1 // SPDX-License-Identifier: GPL-2.0-only
5 * Core kernel scheduler code and related syscalls
7 * Copyright (C) 1991-2002 Linus Torvalds
11 #include <linux/nospec.h>
13 #include <linux/kcov.h>
15 #include <asm/switch_to.h>
18 #include "../workqueue_internal.h"
19 #include "../smpboot.h"
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/sched.h>
27 * Export tracepoints that act as a bare tracehook (ie: have no trace event
28 * associated with them) to allow external modules to probe them.
30 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 * Debugging: various feature bits
43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44 * sysctl_sched_features, defined in sched.h, to allow constants propagation
45 * at compile time and compiler optimization based on features default.
47 #define SCHED_FEAT(name, enabled) \
48 (1UL << __SCHED_FEAT_##name) * enabled |
49 const_debug unsigned int sysctl_sched_features =
56 * Number of tasks to iterate in a single balance run.
57 * Limited because this is done with IRQs disabled.
59 const_debug unsigned int sysctl_sched_nr_migrate = 32;
62 * period over which we measure -rt task CPU usage in us.
65 unsigned int sysctl_sched_rt_period = 1000000;
67 __read_mostly int scheduler_running;
70 * part of the period that we allow rt tasks to run in us.
73 int sysctl_sched_rt_runtime = 950000;
76 * __task_rq_lock - lock the rq @p resides on.
78 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
83 lockdep_assert_held(&p->pi_lock);
87 raw_spin_lock(&rq->lock);
88 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
92 raw_spin_unlock(&rq->lock);
94 while (unlikely(task_on_rq_migrating(p)))
100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
103 __acquires(p->pi_lock)
109 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 raw_spin_lock(&rq->lock);
113 * move_queued_task() task_rq_lock()
116 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
117 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
118 * [S] ->cpu = new_cpu [L] task_rq()
122 * If we observe the old CPU in task_rq_lock(), the acquire of
123 * the old rq->lock will fully serialize against the stores.
125 * If we observe the new CPU in task_rq_lock(), the address
126 * dependency headed by '[L] rq = task_rq()' and the acquire
127 * will pair with the WMB to ensure we then also see migrating.
129 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
133 raw_spin_unlock(&rq->lock);
134 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136 while (unlikely(task_on_rq_migrating(p)))
142 * RQ-clock updating methods:
145 static void update_rq_clock_task(struct rq *rq, s64 delta)
148 * In theory, the compile should just see 0 here, and optimize out the call
149 * to sched_rt_avg_update. But I don't trust it...
151 s64 __maybe_unused steal = 0, irq_delta = 0;
153 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
157 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 * this case when a previous update_rq_clock() happened inside a
161 * When this happens, we stop ->clock_task and only update the
162 * prev_irq_time stamp to account for the part that fit, so that a next
163 * update will consume the rest. This ensures ->clock_task is
166 * It does however cause some slight miss-attribution of {soft,}irq
167 * time, a more accurate solution would be to update the irq_time using
168 * the current rq->clock timestamp, except that would require using
171 if (irq_delta > delta)
174 rq->prev_irq_time += irq_delta;
177 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 if (static_key_false((¶virt_steal_rq_enabled))) {
179 steal = paravirt_steal_clock(cpu_of(rq));
180 steal -= rq->prev_steal_time_rq;
182 if (unlikely(steal > delta))
185 rq->prev_steal_time_rq += steal;
190 rq->clock_task += delta;
192 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
193 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
194 update_irq_load_avg(rq, irq_delta + steal);
196 update_rq_clock_pelt(rq, delta);
199 void update_rq_clock(struct rq *rq)
203 lockdep_assert_held(&rq->lock);
205 if (rq->clock_update_flags & RQCF_ACT_SKIP)
208 #ifdef CONFIG_SCHED_DEBUG
209 if (sched_feat(WARN_DOUBLE_CLOCK))
210 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
211 rq->clock_update_flags |= RQCF_UPDATED;
214 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
218 update_rq_clock_task(rq, delta);
222 #ifdef CONFIG_SCHED_HRTICK
224 * Use HR-timers to deliver accurate preemption points.
227 static void hrtick_clear(struct rq *rq)
229 if (hrtimer_active(&rq->hrtick_timer))
230 hrtimer_cancel(&rq->hrtick_timer);
234 * High-resolution timer tick.
235 * Runs from hardirq context with interrupts disabled.
237 static enum hrtimer_restart hrtick(struct hrtimer *timer)
239 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
242 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
246 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
249 return HRTIMER_NORESTART;
254 static void __hrtick_restart(struct rq *rq)
256 struct hrtimer *timer = &rq->hrtick_timer;
258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
262 * called from hardirq (IPI) context
264 static void __hrtick_start(void *arg)
270 __hrtick_restart(rq);
271 rq->hrtick_csd_pending = 0;
276 * Called to set the hrtick timer state.
278 * called with rq->lock held and irqs disabled
280 void hrtick_start(struct rq *rq, u64 delay)
282 struct hrtimer *timer = &rq->hrtick_timer;
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
293 hrtimer_set_expires(timer, time);
295 if (rq == this_rq()) {
296 __hrtick_restart(rq);
297 } else if (!rq->hrtick_csd_pending) {
298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 rq->hrtick_csd_pending = 1;
305 * Called to set the hrtick timer state.
307 * called with rq->lock held and irqs disabled
309 void hrtick_start(struct rq *rq, u64 delay)
312 * Don't schedule slices shorter than 10000ns, that just
313 * doesn't make sense. Rely on vruntime for fairness.
315 delay = max_t(u64, delay, 10000LL);
316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 HRTIMER_MODE_REL_PINNED);
319 #endif /* CONFIG_SMP */
321 static void hrtick_rq_init(struct rq *rq)
324 rq->hrtick_csd_pending = 0;
326 rq->hrtick_csd.flags = 0;
327 rq->hrtick_csd.func = __hrtick_start;
328 rq->hrtick_csd.info = rq;
331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
332 rq->hrtick_timer.function = hrtick;
334 #else /* CONFIG_SCHED_HRTICK */
335 static inline void hrtick_clear(struct rq *rq)
339 static inline void hrtick_rq_init(struct rq *rq)
342 #endif /* CONFIG_SCHED_HRTICK */
345 * cmpxchg based fetch_or, macro so it works for different integer types
347 #define fetch_or(ptr, mask) \
349 typeof(ptr) _ptr = (ptr); \
350 typeof(mask) _mask = (mask); \
351 typeof(*_ptr) _old, _val = *_ptr; \
354 _old = cmpxchg(_ptr, _val, _val | _mask); \
362 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365 * this avoids any races wrt polling state changes and thereby avoids
368 static bool set_nr_and_not_polling(struct task_struct *p)
370 struct thread_info *ti = task_thread_info(p);
371 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
377 * If this returns true, then the idle task promises to call
378 * sched_ttwu_pending() and reschedule soon.
380 static bool set_nr_if_polling(struct task_struct *p)
382 struct thread_info *ti = task_thread_info(p);
383 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
386 if (!(val & _TIF_POLLING_NRFLAG))
388 if (val & _TIF_NEED_RESCHED)
390 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
399 static bool set_nr_and_not_polling(struct task_struct *p)
401 set_tsk_need_resched(p);
406 static bool set_nr_if_polling(struct task_struct *p)
413 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
415 struct wake_q_node *node = &task->wake_q;
418 * Atomically grab the task, if ->wake_q is !nil already it means
419 * its already queued (either by us or someone else) and will get the
420 * wakeup due to that.
422 * In order to ensure that a pending wakeup will observe our pending
423 * state, even in the failed case, an explicit smp_mb() must be used.
425 smp_mb__before_atomic();
426 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
430 * The head is context local, there can be no concurrency.
433 head->lastp = &node->next;
438 * wake_q_add() - queue a wakeup for 'later' waking.
439 * @head: the wake_q_head to add @task to
440 * @task: the task to queue for 'later' wakeup
442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
446 * This function must be used as-if it were wake_up_process(); IOW the task
447 * must be ready to be woken at this location.
449 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
451 if (__wake_q_add(head, task))
452 get_task_struct(task);
456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457 * @head: the wake_q_head to add @task to
458 * @task: the task to queue for 'later' wakeup
460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
464 * This function must be used as-if it were wake_up_process(); IOW the task
465 * must be ready to be woken at this location.
467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468 * that already hold reference to @task can call the 'safe' version and trust
469 * wake_q to do the right thing depending whether or not the @task is already
472 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
474 if (!__wake_q_add(head, task))
475 put_task_struct(task);
478 void wake_up_q(struct wake_q_head *head)
480 struct wake_q_node *node = head->first;
482 while (node != WAKE_Q_TAIL) {
483 struct task_struct *task;
485 task = container_of(node, struct task_struct, wake_q);
487 /* Task can safely be re-inserted now: */
489 task->wake_q.next = NULL;
492 * wake_up_process() executes a full barrier, which pairs with
493 * the queueing in wake_q_add() so as not to miss wakeups.
495 wake_up_process(task);
496 put_task_struct(task);
501 * resched_curr - mark rq's current task 'to be rescheduled now'.
503 * On UP this means the setting of the need_resched flag, on SMP it
504 * might also involve a cross-CPU call to trigger the scheduler on
507 void resched_curr(struct rq *rq)
509 struct task_struct *curr = rq->curr;
512 lockdep_assert_held(&rq->lock);
514 if (test_tsk_need_resched(curr))
519 if (cpu == smp_processor_id()) {
520 set_tsk_need_resched(curr);
521 set_preempt_need_resched();
525 if (set_nr_and_not_polling(curr))
526 smp_send_reschedule(cpu);
528 trace_sched_wake_idle_without_ipi(cpu);
531 void resched_cpu(int cpu)
533 struct rq *rq = cpu_rq(cpu);
536 raw_spin_lock_irqsave(&rq->lock, flags);
537 if (cpu_online(cpu) || cpu == smp_processor_id())
539 raw_spin_unlock_irqrestore(&rq->lock, flags);
543 #ifdef CONFIG_NO_HZ_COMMON
545 * In the semi idle case, use the nearest busy CPU for migrating timers
546 * from an idle CPU. This is good for power-savings.
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle CPU will add more delays to the timers than intended
550 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
552 int get_nohz_timer_target(void)
554 int i, cpu = smp_processor_id();
555 struct sched_domain *sd;
557 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
561 for_each_domain(cpu, sd) {
562 for_each_cpu(i, sched_domain_span(sd)) {
566 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
573 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
590 static void wake_up_idle_cpu(int cpu)
592 struct rq *rq = cpu_rq(cpu);
594 if (cpu == smp_processor_id())
597 if (set_nr_and_not_polling(rq->idle))
598 smp_send_reschedule(cpu);
600 trace_sched_wake_idle_without_ipi(cpu);
603 static bool wake_up_full_nohz_cpu(int cpu)
606 * We just need the target to call irq_exit() and re-evaluate
607 * the next tick. The nohz full kick at least implies that.
608 * If needed we can still optimize that later with an
611 if (cpu_is_offline(cpu))
612 return true; /* Don't try to wake offline CPUs. */
613 if (tick_nohz_full_cpu(cpu)) {
614 if (cpu != smp_processor_id() ||
615 tick_nohz_tick_stopped())
616 tick_nohz_full_kick_cpu(cpu);
624 * Wake up the specified CPU. If the CPU is going offline, it is the
625 * caller's responsibility to deal with the lost wakeup, for example,
626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
628 void wake_up_nohz_cpu(int cpu)
630 if (!wake_up_full_nohz_cpu(cpu))
631 wake_up_idle_cpu(cpu);
634 static inline bool got_nohz_idle_kick(void)
636 int cpu = smp_processor_id();
638 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
641 if (idle_cpu(cpu) && !need_resched())
645 * We can't run Idle Load Balance on this CPU for this time so we
646 * cancel it and clear NOHZ_BALANCE_KICK
648 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
652 #else /* CONFIG_NO_HZ_COMMON */
654 static inline bool got_nohz_idle_kick(void)
659 #endif /* CONFIG_NO_HZ_COMMON */
661 #ifdef CONFIG_NO_HZ_FULL
662 bool sched_can_stop_tick(struct rq *rq)
666 /* Deadline tasks, even if single, need the tick */
667 if (rq->dl.dl_nr_running)
671 * If there are more than one RR tasks, we need the tick to effect the
672 * actual RR behaviour.
674 if (rq->rt.rr_nr_running) {
675 if (rq->rt.rr_nr_running == 1)
682 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 * forced preemption between FIFO tasks.
685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
690 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 * if there's more than one we need the tick for involuntary
694 if (rq->nr_running > 1)
699 #endif /* CONFIG_NO_HZ_FULL */
700 #endif /* CONFIG_SMP */
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
708 * Caller must hold rcu_lock or sufficient equivalent.
710 int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
713 struct task_group *parent, *child;
719 ret = (*down)(parent, data);
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
734 parent = parent->parent;
741 int tg_nop(struct task_group *tg, void *data)
747 static void set_load_weight(struct task_struct *p, bool update_load)
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
753 * SCHED_IDLE tasks get minimal weight:
755 if (task_has_idle_policy(p)) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
758 p->se.runnable_weight = load->weight;
763 * SCHED_OTHER tasks have to update their load when changing their
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
771 p->se.runnable_weight = load->weight;
775 #ifdef CONFIG_UCLAMP_TASK
776 /* Max allowed minimum utilization */
777 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
779 /* Max allowed maximum utilization */
780 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
782 /* All clamps are required to be less or equal than these values */
783 static struct uclamp_se uclamp_default[UCLAMP_CNT];
785 /* Integer rounded range for each bucket */
786 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
788 #define for_each_clamp_id(clamp_id) \
789 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
791 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
793 return clamp_value / UCLAMP_BUCKET_DELTA;
796 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
798 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
801 static inline unsigned int uclamp_none(int clamp_id)
803 if (clamp_id == UCLAMP_MIN)
805 return SCHED_CAPACITY_SCALE;
808 static inline void uclamp_se_set(struct uclamp_se *uc_se,
809 unsigned int value, bool user_defined)
811 uc_se->value = value;
812 uc_se->bucket_id = uclamp_bucket_id(value);
813 uc_se->user_defined = user_defined;
816 static inline unsigned int
817 uclamp_idle_value(struct rq *rq, unsigned int clamp_id,
818 unsigned int clamp_value)
821 * Avoid blocked utilization pushing up the frequency when we go
822 * idle (which drops the max-clamp) by retaining the last known
825 if (clamp_id == UCLAMP_MAX) {
826 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
830 return uclamp_none(UCLAMP_MIN);
833 static inline void uclamp_idle_reset(struct rq *rq, unsigned int clamp_id,
834 unsigned int clamp_value)
836 /* Reset max-clamp retention only on idle exit */
837 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
840 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
844 unsigned int uclamp_rq_max_value(struct rq *rq, unsigned int clamp_id,
845 unsigned int clamp_value)
847 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
848 int bucket_id = UCLAMP_BUCKETS - 1;
851 * Since both min and max clamps are max aggregated, find the
852 * top most bucket with tasks in.
854 for ( ; bucket_id >= 0; bucket_id--) {
855 if (!bucket[bucket_id].tasks)
857 return bucket[bucket_id].value;
860 /* No tasks -- default clamp values */
861 return uclamp_idle_value(rq, clamp_id, clamp_value);
865 * The effective clamp bucket index of a task depends on, by increasing
867 * - the task specific clamp value, when explicitly requested from userspace
868 * - the system default clamp value, defined by the sysadmin
870 static inline struct uclamp_se
871 uclamp_eff_get(struct task_struct *p, unsigned int clamp_id)
873 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
874 struct uclamp_se uc_max = uclamp_default[clamp_id];
876 /* System default restrictions always apply */
877 if (unlikely(uc_req.value > uc_max.value))
883 unsigned int uclamp_eff_value(struct task_struct *p, unsigned int clamp_id)
885 struct uclamp_se uc_eff;
887 /* Task currently refcounted: use back-annotated (effective) value */
888 if (p->uclamp[clamp_id].active)
889 return p->uclamp[clamp_id].value;
891 uc_eff = uclamp_eff_get(p, clamp_id);
897 * When a task is enqueued on a rq, the clamp bucket currently defined by the
898 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
899 * updates the rq's clamp value if required.
901 * Tasks can have a task-specific value requested from user-space, track
902 * within each bucket the maximum value for tasks refcounted in it.
903 * This "local max aggregation" allows to track the exact "requested" value
904 * for each bucket when all its RUNNABLE tasks require the same clamp.
906 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
907 unsigned int clamp_id)
909 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
910 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
911 struct uclamp_bucket *bucket;
913 lockdep_assert_held(&rq->lock);
915 /* Update task effective clamp */
916 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
918 bucket = &uc_rq->bucket[uc_se->bucket_id];
920 uc_se->active = true;
922 uclamp_idle_reset(rq, clamp_id, uc_se->value);
925 * Local max aggregation: rq buckets always track the max
926 * "requested" clamp value of its RUNNABLE tasks.
928 if (bucket->tasks == 1 || uc_se->value > bucket->value)
929 bucket->value = uc_se->value;
931 if (uc_se->value > READ_ONCE(uc_rq->value))
932 WRITE_ONCE(uc_rq->value, uc_se->value);
936 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
937 * is released. If this is the last task reference counting the rq's max
938 * active clamp value, then the rq's clamp value is updated.
940 * Both refcounted tasks and rq's cached clamp values are expected to be
941 * always valid. If it's detected they are not, as defensive programming,
942 * enforce the expected state and warn.
944 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
945 unsigned int clamp_id)
947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 struct uclamp_bucket *bucket;
950 unsigned int bkt_clamp;
951 unsigned int rq_clamp;
953 lockdep_assert_held(&rq->lock);
955 bucket = &uc_rq->bucket[uc_se->bucket_id];
956 SCHED_WARN_ON(!bucket->tasks);
957 if (likely(bucket->tasks))
959 uc_se->active = false;
962 * Keep "local max aggregation" simple and accept to (possibly)
963 * overboost some RUNNABLE tasks in the same bucket.
964 * The rq clamp bucket value is reset to its base value whenever
965 * there are no more RUNNABLE tasks refcounting it.
967 if (likely(bucket->tasks))
970 rq_clamp = READ_ONCE(uc_rq->value);
972 * Defensive programming: this should never happen. If it happens,
973 * e.g. due to future modification, warn and fixup the expected value.
975 SCHED_WARN_ON(bucket->value > rq_clamp);
976 if (bucket->value >= rq_clamp) {
977 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
978 WRITE_ONCE(uc_rq->value, bkt_clamp);
982 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
984 unsigned int clamp_id;
986 if (unlikely(!p->sched_class->uclamp_enabled))
989 for_each_clamp_id(clamp_id)
990 uclamp_rq_inc_id(rq, p, clamp_id);
992 /* Reset clamp idle holding when there is one RUNNABLE task */
993 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
994 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
997 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
999 unsigned int clamp_id;
1001 if (unlikely(!p->sched_class->uclamp_enabled))
1004 for_each_clamp_id(clamp_id)
1005 uclamp_rq_dec_id(rq, p, clamp_id);
1008 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1009 void __user *buffer, size_t *lenp,
1012 int old_min, old_max;
1013 static DEFINE_MUTEX(mutex);
1017 old_min = sysctl_sched_uclamp_util_min;
1018 old_max = sysctl_sched_uclamp_util_max;
1020 result = proc_dointvec(table, write, buffer, lenp, ppos);
1026 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1027 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1032 if (old_min != sysctl_sched_uclamp_util_min) {
1033 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1034 sysctl_sched_uclamp_util_min, false);
1036 if (old_max != sysctl_sched_uclamp_util_max) {
1037 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1038 sysctl_sched_uclamp_util_max, false);
1042 * Updating all the RUNNABLE task is expensive, keep it simple and do
1043 * just a lazy update at each next enqueue time.
1048 sysctl_sched_uclamp_util_min = old_min;
1049 sysctl_sched_uclamp_util_max = old_max;
1051 mutex_unlock(&mutex);
1056 static int uclamp_validate(struct task_struct *p,
1057 const struct sched_attr *attr)
1059 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1060 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1062 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1063 lower_bound = attr->sched_util_min;
1064 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1065 upper_bound = attr->sched_util_max;
1067 if (lower_bound > upper_bound)
1069 if (upper_bound > SCHED_CAPACITY_SCALE)
1075 static void __setscheduler_uclamp(struct task_struct *p,
1076 const struct sched_attr *attr)
1078 unsigned int clamp_id;
1081 * On scheduling class change, reset to default clamps for tasks
1082 * without a task-specific value.
1084 for_each_clamp_id(clamp_id) {
1085 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1086 unsigned int clamp_value = uclamp_none(clamp_id);
1088 /* Keep using defined clamps across class changes */
1089 if (uc_se->user_defined)
1092 /* By default, RT tasks always get 100% boost */
1093 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1094 clamp_value = uclamp_none(UCLAMP_MAX);
1096 uclamp_se_set(uc_se, clamp_value, false);
1099 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1102 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1103 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1104 attr->sched_util_min, true);
1107 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1108 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1109 attr->sched_util_max, true);
1113 static void uclamp_fork(struct task_struct *p)
1115 unsigned int clamp_id;
1117 for_each_clamp_id(clamp_id)
1118 p->uclamp[clamp_id].active = false;
1120 if (likely(!p->sched_reset_on_fork))
1123 for_each_clamp_id(clamp_id) {
1124 unsigned int clamp_value = uclamp_none(clamp_id);
1126 /* By default, RT tasks always get 100% boost */
1127 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1128 clamp_value = uclamp_none(UCLAMP_MAX);
1130 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1134 static void __init init_uclamp(void)
1136 struct uclamp_se uc_max = {};
1137 unsigned int clamp_id;
1140 for_each_possible_cpu(cpu) {
1141 memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
1142 cpu_rq(cpu)->uclamp_flags = 0;
1145 for_each_clamp_id(clamp_id) {
1146 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1147 uclamp_none(clamp_id), false);
1150 /* System defaults allow max clamp values for both indexes */
1151 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1152 for_each_clamp_id(clamp_id)
1153 uclamp_default[clamp_id] = uc_max;
1156 #else /* CONFIG_UCLAMP_TASK */
1157 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1158 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1159 static inline int uclamp_validate(struct task_struct *p,
1160 const struct sched_attr *attr)
1164 static void __setscheduler_uclamp(struct task_struct *p,
1165 const struct sched_attr *attr) { }
1166 static inline void uclamp_fork(struct task_struct *p) { }
1167 static inline void init_uclamp(void) { }
1168 #endif /* CONFIG_UCLAMP_TASK */
1170 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1172 if (!(flags & ENQUEUE_NOCLOCK))
1173 update_rq_clock(rq);
1175 if (!(flags & ENQUEUE_RESTORE)) {
1176 sched_info_queued(rq, p);
1177 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1180 uclamp_rq_inc(rq, p);
1181 p->sched_class->enqueue_task(rq, p, flags);
1184 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1186 if (!(flags & DEQUEUE_NOCLOCK))
1187 update_rq_clock(rq);
1189 if (!(flags & DEQUEUE_SAVE)) {
1190 sched_info_dequeued(rq, p);
1191 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1194 uclamp_rq_dec(rq, p);
1195 p->sched_class->dequeue_task(rq, p, flags);
1198 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1200 if (task_contributes_to_load(p))
1201 rq->nr_uninterruptible--;
1203 enqueue_task(rq, p, flags);
1205 p->on_rq = TASK_ON_RQ_QUEUED;
1208 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1210 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1212 if (task_contributes_to_load(p))
1213 rq->nr_uninterruptible++;
1215 dequeue_task(rq, p, flags);
1219 * __normal_prio - return the priority that is based on the static prio
1221 static inline int __normal_prio(struct task_struct *p)
1223 return p->static_prio;
1227 * Calculate the expected normal priority: i.e. priority
1228 * without taking RT-inheritance into account. Might be
1229 * boosted by interactivity modifiers. Changes upon fork,
1230 * setprio syscalls, and whenever the interactivity
1231 * estimator recalculates.
1233 static inline int normal_prio(struct task_struct *p)
1237 if (task_has_dl_policy(p))
1238 prio = MAX_DL_PRIO-1;
1239 else if (task_has_rt_policy(p))
1240 prio = MAX_RT_PRIO-1 - p->rt_priority;
1242 prio = __normal_prio(p);
1247 * Calculate the current priority, i.e. the priority
1248 * taken into account by the scheduler. This value might
1249 * be boosted by RT tasks, or might be boosted by
1250 * interactivity modifiers. Will be RT if the task got
1251 * RT-boosted. If not then it returns p->normal_prio.
1253 static int effective_prio(struct task_struct *p)
1255 p->normal_prio = normal_prio(p);
1257 * If we are RT tasks or we were boosted to RT priority,
1258 * keep the priority unchanged. Otherwise, update priority
1259 * to the normal priority:
1261 if (!rt_prio(p->prio))
1262 return p->normal_prio;
1267 * task_curr - is this task currently executing on a CPU?
1268 * @p: the task in question.
1270 * Return: 1 if the task is currently executing. 0 otherwise.
1272 inline int task_curr(const struct task_struct *p)
1274 return cpu_curr(task_cpu(p)) == p;
1278 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1279 * use the balance_callback list if you want balancing.
1281 * this means any call to check_class_changed() must be followed by a call to
1282 * balance_callback().
1284 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1285 const struct sched_class *prev_class,
1288 if (prev_class != p->sched_class) {
1289 if (prev_class->switched_from)
1290 prev_class->switched_from(rq, p);
1292 p->sched_class->switched_to(rq, p);
1293 } else if (oldprio != p->prio || dl_task(p))
1294 p->sched_class->prio_changed(rq, p, oldprio);
1297 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1299 const struct sched_class *class;
1301 if (p->sched_class == rq->curr->sched_class) {
1302 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1304 for_each_class(class) {
1305 if (class == rq->curr->sched_class)
1307 if (class == p->sched_class) {
1315 * A queue event has occurred, and we're going to schedule. In
1316 * this case, we can save a useless back to back clock update.
1318 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1319 rq_clock_skip_update(rq);
1324 static inline bool is_per_cpu_kthread(struct task_struct *p)
1326 if (!(p->flags & PF_KTHREAD))
1329 if (p->nr_cpus_allowed != 1)
1336 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1337 * __set_cpus_allowed_ptr() and select_fallback_rq().
1339 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1341 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1344 if (is_per_cpu_kthread(p))
1345 return cpu_online(cpu);
1347 return cpu_active(cpu);
1351 * This is how migration works:
1353 * 1) we invoke migration_cpu_stop() on the target CPU using
1355 * 2) stopper starts to run (implicitly forcing the migrated thread
1357 * 3) it checks whether the migrated task is still in the wrong runqueue.
1358 * 4) if it's in the wrong runqueue then the migration thread removes
1359 * it and puts it into the right queue.
1360 * 5) stopper completes and stop_one_cpu() returns and the migration
1365 * move_queued_task - move a queued task to new rq.
1367 * Returns (locked) new rq. Old rq's lock is released.
1369 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1370 struct task_struct *p, int new_cpu)
1372 lockdep_assert_held(&rq->lock);
1374 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1375 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1376 set_task_cpu(p, new_cpu);
1379 rq = cpu_rq(new_cpu);
1382 BUG_ON(task_cpu(p) != new_cpu);
1383 enqueue_task(rq, p, 0);
1384 p->on_rq = TASK_ON_RQ_QUEUED;
1385 check_preempt_curr(rq, p, 0);
1390 struct migration_arg {
1391 struct task_struct *task;
1396 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1397 * this because either it can't run here any more (set_cpus_allowed()
1398 * away from this CPU, or CPU going down), or because we're
1399 * attempting to rebalance this task on exec (sched_exec).
1401 * So we race with normal scheduler movements, but that's OK, as long
1402 * as the task is no longer on this CPU.
1404 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1405 struct task_struct *p, int dest_cpu)
1407 /* Affinity changed (again). */
1408 if (!is_cpu_allowed(p, dest_cpu))
1411 update_rq_clock(rq);
1412 rq = move_queued_task(rq, rf, p, dest_cpu);
1418 * migration_cpu_stop - this will be executed by a highprio stopper thread
1419 * and performs thread migration by bumping thread off CPU then
1420 * 'pushing' onto another runqueue.
1422 static int migration_cpu_stop(void *data)
1424 struct migration_arg *arg = data;
1425 struct task_struct *p = arg->task;
1426 struct rq *rq = this_rq();
1430 * The original target CPU might have gone down and we might
1431 * be on another CPU but it doesn't matter.
1433 local_irq_disable();
1435 * We need to explicitly wake pending tasks before running
1436 * __migrate_task() such that we will not miss enforcing cpus_ptr
1437 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1439 sched_ttwu_pending();
1441 raw_spin_lock(&p->pi_lock);
1444 * If task_rq(p) != rq, it cannot be migrated here, because we're
1445 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1446 * we're holding p->pi_lock.
1448 if (task_rq(p) == rq) {
1449 if (task_on_rq_queued(p))
1450 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1452 p->wake_cpu = arg->dest_cpu;
1455 raw_spin_unlock(&p->pi_lock);
1462 * sched_class::set_cpus_allowed must do the below, but is not required to
1463 * actually call this function.
1465 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1467 cpumask_copy(&p->cpus_mask, new_mask);
1468 p->nr_cpus_allowed = cpumask_weight(new_mask);
1471 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1473 struct rq *rq = task_rq(p);
1474 bool queued, running;
1476 lockdep_assert_held(&p->pi_lock);
1478 queued = task_on_rq_queued(p);
1479 running = task_current(rq, p);
1483 * Because __kthread_bind() calls this on blocked tasks without
1486 lockdep_assert_held(&rq->lock);
1487 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1490 put_prev_task(rq, p);
1492 p->sched_class->set_cpus_allowed(p, new_mask);
1495 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1497 set_curr_task(rq, p);
1501 * Change a given task's CPU affinity. Migrate the thread to a
1502 * proper CPU and schedule it away if the CPU it's executing on
1503 * is removed from the allowed bitmask.
1505 * NOTE: the caller must have a valid reference to the task, the
1506 * task must not exit() & deallocate itself prematurely. The
1507 * call is not atomic; no spinlocks may be held.
1509 static int __set_cpus_allowed_ptr(struct task_struct *p,
1510 const struct cpumask *new_mask, bool check)
1512 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1513 unsigned int dest_cpu;
1518 rq = task_rq_lock(p, &rf);
1519 update_rq_clock(rq);
1521 if (p->flags & PF_KTHREAD) {
1523 * Kernel threads are allowed on online && !active CPUs
1525 cpu_valid_mask = cpu_online_mask;
1529 * Must re-check here, to close a race against __kthread_bind(),
1530 * sched_setaffinity() is not guaranteed to observe the flag.
1532 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1537 if (cpumask_equal(p->cpus_ptr, new_mask))
1540 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1545 do_set_cpus_allowed(p, new_mask);
1547 if (p->flags & PF_KTHREAD) {
1549 * For kernel threads that do indeed end up on online &&
1550 * !active we want to ensure they are strict per-CPU threads.
1552 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1553 !cpumask_intersects(new_mask, cpu_active_mask) &&
1554 p->nr_cpus_allowed != 1);
1557 /* Can the task run on the task's current CPU? If so, we're done */
1558 if (cpumask_test_cpu(task_cpu(p), new_mask))
1561 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1562 if (task_running(rq, p) || p->state == TASK_WAKING) {
1563 struct migration_arg arg = { p, dest_cpu };
1564 /* Need help from migration thread: drop lock and wait. */
1565 task_rq_unlock(rq, p, &rf);
1566 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1568 } else if (task_on_rq_queued(p)) {
1570 * OK, since we're going to drop the lock immediately
1571 * afterwards anyway.
1573 rq = move_queued_task(rq, &rf, p, dest_cpu);
1576 task_rq_unlock(rq, p, &rf);
1581 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1583 return __set_cpus_allowed_ptr(p, new_mask, false);
1585 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1587 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1589 #ifdef CONFIG_SCHED_DEBUG
1591 * We should never call set_task_cpu() on a blocked task,
1592 * ttwu() will sort out the placement.
1594 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1598 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1599 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1600 * time relying on p->on_rq.
1602 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1603 p->sched_class == &fair_sched_class &&
1604 (p->on_rq && !task_on_rq_migrating(p)));
1606 #ifdef CONFIG_LOCKDEP
1608 * The caller should hold either p->pi_lock or rq->lock, when changing
1609 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1611 * sched_move_task() holds both and thus holding either pins the cgroup,
1614 * Furthermore, all task_rq users should acquire both locks, see
1617 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1618 lockdep_is_held(&task_rq(p)->lock)));
1621 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1623 WARN_ON_ONCE(!cpu_online(new_cpu));
1626 trace_sched_migrate_task(p, new_cpu);
1628 if (task_cpu(p) != new_cpu) {
1629 if (p->sched_class->migrate_task_rq)
1630 p->sched_class->migrate_task_rq(p, new_cpu);
1631 p->se.nr_migrations++;
1633 perf_event_task_migrate(p);
1636 __set_task_cpu(p, new_cpu);
1639 #ifdef CONFIG_NUMA_BALANCING
1640 static void __migrate_swap_task(struct task_struct *p, int cpu)
1642 if (task_on_rq_queued(p)) {
1643 struct rq *src_rq, *dst_rq;
1644 struct rq_flags srf, drf;
1646 src_rq = task_rq(p);
1647 dst_rq = cpu_rq(cpu);
1649 rq_pin_lock(src_rq, &srf);
1650 rq_pin_lock(dst_rq, &drf);
1652 deactivate_task(src_rq, p, 0);
1653 set_task_cpu(p, cpu);
1654 activate_task(dst_rq, p, 0);
1655 check_preempt_curr(dst_rq, p, 0);
1657 rq_unpin_lock(dst_rq, &drf);
1658 rq_unpin_lock(src_rq, &srf);
1662 * Task isn't running anymore; make it appear like we migrated
1663 * it before it went to sleep. This means on wakeup we make the
1664 * previous CPU our target instead of where it really is.
1670 struct migration_swap_arg {
1671 struct task_struct *src_task, *dst_task;
1672 int src_cpu, dst_cpu;
1675 static int migrate_swap_stop(void *data)
1677 struct migration_swap_arg *arg = data;
1678 struct rq *src_rq, *dst_rq;
1681 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1684 src_rq = cpu_rq(arg->src_cpu);
1685 dst_rq = cpu_rq(arg->dst_cpu);
1687 double_raw_lock(&arg->src_task->pi_lock,
1688 &arg->dst_task->pi_lock);
1689 double_rq_lock(src_rq, dst_rq);
1691 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1694 if (task_cpu(arg->src_task) != arg->src_cpu)
1697 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1700 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1703 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1704 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1709 double_rq_unlock(src_rq, dst_rq);
1710 raw_spin_unlock(&arg->dst_task->pi_lock);
1711 raw_spin_unlock(&arg->src_task->pi_lock);
1717 * Cross migrate two tasks
1719 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1720 int target_cpu, int curr_cpu)
1722 struct migration_swap_arg arg;
1725 arg = (struct migration_swap_arg){
1727 .src_cpu = curr_cpu,
1729 .dst_cpu = target_cpu,
1732 if (arg.src_cpu == arg.dst_cpu)
1736 * These three tests are all lockless; this is OK since all of them
1737 * will be re-checked with proper locks held further down the line.
1739 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1742 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1745 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1748 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1749 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1754 #endif /* CONFIG_NUMA_BALANCING */
1757 * wait_task_inactive - wait for a thread to unschedule.
1759 * If @match_state is nonzero, it's the @p->state value just checked and
1760 * not expected to change. If it changes, i.e. @p might have woken up,
1761 * then return zero. When we succeed in waiting for @p to be off its CPU,
1762 * we return a positive number (its total switch count). If a second call
1763 * a short while later returns the same number, the caller can be sure that
1764 * @p has remained unscheduled the whole time.
1766 * The caller must ensure that the task *will* unschedule sometime soon,
1767 * else this function might spin for a *long* time. This function can't
1768 * be called with interrupts off, or it may introduce deadlock with
1769 * smp_call_function() if an IPI is sent by the same process we are
1770 * waiting to become inactive.
1772 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1774 int running, queued;
1781 * We do the initial early heuristics without holding
1782 * any task-queue locks at all. We'll only try to get
1783 * the runqueue lock when things look like they will
1789 * If the task is actively running on another CPU
1790 * still, just relax and busy-wait without holding
1793 * NOTE! Since we don't hold any locks, it's not
1794 * even sure that "rq" stays as the right runqueue!
1795 * But we don't care, since "task_running()" will
1796 * return false if the runqueue has changed and p
1797 * is actually now running somewhere else!
1799 while (task_running(rq, p)) {
1800 if (match_state && unlikely(p->state != match_state))
1806 * Ok, time to look more closely! We need the rq
1807 * lock now, to be *sure*. If we're wrong, we'll
1808 * just go back and repeat.
1810 rq = task_rq_lock(p, &rf);
1811 trace_sched_wait_task(p);
1812 running = task_running(rq, p);
1813 queued = task_on_rq_queued(p);
1815 if (!match_state || p->state == match_state)
1816 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1817 task_rq_unlock(rq, p, &rf);
1820 * If it changed from the expected state, bail out now.
1822 if (unlikely(!ncsw))
1826 * Was it really running after all now that we
1827 * checked with the proper locks actually held?
1829 * Oops. Go back and try again..
1831 if (unlikely(running)) {
1837 * It's not enough that it's not actively running,
1838 * it must be off the runqueue _entirely_, and not
1841 * So if it was still runnable (but just not actively
1842 * running right now), it's preempted, and we should
1843 * yield - it could be a while.
1845 if (unlikely(queued)) {
1846 ktime_t to = NSEC_PER_SEC / HZ;
1848 set_current_state(TASK_UNINTERRUPTIBLE);
1849 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1854 * Ahh, all good. It wasn't running, and it wasn't
1855 * runnable, which means that it will never become
1856 * running in the future either. We're all done!
1865 * kick_process - kick a running thread to enter/exit the kernel
1866 * @p: the to-be-kicked thread
1868 * Cause a process which is running on another CPU to enter
1869 * kernel-mode, without any delay. (to get signals handled.)
1871 * NOTE: this function doesn't have to take the runqueue lock,
1872 * because all it wants to ensure is that the remote task enters
1873 * the kernel. If the IPI races and the task has been migrated
1874 * to another CPU then no harm is done and the purpose has been
1877 void kick_process(struct task_struct *p)
1883 if ((cpu != smp_processor_id()) && task_curr(p))
1884 smp_send_reschedule(cpu);
1887 EXPORT_SYMBOL_GPL(kick_process);
1890 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
1892 * A few notes on cpu_active vs cpu_online:
1894 * - cpu_active must be a subset of cpu_online
1896 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1897 * see __set_cpus_allowed_ptr(). At this point the newly online
1898 * CPU isn't yet part of the sched domains, and balancing will not
1901 * - on CPU-down we clear cpu_active() to mask the sched domains and
1902 * avoid the load balancer to place new tasks on the to be removed
1903 * CPU. Existing tasks will remain running there and will be taken
1906 * This means that fallback selection must not select !active CPUs.
1907 * And can assume that any active CPU must be online. Conversely
1908 * select_task_rq() below may allow selection of !active CPUs in order
1909 * to satisfy the above rules.
1911 static int select_fallback_rq(int cpu, struct task_struct *p)
1913 int nid = cpu_to_node(cpu);
1914 const struct cpumask *nodemask = NULL;
1915 enum { cpuset, possible, fail } state = cpuset;
1919 * If the node that the CPU is on has been offlined, cpu_to_node()
1920 * will return -1. There is no CPU on the node, and we should
1921 * select the CPU on the other node.
1924 nodemask = cpumask_of_node(nid);
1926 /* Look for allowed, online CPU in same node. */
1927 for_each_cpu(dest_cpu, nodemask) {
1928 if (!cpu_active(dest_cpu))
1930 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
1936 /* Any allowed, online CPU? */
1937 for_each_cpu(dest_cpu, p->cpus_ptr) {
1938 if (!is_cpu_allowed(p, dest_cpu))
1944 /* No more Mr. Nice Guy. */
1947 if (IS_ENABLED(CONFIG_CPUSETS)) {
1948 cpuset_cpus_allowed_fallback(p);
1954 do_set_cpus_allowed(p, cpu_possible_mask);
1965 if (state != cpuset) {
1967 * Don't tell them about moving exiting tasks or
1968 * kernel threads (both mm NULL), since they never
1971 if (p->mm && printk_ratelimit()) {
1972 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1973 task_pid_nr(p), p->comm, cpu);
1981 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
1984 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1986 lockdep_assert_held(&p->pi_lock);
1988 if (p->nr_cpus_allowed > 1)
1989 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1991 cpu = cpumask_any(p->cpus_ptr);
1994 * In order not to call set_task_cpu() on a blocking task we need
1995 * to rely on ttwu() to place the task on a valid ->cpus_ptr
1998 * Since this is common to all placement strategies, this lives here.
2000 * [ this allows ->select_task() to simply return task_cpu(p) and
2001 * not worry about this generic constraint ]
2003 if (unlikely(!is_cpu_allowed(p, cpu)))
2004 cpu = select_fallback_rq(task_cpu(p), p);
2009 static void update_avg(u64 *avg, u64 sample)
2011 s64 diff = sample - *avg;
2015 void sched_set_stop_task(int cpu, struct task_struct *stop)
2017 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2018 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2022 * Make it appear like a SCHED_FIFO task, its something
2023 * userspace knows about and won't get confused about.
2025 * Also, it will make PI more or less work without too
2026 * much confusion -- but then, stop work should not
2027 * rely on PI working anyway.
2029 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2031 stop->sched_class = &stop_sched_class;
2034 cpu_rq(cpu)->stop = stop;
2038 * Reset it back to a normal scheduling class so that
2039 * it can die in pieces.
2041 old_stop->sched_class = &rt_sched_class;
2047 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2048 const struct cpumask *new_mask, bool check)
2050 return set_cpus_allowed_ptr(p, new_mask);
2053 #endif /* CONFIG_SMP */
2056 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2060 if (!schedstat_enabled())
2066 if (cpu == rq->cpu) {
2067 __schedstat_inc(rq->ttwu_local);
2068 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2070 struct sched_domain *sd;
2072 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2074 for_each_domain(rq->cpu, sd) {
2075 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2076 __schedstat_inc(sd->ttwu_wake_remote);
2083 if (wake_flags & WF_MIGRATED)
2084 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2085 #endif /* CONFIG_SMP */
2087 __schedstat_inc(rq->ttwu_count);
2088 __schedstat_inc(p->se.statistics.nr_wakeups);
2090 if (wake_flags & WF_SYNC)
2091 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2095 * Mark the task runnable and perform wakeup-preemption.
2097 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2098 struct rq_flags *rf)
2100 check_preempt_curr(rq, p, wake_flags);
2101 p->state = TASK_RUNNING;
2102 trace_sched_wakeup(p);
2105 if (p->sched_class->task_woken) {
2107 * Our task @p is fully woken up and running; so its safe to
2108 * drop the rq->lock, hereafter rq is only used for statistics.
2110 rq_unpin_lock(rq, rf);
2111 p->sched_class->task_woken(rq, p);
2112 rq_repin_lock(rq, rf);
2115 if (rq->idle_stamp) {
2116 u64 delta = rq_clock(rq) - rq->idle_stamp;
2117 u64 max = 2*rq->max_idle_balance_cost;
2119 update_avg(&rq->avg_idle, delta);
2121 if (rq->avg_idle > max)
2130 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2131 struct rq_flags *rf)
2133 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2135 lockdep_assert_held(&rq->lock);
2138 if (p->sched_contributes_to_load)
2139 rq->nr_uninterruptible--;
2141 if (wake_flags & WF_MIGRATED)
2142 en_flags |= ENQUEUE_MIGRATED;
2145 activate_task(rq, p, en_flags);
2146 ttwu_do_wakeup(rq, p, wake_flags, rf);
2150 * Called in case the task @p isn't fully descheduled from its runqueue,
2151 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2152 * since all we need to do is flip p->state to TASK_RUNNING, since
2153 * the task is still ->on_rq.
2155 static int ttwu_remote(struct task_struct *p, int wake_flags)
2161 rq = __task_rq_lock(p, &rf);
2162 if (task_on_rq_queued(p)) {
2163 /* check_preempt_curr() may use rq clock */
2164 update_rq_clock(rq);
2165 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2168 __task_rq_unlock(rq, &rf);
2174 void sched_ttwu_pending(void)
2176 struct rq *rq = this_rq();
2177 struct llist_node *llist = llist_del_all(&rq->wake_list);
2178 struct task_struct *p, *t;
2184 rq_lock_irqsave(rq, &rf);
2185 update_rq_clock(rq);
2187 llist_for_each_entry_safe(p, t, llist, wake_entry)
2188 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2190 rq_unlock_irqrestore(rq, &rf);
2193 void scheduler_ipi(void)
2196 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2197 * TIF_NEED_RESCHED remotely (for the first time) will also send
2200 preempt_fold_need_resched();
2202 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2206 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2207 * traditionally all their work was done from the interrupt return
2208 * path. Now that we actually do some work, we need to make sure
2211 * Some archs already do call them, luckily irq_enter/exit nest
2214 * Arguably we should visit all archs and update all handlers,
2215 * however a fair share of IPIs are still resched only so this would
2216 * somewhat pessimize the simple resched case.
2219 sched_ttwu_pending();
2222 * Check if someone kicked us for doing the nohz idle load balance.
2224 if (unlikely(got_nohz_idle_kick())) {
2225 this_rq()->idle_balance = 1;
2226 raise_softirq_irqoff(SCHED_SOFTIRQ);
2231 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2233 struct rq *rq = cpu_rq(cpu);
2235 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2237 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2238 if (!set_nr_if_polling(rq->idle))
2239 smp_send_reschedule(cpu);
2241 trace_sched_wake_idle_without_ipi(cpu);
2245 void wake_up_if_idle(int cpu)
2247 struct rq *rq = cpu_rq(cpu);
2252 if (!is_idle_task(rcu_dereference(rq->curr)))
2255 if (set_nr_if_polling(rq->idle)) {
2256 trace_sched_wake_idle_without_ipi(cpu);
2258 rq_lock_irqsave(rq, &rf);
2259 if (is_idle_task(rq->curr))
2260 smp_send_reschedule(cpu);
2261 /* Else CPU is not idle, do nothing here: */
2262 rq_unlock_irqrestore(rq, &rf);
2269 bool cpus_share_cache(int this_cpu, int that_cpu)
2271 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2273 #endif /* CONFIG_SMP */
2275 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2277 struct rq *rq = cpu_rq(cpu);
2280 #if defined(CONFIG_SMP)
2281 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2282 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2283 ttwu_queue_remote(p, cpu, wake_flags);
2289 update_rq_clock(rq);
2290 ttwu_do_activate(rq, p, wake_flags, &rf);
2295 * Notes on Program-Order guarantees on SMP systems.
2299 * The basic program-order guarantee on SMP systems is that when a task [t]
2300 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2301 * execution on its new CPU [c1].
2303 * For migration (of runnable tasks) this is provided by the following means:
2305 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2306 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2307 * rq(c1)->lock (if not at the same time, then in that order).
2308 * C) LOCK of the rq(c1)->lock scheduling in task
2310 * Release/acquire chaining guarantees that B happens after A and C after B.
2311 * Note: the CPU doing B need not be c0 or c1
2320 * UNLOCK rq(0)->lock
2322 * LOCK rq(0)->lock // orders against CPU0
2324 * UNLOCK rq(0)->lock
2328 * UNLOCK rq(1)->lock
2330 * LOCK rq(1)->lock // orders against CPU2
2333 * UNLOCK rq(1)->lock
2336 * BLOCKING -- aka. SLEEP + WAKEUP
2338 * For blocking we (obviously) need to provide the same guarantee as for
2339 * migration. However the means are completely different as there is no lock
2340 * chain to provide order. Instead we do:
2342 * 1) smp_store_release(X->on_cpu, 0)
2343 * 2) smp_cond_load_acquire(!X->on_cpu)
2347 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2349 * LOCK rq(0)->lock LOCK X->pi_lock
2352 * smp_store_release(X->on_cpu, 0);
2354 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2360 * X->state = RUNNING
2361 * UNLOCK rq(2)->lock
2363 * LOCK rq(2)->lock // orders against CPU1
2366 * UNLOCK rq(2)->lock
2369 * UNLOCK rq(0)->lock
2372 * However, for wakeups there is a second guarantee we must provide, namely we
2373 * must ensure that CONDITION=1 done by the caller can not be reordered with
2374 * accesses to the task state; see try_to_wake_up() and set_current_state().
2378 * try_to_wake_up - wake up a thread
2379 * @p: the thread to be awakened
2380 * @state: the mask of task states that can be woken
2381 * @wake_flags: wake modifier flags (WF_*)
2383 * If (@state & @p->state) @p->state = TASK_RUNNING.
2385 * If the task was not queued/runnable, also place it back on a runqueue.
2387 * Atomic against schedule() which would dequeue a task, also see
2388 * set_current_state().
2390 * This function executes a full memory barrier before accessing the task
2391 * state; see set_current_state().
2393 * Return: %true if @p->state changes (an actual wakeup was done),
2397 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2399 unsigned long flags;
2400 int cpu, success = 0;
2405 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2406 * == smp_processor_id()'. Together this means we can special
2407 * case the whole 'p->on_rq && ttwu_remote()' case below
2408 * without taking any locks.
2411 * - we rely on Program-Order guarantees for all the ordering,
2412 * - we're serialized against set_special_state() by virtue of
2413 * it disabling IRQs (this allows not taking ->pi_lock).
2415 if (!(p->state & state))
2420 trace_sched_waking(p);
2421 p->state = TASK_RUNNING;
2422 trace_sched_wakeup(p);
2427 * If we are going to wake up a thread waiting for CONDITION we
2428 * need to ensure that CONDITION=1 done by the caller can not be
2429 * reordered with p->state check below. This pairs with mb() in
2430 * set_current_state() the waiting thread does.
2432 raw_spin_lock_irqsave(&p->pi_lock, flags);
2433 smp_mb__after_spinlock();
2434 if (!(p->state & state))
2437 trace_sched_waking(p);
2439 /* We're going to change ->state: */
2444 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2445 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2446 * in smp_cond_load_acquire() below.
2448 * sched_ttwu_pending() try_to_wake_up()
2449 * STORE p->on_rq = 1 LOAD p->state
2452 * __schedule() (switch to task 'p')
2453 * LOCK rq->lock smp_rmb();
2454 * smp_mb__after_spinlock();
2458 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2460 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2461 * __schedule(). See the comment for smp_mb__after_spinlock().
2464 if (p->on_rq && ttwu_remote(p, wake_flags))
2469 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2470 * possible to, falsely, observe p->on_cpu == 0.
2472 * One must be running (->on_cpu == 1) in order to remove oneself
2473 * from the runqueue.
2475 * __schedule() (switch to task 'p') try_to_wake_up()
2476 * STORE p->on_cpu = 1 LOAD p->on_rq
2479 * __schedule() (put 'p' to sleep)
2480 * LOCK rq->lock smp_rmb();
2481 * smp_mb__after_spinlock();
2482 * STORE p->on_rq = 0 LOAD p->on_cpu
2484 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2485 * __schedule(). See the comment for smp_mb__after_spinlock().
2490 * If the owning (remote) CPU is still in the middle of schedule() with
2491 * this task as prev, wait until its done referencing the task.
2493 * Pairs with the smp_store_release() in finish_task().
2495 * This ensures that tasks getting woken will be fully ordered against
2496 * their previous state and preserve Program Order.
2498 smp_cond_load_acquire(&p->on_cpu, !VAL);
2500 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2501 p->state = TASK_WAKING;
2504 delayacct_blkio_end(p);
2505 atomic_dec(&task_rq(p)->nr_iowait);
2508 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2509 if (task_cpu(p) != cpu) {
2510 wake_flags |= WF_MIGRATED;
2511 psi_ttwu_dequeue(p);
2512 set_task_cpu(p, cpu);
2515 #else /* CONFIG_SMP */
2518 delayacct_blkio_end(p);
2519 atomic_dec(&task_rq(p)->nr_iowait);
2522 #endif /* CONFIG_SMP */
2524 ttwu_queue(p, cpu, wake_flags);
2526 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2529 ttwu_stat(p, cpu, wake_flags);
2536 * wake_up_process - Wake up a specific process
2537 * @p: The process to be woken up.
2539 * Attempt to wake up the nominated process and move it to the set of runnable
2542 * Return: 1 if the process was woken up, 0 if it was already running.
2544 * This function executes a full memory barrier before accessing the task state.
2546 int wake_up_process(struct task_struct *p)
2548 return try_to_wake_up(p, TASK_NORMAL, 0);
2550 EXPORT_SYMBOL(wake_up_process);
2552 int wake_up_state(struct task_struct *p, unsigned int state)
2554 return try_to_wake_up(p, state, 0);
2558 * Perform scheduler related setup for a newly forked process p.
2559 * p is forked by current.
2561 * __sched_fork() is basic setup used by init_idle() too:
2563 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2568 p->se.exec_start = 0;
2569 p->se.sum_exec_runtime = 0;
2570 p->se.prev_sum_exec_runtime = 0;
2571 p->se.nr_migrations = 0;
2573 INIT_LIST_HEAD(&p->se.group_node);
2575 #ifdef CONFIG_FAIR_GROUP_SCHED
2576 p->se.cfs_rq = NULL;
2579 #ifdef CONFIG_SCHEDSTATS
2580 /* Even if schedstat is disabled, there should not be garbage */
2581 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2584 RB_CLEAR_NODE(&p->dl.rb_node);
2585 init_dl_task_timer(&p->dl);
2586 init_dl_inactive_task_timer(&p->dl);
2587 __dl_clear_params(p);
2589 INIT_LIST_HEAD(&p->rt.run_list);
2591 p->rt.time_slice = sched_rr_timeslice;
2595 #ifdef CONFIG_PREEMPT_NOTIFIERS
2596 INIT_HLIST_HEAD(&p->preempt_notifiers);
2599 #ifdef CONFIG_COMPACTION
2600 p->capture_control = NULL;
2602 init_numa_balancing(clone_flags, p);
2605 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2607 #ifdef CONFIG_NUMA_BALANCING
2609 void set_numabalancing_state(bool enabled)
2612 static_branch_enable(&sched_numa_balancing);
2614 static_branch_disable(&sched_numa_balancing);
2617 #ifdef CONFIG_PROC_SYSCTL
2618 int sysctl_numa_balancing(struct ctl_table *table, int write,
2619 void __user *buffer, size_t *lenp, loff_t *ppos)
2623 int state = static_branch_likely(&sched_numa_balancing);
2625 if (write && !capable(CAP_SYS_ADMIN))
2630 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2634 set_numabalancing_state(state);
2640 #ifdef CONFIG_SCHEDSTATS
2642 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2643 static bool __initdata __sched_schedstats = false;
2645 static void set_schedstats(bool enabled)
2648 static_branch_enable(&sched_schedstats);
2650 static_branch_disable(&sched_schedstats);
2653 void force_schedstat_enabled(void)
2655 if (!schedstat_enabled()) {
2656 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2657 static_branch_enable(&sched_schedstats);
2661 static int __init setup_schedstats(char *str)
2668 * This code is called before jump labels have been set up, so we can't
2669 * change the static branch directly just yet. Instead set a temporary
2670 * variable so init_schedstats() can do it later.
2672 if (!strcmp(str, "enable")) {
2673 __sched_schedstats = true;
2675 } else if (!strcmp(str, "disable")) {
2676 __sched_schedstats = false;
2681 pr_warn("Unable to parse schedstats=\n");
2685 __setup("schedstats=", setup_schedstats);
2687 static void __init init_schedstats(void)
2689 set_schedstats(__sched_schedstats);
2692 #ifdef CONFIG_PROC_SYSCTL
2693 int sysctl_schedstats(struct ctl_table *table, int write,
2694 void __user *buffer, size_t *lenp, loff_t *ppos)
2698 int state = static_branch_likely(&sched_schedstats);
2700 if (write && !capable(CAP_SYS_ADMIN))
2705 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2709 set_schedstats(state);
2712 #endif /* CONFIG_PROC_SYSCTL */
2713 #else /* !CONFIG_SCHEDSTATS */
2714 static inline void init_schedstats(void) {}
2715 #endif /* CONFIG_SCHEDSTATS */
2718 * fork()/clone()-time setup:
2720 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2722 unsigned long flags;
2724 __sched_fork(clone_flags, p);
2726 * We mark the process as NEW here. This guarantees that
2727 * nobody will actually run it, and a signal or other external
2728 * event cannot wake it up and insert it on the runqueue either.
2730 p->state = TASK_NEW;
2733 * Make sure we do not leak PI boosting priority to the child.
2735 p->prio = current->normal_prio;
2740 * Revert to default priority/policy on fork if requested.
2742 if (unlikely(p->sched_reset_on_fork)) {
2743 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2744 p->policy = SCHED_NORMAL;
2745 p->static_prio = NICE_TO_PRIO(0);
2747 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2748 p->static_prio = NICE_TO_PRIO(0);
2750 p->prio = p->normal_prio = __normal_prio(p);
2751 set_load_weight(p, false);
2754 * We don't need the reset flag anymore after the fork. It has
2755 * fulfilled its duty:
2757 p->sched_reset_on_fork = 0;
2760 if (dl_prio(p->prio))
2762 else if (rt_prio(p->prio))
2763 p->sched_class = &rt_sched_class;
2765 p->sched_class = &fair_sched_class;
2767 init_entity_runnable_average(&p->se);
2770 * The child is not yet in the pid-hash so no cgroup attach races,
2771 * and the cgroup is pinned to this child due to cgroup_fork()
2772 * is ran before sched_fork().
2774 * Silence PROVE_RCU.
2776 raw_spin_lock_irqsave(&p->pi_lock, flags);
2778 * We're setting the CPU for the first time, we don't migrate,
2779 * so use __set_task_cpu().
2781 __set_task_cpu(p, smp_processor_id());
2782 if (p->sched_class->task_fork)
2783 p->sched_class->task_fork(p);
2784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2786 #ifdef CONFIG_SCHED_INFO
2787 if (likely(sched_info_on()))
2788 memset(&p->sched_info, 0, sizeof(p->sched_info));
2790 #if defined(CONFIG_SMP)
2793 init_task_preempt_count(p);
2795 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2796 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2801 unsigned long to_ratio(u64 period, u64 runtime)
2803 if (runtime == RUNTIME_INF)
2807 * Doing this here saves a lot of checks in all
2808 * the calling paths, and returning zero seems
2809 * safe for them anyway.
2814 return div64_u64(runtime << BW_SHIFT, period);
2818 * wake_up_new_task - wake up a newly created task for the first time.
2820 * This function will do some initial scheduler statistics housekeeping
2821 * that must be done for every newly created context, then puts the task
2822 * on the runqueue and wakes it.
2824 void wake_up_new_task(struct task_struct *p)
2829 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2830 p->state = TASK_RUNNING;
2833 * Fork balancing, do it here and not earlier because:
2834 * - cpus_ptr can change in the fork path
2835 * - any previously selected CPU might disappear through hotplug
2837 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2838 * as we're not fully set-up yet.
2840 p->recent_used_cpu = task_cpu(p);
2841 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2843 rq = __task_rq_lock(p, &rf);
2844 update_rq_clock(rq);
2845 post_init_entity_util_avg(p);
2847 activate_task(rq, p, ENQUEUE_NOCLOCK);
2848 trace_sched_wakeup_new(p);
2849 check_preempt_curr(rq, p, WF_FORK);
2851 if (p->sched_class->task_woken) {
2853 * Nothing relies on rq->lock after this, so its fine to
2856 rq_unpin_lock(rq, &rf);
2857 p->sched_class->task_woken(rq, p);
2858 rq_repin_lock(rq, &rf);
2861 task_rq_unlock(rq, p, &rf);
2864 #ifdef CONFIG_PREEMPT_NOTIFIERS
2866 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2868 void preempt_notifier_inc(void)
2870 static_branch_inc(&preempt_notifier_key);
2872 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2874 void preempt_notifier_dec(void)
2876 static_branch_dec(&preempt_notifier_key);
2878 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2881 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2882 * @notifier: notifier struct to register
2884 void preempt_notifier_register(struct preempt_notifier *notifier)
2886 if (!static_branch_unlikely(&preempt_notifier_key))
2887 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2889 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2891 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2894 * preempt_notifier_unregister - no longer interested in preemption notifications
2895 * @notifier: notifier struct to unregister
2897 * This is *not* safe to call from within a preemption notifier.
2899 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2901 hlist_del(¬ifier->link);
2903 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2905 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2907 struct preempt_notifier *notifier;
2909 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2910 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2913 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2915 if (static_branch_unlikely(&preempt_notifier_key))
2916 __fire_sched_in_preempt_notifiers(curr);
2920 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2921 struct task_struct *next)
2923 struct preempt_notifier *notifier;
2925 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2926 notifier->ops->sched_out(notifier, next);
2929 static __always_inline void
2930 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2931 struct task_struct *next)
2933 if (static_branch_unlikely(&preempt_notifier_key))
2934 __fire_sched_out_preempt_notifiers(curr, next);
2937 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2939 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2944 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2945 struct task_struct *next)
2949 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2951 static inline void prepare_task(struct task_struct *next)
2955 * Claim the task as running, we do this before switching to it
2956 * such that any running task will have this set.
2962 static inline void finish_task(struct task_struct *prev)
2966 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2967 * We must ensure this doesn't happen until the switch is completely
2970 * In particular, the load of prev->state in finish_task_switch() must
2971 * happen before this.
2973 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2975 smp_store_release(&prev->on_cpu, 0);
2980 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2983 * Since the runqueue lock will be released by the next
2984 * task (which is an invalid locking op but in the case
2985 * of the scheduler it's an obvious special-case), so we
2986 * do an early lockdep release here:
2988 rq_unpin_lock(rq, rf);
2989 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2990 #ifdef CONFIG_DEBUG_SPINLOCK
2991 /* this is a valid case when another task releases the spinlock */
2992 rq->lock.owner = next;
2996 static inline void finish_lock_switch(struct rq *rq)
2999 * If we are tracking spinlock dependencies then we have to
3000 * fix up the runqueue lock - which gets 'carried over' from
3001 * prev into current:
3003 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3004 raw_spin_unlock_irq(&rq->lock);
3008 * NOP if the arch has not defined these:
3011 #ifndef prepare_arch_switch
3012 # define prepare_arch_switch(next) do { } while (0)
3015 #ifndef finish_arch_post_lock_switch
3016 # define finish_arch_post_lock_switch() do { } while (0)
3020 * prepare_task_switch - prepare to switch tasks
3021 * @rq: the runqueue preparing to switch
3022 * @prev: the current task that is being switched out
3023 * @next: the task we are going to switch to.
3025 * This is called with the rq lock held and interrupts off. It must
3026 * be paired with a subsequent finish_task_switch after the context
3029 * prepare_task_switch sets up locking and calls architecture specific
3033 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3034 struct task_struct *next)
3036 kcov_prepare_switch(prev);
3037 sched_info_switch(rq, prev, next);
3038 perf_event_task_sched_out(prev, next);
3040 fire_sched_out_preempt_notifiers(prev, next);
3042 prepare_arch_switch(next);
3046 * finish_task_switch - clean up after a task-switch
3047 * @prev: the thread we just switched away from.
3049 * finish_task_switch must be called after the context switch, paired
3050 * with a prepare_task_switch call before the context switch.
3051 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3052 * and do any other architecture-specific cleanup actions.
3054 * Note that we may have delayed dropping an mm in context_switch(). If
3055 * so, we finish that here outside of the runqueue lock. (Doing it
3056 * with the lock held can cause deadlocks; see schedule() for
3059 * The context switch have flipped the stack from under us and restored the
3060 * local variables which were saved when this task called schedule() in the
3061 * past. prev == current is still correct but we need to recalculate this_rq
3062 * because prev may have moved to another CPU.
3064 static struct rq *finish_task_switch(struct task_struct *prev)
3065 __releases(rq->lock)
3067 struct rq *rq = this_rq();
3068 struct mm_struct *mm = rq->prev_mm;
3072 * The previous task will have left us with a preempt_count of 2
3073 * because it left us after:
3076 * preempt_disable(); // 1
3078 * raw_spin_lock_irq(&rq->lock) // 2
3080 * Also, see FORK_PREEMPT_COUNT.
3082 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3083 "corrupted preempt_count: %s/%d/0x%x\n",
3084 current->comm, current->pid, preempt_count()))
3085 preempt_count_set(FORK_PREEMPT_COUNT);
3090 * A task struct has one reference for the use as "current".
3091 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3092 * schedule one last time. The schedule call will never return, and
3093 * the scheduled task must drop that reference.
3095 * We must observe prev->state before clearing prev->on_cpu (in
3096 * finish_task), otherwise a concurrent wakeup can get prev
3097 * running on another CPU and we could rave with its RUNNING -> DEAD
3098 * transition, resulting in a double drop.
3100 prev_state = prev->state;
3101 vtime_task_switch(prev);
3102 perf_event_task_sched_in(prev, current);
3104 finish_lock_switch(rq);
3105 finish_arch_post_lock_switch();
3106 kcov_finish_switch(current);
3108 fire_sched_in_preempt_notifiers(current);
3110 * When switching through a kernel thread, the loop in
3111 * membarrier_{private,global}_expedited() may have observed that
3112 * kernel thread and not issued an IPI. It is therefore possible to
3113 * schedule between user->kernel->user threads without passing though
3114 * switch_mm(). Membarrier requires a barrier after storing to
3115 * rq->curr, before returning to userspace, so provide them here:
3117 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3118 * provided by mmdrop(),
3119 * - a sync_core for SYNC_CORE.
3122 membarrier_mm_sync_core_before_usermode(mm);
3125 if (unlikely(prev_state == TASK_DEAD)) {
3126 if (prev->sched_class->task_dead)
3127 prev->sched_class->task_dead(prev);
3130 * Remove function-return probe instances associated with this
3131 * task and put them back on the free list.
3133 kprobe_flush_task(prev);
3135 /* Task is done with its stack. */
3136 put_task_stack(prev);
3138 put_task_struct(prev);
3141 tick_nohz_task_switch();
3147 /* rq->lock is NOT held, but preemption is disabled */
3148 static void __balance_callback(struct rq *rq)
3150 struct callback_head *head, *next;
3151 void (*func)(struct rq *rq);
3152 unsigned long flags;
3154 raw_spin_lock_irqsave(&rq->lock, flags);
3155 head = rq->balance_callback;
3156 rq->balance_callback = NULL;
3158 func = (void (*)(struct rq *))head->func;
3165 raw_spin_unlock_irqrestore(&rq->lock, flags);
3168 static inline void balance_callback(struct rq *rq)
3170 if (unlikely(rq->balance_callback))
3171 __balance_callback(rq);
3176 static inline void balance_callback(struct rq *rq)
3183 * schedule_tail - first thing a freshly forked thread must call.
3184 * @prev: the thread we just switched away from.
3186 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3187 __releases(rq->lock)
3192 * New tasks start with FORK_PREEMPT_COUNT, see there and
3193 * finish_task_switch() for details.
3195 * finish_task_switch() will drop rq->lock() and lower preempt_count
3196 * and the preempt_enable() will end up enabling preemption (on
3197 * PREEMPT_COUNT kernels).
3200 rq = finish_task_switch(prev);
3201 balance_callback(rq);
3204 if (current->set_child_tid)
3205 put_user(task_pid_vnr(current), current->set_child_tid);
3207 calculate_sigpending();
3211 * context_switch - switch to the new MM and the new thread's register state.
3213 static __always_inline struct rq *
3214 context_switch(struct rq *rq, struct task_struct *prev,
3215 struct task_struct *next, struct rq_flags *rf)
3217 struct mm_struct *mm, *oldmm;
3219 prepare_task_switch(rq, prev, next);
3222 oldmm = prev->active_mm;
3224 * For paravirt, this is coupled with an exit in switch_to to
3225 * combine the page table reload and the switch backend into
3228 arch_start_context_switch(prev);
3231 * If mm is non-NULL, we pass through switch_mm(). If mm is
3232 * NULL, we will pass through mmdrop() in finish_task_switch().
3233 * Both of these contain the full memory barrier required by
3234 * membarrier after storing to rq->curr, before returning to
3238 next->active_mm = oldmm;
3240 enter_lazy_tlb(oldmm, next);
3242 switch_mm_irqs_off(oldmm, mm, next);
3245 prev->active_mm = NULL;
3246 rq->prev_mm = oldmm;
3249 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3251 prepare_lock_switch(rq, next, rf);
3253 /* Here we just switch the register state and the stack. */
3254 switch_to(prev, next, prev);
3257 return finish_task_switch(prev);
3261 * nr_running and nr_context_switches:
3263 * externally visible scheduler statistics: current number of runnable
3264 * threads, total number of context switches performed since bootup.
3266 unsigned long nr_running(void)
3268 unsigned long i, sum = 0;
3270 for_each_online_cpu(i)
3271 sum += cpu_rq(i)->nr_running;
3277 * Check if only the current task is running on the CPU.
3279 * Caution: this function does not check that the caller has disabled
3280 * preemption, thus the result might have a time-of-check-to-time-of-use
3281 * race. The caller is responsible to use it correctly, for example:
3283 * - from a non-preemptible section (of course)
3285 * - from a thread that is bound to a single CPU
3287 * - in a loop with very short iterations (e.g. a polling loop)
3289 bool single_task_running(void)
3291 return raw_rq()->nr_running == 1;
3293 EXPORT_SYMBOL(single_task_running);
3295 unsigned long long nr_context_switches(void)
3298 unsigned long long sum = 0;
3300 for_each_possible_cpu(i)
3301 sum += cpu_rq(i)->nr_switches;
3307 * Consumers of these two interfaces, like for example the cpuidle menu
3308 * governor, are using nonsensical data. Preferring shallow idle state selection
3309 * for a CPU that has IO-wait which might not even end up running the task when
3310 * it does become runnable.
3313 unsigned long nr_iowait_cpu(int cpu)
3315 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3319 * IO-wait accounting, and how its mostly bollocks (on SMP).
3321 * The idea behind IO-wait account is to account the idle time that we could
3322 * have spend running if it were not for IO. That is, if we were to improve the
3323 * storage performance, we'd have a proportional reduction in IO-wait time.
3325 * This all works nicely on UP, where, when a task blocks on IO, we account
3326 * idle time as IO-wait, because if the storage were faster, it could've been
3327 * running and we'd not be idle.
3329 * This has been extended to SMP, by doing the same for each CPU. This however
3332 * Imagine for instance the case where two tasks block on one CPU, only the one
3333 * CPU will have IO-wait accounted, while the other has regular idle. Even
3334 * though, if the storage were faster, both could've ran at the same time,
3335 * utilising both CPUs.
3337 * This means, that when looking globally, the current IO-wait accounting on
3338 * SMP is a lower bound, by reason of under accounting.
3340 * Worse, since the numbers are provided per CPU, they are sometimes
3341 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3342 * associated with any one particular CPU, it can wake to another CPU than it
3343 * blocked on. This means the per CPU IO-wait number is meaningless.
3345 * Task CPU affinities can make all that even more 'interesting'.
3348 unsigned long nr_iowait(void)
3350 unsigned long i, sum = 0;
3352 for_each_possible_cpu(i)
3353 sum += nr_iowait_cpu(i);
3361 * sched_exec - execve() is a valuable balancing opportunity, because at
3362 * this point the task has the smallest effective memory and cache footprint.
3364 void sched_exec(void)
3366 struct task_struct *p = current;
3367 unsigned long flags;
3370 raw_spin_lock_irqsave(&p->pi_lock, flags);
3371 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3372 if (dest_cpu == smp_processor_id())
3375 if (likely(cpu_active(dest_cpu))) {
3376 struct migration_arg arg = { p, dest_cpu };
3378 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3379 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3383 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3388 DEFINE_PER_CPU(struct kernel_stat, kstat);
3389 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3391 EXPORT_PER_CPU_SYMBOL(kstat);
3392 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3395 * The function fair_sched_class.update_curr accesses the struct curr
3396 * and its field curr->exec_start; when called from task_sched_runtime(),
3397 * we observe a high rate of cache misses in practice.
3398 * Prefetching this data results in improved performance.
3400 static inline void prefetch_curr_exec_start(struct task_struct *p)
3402 #ifdef CONFIG_FAIR_GROUP_SCHED
3403 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3405 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3408 prefetch(&curr->exec_start);
3412 * Return accounted runtime for the task.
3413 * In case the task is currently running, return the runtime plus current's
3414 * pending runtime that have not been accounted yet.
3416 unsigned long long task_sched_runtime(struct task_struct *p)
3422 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3424 * 64-bit doesn't need locks to atomically read a 64-bit value.
3425 * So we have a optimization chance when the task's delta_exec is 0.
3426 * Reading ->on_cpu is racy, but this is ok.
3428 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3429 * If we race with it entering CPU, unaccounted time is 0. This is
3430 * indistinguishable from the read occurring a few cycles earlier.
3431 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3432 * been accounted, so we're correct here as well.
3434 if (!p->on_cpu || !task_on_rq_queued(p))
3435 return p->se.sum_exec_runtime;
3438 rq = task_rq_lock(p, &rf);
3440 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3441 * project cycles that may never be accounted to this
3442 * thread, breaking clock_gettime().
3444 if (task_current(rq, p) && task_on_rq_queued(p)) {
3445 prefetch_curr_exec_start(p);
3446 update_rq_clock(rq);
3447 p->sched_class->update_curr(rq);
3449 ns = p->se.sum_exec_runtime;
3450 task_rq_unlock(rq, p, &rf);
3456 * This function gets called by the timer code, with HZ frequency.
3457 * We call it with interrupts disabled.
3459 void scheduler_tick(void)
3461 int cpu = smp_processor_id();
3462 struct rq *rq = cpu_rq(cpu);
3463 struct task_struct *curr = rq->curr;
3470 update_rq_clock(rq);
3471 curr->sched_class->task_tick(rq, curr, 0);
3472 calc_global_load_tick(rq);
3477 perf_event_task_tick();
3480 rq->idle_balance = idle_cpu(cpu);
3481 trigger_load_balance(rq);
3485 #ifdef CONFIG_NO_HZ_FULL
3490 struct delayed_work work;
3492 /* Values for ->state, see diagram below. */
3493 #define TICK_SCHED_REMOTE_OFFLINE 0
3494 #define TICK_SCHED_REMOTE_OFFLINING 1
3495 #define TICK_SCHED_REMOTE_RUNNING 2
3498 * State diagram for ->state:
3501 * TICK_SCHED_REMOTE_OFFLINE
3504 * | | sched_tick_remote()
3507 * +--TICK_SCHED_REMOTE_OFFLINING
3510 * sched_tick_start() | | sched_tick_stop()
3513 * TICK_SCHED_REMOTE_RUNNING
3516 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3517 * and sched_tick_start() are happy to leave the state in RUNNING.
3520 static struct tick_work __percpu *tick_work_cpu;
3522 static void sched_tick_remote(struct work_struct *work)
3524 struct delayed_work *dwork = to_delayed_work(work);
3525 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3526 int cpu = twork->cpu;
3527 struct rq *rq = cpu_rq(cpu);
3528 struct task_struct *curr;
3534 * Handle the tick only if it appears the remote CPU is running in full
3535 * dynticks mode. The check is racy by nature, but missing a tick or
3536 * having one too much is no big deal because the scheduler tick updates
3537 * statistics and checks timeslices in a time-independent way, regardless
3538 * of when exactly it is running.
3540 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3543 rq_lock_irq(rq, &rf);
3545 if (is_idle_task(curr) || cpu_is_offline(cpu))
3548 update_rq_clock(rq);
3549 delta = rq_clock_task(rq) - curr->se.exec_start;
3552 * Make sure the next tick runs within a reasonable
3555 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3556 curr->sched_class->task_tick(rq, curr, 0);
3559 rq_unlock_irq(rq, &rf);
3563 * Run the remote tick once per second (1Hz). This arbitrary
3564 * frequency is large enough to avoid overload but short enough
3565 * to keep scheduler internal stats reasonably up to date. But
3566 * first update state to reflect hotplug activity if required.
3568 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3569 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3570 if (os == TICK_SCHED_REMOTE_RUNNING)
3571 queue_delayed_work(system_unbound_wq, dwork, HZ);
3574 static void sched_tick_start(int cpu)
3577 struct tick_work *twork;
3579 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3582 WARN_ON_ONCE(!tick_work_cpu);
3584 twork = per_cpu_ptr(tick_work_cpu, cpu);
3585 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3586 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3587 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3589 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3590 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3594 #ifdef CONFIG_HOTPLUG_CPU
3595 static void sched_tick_stop(int cpu)
3597 struct tick_work *twork;
3600 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3603 WARN_ON_ONCE(!tick_work_cpu);
3605 twork = per_cpu_ptr(tick_work_cpu, cpu);
3606 /* There cannot be competing actions, but don't rely on stop-machine. */
3607 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3608 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3609 /* Don't cancel, as this would mess up the state machine. */
3611 #endif /* CONFIG_HOTPLUG_CPU */
3613 int __init sched_tick_offload_init(void)
3615 tick_work_cpu = alloc_percpu(struct tick_work);
3616 BUG_ON(!tick_work_cpu);
3620 #else /* !CONFIG_NO_HZ_FULL */
3621 static inline void sched_tick_start(int cpu) { }
3622 static inline void sched_tick_stop(int cpu) { }
3625 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3626 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3628 * If the value passed in is equal to the current preempt count
3629 * then we just disabled preemption. Start timing the latency.
3631 static inline void preempt_latency_start(int val)
3633 if (preempt_count() == val) {
3634 unsigned long ip = get_lock_parent_ip();
3635 #ifdef CONFIG_DEBUG_PREEMPT
3636 current->preempt_disable_ip = ip;
3638 trace_preempt_off(CALLER_ADDR0, ip);
3642 void preempt_count_add(int val)
3644 #ifdef CONFIG_DEBUG_PREEMPT
3648 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3651 __preempt_count_add(val);
3652 #ifdef CONFIG_DEBUG_PREEMPT
3654 * Spinlock count overflowing soon?
3656 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3659 preempt_latency_start(val);
3661 EXPORT_SYMBOL(preempt_count_add);
3662 NOKPROBE_SYMBOL(preempt_count_add);
3665 * If the value passed in equals to the current preempt count
3666 * then we just enabled preemption. Stop timing the latency.
3668 static inline void preempt_latency_stop(int val)
3670 if (preempt_count() == val)
3671 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3674 void preempt_count_sub(int val)
3676 #ifdef CONFIG_DEBUG_PREEMPT
3680 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3683 * Is the spinlock portion underflowing?
3685 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3686 !(preempt_count() & PREEMPT_MASK)))
3690 preempt_latency_stop(val);
3691 __preempt_count_sub(val);
3693 EXPORT_SYMBOL(preempt_count_sub);
3694 NOKPROBE_SYMBOL(preempt_count_sub);
3697 static inline void preempt_latency_start(int val) { }
3698 static inline void preempt_latency_stop(int val) { }
3701 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3703 #ifdef CONFIG_DEBUG_PREEMPT
3704 return p->preempt_disable_ip;
3711 * Print scheduling while atomic bug:
3713 static noinline void __schedule_bug(struct task_struct *prev)
3715 /* Save this before calling printk(), since that will clobber it */
3716 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3718 if (oops_in_progress)
3721 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3722 prev->comm, prev->pid, preempt_count());
3724 debug_show_held_locks(prev);
3726 if (irqs_disabled())
3727 print_irqtrace_events(prev);
3728 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3729 && in_atomic_preempt_off()) {
3730 pr_err("Preemption disabled at:");
3731 print_ip_sym(preempt_disable_ip);
3735 panic("scheduling while atomic\n");
3738 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3742 * Various schedule()-time debugging checks and statistics:
3744 static inline void schedule_debug(struct task_struct *prev)
3746 #ifdef CONFIG_SCHED_STACK_END_CHECK
3747 if (task_stack_end_corrupted(prev))
3748 panic("corrupted stack end detected inside scheduler\n");
3751 if (unlikely(in_atomic_preempt_off())) {
3752 __schedule_bug(prev);
3753 preempt_count_set(PREEMPT_DISABLED);
3757 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3759 schedstat_inc(this_rq()->sched_count);
3763 * Pick up the highest-prio task:
3765 static inline struct task_struct *
3766 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3768 const struct sched_class *class;
3769 struct task_struct *p;
3772 * Optimization: we know that if all tasks are in the fair class we can
3773 * call that function directly, but only if the @prev task wasn't of a
3774 * higher scheduling class, because otherwise those loose the
3775 * opportunity to pull in more work from other CPUs.
3777 if (likely((prev->sched_class == &idle_sched_class ||
3778 prev->sched_class == &fair_sched_class) &&
3779 rq->nr_running == rq->cfs.h_nr_running)) {
3781 p = fair_sched_class.pick_next_task(rq, prev, rf);
3782 if (unlikely(p == RETRY_TASK))
3785 /* Assumes fair_sched_class->next == idle_sched_class */
3787 p = idle_sched_class.pick_next_task(rq, prev, rf);
3793 for_each_class(class) {
3794 p = class->pick_next_task(rq, prev, rf);
3796 if (unlikely(p == RETRY_TASK))
3802 /* The idle class should always have a runnable task: */
3807 * __schedule() is the main scheduler function.
3809 * The main means of driving the scheduler and thus entering this function are:
3811 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3813 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3814 * paths. For example, see arch/x86/entry_64.S.
3816 * To drive preemption between tasks, the scheduler sets the flag in timer
3817 * interrupt handler scheduler_tick().
3819 * 3. Wakeups don't really cause entry into schedule(). They add a
3820 * task to the run-queue and that's it.
3822 * Now, if the new task added to the run-queue preempts the current
3823 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3824 * called on the nearest possible occasion:
3826 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3828 * - in syscall or exception context, at the next outmost
3829 * preempt_enable(). (this might be as soon as the wake_up()'s
3832 * - in IRQ context, return from interrupt-handler to
3833 * preemptible context
3835 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3838 * - cond_resched() call
3839 * - explicit schedule() call
3840 * - return from syscall or exception to user-space
3841 * - return from interrupt-handler to user-space
3843 * WARNING: must be called with preemption disabled!
3845 static void __sched notrace __schedule(bool preempt)
3847 struct task_struct *prev, *next;
3848 unsigned long *switch_count;
3853 cpu = smp_processor_id();
3857 schedule_debug(prev);
3859 if (sched_feat(HRTICK))
3862 local_irq_disable();
3863 rcu_note_context_switch(preempt);
3866 * Make sure that signal_pending_state()->signal_pending() below
3867 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3868 * done by the caller to avoid the race with signal_wake_up().
3870 * The membarrier system call requires a full memory barrier
3871 * after coming from user-space, before storing to rq->curr.
3874 smp_mb__after_spinlock();
3876 /* Promote REQ to ACT */
3877 rq->clock_update_flags <<= 1;
3878 update_rq_clock(rq);
3880 switch_count = &prev->nivcsw;
3881 if (!preempt && prev->state) {
3882 if (signal_pending_state(prev->state, prev)) {
3883 prev->state = TASK_RUNNING;
3885 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3887 if (prev->in_iowait) {
3888 atomic_inc(&rq->nr_iowait);
3889 delayacct_blkio_start();
3892 switch_count = &prev->nvcsw;
3895 next = pick_next_task(rq, prev, &rf);
3896 clear_tsk_need_resched(prev);
3897 clear_preempt_need_resched();
3899 if (likely(prev != next)) {
3903 * The membarrier system call requires each architecture
3904 * to have a full memory barrier after updating
3905 * rq->curr, before returning to user-space.
3907 * Here are the schemes providing that barrier on the
3908 * various architectures:
3909 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3910 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3911 * - finish_lock_switch() for weakly-ordered
3912 * architectures where spin_unlock is a full barrier,
3913 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3914 * is a RELEASE barrier),
3918 trace_sched_switch(preempt, prev, next);
3920 /* Also unlocks the rq: */
3921 rq = context_switch(rq, prev, next, &rf);
3923 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3924 rq_unlock_irq(rq, &rf);
3927 balance_callback(rq);
3930 void __noreturn do_task_dead(void)
3932 /* Causes final put_task_struct in finish_task_switch(): */
3933 set_special_state(TASK_DEAD);
3935 /* Tell freezer to ignore us: */
3936 current->flags |= PF_NOFREEZE;
3941 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3946 static inline void sched_submit_work(struct task_struct *tsk)
3952 * If a worker went to sleep, notify and ask workqueue whether
3953 * it wants to wake up a task to maintain concurrency.
3954 * As this function is called inside the schedule() context,
3955 * we disable preemption to avoid it calling schedule() again
3956 * in the possible wakeup of a kworker.
3958 if (tsk->flags & PF_WQ_WORKER) {
3960 wq_worker_sleeping(tsk);
3961 preempt_enable_no_resched();
3964 if (tsk_is_pi_blocked(tsk))
3968 * If we are going to sleep and we have plugged IO queued,
3969 * make sure to submit it to avoid deadlocks.
3971 if (blk_needs_flush_plug(tsk))
3972 blk_schedule_flush_plug(tsk);
3975 static void sched_update_worker(struct task_struct *tsk)
3977 if (tsk->flags & PF_WQ_WORKER)
3978 wq_worker_running(tsk);
3981 asmlinkage __visible void __sched schedule(void)
3983 struct task_struct *tsk = current;
3985 sched_submit_work(tsk);
3989 sched_preempt_enable_no_resched();
3990 } while (need_resched());
3991 sched_update_worker(tsk);
3993 EXPORT_SYMBOL(schedule);
3996 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3997 * state (have scheduled out non-voluntarily) by making sure that all
3998 * tasks have either left the run queue or have gone into user space.
3999 * As idle tasks do not do either, they must not ever be preempted
4000 * (schedule out non-voluntarily).
4002 * schedule_idle() is similar to schedule_preempt_disable() except that it
4003 * never enables preemption because it does not call sched_submit_work().
4005 void __sched schedule_idle(void)
4008 * As this skips calling sched_submit_work(), which the idle task does
4009 * regardless because that function is a nop when the task is in a
4010 * TASK_RUNNING state, make sure this isn't used someplace that the
4011 * current task can be in any other state. Note, idle is always in the
4012 * TASK_RUNNING state.
4014 WARN_ON_ONCE(current->state);
4017 } while (need_resched());
4020 #ifdef CONFIG_CONTEXT_TRACKING
4021 asmlinkage __visible void __sched schedule_user(void)
4024 * If we come here after a random call to set_need_resched(),
4025 * or we have been woken up remotely but the IPI has not yet arrived,
4026 * we haven't yet exited the RCU idle mode. Do it here manually until
4027 * we find a better solution.
4029 * NB: There are buggy callers of this function. Ideally we
4030 * should warn if prev_state != CONTEXT_USER, but that will trigger
4031 * too frequently to make sense yet.
4033 enum ctx_state prev_state = exception_enter();
4035 exception_exit(prev_state);
4040 * schedule_preempt_disabled - called with preemption disabled
4042 * Returns with preemption disabled. Note: preempt_count must be 1
4044 void __sched schedule_preempt_disabled(void)
4046 sched_preempt_enable_no_resched();
4051 static void __sched notrace preempt_schedule_common(void)
4055 * Because the function tracer can trace preempt_count_sub()
4056 * and it also uses preempt_enable/disable_notrace(), if
4057 * NEED_RESCHED is set, the preempt_enable_notrace() called
4058 * by the function tracer will call this function again and
4059 * cause infinite recursion.
4061 * Preemption must be disabled here before the function
4062 * tracer can trace. Break up preempt_disable() into two
4063 * calls. One to disable preemption without fear of being
4064 * traced. The other to still record the preemption latency,
4065 * which can also be traced by the function tracer.
4067 preempt_disable_notrace();
4068 preempt_latency_start(1);
4070 preempt_latency_stop(1);
4071 preempt_enable_no_resched_notrace();
4074 * Check again in case we missed a preemption opportunity
4075 * between schedule and now.
4077 } while (need_resched());
4080 #ifdef CONFIG_PREEMPT
4082 * this is the entry point to schedule() from in-kernel preemption
4083 * off of preempt_enable. Kernel preemptions off return from interrupt
4084 * occur there and call schedule directly.
4086 asmlinkage __visible void __sched notrace preempt_schedule(void)
4089 * If there is a non-zero preempt_count or interrupts are disabled,
4090 * we do not want to preempt the current task. Just return..
4092 if (likely(!preemptible()))
4095 preempt_schedule_common();
4097 NOKPROBE_SYMBOL(preempt_schedule);
4098 EXPORT_SYMBOL(preempt_schedule);
4101 * preempt_schedule_notrace - preempt_schedule called by tracing
4103 * The tracing infrastructure uses preempt_enable_notrace to prevent
4104 * recursion and tracing preempt enabling caused by the tracing
4105 * infrastructure itself. But as tracing can happen in areas coming
4106 * from userspace or just about to enter userspace, a preempt enable
4107 * can occur before user_exit() is called. This will cause the scheduler
4108 * to be called when the system is still in usermode.
4110 * To prevent this, the preempt_enable_notrace will use this function
4111 * instead of preempt_schedule() to exit user context if needed before
4112 * calling the scheduler.
4114 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4116 enum ctx_state prev_ctx;
4118 if (likely(!preemptible()))
4123 * Because the function tracer can trace preempt_count_sub()
4124 * and it also uses preempt_enable/disable_notrace(), if
4125 * NEED_RESCHED is set, the preempt_enable_notrace() called
4126 * by the function tracer will call this function again and
4127 * cause infinite recursion.
4129 * Preemption must be disabled here before the function
4130 * tracer can trace. Break up preempt_disable() into two
4131 * calls. One to disable preemption without fear of being
4132 * traced. The other to still record the preemption latency,
4133 * which can also be traced by the function tracer.
4135 preempt_disable_notrace();
4136 preempt_latency_start(1);
4138 * Needs preempt disabled in case user_exit() is traced
4139 * and the tracer calls preempt_enable_notrace() causing
4140 * an infinite recursion.
4142 prev_ctx = exception_enter();
4144 exception_exit(prev_ctx);
4146 preempt_latency_stop(1);
4147 preempt_enable_no_resched_notrace();
4148 } while (need_resched());
4150 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4152 #endif /* CONFIG_PREEMPT */
4155 * this is the entry point to schedule() from kernel preemption
4156 * off of irq context.
4157 * Note, that this is called and return with irqs disabled. This will
4158 * protect us against recursive calling from irq.
4160 asmlinkage __visible void __sched preempt_schedule_irq(void)
4162 enum ctx_state prev_state;
4164 /* Catch callers which need to be fixed */
4165 BUG_ON(preempt_count() || !irqs_disabled());
4167 prev_state = exception_enter();
4173 local_irq_disable();
4174 sched_preempt_enable_no_resched();
4175 } while (need_resched());
4177 exception_exit(prev_state);
4180 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4183 return try_to_wake_up(curr->private, mode, wake_flags);
4185 EXPORT_SYMBOL(default_wake_function);
4187 #ifdef CONFIG_RT_MUTEXES
4189 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4192 prio = min(prio, pi_task->prio);
4197 static inline int rt_effective_prio(struct task_struct *p, int prio)
4199 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4201 return __rt_effective_prio(pi_task, prio);
4205 * rt_mutex_setprio - set the current priority of a task
4207 * @pi_task: donor task
4209 * This function changes the 'effective' priority of a task. It does
4210 * not touch ->normal_prio like __setscheduler().
4212 * Used by the rt_mutex code to implement priority inheritance
4213 * logic. Call site only calls if the priority of the task changed.
4215 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4217 int prio, oldprio, queued, running, queue_flag =
4218 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4219 const struct sched_class *prev_class;
4223 /* XXX used to be waiter->prio, not waiter->task->prio */
4224 prio = __rt_effective_prio(pi_task, p->normal_prio);
4227 * If nothing changed; bail early.
4229 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4232 rq = __task_rq_lock(p, &rf);
4233 update_rq_clock(rq);
4235 * Set under pi_lock && rq->lock, such that the value can be used under
4238 * Note that there is loads of tricky to make this pointer cache work
4239 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4240 * ensure a task is de-boosted (pi_task is set to NULL) before the
4241 * task is allowed to run again (and can exit). This ensures the pointer
4242 * points to a blocked task -- which guaratees the task is present.
4244 p->pi_top_task = pi_task;
4247 * For FIFO/RR we only need to set prio, if that matches we're done.
4249 if (prio == p->prio && !dl_prio(prio))
4253 * Idle task boosting is a nono in general. There is one
4254 * exception, when PREEMPT_RT and NOHZ is active:
4256 * The idle task calls get_next_timer_interrupt() and holds
4257 * the timer wheel base->lock on the CPU and another CPU wants
4258 * to access the timer (probably to cancel it). We can safely
4259 * ignore the boosting request, as the idle CPU runs this code
4260 * with interrupts disabled and will complete the lock
4261 * protected section without being interrupted. So there is no
4262 * real need to boost.
4264 if (unlikely(p == rq->idle)) {
4265 WARN_ON(p != rq->curr);
4266 WARN_ON(p->pi_blocked_on);
4270 trace_sched_pi_setprio(p, pi_task);
4273 if (oldprio == prio)
4274 queue_flag &= ~DEQUEUE_MOVE;
4276 prev_class = p->sched_class;
4277 queued = task_on_rq_queued(p);
4278 running = task_current(rq, p);
4280 dequeue_task(rq, p, queue_flag);
4282 put_prev_task(rq, p);
4285 * Boosting condition are:
4286 * 1. -rt task is running and holds mutex A
4287 * --> -dl task blocks on mutex A
4289 * 2. -dl task is running and holds mutex A
4290 * --> -dl task blocks on mutex A and could preempt the
4293 if (dl_prio(prio)) {
4294 if (!dl_prio(p->normal_prio) ||
4295 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4296 p->dl.dl_boosted = 1;
4297 queue_flag |= ENQUEUE_REPLENISH;
4299 p->dl.dl_boosted = 0;
4300 p->sched_class = &dl_sched_class;
4301 } else if (rt_prio(prio)) {
4302 if (dl_prio(oldprio))
4303 p->dl.dl_boosted = 0;
4305 queue_flag |= ENQUEUE_HEAD;
4306 p->sched_class = &rt_sched_class;
4308 if (dl_prio(oldprio))
4309 p->dl.dl_boosted = 0;
4310 if (rt_prio(oldprio))
4312 p->sched_class = &fair_sched_class;
4318 enqueue_task(rq, p, queue_flag);
4320 set_curr_task(rq, p);
4322 check_class_changed(rq, p, prev_class, oldprio);
4324 /* Avoid rq from going away on us: */
4326 __task_rq_unlock(rq, &rf);
4328 balance_callback(rq);
4332 static inline int rt_effective_prio(struct task_struct *p, int prio)
4338 void set_user_nice(struct task_struct *p, long nice)
4340 bool queued, running;
4341 int old_prio, delta;
4345 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4348 * We have to be careful, if called from sys_setpriority(),
4349 * the task might be in the middle of scheduling on another CPU.
4351 rq = task_rq_lock(p, &rf);
4352 update_rq_clock(rq);
4355 * The RT priorities are set via sched_setscheduler(), but we still
4356 * allow the 'normal' nice value to be set - but as expected
4357 * it wont have any effect on scheduling until the task is
4358 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4360 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4361 p->static_prio = NICE_TO_PRIO(nice);
4364 queued = task_on_rq_queued(p);
4365 running = task_current(rq, p);
4367 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4369 put_prev_task(rq, p);
4371 p->static_prio = NICE_TO_PRIO(nice);
4372 set_load_weight(p, true);
4374 p->prio = effective_prio(p);
4375 delta = p->prio - old_prio;
4378 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4380 * If the task increased its priority or is running and
4381 * lowered its priority, then reschedule its CPU:
4383 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4387 set_curr_task(rq, p);
4389 task_rq_unlock(rq, p, &rf);
4391 EXPORT_SYMBOL(set_user_nice);
4394 * can_nice - check if a task can reduce its nice value
4398 int can_nice(const struct task_struct *p, const int nice)
4400 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4401 int nice_rlim = nice_to_rlimit(nice);
4403 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4404 capable(CAP_SYS_NICE));
4407 #ifdef __ARCH_WANT_SYS_NICE
4410 * sys_nice - change the priority of the current process.
4411 * @increment: priority increment
4413 * sys_setpriority is a more generic, but much slower function that
4414 * does similar things.
4416 SYSCALL_DEFINE1(nice, int, increment)
4421 * Setpriority might change our priority at the same moment.
4422 * We don't have to worry. Conceptually one call occurs first
4423 * and we have a single winner.
4425 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4426 nice = task_nice(current) + increment;
4428 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4429 if (increment < 0 && !can_nice(current, nice))
4432 retval = security_task_setnice(current, nice);
4436 set_user_nice(current, nice);
4443 * task_prio - return the priority value of a given task.
4444 * @p: the task in question.
4446 * Return: The priority value as seen by users in /proc.
4447 * RT tasks are offset by -200. Normal tasks are centered
4448 * around 0, value goes from -16 to +15.
4450 int task_prio(const struct task_struct *p)
4452 return p->prio - MAX_RT_PRIO;
4456 * idle_cpu - is a given CPU idle currently?
4457 * @cpu: the processor in question.
4459 * Return: 1 if the CPU is currently idle. 0 otherwise.
4461 int idle_cpu(int cpu)
4463 struct rq *rq = cpu_rq(cpu);
4465 if (rq->curr != rq->idle)
4472 if (!llist_empty(&rq->wake_list))
4480 * available_idle_cpu - is a given CPU idle for enqueuing work.
4481 * @cpu: the CPU in question.
4483 * Return: 1 if the CPU is currently idle. 0 otherwise.
4485 int available_idle_cpu(int cpu)
4490 if (vcpu_is_preempted(cpu))
4497 * idle_task - return the idle task for a given CPU.
4498 * @cpu: the processor in question.
4500 * Return: The idle task for the CPU @cpu.
4502 struct task_struct *idle_task(int cpu)
4504 return cpu_rq(cpu)->idle;
4508 * find_process_by_pid - find a process with a matching PID value.
4509 * @pid: the pid in question.
4511 * The task of @pid, if found. %NULL otherwise.
4513 static struct task_struct *find_process_by_pid(pid_t pid)
4515 return pid ? find_task_by_vpid(pid) : current;
4519 * sched_setparam() passes in -1 for its policy, to let the functions
4520 * it calls know not to change it.
4522 #define SETPARAM_POLICY -1
4524 static void __setscheduler_params(struct task_struct *p,
4525 const struct sched_attr *attr)
4527 int policy = attr->sched_policy;
4529 if (policy == SETPARAM_POLICY)
4534 if (dl_policy(policy))
4535 __setparam_dl(p, attr);
4536 else if (fair_policy(policy))
4537 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4540 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4541 * !rt_policy. Always setting this ensures that things like
4542 * getparam()/getattr() don't report silly values for !rt tasks.
4544 p->rt_priority = attr->sched_priority;
4545 p->normal_prio = normal_prio(p);
4546 set_load_weight(p, true);
4549 /* Actually do priority change: must hold pi & rq lock. */
4550 static void __setscheduler(struct rq *rq, struct task_struct *p,
4551 const struct sched_attr *attr, bool keep_boost)
4554 * If params can't change scheduling class changes aren't allowed
4557 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4560 __setscheduler_params(p, attr);
4563 * Keep a potential priority boosting if called from
4564 * sched_setscheduler().
4566 p->prio = normal_prio(p);
4568 p->prio = rt_effective_prio(p, p->prio);
4570 if (dl_prio(p->prio))
4571 p->sched_class = &dl_sched_class;
4572 else if (rt_prio(p->prio))
4573 p->sched_class = &rt_sched_class;
4575 p->sched_class = &fair_sched_class;
4579 * Check the target process has a UID that matches the current process's:
4581 static bool check_same_owner(struct task_struct *p)
4583 const struct cred *cred = current_cred(), *pcred;
4587 pcred = __task_cred(p);
4588 match = (uid_eq(cred->euid, pcred->euid) ||
4589 uid_eq(cred->euid, pcred->uid));
4594 static int __sched_setscheduler(struct task_struct *p,
4595 const struct sched_attr *attr,
4598 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4599 MAX_RT_PRIO - 1 - attr->sched_priority;
4600 int retval, oldprio, oldpolicy = -1, queued, running;
4601 int new_effective_prio, policy = attr->sched_policy;
4602 const struct sched_class *prev_class;
4605 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4608 /* The pi code expects interrupts enabled */
4609 BUG_ON(pi && in_interrupt());
4611 /* Double check policy once rq lock held: */
4613 reset_on_fork = p->sched_reset_on_fork;
4614 policy = oldpolicy = p->policy;
4616 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4618 if (!valid_policy(policy))
4622 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4626 * Valid priorities for SCHED_FIFO and SCHED_RR are
4627 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4628 * SCHED_BATCH and SCHED_IDLE is 0.
4630 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4631 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4633 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4634 (rt_policy(policy) != (attr->sched_priority != 0)))
4638 * Allow unprivileged RT tasks to decrease priority:
4640 if (user && !capable(CAP_SYS_NICE)) {
4641 if (fair_policy(policy)) {
4642 if (attr->sched_nice < task_nice(p) &&
4643 !can_nice(p, attr->sched_nice))
4647 if (rt_policy(policy)) {
4648 unsigned long rlim_rtprio =
4649 task_rlimit(p, RLIMIT_RTPRIO);
4651 /* Can't set/change the rt policy: */
4652 if (policy != p->policy && !rlim_rtprio)
4655 /* Can't increase priority: */
4656 if (attr->sched_priority > p->rt_priority &&
4657 attr->sched_priority > rlim_rtprio)
4662 * Can't set/change SCHED_DEADLINE policy at all for now
4663 * (safest behavior); in the future we would like to allow
4664 * unprivileged DL tasks to increase their relative deadline
4665 * or reduce their runtime (both ways reducing utilization)
4667 if (dl_policy(policy))
4671 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4672 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4674 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4675 if (!can_nice(p, task_nice(p)))
4679 /* Can't change other user's priorities: */
4680 if (!check_same_owner(p))
4683 /* Normal users shall not reset the sched_reset_on_fork flag: */
4684 if (p->sched_reset_on_fork && !reset_on_fork)
4689 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4692 retval = security_task_setscheduler(p);
4697 /* Update task specific "requested" clamps */
4698 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4699 retval = uclamp_validate(p, attr);
4705 * Make sure no PI-waiters arrive (or leave) while we are
4706 * changing the priority of the task:
4708 * To be able to change p->policy safely, the appropriate
4709 * runqueue lock must be held.
4711 rq = task_rq_lock(p, &rf);
4712 update_rq_clock(rq);
4715 * Changing the policy of the stop threads its a very bad idea:
4717 if (p == rq->stop) {
4718 task_rq_unlock(rq, p, &rf);
4723 * If not changing anything there's no need to proceed further,
4724 * but store a possible modification of reset_on_fork.
4726 if (unlikely(policy == p->policy)) {
4727 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4729 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4731 if (dl_policy(policy) && dl_param_changed(p, attr))
4733 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4736 p->sched_reset_on_fork = reset_on_fork;
4737 task_rq_unlock(rq, p, &rf);
4743 #ifdef CONFIG_RT_GROUP_SCHED
4745 * Do not allow realtime tasks into groups that have no runtime
4748 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4749 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4750 !task_group_is_autogroup(task_group(p))) {
4751 task_rq_unlock(rq, p, &rf);
4756 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4757 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4758 cpumask_t *span = rq->rd->span;
4761 * Don't allow tasks with an affinity mask smaller than
4762 * the entire root_domain to become SCHED_DEADLINE. We
4763 * will also fail if there's no bandwidth available.
4765 if (!cpumask_subset(span, p->cpus_ptr) ||
4766 rq->rd->dl_bw.bw == 0) {
4767 task_rq_unlock(rq, p, &rf);
4774 /* Re-check policy now with rq lock held: */
4775 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4776 policy = oldpolicy = -1;
4777 task_rq_unlock(rq, p, &rf);
4782 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4783 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4786 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4787 task_rq_unlock(rq, p, &rf);
4791 p->sched_reset_on_fork = reset_on_fork;
4796 * Take priority boosted tasks into account. If the new
4797 * effective priority is unchanged, we just store the new
4798 * normal parameters and do not touch the scheduler class and
4799 * the runqueue. This will be done when the task deboost
4802 new_effective_prio = rt_effective_prio(p, newprio);
4803 if (new_effective_prio == oldprio)
4804 queue_flags &= ~DEQUEUE_MOVE;
4807 queued = task_on_rq_queued(p);
4808 running = task_current(rq, p);
4810 dequeue_task(rq, p, queue_flags);
4812 put_prev_task(rq, p);
4814 prev_class = p->sched_class;
4816 __setscheduler(rq, p, attr, pi);
4817 __setscheduler_uclamp(p, attr);
4821 * We enqueue to tail when the priority of a task is
4822 * increased (user space view).
4824 if (oldprio < p->prio)
4825 queue_flags |= ENQUEUE_HEAD;
4827 enqueue_task(rq, p, queue_flags);
4830 set_curr_task(rq, p);
4832 check_class_changed(rq, p, prev_class, oldprio);
4834 /* Avoid rq from going away on us: */
4836 task_rq_unlock(rq, p, &rf);
4839 rt_mutex_adjust_pi(p);
4841 /* Run balance callbacks after we've adjusted the PI chain: */
4842 balance_callback(rq);
4848 static int _sched_setscheduler(struct task_struct *p, int policy,
4849 const struct sched_param *param, bool check)
4851 struct sched_attr attr = {
4852 .sched_policy = policy,
4853 .sched_priority = param->sched_priority,
4854 .sched_nice = PRIO_TO_NICE(p->static_prio),
4857 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4858 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4859 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4860 policy &= ~SCHED_RESET_ON_FORK;
4861 attr.sched_policy = policy;
4864 return __sched_setscheduler(p, &attr, check, true);
4867 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4868 * @p: the task in question.
4869 * @policy: new policy.
4870 * @param: structure containing the new RT priority.
4872 * Return: 0 on success. An error code otherwise.
4874 * NOTE that the task may be already dead.
4876 int sched_setscheduler(struct task_struct *p, int policy,
4877 const struct sched_param *param)
4879 return _sched_setscheduler(p, policy, param, true);
4881 EXPORT_SYMBOL_GPL(sched_setscheduler);
4883 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4885 return __sched_setscheduler(p, attr, true, true);
4887 EXPORT_SYMBOL_GPL(sched_setattr);
4889 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4891 return __sched_setscheduler(p, attr, false, true);
4895 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4896 * @p: the task in question.
4897 * @policy: new policy.
4898 * @param: structure containing the new RT priority.
4900 * Just like sched_setscheduler, only don't bother checking if the
4901 * current context has permission. For example, this is needed in
4902 * stop_machine(): we create temporary high priority worker threads,
4903 * but our caller might not have that capability.
4905 * Return: 0 on success. An error code otherwise.
4907 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4908 const struct sched_param *param)
4910 return _sched_setscheduler(p, policy, param, false);
4912 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4915 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4917 struct sched_param lparam;
4918 struct task_struct *p;
4921 if (!param || pid < 0)
4923 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4928 p = find_process_by_pid(pid);
4930 retval = sched_setscheduler(p, policy, &lparam);
4937 * Mimics kernel/events/core.c perf_copy_attr().
4939 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4944 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
4947 /* Zero the full structure, so that a short copy will be nice: */
4948 memset(attr, 0, sizeof(*attr));
4950 ret = get_user(size, &uattr->size);
4954 /* Bail out on silly large: */
4955 if (size > PAGE_SIZE)
4958 /* ABI compatibility quirk: */
4960 size = SCHED_ATTR_SIZE_VER0;
4962 if (size < SCHED_ATTR_SIZE_VER0)
4966 * If we're handed a bigger struct than we know of,
4967 * ensure all the unknown bits are 0 - i.e. new
4968 * user-space does not rely on any kernel feature
4969 * extensions we dont know about yet.
4971 if (size > sizeof(*attr)) {
4972 unsigned char __user *addr;
4973 unsigned char __user *end;
4976 addr = (void __user *)uattr + sizeof(*attr);
4977 end = (void __user *)uattr + size;
4979 for (; addr < end; addr++) {
4980 ret = get_user(val, addr);
4986 size = sizeof(*attr);
4989 ret = copy_from_user(attr, uattr, size);
4993 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
4994 size < SCHED_ATTR_SIZE_VER1)
4998 * XXX: Do we want to be lenient like existing syscalls; or do we want
4999 * to be strict and return an error on out-of-bounds values?
5001 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5006 put_user(sizeof(*attr), &uattr->size);
5011 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5012 * @pid: the pid in question.
5013 * @policy: new policy.
5014 * @param: structure containing the new RT priority.
5016 * Return: 0 on success. An error code otherwise.
5018 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5023 return do_sched_setscheduler(pid, policy, param);
5027 * sys_sched_setparam - set/change the RT priority of a thread
5028 * @pid: the pid in question.
5029 * @param: structure containing the new RT priority.
5031 * Return: 0 on success. An error code otherwise.
5033 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5035 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5039 * sys_sched_setattr - same as above, but with extended sched_attr
5040 * @pid: the pid in question.
5041 * @uattr: structure containing the extended parameters.
5042 * @flags: for future extension.
5044 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5045 unsigned int, flags)
5047 struct sched_attr attr;
5048 struct task_struct *p;
5051 if (!uattr || pid < 0 || flags)
5054 retval = sched_copy_attr(uattr, &attr);
5058 if ((int)attr.sched_policy < 0)
5060 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5061 attr.sched_policy = SETPARAM_POLICY;
5065 p = find_process_by_pid(pid);
5071 retval = sched_setattr(p, &attr);
5079 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5080 * @pid: the pid in question.
5082 * Return: On success, the policy of the thread. Otherwise, a negative error
5085 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5087 struct task_struct *p;
5095 p = find_process_by_pid(pid);
5097 retval = security_task_getscheduler(p);
5100 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5107 * sys_sched_getparam - get the RT priority of a thread
5108 * @pid: the pid in question.
5109 * @param: structure containing the RT priority.
5111 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5114 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5116 struct sched_param lp = { .sched_priority = 0 };
5117 struct task_struct *p;
5120 if (!param || pid < 0)
5124 p = find_process_by_pid(pid);
5129 retval = security_task_getscheduler(p);
5133 if (task_has_rt_policy(p))
5134 lp.sched_priority = p->rt_priority;
5138 * This one might sleep, we cannot do it with a spinlock held ...
5140 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5150 * Copy the kernel size attribute structure (which might be larger
5151 * than what user-space knows about) to user-space.
5153 * Note that all cases are valid: user-space buffer can be larger or
5154 * smaller than the kernel-space buffer. The usual case is that both
5155 * have the same size.
5158 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5159 struct sched_attr *kattr,
5162 unsigned int ksize = sizeof(*kattr);
5164 if (!access_ok(uattr, usize))
5168 * sched_getattr() ABI forwards and backwards compatibility:
5170 * If usize == ksize then we just copy everything to user-space and all is good.
5172 * If usize < ksize then we only copy as much as user-space has space for,
5173 * this keeps ABI compatibility as well. We skip the rest.
5175 * If usize > ksize then user-space is using a newer version of the ABI,
5176 * which part the kernel doesn't know about. Just ignore it - tooling can
5177 * detect the kernel's knowledge of attributes from the attr->size value
5178 * which is set to ksize in this case.
5180 kattr->size = min(usize, ksize);
5182 if (copy_to_user(uattr, kattr, kattr->size))
5189 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5190 * @pid: the pid in question.
5191 * @uattr: structure containing the extended parameters.
5192 * @usize: sizeof(attr) that user-space knows about, for forwards and backwards compatibility.
5193 * @flags: for future extension.
5195 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5196 unsigned int, usize, unsigned int, flags)
5198 struct sched_attr kattr = { };
5199 struct task_struct *p;
5202 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5203 usize < SCHED_ATTR_SIZE_VER0 || flags)
5207 p = find_process_by_pid(pid);
5212 retval = security_task_getscheduler(p);
5216 kattr.sched_policy = p->policy;
5217 if (p->sched_reset_on_fork)
5218 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5219 if (task_has_dl_policy(p))
5220 __getparam_dl(p, &kattr);
5221 else if (task_has_rt_policy(p))
5222 kattr.sched_priority = p->rt_priority;
5224 kattr.sched_nice = task_nice(p);
5226 #ifdef CONFIG_UCLAMP_TASK
5227 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5228 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5233 return sched_attr_copy_to_user(uattr, &kattr, usize);
5240 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5242 cpumask_var_t cpus_allowed, new_mask;
5243 struct task_struct *p;
5248 p = find_process_by_pid(pid);
5254 /* Prevent p going away */
5258 if (p->flags & PF_NO_SETAFFINITY) {
5262 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5266 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5268 goto out_free_cpus_allowed;
5271 if (!check_same_owner(p)) {
5273 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5275 goto out_free_new_mask;
5280 retval = security_task_setscheduler(p);
5282 goto out_free_new_mask;
5285 cpuset_cpus_allowed(p, cpus_allowed);
5286 cpumask_and(new_mask, in_mask, cpus_allowed);
5289 * Since bandwidth control happens on root_domain basis,
5290 * if admission test is enabled, we only admit -deadline
5291 * tasks allowed to run on all the CPUs in the task's
5295 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5297 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5300 goto out_free_new_mask;
5306 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5309 cpuset_cpus_allowed(p, cpus_allowed);
5310 if (!cpumask_subset(new_mask, cpus_allowed)) {
5312 * We must have raced with a concurrent cpuset
5313 * update. Just reset the cpus_allowed to the
5314 * cpuset's cpus_allowed
5316 cpumask_copy(new_mask, cpus_allowed);
5321 free_cpumask_var(new_mask);
5322 out_free_cpus_allowed:
5323 free_cpumask_var(cpus_allowed);
5329 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5330 struct cpumask *new_mask)
5332 if (len < cpumask_size())
5333 cpumask_clear(new_mask);
5334 else if (len > cpumask_size())
5335 len = cpumask_size();
5337 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5341 * sys_sched_setaffinity - set the CPU affinity of a process
5342 * @pid: pid of the process
5343 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5344 * @user_mask_ptr: user-space pointer to the new CPU mask
5346 * Return: 0 on success. An error code otherwise.
5348 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5349 unsigned long __user *, user_mask_ptr)
5351 cpumask_var_t new_mask;
5354 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5357 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5359 retval = sched_setaffinity(pid, new_mask);
5360 free_cpumask_var(new_mask);
5364 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5366 struct task_struct *p;
5367 unsigned long flags;
5373 p = find_process_by_pid(pid);
5377 retval = security_task_getscheduler(p);
5381 raw_spin_lock_irqsave(&p->pi_lock, flags);
5382 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5383 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5392 * sys_sched_getaffinity - get the CPU affinity of a process
5393 * @pid: pid of the process
5394 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5395 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5397 * Return: size of CPU mask copied to user_mask_ptr on success. An
5398 * error code otherwise.
5400 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5401 unsigned long __user *, user_mask_ptr)
5406 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5408 if (len & (sizeof(unsigned long)-1))
5411 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5414 ret = sched_getaffinity(pid, mask);
5416 unsigned int retlen = min(len, cpumask_size());
5418 if (copy_to_user(user_mask_ptr, mask, retlen))
5423 free_cpumask_var(mask);
5429 * sys_sched_yield - yield the current processor to other threads.
5431 * This function yields the current CPU to other tasks. If there are no
5432 * other threads running on this CPU then this function will return.
5436 static void do_sched_yield(void)
5441 rq = this_rq_lock_irq(&rf);
5443 schedstat_inc(rq->yld_count);
5444 current->sched_class->yield_task(rq);
5447 * Since we are going to call schedule() anyway, there's
5448 * no need to preempt or enable interrupts:
5452 sched_preempt_enable_no_resched();
5457 SYSCALL_DEFINE0(sched_yield)
5463 #ifndef CONFIG_PREEMPT
5464 int __sched _cond_resched(void)
5466 if (should_resched(0)) {
5467 preempt_schedule_common();
5473 EXPORT_SYMBOL(_cond_resched);
5477 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5478 * call schedule, and on return reacquire the lock.
5480 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5481 * operations here to prevent schedule() from being called twice (once via
5482 * spin_unlock(), once by hand).
5484 int __cond_resched_lock(spinlock_t *lock)
5486 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5489 lockdep_assert_held(lock);
5491 if (spin_needbreak(lock) || resched) {
5494 preempt_schedule_common();
5502 EXPORT_SYMBOL(__cond_resched_lock);
5505 * yield - yield the current processor to other threads.
5507 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5509 * The scheduler is at all times free to pick the calling task as the most
5510 * eligible task to run, if removing the yield() call from your code breaks
5511 * it, its already broken.
5513 * Typical broken usage is:
5518 * where one assumes that yield() will let 'the other' process run that will
5519 * make event true. If the current task is a SCHED_FIFO task that will never
5520 * happen. Never use yield() as a progress guarantee!!
5522 * If you want to use yield() to wait for something, use wait_event().
5523 * If you want to use yield() to be 'nice' for others, use cond_resched().
5524 * If you still want to use yield(), do not!
5526 void __sched yield(void)
5528 set_current_state(TASK_RUNNING);
5531 EXPORT_SYMBOL(yield);
5534 * yield_to - yield the current processor to another thread in
5535 * your thread group, or accelerate that thread toward the
5536 * processor it's on.
5538 * @preempt: whether task preemption is allowed or not
5540 * It's the caller's job to ensure that the target task struct
5541 * can't go away on us before we can do any checks.
5544 * true (>0) if we indeed boosted the target task.
5545 * false (0) if we failed to boost the target.
5546 * -ESRCH if there's no task to yield to.
5548 int __sched yield_to(struct task_struct *p, bool preempt)
5550 struct task_struct *curr = current;
5551 struct rq *rq, *p_rq;
5552 unsigned long flags;
5555 local_irq_save(flags);
5561 * If we're the only runnable task on the rq and target rq also
5562 * has only one task, there's absolutely no point in yielding.
5564 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5569 double_rq_lock(rq, p_rq);
5570 if (task_rq(p) != p_rq) {
5571 double_rq_unlock(rq, p_rq);
5575 if (!curr->sched_class->yield_to_task)
5578 if (curr->sched_class != p->sched_class)
5581 if (task_running(p_rq, p) || p->state)
5584 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5586 schedstat_inc(rq->yld_count);
5588 * Make p's CPU reschedule; pick_next_entity takes care of
5591 if (preempt && rq != p_rq)
5596 double_rq_unlock(rq, p_rq);
5598 local_irq_restore(flags);
5605 EXPORT_SYMBOL_GPL(yield_to);
5607 int io_schedule_prepare(void)
5609 int old_iowait = current->in_iowait;
5611 current->in_iowait = 1;
5612 blk_schedule_flush_plug(current);
5617 void io_schedule_finish(int token)
5619 current->in_iowait = token;
5623 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5624 * that process accounting knows that this is a task in IO wait state.
5626 long __sched io_schedule_timeout(long timeout)
5631 token = io_schedule_prepare();
5632 ret = schedule_timeout(timeout);
5633 io_schedule_finish(token);
5637 EXPORT_SYMBOL(io_schedule_timeout);
5639 void __sched io_schedule(void)
5643 token = io_schedule_prepare();
5645 io_schedule_finish(token);
5647 EXPORT_SYMBOL(io_schedule);
5650 * sys_sched_get_priority_max - return maximum RT priority.
5651 * @policy: scheduling class.
5653 * Return: On success, this syscall returns the maximum
5654 * rt_priority that can be used by a given scheduling class.
5655 * On failure, a negative error code is returned.
5657 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5664 ret = MAX_USER_RT_PRIO-1;
5666 case SCHED_DEADLINE:
5677 * sys_sched_get_priority_min - return minimum RT priority.
5678 * @policy: scheduling class.
5680 * Return: On success, this syscall returns the minimum
5681 * rt_priority that can be used by a given scheduling class.
5682 * On failure, a negative error code is returned.
5684 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5693 case SCHED_DEADLINE:
5702 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5704 struct task_struct *p;
5705 unsigned int time_slice;
5715 p = find_process_by_pid(pid);
5719 retval = security_task_getscheduler(p);
5723 rq = task_rq_lock(p, &rf);
5725 if (p->sched_class->get_rr_interval)
5726 time_slice = p->sched_class->get_rr_interval(rq, p);
5727 task_rq_unlock(rq, p, &rf);
5730 jiffies_to_timespec64(time_slice, t);
5739 * sys_sched_rr_get_interval - return the default timeslice of a process.
5740 * @pid: pid of the process.
5741 * @interval: userspace pointer to the timeslice value.
5743 * this syscall writes the default timeslice value of a given process
5744 * into the user-space timespec buffer. A value of '0' means infinity.
5746 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5749 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5750 struct __kernel_timespec __user *, interval)
5752 struct timespec64 t;
5753 int retval = sched_rr_get_interval(pid, &t);
5756 retval = put_timespec64(&t, interval);
5761 #ifdef CONFIG_COMPAT_32BIT_TIME
5762 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5763 struct old_timespec32 __user *, interval)
5765 struct timespec64 t;
5766 int retval = sched_rr_get_interval(pid, &t);
5769 retval = put_old_timespec32(&t, interval);
5774 void sched_show_task(struct task_struct *p)
5776 unsigned long free = 0;
5779 if (!try_get_task_stack(p))
5782 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5784 if (p->state == TASK_RUNNING)
5785 printk(KERN_CONT " running task ");
5786 #ifdef CONFIG_DEBUG_STACK_USAGE
5787 free = stack_not_used(p);
5792 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5794 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5795 task_pid_nr(p), ppid,
5796 (unsigned long)task_thread_info(p)->flags);
5798 print_worker_info(KERN_INFO, p);
5799 show_stack(p, NULL);
5802 EXPORT_SYMBOL_GPL(sched_show_task);
5805 state_filter_match(unsigned long state_filter, struct task_struct *p)
5807 /* no filter, everything matches */
5811 /* filter, but doesn't match */
5812 if (!(p->state & state_filter))
5816 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5819 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5826 void show_state_filter(unsigned long state_filter)
5828 struct task_struct *g, *p;
5830 #if BITS_PER_LONG == 32
5832 " task PC stack pid father\n");
5835 " task PC stack pid father\n");
5838 for_each_process_thread(g, p) {
5840 * reset the NMI-timeout, listing all files on a slow
5841 * console might take a lot of time:
5842 * Also, reset softlockup watchdogs on all CPUs, because
5843 * another CPU might be blocked waiting for us to process
5846 touch_nmi_watchdog();
5847 touch_all_softlockup_watchdogs();
5848 if (state_filter_match(state_filter, p))
5852 #ifdef CONFIG_SCHED_DEBUG
5854 sysrq_sched_debug_show();
5858 * Only show locks if all tasks are dumped:
5861 debug_show_all_locks();
5865 * init_idle - set up an idle thread for a given CPU
5866 * @idle: task in question
5867 * @cpu: CPU the idle task belongs to
5869 * NOTE: this function does not set the idle thread's NEED_RESCHED
5870 * flag, to make booting more robust.
5872 void init_idle(struct task_struct *idle, int cpu)
5874 struct rq *rq = cpu_rq(cpu);
5875 unsigned long flags;
5877 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5878 raw_spin_lock(&rq->lock);
5880 __sched_fork(0, idle);
5881 idle->state = TASK_RUNNING;
5882 idle->se.exec_start = sched_clock();
5883 idle->flags |= PF_IDLE;
5885 kasan_unpoison_task_stack(idle);
5889 * Its possible that init_idle() gets called multiple times on a task,
5890 * in that case do_set_cpus_allowed() will not do the right thing.
5892 * And since this is boot we can forgo the serialization.
5894 set_cpus_allowed_common(idle, cpumask_of(cpu));
5897 * We're having a chicken and egg problem, even though we are
5898 * holding rq->lock, the CPU isn't yet set to this CPU so the
5899 * lockdep check in task_group() will fail.
5901 * Similar case to sched_fork(). / Alternatively we could
5902 * use task_rq_lock() here and obtain the other rq->lock.
5907 __set_task_cpu(idle, cpu);
5910 rq->curr = rq->idle = idle;
5911 idle->on_rq = TASK_ON_RQ_QUEUED;
5915 raw_spin_unlock(&rq->lock);
5916 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5918 /* Set the preempt count _outside_ the spinlocks! */
5919 init_idle_preempt_count(idle, cpu);
5922 * The idle tasks have their own, simple scheduling class:
5924 idle->sched_class = &idle_sched_class;
5925 ftrace_graph_init_idle_task(idle, cpu);
5926 vtime_init_idle(idle, cpu);
5928 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5934 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5935 const struct cpumask *trial)
5939 if (!cpumask_weight(cur))
5942 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5947 int task_can_attach(struct task_struct *p,
5948 const struct cpumask *cs_cpus_allowed)
5953 * Kthreads which disallow setaffinity shouldn't be moved
5954 * to a new cpuset; we don't want to change their CPU
5955 * affinity and isolating such threads by their set of
5956 * allowed nodes is unnecessary. Thus, cpusets are not
5957 * applicable for such threads. This prevents checking for
5958 * success of set_cpus_allowed_ptr() on all attached tasks
5959 * before cpus_mask may be changed.
5961 if (p->flags & PF_NO_SETAFFINITY) {
5966 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5968 ret = dl_task_can_attach(p, cs_cpus_allowed);
5974 bool sched_smp_initialized __read_mostly;
5976 #ifdef CONFIG_NUMA_BALANCING
5977 /* Migrate current task p to target_cpu */
5978 int migrate_task_to(struct task_struct *p, int target_cpu)
5980 struct migration_arg arg = { p, target_cpu };
5981 int curr_cpu = task_cpu(p);
5983 if (curr_cpu == target_cpu)
5986 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
5989 /* TODO: This is not properly updating schedstats */
5991 trace_sched_move_numa(p, curr_cpu, target_cpu);
5992 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5996 * Requeue a task on a given node and accurately track the number of NUMA
5997 * tasks on the runqueues
5999 void sched_setnuma(struct task_struct *p, int nid)
6001 bool queued, running;
6005 rq = task_rq_lock(p, &rf);
6006 queued = task_on_rq_queued(p);
6007 running = task_current(rq, p);
6010 dequeue_task(rq, p, DEQUEUE_SAVE);
6012 put_prev_task(rq, p);
6014 p->numa_preferred_nid = nid;
6017 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6019 set_curr_task(rq, p);
6020 task_rq_unlock(rq, p, &rf);
6022 #endif /* CONFIG_NUMA_BALANCING */
6024 #ifdef CONFIG_HOTPLUG_CPU
6026 * Ensure that the idle task is using init_mm right before its CPU goes
6029 void idle_task_exit(void)
6031 struct mm_struct *mm = current->active_mm;
6033 BUG_ON(cpu_online(smp_processor_id()));
6035 if (mm != &init_mm) {
6036 switch_mm(mm, &init_mm, current);
6037 current->active_mm = &init_mm;
6038 finish_arch_post_lock_switch();
6044 * Since this CPU is going 'away' for a while, fold any nr_active delta
6045 * we might have. Assumes we're called after migrate_tasks() so that the
6046 * nr_active count is stable. We need to take the teardown thread which
6047 * is calling this into account, so we hand in adjust = 1 to the load
6050 * Also see the comment "Global load-average calculations".
6052 static void calc_load_migrate(struct rq *rq)
6054 long delta = calc_load_fold_active(rq, 1);
6056 atomic_long_add(delta, &calc_load_tasks);
6059 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
6063 static const struct sched_class fake_sched_class = {
6064 .put_prev_task = put_prev_task_fake,
6067 static struct task_struct fake_task = {
6069 * Avoid pull_{rt,dl}_task()
6071 .prio = MAX_PRIO + 1,
6072 .sched_class = &fake_sched_class,
6076 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6077 * try_to_wake_up()->select_task_rq().
6079 * Called with rq->lock held even though we'er in stop_machine() and
6080 * there's no concurrency possible, we hold the required locks anyway
6081 * because of lock validation efforts.
6083 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6085 struct rq *rq = dead_rq;
6086 struct task_struct *next, *stop = rq->stop;
6087 struct rq_flags orf = *rf;
6091 * Fudge the rq selection such that the below task selection loop
6092 * doesn't get stuck on the currently eligible stop task.
6094 * We're currently inside stop_machine() and the rq is either stuck
6095 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6096 * either way we should never end up calling schedule() until we're
6102 * put_prev_task() and pick_next_task() sched
6103 * class method both need to have an up-to-date
6104 * value of rq->clock[_task]
6106 update_rq_clock(rq);
6110 * There's this thread running, bail when that's the only
6113 if (rq->nr_running == 1)
6117 * pick_next_task() assumes pinned rq->lock:
6119 next = pick_next_task(rq, &fake_task, rf);
6121 put_prev_task(rq, next);
6124 * Rules for changing task_struct::cpus_mask are holding
6125 * both pi_lock and rq->lock, such that holding either
6126 * stabilizes the mask.
6128 * Drop rq->lock is not quite as disastrous as it usually is
6129 * because !cpu_active at this point, which means load-balance
6130 * will not interfere. Also, stop-machine.
6133 raw_spin_lock(&next->pi_lock);
6137 * Since we're inside stop-machine, _nothing_ should have
6138 * changed the task, WARN if weird stuff happened, because in
6139 * that case the above rq->lock drop is a fail too.
6141 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6142 raw_spin_unlock(&next->pi_lock);
6146 /* Find suitable destination for @next, with force if needed. */
6147 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6148 rq = __migrate_task(rq, rf, next, dest_cpu);
6149 if (rq != dead_rq) {
6155 raw_spin_unlock(&next->pi_lock);
6160 #endif /* CONFIG_HOTPLUG_CPU */
6162 void set_rq_online(struct rq *rq)
6165 const struct sched_class *class;
6167 cpumask_set_cpu(rq->cpu, rq->rd->online);
6170 for_each_class(class) {
6171 if (class->rq_online)
6172 class->rq_online(rq);
6177 void set_rq_offline(struct rq *rq)
6180 const struct sched_class *class;
6182 for_each_class(class) {
6183 if (class->rq_offline)
6184 class->rq_offline(rq);
6187 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6193 * used to mark begin/end of suspend/resume:
6195 static int num_cpus_frozen;
6198 * Update cpusets according to cpu_active mask. If cpusets are
6199 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6200 * around partition_sched_domains().
6202 * If we come here as part of a suspend/resume, don't touch cpusets because we
6203 * want to restore it back to its original state upon resume anyway.
6205 static void cpuset_cpu_active(void)
6207 if (cpuhp_tasks_frozen) {
6209 * num_cpus_frozen tracks how many CPUs are involved in suspend
6210 * resume sequence. As long as this is not the last online
6211 * operation in the resume sequence, just build a single sched
6212 * domain, ignoring cpusets.
6214 partition_sched_domains(1, NULL, NULL);
6215 if (--num_cpus_frozen)
6218 * This is the last CPU online operation. So fall through and
6219 * restore the original sched domains by considering the
6220 * cpuset configurations.
6222 cpuset_force_rebuild();
6224 cpuset_update_active_cpus();
6227 static int cpuset_cpu_inactive(unsigned int cpu)
6229 if (!cpuhp_tasks_frozen) {
6230 if (dl_cpu_busy(cpu))
6232 cpuset_update_active_cpus();
6235 partition_sched_domains(1, NULL, NULL);
6240 int sched_cpu_activate(unsigned int cpu)
6242 struct rq *rq = cpu_rq(cpu);
6245 #ifdef CONFIG_SCHED_SMT
6247 * When going up, increment the number of cores with SMT present.
6249 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6250 static_branch_inc_cpuslocked(&sched_smt_present);
6252 set_cpu_active(cpu, true);
6254 if (sched_smp_initialized) {
6255 sched_domains_numa_masks_set(cpu);
6256 cpuset_cpu_active();
6260 * Put the rq online, if not already. This happens:
6262 * 1) In the early boot process, because we build the real domains
6263 * after all CPUs have been brought up.
6265 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6268 rq_lock_irqsave(rq, &rf);
6270 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6273 rq_unlock_irqrestore(rq, &rf);
6275 update_max_interval();
6280 int sched_cpu_deactivate(unsigned int cpu)
6284 set_cpu_active(cpu, false);
6286 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6287 * users of this state to go away such that all new such users will
6290 * Do sync before park smpboot threads to take care the rcu boost case.
6294 #ifdef CONFIG_SCHED_SMT
6296 * When going down, decrement the number of cores with SMT present.
6298 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6299 static_branch_dec_cpuslocked(&sched_smt_present);
6302 if (!sched_smp_initialized)
6305 ret = cpuset_cpu_inactive(cpu);
6307 set_cpu_active(cpu, true);
6310 sched_domains_numa_masks_clear(cpu);
6314 static void sched_rq_cpu_starting(unsigned int cpu)
6316 struct rq *rq = cpu_rq(cpu);
6318 rq->calc_load_update = calc_load_update;
6319 update_max_interval();
6322 int sched_cpu_starting(unsigned int cpu)
6324 sched_rq_cpu_starting(cpu);
6325 sched_tick_start(cpu);
6329 #ifdef CONFIG_HOTPLUG_CPU
6330 int sched_cpu_dying(unsigned int cpu)
6332 struct rq *rq = cpu_rq(cpu);
6335 /* Handle pending wakeups and then migrate everything off */
6336 sched_ttwu_pending();
6337 sched_tick_stop(cpu);
6339 rq_lock_irqsave(rq, &rf);
6341 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6344 migrate_tasks(rq, &rf);
6345 BUG_ON(rq->nr_running != 1);
6346 rq_unlock_irqrestore(rq, &rf);
6348 calc_load_migrate(rq);
6349 update_max_interval();
6350 nohz_balance_exit_idle(rq);
6356 void __init sched_init_smp(void)
6361 * There's no userspace yet to cause hotplug operations; hence all the
6362 * CPU masks are stable and all blatant races in the below code cannot
6365 mutex_lock(&sched_domains_mutex);
6366 sched_init_domains(cpu_active_mask);
6367 mutex_unlock(&sched_domains_mutex);
6369 /* Move init over to a non-isolated CPU */
6370 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6372 sched_init_granularity();
6374 init_sched_rt_class();
6375 init_sched_dl_class();
6377 sched_smp_initialized = true;
6380 static int __init migration_init(void)
6382 sched_cpu_starting(smp_processor_id());
6385 early_initcall(migration_init);
6388 void __init sched_init_smp(void)
6390 sched_init_granularity();
6392 #endif /* CONFIG_SMP */
6394 int in_sched_functions(unsigned long addr)
6396 return in_lock_functions(addr) ||
6397 (addr >= (unsigned long)__sched_text_start
6398 && addr < (unsigned long)__sched_text_end);
6401 #ifdef CONFIG_CGROUP_SCHED
6403 * Default task group.
6404 * Every task in system belongs to this group at bootup.
6406 struct task_group root_task_group;
6407 LIST_HEAD(task_groups);
6409 /* Cacheline aligned slab cache for task_group */
6410 static struct kmem_cache *task_group_cache __read_mostly;
6413 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6414 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6416 void __init sched_init(void)
6418 unsigned long alloc_size = 0, ptr;
6423 #ifdef CONFIG_FAIR_GROUP_SCHED
6424 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6426 #ifdef CONFIG_RT_GROUP_SCHED
6427 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6430 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6432 #ifdef CONFIG_FAIR_GROUP_SCHED
6433 root_task_group.se = (struct sched_entity **)ptr;
6434 ptr += nr_cpu_ids * sizeof(void **);
6436 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6437 ptr += nr_cpu_ids * sizeof(void **);
6439 #endif /* CONFIG_FAIR_GROUP_SCHED */
6440 #ifdef CONFIG_RT_GROUP_SCHED
6441 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6442 ptr += nr_cpu_ids * sizeof(void **);
6444 root_task_group.rt_rq = (struct rt_rq **)ptr;
6445 ptr += nr_cpu_ids * sizeof(void **);
6447 #endif /* CONFIG_RT_GROUP_SCHED */
6449 #ifdef CONFIG_CPUMASK_OFFSTACK
6450 for_each_possible_cpu(i) {
6451 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6452 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6453 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6454 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6456 #endif /* CONFIG_CPUMASK_OFFSTACK */
6458 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6459 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6462 init_defrootdomain();
6465 #ifdef CONFIG_RT_GROUP_SCHED
6466 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6467 global_rt_period(), global_rt_runtime());
6468 #endif /* CONFIG_RT_GROUP_SCHED */
6470 #ifdef CONFIG_CGROUP_SCHED
6471 task_group_cache = KMEM_CACHE(task_group, 0);
6473 list_add(&root_task_group.list, &task_groups);
6474 INIT_LIST_HEAD(&root_task_group.children);
6475 INIT_LIST_HEAD(&root_task_group.siblings);
6476 autogroup_init(&init_task);
6477 #endif /* CONFIG_CGROUP_SCHED */
6479 for_each_possible_cpu(i) {
6483 raw_spin_lock_init(&rq->lock);
6485 rq->calc_load_active = 0;
6486 rq->calc_load_update = jiffies + LOAD_FREQ;
6487 init_cfs_rq(&rq->cfs);
6488 init_rt_rq(&rq->rt);
6489 init_dl_rq(&rq->dl);
6490 #ifdef CONFIG_FAIR_GROUP_SCHED
6491 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6492 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6493 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6495 * How much CPU bandwidth does root_task_group get?
6497 * In case of task-groups formed thr' the cgroup filesystem, it
6498 * gets 100% of the CPU resources in the system. This overall
6499 * system CPU resource is divided among the tasks of
6500 * root_task_group and its child task-groups in a fair manner,
6501 * based on each entity's (task or task-group's) weight
6502 * (se->load.weight).
6504 * In other words, if root_task_group has 10 tasks of weight
6505 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6506 * then A0's share of the CPU resource is:
6508 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6510 * We achieve this by letting root_task_group's tasks sit
6511 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6513 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6514 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6515 #endif /* CONFIG_FAIR_GROUP_SCHED */
6517 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6518 #ifdef CONFIG_RT_GROUP_SCHED
6519 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6524 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6525 rq->balance_callback = NULL;
6526 rq->active_balance = 0;
6527 rq->next_balance = jiffies;
6532 rq->avg_idle = 2*sysctl_sched_migration_cost;
6533 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6535 INIT_LIST_HEAD(&rq->cfs_tasks);
6537 rq_attach_root(rq, &def_root_domain);
6538 #ifdef CONFIG_NO_HZ_COMMON
6539 rq->last_load_update_tick = jiffies;
6540 rq->last_blocked_load_update_tick = jiffies;
6541 atomic_set(&rq->nohz_flags, 0);
6543 #endif /* CONFIG_SMP */
6545 atomic_set(&rq->nr_iowait, 0);
6548 set_load_weight(&init_task, false);
6551 * The boot idle thread does lazy MMU switching as well:
6554 enter_lazy_tlb(&init_mm, current);
6557 * Make us the idle thread. Technically, schedule() should not be
6558 * called from this thread, however somewhere below it might be,
6559 * but because we are the idle thread, we just pick up running again
6560 * when this runqueue becomes "idle".
6562 init_idle(current, smp_processor_id());
6564 calc_load_update = jiffies + LOAD_FREQ;
6567 idle_thread_set_boot_cpu();
6569 init_sched_fair_class();
6577 scheduler_running = 1;
6580 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6581 static inline int preempt_count_equals(int preempt_offset)
6583 int nested = preempt_count() + rcu_preempt_depth();
6585 return (nested == preempt_offset);
6588 void __might_sleep(const char *file, int line, int preempt_offset)
6591 * Blocking primitives will set (and therefore destroy) current->state,
6592 * since we will exit with TASK_RUNNING make sure we enter with it,
6593 * otherwise we will destroy state.
6595 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6596 "do not call blocking ops when !TASK_RUNNING; "
6597 "state=%lx set at [<%p>] %pS\n",
6599 (void *)current->task_state_change,
6600 (void *)current->task_state_change);
6602 ___might_sleep(file, line, preempt_offset);
6604 EXPORT_SYMBOL(__might_sleep);
6606 void ___might_sleep(const char *file, int line, int preempt_offset)
6608 /* Ratelimiting timestamp: */
6609 static unsigned long prev_jiffy;
6611 unsigned long preempt_disable_ip;
6613 /* WARN_ON_ONCE() by default, no rate limit required: */
6616 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6617 !is_idle_task(current)) ||
6618 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6622 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6624 prev_jiffy = jiffies;
6626 /* Save this before calling printk(), since that will clobber it: */
6627 preempt_disable_ip = get_preempt_disable_ip(current);
6630 "BUG: sleeping function called from invalid context at %s:%d\n",
6633 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6634 in_atomic(), irqs_disabled(),
6635 current->pid, current->comm);
6637 if (task_stack_end_corrupted(current))
6638 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6640 debug_show_held_locks(current);
6641 if (irqs_disabled())
6642 print_irqtrace_events(current);
6643 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6644 && !preempt_count_equals(preempt_offset)) {
6645 pr_err("Preemption disabled at:");
6646 print_ip_sym(preempt_disable_ip);
6650 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6652 EXPORT_SYMBOL(___might_sleep);
6654 void __cant_sleep(const char *file, int line, int preempt_offset)
6656 static unsigned long prev_jiffy;
6658 if (irqs_disabled())
6661 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6664 if (preempt_count() > preempt_offset)
6667 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6669 prev_jiffy = jiffies;
6671 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6672 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6673 in_atomic(), irqs_disabled(),
6674 current->pid, current->comm);
6676 debug_show_held_locks(current);
6678 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6680 EXPORT_SYMBOL_GPL(__cant_sleep);
6683 #ifdef CONFIG_MAGIC_SYSRQ
6684 void normalize_rt_tasks(void)
6686 struct task_struct *g, *p;
6687 struct sched_attr attr = {
6688 .sched_policy = SCHED_NORMAL,
6691 read_lock(&tasklist_lock);
6692 for_each_process_thread(g, p) {
6694 * Only normalize user tasks:
6696 if (p->flags & PF_KTHREAD)
6699 p->se.exec_start = 0;
6700 schedstat_set(p->se.statistics.wait_start, 0);
6701 schedstat_set(p->se.statistics.sleep_start, 0);
6702 schedstat_set(p->se.statistics.block_start, 0);
6704 if (!dl_task(p) && !rt_task(p)) {
6706 * Renice negative nice level userspace
6709 if (task_nice(p) < 0)
6710 set_user_nice(p, 0);
6714 __sched_setscheduler(p, &attr, false, false);
6716 read_unlock(&tasklist_lock);
6719 #endif /* CONFIG_MAGIC_SYSRQ */
6721 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6723 * These functions are only useful for the IA64 MCA handling, or kdb.
6725 * They can only be called when the whole system has been
6726 * stopped - every CPU needs to be quiescent, and no scheduling
6727 * activity can take place. Using them for anything else would
6728 * be a serious bug, and as a result, they aren't even visible
6729 * under any other configuration.
6733 * curr_task - return the current task for a given CPU.
6734 * @cpu: the processor in question.
6736 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6738 * Return: The current task for @cpu.
6740 struct task_struct *curr_task(int cpu)
6742 return cpu_curr(cpu);
6745 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6749 * set_curr_task - set the current task for a given CPU.
6750 * @cpu: the processor in question.
6751 * @p: the task pointer to set.
6753 * Description: This function must only be used when non-maskable interrupts
6754 * are serviced on a separate stack. It allows the architecture to switch the
6755 * notion of the current task on a CPU in a non-blocking manner. This function
6756 * must be called with all CPU's synchronized, and interrupts disabled, the
6757 * and caller must save the original value of the current task (see
6758 * curr_task() above) and restore that value before reenabling interrupts and
6759 * re-starting the system.
6761 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6763 void ia64_set_curr_task(int cpu, struct task_struct *p)
6770 #ifdef CONFIG_CGROUP_SCHED
6771 /* task_group_lock serializes the addition/removal of task groups */
6772 static DEFINE_SPINLOCK(task_group_lock);
6774 static void sched_free_group(struct task_group *tg)
6776 free_fair_sched_group(tg);
6777 free_rt_sched_group(tg);
6779 kmem_cache_free(task_group_cache, tg);
6782 /* allocate runqueue etc for a new task group */
6783 struct task_group *sched_create_group(struct task_group *parent)
6785 struct task_group *tg;
6787 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6789 return ERR_PTR(-ENOMEM);
6791 if (!alloc_fair_sched_group(tg, parent))
6794 if (!alloc_rt_sched_group(tg, parent))
6800 sched_free_group(tg);
6801 return ERR_PTR(-ENOMEM);
6804 void sched_online_group(struct task_group *tg, struct task_group *parent)
6806 unsigned long flags;
6808 spin_lock_irqsave(&task_group_lock, flags);
6809 list_add_rcu(&tg->list, &task_groups);
6811 /* Root should already exist: */
6814 tg->parent = parent;
6815 INIT_LIST_HEAD(&tg->children);
6816 list_add_rcu(&tg->siblings, &parent->children);
6817 spin_unlock_irqrestore(&task_group_lock, flags);
6819 online_fair_sched_group(tg);
6822 /* rcu callback to free various structures associated with a task group */
6823 static void sched_free_group_rcu(struct rcu_head *rhp)
6825 /* Now it should be safe to free those cfs_rqs: */
6826 sched_free_group(container_of(rhp, struct task_group, rcu));
6829 void sched_destroy_group(struct task_group *tg)
6831 /* Wait for possible concurrent references to cfs_rqs complete: */
6832 call_rcu(&tg->rcu, sched_free_group_rcu);
6835 void sched_offline_group(struct task_group *tg)
6837 unsigned long flags;
6839 /* End participation in shares distribution: */
6840 unregister_fair_sched_group(tg);
6842 spin_lock_irqsave(&task_group_lock, flags);
6843 list_del_rcu(&tg->list);
6844 list_del_rcu(&tg->siblings);
6845 spin_unlock_irqrestore(&task_group_lock, flags);
6848 static void sched_change_group(struct task_struct *tsk, int type)
6850 struct task_group *tg;
6853 * All callers are synchronized by task_rq_lock(); we do not use RCU
6854 * which is pointless here. Thus, we pass "true" to task_css_check()
6855 * to prevent lockdep warnings.
6857 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6858 struct task_group, css);
6859 tg = autogroup_task_group(tsk, tg);
6860 tsk->sched_task_group = tg;
6862 #ifdef CONFIG_FAIR_GROUP_SCHED
6863 if (tsk->sched_class->task_change_group)
6864 tsk->sched_class->task_change_group(tsk, type);
6867 set_task_rq(tsk, task_cpu(tsk));
6871 * Change task's runqueue when it moves between groups.
6873 * The caller of this function should have put the task in its new group by
6874 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6877 void sched_move_task(struct task_struct *tsk)
6879 int queued, running, queue_flags =
6880 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6884 rq = task_rq_lock(tsk, &rf);
6885 update_rq_clock(rq);
6887 running = task_current(rq, tsk);
6888 queued = task_on_rq_queued(tsk);
6891 dequeue_task(rq, tsk, queue_flags);
6893 put_prev_task(rq, tsk);
6895 sched_change_group(tsk, TASK_MOVE_GROUP);
6898 enqueue_task(rq, tsk, queue_flags);
6900 set_curr_task(rq, tsk);
6902 task_rq_unlock(rq, tsk, &rf);
6905 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6907 return css ? container_of(css, struct task_group, css) : NULL;
6910 static struct cgroup_subsys_state *
6911 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6913 struct task_group *parent = css_tg(parent_css);
6914 struct task_group *tg;
6917 /* This is early initialization for the top cgroup */
6918 return &root_task_group.css;
6921 tg = sched_create_group(parent);
6923 return ERR_PTR(-ENOMEM);
6928 /* Expose task group only after completing cgroup initialization */
6929 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6931 struct task_group *tg = css_tg(css);
6932 struct task_group *parent = css_tg(css->parent);
6935 sched_online_group(tg, parent);
6939 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6941 struct task_group *tg = css_tg(css);
6943 sched_offline_group(tg);
6946 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6948 struct task_group *tg = css_tg(css);
6951 * Relies on the RCU grace period between css_released() and this.
6953 sched_free_group(tg);
6957 * This is called before wake_up_new_task(), therefore we really only
6958 * have to set its group bits, all the other stuff does not apply.
6960 static void cpu_cgroup_fork(struct task_struct *task)
6965 rq = task_rq_lock(task, &rf);
6967 update_rq_clock(rq);
6968 sched_change_group(task, TASK_SET_GROUP);
6970 task_rq_unlock(rq, task, &rf);
6973 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6975 struct task_struct *task;
6976 struct cgroup_subsys_state *css;
6979 cgroup_taskset_for_each(task, css, tset) {
6980 #ifdef CONFIG_RT_GROUP_SCHED
6981 if (!sched_rt_can_attach(css_tg(css), task))
6984 /* We don't support RT-tasks being in separate groups */
6985 if (task->sched_class != &fair_sched_class)
6989 * Serialize against wake_up_new_task() such that if its
6990 * running, we're sure to observe its full state.
6992 raw_spin_lock_irq(&task->pi_lock);
6994 * Avoid calling sched_move_task() before wake_up_new_task()
6995 * has happened. This would lead to problems with PELT, due to
6996 * move wanting to detach+attach while we're not attached yet.
6998 if (task->state == TASK_NEW)
7000 raw_spin_unlock_irq(&task->pi_lock);
7008 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7010 struct task_struct *task;
7011 struct cgroup_subsys_state *css;
7013 cgroup_taskset_for_each(task, css, tset)
7014 sched_move_task(task);
7017 #ifdef CONFIG_FAIR_GROUP_SCHED
7018 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7019 struct cftype *cftype, u64 shareval)
7021 if (shareval > scale_load_down(ULONG_MAX))
7022 shareval = MAX_SHARES;
7023 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7026 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7029 struct task_group *tg = css_tg(css);
7031 return (u64) scale_load_down(tg->shares);
7034 #ifdef CONFIG_CFS_BANDWIDTH
7035 static DEFINE_MUTEX(cfs_constraints_mutex);
7037 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7038 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7040 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7042 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7044 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7045 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7047 if (tg == &root_task_group)
7051 * Ensure we have at some amount of bandwidth every period. This is
7052 * to prevent reaching a state of large arrears when throttled via
7053 * entity_tick() resulting in prolonged exit starvation.
7055 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7059 * Likewise, bound things on the otherside by preventing insane quota
7060 * periods. This also allows us to normalize in computing quota
7063 if (period > max_cfs_quota_period)
7067 * Prevent race between setting of cfs_rq->runtime_enabled and
7068 * unthrottle_offline_cfs_rqs().
7071 mutex_lock(&cfs_constraints_mutex);
7072 ret = __cfs_schedulable(tg, period, quota);
7076 runtime_enabled = quota != RUNTIME_INF;
7077 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7079 * If we need to toggle cfs_bandwidth_used, off->on must occur
7080 * before making related changes, and on->off must occur afterwards
7082 if (runtime_enabled && !runtime_was_enabled)
7083 cfs_bandwidth_usage_inc();
7084 raw_spin_lock_irq(&cfs_b->lock);
7085 cfs_b->period = ns_to_ktime(period);
7086 cfs_b->quota = quota;
7088 __refill_cfs_bandwidth_runtime(cfs_b);
7090 /* Restart the period timer (if active) to handle new period expiry: */
7091 if (runtime_enabled)
7092 start_cfs_bandwidth(cfs_b);
7094 raw_spin_unlock_irq(&cfs_b->lock);
7096 for_each_online_cpu(i) {
7097 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7098 struct rq *rq = cfs_rq->rq;
7101 rq_lock_irq(rq, &rf);
7102 cfs_rq->runtime_enabled = runtime_enabled;
7103 cfs_rq->runtime_remaining = 0;
7105 if (cfs_rq->throttled)
7106 unthrottle_cfs_rq(cfs_rq);
7107 rq_unlock_irq(rq, &rf);
7109 if (runtime_was_enabled && !runtime_enabled)
7110 cfs_bandwidth_usage_dec();
7112 mutex_unlock(&cfs_constraints_mutex);
7118 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7122 period = ktime_to_ns(tg->cfs_bandwidth.period);
7123 if (cfs_quota_us < 0)
7124 quota = RUNTIME_INF;
7125 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7126 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7130 return tg_set_cfs_bandwidth(tg, period, quota);
7133 static long tg_get_cfs_quota(struct task_group *tg)
7137 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7140 quota_us = tg->cfs_bandwidth.quota;
7141 do_div(quota_us, NSEC_PER_USEC);
7146 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7150 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7153 period = (u64)cfs_period_us * NSEC_PER_USEC;
7154 quota = tg->cfs_bandwidth.quota;
7156 return tg_set_cfs_bandwidth(tg, period, quota);
7159 static long tg_get_cfs_period(struct task_group *tg)
7163 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7164 do_div(cfs_period_us, NSEC_PER_USEC);
7166 return cfs_period_us;
7169 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7172 return tg_get_cfs_quota(css_tg(css));
7175 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7176 struct cftype *cftype, s64 cfs_quota_us)
7178 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7181 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7184 return tg_get_cfs_period(css_tg(css));
7187 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7188 struct cftype *cftype, u64 cfs_period_us)
7190 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7193 struct cfs_schedulable_data {
7194 struct task_group *tg;
7199 * normalize group quota/period to be quota/max_period
7200 * note: units are usecs
7202 static u64 normalize_cfs_quota(struct task_group *tg,
7203 struct cfs_schedulable_data *d)
7211 period = tg_get_cfs_period(tg);
7212 quota = tg_get_cfs_quota(tg);
7215 /* note: these should typically be equivalent */
7216 if (quota == RUNTIME_INF || quota == -1)
7219 return to_ratio(period, quota);
7222 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7224 struct cfs_schedulable_data *d = data;
7225 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7226 s64 quota = 0, parent_quota = -1;
7229 quota = RUNTIME_INF;
7231 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7233 quota = normalize_cfs_quota(tg, d);
7234 parent_quota = parent_b->hierarchical_quota;
7237 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7238 * always take the min. On cgroup1, only inherit when no
7241 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7242 quota = min(quota, parent_quota);
7244 if (quota == RUNTIME_INF)
7245 quota = parent_quota;
7246 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7250 cfs_b->hierarchical_quota = quota;
7255 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7258 struct cfs_schedulable_data data = {
7264 if (quota != RUNTIME_INF) {
7265 do_div(data.period, NSEC_PER_USEC);
7266 do_div(data.quota, NSEC_PER_USEC);
7270 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7276 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7278 struct task_group *tg = css_tg(seq_css(sf));
7279 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7281 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7282 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7283 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7285 if (schedstat_enabled() && tg != &root_task_group) {
7289 for_each_possible_cpu(i)
7290 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7292 seq_printf(sf, "wait_sum %llu\n", ws);
7297 #endif /* CONFIG_CFS_BANDWIDTH */
7298 #endif /* CONFIG_FAIR_GROUP_SCHED */
7300 #ifdef CONFIG_RT_GROUP_SCHED
7301 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7302 struct cftype *cft, s64 val)
7304 return sched_group_set_rt_runtime(css_tg(css), val);
7307 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7310 return sched_group_rt_runtime(css_tg(css));
7313 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7314 struct cftype *cftype, u64 rt_period_us)
7316 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7319 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7322 return sched_group_rt_period(css_tg(css));
7324 #endif /* CONFIG_RT_GROUP_SCHED */
7326 static struct cftype cpu_legacy_files[] = {
7327 #ifdef CONFIG_FAIR_GROUP_SCHED
7330 .read_u64 = cpu_shares_read_u64,
7331 .write_u64 = cpu_shares_write_u64,
7334 #ifdef CONFIG_CFS_BANDWIDTH
7336 .name = "cfs_quota_us",
7337 .read_s64 = cpu_cfs_quota_read_s64,
7338 .write_s64 = cpu_cfs_quota_write_s64,
7341 .name = "cfs_period_us",
7342 .read_u64 = cpu_cfs_period_read_u64,
7343 .write_u64 = cpu_cfs_period_write_u64,
7347 .seq_show = cpu_cfs_stat_show,
7350 #ifdef CONFIG_RT_GROUP_SCHED
7352 .name = "rt_runtime_us",
7353 .read_s64 = cpu_rt_runtime_read,
7354 .write_s64 = cpu_rt_runtime_write,
7357 .name = "rt_period_us",
7358 .read_u64 = cpu_rt_period_read_uint,
7359 .write_u64 = cpu_rt_period_write_uint,
7365 static int cpu_extra_stat_show(struct seq_file *sf,
7366 struct cgroup_subsys_state *css)
7368 #ifdef CONFIG_CFS_BANDWIDTH
7370 struct task_group *tg = css_tg(css);
7371 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7374 throttled_usec = cfs_b->throttled_time;
7375 do_div(throttled_usec, NSEC_PER_USEC);
7377 seq_printf(sf, "nr_periods %d\n"
7379 "throttled_usec %llu\n",
7380 cfs_b->nr_periods, cfs_b->nr_throttled,
7387 #ifdef CONFIG_FAIR_GROUP_SCHED
7388 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7391 struct task_group *tg = css_tg(css);
7392 u64 weight = scale_load_down(tg->shares);
7394 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7397 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7398 struct cftype *cft, u64 weight)
7401 * cgroup weight knobs should use the common MIN, DFL and MAX
7402 * values which are 1, 100 and 10000 respectively. While it loses
7403 * a bit of range on both ends, it maps pretty well onto the shares
7404 * value used by scheduler and the round-trip conversions preserve
7405 * the original value over the entire range.
7407 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7410 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7412 return sched_group_set_shares(css_tg(css), scale_load(weight));
7415 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7418 unsigned long weight = scale_load_down(css_tg(css)->shares);
7419 int last_delta = INT_MAX;
7422 /* find the closest nice value to the current weight */
7423 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7424 delta = abs(sched_prio_to_weight[prio] - weight);
7425 if (delta >= last_delta)
7430 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7433 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7434 struct cftype *cft, s64 nice)
7436 unsigned long weight;
7439 if (nice < MIN_NICE || nice > MAX_NICE)
7442 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7443 idx = array_index_nospec(idx, 40);
7444 weight = sched_prio_to_weight[idx];
7446 return sched_group_set_shares(css_tg(css), scale_load(weight));
7450 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7451 long period, long quota)
7454 seq_puts(sf, "max");
7456 seq_printf(sf, "%ld", quota);
7458 seq_printf(sf, " %ld\n", period);
7461 /* caller should put the current value in *@periodp before calling */
7462 static int __maybe_unused cpu_period_quota_parse(char *buf,
7463 u64 *periodp, u64 *quotap)
7465 char tok[21]; /* U64_MAX */
7467 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7470 *periodp *= NSEC_PER_USEC;
7472 if (sscanf(tok, "%llu", quotap))
7473 *quotap *= NSEC_PER_USEC;
7474 else if (!strcmp(tok, "max"))
7475 *quotap = RUNTIME_INF;
7482 #ifdef CONFIG_CFS_BANDWIDTH
7483 static int cpu_max_show(struct seq_file *sf, void *v)
7485 struct task_group *tg = css_tg(seq_css(sf));
7487 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7491 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7492 char *buf, size_t nbytes, loff_t off)
7494 struct task_group *tg = css_tg(of_css(of));
7495 u64 period = tg_get_cfs_period(tg);
7499 ret = cpu_period_quota_parse(buf, &period, "a);
7501 ret = tg_set_cfs_bandwidth(tg, period, quota);
7502 return ret ?: nbytes;
7506 static struct cftype cpu_files[] = {
7507 #ifdef CONFIG_FAIR_GROUP_SCHED
7510 .flags = CFTYPE_NOT_ON_ROOT,
7511 .read_u64 = cpu_weight_read_u64,
7512 .write_u64 = cpu_weight_write_u64,
7515 .name = "weight.nice",
7516 .flags = CFTYPE_NOT_ON_ROOT,
7517 .read_s64 = cpu_weight_nice_read_s64,
7518 .write_s64 = cpu_weight_nice_write_s64,
7521 #ifdef CONFIG_CFS_BANDWIDTH
7524 .flags = CFTYPE_NOT_ON_ROOT,
7525 .seq_show = cpu_max_show,
7526 .write = cpu_max_write,
7532 struct cgroup_subsys cpu_cgrp_subsys = {
7533 .css_alloc = cpu_cgroup_css_alloc,
7534 .css_online = cpu_cgroup_css_online,
7535 .css_released = cpu_cgroup_css_released,
7536 .css_free = cpu_cgroup_css_free,
7537 .css_extra_stat_show = cpu_extra_stat_show,
7538 .fork = cpu_cgroup_fork,
7539 .can_attach = cpu_cgroup_can_attach,
7540 .attach = cpu_cgroup_attach,
7541 .legacy_cftypes = cpu_legacy_files,
7542 .dfl_cftypes = cpu_files,
7547 #endif /* CONFIG_CGROUP_SCHED */
7549 void dump_cpu_task(int cpu)
7551 pr_info("Task dump for CPU %d:\n", cpu);
7552 sched_show_task(cpu_curr(cpu));
7556 * Nice levels are multiplicative, with a gentle 10% change for every
7557 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7558 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7559 * that remained on nice 0.
7561 * The "10% effect" is relative and cumulative: from _any_ nice level,
7562 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7563 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7564 * If a task goes up by ~10% and another task goes down by ~10% then
7565 * the relative distance between them is ~25%.)
7567 const int sched_prio_to_weight[40] = {
7568 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7569 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7570 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7571 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7572 /* 0 */ 1024, 820, 655, 526, 423,
7573 /* 5 */ 335, 272, 215, 172, 137,
7574 /* 10 */ 110, 87, 70, 56, 45,
7575 /* 15 */ 36, 29, 23, 18, 15,
7579 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7581 * In cases where the weight does not change often, we can use the
7582 * precalculated inverse to speed up arithmetics by turning divisions
7583 * into multiplications:
7585 const u32 sched_prio_to_wmult[40] = {
7586 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7587 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7588 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7589 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7590 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7591 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7592 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7593 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7596 #undef CREATE_TRACE_POINTS