, next->mm);
4918                 /*
4919                  * sys_membarrier() requires an smp_mb() between setting
4920                  * rq->curr / membarrier_switch_mm() and returning to userspace.
4921                  *
4922                  * The below provides this either through switch_mm(), or in
4923                  * case 'prev->active_mm == next->mm' through
4924                  * finish_task_switch()'s mmdrop().
4925                  */
4926                 switch_mm_irqs_off(prev->active_mm, next->mm, next);
4927
4928                 if (!prev->mm) {                        // from kernel
4929                         /* will mmdrop() in finish_task_switch(). */
4930                         rq->prev_mm = prev->active_mm;
4931                         prev->active_mm = NULL;
4932                 }
4933         }
4934
4935         rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4936
4937         prepare_lock_switch(rq, next, rf);
4938
4939         /* Here we just switch the register state and the stack. */
4940         switch_to(prev, next, prev);
4941         barrier();
4942
4943         return finish_task_switch(prev);
4944 }
4945
4946 /*
4947  * nr_running and nr_context_switches:
4948  *
4949  * externally visible scheduler statistics: current number of runnable
4950  * threads, total number of context switches performed since bootup.
4951  */
4952 unsigned int nr_running(void)
4953 {
4954         unsigned int i, sum = 0;
4955
4956         for_each_online_cpu(i)
4957                 sum += cpu_rq(i)->nr_running;
4958
4959         return sum;
4960 }
4961
4962 /*
4963  * Check if only the current task is running on the CPU.
4964  *
4965  * Caution: this function does not check that the caller has disabled
4966  * preemption, thus the result might have a time-of-check-to-time-of-use
4967  * race.  The caller is responsible to use it correctly, for example:
4968  *
4969  * - from a non-preemptible section (of course)
4970  *
4971  * - from a thread that is bound to a single CPU
4972  *
4973  * - in a loop with very short iterations (e.g. a polling loop)
4974  */
4975 bool single_task_running(void)
4976 {
4977         return raw_rq()->nr_running == 1;
4978 }
4979 EXPORT_SYMBOL(single_task_running);
4980
4981 unsigned long long nr_context_switches(void)
4982 {
4983         int i;
4984         unsigned long long sum = 0;
4985
4986         for_each_possible_cpu(i)
4987                 sum += cpu_rq(i)->nr_switches;
4988
4989         return sum;
4990 }
4991
4992 /*
4993  * Consumers of these two interfaces, like for example the cpuidle menu
4994  * governor, are using nonsensical data. Preferring shallow idle state selection
4995  * for a CPU that has IO-wait which might not even end up running the task when
4996  * it does become runnable.
4997  */
4998
4999 unsigned int nr_iowait_cpu(int cpu)
5000 {
5001         return atomic_read(&cpu_rq(cpu)->nr_iowait);
5002 }
5003
5004 /*
5005  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5006  *
5007  * The idea behind IO-wait account is to account the idle time that we could
5008  * have spend running if it were not for IO. That is, if we were to improve the
5009  * storage performance, we'd have a proportional reduction in IO-wait time.
5010  *
5011  * This all works nicely on UP, where, when a task blocks on IO, we account
5012  * idle time as IO-wait, because if the storage were faster, it could've been
5013  * running and we'd not be idle.
5014  *
5015  * This has been extended to SMP, by doing the same for each CPU. This however
5016  * is broken.
5017  *
5018  * Imagine for instance the case where two tasks block on one CPU, only the one
5019  * CPU will have IO-wait accounted, while the other has regular idle. Even
5020  * though, if the storage were faster, both could've ran at the same time,
5021  * utilising both CPUs.
5022  *
5023  * This means, that when looking globally, the current IO-wait accounting on
5024  * SMP is a lower bound, by reason of under accounting.
5025  *
5026  * Worse, since the numbers are provided per CPU, they are sometimes
5027  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5028  * associated with any one particular CPU, it can wake to another CPU than it
5029  * blocked on. This means the per CPU IO-wait number is meaningless.
5030  *
5031  * Task CPU affinities can make all that even more 'interesting'.
5032  */
5033
5034 unsigned int nr_iowait(void)
5035 {
5036         unsigned int i, sum = 0;
5037
5038         for_each_possible_cpu(i)
5039                 sum += nr_iowait_cpu(i);
5040
5041         return sum;
5042 }
5043
5044 #ifdef CONFIG_SMP
5045
5046 /*
5047  * sched_exec - execve() is a valuable balancing opportunity, because at
5048  * this point the task has the smallest effective memory and cache footprint.
5049  */
5050 void sched_exec(void)
5051 {
5052         struct task_struct *p = current;
5053         unsigned long flags;
5054         int dest_cpu;
5055
5056         raw_spin_lock_irqsave(&p->pi_lock, flags);
5057         dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5058         if (dest_cpu == smp_processor_id())
5059                 goto unlock;
5060
5061         if (likely(cpu_active(dest_cpu))) {
5062                 struct migration_arg arg = { p, dest_cpu };
5063
5064                 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5065                 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5066                 return;
5067         }
5068 unlock:
5069         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5070 }
5071
5072 #endif
5073
5074 DEFINE_PER_CPU(struct kernel_stat, kstat);
5075 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5076
5077 EXPORT_PER_CPU_SYMBOL(kstat);
5078 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5079
5080 /*
5081  * The function fair_sched_class.update_curr accesses the struct curr
5082  * and its field curr->exec_start; when called from task_sched_runtime(),
5083  * we observe a high rate of cache misses in practice.
5084  * Prefetching this data results in improved performance.
5085  */
5086 static inline void prefetch_curr_exec_start(struct task_struct *p)
5087 {
5088 #ifdef CONFIG_FAIR_GROUP_SCHED
5089         struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5090 #else
5091         struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5092 #endif
5093         prefetch(curr);
5094         prefetch(&curr->exec_start);
5095 }
5096
5097 /*
5098  * Return accounted runtime for the task.
5099  * In case the task is currently running, return the runtime plus current's
5100  * pending runtime that have not been accounted yet.
5101  */
5102 unsigned long long task_sched_runtime(struct task_struct *p)
5103 {
5104         struct rq_flags rf;
5105         struct rq *rq;
5106         u64 ns;
5107
5108 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5109         /*
5110          * 64-bit doesn't need locks to atomically read a 64-bit value.
5111          * So we have a optimization chance when the task's delta_exec is 0.
5112          * Reading ->on_cpu is racy, but this is ok.
5113          *
5114          * If we race with it leaving CPU, we'll take a lock. So we're correct.
5115          * If we race with it entering CPU, unaccounted time is 0. This is
5116          * indistinguishable from the read occurring a few cycles earlier.
5117          * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5118          * been accounted, so we're correct here as well.
5119          */
5120         if (!p->on_cpu || !task_on_rq_queued(p))
5121                 return p->se.sum_exec_runtime;
5122 #endif
5123
5124         rq = task_rq_lock(p, &rf);
5125         /*
5126          * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5127          * project cycles that may never be accounted to this
5128          * thread, breaking clock_gettime().
5129          */
5130         if (task_current(rq, p) && task_on_rq_queued(p)) {
5131                 prefetch_curr_exec_start(p);
5132                 update_rq_clock(rq);
5133                 p->sched_class->update_curr(rq);
5134         }
5135         ns = p->se.sum_exec_runtime;
5136         task_rq_unlock(rq, p, &rf);
5137
5138         return ns;
5139 }
5140
5141 #ifdef CONFIG_SCHED_DEBUG
5142 static u64 cpu_resched_latency(struct rq *rq)
5143 {
5144         int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5145         u64 resched_latency, now = rq_clock(rq);
5146         static bool warned_once;
5147
5148         if (sysctl_resched_latency_warn_once && warned_once)
5149                 return 0;
5150
5151         if (!need_resched() || !latency_warn_ms)
5152                 return 0;
5153
5154         if (system_state == SYSTEM_BOOTING)
5155                 return 0;
5156
5157         if (!rq->last_seen_need_resched_ns) {
5158                 rq->last_seen_need_resched_ns = now;
5159                 rq->ticks_without_resched = 0;
5160                 return 0;
5161         }
5162
5163         rq->ticks_without_resched++;
5164         resched_latency = now - rq->last_seen_need_resched_ns;
5165         if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5166                 return 0;
5167
5168         warned_once = true;
5169
5170         return resched_latency;
5171 }
5172
5173 static int __init setup_resched_latency_warn_ms(char *str)
5174 {
5175         long val;
5176
5177         if ((kstrtol(str, 0, &val))) {
5178                 pr_warn("Unable to set resched_latency_warn_ms\n");
5179                 return 1;
5180         }
5181
5182         sysctl_resched_latency_warn_ms = val;
5183         return 1;
5184 }
5185 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5186 #else
5187 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5188 #endif /* CONFIG_SCHED_DEBUG */
5189
5190 /*
5191  * This function gets called by the timer code, with HZ frequency.
5192  * We call it with interrupts disabled.
5193  */
5194 void scheduler_tick(void)
5195 {
5196         int cpu = smp_processor_id();
5197         struct rq *rq = cpu_rq(cpu);
5198         struct task_struct *curr = rq->curr;
5199         struct rq_flags rf;
5200         unsigned long thermal_pressure;
5201         u64 resched_latency;
5202
5203         arch_scale_freq_tick();
5204         sched_clock_tick();
5205
5206         rq_lock(rq, &rf);
5207
5208         update_rq_clock(rq);
5209         thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5210         update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5211         curr->sched_class->task_tick(rq, curr, 0);
5212         if (sched_feat(LATENCY_WARN))
5213                 resched_latency = cpu_resched_latency(rq);
5214         calc_global_load_tick(rq);
5215
5216         rq_unlock(rq, &rf);
5217
5218         if (sched_feat(LATENCY_WARN) && resched_latency)
5219                 resched_latency_warn(cpu, resched_latency);
5220
5221         perf_event_task_tick();
5222
5223 #ifdef CONFIG_SMP
5224         rq->idle_balance = idle_cpu(cpu);
5225         trigger_load_balance(rq);
5226 #endif
5227 }
5228
5229 #ifdef CONFIG_NO_HZ_FULL
5230
5231 struct tick_work {
5232         int                     cpu;
5233         atomic_t                state;
5234         struct delayed_work     work;
5235 };
5236 /* Values for ->state, see diagram below. */
5237 #define TICK_SCHED_REMOTE_OFFLINE       0
5238 #define TICK_SCHED_REMOTE_OFFLINING     1
5239 #define TICK_SCHED_REMOTE_RUNNING       2
5240
5241 /*
5242  * State diagram for ->state:
5243  *
5244  *
5245  *          TICK_SCHED_REMOTE_OFFLINE
5246  *                    |   ^
5247  *                    |   |
5248  *                    |   | sched_tick_remote()
5249  *                    |   |
5250  *                    |   |
5251  *                    +--TICK_SCHED_REMOTE_OFFLINING
5252  *                    |   ^
5253  *                    |   |
5254  * sched_tick_start() |   | sched_tick_stop()
5255  *                    |   |
5256  *                    V   |
5257  *          TICK_SCHED_REMOTE_RUNNING
5258  *
5259  *
5260  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5261  * and sched_tick_start() are happy to leave the state in RUNNING.
5262  */
5263
5264 static struct tick_work __percpu *tick_work_cpu;
5265
5266 static void sched_tick_remote(struct work_struct *work)
5267 {
5268         struct delayed_work *dwork = to_delayed_work(work);
5269         struct tick_work *twork = container_of(dwork, struct tick_work, work);
5270         int cpu = twork->cpu;
5271         struct rq *rq = cpu_rq(cpu);
5272         struct task_struct *curr;
5273         struct rq_flags rf;
5274         u64 delta;
5275         int os;
5276
5277         /*
5278          * Handle the tick only if it appears the remote CPU is running in full
5279          * dynticks mode. The check is racy by nature, but missing a tick or
5280          * having one too much is no big deal because the scheduler tick updates
5281          * statistics and checks timeslices in a time-independent way, regardless
5282          * of when exactly it is running.
5283          */
5284         if (!tick_nohz_tick_stopped_cpu(cpu))
5285                 goto out_requeue;
5286
5287         rq_lock_irq(rq, &rf);
5288         curr = rq->curr;
5289         if (cpu_is_offline(cpu))
5290                 goto out_unlock;
5291
5292         update_rq_clock(rq);
5293
5294         if (!is_idle_task(curr)) {
5295                 /*
5296                  * Make sure the next tick runs within a reasonable
5297                  * amount of time.
5298                  */
5299                 delta = rq_clock_task(rq) - curr->se.exec_start;
5300                 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5301         }
5302         curr->sched_class->task_tick(rq, curr, 0);
5303
5304         calc_load_nohz_remote(rq);
5305 out_unlock:
5306         rq_unlock_irq(rq, &rf);
5307 out_requeue:
5308
5309         /*
5310          * Run the remote tick once per second (1Hz). This arbitrary
5311          * frequency is large enough to avoid overload but short enough
5312          * to keep scheduler internal stats reasonably up to date.  But
5313          * first update state to reflect hotplug activity if required.
5314          */
5315         os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5316         WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5317         if (os == TICK_SCHED_REMOTE_RUNNING)
5318                 queue_delayed_work(system_unbound_wq, dwork, HZ);
5319 }
5320
5321 static void sched_tick_start(int cpu)
5322 {
5323         int os;
5324         struct tick_work *twork;
5325
5326         if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5327                 return;
5328
5329         WARN_ON_ONCE(!tick_work_cpu);
5330
5331         twork = per_cpu_ptr(tick_work_cpu, cpu);
5332         os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5333         WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5334         if (os == TICK_SCHED_REMOTE_OFFLINE) {
5335                 twork->cpu = cpu;
5336                 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5337                 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5338         }
5339 }
5340
5341 #ifdef CONFIG_HOTPLUG_CPU
5342 static void sched_tick_stop(int cpu)
5343 {
5344         struct tick_work *twork;
5345         int os;
5346
5347         if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5348                 return;
5349
5350         WARN_ON_ONCE(!tick_work_cpu);
5351
5352         twork = per_cpu_ptr(tick_work_cpu, cpu);
5353         /* There cannot be competing actions, but don't rely on stop-machine. */
5354         os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5355         WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5356         /* Don't cancel, as this would mess up the state machine. */
5357 }
5358 #endif /* CONFIG_HOTPLUG_CPU */
5359
5360 int __init sched_tick_offload_init(void)
5361 {
5362         tick_work_cpu = alloc_percpu(struct tick_work);
5363         BUG_ON(!tick_work_cpu);
5364         return 0;
5365 }
5366
5367 #else /* !CONFIG_NO_HZ_FULL */
5368 static inline void sched_tick_start(int cpu) { }
5369 static inline void sched_tick_stop(int cpu) { }
5370 #endif
5371
5372 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5373                                 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5374 /*
5375  * If the value passed in is equal to the current preempt count
5376  * then we just disabled preemption. Start timing the latency.
5377  */
5378 static inline void preempt_latency_start(int val)
5379 {
5380         if (preempt_count() == val) {
5381                 unsigned long ip = get_lock_parent_ip();
5382 #ifdef CONFIG_DEBUG_PREEMPT
5383                 current->preempt_disable_ip = ip;
5384 #endif
5385                 trace_preempt_off(CALLER_ADDR0, ip);
5386         }
5387 }
5388
5389 void preempt_count_add(int val)
5390 {
5391 #ifdef CONFIG_DEBUG_PREEMPT
5392         /*
5393          * Underflow?
5394          */
5395         if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5396                 return;
5397 #endif
5398         __preempt_count_add(val);
5399 #ifdef CONFIG_DEBUG_PREEMPT
5400         /*
5401          * Spinlock count overflowing soon?
5402          */
5403         DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5404                                 PREEMPT_MASK - 10);
5405 #endif
5406         preempt_latency_start(val);
5407 }
5408 EXPORT_SYMBOL(preempt_count_add);
5409 NOKPROBE_SYMBOL(preempt_count_add);
5410
5411 /*
5412  * If the value passed in equals to the current preempt count
5413  * then we just enabled preemption. Stop timing the latency.
5414  */
5415 static inline void preempt_latency_stop(int val)
5416 {
5417         if (preempt_count() == val)
5418                 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5419 }
5420
5421 void preempt_count_sub(int val)
5422 {
5423 #ifdef CONFIG_DEBUG_PREEMPT
5424         /*
5425          * Underflow?
5426          */
5427         if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5428                 return;
5429         /*
5430          * Is the spinlock portion underflowing?
5431          */
5432         if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5433                         !(preempt_count() & PREEMPT_MASK)))
5434                 return;
5435 #endif
5436
5437         preempt_latency_stop(val);
5438         __preempt_count_sub(val);
5439 }
5440 EXPORT_SYMBOL(preempt_count_sub);
5441 NOKPROBE_SYMBOL(preempt_count_sub);
5442
5443 #else
5444 static inline void preempt_latency_start(int val) { }
5445 static inline void preempt_latency_stop(int val) { }
5446 #endif
5447
5448 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5449 {
5450 #ifdef CONFIG_DEBUG_PREEMPT
5451         return p->preempt_disable_ip;
5452 #else
5453         return 0;
5454 #endif
5455 }
5456
5457 /*
5458  * Print scheduling while atomic bug:
5459  */
5460 static noinline void __schedule_bug(struct task_struct *prev)
5461 {
5462         /* Save this before calling printk(), since that will clobber it */
5463         unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5464
5465         if (oops_in_progress)
5466                 return;
5467
5468         printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5469                 prev->comm, prev->pid, preempt_count());
5470
5471         debug_show_held_locks(prev);
5472         print_modules();
5473         if (irqs_disabled())
5474                 print_irqtrace_events(prev);
5475         if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5476             && in_atomic_preempt_off()) {
5477                 pr_err("Preemption disabled at:");
5478                 print_ip_sym(KERN_ERR, preempt_disable_ip);
5479         }
5480         if (panic_on_warn)
5481                 panic("scheduling while atomic\n");
5482
5483         dump_stack();
5484         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5485 }
5486
5487 /*
5488  * Various schedule()-time debugging checks and statistics:
5489  */
5490 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5491 {
5492 #ifdef CONFIG_SCHED_STACK_END_CHECK
5493         if (task_stack_end_corrupted(prev))
5494                 panic("corrupted stack end detected inside scheduler\n");
5495
5496         if (task_scs_end_corrupted(prev))
5497                 panic("corrupted shadow stack detected inside scheduler\n");
5498 #endif
5499
5500 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5501         if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5502                 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5503                         prev->comm, prev->pid, prev->non_block_count);
5504                 dump_stack();
5505                 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5506         }
5507 #endif
5508
5509         if (unlikely(in_atomic_preempt_off())) {
5510                 __schedule_bug(prev);
5511                 preempt_count_set(PREEMPT_DISABLED);
5512         }
5513         rcu_sleep_check();
5514         SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5515
5516         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5517
5518         schedstat_inc(this_rq()->sched_count);
5519 }
5520
5521 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5522                                   struct rq_flags *rf)
5523 {
5524 #ifdef CONFIG_SMP
5525         const struct sched_class *class;
5526         /*
5527          * We must do the balancing pass before put_prev_task(), such
5528          * that when we release the rq->lock the task is in the same
5529          * state as before we took rq->lock.
5530          *
5531          * We can terminate the balance pass as soon as we know there is
5532          * a runnable task of @class priority or higher.
5533          */
5534         for_class_range(class, prev->sched_class, &idle_sched_class) {
5535                 if (class->balance(rq, prev, rf))
5536                         break;
5537         }
5538 #endif
5539
5540         put_prev_task(rq, prev);
5541 }
5542
5543 /*
5544  * Pick up the highest-prio task:
5545  */
5546 static inline struct task_struct *
5547 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5548 {
5549         const struct sched_class *class;
5550         struct task_struct *p;
5551
5552         /*
5553          * Optimization: we know that if all tasks are in the fair class we can
5554          * call that function directly, but only if the @prev task wasn't of a
5555          * higher scheduling class, because otherwise those lose the
5556          * opportunity to pull in more work from other CPUs.
5557          */
5558         if (likely(prev->sched_class <= &fair_sched_class &&
5559                    rq->nr_running == rq->cfs.h_nr_running)) {
5560
5561                 p = pick_next_task_fair(rq, prev, rf);
5562                 if (unlikely(p == RETRY_TASK))
5563                         goto restart;
5564
5565                 /* Assume the next prioritized class is idle_sched_class */
5566                 if (!p) {
5567                         put_prev_task(rq, prev);
5568                         p = pick_next_task_idle(rq);
5569                 }
5570
5571                 return p;
5572         }
5573
5574 restart:
5575         put_prev_task_balance(rq, prev, rf);
5576
5577         for_each_class(class) {
5578                 p = class->pick_next_task(rq);
5579                 if (p)
5580                         return p;
5581         }
5582
5583         /* The idle class should always have a runnable task: */
5584         BUG();
5585 }
5586
5587 #ifdef CONFIG_SCHED_CORE
5588 static inline bool is_task_rq_idle(struct task_struct *t)
5589 {
5590         return (task_rq(t)->idle == t);
5591 }
5592
5593 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5594 {
5595         return is_task_rq_idle(a) || (a->core_cookie == cookie);
5596 }
5597
5598 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5599 {
5600         if (is_task_rq_idle(a) || is_task_rq_idle(b))
5601                 return true;
5602
5603         return a->core_cookie == b->core_cookie;
5604 }
5605
5606 // XXX fairness/fwd progress conditions
5607 /*
5608  * Returns
5609  * - NULL if there is no runnable task for this class.
5610  * - the highest priority task for this runqueue if it matches
5611  *   rq->core->core_cookie or its priority is greater than max.
5612  * - Else returns idle_task.
5613  */
5614 static struct task_struct *
5615 pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
5616 {
5617         struct task_struct *class_pick, *cookie_pick;
5618         unsigned long cookie = rq->core->core_cookie;
5619
5620         class_pick = class->pick_task(rq);
5621         if (!class_pick)
5622                 return NULL;
5623
5624         if (!cookie) {
5625                 /*
5626                  * If class_pick is tagged, return it only if it has
5627                  * higher priority than max.
5628                  */
5629                 if (max && class_pick->core_cookie &&
5630                     prio_less(class_pick, max, in_fi))
5631                         return idle_sched_class.pick_task(rq);
5632
5633                 return class_pick;
5634         }
5635
5636         /*
5637          * If class_pick is idle or matches cookie, return early.
5638          */
5639         if (cookie_equals(class_pick, cookie))
5640                 return class_pick;
5641
5642         cookie_pick = sched_core_find(rq, cookie);
5643
5644         /*
5645          * If class > max && class > cookie, it is the highest priority task on
5646          * the core (so far) and it must be selected, otherwise we must go with
5647          * the cookie pick in order to satisfy the constraint.
5648          */
5649         if (prio_less(cookie_pick, class_pick, in_fi) &&
5650             (!max || prio_less(max, class_pick, in_fi)))
5651                 return class_pick;
5652
5653         return cookie_pick;
5654 }
5655
5656 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5657
5658 static struct task_struct *
5659 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5660 {
5661         struct task_struct *next, *max = NULL;
5662         const struct sched_class *class;
5663         const struct cpumask *smt_mask;
5664         bool fi_before = false;
5665         int i, j, cpu, occ = 0;
5666         bool need_sync;
5667
5668         if (!sched_core_enabled(rq))
5669                 return __pick_next_task(rq, prev, rf);
5670
5671         cpu = cpu_of(rq);
5672
5673         /* Stopper task is switching into idle, no need core-wide selection. */
5674         if (cpu_is_offline(cpu)) {
5675                 /*
5676                  * Reset core_pick so that we don't enter the fastpath when
5677                  * coming online. core_pick would already be migrated to
5678                  * another cpu during offline.
5679                  */
5680                 rq->core_pick = NULL;
5681                 return __pick_next_task(rq, prev, rf);
5682         }
5683
5684         /*
5685          * If there were no {en,de}queues since we picked (IOW, the task
5686          * pointers are all still valid), and we haven't scheduled the last
5687          * pick yet, do so now.
5688          *
5689          * rq->core_pick can be NULL if no selection was made for a CPU because
5690          * it was either offline or went offline during a sibling's core-wide
5691          * selection. In this case, do a core-wide selection.
5692          */
5693         if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5694             rq->core->core_pick_seq != rq->core_sched_seq &&
5695             rq->core_pick) {
5696                 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5697
5698                 next = rq->core_pick;
5699                 if (next != prev) {
5700                         put_prev_task(rq, prev);
5701                         set_next_task(rq, next);
5702                 }
5703
5704                 rq->core_pick = NULL;
5705                 return next;
5706         }
5707
5708         put_prev_task_balance(rq, prev, rf);
5709
5710         smt_mask = cpu_smt_mask(cpu);
5711         need_sync = !!rq->core->core_cookie;
5712
5713         /* reset state */
5714         rq->core->core_cookie = 0UL;
5715         if (rq->core->core_forceidle) {
5716                 need_sync = true;
5717                 fi_before = true;
5718                 rq->core->core_forceidle = false;
5719         }
5720
5721         /*
5722          * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5723          *
5724          * @task_seq guards the task state ({en,de}queues)
5725          * @pick_seq is the @task_seq we did a selection on
5726          * @sched_seq is the @pick_seq we scheduled
5727          *
5728          * However, preemptions can cause multiple picks on the same task set.
5729          * 'Fix' this by also increasing @task_seq for every pick.
5730          */
5731         rq->core->core_task_seq++;
5732
5733         /*
5734          * Optimize for common case where this CPU has no cookies
5735          * and there are no cookied tasks running on siblings.
5736          */
5737         if (!need_sync) {
5738                 for_each_class(class) {
5739                         next = class->pick_task(rq);
5740                         if (next)
5741                                 break;
5742                 }
5743
5744                 if (!next->core_cookie) {
5745                         rq->core_pick = NULL;
5746                         /*
5747                          * For robustness, update the min_vruntime_fi for
5748                          * unconstrained picks as well.
5749                          */
5750                         WARN_ON_ONCE(fi_before);
5751                         task_vruntime_update(rq, next, false);
5752                         goto done;
5753                 }
5754         }
5755
5756         for_each_cpu(i, smt_mask) {
5757                 struct rq *rq_i = cpu_rq(i);
5758
5759                 rq_i->core_pick = NULL;
5760
5761                 if (i != cpu)
5762                         update_rq_clock(rq_i);
5763         }
5764
5765         /*
5766          * Try and select tasks for each sibling in descending sched_class
5767          * order.
5768          */
5769         for_each_class(class) {
5770 again:
5771                 for_each_cpu_wrap(i, smt_mask, cpu) {
5772                         struct rq *rq_i = cpu_rq(i);
5773                         struct task_struct *p;
5774
5775                         if (rq_i->core_pick)
5776                                 continue;
5777
5778                         /*
5779                          * If this sibling doesn't yet have a suitable task to
5780                          * run; ask for the most eligible task, given the
5781                          * highest priority task already selected for this
5782                          * core.
5783                          */
5784                         p = pick_task(rq_i, class, max, fi_before);
5785                         if (!p)
5786                                 continue;
5787
5788                         if (!is_task_rq_idle(p))
5789                                 occ++;
5790
5791                         rq_i->core_pick = p;
5792                         if (rq_i->idle == p && rq_i->nr_running) {
5793                                 rq->core->core_forceidle = true;
5794                                 if (!fi_before)
5795                                         rq->core->core_forceidle_seq++;
5796                         }
5797
5798                         /*
5799                          * If this new candidate is of higher priority than the
5800                          * previous; and they're incompatible; we need to wipe
5801                          * the slate and start over. pick_task makes sure that
5802                          * p's priority is more than max if it doesn't match
5803                          * max's cookie.
5804                          *
5805                          * NOTE: this is a linear max-filter and is thus bounded
5806                          * in execution time.
5807                          */
5808                         if (!max || !cookie_match(max, p)) {
5809                                 struct task_struct *old_max = max;
5810
5811                                 rq->core->core_cookie = p->core_cookie;
5812                                 max = p;
5813
5814                                 if (old_max) {
5815                                         rq->core->core_forceidle = false;
5816                                         for_each_cpu(j, smt_mask) {
5817                                                 if (j == i)
5818                                                         continue;
5819
5820                                                 cpu_rq(j)->core_pick = NULL;
5821                                         }
5822                                         occ = 1;
5823                                         goto again;
5824                                 }
5825                         }
5826                 }
5827         }
5828
5829         rq->core->core_pick_seq = rq->core->core_task_seq;
5830         next = rq->core_pick;
5831         rq->core_sched_seq = rq->core->core_pick_seq;
5832
5833         /* Something should have been selected for current CPU */
5834         WARN_ON_ONCE(!next);
5835
5836         /*
5837          * Reschedule siblings
5838          *
5839          * NOTE: L1TF -- at this point we're no longer running the old task and
5840          * sending an IPI (below) ensures the sibling will no longer be running
5841          * their task. This ensures there is no inter-sibling overlap between
5842          * non-matching user state.
5843          */
5844         for_each_cpu(i, smt_mask) {
5845                 struct rq *rq_i = cpu_rq(i);
5846
5847                 /*
5848                  * An online sibling might have gone offline before a task
5849                  * could be picked for it, or it might be offline but later
5850                  * happen to come online, but its too late and nothing was
5851                  * picked for it.  That's Ok - it will pick tasks for itself,
5852                  * so ignore it.
5853                  */
5854                 if (!rq_i->core_pick)
5855                         continue;
5856
5857                 /*
5858                  * Update for new !FI->FI transitions, or if continuing to be in !FI:
5859                  * fi_before     fi      update?
5860                  *  0            0       1
5861                  *  0            1       1
5862                  *  1            0       1
5863                  *  1            1       0
5864                  */
5865                 if (!(fi_before && rq->core->core_forceidle))
5866                         task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
5867
5868                 rq_i->core_pick->core_occupation = occ;
5869
5870                 if (i == cpu) {
5871                         rq_i->core_pick = NULL;
5872                         continue;
5873                 }
5874
5875                 /* Did we break L1TF mitigation requirements? */
5876                 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5877
5878                 if (rq_i->curr == rq_i->core_pick) {
5879                         rq_i->core_pick = NULL;
5880                         continue;
5881                 }
5882
5883                 resched_curr(rq_i);
5884         }
5885
5886 done:
5887         set_next_task(rq, next);
5888         return next;
5889 }
5890
5891 static bool try_steal_cookie(int this, int that)
5892 {
5893         struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5894         struct task_struct *p;
5895         unsigned long cookie;
5896         bool success = false;
5897
5898         local_irq_disable();
5899         double_rq_lock(dst, src);
5900
5901         cookie = dst->core->core_cookie;
5902         if (!cookie)
5903                 goto unlock;
5904
5905         if (dst->curr != dst->idle)
5906                 goto unlock;
5907
5908         p = sched_core_find(src, cookie);
5909         if (p == src->idle)
5910                 goto unlock;
5911
5912         do {
5913                 if (p == src->core_pick || p == src->curr)
5914                         goto next;
5915
5916                 if (!cpumask_test_cpu(this, &p->cpus_mask))
5917                         goto next;
5918
5919                 if (p->core_occupation > dst->idle->core_occupation)
5920                         goto next;
5921
5922                 deactivate_task(src, p, 0);
5923                 set_task_cpu(p, this);
5924                 activate_task(dst, p, 0);
5925
5926                 resched_curr(dst);
5927
5928                 success = true;
5929                 break;
5930
5931 next:
5932                 p = sched_core_next(p, cookie);
5933         } while (p);
5934
5935 unlock:
5936         double_rq_unlock(dst, src);
5937         local_irq_enable();
5938
5939         return success;
5940 }
5941
5942 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5943 {
5944         int i;
5945
5946         for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5947                 if (i == cpu)
5948                         continue;
5949
5950                 if (need_resched())
5951                         break;
5952
5953                 if (try_steal_cookie(cpu, i))
5954                         return true;
5955         }
5956
5957         return false;
5958 }
5959
5960 static void sched_core_balance(struct rq *rq)
5961 {
5962         struct sched_domain *sd;
5963         int cpu = cpu_of(rq);
5964
5965         preempt_disable();
5966         rcu_read_lock();
5967         raw_spin_rq_unlock_irq(rq);
5968         for_each_domain(cpu, sd) {
5969                 if (need_resched())
5970                         break;
5971
5972                 if (steal_cookie_task(cpu, sd))
5973                         break;
5974         }
5975         raw_spin_rq_lock_irq(rq);
5976         rcu_read_unlock();
5977         preempt_enable();
5978 }
5979
5980 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5981
5982 void queue_core_balance(struct rq *rq)
5983 {
5984         if (!sched_core_enabled(rq))
5985                 return;
5986
5987         if (!rq->core->core_cookie)
5988                 return;
5989
5990         if (!rq->nr_running) /* not forced idle */
5991                 return;
5992
5993         queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5994 }
5995
5996 static void sched_core_cpu_starting(unsigned int cpu)
5997 {
5998         const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5999         struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6000         unsigned long flags;
6001         int t;
6002
6003         sched_core_lock(cpu, &flags);
6004
6005         WARN_ON_ONCE(rq->core != rq);
6006
6007         /* if we're the first, we'll be our own leader */
6008         if (cpumask_weight(smt_mask) == 1)
6009                 goto unlock;
6010
6011         /* find the leader */
6012         for_each_cpu(t, smt_mask) {
6013                 if (t == cpu)
6014                         continue;
6015                 rq = cpu_rq(t);
6016                 if (rq->core == rq) {
6017                         core_rq = rq;
6018                         break;
6019                 }
6020         }
6021
6022         if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6023                 goto unlock;
6024
6025         /* install and validate core_rq */
6026         for_each_cpu(t, smt_mask) {
6027                 rq = cpu_rq(t);
6028
6029                 if (t == cpu)
6030                         rq->core = core_rq;
6031
6032                 WARN_ON_ONCE(rq->core != core_rq);
6033         }
6034
6035 unlock:
6036         sched_core_unlock(cpu, &flags);
6037 }
6038
6039 static void sched_core_cpu_deactivate(unsigned int cpu)
6040 {
6041         const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6042         struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6043         unsigned long flags;
6044         int t;
6045
6046         sched_core_lock(cpu, &flags);
6047
6048         /* if we're the last man standing, nothing to do */
6049         if (cpumask_weight(smt_mask) == 1) {
6050                 WARN_ON_ONCE(rq->core != rq);
6051                 goto unlock;
6052         }
6053
6054         /* if we're not the leader, nothing to do */
6055         if (rq->core != rq)
6056                 goto unlock;
6057
6058         /* find a new leader */
6059         for_each_cpu(t, smt_mask) {
6060                 if (t == cpu)
6061                         continue;
6062                 core_rq = cpu_rq(t);
6063                 break;
6064         }
6065
6066         if (WARN_ON_ONCE(!core_rq)) /* impossible */
6067                 goto unlock;
6068
6069         /* copy the shared state to the new leader */
6070         core_rq->core_task_seq      = rq->core_task_seq;
6071         core_rq->core_pick_seq      = rq->core_pick_seq;
6072         core_rq->core_cookie        = rq->core_cookie;
6073         core_rq->core_forceidle     = rq->core_forceidle;
6074         core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6075
6076         /* install new leader */
6077         for_each_cpu(t, smt_mask) {
6078                 rq = cpu_rq(t);
6079                 rq->core = core_rq;
6080         }
6081
6082 unlock:
6083         sched_core_unlock(cpu, &flags);
6084 }
6085
6086 static inline void sched_core_cpu_dying(unsigned int cpu)
6087 {
6088         struct rq *rq = cpu_rq(cpu);
6089
6090         if (rq->core != rq)
6091                 rq->core = rq;
6092 }
6093
6094 #else /* !CONFIG_SCHED_CORE */
6095
6096 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6097 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6098 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6099
6100 static struct task_struct *
6101 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6102 {
6103         return __pick_next_task(rq, prev, rf);
6104 }
6105
6106 #endif /* CONFIG_SCHED_CORE */
6107
6108 /*
6109  * Constants for the sched_mode argument of __schedule().
6110  *
6111  * The mode argument allows RT enabled kernels to differentiate a
6112  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6113  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6114  * optimize the AND operation out and just check for zero.
6115  */
6116 #define SM_NONE                 0x0
6117 #define SM_PREEMPT              0x1
6118 #define SM_RTLOCK_WAIT          0x2
6119
6120 #ifndef CONFIG_PREEMPT_RT
6121 # define SM_MASK_PREEMPT        (~0U)
6122 #else
6123 # define SM_MASK_PREEMPT        SM_PREEMPT
6124 #endif
6125
6126 /*
6127  * __schedule() is the main scheduler function.
6128  *
6129  * The main means of driving the scheduler and thus entering this function are:
6130  *
6131  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6132  *
6133  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6134  *      paths. For example, see arch/x86/entry_64.S.
6135  *
6136  *      To drive preemption between tasks, the scheduler sets the flag in timer
6137  *      interrupt handler scheduler_tick().
6138  *
6139  *   3. Wakeups don't really cause entry into schedule(). They add a
6140  *      task to the run-queue and that's it.
6141  *
6142  *      Now, if the new task added to the run-queue preempts the current
6143  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6144  *      called on the nearest possible occasion:
6145  *
6146  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6147  *
6148  *         - in syscall or exception context, at the next outmost
6149  *           preempt_enable(). (this might be as soon as the wake_up()'s
6150  *           spin_unlock()!)
6151  *
6152  *         - in IRQ context, return from interrupt-handler to
6153  *           preemptible context
6154  *
6155  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6156  *         then at the next:
6157  *
6158  *          - cond_resched() call
6159  *          - explicit schedule() call
6160  *          - return from syscall or exception to user-space
6161  *          - return from interrupt-handler to user-space
6162  *
6163  * WARNING: must be called with preemption disabled!
6164  */
6165 static void __sched notrace __schedule(unsigned int sched_mode)
6166 {
6167         struct task_struct *prev, *next;
6168         unsigned long *switch_count;
6169         unsigned long prev_state;
6170         struct rq_flags rf;
6171         struct rq *rq;
6172         int cpu;
6173
6174         cpu = smp_processor_id();
6175         rq = cpu_rq(cpu);
6176         prev = rq->curr;
6177
6178         schedule_debug(prev, !!sched_mode);
6179
6180         if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6181                 hrtick_clear(rq);
6182
6183         local_irq_disable();
6184         rcu_note_context_switch(!!sched_mode);
6185
6186         /*
6187          * Make sure that signal_pending_state()->signal_pending() below
6188          * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6189          * done by the caller to avoid the race with signal_wake_up():
6190          *
6191          * __set_current_state(@state)          signal_wake_up()
6192          * schedule()                             set_tsk_thread_flag(p, TIF_SIGPENDING)
6193          *                                        wake_up_state(p, state)
6194          *   LOCK rq->lock                          LOCK p->pi_state
6195          *   smp_mb__after_spinlock()               smp_mb__after_spinlock()
6196          *     if (signal_pending_state())          if (p->state & @state)
6197          *
6198          * Also, the membarrier system call requires a full memory barrier
6199          * after coming from user-space, before storing to rq->curr.
6200          */
6201         rq_lock(rq, &rf);
6202         smp_mb__after_spinlock();
6203
6204         /* Promote REQ to ACT */
6205         rq->clock_update_flags <<= 1;
6206         update_rq_clock(rq);
6207
6208         switch_count = &prev->nivcsw;
6209
6210         /*
6211          * We must load prev->state once (task_struct::state is volatile), such
6212          * that:
6213          *
6214          *  - we form a control dependency vs deactivate_task() below.
6215          *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
6216          */
6217         prev_state = READ_ONCE(prev->__state);
6218         if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6219                 if (signal_pending_state(prev_state, prev)) {
6220                         WRITE_ONCE(prev->__state, TASK_RUNNING);
6221                 } else {
6222                         prev->sched_contributes_to_load =
6223                                 (prev_state & TASK_UNINTERRUPTIBLE) &&
6224                                 !(prev_state & TASK_NOLOAD) &&
6225                                 !(prev->flags & PF_FROZEN);
6226
6227                         if (prev->sched_contributes_to_load)
6228                                 rq->nr_uninterruptible++;
6229
6230                         /*
6231                          * __schedule()                 ttwu()
6232                          *   prev_state = prev->state;    if (p->on_rq && ...)
6233                          *   if (prev_state)                goto out;
6234                          *     p->on_rq = 0;              smp_acquire__after_ctrl_dep();
6235                          *                                p->state = TASK_WAKING
6236                          *
6237                          * Where __schedule() and ttwu() have matching control dependencies.
6238                          *
6239                          * After this, schedule() must not care about p->state any more.
6240                          */
6241                         deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6242
6243                         if (prev->in_iowait) {
6244                                 atomic_inc(&rq->nr_iowait);
6245                                 delayacct_blkio_start();
6246                         }
6247                 }
6248                 switch_count = &prev->nvcsw;
6249         }
6250
6251         next = pick_next_task(rq, prev, &rf);
6252         clear_tsk_need_resched(prev);
6253         clear_preempt_need_resched();
6254 #ifdef CONFIG_SCHED_DEBUG
6255         rq->last_seen_need_resched_ns = 0;
6256 #endif
6257
6258         if (likely(prev != next)) {
6259                 rq->nr_switches++;
6260                 /*
6261                  * RCU users of rcu_dereference(rq->curr) may not see
6262                  * changes to task_struct made by pick_next_task().
6263                  */
6264                 RCU_INIT_POINTER(rq->curr, next);
6265                 /*
6266                  * The membarrier system call requires each architecture
6267                  * to have a full memory barrier after updating
6268                  * rq->curr, before returning to user-space.
6269                  *
6270                  * Here are the schemes providing that barrier on the
6271                  * various architectures:
6272                  * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6273                  *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6274                  * - finish_lock_switch() for weakly-ordered
6275                  *   architectures where spin_unlock is a full barrier,
6276                  * - switch_to() for arm64 (weakly-ordered, spin_unlock
6277                  *   is a RELEASE barrier),
6278                  */
6279                 ++*switch_count;
6280
6281                 migrate_disable_switch(rq, prev);
6282                 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6283
6284                 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next);
6285
6286                 /* Also unlocks the rq: */
6287                 rq = context_switch(rq, prev, next, &rf);
6288         } else {
6289                 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6290
6291                 rq_unpin_lock(rq, &rf);
6292                 __balance_callbacks(rq);
6293                 raw_spin_rq_unlock_irq(rq);
6294         }
6295 }
6296
6297 void __noreturn do_task_dead(void)
6298 {
6299         /* Causes final put_task_struct in finish_task_switch(): */
6300         set_special_state(TASK_DEAD);
6301
6302         /* Tell freezer to ignore us: */
6303         current->flags |= PF_NOFREEZE;
6304
6305         __schedule(SM_NONE);
6306         BUG();
6307
6308         /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6309         for (;;)
6310                 cpu_relax();
6311 }
6312
6313 static inline void sched_submit_work(struct task_struct *tsk)
6314 {
6315         unsigned int task_flags;
6316
6317         if (task_is_running(tsk))
6318                 return;
6319
6320         task_flags = tsk->flags;
6321         /*
6322          * If a worker went to sleep, notify and ask workqueue whether
6323          * it wants to wake up a task to maintain concurrency.
6324          * As this function is called inside the schedule() context,
6325          * we disable preemption to avoid it calling schedule() again
6326          * in the possible wakeup of a kworker and because wq_worker_sleeping()
6327          * requires it.
6328          */
6329         if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6330                 preempt_disable();
6331                 if (task_flags & PF_WQ_WORKER)
6332                         wq_worker_sleeping(tsk);
6333                 else
6334                         io_wq_worker_sleeping(tsk);
6335                 preempt_enable_no_resched();
6336         }
6337
6338         if (tsk_is_pi_blocked(tsk))
6339                 return;
6340
6341         /*
6342          * If we are going to sleep and we have plugged IO queued,
6343          * make sure to submit it to avoid deadlocks.
6344          */
6345         if (blk_needs_flush_plug(tsk))
6346                 blk_schedule_flush_plug(tsk);
6347 }
6348
6349 static void sched_update_worker(struct task_struct *tsk)
6350 {
6351         if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6352                 if (tsk->flags & PF_WQ_WORKER)
6353                         wq_worker_running(tsk);
6354                 else
6355                         io_wq_worker_running(tsk);
6356         }
6357 }
6358
6359 asmlinkage __visible void __sched schedule(void)
6360 {
6361         struct task_struct *tsk = current;
6362
6363         sched_submit_work(tsk);
6364         do {
6365                 preempt_disable();
6366                 __schedule(SM_NONE);
6367                 sched_preempt_enable_no_resched();
6368         } while (need_resched());
6369         sched_update_worker(tsk);
6370 }
6371 EXPORT_SYMBOL(schedule);
6372
6373 /*
6374  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6375  * state (have scheduled out non-voluntarily) by making sure that all
6376  * tasks have either left the run queue or have gone into user space.
6377  * As idle tasks do not do either, they must not ever be preempted
6378  * (schedule out non-voluntarily).
6379  *
6380  * schedule_idle() is similar to schedule_preempt_disable() except that it
6381  * never enables preemption because it does not call sched_submit_work().
6382  */
6383 void __sched schedule_idle(void)
6384 {
6385         /*
6386          * As this skips calling sched_submit_work(), which the idle task does
6387          * regardless because that function is a nop when the task is in a
6388          * TASK_RUNNING state, make sure this isn't used someplace that the
6389          * current task can be in any other state. Note, idle is always in the
6390          * TASK_RUNNING state.
6391          */
6392         WARN_ON_ONCE(current->__state);
6393         do {
6394                 __schedule(SM_NONE);
6395         } while (need_resched());
6396 }
6397
6398 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6399 asmlinkage __visible void __sched schedule_user(void)
6400 {
6401         /*
6402          * If we come here after a random call to set_need_resched(),
6403          * or we have been woken up remotely but the IPI has not yet arrived,
6404          * we haven't yet exited the RCU idle mode. Do it here manually until
6405          * we find a better solution.
6406          *
6407          * NB: There are buggy callers of this function.  Ideally we
6408          * should warn if prev_state != CONTEXT_USER, but that will trigger
6409          * too frequently to make sense yet.
6410          */
6411         enum ctx_state prev_state = exception_enter();
6412         schedule();
6413         exception_exit(prev_state);
6414 }
6415 #endif
6416
6417 /**
6418  * schedule_preempt_disabled - called with preemption disabled
6419  *
6420  * Returns with preemption disabled. Note: preempt_count must be 1
6421  */
6422 void __sched schedule_preempt_disabled(void)
6423 {
6424         sched_preempt_enable_no_resched();
6425         schedule();
6426         preempt_disable();
6427 }
6428
6429 #ifdef CONFIG_PREEMPT_RT
6430 void __sched notrace schedule_rtlock(void)
6431 {
6432         do {
6433                 preempt_disable();
6434                 __schedule(SM_RTLOCK_WAIT);
6435                 sched_preempt_enable_no_resched();
6436         } while (need_resched());
6437 }
6438 NOKPROBE_SYMBOL(schedule_rtlock);
6439 #endif
6440
6441 static void __sched notrace preempt_schedule_common(void)
6442 {
6443         do {
6444                 /*
6445                  * Because the function tracer can trace preempt_count_sub()
6446                  * and it also uses preempt_enable/disable_notrace(), if
6447                  * NEED_RESCHED is set, the preempt_enable_notrace() called
6448                  * by the function tracer will call this function again and
6449                  * cause infinite recursion.
6450                  *
6451                  * Preemption must be disabled here before the function
6452                  * tracer can trace. Break up preempt_disable() into two
6453                  * calls. One to disable preemption without fear of being
6454                  * traced. The other to still record the preemption latency,
6455                  * which can also be traced by the function tracer.
6456                  */
6457                 preempt_disable_notrace();
6458                 preempt_latency_start(1);
6459                 __schedule(SM_PREEMPT);
6460                 preempt_latency_stop(1);
6461                 preempt_enable_no_resched_notrace();
6462
6463                 /*
6464                  * Check again in case we missed a preemption opportunity
6465                  * between schedule and now.
6466                  */
6467         } while (need_resched());
6468 }
6469
6470 #ifdef CONFIG_PREEMPTION
6471 /*
6472  * This is the entry point to schedule() from in-kernel preemption
6473  * off of preempt_enable.
6474  */
6475 asmlinkage __visible void __sched notrace preempt_schedule(void)
6476 {
6477         /*
6478          * If there is a non-zero preempt_count or interrupts are disabled,
6479          * we do not want to preempt the current task. Just return..
6480          */
6481         if (likely(!preemptible()))
6482                 return;
6483
6484         preempt_schedule_common();
6485 }
6486 NOKPROBE_SYMBOL(preempt_schedule);
6487 EXPORT_SYMBOL(preempt_schedule);
6488
6489 #ifdef CONFIG_PREEMPT_DYNAMIC
6490 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6491 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6492 #endif
6493
6494
6495 /**
6496  * preempt_schedule_notrace - preempt_schedule called by tracing
6497  *
6498  * The tracing infrastructure uses preempt_enable_notrace to prevent
6499  * recursion and tracing preempt enabling caused by the tracing
6500  * infrastructure itself. But as tracing can happen in areas coming
6501  * from userspace or just about to enter userspace, a preempt enable
6502  * can occur before user_exit() is called. This will cause the scheduler
6503  * to be called when the system is still in usermode.
6504  *
6505  * To prevent this, the preempt_enable_notrace will use this function
6506  * instead of preempt_schedule() to exit user context if needed before
6507  * calling the scheduler.
6508  */
6509 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6510 {
6511         enum ctx_state prev_ctx;
6512
6513         if (likely(!preemptible()))
6514                 return;
6515
6516         do {
6517                 /*
6518                  * Because the function tracer can trace preempt_count_sub()
6519                  * and it also uses preempt_enable/disable_notrace(), if
6520                  * NEED_RESCHED is set, the preempt_enable_notrace() called
6521                  * by the function tracer will call this function again and
6522                  * cause infinite recursion.
6523                  *
6524                  * Preemption must be disabled here before the function
6525                  * tracer can trace. Break up preempt_disable() into two
6526                  * calls. One to disable preemption without fear of being
6527                  * traced. The other to still record the preemption latency,
6528                  * which can also be traced by the function tracer.
6529                  */
6530                 preempt_disable_notrace();
6531                 preempt_latency_start(1);
6532                 /*
6533                  * Needs preempt disabled in case user_exit() is traced
6534                  * and the tracer calls preempt_enable_notrace() causing
6535                  * an infinite recursion.
6536                  */
6537                 prev_ctx = exception_enter();
6538                 __schedule(SM_PREEMPT);
6539                 exception_exit(prev_ctx);
6540
6541                 preempt_latency_stop(1);
6542                 preempt_enable_no_resched_notrace();
6543         } while (need_resched());
6544 }
6545 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6546
6547 #ifdef CONFIG_PREEMPT_DYNAMIC
6548 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6549 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6550 #endif
6551
6552 #endif /* CONFIG_PREEMPTION */
6553
6554 #ifdef CONFIG_PREEMPT_DYNAMIC
6555
6556 #include <linux/entry-common.h>
6557
6558 /*
6559  * SC:cond_resched
6560  * SC:might_resched
6561  * SC:preempt_schedule
6562  * SC:preempt_schedule_notrace
6563  * SC:irqentry_exit_cond_resched
6564  *
6565  *
6566  * NONE:
6567  *   cond_resched               <- __cond_resched
6568  *   might_resched              <- RET0
6569  *   preempt_schedule           <- NOP
6570  *   preempt_schedule_notrace   <- NOP
6571  *   irqentry_exit_cond_resched <- NOP
6572  *
6573  * VOLUNTARY:
6574  *   cond_resched               <- __cond_resched
6575  *   might_resched              <- __cond_resched
6576  *   preempt_schedule           <- NOP
6577  *   preempt_schedule_notrace   <- NOP
6578  *   irqentry_exit_cond_resched <- NOP
6579  *
6580  * FULL:
6581  *   cond_resched               <- RET0
6582  *   might_resched              <- RET0
6583  *   preempt_schedule           <- preempt_schedule
6584  *   preempt_schedule_notrace   <- preempt_schedule_notrace
6585  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6586  */
6587
6588 enum {
6589         preempt_dynamic_none = 0,
6590         preempt_dynamic_voluntary,
6591         preempt_dynamic_full,
6592 };
6593
6594 int preempt_dynamic_mode = preempt_dynamic_full;
6595
6596 int sched_dynamic_mode(const char *str)
6597 {
6598         if (!strcmp(str, "none"))
6599                 return preempt_dynamic_none;
6600
6601         if (!strcmp(str, "voluntary"))
6602                 return preempt_dynamic_voluntary;
6603
6604         if (!strcmp(str, "full"))
6605                 return preempt_dynamic_full;
6606
6607         return -EINVAL;
6608 }
6609
6610 void sched_dynamic_update(int mode)
6611 {
6612         /*
6613          * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6614          * the ZERO state, which is invalid.
6615          */
6616         static_call_update(cond_resched, __cond_resched);
6617         static_call_update(might_resched, __cond_resched);
6618         static_call_update(preempt_schedule, __preempt_schedule_func);
6619         static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6620         static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6621
6622         switch (mode) {
6623         case preempt_dynamic_none:
6624                 static_call_update(cond_resched, __cond_resched);
6625                 static_call_update(might_resched, (void *)&__static_call_return0);
6626                 static_call_update(preempt_schedule, NULL);
6627                 static_call_update(preempt_schedule_notrace, NULL);
6628                 static_call_update(irqentry_exit_cond_resched, NULL);
6629                 pr_info("Dynamic Preempt: none\n");
6630                 break;
6631
6632         case preempt_dynamic_voluntary:
6633                 static_call_update(cond_resched, __cond_resched);
6634                 static_call_update(might_resched, __cond_resched);
6635                 static_call_update(preempt_schedule, NULL);
6636                 static_call_update(preempt_schedule_notrace, NULL);
6637                 static_call_update(irqentry_exit_cond_resched, NULL);
6638                 pr_info("Dynamic Preempt: voluntary\n");
6639                 break;
6640
6641         case preempt_dynamic_full:
6642                 static_call_update(cond_resched, (void *)&__static_call_return0);
6643                 static_call_update(might_resched, (void *)&__static_call_return0);
6644                 static_call_update(preempt_schedule, __preempt_schedule_func);
6645                 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6646                 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6647                 pr_info("Dynamic Preempt: full\n");
6648                 break;
6649         }
6650
6651         preempt_dynamic_mode = mode;
6652 }
6653
6654 static int __init setup_preempt_mode(char *str)
6655 {
6656         int mode = sched_dynamic_mode(str);
6657         if (mode < 0) {
6658                 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6659                 return 1;
6660         }
6661
6662         sched_dynamic_update(mode);
6663         return 0;
6664 }
6665 __setup("preempt=", setup_preempt_mode);
6666
6667 #endif /* CONFIG_PREEMPT_DYNAMIC */
6668
6669 /*
6670  * This is the entry point to schedule() from kernel preemption
6671  * off of irq context.
6672  * Note, that this is called and return with irqs disabled. This will
6673  * protect us against recursive calling from irq.
6674  */
6675 asmlinkage __visible void __sched preempt_schedule_irq(void)
6676 {
6677         enum ctx_state prev_state;
6678
6679         /* Catch callers which need to be fixed */
6680         BUG_ON(preempt_count() || !irqs_disabled());
6681
6682         prev_state = exception_enter();
6683
6684         do {
6685                 preempt_disable();
6686                 local_irq_enable();
6687                 __schedule(SM_PREEMPT);
6688                 local_irq_disable();
6689                 sched_preempt_enable_no_resched();
6690         } while (need_resched());
6691
6692         exception_exit(prev_state);
6693 }
6694
6695 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6696                           void *key)
6697 {
6698         WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6699         return try_to_wake_up(curr->private, mode, wake_flags);
6700 }
6701 EXPORT_SYMBOL(default_wake_function);
6702
6703 static void __setscheduler_prio(struct task_struct *p, int prio)
6704 {
6705         if (dl_prio(prio))
6706                 p->sched_class = &dl_sched_class;
6707         else if (rt_prio(prio))
6708                 p->sched_class = &rt_sched_class;
6709         else
6710                 p->sched_class = &fair_sched_class;
6711
6712         p->prio = prio;
6713 }
6714
6715 #ifdef CONFIG_RT_MUTEXES
6716
6717 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6718 {
6719         if (pi_task)
6720                 prio = min(prio, pi_task->prio);
6721
6722         return prio;
6723 }
6724
6725 static inline int rt_effective_prio(struct task_struct *p, int prio)
6726 {
6727         struct task_struct *pi_task = rt_mutex_get_top_task(p);
6728
6729         return __rt_effective_prio(pi_task, prio);
6730 }
6731
6732 /*
6733  * rt_mutex_setprio - set the current priority of a task
6734  * @p: task to boost
6735  * @pi_task: donor task
6736  *
6737  * This function changes the 'effective' priority of a task. It does
6738  * not touch ->normal_prio like __setscheduler().
6739  *
6740  * Used by the rt_mutex code to implement priority inheritance
6741  * logic. Call site only calls if the priority of the task changed.
6742  */
6743 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6744 {
6745         int prio, oldprio, queued, running, queue_flag =
6746                 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6747         const struct sched_class *prev_class;
6748         struct rq_flags rf;
6749         struct rq *rq;
6750
6751         /* XXX used to be waiter->prio, not waiter->task->prio */
6752         prio = __rt_effective_prio(pi_task, p->normal_prio);
6753
6754         /*
6755          * If nothing changed; bail early.
6756          */
6757         if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6758                 return;
6759
6760         rq = __task_rq_lock(p, &rf);
6761         update_rq_clock(rq);
6762         /*
6763          * Set under pi_lock && rq->lock, such that the value can be used under
6764          * either lock.
6765          *
6766          * Note that there is loads of tricky to make this pointer cache work
6767          * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6768          * ensure a task is de-boosted (pi_task is set to NULL) before the
6769          * task is allowed to run again (and can exit). This ensures the pointer
6770          * points to a blocked task -- which guarantees the task is present.
6771          */
6772         p->pi_top_task = pi_task;
6773
6774         /*
6775          * For FIFO/RR we only need to set prio, if that matches we're done.
6776          */
6777         if (prio == p->prio && !dl_prio(prio))
6778                 goto out_unlock;
6779
6780         /*
6781          * Idle task boosting is a nono in general. There is one
6782          * exception, when PREEMPT_RT and NOHZ is active:
6783          *
6784          * The idle task calls get_next_timer_interrupt() and holds
6785          * the timer wheel base->lock on the CPU and another CPU wants
6786          * to access the timer (probably to cancel it). We can safely
6787          * ignore the boosting request, as the idle CPU runs this code
6788          * with interrupts disabled and will complete the lock
6789          * protected section without being interrupted. So there is no
6790          * real need to boost.
6791          */
6792         if (unlikely(p == rq->idle)) {
6793                 WARN_ON(p != rq->curr);
6794                 WARN_ON(p->pi_blocked_on);
6795                 goto out_unlock;
6796         }
6797
6798         trace_sched_pi_setprio(p, pi_task);
6799         oldprio = p->prio;
6800
6801         if (oldprio == prio)
6802                 queue_flag &= ~DEQUEUE_MOVE;
6803
6804         prev_class = p->sched_class;
6805         queued = task_on_rq_queued(p);
6806         running = task_current(rq, p);
6807         if (queued)
6808                 dequeue_task(rq, p, queue_flag);
6809         if (running)
6810                 put_prev_task(rq, p);
6811
6812         /*
6813          * Boosting condition are:
6814          * 1. -rt task is running and holds mutex A
6815          *      --> -dl task blocks on mutex A
6816          *
6817          * 2. -dl task is running and holds mutex A
6818          *      --> -dl task blocks on mutex A and could preempt the
6819          *          running task
6820          */
6821         if (dl_prio(prio)) {
6822                 if (!dl_prio(p->normal_prio) ||
6823                     (pi_task && dl_prio(pi_task->prio) &&
6824                      dl_entity_preempt(&pi_task->dl, &p->dl))) {
6825                         p->dl.pi_se = pi_task->dl.pi_se;
6826                         queue_flag |= ENQUEUE_REPLENISH;
6827                 } else {
6828                         p->dl.pi_se = &p->dl;
6829                 }
6830         } else if (rt_prio(prio)) {
6831                 if (dl_prio(oldprio))
6832                         p->dl.pi_se = &p->dl;
6833                 if (oldprio < prio)
6834                         queue_flag |= ENQUEUE_HEAD;
6835         } else {
6836                 if (dl_prio(oldprio))
6837                         p->dl.pi_se = &p->dl;
6838                 if (rt_prio(oldprio))
6839                         p->rt.timeout = 0;
6840         }
6841
6842         __setscheduler_prio(p, prio);
6843
6844         if (queued)
6845                 enqueue_task(rq, p, queue_flag);
6846         if (running)
6847                 set_next_task(rq, p);
6848
6849         check_class_changed(rq, p, prev_class, oldprio);
6850 out_unlock:
6851         /* Avoid rq from going away on us: */
6852         preempt_disable();
6853
6854         rq_unpin_lock(rq, &rf);
6855         __balance_callbacks(rq);
6856         raw_spin_rq_unlock(rq);
6857
6858         preempt_enable();
6859 }
6860 #else
6861 static inline int rt_effective_prio(struct task_struct *p, int prio)
6862 {
6863         return prio;
6864 }
6865 #endif
6866
6867 void set_user_nice(struct task_struct *p, long nice)
6868 {
6869         bool queued, running;
6870         int old_prio;
6871         struct rq_flags rf;
6872         struct rq *rq;
6873
6874         if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6875                 return;
6876         /*
6877          * We have to be careful, if called from sys_setpriority(),
6878          * the task might be in the middle of scheduling on another CPU.
6879          */
6880         rq = task_rq_lock(p, &rf);
6881         update_rq_clock(rq);
6882
6883         /*
6884          * The RT priorities are set via sched_setscheduler(), but we still
6885          * allow the 'normal' nice value to be set - but as expected
6886          * it won't have any effect on scheduling until the task is
6887          * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6888          */
6889         if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6890                 p->static_prio = NICE_TO_PRIO(nice);
6891                 goto out_unlock;
6892         }
6893         queued = task_on_rq_queued(p);
6894         running = task_current(rq, p);
6895         if (queued)
6896                 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6897         if (running)
6898                 put_prev_task(rq, p);
6899
6900         p->static_prio = NICE_TO_PRIO(nice);
6901         set_load_weight(p, true);
6902         old_prio = p->prio;
6903         p->prio = effective_prio(p);
6904
6905         if (queued)
6906                 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6907         if (running)
6908                 set_next_task(rq, p);
6909
6910         /*
6911          * If the task increased its priority or is running and
6912          * lowered its priority, then reschedule its CPU:
6913          */
6914         p->sched_class->prio_changed(rq, p, old_prio);
6915
6916 out_unlock:
6917         task_rq_unlock(rq, p, &rf);
6918 }
6919 EXPORT_SYMBOL(set_user_nice);
6920
6921 /*
6922  * can_nice - check if a task can reduce its nice value
6923  * @p: task
6924  * @nice: nice value
6925  */
6926 int can_nice(const struct task_struct *p, const int nice)
6927 {
6928         /* Convert nice value [19,-20] to rlimit style value [1,40]: */
6929         int nice_rlim = nice_to_rlimit(nice);
6930
6931         return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6932                 capable(CAP_SYS_NICE));
6933 }
6934
6935 #ifdef __ARCH_WANT_SYS_NICE
6936
6937 /*
6938  * sys_nice - change the priority of the current process.
6939  * @increment: priority increment
6940  *
6941  * sys_setpriority is a more generic, but much slower function that
6942  * does similar things.
6943  */
6944 SYSCALL_DEFINE1(nice, int, increment)
6945 {
6946         long nice, retval;
6947
6948         /*
6949          * Setpriority might change our priority at the same moment.
6950          * We don't have to worry. Conceptually one call occurs first
6951          * and we have a single winner.
6952          */
6953         increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6954         nice = task_nice(current) + increment;
6955
6956         nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6957         if (increment < 0 && !can_nice(current, nice))
6958                 return -EPERM;
6959
6960         retval = security_task_setnice(current, nice);
6961         if (retval)
6962                 return retval;
6963
6964         set_user_nice(current, nice);
6965         return 0;
6966 }
6967
6968 #endif
6969
6970 /**
6971  * task_prio - return the priority value of a given task.
6972  * @p: the task in question.
6973  *
6974  * Return: The priority value as seen by users in /proc.
6975  *
6976  * sched policy         return value   kernel prio    user prio/nice
6977  *
6978  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
6979  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
6980  * deadline                     -101             -1           0
6981  */
6982 int task_prio(const struct task_struct *p)
6983 {
6984         return p->prio - MAX_RT_PRIO;
6985 }
6986
6987 /**
6988  * idle_cpu - is a given CPU idle currently?
6989  * @cpu: the processor in question.
6990  *
6991  * Return: 1 if the CPU is currently idle. 0 otherwise.
6992  */
6993 int idle_cpu(int cpu)
6994 {
6995         struct rq *rq = cpu_rq(cpu);
6996
6997         if (rq->curr != rq->idle)
6998                 return 0;
6999
7000         if (rq->nr_running)
7001                 return 0;
7002
7003 #ifdef CONFIG_SMP
7004         if (rq->ttwu_pending)
7005                 return 0;
7006 #endif
7007
7008         return 1;
7009 }
7010
7011 /**
7012  * available_idle_cpu - is a given CPU idle for enqueuing work.
7013  * @cpu: the CPU in question.
7014  *
7015  * Return: 1 if the CPU is currently idle. 0 otherwise.
7016  */
7017 int available_idle_cpu(int cpu)
7018 {
7019         if (!idle_cpu(cpu))
7020                 return 0;
7021
7022         if (vcpu_is_preempted(cpu))
7023                 return 0;
7024
7025         return 1;
7026 }
7027
7028 /**
7029  * idle_task - return the idle task for a given CPU.
7030  * @cpu: the processor in question.
7031  *
7032  * Return: The idle task for the CPU @cpu.
7033  */
7034 struct task_struct *idle_task(int cpu)
7035 {
7036         return cpu_rq(cpu)->idle;
7037 }
7038
7039 #ifdef CONFIG_SMP
7040 /*
7041  * This function computes an effective utilization for the given CPU, to be
7042  * used for frequency selection given the linear relation: f = u * f_max.
7043  *
7044  * The scheduler tracks the following metrics:
7045  *
7046  *   cpu_util_{cfs,rt,dl,irq}()
7047  *   cpu_bw_dl()
7048  *
7049  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7050  * synchronized windows and are thus directly comparable.
7051  *
7052  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7053  * which excludes things like IRQ and steal-time. These latter are then accrued
7054  * in the irq utilization.
7055  *
7056  * The DL bandwidth number otoh is not a measured metric but a value computed
7057  * based on the task model parameters and gives the minimal utilization
7058  * required to meet deadlines.
7059  */
7060 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7061                                  unsigned long max, enum cpu_util_type type,
7062                                  struct task_struct *p)
7063 {
7064         unsigned long dl_util, util, irq;
7065         struct rq *rq = cpu_rq(cpu);
7066
7067         if (!uclamp_is_used() &&
7068             type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7069                 return max;
7070         }
7071
7072         /*
7073          * Early check to see if IRQ/steal time saturates the CPU, can be
7074          * because of inaccuracies in how we track these -- see
7075          * update_irq_load_avg().
7076          */
7077         irq = cpu_util_irq(rq);
7078         if (unlikely(irq >= max))
7079                 return max;
7080
7081         /*
7082          * Because the time spend on RT/DL tasks is visible as 'lost' time to
7083          * CFS tasks and we use the same metric to track the effective
7084          * utilization (PELT windows are synchronized) we can directly add them
7085          * to obtain the CPU's actual utilization.
7086          *
7087          * CFS and RT utilization can be boosted or capped, depending on
7088          * utilization clamp constraints requested by currently RUNNABLE
7089          * tasks.
7090          * When there are no CFS RUNNABLE tasks, clamps are released and
7091          * frequency will be gracefully reduced with the utilization decay.
7092          */
7093         util = util_cfs + cpu_util_rt(rq);
7094         if (type == FREQUENCY_UTIL)
7095                 util = uclamp_rq_util_with(rq, util, p);
7096
7097         dl_util = cpu_util_dl(rq);
7098
7099         /*
7100          * For frequency selection we do not make cpu_util_dl() a permanent part
7101          * of this sum because we want to use cpu_bw_dl() later on, but we need
7102          * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7103          * that we select f_max when there is no idle time.
7104          *
7105          * NOTE: numerical errors or stop class might cause us to not quite hit
7106          * saturation when we should -- something for later.
7107          */
7108         if (util + dl_util >= max)
7109                 return max;
7110
7111         /*
7112          * OTOH, for energy computation we need the estimated running time, so
7113          * include util_dl and ignore dl_bw.
7114          */
7115         if (type == ENERGY_UTIL)
7116                 util += dl_util;
7117
7118         /*
7119          * There is still idle time; further improve the number by using the
7120          * irq metric. Because IRQ/steal time is hidden from the task clock we
7121          * need to scale the task numbers:
7122          *
7123          *              max - irq
7124          *   U' = irq + --------- * U
7125          *                 max
7126          */
7127         util = scale_irq_capacity(util, irq, max);
7128         util += irq;
7129
7130         /*
7131          * Bandwidth required by DEADLINE must always be granted while, for
7132          * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7133          * to gracefully reduce the frequency when no tasks show up for longer
7134          * periods of time.
7135          *
7136          * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7137          * bw_dl as requested freq. However, cpufreq is not yet ready for such
7138          * an interface. So, we only do the latter for now.
7139          */
7140         if (type == FREQUENCY_UTIL)
7141                 util += cpu_bw_dl(rq);
7142
7143         return min(max, util);
7144 }
7145
7146 unsigned long sched_cpu_util(int cpu, unsigned long max)
7147 {
7148         return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
7149                                   ENERGY_UTIL, NULL);
7150 }
7151 #endif /* CONFIG_SMP */
7152
7153 /**
7154  * find_process_by_pid - find a process with a matching PID value.
7155  * @pid: the pid in question.
7156  *
7157  * The task of @pid, if found. %NULL otherwise.
7158  */
7159 static struct task_struct *find_process_by_pid(pid_t pid)
7160 {
7161         return pid ? find_task_by_vpid(pid) : current;
7162 }
7163
7164 /*
7165  * sched_setparam() passes in -1 for its policy, to let the functions
7166  * it calls know not to change it.
7167  */
7168 #define SETPARAM_POLICY -1
7169
7170 static void __setscheduler_params(struct task_struct *p,
7171                 const struct sched_attr *attr)
7172 {
7173         int policy = attr->sched_policy;
7174
7175         if (policy == SETPARAM_POLICY)
7176                 policy = p->policy;
7177
7178         p->policy = policy;
7179
7180         if (dl_policy(policy))
7181                 __setparam_dl(p, attr);
7182         else if (fair_policy(policy))
7183                 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7184
7185         /*
7186          * __sched_setscheduler() ensures attr->sched_priority == 0 when
7187          * !rt_policy. Always setting this ensures that things like
7188          * getparam()/getattr() don't report silly values for !rt tasks.
7189          */
7190         p->rt_priority = attr->sched_priority;
7191         p->normal_prio = normal_prio(p);
7192         set_load_weight(p, true);
7193 }
7194
7195 /*
7196  * Check the target process has a UID that matches the current process's:
7197  */
7198 static bool check_same_owner(struct task_struct *p)
7199 {
7200         const struct cred *cred = current_cred(), *pcred;
7201         bool match;
7202
7203         rcu_read_lock();
7204         pcred = __task_cred(p);
7205         match = (uid_eq(cred->euid, pcred->euid) ||
7206                  uid_eq(cred->euid, pcred->uid));
7207         rcu_read_unlock();
7208         return match;
7209 }
7210
7211 static int __sched_setscheduler(struct task_struct *p,
7212                                 const struct sched_attr *attr,
7213                                 bool user, bool pi)
7214 {
7215         int oldpolicy = -1, policy = attr->sched_policy;
7216         int retval, oldprio, newprio, queued, running;
7217         const struct sched_class *prev_class;
7218         struct callback_head *head;
7219         struct rq_flags rf;
7220         int reset_on_fork;
7221         int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7222         struct rq *rq;
7223
7224         /* The pi code expects interrupts enabled */
7225         BUG_ON(pi && in_interrupt());
7226 recheck:
7227         /* Double check policy once rq lock held: */
7228         if (policy < 0) {
7229                 reset_on_fork = p->sched_reset_on_fork;
7230                 policy = oldpolicy = p->policy;
7231         } else {
7232                 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7233
7234                 if (!valid_policy(policy))
7235                         return -EINVAL;
7236         }
7237
7238         if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7239                 return -EINVAL;
7240
7241         /*
7242          * Valid priorities for SCHED_FIFO and SCHED_RR are
7243          * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7244          * SCHED_BATCH and SCHED_IDLE is 0.
7245          */
7246         if (attr->sched_priority > MAX_RT_PRIO-1)
7247                 return -EINVAL;
7248         if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7249             (rt_policy(policy) != (attr->sched_priority != 0)))
7250                 return -EINVAL;
7251
7252         /*
7253          * Allow unprivileged RT tasks to decrease priority:
7254          */
7255         if (user && !capable(CAP_SYS_NICE)) {
7256                 if (fair_policy(policy)) {
7257                         if (attr->sched_nice < task_nice(p) &&
7258                             !can_nice(p, attr->sched_nice))
7259                                 return -EPERM;
7260                 }
7261
7262                 if (rt_policy(policy)) {
7263                         unsigned long rlim_rtprio =
7264                                         task_rlimit(p, RLIMIT_RTPRIO);
7265
7266                         /* Can't set/change the rt policy: */
7267                         if (policy != p->policy && !rlim_rtprio)
7268                                 return -EPERM;
7269
7270                         /* Can't increase priority: */
7271                         if (attr->sched_priority > p->rt_priority &&
7272                             attr->sched_priority > rlim_rtprio)
7273                                 return -EPERM;
7274                 }
7275
7276                  /*
7277                   * Can't set/change SCHED_DEADLINE policy at all for now
7278                   * (safest behavior); in the future we would like to allow
7279                   * unprivileged DL tasks to increase their relative deadline
7280                   * or reduce their runtime (both ways reducing utilization)
7281                   */
7282                 if (dl_policy(policy))
7283                         return -EPERM;
7284
7285                 /*
7286                  * Treat SCHED_IDLE as nice 20. Only allow a switch to
7287                  * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7288                  */
7289                 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7290                         if (!can_nice(p, task_nice(p)))
7291                                 return -EPERM;
7292                 }
7293
7294                 /* Can't change other user's priorities: */
7295                 if (!check_same_owner(p))
7296                         return -EPERM;
7297
7298                 /* Normal users shall not reset the sched_reset_on_fork flag: */
7299                 if (p->sched_reset_on_fork && !reset_on_fork)
7300                         return -EPERM;
7301         }
7302
7303         if (user) {
7304                 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7305                         return -EINVAL;
7306
7307                 retval = security_task_setscheduler(p);
7308                 if (retval)
7309                         return retval;
7310         }
7311
7312         /* Update task specific "requested" clamps */
7313         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7314                 retval = uclamp_validate(p, attr);
7315                 if (retval)
7316                         return retval;
7317         }
7318
7319         if (pi)
7320                 cpuset_read_lock();
7321
7322         /*
7323          * Make sure no PI-waiters arrive (or leave) while we are
7324          * changing the priority of the task:
7325          *
7326          * To be able to change p->policy safely, the appropriate
7327          * runqueue lock must be held.
7328          */
7329         rq = task_rq_lock(p, &rf);
7330         update_rq_clock(rq);
7331
7332         /*
7333          * Changing the policy of the stop threads its a very bad idea:
7334          */
7335         if (p == rq->stop) {
7336                 retval = -EINVAL;
7337                 goto unlock;
7338         }
7339
7340         /*
7341          * If not changing anything there's no need to proceed further,
7342          * but store a possible modification of reset_on_fork.
7343          */
7344         if (unlikely(policy == p->policy)) {
7345                 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7346                         goto change;
7347                 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7348                         goto change;
7349                 if (dl_policy(policy) && dl_param_changed(p, attr))
7350                         goto change;
7351                 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7352                         goto change;
7353
7354                 p->sched_reset_on_fork = reset_on_fork;
7355                 retval = 0;
7356                 goto unlock;
7357         }
7358 change:
7359
7360         if (user) {
7361 #ifdef CONFIG_RT_GROUP_SCHED
7362                 /*
7363                  * Do not allow realtime tasks into groups that have no runtime
7364                  * assigned.
7365                  */
7366                 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7367                                 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7368                                 !task_group_is_autogroup(task_group(p))) {
7369                         retval = -EPERM;
7370                         goto unlock;
7371                 }
7372 #endif
7373 #ifdef CONFIG_SMP
7374                 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7375                                 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7376                         cpumask_t *span = rq->rd->span;
7377
7378                         /*
7379                          * Don't allow tasks with an affinity mask smaller than
7380                          * the entire root_domain to become SCHED_DEADLINE. We
7381                          * will also fail if there's no bandwidth available.
7382                          */
7383                         if (!cpumask_subset(span, p->cpus_ptr) ||
7384                             rq->rd->dl_bw.bw == 0) {
7385                                 retval = -EPERM;
7386                                 goto unlock;
7387                         }
7388                 }
7389 #endif
7390         }
7391
7392         /* Re-check policy now with rq lock held: */
7393         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7394                 policy = oldpolicy = -1;
7395                 task_rq_unlock(rq, p, &rf);
7396                 if (pi)
7397                         cpuset_read_unlock();
7398                 goto recheck;
7399         }
7400
7401         /*
7402          * If setscheduling to SCHED_DEADLINE (or changing the parameters
7403          * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7404          * is available.
7405          */
7406         if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7407                 retval = -EBUSY;
7408                 goto unlock;
7409         }
7410
7411         p->sched_reset_on_fork = reset_on_fork;
7412         oldprio = p->prio;
7413
7414         newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7415         if (pi) {
7416                 /*
7417                  * Take priority boosted tasks into account. If the new
7418                  * effective priority is unchanged, we just store the new
7419                  * normal parameters and do not touch the scheduler class and
7420                  * the runqueue. This will be done when the task deboost
7421                  * itself.
7422                  */
7423                 newprio = rt_effective_prio(p, newprio);
7424                 if (newprio == oldprio)
7425                         queue_flags &= ~DEQUEUE_MOVE;
7426         }
7427
7428         queued = task_on_rq_queued(p);
7429         running = task_current(rq, p);
7430         if (queued)
7431                 dequeue_task(rq, p, queue_flags);
7432         if (running)
7433                 put_prev_task(rq, p);
7434
7435         prev_class = p->sched_class;
7436
7437         if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7438                 __setscheduler_params(p, attr);
7439                 __setscheduler_prio(p, newprio);
7440         }
7441         __setscheduler_uclamp(p, attr);
7442
7443         if (queued) {
7444                 /*
7445                  * We enqueue to tail when the priority of a task is
7446                  * increased (user space view).
7447                  */
7448                 if (oldprio < p->prio)
7449                         queue_flags |= ENQUEUE_HEAD;
7450
7451                 enqueue_task(rq, p, queue_flags);
7452         }
7453         if (running)
7454                 set_next_task(rq, p);
7455
7456         check_class_changed(rq, p, prev_class, oldprio);
7457
7458         /* Avoid rq from going away on us: */
7459         preempt_disable();
7460         head = splice_balance_callbacks(rq);
7461         task_rq_unlock(rq, p, &rf);
7462
7463         if (pi) {
7464                 cpuset_read_unlock();
7465                 rt_mutex_adjust_pi(p);
7466         }
7467
7468         /* Run balance callbacks after we've adjusted the PI chain: */
7469         balance_callbacks(rq, head);
7470         preempt_enable();
7471
7472         return 0;
7473
7474 unlock:
7475         task_rq_unlock(rq, p, &rf);
7476         if (pi)
7477                 cpuset_read_unlock();
7478         return retval;
7479 }
7480
7481 static int _sched_setscheduler(struct task_struct *p, int policy,
7482                                const struct sched_param *param, bool check)
7483 {
7484         struct sched_attr attr = {
7485                 .sched_policy   = policy,
7486                 .sched_priority = param->sched_priority,
7487                 .sched_nice     = PRIO_TO_NICE(p->static_prio),
7488         };
7489
7490         /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7491         if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7492                 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7493                 policy &= ~SCHED_RESET_ON_FORK;
7494                 attr.sched_policy = policy;
7495         }
7496
7497         return __sched_setscheduler(p, &attr, check, true);
7498 }
7499 /**
7500  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7501  * @p: the task in question.
7502  * @policy: new policy.
7503  * @param: structure containing the new RT priority.
7504  *
7505  * Use sched_set_fifo(), read its comment.
7506  *
7507  * Return: 0 on success. An error code otherwise.
7508  *
7509  * NOTE that the task may be already dead.
7510  */
7511 int sched_setscheduler(struct task_struct *p, int policy,
7512                        const struct sched_param *param)
7513 {
7514         return _sched_setscheduler(p, policy, param, true);
7515 }
7516
7517 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7518 {
7519         return __sched_setscheduler(p, attr, true, true);
7520 }
7521
7522 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7523 {
7524         return __sched_setscheduler(p, attr, false, true);
7525 }
7526 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7527
7528 /**
7529  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7530  * @p: the task in question.
7531  * @policy: new policy.
7532  * @param: structure containing the new RT priority.
7533  *
7534  * Just like sched_setscheduler, only don't bother checking if the
7535  * current context has permission.  For example, this is needed in
7536  * stop_machine(): we create temporary high priority worker threads,
7537  * but our caller might not have that capability.
7538  *
7539  * Return: 0 on success. An error code otherwise.
7540  */
7541 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7542                                const struct sched_param *param)
7543 {
7544         return _sched_setscheduler(p, policy, param, false);
7545 }
7546
7547 /*
7548  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7549  * incapable of resource management, which is the one thing an OS really should
7550  * be doing.
7551  *
7552  * This is of course the reason it is limited to privileged users only.
7553  *
7554  * Worse still; it is fundamentally impossible to compose static priority
7555  * workloads. You cannot take two correctly working static prio workloads
7556  * and smash them together and still expect them to work.
7557  *
7558  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7559  *
7560  *   MAX_RT_PRIO / 2
7561  *
7562  * The administrator _MUST_ configure the system, the kernel simply doesn't
7563  * know enough information to make a sensible choice.
7564  */
7565 void sched_set_fifo(struct task_struct *p)
7566 {
7567         struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7568         WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7569 }
7570 EXPORT_SYMBOL_GPL(sched_set_fifo);
7571
7572 /*
7573  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7574  */
7575 void sched_set_fifo_low(struct task_struct *p)
7576 {
7577         struct sched_param sp = { .sched_priority = 1 };
7578         WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7579 }
7580 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7581
7582 void sched_set_normal(struct task_struct *p, int nice)
7583 {
7584         struct sched_attr attr = {
7585                 .sched_policy = SCHED_NORMAL,
7586                 .sched_nice = nice,
7587         };
7588         WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7589 }
7590 EXPORT_SYMBOL_GPL(sched_set_normal);
7591
7592 static int
7593 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7594 {
7595         struct sched_param lparam;
7596         struct task_struct *p;
7597         int retval;
7598
7599         if (!param || pid < 0)
7600                 return -EINVAL;
7601         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7602                 return -EFAULT;
7603
7604         rcu_read_lock();
7605         retval = -ESRCH;
7606         p = find_process_by_pid(pid);
7607         if (likely(p))
7608                 get_task_struct(p);
7609         rcu_read_unlock();
7610
7611         if (likely(p)) {
7612                 retval = sched_setscheduler(p, policy, &lparam);
7613                 put_task_struct(p);
7614         }
7615
7616         return retval;
7617 }
7618
7619 /*
7620  * Mimics kernel/events/core.c perf_copy_attr().
7621  */
7622 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7623 {
7624         u32 size;
7625         int ret;
7626
7627         /* Zero the full structure, so that a short copy will be nice: */
7628         memset(attr, 0, sizeof(*attr));
7629
7630         ret = get_user(size, &uattr->size);
7631         if (ret)
7632                 return ret;
7633
7634         /* ABI compatibility quirk: */
7635         if (!size)
7636                 size = SCHED_ATTR_SIZE_VER0;
7637         if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7638                 goto err_size;
7639
7640         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7641         if (ret) {
7642                 if (ret == -E2BIG)
7643                         goto err_size;
7644                 return ret;
7645         }
7646
7647         if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7648             size < SCHED_ATTR_SIZE_VER1)
7649                 return -EINVAL;
7650
7651         /*
7652          * XXX: Do we want to be lenient like existing syscalls; or do we want
7653          * to be strict and return an error on out-of-bounds values?
7654          */
7655         attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7656
7657         return 0;
7658
7659 err_size:
7660         put_user(sizeof(*attr), &uattr->size);
7661         return -E2BIG;
7662 }
7663
7664 static void get_params(struct task_struct *p, struct sched_attr *attr)
7665 {
7666         if (task_has_dl_policy(p))
7667                 __getparam_dl(p, attr);
7668         else if (task_has_rt_policy(p))
7669                 attr->sched_priority = p->rt_priority;
7670         else
7671                 attr->sched_nice = task_nice(p);
7672 }
7673
7674 /**
7675  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7676  * @pid: the pid in question.
7677  * @policy: new policy.
7678  * @param: structure containing the new RT priority.
7679  *
7680  * Return: 0 on success. An error code otherwise.
7681  */
7682 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7683 {
7684         if (policy < 0)
7685                 return -EINVAL;
7686
7687         return do_sched_setscheduler(pid, policy, param);
7688 }
7689
7690 /**
7691  * sys_sched_setparam - set/change the RT priority of a thread
7692  * @pid: the pid in question.
7693  * @param: structure containing the new RT priority.
7694  *
7695  * Return: 0 on success. An error code otherwise.
7696  */
7697 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7698 {
7699         return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7700 }
7701
7702 /**
7703  * sys_sched_setattr - same as above, but with extended sched_attr
7704  * @pid: the pid in question.
7705  * @uattr: structure containing the extended parameters.
7706  * @flags: for future extension.
7707  */
7708 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7709                                unsigned int, flags)
7710 {
7711         struct sched_attr attr;
7712         struct task_struct *p;
7713         int retval;
7714
7715         if (!uattr || pid < 0 || flags)
7716                 return -EINVAL;
7717
7718         retval = sched_copy_attr(uattr, &attr);
7719         if (retval)
7720                 return retval;
7721
7722         if ((int)attr.sched_policy < 0)
7723                 return -EINVAL;
7724         if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7725                 attr.sched_policy = SETPARAM_POLICY;
7726
7727         rcu_read_lock();
7728         retval = -ESRCH;
7729         p = find_process_by_pid(pid);
7730         if (likely(p))
7731                 get_task_struct(p);
7732         rcu_read_unlock();
7733
7734         if (likely(p)) {
7735                 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7736                         get_params(p, &attr);
7737                 retval = sched_setattr(p, &attr);
7738                 put_task_struct(p);
7739         }
7740
7741         return retval;
7742 }
7743
7744 /**
7745  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7746  * @pid: the pid in question.
7747  *
7748  * Return: On success, the policy of the thread. Otherwise, a negative error
7749  * code.
7750  */
7751 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7752 {
7753         struct task_struct *p;
7754         int retval;
7755
7756         if (pid < 0)
7757                 return -EINVAL;
7758
7759         retval = -ESRCH;
7760         rcu_read_lock();
7761         p = find_process_by_pid(pid);
7762         if (p) {
7763                 retval = security_task_getscheduler(p);
7764                 if (!retval)
7765                         retval = p->policy
7766                                 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7767         }
7768         rcu_read_unlock();
7769         return retval;
7770 }
7771
7772 /**
7773  * sys_sched_getparam - get the RT priority of a thread
7774  * @pid: the pid in question.
7775  * @param: structure containing the RT priority.
7776  *
7777  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7778  * code.
7779  */
7780 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7781 {
7782         struct sched_param lp = { .sched_priority = 0 };
7783         struct task_struct *p;
7784         int retval;
7785
7786         if (!param || pid < 0)
7787                 return -EINVAL;
7788
7789         rcu_read_lock();
7790         p = find_process_by_pid(pid);
7791         retval = -ESRCH;
7792         if (!p)
7793                 goto out_unlock;
7794
7795         retval = security_task_getscheduler(p);
7796         if (retval)
7797                 goto out_unlock;
7798
7799         if (task_has_rt_policy(p))
7800                 lp.sched_priority = p->rt_priority;
7801         rcu_read_unlock();
7802
7803         /*
7804          * This one might sleep, we cannot do it with a spinlock held ...
7805          */
7806         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7807
7808         return retval;
7809
7810 out_unlock:
7811         rcu_read_unlock();
7812         return retval;
7813 }
7814
7815 /*
7816  * Copy the kernel size attribute structure (which might be larger
7817  * than what user-space knows about) to user-space.
7818  *
7819  * Note that all cases are valid: user-space buffer can be larger or
7820  * smaller than the kernel-space buffer. The usual case is that both
7821  * have the same size.
7822  */
7823 static int
7824 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7825                         struct sched_attr *kattr,
7826                         unsigned int usize)
7827 {
7828         unsigned int ksize = sizeof(*kattr);
7829
7830         if (!access_ok(uattr, usize))
7831                 return -EFAULT;
7832
7833         /*
7834          * sched_getattr() ABI forwards and backwards compatibility:
7835          *
7836          * If usize == ksize then we just copy everything to user-space and all is good.
7837          *
7838          * If usize < ksize then we only copy as much as user-space has space for,
7839          * this keeps ABI compatibility as well. We skip the rest.
7840          *
7841          * If usize > ksize then user-space is using a newer version of the ABI,
7842          * which part the kernel doesn't know about. Just ignore it - tooling can
7843          * detect the kernel's knowledge of attributes from the attr->size value
7844          * which is set to ksize in this case.
7845          */
7846         kattr->size = min(usize, ksize);
7847
7848         if (copy_to_user(uattr, kattr, kattr->size))
7849                 return -EFAULT;
7850
7851         return 0;
7852 }
7853
7854 /**
7855  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7856  * @pid: the pid in question.
7857  * @uattr: structure containing the extended parameters.
7858  * @usize: sizeof(attr) for fwd/bwd comp.
7859  * @flags: for future extension.
7860  */
7861 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7862                 unsigned int, usize, unsigned int, flags)
7863 {
7864         struct sched_attr kattr = { };
7865         struct task_struct *p;
7866         int retval;
7867
7868         if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7869             usize < SCHED_ATTR_SIZE_VER0 || flags)
7870                 return -EINVAL;
7871
7872         rcu_read_lock();
7873         p = find_process_by_pid(pid);
7874         retval = -ESRCH;
7875         if (!p)
7876                 goto out_unlock;
7877
7878         retval = security_task_getscheduler(p);
7879         if (retval)
7880                 goto out_unlock;
7881
7882         kattr.sched_policy = p->policy;
7883         if (p->sched_reset_on_fork)
7884                 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7885         get_params(p, &kattr);
7886         kattr.sched_flags &= SCHED_FLAG_ALL;
7887
7888 #ifdef CONFIG_UCLAMP_TASK
7889         /*
7890          * This could race with another potential updater, but this is fine
7891          * because it'll correctly read the old or the new value. We don't need
7892          * to guarantee who wins the race as long as it doesn't return garbage.
7893          */
7894         kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7895         kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7896 #endif
7897
7898         rcu_read_unlock();
7899
7900         return sched_attr_copy_to_user(uattr, &kattr, usize);
7901
7902 out_unlock:
7903         rcu_read_unlock();
7904         return retval;
7905 }
7906
7907 #ifdef CONFIG_SMP
7908 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
7909 {
7910         int ret = 0;
7911
7912         /*
7913          * If the task isn't a deadline task or admission control is
7914          * disabled then we don't care about affinity changes.
7915          */
7916         if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
7917                 return 0;
7918
7919         /*
7920          * Since bandwidth control happens on root_domain basis,
7921          * if admission test is enabled, we only admit -deadline
7922          * tasks allowed to run on all the CPUs in the task's
7923          * root_domain.
7924          */
7925         rcu_read_lock();
7926         if (!cpumask_subset(task_rq(p)->rd->span, mask))
7927                 ret = -EBUSY;
7928         rcu_read_unlock();
7929         return ret;
7930 }
7931 #endif
7932
7933 static int
7934 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
7935 {
7936         int retval;
7937         cpumask_var_t cpus_allowed, new_mask;
7938
7939         if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
7940                 return -ENOMEM;
7941
7942         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7943                 retval = -ENOMEM;
7944                 goto out_free_cpus_allowed;
7945         }
7946
7947         cpuset_cpus_allowed(p, cpus_allowed);
7948         cpumask_and(new_mask, mask, cpus_allowed);
7949
7950         retval = dl_task_check_affinity(p, new_mask);
7951         if (retval)
7952                 goto out_free_new_mask;
7953 again:
7954         retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
7955         if (retval)
7956                 goto out_free_new_mask;
7957
7958         cpuset_cpus_allowed(p, cpus_allowed);
7959         if (!cpumask_subset(new_mask, cpus_allowed)) {
7960                 /*
7961                  * We must have raced with a concurrent cpuset update.
7962                  * Just reset the cpumask to the cpuset's cpus_allowed.
7963                  */
7964                 cpumask_copy(new_mask, cpus_allowed);
7965                 goto again;
7966         }
7967
7968 out_free_new_mask:
7969         free_cpumask_var(new_mask);
7970 out_free_cpus_allowed:
7971         free_cpumask_var(cpus_allowed);
7972         return retval;
7973 }
7974
7975 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7976 {
7977         struct task_struct *p;
7978         int retval;
7979
7980         rcu_read_lock();
7981
7982         p = find_process_by_pid(pid);
7983         if (!p) {
7984                 rcu_read_unlock();
7985                 return -ESRCH;
7986         }
7987
7988         /* Prevent p going away */
7989         get_task_struct(p);
7990         rcu_read_unlock();
7991
7992         if (p->flags & PF_NO_SETAFFINITY) {
7993                 retval = -EINVAL;
7994                 goto out_put_task;
7995         }
7996
7997         if (!check_same_owner(p)) {
7998                 rcu_read_lock();
7999                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8000                         rcu_read_unlock();
8001                         retval = -EPERM;
8002                         goto out_put_task;
8003                 }
8004                 rcu_read_unlock();
8005         }
8006
8007         retval = security_task_setscheduler(p);
8008         if (retval)
8009                 goto out_put_task;
8010
8011         retval = __sched_setaffinity(p, in_mask);
8012 out_put_task:
8013         put_task_struct(p);
8014         return retval;
8015 }
8016
8017 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8018                              struct cpumask *new_mask)
8019 {
8020         if (len < cpumask_size())
8021                 cpumask_clear(new_mask);
8022         else if (len > cpumask_size())
8023                 len = cpumask_size();
8024
8025         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8026 }
8027
8028 /**
8029  * sys_sched_setaffinity - set the CPU affinity of a process
8030  * @pid: pid of the process
8031  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8032  * @user_mask_ptr: user-space pointer to the new CPU mask
8033  *
8034  * Return: 0 on success. An error code otherwise.
8035  */
8036 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8037                 unsigned long __user *, user_mask_ptr)
8038 {
8039         cpumask_var_t new_mask;
8040         int retval;
8041
8042         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8043                 return -ENOMEM;
8044
8045         retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8046         if (retval == 0)
8047                 retval = sched_setaffinity(pid, new_mask);
8048         free_cpumask_var(new_mask);
8049         return retval;
8050 }
8051
8052 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8053 {
8054         struct task_struct *p;
8055         unsigned long flags;
8056         int retval;
8057
8058         rcu_read_lock();
8059
8060         retval = -ESRCH;
8061         p = find_process_by_pid(pid);
8062         if (!p)
8063                 goto out_unlock;
8064
8065         retval = security_task_getscheduler(p);
8066         if (retval)
8067                 goto out_unlock;
8068
8069         raw_spin_lock_irqsave(&p->pi_lock, flags);
8070         cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8071         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8072
8073 out_unlock:
8074         rcu_read_unlock();
8075
8076         return retval;
8077 }
8078
8079 /**
8080  * sys_sched_getaffinity - get the CPU affinity of a process
8081  * @pid: pid of the process
8082  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8083  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8084  *
8085  * Return: size of CPU mask copied to user_mask_ptr on success. An
8086  * error code otherwise.
8087  */
8088 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8089                 unsigned long __user *, user_mask_ptr)
8090 {
8091         int ret;
8092         cpumask_var_t mask;
8093
8094         if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8095                 return -EINVAL;
8096         if (len & (sizeof(unsigned long)-1))
8097                 return -EINVAL;
8098
8099         if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8100                 return -ENOMEM;
8101
8102         ret = sched_getaffinity(pid, mask);
8103         if (ret == 0) {
8104                 unsigned int retlen = min(len, cpumask_size());
8105
8106                 if (copy_to_user(user_mask_ptr, mask, retlen))
8107                         ret = -EFAULT;
8108                 else
8109                         ret = retlen;
8110         }
8111         free_cpumask_var(mask);
8112
8113         return ret;
8114 }
8115
8116 static void do_sched_yield(void)
8117 {
8118         struct rq_flags rf;
8119         struct rq *rq;
8120
8121         rq = this_rq_lock_irq(&rf);
8122
8123         schedstat_inc(rq->yld_count);
8124         current->sched_class->yield_task(rq);
8125
8126         preempt_disable();
8127         rq_unlock_irq(rq, &rf);
8128         sched_preempt_enable_no_resched();
8129
8130         schedule();
8131 }
8132
8133 /**
8134  * sys_sched_yield - yield the current processor to other threads.
8135  *
8136  * This function yields the current CPU to other tasks. If there are no
8137  * other threads running on this CPU then this function will return.
8138  *
8139  * Return: 0.
8140  */
8141 SYSCALL_DEFINE0(sched_yield)
8142 {
8143         do_sched_yield();
8144         return 0;
8145 }
8146
8147 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8148 int __sched __cond_resched(void)
8149 {
8150         if (should_resched(0)) {
8151                 preempt_schedule_common();
8152                 return 1;
8153         }
8154         /*
8155          * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8156          * whether the current CPU is in an RCU read-side critical section,
8157          * so the tick can report quiescent states even for CPUs looping
8158          * in kernel context.  In contrast, in non-preemptible kernels,
8159          * RCU readers leave no in-memory hints, which means that CPU-bound
8160          * processes executing in kernel context might never report an
8161          * RCU quiescent state.  Therefore, the following code causes
8162          * cond_resched() to report a quiescent state, but only when RCU
8163          * is in urgent need of one.
8164          */
8165 #ifndef CONFIG_PREEMPT_RCU
8166         rcu_all_qs();
8167 #endif
8168         return 0;
8169 }
8170 EXPORT_SYMBOL(__cond_resched);
8171 #endif
8172
8173 #ifdef CONFIG_PREEMPT_DYNAMIC
8174 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8175 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8176
8177 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8178 EXPORT_STATIC_CALL_TRAMP(might_resched);
8179 #endif
8180
8181 /*
8182  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8183  * call schedule, and on return reacquire the lock.
8184  *
8185  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8186  * operations here to prevent schedule() from being called twice (once via
8187  * spin_unlock(), once by hand).
8188  */
8189 int __cond_resched_lock(spinlock_t *lock)
8190 {
8191         int resched = should_resched(PREEMPT_LOCK_OFFSET);
8192         int ret = 0;
8193
8194         lockdep_assert_held(lock);
8195
8196         if (spin_needbreak(lock) || resched) {
8197                 spin_unlock(lock);
8198                 if (resched)
8199                         preempt_schedule_common();
8200                 else
8201                         cpu_relax();
8202                 ret = 1;
8203                 spin_lock(lock);
8204         }
8205         return ret;
8206 }
8207 EXPORT_SYMBOL(__cond_resched_lock);
8208
8209 int __cond_resched_rwlock_read(rwlock_t *lock)
8210 {
8211         int resched = should_resched(PREEMPT_LOCK_OFFSET);
8212         int ret = 0;
8213
8214         lockdep_assert_held_read(lock);
8215
8216         if (rwlock_needbreak(lock) || resched) {
8217                 read_unlock(lock);
8218                 if (resched)
8219                         preempt_schedule_common();
8220                 else
8221                         cpu_relax();
8222                 ret = 1;
8223                 read_lock(lock);
8224         }
8225         return ret;
8226 }
8227 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8228
8229 int __cond_resched_rwlock_write(rwlock_t *lock)
8230 {
8231         int resched = should_resched(PREEMPT_LOCK_OFFSET);
8232         int ret = 0;
8233
8234         lockdep_assert_held_write(lock);
8235
8236         if (rwlock_needbreak(lock) || resched) {
8237                 write_unlock(lock);
8238                 if (resched)
8239                         preempt_schedule_common();
8240                 else
8241                         cpu_relax();
8242                 ret = 1;
8243                 write_lock(lock);
8244         }
8245         return ret;
8246 }
8247 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8248
8249 /**
8250  * yield - yield the current processor to other threads.
8251  *
8252  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8253  *
8254  * The scheduler is at all times free to pick the calling task as the most
8255  * eligible task to run, if removing the yield() call from your code breaks
8256  * it, it's already broken.
8257  *
8258  * Typical broken usage is:
8259  *
8260  * while (!event)
8261  *      yield();
8262  *
8263  * where one assumes that yield() will let 'the other' process run that will
8264  * make event true. If the current task is a SCHED_FIFO task that will never
8265  * happen. Never use yield() as a progress guarantee!!
8266  *
8267  * If you want to use yield() to wait for something, use wait_event().
8268  * If you want to use yield() to be 'nice' for others, use cond_resched().
8269  * If you still want to use yield(), do not!
8270  */
8271 void __sched yield(void)
8272 {
8273         set_current_state(TASK_RUNNING);
8274         do_sched_yield();
8275 }
8276 EXPORT_SYMBOL(yield);
8277
8278 /**
8279  * yield_to - yield the current processor to another thread in
8280  * your thread group, or accelerate that thread toward the
8281  * processor it's on.
8282  * @p: target task
8283  * @preempt: whether task preemption is allowed or not
8284  *
8285  * It's the caller's job to ensure that the target task struct
8286  * can't go away on us before we can do any checks.
8287  *
8288  * Return:
8289  *      true (>0) if we indeed boosted the target task.
8290  *      false (0) if we failed to boost the target.
8291  *      -ESRCH if there's no task to yield to.
8292  */
8293 int __sched yield_to(struct task_struct *p, bool preempt)
8294 {
8295         struct task_struct *curr = current;
8296         struct rq *rq, *p_rq;
8297         unsigned long flags;
8298         int yielded = 0;
8299
8300         local_irq_save(flags);
8301         rq = this_rq();
8302
8303 again:
8304         p_rq = task_rq(p);
8305         /*
8306          * If we're the only runnable task on the rq and target rq also
8307          * has only one task, there's absolutely no point in yielding.
8308          */
8309         if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8310                 yielded = -ESRCH;
8311                 goto out_irq;
8312         }
8313
8314         double_rq_lock(rq, p_rq);
8315         if (task_rq(p) != p_rq) {
8316                 double_rq_unlock(rq, p_rq);
8317                 goto again;
8318         }
8319
8320         if (!curr->sched_class->yield_to_task)
8321                 goto out_unlock;
8322
8323         if (curr->sched_class != p->sched_class)
8324                 goto out_unlock;
8325
8326         if (task_running(p_rq, p) || !task_is_running(p))
8327                 goto out_unlock;
8328
8329         yielded = curr->sched_class->yield_to_task(rq, p);
8330         if (yielded) {
8331                 schedstat_inc(rq->yld_count);
8332                 /*
8333                  * Make p's CPU reschedule; pick_next_entity takes care of
8334                  * fairness.
8335                  */
8336                 if (preempt && rq != p_rq)
8337                         resched_curr(p_rq);
8338         }
8339
8340 out_unlock:
8341         double_rq_unlock(rq, p_rq);
8342 out_irq:
8343         local_irq_restore(flags);
8344
8345         if (yielded > 0)
8346                 schedule();
8347
8348         return yielded;
8349 }
8350 EXPORT_SYMBOL_GPL(yield_to);
8351
8352 int io_schedule_prepare(void)
8353 {
8354         int old_iowait = current->in_iowait;
8355
8356         current->in_iowait = 1;
8357         blk_schedule_flush_plug(current);
8358
8359         return old_iowait;
8360 }
8361
8362 void io_schedule_finish(int token)
8363 {
8364         current->in_iowait = token;
8365 }
8366
8367 /*
8368  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8369  * that process accounting knows that this is a task in IO wait state.
8370  */
8371 long __sched io_schedule_timeout(long timeout)
8372 {
8373         int token;
8374         long ret;
8375
8376         token = io_schedule_prepare();
8377         ret = schedule_timeout(timeout);
8378         io_schedule_finish(token);
8379
8380         return ret;
8381 }
8382 EXPORT_SYMBOL(io_schedule_timeout);
8383
8384 void __sched io_schedule(void)
8385 {
8386         int token;
8387
8388         token = io_schedule_prepare();
8389         schedule();
8390         io_schedule_finish(token);
8391 }
8392 EXPORT_SYMBOL(io_schedule);
8393
8394 /**
8395  * sys_sched_get_priority_max - return maximum RT priority.
8396  * @policy: scheduling class.
8397  *
8398  * Return: On success, this syscall returns the maximum
8399  * rt_priority that can be used by a given scheduling class.
8400  * On failure, a negative error code is returned.
8401  */
8402 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8403 {
8404         int ret = -EINVAL;
8405
8406         switch (policy) {
8407         case SCHED_FIFO:
8408         case SCHED_RR:
8409                 ret = MAX_RT_PRIO-1;
8410                 break;
8411         case SCHED_DEADLINE:
8412         case SCHED_NORMAL:
8413         case SCHED_BATCH:
8414         case SCHED_IDLE:
8415                 ret = 0;
8416                 break;
8417         }
8418         return ret;
8419 }
8420
8421 /**
8422  * sys_sched_get_priority_min - return minimum RT priority.
8423  * @policy: scheduling class.
8424  *
8425  * Return: On success, this syscall returns the minimum
8426  * rt_priority that can be used by a given scheduling class.
8427  * On failure, a negative error code is returned.
8428  */
8429 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8430 {
8431         int ret = -EINVAL;
8432
8433         switch (policy) {
8434         case SCHED_FIFO:
8435         case SCHED_RR:
8436                 ret = 1;
8437                 break;
8438         case SCHED_DEADLINE:
8439         case SCHED_NORMAL:
8440         case SCHED_BATCH:
8441         case SCHED_IDLE:
8442                 ret = 0;
8443         }
8444         return ret;
8445 }
8446
8447 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8448 {
8449         struct task_struct *p;
8450         unsigned int time_slice;
8451         struct rq_flags rf;
8452         struct rq *rq;
8453         int retval;
8454
8455         if (pid < 0)
8456                 return -EINVAL;
8457
8458         retval = -ESRCH;
8459         rcu_read_lock();
8460         p = find_process_by_pid(pid);
8461         if (!p)
8462                 goto out_unlock;
8463
8464         retval = security_task_getscheduler(p);
8465         if (retval)
8466                 goto out_unlock;
8467
8468         rq = task_rq_lock(p, &rf);
8469         time_slice = 0;
8470         if (p->sched_class->get_rr_interval)
8471                 time_slice = p->sched_class->get_rr_interval(rq, p);
8472         task_rq_unlock(rq, p, &rf);
8473
8474         rcu_read_unlock();
8475         jiffies_to_timespec64(time_slice, t);
8476         return 0;
8477
8478 out_unlock:
8479         rcu_read_unlock();
8480         return retval;
8481 }
8482
8483 /**
8484  * sys_sched_rr_get_interval - return the default timeslice of a process.
8485  * @pid: pid of the process.
8486  * @interval: userspace pointer to the timeslice value.
8487  *
8488  * this syscall writes the default timeslice value of a given process
8489  * into the user-space timespec buffer. A value of '0' means infinity.
8490  *
8491  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8492  * an error code.
8493  */
8494 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8495                 struct __kernel_timespec __user *, interval)
8496 {
8497         struct timespec64 t;
8498         int retval = sched_rr_get_interval(pid, &t);
8499
8500         if (retval == 0)
8501                 retval = put_timespec64(&t, interval);
8502
8503         return retval;
8504 }
8505
8506 #ifdef CONFIG_COMPAT_32BIT_TIME
8507 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8508                 struct old_timespec32 __user *, interval)
8509 {
8510         struct timespec64 t;
8511         int retval = sched_rr_get_interval(pid, &t);
8512
8513         if (retval == 0)
8514                 retval = put_old_timespec32(&t, interval);
8515         return retval;
8516 }
8517 #endif
8518
8519 void sched_show_task(struct task_struct *p)
8520 {
8521         unsigned long free = 0;
8522         int ppid;
8523
8524         if (!try_get_task_stack(p))
8525                 return;
8526
8527         pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8528
8529         if (task_is_running(p))
8530                 pr_cont("  running task    ");
8531 #ifdef CONFIG_DEBUG_STACK_USAGE
8532         free = stack_not_used(p);
8533 #endif
8534         ppid = 0;
8535         rcu_read_lock();
8536         if (pid_alive(p))
8537                 ppid = task_pid_nr(rcu_dereference(p->real_parent));
8538         rcu_read_unlock();
8539         pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8540                 free, task_pid_nr(p), ppid,
8541                 (unsigned long)task_thread_info(p)->flags);
8542
8543         print_worker_info(KERN_INFO, p);
8544         print_stop_info(KERN_INFO, p);
8545         show_stack(p, NULL, KERN_INFO);
8546         put_task_stack(p);
8547 }
8548 EXPORT_SYMBOL_GPL(sched_show_task);
8549
8550 static inline bool
8551 state_filter_match(unsigned long state_filter, struct task_struct *p)
8552 {
8553         unsigned int state = READ_ONCE(p->__state);
8554
8555         /* no filter, everything matches */
8556         if (!state_filter)
8557                 return true;
8558
8559         /* filter, but doesn't match */
8560         if (!(state & state_filter))
8561                 return false;
8562
8563         /*
8564          * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8565          * TASK_KILLABLE).
8566          */
8567         if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8568                 return false;
8569
8570         return true;
8571 }
8572
8573
8574 void show_state_filter(unsigned int state_filter)
8575 {
8576         struct task_struct *g, *p;
8577
8578         rcu_read_lock();
8579         for_each_process_thread(g, p) {
8580                 /*
8581                  * reset the NMI-timeout, listing all files on a slow
8582                  * console might take a lot of time:
8583                  * Also, reset softlockup watchdogs on all CPUs, because
8584                  * another CPU might be blocked waiting for us to process
8585                  * an IPI.
8586                  */
8587                 touch_nmi_watchdog();
8588                 touch_all_softlockup_watchdogs();
8589                 if (state_filter_match(state_filter, p))
8590                         sched_show_task(p);
8591         }
8592
8593 #ifdef CONFIG_SCHED_DEBUG
8594         if (!state_filter)
8595                 sysrq_sched_debug_show();
8596 #endif
8597         rcu_read_unlock();
8598         /*
8599          * Only show locks if all tasks are dumped:
8600          */
8601         if (!state_filter)
8602                 debug_show_all_locks();
8603 }
8604
8605 /**
8606  * init_idle - set up an idle thread for a given CPU
8607  * @idle: task in question
8608  * @cpu: CPU the idle task belongs to
8609  *
8610  * NOTE: this function does not set the idle thread's NEED_RESCHED
8611  * flag, to make booting more robust.
8612  */
8613 void __init init_idle(struct task_struct *idle, int cpu)
8614 {
8615         struct rq *rq = cpu_rq(cpu);
8616         unsigned long flags;
8617
8618         __sched_fork(0, idle);
8619
8620         /*
8621          * The idle task doesn't need the kthread struct to function, but it
8622          * is dressed up as a per-CPU kthread and thus needs to play the part
8623          * if we want to avoid special-casing it in code that deals with per-CPU
8624          * kthreads.
8625          */
8626         set_kthread_struct(idle);
8627
8628         raw_spin_lock_irqsave(&idle->pi_lock, flags);
8629         raw_spin_rq_lock(rq);
8630
8631         idle->__state = TASK_RUNNING;
8632         idle->se.exec_start = sched_clock();
8633         /*
8634          * PF_KTHREAD should already be set at this point; regardless, make it
8635          * look like a proper per-CPU kthread.
8636          */
8637         idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8638         kthread_set_per_cpu(idle, cpu);
8639
8640         scs_task_reset(idle);
8641         kasan_unpoison_task_stack(idle);
8642
8643 #ifdef CONFIG_SMP
8644         /*
8645          * It's possible that init_idle() gets called multiple times on a task,
8646          * in that case do_set_cpus_allowed() will not do the right thing.
8647          *
8648          * And since this is boot we can forgo the serialization.
8649          */
8650         set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8651 #endif
8652         /*
8653          * We're having a chicken and egg problem, even though we are
8654          * holding rq->lock, the CPU isn't yet set to this CPU so the
8655          * lockdep check in task_group() will fail.
8656          *
8657          * Similar case to sched_fork(). / Alternatively we could
8658          * use task_rq_lock() here and obtain the other rq->lock.
8659          *
8660          * Silence PROVE_RCU
8661          */
8662         rcu_read_lock();
8663         __set_task_cpu(idle, cpu);
8664         rcu_read_unlock();
8665
8666         rq->idle = idle;
8667         rcu_assign_pointer(rq->curr, idle);
8668         idle->on_rq = TASK_ON_RQ_QUEUED;
8669 #ifdef CONFIG_SMP
8670         idle->on_cpu = 1;
8671 #endif
8672         raw_spin_rq_unlock(rq);
8673         raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8674
8675         /* Set the preempt count _outside_ the spinlocks! */
8676         init_idle_preempt_count(idle, cpu);
8677
8678         /*
8679          * The idle tasks have their own, simple scheduling class:
8680          */
8681         idle->sched_class = &idle_sched_class;
8682         ftrace_graph_init_idle_task(idle, cpu);
8683         vtime_init_idle(idle, cpu);
8684 #ifdef CONFIG_SMP
8685         sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8686 #endif
8687 }
8688
8689 #ifdef CONFIG_SMP
8690
8691 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8692                               const struct cpumask *trial)
8693 {
8694         int ret = 1;
8695
8696         if (!cpumask_weight(cur))
8697                 return ret;
8698
8699         ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8700
8701         return ret;
8702 }
8703
8704 int task_can_attach(struct task_struct *p,
8705                     const struct cpumask *cs_cpus_allowed)
8706 {
8707         int ret = 0;
8708
8709         /*
8710          * Kthreads which disallow setaffinity shouldn't be moved
8711          * to a new cpuset; we don't want to change their CPU
8712          * affinity and isolating such threads by their set of
8713          * allowed nodes is unnecessary.  Thus, cpusets are not
8714          * applicable for such threads.  This prevents checking for
8715          * success of set_cpus_allowed_ptr() on all attached tasks
8716          * before cpus_mask may be changed.
8717          */
8718         if (p->flags & PF_NO_SETAFFINITY) {
8719                 ret = -EINVAL;
8720                 goto out;
8721         }
8722
8723         if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8724                                               cs_cpus_allowed))
8725                 ret = dl_task_can_attach(p, cs_cpus_allowed);
8726
8727 out:
8728         return ret;
8729 }
8730
8731 bool sched_smp_initialized __read_mostly;
8732
8733 #ifdef CONFIG_NUMA_BALANCING
8734 /* Migrate current task p to target_cpu */
8735 int migrate_task_to(struct task_struct *p, int target_cpu)
8736 {
8737         struct migration_arg arg = { p, target_cpu };
8738         int curr_cpu = task_cpu(p);
8739
8740         if (curr_cpu == target_cpu)
8741                 return 0;
8742
8743         if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8744                 return -EINVAL;
8745
8746         /* TODO: This is not properly updating schedstats */
8747
8748         trace_sched_move_numa(p, curr_cpu, target_cpu);
8749         return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8750 }
8751
8752 /*
8753  * Requeue a task on a given node and accurately track the number of NUMA
8754  * tasks on the runqueues
8755  */
8756 void sched_setnuma(struct task_struct *p, int nid)
8757 {
8758         bool queued, running;
8759         struct rq_flags rf;
8760         struct rq *rq;
8761
8762         rq = task_rq_lock(p, &rf);
8763         queued = task_on_rq_queued(p);
8764         running = task_current(rq, p);
8765
8766         if (queued)
8767                 dequeue_task(rq, p, DEQUEUE_SAVE);
8768         if (running)
8769                 put_prev_task(rq, p);
8770
8771         p->numa_preferred_nid = nid;
8772
8773         if (queued)
8774                 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8775         if (running)
8776                 set_next_task(rq, p);
8777         task_rq_unlock(rq, p, &rf);
8778 }
8779 #endif /* CONFIG_NUMA_BALANCING */
8780
8781 #ifdef CONFIG_HOTPLUG_CPU
8782 /*
8783  * Ensure that the idle task is using init_mm right before its CPU goes
8784  * offline.
8785  */
8786 void idle_task_exit(void)
8787 {
8788         struct mm_struct *mm = current->active_mm;
8789
8790         BUG_ON(cpu_online(smp_processor_id()));
8791         BUG_ON(current != this_rq()->idle);
8792
8793         if (mm != &init_mm) {
8794                 switch_mm(mm, &init_mm, current);
8795                 finish_arch_post_lock_switch();
8796         }
8797
8798         scs_task_reset(current);
8799         /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8800 }
8801
8802 static int __balance_push_cpu_stop(void *arg)
8803 {
8804         struct task_struct *p = arg;
8805         struct rq *rq = this_rq();
8806         struct rq_flags rf;
8807         int cpu;
8808
8809         raw_spin_lock_irq(&p->pi_lock);
8810         rq_lock(rq, &rf);
8811
8812         update_rq_clock(rq);
8813
8814         if (task_rq(p) == rq && task_on_rq_queued(p)) {
8815                 cpu = select_fallback_rq(rq->cpu, p);
8816                 rq = __migrate_task(rq, &rf, p, cpu);
8817         }
8818
8819         rq_unlock(rq, &rf);
8820         raw_spin_unlock_irq(&p->pi_lock);
8821
8822         put_task_struct(p);
8823
8824         return 0;
8825 }
8826
8827 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8828
8829 /*
8830  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8831  *
8832  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8833  * effective when the hotplug motion is down.
8834  */
8835 static void balance_push(struct rq *rq)
8836 {
8837         struct task_struct *push_task = rq->curr;
8838
8839         lockdep_assert_rq_held(rq);
8840
8841         /*
8842          * Ensure the thing is persistent until balance_push_set(.on = false);
8843          */
8844         rq->balance_callback = &balance_push_callback;
8845
8846         /*
8847          * Only active while going offline and when invoked on the outgoing
8848          * CPU.
8849          */
8850         if (!cpu_dying(rq->cpu) || rq != this_rq())
8851                 return;
8852
8853         /*
8854          * Both the cpu-hotplug and stop task are in this case and are
8855          * required to complete the hotplug process.
8856          */
8857         if (kthread_is_per_cpu(push_task) ||
8858             is_migration_disabled(push_task)) {
8859
8860                 /*
8861                  * If this is the idle task on the outgoing CPU try to wake
8862                  * up the hotplug control thread which might wait for the
8863                  * last task to vanish. The rcuwait_active() check is
8864                  * accurate here because the waiter is pinned on this CPU
8865                  * and can't obviously be running in parallel.
8866                  *
8867                  * On RT kernels this also has to check whether there are
8868                  * pinned and scheduled out tasks on the runqueue. They
8869                  * need to leave the migrate disabled section first.
8870                  */
8871                 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8872                     rcuwait_active(&rq->hotplug_wait)) {
8873                         raw_spin_rq_unlock(rq);
8874                         rcuwait_wake_up(&rq->hotplug_wait);
8875                         raw_spin_rq_lock(rq);
8876                 }
8877                 return;
8878         }
8879
8880         get_task_struct(push_task);
8881         /*
8882          * Temporarily drop rq->lock such that we can wake-up the stop task.
8883          * Both preemption and IRQs are still disabled.
8884          */
8885         raw_spin_rq_unlock(rq);
8886         stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8887                             this_cpu_ptr(&push_work));
8888         /*
8889          * At this point need_resched() is true and we'll take the loop in
8890          * schedule(). The next pick is obviously going to be the stop task
8891          * which kthread_is_per_cpu() and will push this task away.
8892          */
8893         raw_spin_rq_lock(rq);
8894 }
8895
8896 static void balance_push_set(int cpu, bool on)
8897 {
8898         struct rq *rq = cpu_rq(cpu);
8899         struct rq_flags rf;
8900
8901         rq_lock_irqsave(rq, &rf);
8902         if (on) {
8903                 WARN_ON_ONCE(rq->balance_callback);
8904                 rq->balance_callback = &balance_push_callback;
8905         } else if (rq->balance_callback == &balance_push_callback) {
8906                 rq->balance_callback = NULL;
8907         }
8908         rq_unlock_irqrestore(rq, &rf);
8909 }
8910
8911 /*
8912  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8913  * inactive. All tasks which are not per CPU kernel threads are either
8914  * pushed off this CPU now via balance_push() or placed on a different CPU
8915  * during wakeup. Wait until the CPU is quiescent.
8916  */
8917 static void balance_hotplug_wait(void)
8918 {
8919         struct rq *rq = this_rq();
8920
8921         rcuwait_wait_event(&rq->hotplug_wait,
8922                            rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8923                            TASK_UNINTERRUPTIBLE);
8924 }
8925
8926 #else
8927
8928 static inline void balance_push(struct rq *rq)
8929 {
8930 }
8931
8932 static inline void balance_push_set(int cpu, bool on)
8933 {
8934 }
8935
8936 static inline void balance_hotplug_wait(void)
8937 {
8938 }
8939
8940 #endif /* CONFIG_HOTPLUG_CPU */
8941
8942 void set_rq_online(struct rq *rq)
8943 {
8944         if (!rq->online) {
8945                 const struct sched_class *class;
8946
8947                 cpumask_set_cpu(rq->cpu, rq->rd->online);
8948                 rq->online = 1;
8949
8950                 for_each_class(class) {
8951                         if (class->rq_online)
8952                                 class->rq_online(rq);
8953                 }
8954         }
8955 }
8956
8957 void set_rq_offline(struct rq *rq)
8958 {
8959         if (rq->online) {
8960                 const struct sched_class *class;
8961
8962                 for_each_class(class) {
8963                         if (class->rq_offline)
8964                                 class->rq_offline(rq);
8965                 }
8966
8967                 cpumask_clear_cpu(rq->cpu, rq->rd->online);
8968                 rq->online = 0;
8969         }
8970 }
8971
8972 /*
8973  * used to mark begin/end of suspend/resume:
8974  */
8975 static int num_cpus_frozen;
8976
8977 /*
8978  * Update cpusets according to cpu_active mask.  If cpusets are
8979  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8980  * around partition_sched_domains().
8981  *
8982  * If we come here as part of a suspend/resume, don't touch cpusets because we
8983  * want to restore it back to its original state upon resume anyway.
8984  */
8985 static void cpuset_cpu_active(void)
8986 {
8987         if (cpuhp_tasks_frozen) {
8988                 /*
8989                  * num_cpus_frozen tracks how many CPUs are involved in suspend
8990                  * resume sequence. As long as this is not the last online
8991                  * operation in the resume sequence, just build a single sched
8992                  * domain, ignoring cpusets.
8993                  */
8994                 partition_sched_domains(1, NULL, NULL);
8995                 if (--num_cpus_frozen)
8996                         return;
8997                 /*
8998                  * This is the last CPU online operation. So fall through and
8999                  * restore the original sched domains by considering the
9000                  * cpuset configurations.
9001                  */
9002                 cpuset_force_rebuild();
9003         }
9004         cpuset_update_active_cpus();
9005 }
9006
9007 static int cpuset_cpu_inactive(unsigned int cpu)
9008 {
9009         if (!cpuhp_tasks_frozen) {
9010                 if (dl_cpu_busy(cpu))
9011                         return -EBUSY;
9012                 cpuset_update_active_cpus();
9013         } else {
9014                 num_cpus_frozen++;
9015                 partition_sched_domains(1, NULL, NULL);
9016         }
9017         return 0;
9018 }
9019
9020 int sched_cpu_activate(unsigned int cpu)
9021 {
9022         struct rq *rq = cpu_rq(cpu);
9023         struct rq_flags rf;
9024
9025         /*
9026          * Clear the balance_push callback and prepare to schedule
9027          * regular tasks.
9028          */
9029         balance_push_set(cpu, false);
9030
9031 #ifdef CONFIG_SCHED_SMT
9032         /*
9033          * When going up, increment the number of cores with SMT present.
9034          */
9035         if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9036                 static_branch_inc_cpuslocked(&sched_smt_present);
9037 #endif
9038         set_cpu_active(cpu, true);
9039
9040         if (sched_smp_initialized) {
9041                 sched_domains_numa_masks_set(cpu);
9042                 cpuset_cpu_active();
9043         }
9044
9045         /*
9046          * Put the rq online, if not already. This happens:
9047          *
9048          * 1) In the early boot process, because we build the real domains
9049          *    after all CPUs have been brought up.
9050          *
9051          * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9052          *    domains.
9053          */
9054         rq_lock_irqsave(rq, &rf);
9055         if (rq->rd) {
9056                 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9057                 set_rq_online(rq);
9058         }
9059         rq_unlock_irqrestore(rq, &rf);
9060
9061         return 0;
9062 }
9063
9064 int sched_cpu_deactivate(unsigned int cpu)
9065 {
9066         struct rq *rq = cpu_rq(cpu);
9067         struct rq_flags rf;
9068         int ret;
9069
9070         /*
9071          * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9072          * load balancing when not active
9073          */
9074         nohz_balance_exit_idle(rq);
9075
9076         set_cpu_active(cpu, false);
9077
9078         /*
9079          * From this point forward, this CPU will refuse to run any task that
9080          * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9081          * push those tasks away until this gets cleared, see
9082          * sched_cpu_dying().
9083          */
9084         balance_push_set(cpu, true);
9085
9086         /*
9087          * We've cleared cpu_active_mask / set balance_push, wait for all
9088          * preempt-disabled and RCU users of this state to go away such that
9089          * all new such users will observe it.
9090          *
9091          * Specifically, we rely on ttwu to no longer target this CPU, see
9092          * ttwu_queue_cond() and is_cpu_allowed().
9093          *
9094          * Do sync before park smpboot threads to take care the rcu boost case.
9095          */
9096         synchronize_rcu();
9097
9098         rq_lock_irqsave(rq, &rf);
9099         if (rq->rd) {
9100                 update_rq_clock(rq);
9101                 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9102                 set_rq_offline(rq);
9103         }
9104         rq_unlock_irqrestore(rq, &rf);
9105
9106 #ifdef CONFIG_SCHED_SMT
9107         /*
9108          * When going down, decrement the number of cores with SMT present.
9109          */
9110         if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9111                 static_branch_dec_cpuslocked(&sched_smt_present);
9112
9113         sched_core_cpu_deactivate(cpu);
9114 #endif
9115
9116         if (!sched_smp_initialized)
9117                 return 0;
9118
9119         ret = cpuset_cpu_inactive(cpu);
9120         if (ret) {
9121                 balance_push_set(cpu, false);
9122                 set_cpu_active(cpu, true);
9123                 return ret;
9124         }
9125         sched_domains_numa_masks_clear(cpu);
9126         return 0;
9127 }
9128
9129 static void sched_rq_cpu_starting(unsigned int cpu)
9130 {
9131         struct rq *rq = cpu_rq(cpu);
9132
9133         rq->calc_load_update = calc_load_update;
9134         update_max_interval();
9135 }
9136
9137 int sched_cpu_starting(unsigned int cpu)
9138 {
9139         sched_core_cpu_starting(cpu);
9140         sched_rq_cpu_starting(cpu);
9141         sched_tick_start(cpu);
9142         return 0;
9143 }
9144
9145 #ifdef CONFIG_HOTPLUG_CPU
9146
9147 /*
9148  * Invoked immediately before the stopper thread is invoked to bring the
9149  * CPU down completely. At this point all per CPU kthreads except the
9150  * hotplug thread (current) and the stopper thread (inactive) have been
9151  * either parked or have been unbound from the outgoing CPU. Ensure that
9152  * any of those which might be on the way out are gone.
9153  *
9154  * If after this point a bound task is being woken on this CPU then the
9155  * responsible hotplug callback has failed to do it's job.
9156  * sched_cpu_dying() will catch it with the appropriate fireworks.
9157  */
9158 int sched_cpu_wait_empty(unsigned int cpu)
9159 {
9160         balance_hotplug_wait();
9161         return 0;
9162 }
9163
9164 /*
9165  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9166  * might have. Called from the CPU stopper task after ensuring that the
9167  * stopper is the last running task on the CPU, so nr_active count is
9168  * stable. We need to take the teardown thread which is calling this into
9169  * account, so we hand in adjust = 1 to the load calculation.
9170  *
9171  * Also see the comment "Global load-average calculations".
9172  */
9173 static void calc_load_migrate(struct rq *rq)
9174 {
9175         long delta = calc_load_fold_active(rq, 1);
9176
9177         if (delta)
9178                 atomic_long_add(delta, &calc_load_tasks);
9179 }
9180
9181 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9182 {
9183         struct task_struct *g, *p;
9184         int cpu = cpu_of(rq);
9185
9186         lockdep_assert_rq_held(rq);
9187
9188         printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9189         for_each_process_thread(g, p) {
9190                 if (task_cpu(p) != cpu)
9191                         continue;
9192
9193                 if (!task_on_rq_queued(p))
9194                         continue;
9195
9196                 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9197         }
9198 }
9199
9200 int sched_cpu_dying(unsigned int cpu)
9201 {
9202         struct rq *rq = cpu_rq(cpu);
9203         struct rq_flags rf;
9204
9205         /* Handle pending wakeups and then migrate everything off */
9206         sched_tick_stop(cpu);
9207
9208         rq_lock_irqsave(rq, &rf);
9209         if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9210                 WARN(true, "Dying CPU not properly vacated!");
9211                 dump_rq_tasks(rq, KERN_WARNING);
9212         }
9213         rq_unlock_irqrestore(rq, &rf);
9214
9215         calc_load_migrate(rq);
9216         update_max_interval();
9217         hrtick_clear(rq);
9218         sched_core_cpu_dying(cpu);
9219         return 0;
9220 }
9221 #endif
9222
9223 void __init sched_init_smp(void)
9224 {
9225         sched_init_numa();
9226
9227         /*
9228          * There's no userspace yet to cause hotplug operations; hence all the
9229          * CPU masks are stable and all blatant races in the below code cannot
9230          * happen.
9231          */
9232         mutex_lock(&sched_domains_mutex);
9233         sched_init_domains(cpu_active_mask);
9234         mutex_unlock(&sched_domains_mutex);
9235
9236         /* Move init over to a non-isolated CPU */
9237         if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
9238                 BUG();
9239         current->flags &= ~PF_NO_SETAFFINITY;
9240         sched_init_granularity();
9241
9242         init_sched_rt_class();
9243         init_sched_dl_class();
9244
9245         sched_smp_initialized = true;
9246 }
9247
9248 static int __init migration_init(void)
9249 {
9250         sched_cpu_starting(smp_processor_id());
9251         return 0;
9252 }
9253 early_initcall(migration_init);
9254
9255 #else
9256 void __init sched_init_smp(void)
9257 {
9258         sched_init_granularity();
9259 }
9260 #endif /* CONFIG_SMP */
9261
9262 int in_sched_functions(unsigned long addr)
9263 {
9264         return in_lock_functions(addr) ||
9265                 (addr >= (unsigned long)__sched_text_start
9266                 && addr < (unsigned long)__sched_text_end);
9267 }
9268
9269 #ifdef CONFIG_CGROUP_SCHED
9270 /*
9271  * Default task group.
9272  * Every task in system belongs to this group at bootup.
9273  */
9274 struct task_group root_task_group;
9275 LIST_HEAD(task_groups);
9276
9277 /* Cacheline aligned slab cache for task_group */
9278 static struct kmem_cache *task_group_cache __read_mostly;
9279 #endif
9280
9281 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9282 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
9283
9284 void __init sched_init(void)
9285 {
9286         unsigned long ptr = 0;
9287         int i;
9288
9289         /* Make sure the linker didn't screw up */
9290         BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
9291                &fair_sched_class + 1 != &rt_sched_class ||
9292                &rt_sched_class + 1   != &dl_sched_class);
9293 #ifdef CONFIG_SMP
9294         BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
9295 #endif
9296
9297         wait_bit_init();
9298
9299 #ifdef CONFIG_FAIR_GROUP_SCHED
9300         ptr += 2 * nr_cpu_ids * sizeof(void **);
9301 #endif
9302 #ifdef CONFIG_RT_GROUP_SCHED
9303         ptr += 2 * nr_cpu_ids * sizeof(void **);
9304 #endif
9305         if (ptr) {
9306                 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9307
9308 #ifdef CONFIG_FAIR_GROUP_SCHED
9309                 root_task_group.se = (struct sched_entity **)ptr;
9310                 ptr += nr_cpu_ids * sizeof(void **);
9311
9312                 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9313                 ptr += nr_cpu_ids * sizeof(void **);
9314
9315                 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9316                 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9317 #endif /* CONFIG_FAIR_GROUP_SCHED */
9318 #ifdef CONFIG_RT_GROUP_SCHED
9319                 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9320                 ptr += nr_cpu_ids * sizeof(void **);
9321
9322                 root_task_group.rt_rq = (struct rt_rq **)ptr;
9323                 ptr += nr_cpu_ids * sizeof(void **);
9324
9325 #endif /* CONFIG_RT_GROUP_SCHED */
9326         }
9327 #ifdef CONFIG_CPUMASK_OFFSTACK
9328         for_each_possible_cpu(i) {
9329                 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9330                         cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9331                 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9332                         cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9333         }
9334 #endif /* CONFIG_CPUMASK_OFFSTACK */
9335
9336         init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9337         init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
9338
9339 #ifdef CONFIG_SMP
9340         init_defrootdomain();
9341 #endif
9342
9343 #ifdef CONFIG_RT_GROUP_SCHED
9344         init_rt_bandwidth(&root_task_group.rt_bandwidth,
9345                         global_rt_period(), global_rt_runtime());
9346 #endif /* CONFIG_RT_GROUP_SCHED */
9347
9348 #ifdef CONFIG_CGROUP_SCHED
9349         task_group_cache = KMEM_CACHE(task_group, 0);
9350
9351         list_add(&root_task_group.list, &task_groups);
9352         INIT_LIST_HEAD(&root_task_group.children);
9353         INIT_LIST_HEAD(&root_task_group.siblings);
9354         autogroup_init(&init_task);
9355 #endif /* CONFIG_CGROUP_SCHED */
9356
9357         for_each_possible_cpu(i) {
9358                 struct rq *rq;
9359
9360                 rq = cpu_rq(i);
9361                 raw_spin_lock_init(&rq->__lock);
9362                 rq->nr_running = 0;
9363                 rq->calc_load_active = 0;
9364                 rq->calc_load_update = jiffies + LOAD_FREQ;
9365                 init_cfs_rq(&rq->cfs);
9366                 init_rt_rq(&rq->rt);
9367                 init_dl_rq(&rq->dl);
9368 #ifdef CONFIG_FAIR_GROUP_SCHED
9369                 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9370                 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9371                 /*
9372                  * How much CPU bandwidth does root_task_group get?
9373                  *
9374                  * In case of task-groups formed thr' the cgroup filesystem, it
9375                  * gets 100% of the CPU resources in the system. This overall
9376                  * system CPU resource is divided among the tasks of
9377                  * root_task_group and its child task-groups in a fair manner,
9378                  * based on each entity's (task or task-group's) weight
9379                  * (se->load.weight).
9380                  *
9381                  * In other words, if root_task_group has 10 tasks of weight
9382                  * 1024) and two child groups A0 and A1 (of weight 1024 each),
9383                  * then A0's share of the CPU resource is:
9384                  *
9385                  *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9386                  *
9387                  * We achieve this by letting root_task_group's tasks sit
9388                  * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9389                  */
9390                 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9391 #endif /* CONFIG_FAIR_GROUP_SCHED */
9392
9393                 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9394 #ifdef CONFIG_RT_GROUP_SCHED
9395                 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9396 #endif
9397 #ifdef CONFIG_SMP
9398                 rq->sd = NULL;
9399                 rq->rd = NULL;
9400                 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9401                 rq->balance_callback = &balance_push_callback;
9402                 rq->active_balance = 0;
9403                 rq->next_balance = jiffies;
9404                 rq->push_cpu = 0;
9405                 rq->cpu = i;
9406                 rq->online = 0;
9407                 rq->idle_stamp = 0;
9408                 rq->avg_idle = 2*sysctl_sched_migration_cost;
9409                 rq->wake_stamp = jiffies;
9410                 rq->wake_avg_idle = rq->avg_idle;
9411                 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9412
9413                 INIT_LIST_HEAD(&rq->cfs_tasks);
9414
9415                 rq_attach_root(rq, &def_root_domain);
9416 #ifdef CONFIG_NO_HZ_COMMON
9417                 rq->last_blocked_load_update_tick = jiffies;
9418                 atomic_set(&rq->nohz_flags, 0);
9419
9420                 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9421 #endif
9422 #ifdef CONFIG_HOTPLUG_CPU
9423                 rcuwait_init(&rq->hotplug_wait);
9424 #endif
9425 #endif /* CONFIG_SMP */
9426                 hrtick_rq_init(rq);
9427                 atomic_set(&rq->nr_iowait, 0);
9428
9429 #ifdef CONFIG_SCHED_CORE
9430                 rq->core = rq;
9431                 rq->core_pick = NULL;
9432                 rq->core_enabled = 0;
9433                 rq->core_tree = RB_ROOT;
9434                 rq->core_forceidle = false;
9435
9436                 rq->core_cookie = 0UL;
9437 #endif
9438         }
9439
9440         set_load_weight(&init_task, false);
9441
9442         /*
9443          * The boot idle thread does lazy MMU switching as well:
9444          */
9445         mmgrab(&init_mm);
9446         enter_lazy_tlb(&init_mm, current);
9447
9448         /*
9449          * Make us the idle thread. Technically, schedule() should not be
9450          * called from this thread, however somewhere below it might be,
9451          * but because we are the idle thread, we just pick up running again
9452          * when this runqueue becomes "idle".
9453          */
9454         init_idle(current, smp_processor_id());
9455
9456         calc_load_update = jiffies + LOAD_FREQ;
9457
9458 #ifdef CONFIG_SMP
9459         idle_thread_set_boot_cpu();
9460         balance_push_set(smp_processor_id(), false);
9461 #endif
9462         init_sched_fair_class();
9463
9464         psi_init();
9465
9466         init_uclamp();
9467
9468         scheduler_running = 1;
9469 }
9470
9471 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9472 static inline int preempt_count_equals(int preempt_offset)
9473 {
9474         int nested = preempt_count() + rcu_preempt_depth();
9475
9476         return (nested == preempt_offset);
9477 }
9478
9479 void __might_sleep(const char *file, int line, int preempt_offset)
9480 {
9481         unsigned int state = get_current_state();
9482         /*
9483          * Blocking primitives will set (and therefore destroy) current->state,
9484          * since we will exit with TASK_RUNNING make sure we enter with it,
9485          * otherwise we will destroy state.
9486          */
9487         WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9488                         "do not call blocking ops when !TASK_RUNNING; "
9489                         "state=%x set at [<%p>] %pS\n", state,
9490                         (void *)current->task_state_change,
9491                         (void *)current->task_state_change);
9492
9493         ___might_sleep(file, line, preempt_offset);
9494 }
9495 EXPORT_SYMBOL(__might_sleep);
9496
9497 void ___might_sleep(const char *file, int line, int preempt_offset)
9498 {
9499         /* Ratelimiting timestamp: */
9500         static unsigned long prev_jiffy;
9501
9502         unsigned long preempt_disable_ip;
9503
9504         /* WARN_ON_ONCE() by default, no rate limit required: */
9505         rcu_sleep_check();
9506
9507         if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
9508              !is_idle_task(current) && !current->non_block_count) ||
9509             system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9510             oops_in_progress)
9511                 return;
9512
9513         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9514                 return;
9515         prev_jiffy = jiffies;
9516
9517         /* Save this before calling printk(), since that will clobber it: */
9518         preempt_disable_ip = get_preempt_disable_ip(current);
9519
9520         printk(KERN_ERR
9521                 "BUG: sleeping function called from invalid context at %s:%d\n",
9522                         file, line);
9523         printk(KERN_ERR
9524                 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9525                         in_atomic(), irqs_disabled(), current->non_block_count,
9526                         current->pid, current->comm);
9527
9528         if (task_stack_end_corrupted(current))
9529                 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9530
9531         debug_show_held_locks(current);
9532         if (irqs_disabled())
9533                 print_irqtrace_events(current);
9534         if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9535             && !preempt_count_equals(preempt_offset)) {
9536                 pr_err("Preemption disabled at:");
9537                 print_ip_sym(KERN_ERR, preempt_disable_ip);
9538         }
9539         dump_stack();
9540         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9541 }
9542 EXPORT_SYMBOL(___might_sleep);
9543
9544 void __cant_sleep(const char *file, int line, int preempt_offset)
9545 {
9546         static unsigned long prev_jiffy;
9547
9548         if (irqs_disabled())
9549                 return;
9550
9551         if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9552                 return;
9553
9554         if (preempt_count() > preempt_offset)
9555                 return;
9556
9557         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9558                 return;
9559         prev_jiffy = jiffies;
9560
9561         printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9562         printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9563                         in_atomic(), irqs_disabled(),
9564                         current->pid, current->comm);
9565
9566         debug_show_held_locks(current);
9567         dump_stack();
9568         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9569 }
9570 EXPORT_SYMBOL_GPL(__cant_sleep);
9571
9572 #ifdef CONFIG_SMP
9573 void __cant_migrate(const char *file, int line)
9574 {
9575         static unsigned long prev_jiffy;
9576
9577         if (irqs_disabled())
9578                 return;
9579
9580         if (is_migration_disabled(current))
9581                 return;
9582
9583         if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9584                 return;
9585
9586         if (preempt_count() > 0)
9587                 return;
9588
9589         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9590                 return;
9591         prev_jiffy = jiffies;
9592
9593         pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9594         pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9595                in_atomic(), irqs_disabled(), is_migration_disabled(current),
9596                current->pid, current->comm);
9597
9598         debug_show_held_locks(current);
9599         dump_stack();
9600         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9601 }
9602 EXPORT_SYMBOL_GPL(__cant_migrate);
9603 #endif
9604 #endif
9605
9606 #ifdef CONFIG_MAGIC_SYSRQ
9607 void normalize_rt_tasks(void)
9608 {
9609         struct task_struct *g, *p;
9610         struct sched_attr attr = {
9611                 .sched_policy = SCHED_NORMAL,
9612         };
9613
9614         read_lock(&tasklist_lock);
9615         for_each_process_thread(g, p) {
9616                 /*
9617                  * Only normalize user tasks:
9618                  */
9619                 if (p->flags & PF_KTHREAD)
9620                         continue;
9621
9622                 p->se.exec_start = 0;
9623                 schedstat_set(p->se.statistics.wait_start,  0);
9624                 schedstat_set(p->se.statistics.sleep_start, 0);
9625                 schedstat_set(p->se.statistics.block_start, 0);
9626
9627                 if (!dl_task(p) && !rt_task(p)) {
9628                         /*
9629                          * Renice negative nice level userspace
9630                          * tasks back to 0:
9631                          */
9632                         if (task_nice(p) < 0)
9633                                 set_user_nice(p, 0);
9634                         continue;
9635                 }
9636
9637                 __sched_setscheduler(p, &attr, false, false);
9638         }
9639         read_unlock(&tasklist_lock);
9640 }
9641
9642 #endif /* CONFIG_MAGIC_SYSRQ */
9643
9644 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9645 /*
9646  * These functions are only useful for the IA64 MCA handling, or kdb.
9647  *
9648  * They can only be called when the whole system has been
9649  * stopped - every CPU needs to be quiescent, and no scheduling
9650  * activity can take place. Using them for anything else would
9651  * be a serious bug, and as a result, they aren't even visible
9652  * under any other configuration.
9653  */
9654
9655 /**
9656  * curr_task - return the current task for a given CPU.
9657  * @cpu: the processor in question.
9658  *
9659  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9660  *
9661  * Return: The current task for @cpu.
9662  */
9663 struct task_struct *curr_task(int cpu)
9664 {
9665         return cpu_curr(cpu);
9666 }
9667
9668 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9669
9670 #ifdef CONFIG_IA64
9671 /**
9672  * ia64_set_curr_task - set the current task for a given CPU.
9673  * @cpu: the processor in question.
9674  * @p: the task pointer to set.
9675  *
9676  * Description: This function must only be used when non-maskable interrupts
9677  * are serviced on a separate stack. It allows the architecture to switch the
9678  * notion of the current task on a CPU in a non-blocking manner. This function
9679  * must be called with all CPU's synchronized, and interrupts disabled, the
9680  * and caller must save the original value of the current task (see
9681  * curr_task() above) and restore that value before reenabling interrupts and
9682  * re-starting the system.
9683  *
9684  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9685  */
9686 void ia64_set_curr_task(int cpu, struct task_struct *p)
9687 {
9688         cpu_curr(cpu) = p;
9689 }
9690
9691 #endif
9692
9693 #ifdef CONFIG_CGROUP_SCHED
9694 /* task_group_lock serializes the addition/removal of task groups */
9695 static DEFINE_SPINLOCK(task_group_lock);
9696
9697 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9698                                             struct task_group *parent)
9699 {
9700 #ifdef CONFIG_UCLAMP_TASK_GROUP
9701         enum uclamp_id clamp_id;
9702
9703         for_each_clamp_id(clamp_id) {
9704                 uclamp_se_set(&tg->uclamp_req[clamp_id],
9705                               uclamp_none(clamp_id), false);
9706                 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9707         }
9708 #endif
9709 }
9710
9711 static void sched_free_group(struct task_group *tg)
9712 {
9713         free_fair_sched_group(tg);
9714         free_rt_sched_group(tg);
9715         autogroup_free(tg);
9716         kmem_cache_free(task_group_cache, tg);
9717 }
9718
9719 /* allocate runqueue etc for a new task group */
9720 struct task_group *sched_create_group(struct task_group *parent)
9721 {
9722         struct task_group *tg;
9723
9724         tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9725         if (!tg)
9726                 return ERR_PTR(-ENOMEM);
9727
9728         if (!alloc_fair_sched_group(tg, parent))
9729                 goto err;
9730
9731         if (!alloc_rt_sched_group(tg, parent))
9732                 goto err;
9733
9734         alloc_uclamp_sched_group(tg, parent);
9735
9736         return tg;
9737
9738 err:
9739         sched_free_group(tg);
9740         return ERR_PTR(-ENOMEM);
9741 }
9742
9743 void sched_online_group(struct task_group *tg, struct task_group *parent)
9744 {
9745         unsigned long flags;
9746
9747         spin_lock_irqsave(&task_group_lock, flags);
9748         list_add_rcu(&tg->list, &task_groups);
9749
9750         /* Root should already exist: */
9751         WARN_ON(!parent);
9752
9753         tg->parent = parent;
9754         INIT_LIST_HEAD(&tg->children);
9755         list_add_rcu(&tg->siblings, &parent->children);
9756         spin_unlock_irqrestore(&task_group_lock, flags);
9757
9758         online_fair_sched_group(tg);
9759 }
9760
9761 /* rcu callback to free various structures associated with a task group */
9762 static void sched_free_group_rcu(struct rcu_head *rhp)
9763 {
9764         /* Now it should be safe to free those cfs_rqs: */
9765         sched_free_group(container_of(rhp, struct task_group, rcu));
9766 }
9767
9768 void sched_destroy_group(struct task_group *tg)
9769 {
9770         /* Wait for possible concurrent references to cfs_rqs complete: */
9771         call_rcu(&tg->rcu, sched_free_group_rcu);
9772 }
9773
9774 void sched_offline_group(struct task_group *tg)
9775 {
9776         unsigned long flags;
9777
9778         /* End participation in shares distribution: */
9779         unregister_fair_sched_group(tg);
9780
9781         spin_lock_irqsave(&task_group_lock, flags);
9782         list_del_rcu(&tg->list);
9783         list_del_rcu(&tg->siblings);
9784         spin_unlock_irqrestore(&task_group_lock, flags);
9785 }
9786
9787 static void sched_change_group(struct task_struct *tsk, int type)
9788 {
9789         struct task_group *tg;
9790
9791         /*
9792          * All callers are synchronized by task_rq_lock(); we do not use RCU
9793          * which is pointless here. Thus, we pass "true" to task_css_check()
9794          * to prevent lockdep warnings.
9795          */
9796         tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9797                           struct task_group, css);
9798         tg = autogroup_task_group(tsk, tg);
9799         tsk->sched_task_group = tg;
9800
9801 #ifdef CONFIG_FAIR_GROUP_SCHED
9802         if (tsk->sched_class->task_change_group)
9803                 tsk->sched_class->task_change_group(tsk, type);
9804         else
9805 #endif
9806                 set_task_rq(tsk, task_cpu(tsk));
9807 }
9808
9809 /*
9810  * Change task's runqueue when it moves between groups.
9811  *
9812  * The caller of this function should have put the task in its new group by
9813  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9814  * its new group.
9815  */
9816 void sched_move_task(struct task_struct *tsk)
9817 {
9818         int queued, running, queue_flags =
9819                 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9820         struct rq_flags rf;
9821         struct rq *rq;
9822
9823         rq = task_rq_lock(tsk, &rf);
9824         update_rq_clock(rq);
9825
9826         running = task_current(rq, tsk);
9827         queued = task_on_rq_queued(tsk);
9828
9829         if (queued)
9830                 dequeue_task(rq, tsk, queue_flags);
9831         if (running)
9832                 put_prev_task(rq, tsk);
9833
9834         sched_change_group(tsk, TASK_MOVE_GROUP);
9835
9836         if (queued)
9837                 enqueue_task(rq, tsk, queue_flags);
9838         if (running) {
9839                 set_next_task(rq, tsk);
9840                 /*
9841                  * After changing group, the running task may have joined a
9842                  * throttled one but it's still the running task. Trigger a
9843                  * resched to make sure that task can still run.
9844                  */
9845                 resched_curr(rq);
9846         }
9847
9848         task_rq_unlock(rq, tsk, &rf);
9849 }
9850
9851 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9852 {
9853         return css ? container_of(css, struct task_group, css) : NULL;
9854 }
9855
9856 static struct cgroup_subsys_state *
9857 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9858 {
9859         struct task_group *parent = css_tg(parent_css);
9860         struct task_group *tg;
9861
9862         if (!parent) {
9863                 /* This is early initialization for the top cgroup */
9864                 return &root_task_group.css;
9865         }
9866
9867         tg = sched_create_group(parent);
9868         if (IS_ERR(tg))
9869                 return ERR_PTR(-ENOMEM);
9870
9871         return &tg->css;
9872 }
9873
9874 /* Expose task group only after completing cgroup initialization */
9875 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9876 {
9877         struct task_group *tg = css_tg(css);
9878         struct task_group *parent = css_tg(css->parent);
9879
9880         if (parent)
9881                 sched_online_group(tg, parent);
9882
9883 #ifdef CONFIG_UCLAMP_TASK_GROUP
9884         /* Propagate the effective uclamp value for the new group */
9885         mutex_lock(&uclamp_mutex);
9886         rcu_read_lock();
9887         cpu_util_update_eff(css);
9888         rcu_read_unlock();
9889         mutex_unlock(&uclamp_mutex);
9890 #endif
9891
9892         return 0;
9893 }
9894
9895 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9896 {
9897         struct task_group *tg = css_tg(css);
9898
9899         sched_offline_group(tg);
9900 }
9901
9902 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9903 {
9904         struct task_group *tg = css_tg(css);
9905
9906         /*
9907          * Relies on the RCU grace period between css_released() and this.
9908          */
9909         sched_free_group(tg);
9910 }
9911
9912 /*
9913  * This is called before wake_up_new_task(), therefore we really only
9914  * have to set its group bits, all the other stuff does not apply.
9915  */
9916 static void cpu_cgroup_fork(struct task_struct *task)
9917 {
9918         struct rq_flags rf;
9919         struct rq *rq;
9920
9921         rq = task_rq_lock(task, &rf);
9922
9923         update_rq_clock(rq);
9924         sched_change_group(task, TASK_SET_GROUP);
9925
9926         task_rq_unlock(rq, task, &rf);
9927 }
9928
9929 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9930 {
9931         struct task_struct *task;
9932         struct cgroup_subsys_state *css;
9933         int ret = 0;
9934
9935         cgroup_taskset_for_each(task, css, tset) {
9936 #ifdef CONFIG_RT_GROUP_SCHED
9937                 if (!sched_rt_can_attach(css_tg(css), task))
9938                         return -EINVAL;
9939 #endif
9940                 /*
9941                  * Serialize against wake_up_new_task() such that if it's
9942                  * running, we're sure to observe its full state.
9943                  */
9944                 raw_spin_lock_irq(&task->pi_lock);
9945                 /*
9946                  * Avoid calling sched_move_task() before wake_up_new_task()
9947                  * has happened. This would lead to problems with PELT, due to
9948                  * move wanting to detach+attach while we're not attached yet.
9949                  */
9950                 if (READ_ONCE(task->__state) == TASK_NEW)
9951                         ret = -EINVAL;
9952                 raw_spin_unlock_irq(&task->pi_lock);
9953
9954                 if (ret)
9955                         break;
9956         }
9957         return ret;
9958 }
9959
9960 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9961 {
9962         struct task_struct *task;
9963         struct cgroup_subsys_state *css;
9964
9965         cgroup_taskset_for_each(task, css, tset)
9966                 sched_move_task(task);
9967 }
9968
9969 #ifdef CONFIG_UCLAMP_TASK_GROUP
9970 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9971 {
9972         struct cgroup_subsys_state *top_css = css;
9973         struct uclamp_se *uc_parent = NULL;
9974         struct uclamp_se *uc_se = NULL;
9975         unsigned int eff[UCLAMP_CNT];
9976         enum uclamp_id clamp_id;
9977         unsigned int clamps;
9978
9979         lockdep_assert_held(&uclamp_mutex);
9980         SCHED_WARN_ON(!rcu_read_lock_held());
9981
9982         css_for_each_descendant_pre(css, top_css) {
9983                 uc_parent = css_tg(css)->parent
9984                         ? css_tg(css)->parent->uclamp : NULL;
9985
9986                 for_each_clamp_id(clamp_id) {
9987                         /* Assume effective clamps matches requested clamps */
9988                         eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9989                         /* Cap effective clamps with parent's effective clamps */
9990                         if (uc_parent &&
9991                             eff[clamp_id] > uc_parent[clamp_id].value) {
9992                                 eff[clamp_id] = uc_parent[clamp_id].value;
9993                         }
9994                 }
9995                 /* Ensure protection is always capped by limit */
9996                 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9997
9998                 /* Propagate most restrictive effective clamps */
9999                 clamps = 0x0;
10000                 uc_se = css_tg(css)->uclamp;
10001                 for_each_clamp_id(clamp_id) {
10002                         if (eff[clamp_id] == uc_se[clamp_id].value)
10003                                 continue;
10004                         uc_se[clamp_id].value = eff[clamp_id];
10005                         uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10006                         clamps |= (0x1 << clamp_id);
10007                 }
10008                 if (!clamps) {
10009                         css = css_rightmost_descendant(css);
10010                         continue;
10011                 }
10012
10013                 /* Immediately update descendants RUNNABLE tasks */
10014                 uclamp_update_active_tasks(css);
10015         }
10016 }
10017
10018 /*
10019  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10020  * C expression. Since there is no way to convert a macro argument (N) into a
10021  * character constant, use two levels of macros.
10022  */
10023 #define _POW10(exp) ((unsigned int)1e##exp)
10024 #define POW10(exp) _POW10(exp)
10025
10026 struct uclamp_request {
10027 #define UCLAMP_PERCENT_SHIFT    2
10028 #define UCLAMP_PERCENT_SCALE    (100 * POW10(UCLAMP_PERCENT_SHIFT))
10029         s64 percent;
10030         u64 util;
10031         int ret;
10032 };
10033
10034 static inline struct uclamp_request
10035 capacity_from_percent(char *buf)
10036 {
10037         struct uclamp_request req = {
10038                 .percent = UCLAMP_PERCENT_SCALE,
10039                 .util = SCHED_CAPACITY_SCALE,
10040                 .ret = 0,
10041         };
10042
10043         buf = strim(buf);
10044         if (strcmp(buf, "max")) {
10045                 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10046                                              &req.percent);
10047                 if (req.ret)
10048                         return req;
10049                 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10050                         req.ret = -ERANGE;
10051                         return req;
10052                 }
10053
10054                 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10055                 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10056         }
10057
10058         return req;
10059 }
10060
10061 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10062                                 size_t nbytes, loff_t off,
10063                                 enum uclamp_id clamp_id)
10064 {
10065         struct uclamp_request req;
10066         struct task_group *tg;
10067
10068         req = capacity_from_percent(buf);
10069         if (req.ret)
10070                 return req.ret;
10071
10072         static_branch_enable(&sched_uclamp_used);
10073
10074         mutex_lock(&uclamp_mutex);
10075         rcu_read_lock();
10076
10077         tg = css_tg(of_css(of));
10078         if (tg->uclamp_req[clamp_id].value != req.util)
10079                 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10080
10081         /*
10082          * Because of not recoverable conversion rounding we keep track of the
10083          * exact requested value
10084          */
10085         tg->uclamp_pct[clamp_id] = req.percent;
10086
10087         /* Update effective clamps to track the most restrictive value */
10088         cpu_util_update_eff(of_css(of));
10089
10090         rcu_read_unlock();
10091         mutex_unlock(&uclamp_mutex);
10092
10093         return nbytes;
10094 }
10095
10096 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10097                                     char *buf, size_t nbytes,
10098                                     loff_t off)
10099 {
10100         return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10101 }
10102
10103 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10104                                     char *buf, size_t nbytes,
10105                                     loff_t off)
10106 {
10107         return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10108 }
10109
10110 static inline void cpu_uclamp_print(struct seq_file *sf,
10111                                     enum uclamp_id clamp_id)
10112 {
10113         struct task_group *tg;
10114         u64 util_clamp;
10115         u64 percent;
10116         u32 rem;
10117
10118         rcu_read_lock();
10119         tg = css_tg(seq_css(sf));
10120         util_clamp = tg->uclamp_req[clamp_id].value;
10121         rcu_read_unlock();
10122
10123         if (util_clamp == SCHED_CAPACITY_SCALE) {
10124                 seq_puts(sf, "max\n");
10125                 return;
10126         }
10127
10128         percent = tg->uclamp_pct[clamp_id];
10129         percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10130         seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10131 }
10132
10133 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10134 {
10135         cpu_uclamp_print(sf, UCLAMP_MIN);
10136         return 0;
10137 }
10138
10139 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10140 {
10141         cpu_uclamp_print(sf, UCLAMP_MAX);
10142         return 0;
10143 }
10144 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10145
10146 #ifdef CONFIG_FAIR_GROUP_SCHED
10147 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10148                                 struct cftype *cftype, u64 shareval)
10149 {
10150         if (shareval > scale_load_down(ULONG_MAX))
10151                 shareval = MAX_SHARES;
10152         return sched_group_set_shares(css_tg(css), scale_load(shareval));
10153 }
10154
10155 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10156                                struct cftype *cft)
10157 {
10158         struct task_group *tg = css_tg(css);
10159
10160         return (u64) scale_load_down(tg->shares);
10161 }
10162
10163 #ifdef CONFIG_CFS_BANDWIDTH
10164 static DEFINE_MUTEX(cfs_constraints_mutex);
10165
10166 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10167 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10168 /* More than 203 days if BW_SHIFT equals 20. */
10169 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10170
10171 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10172
10173 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10174                                 u64 burst)
10175 {
10176         int i, ret = 0, runtime_enabled, runtime_was_enabled;
10177         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10178
10179         if (tg == &root_task_group)
10180                 return -EINVAL;
10181
10182         /*
10183          * Ensure we have at some amount of bandwidth every period.  This is
10184          * to prevent reaching a state of large arrears when throttled via
10185          * entity_tick() resulting in prolonged exit starvation.
10186          */
10187         if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10188                 return -EINVAL;
10189
10190         /*
10191          * Likewise, bound things on the other side by preventing insane quota
10192          * periods.  This also allows us to normalize in computing quota
10193          * feasibility.
10194          */
10195         if (period > max_cfs_quota_period)
10196                 return -EINVAL;
10197
10198         /*
10199          * Bound quota to defend quota against overflow during bandwidth shift.
10200          */
10201         if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10202                 return -EINVAL;
10203
10204         if (quota != RUNTIME_INF && (burst > quota ||
10205                                      burst + quota > max_cfs_runtime))
10206                 return -EINVAL;
10207
10208         /*
10209          * Prevent race between setting of cfs_rq->runtime_enabled and
10210          * unthrottle_offline_cfs_rqs().
10211          */
10212         cpus_read_lock();
10213         mutex_lock(&cfs_constraints_mutex);
10214         ret = __cfs_schedulable(tg, period, quota);
10215         if (ret)
10216                 goto out_unlock;
10217
10218         runtime_enabled = quota != RUNTIME_INF;
10219         runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10220         /*
10221          * If we need to toggle cfs_bandwidth_used, off->on must occur
10222          * before making related changes, and on->off must occur afterwards
10223          */
10224         if (runtime_enabled && !runtime_was_enabled)
10225                 cfs_bandwidth_usage_inc();
10226         raw_spin_lock_irq(&cfs_b->lock);
10227         cfs_b->period = ns_to_ktime(period);
10228         cfs_b->quota = quota;
10229         cfs_b->burst = burst;
10230
10231         __refill_cfs_bandwidth_runtime(cfs_b);
10232
10233         /* Restart the period timer (if active) to handle new period expiry: */
10234         if (runtime_enabled)
10235                 start_cfs_bandwidth(cfs_b);
10236
10237         raw_spin_unlock_irq(&cfs_b->lock);
10238
10239         for_each_online_cpu(i) {
10240                 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10241                 struct rq *rq = cfs_rq->rq;
10242                 struct rq_flags rf;
10243
10244                 rq_lock_irq(rq, &rf);
10245                 cfs_rq->runtime_enabled = runtime_enabled;
10246                 cfs_rq->runtime_remaining = 0;
10247
10248                 if (cfs_rq->throttled)
10249                         unthrottle_cfs_rq(cfs_rq);
10250                 rq_unlock_irq(rq, &rf);
10251         }
10252         if (runtime_was_enabled && !runtime_enabled)
10253                 cfs_bandwidth_usage_dec();
10254 out_unlock:
10255         mutex_unlock(&cfs_constraints_mutex);
10256         cpus_read_unlock();
10257
10258         return ret;
10259 }
10260
10261 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10262 {
10263         u64 quota, period, burst;
10264
10265         period = ktime_to_ns(tg->cfs_bandwidth.period);
10266         burst = tg->cfs_bandwidth.burst;
10267         if (cfs_quota_us < 0)
10268                 quota = RUNTIME_INF;
10269         else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10270                 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10271         else
10272                 return -EINVAL;
10273
10274         return tg_set_cfs_bandwidth(tg, period, quota, burst);
10275 }
10276
10277 static long tg_get_cfs_quota(struct task_group *tg)
10278 {
10279         u64 quota_us;
10280
10281         if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10282                 return -1;
10283
10284         quota_us = tg->cfs_bandwidth.quota;
10285         do_div(quota_us, NSEC_PER_USEC);
10286
10287         return quota_us;
10288 }
10289
10290 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10291 {
10292         u64 quota, period, burst;
10293
10294         if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10295                 return -EINVAL;
10296
10297         period = (u64)cfs_period_us * NSEC_PER_USEC;
10298         quota = tg->cfs_bandwidth.quota;
10299         burst = tg->cfs_bandwidth.burst;
10300
10301         return tg_set_cfs_bandwidth(tg, period, quota, burst);
10302 }
10303
10304 static long tg_get_cfs_period(struct task_group *tg)
10305 {
10306         u64 cfs_period_us;
10307
10308         cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10309         do_div(cfs_period_us, NSEC_PER_USEC);
10310
10311         return cfs_period_us;
10312 }
10313
10314 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10315 {
10316         u64 quota, period, burst;
10317
10318         if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10319                 return -EINVAL;
10320
10321         burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10322         period = ktime_to_ns(tg->cfs_bandwidth.period);
10323         quota = tg->cfs_bandwidth.quota;
10324
10325         return tg_set_cfs_bandwidth(tg, period, quota, burst);
10326 }
10327
10328 static long tg_get_cfs_burst(struct task_group *tg)
10329 {
10330         u64 burst_us;
10331
10332         burst_us = tg->cfs_bandwidth.burst;
10333         do_div(burst_us, NSEC_PER_USEC);
10334
10335         return burst_us;
10336 }
10337
10338 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10339                                   struct cftype *cft)
10340 {
10341         return tg_get_cfs_quota(css_tg(css));
10342 }
10343
10344 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10345                                    struct cftype *cftype, s64 cfs_quota_us)
10346 {
10347         return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10348 }
10349
10350 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10351                                    struct cftype *cft)
10352 {
10353         return tg_get_cfs_period(css_tg(css));
10354 }
10355
10356 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10357                                     struct cftype *cftype, u64 cfs_period_us)
10358 {
10359         return tg_set_cfs_period(css_tg(css), cfs_period_us);
10360 }
10361
10362 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10363                                   struct cftype *cft)
10364 {
10365         return tg_get_cfs_burst(css_tg(css));
10366 }
10367
10368 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10369                                    struct cftype *cftype, u64 cfs_burst_us)
10370 {
10371         return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10372 }
10373
10374 struct cfs_schedulable_data {
10375         struct task_group *tg;
10376         u64 period, quota;
10377 };
10378
10379 /*
10380  * normalize group quota/period to be quota/max_period
10381  * note: units are usecs
10382  */
10383 static u64 normalize_cfs_quota(struct task_group *tg,
10384                                struct cfs_schedulable_data *d)
10385 {
10386         u64 quota, period;
10387
10388         if (tg == d->tg) {
10389                 period = d->period;
10390                 quota = d->quota;
10391         } else {
10392                 period = tg_get_cfs_period(tg);
10393                 quota = tg_get_cfs_quota(tg);
10394         }
10395
10396         /* note: these should typically be equivalent */
10397         if (quota == RUNTIME_INF || quota == -1)
10398                 return RUNTIME_INF;
10399
10400         return to_ratio(period, quota);
10401 }
10402
10403 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10404 {
10405         struct cfs_schedulable_data *d = data;
10406         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10407         s64 quota = 0, parent_quota = -1;
10408
10409         if (!tg->parent) {
10410                 quota = RUNTIME_INF;
10411         } else {
10412                 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10413
10414                 quota = normalize_cfs_quota(tg, d);
10415                 parent_quota = parent_b->hierarchical_quota;
10416
10417                 /*
10418                  * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10419                  * always take the min.  On cgroup1, only inherit when no
10420                  * limit is set:
10421                  */
10422                 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10423                         quota = min(quota, parent_quota);
10424                 } else {
10425                         if (quota == RUNTIME_INF)
10426                                 quota = parent_quota;
10427                         else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10428                                 return -EINVAL;
10429                 }
10430         }
10431         cfs_b->hierarchical_quota = quota;
10432
10433         return 0;
10434 }
10435
10436 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10437 {
10438         int ret;
10439         struct cfs_schedulable_data data = {
10440                 .tg = tg,
10441                 .period = period,
10442                 .quota = quota,
10443         };
10444
10445         if (quota != RUNTIME_INF) {
10446                 do_div(data.period, NSEC_PER_USEC);
10447                 do_div(data.quota, NSEC_PER_USEC);
10448         }
10449
10450         rcu_read_lock();
10451         ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10452         rcu_read_unlock();
10453
10454         return ret;
10455 }
10456
10457 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10458 {
10459         struct task_group *tg = css_tg(seq_css(sf));
10460         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10461
10462         seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10463         seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10464         seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10465
10466         if (schedstat_enabled() && tg != &root_task_group) {
10467                 u64 ws = 0;
10468                 int i;
10469
10470                 for_each_possible_cpu(i)
10471                         ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10472
10473                 seq_printf(sf, "wait_sum %llu\n", ws);
10474         }
10475
10476         return 0;
10477 }
10478 #endif /* CONFIG_CFS_BANDWIDTH */
10479 #endif /* CONFIG_FAIR_GROUP_SCHED */
10480
10481 #ifdef CONFIG_RT_GROUP_SCHED
10482 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10483                                 struct cftype *cft, s64 val)
10484 {
10485         return sched_group_set_rt_runtime(css_tg(css), val);
10486 }
10487
10488 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10489                                struct cftype *cft)
10490 {
10491         return sched_group_rt_runtime(css_tg(css));
10492 }
10493
10494 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10495                                     struct cftype *cftype, u64 rt_period_us)
10496 {
10497         return sched_group_set_rt_period(css_tg(css), rt_period_us);
10498 }
10499
10500 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10501                                    struct cftype *cft)
10502 {
10503         return sched_group_rt_period(css_tg(css));
10504 }
10505 #endif /* CONFIG_RT_GROUP_SCHED */
10506
10507 #ifdef CONFIG_FAIR_GROUP_SCHED
10508 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10509                                struct cftype *cft)
10510 {
10511         return css_tg(css)->idle;
10512 }
10513
10514 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10515                                 struct cftype *cft, s64 idle)
10516 {
10517         return sched_group_set_idle(css_tg(css), idle);
10518 }
10519 #endif
10520
10521 static struct cftype cpu_legacy_files[] = {
10522 #ifdef CONFIG_FAIR_GROUP_SCHED
10523         {
10524                 .name = "shares",
10525                 .read_u64 = cpu_shares_read_u64,
10526                 .write_u64 = cpu_shares_write_u64,
10527         },
10528         {
10529                 .name = "idle",
10530                 .read_s64 = cpu_idle_read_s64,
10531                 .write_s64 = cpu_idle_write_s64,
10532         },
10533 #endif
10534 #ifdef CONFIG_CFS_BANDWIDTH
10535         {
10536                 .name = "cfs_quota_us",
10537                 .read_s64 = cpu_cfs_quota_read_s64,
10538                 .write_s64 = cpu_cfs_quota_write_s64,
10539         },
10540         {
10541                 .name = "cfs_period_us",
10542                 .read_u64 = cpu_cfs_period_read_u64,
10543                 .write_u64 = cpu_cfs_period_write_u64,
10544         },
10545         {
10546                 .name = "cfs_burst_us",
10547                 .read_u64 = cpu_cfs_burst_read_u64,
10548                 .write_u64 = cpu_cfs_burst_write_u64,
10549         },
10550         {
10551                 .name = "stat",
10552                 .seq_show = cpu_cfs_stat_show,
10553         },
10554 #endif
10555 #ifdef CONFIG_RT_GROUP_SCHED
10556         {
10557                 .name = "rt_runtime_us",
10558                 .read_s64 = cpu_rt_runtime_read,
10559                 .write_s64 = cpu_rt_runtime_write,
10560         },
10561         {
10562                 .name = "rt_period_us",
10563                 .read_u64 = cpu_rt_period_read_uint,
10564                 .write_u64 = cpu_rt_period_write_uint,
10565         },
10566 #endif
10567 #ifdef CONFIG_UCLAMP_TASK_GROUP
10568         {
10569                 .name = "uclamp.min",
10570                 .flags = CFTYPE_NOT_ON_ROOT,
10571                 .seq_show = cpu_uclamp_min_show,
10572                 .write = cpu_uclamp_min_write,
10573         },
10574         {
10575                 .name = "uclamp.max",
10576                 .flags = CFTYPE_NOT_ON_ROOT,
10577                 .seq_show = cpu_uclamp_max_show,
10578                 .write = cpu_uclamp_max_write,
10579         },
10580 #endif
10581         { }     /* Terminate */
10582 };
10583
10584 static int cpu_extra_stat_show(struct seq_file *sf,
10585                                struct cgroup_subsys_state *css)
10586 {
10587 #ifdef CONFIG_CFS_BANDWIDTH
10588         {
10589                 struct task_group *tg = css_tg(css);
10590                 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10591                 u64 throttled_usec;
10592
10593                 throttled_usec = cfs_b->throttled_time;
10594                 do_div(throttled_usec, NSEC_PER_USEC);
10595
10596                 seq_printf(sf, "nr_periods %d\n"
10597                            "nr_throttled %d\n"
10598                            "throttled_usec %llu\n",
10599                            cfs_b->nr_periods, cfs_b->nr_throttled,
10600                            throttled_usec);
10601         }
10602 #endif
10603         return 0;
10604 }
10605
10606 #ifdef CONFIG_FAIR_GROUP_SCHED
10607 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10608                                struct cftype *cft)
10609 {
10610         struct task_group *tg = css_tg(css);
10611         u64 weight = scale_load_down(tg->shares);
10612
10613         return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10614 }
10615
10616 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10617                                 struct cftype *cft, u64 weight)
10618 {
10619         /*
10620          * cgroup weight knobs should use the common MIN, DFL and MAX
10621          * values which are 1, 100 and 10000 respectively.  While it loses
10622          * a bit of range on both ends, it maps pretty well onto the shares
10623          * value used by scheduler and the round-trip conversions preserve
10624          * the original value over the entire range.
10625          */
10626         if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10627                 return -ERANGE;
10628
10629         weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10630
10631         return sched_group_set_shares(css_tg(css), scale_load(weight));
10632 }
10633
10634 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10635                                     struct cftype *cft)
10636 {
10637         unsigned long weight = scale_load_down(css_tg(css)->shares);
10638         int last_delta = INT_MAX;
10639         int prio, delta;
10640
10641         /* find the closest nice value to the current weight */
10642         for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10643                 delta = abs(sched_prio_to_weight[prio] - weight);
10644                 if (delta >= last_delta)
10645                         break;
10646                 last_delta = delta;
10647         }
10648
10649         return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10650 }
10651
10652 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10653                                      struct cftype *cft, s64 nice)
10654 {
10655         unsigned long weight;
10656         int idx;
10657
10658         if (nice < MIN_NICE || nice > MAX_NICE)
10659                 return -ERANGE;
10660
10661         idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10662         idx = array_index_nospec(idx, 40);
10663         weight = sched_prio_to_weight[idx];
10664
10665         return sched_group_set_shares(css_tg(css), scale_load(weight));
10666 }
10667 #endif
10668
10669 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10670                                                   long period, long quota)
10671 {
10672         if (quota < 0)
10673                 seq_puts(sf, "max");
10674         else
10675                 seq_printf(sf, "%ld", quota);
10676
10677         seq_printf(sf, " %ld\n", period);
10678 }
10679
10680 /* caller should put the current value in *@periodp before calling */
10681 static int __maybe_unused cpu_period_quota_parse(char *buf,
10682                                                  u64 *periodp, u64 *quotap)
10683 {
10684         char tok[21];   /* U64_MAX */
10685
10686         if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10687                 return -EINVAL;
10688
10689         *periodp *= NSEC_PER_USEC;
10690
10691         if (sscanf(tok, "%llu", quotap))
10692                 *quotap *= NSEC_PER_USEC;
10693         else if (!strcmp(tok, "max"))
10694                 *quotap = RUNTIME_INF;
10695         else
10696                 return -EINVAL;
10697
10698         return 0;
10699 }
10700
10701 #ifdef CONFIG_CFS_BANDWIDTH
10702 static int cpu_max_show(struct seq_file *sf, void *v)
10703 {
10704         struct task_group *tg = css_tg(seq_css(sf));
10705
10706         cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10707         return 0;
10708 }
10709
10710 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10711                              char *buf, size_t nbytes, loff_t off)
10712 {
10713         struct task_group *tg = css_tg(of_css(of));
10714         u64 period = tg_get_cfs_period(tg);
10715         u64 burst = tg_get_cfs_burst(tg);
10716         u64 quota;
10717         int ret;
10718
10719         ret = cpu_period_quota_parse(buf, &period, &quota);
10720         if (!ret)
10721                 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10722         return ret ?: nbytes;
10723 }
10724 #endif
10725
10726 static struct cftype cpu_files[] = {
10727 #ifdef CONFIG_FAIR_GROUP_SCHED
10728         {
10729                 .name = "weight",
10730                 .flags = CFTYPE_NOT_ON_ROOT,
10731                 .read_u64 = cpu_weight_read_u64,
10732                 .write_u64 = cpu_weight_write_u64,
10733         },
10734         {
10735                 .name = "weight.nice",
10736                 .flags = CFTYPE_NOT_ON_ROOT,
10737                 .read_s64 = cpu_weight_nice_read_s64,
10738                 .write_s64 = cpu_weight_nice_write_s64,
10739         },
10740         {
10741                 .name = "idle",
10742                 .flags = CFTYPE_NOT_ON_ROOT,
10743                 .read_s64 = cpu_idle_read_s64,
10744                 .write_s64 = cpu_idle_write_s64,
10745         },
10746 #endif
10747 #ifdef CONFIG_CFS_BANDWIDTH
10748         {
10749                 .name = "max",
10750                 .flags = CFTYPE_NOT_ON_ROOT,
10751                 .seq_show = cpu_max_show,
10752                 .write = cpu_max_write,
10753         },
10754         {
10755                 .name = "max.burst",
10756                 .flags = CFTYPE_NOT_ON_ROOT,
10757                 .read_u64 = cpu_cfs_burst_read_u64,
10758                 .write_u64 = cpu_cfs_burst_write_u64,
10759         },
10760 #endif
10761 #ifdef CONFIG_UCLAMP_TASK_GROUP
10762         {
10763                 .name = "uclamp.min",
10764                 .flags = CFTYPE_NOT_ON_ROOT,
10765                 .seq_show = cpu_uclamp_min_show,
10766                 .write = cpu_uclamp_min_write,
10767         },
10768         {
10769                 .name = "uclamp.max",
10770                 .flags = CFTYPE_NOT_ON_ROOT,
10771                 .seq_show = cpu_uclamp_max_show,
10772                 .write = cpu_uclamp_max_write,
10773         },
10774 #endif
10775         { }     /* terminate */
10776 };
10777
10778 struct cgroup_subsys cpu_cgrp_subsys = {
10779         .css_alloc      = cpu_cgroup_css_alloc,
10780         .css_online     = cpu_cgroup_css_online,
10781         .css_released   = cpu_cgroup_css_released,
10782         .css_free       = cpu_cgroup_css_free,
10783         .css_extra_stat_show = cpu_extra_stat_show,
10784         .fork           = cpu_cgroup_fork,
10785         .can_attach     = cpu_cgroup_can_attach,
10786         .attach         = cpu_cgroup_attach,
10787         .legacy_cftypes = cpu_legacy_files,
10788         .dfl_cftypes    = cpu_files,
10789         .early_init     = true,
10790         .threaded       = true,
10791 };
10792
10793 #endif  /* CONFIG_CGROUP_SCHED */
10794
10795 void dump_cpu_task(int cpu)
10796 {
10797         pr_info("Task dump for CPU %d:\n", cpu);
10798         sched_show_task(cpu_curr(cpu));
10799 }
10800
10801 /*
10802  * Nice levels are multiplicative, with a gentle 10% change for every
10803  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10804  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10805  * that remained on nice 0.
10806  *
10807  * The "10% effect" is relative and cumulative: from _any_ nice level,
10808  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10809  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10810  * If a task goes up by ~10% and another task goes down by ~10% then
10811  * the relative distance between them is ~25%.)
10812  */
10813 const int sched_prio_to_weight[40] = {
10814  /* -20 */     88761,     71755,     56483,     46273,     36291,
10815  /* -15 */     29154,     23254,     18705,     14949,     11916,
10816  /* -10 */      9548,      7620,      6100,      4904,      3906,
10817  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10818  /*   0 */      1024,       820,       655,       526,       423,
10819  /*   5 */       335,       272,       215,       172,       137,
10820  /*  10 */       110,        87,        70,        56,        45,
10821  /*  15 */        36,        29,        23,        18,        15,
10822 };
10823
10824 /*
10825  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10826  *
10827  * In cases where the weight does not change often, we can use the
10828  * precalculated inverse to speed up arithmetics by turning divisions
10829  * into multiplications:
10830  */
10831 const u32 sched_prio_to_wmult[40] = {
10832  /* -20 */     48388,     59856,     76040,     92818,    118348,
10833  /* -15 */    147320,    184698,    229616,    287308,    360437,
10834  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10835  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10836  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10837  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10838  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10839  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10840 };
10841
10842 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10843 {
10844         trace_sched_update_nr_running_tp(rq, count);
10845 }