Merge tag 'tty-6.6-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[platform/kernel/linux-rpi.git] / kernel / sched / clock.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sched_clock() for unstable CPU clocks
4  *
5  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
6  *
7  *  Updates and enhancements:
8  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
9  *
10  * Based on code by:
11  *   Ingo Molnar <mingo@redhat.com>
12  *   Guillaume Chazarain <guichaz@gmail.com>
13  *
14  *
15  * What this file implements:
16  *
17  * cpu_clock(i) provides a fast (execution time) high resolution
18  * clock with bounded drift between CPUs. The value of cpu_clock(i)
19  * is monotonic for constant i. The timestamp returned is in nanoseconds.
20  *
21  * ######################### BIG FAT WARNING ##########################
22  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
23  * # go backwards !!                                                  #
24  * ####################################################################
25  *
26  * There is no strict promise about the base, although it tends to start
27  * at 0 on boot (but people really shouldn't rely on that).
28  *
29  * cpu_clock(i)       -- can be used from any context, including NMI.
30  * local_clock()      -- is cpu_clock() on the current CPU.
31  *
32  * sched_clock_cpu(i)
33  *
34  * How it is implemented:
35  *
36  * The implementation either uses sched_clock() when
37  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
38  * sched_clock() is assumed to provide these properties (mostly it means
39  * the architecture provides a globally synchronized highres time source).
40  *
41  * Otherwise it tries to create a semi stable clock from a mixture of other
42  * clocks, including:
43  *
44  *  - GTOD (clock monotonic)
45  *  - sched_clock()
46  *  - explicit idle events
47  *
48  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
49  * deltas are filtered to provide monotonicity and keeping it within an
50  * expected window.
51  *
52  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
53  * that is otherwise invisible (TSC gets stopped).
54  *
55  */
56
57 /*
58  * Scheduler clock - returns current time in nanosec units.
59  * This is default implementation.
60  * Architectures and sub-architectures can override this.
61  */
62 notrace unsigned long long __weak sched_clock(void)
63 {
64         return (unsigned long long)(jiffies - INITIAL_JIFFIES)
65                                         * (NSEC_PER_SEC / HZ);
66 }
67 EXPORT_SYMBOL_GPL(sched_clock);
68
69 static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
70
71 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
72 /*
73  * We must start with !__sched_clock_stable because the unstable -> stable
74  * transition is accurate, while the stable -> unstable transition is not.
75  *
76  * Similarly we start with __sched_clock_stable_early, thereby assuming we
77  * will become stable, such that there's only a single 1 -> 0 transition.
78  */
79 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
80 static int __sched_clock_stable_early = 1;
81
82 /*
83  * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
84  */
85 __read_mostly u64 __sched_clock_offset;
86 static __read_mostly u64 __gtod_offset;
87
88 struct sched_clock_data {
89         u64                     tick_raw;
90         u64                     tick_gtod;
91         u64                     clock;
92 };
93
94 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
95
96 static __always_inline struct sched_clock_data *this_scd(void)
97 {
98         return this_cpu_ptr(&sched_clock_data);
99 }
100
101 notrace static inline struct sched_clock_data *cpu_sdc(int cpu)
102 {
103         return &per_cpu(sched_clock_data, cpu);
104 }
105
106 notrace int sched_clock_stable(void)
107 {
108         return static_branch_likely(&__sched_clock_stable);
109 }
110
111 notrace static void __scd_stamp(struct sched_clock_data *scd)
112 {
113         scd->tick_gtod = ktime_get_ns();
114         scd->tick_raw = sched_clock();
115 }
116
117 notrace static void __set_sched_clock_stable(void)
118 {
119         struct sched_clock_data *scd;
120
121         /*
122          * Since we're still unstable and the tick is already running, we have
123          * to disable IRQs in order to get a consistent scd->tick* reading.
124          */
125         local_irq_disable();
126         scd = this_scd();
127         /*
128          * Attempt to make the (initial) unstable->stable transition continuous.
129          */
130         __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
131         local_irq_enable();
132
133         printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
134                         scd->tick_gtod, __gtod_offset,
135                         scd->tick_raw,  __sched_clock_offset);
136
137         static_branch_enable(&__sched_clock_stable);
138         tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
139 }
140
141 /*
142  * If we ever get here, we're screwed, because we found out -- typically after
143  * the fact -- that TSC wasn't good. This means all our clocksources (including
144  * ktime) could have reported wrong values.
145  *
146  * What we do here is an attempt to fix up and continue sort of where we left
147  * off in a coherent manner.
148  *
149  * The only way to fully avoid random clock jumps is to boot with:
150  * "tsc=unstable".
151  */
152 notrace static void __sched_clock_work(struct work_struct *work)
153 {
154         struct sched_clock_data *scd;
155         int cpu;
156
157         /* take a current timestamp and set 'now' */
158         preempt_disable();
159         scd = this_scd();
160         __scd_stamp(scd);
161         scd->clock = scd->tick_gtod + __gtod_offset;
162         preempt_enable();
163
164         /* clone to all CPUs */
165         for_each_possible_cpu(cpu)
166                 per_cpu(sched_clock_data, cpu) = *scd;
167
168         printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
169         printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
170                         scd->tick_gtod, __gtod_offset,
171                         scd->tick_raw,  __sched_clock_offset);
172
173         static_branch_disable(&__sched_clock_stable);
174 }
175
176 static DECLARE_WORK(sched_clock_work, __sched_clock_work);
177
178 notrace static void __clear_sched_clock_stable(void)
179 {
180         if (!sched_clock_stable())
181                 return;
182
183         tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
184         schedule_work(&sched_clock_work);
185 }
186
187 notrace void clear_sched_clock_stable(void)
188 {
189         __sched_clock_stable_early = 0;
190
191         smp_mb(); /* matches sched_clock_init_late() */
192
193         if (static_key_count(&sched_clock_running.key) == 2)
194                 __clear_sched_clock_stable();
195 }
196
197 notrace static void __sched_clock_gtod_offset(void)
198 {
199         struct sched_clock_data *scd = this_scd();
200
201         __scd_stamp(scd);
202         __gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
203 }
204
205 void __init sched_clock_init(void)
206 {
207         /*
208          * Set __gtod_offset such that once we mark sched_clock_running,
209          * sched_clock_tick() continues where sched_clock() left off.
210          *
211          * Even if TSC is buggered, we're still UP at this point so it
212          * can't really be out of sync.
213          */
214         local_irq_disable();
215         __sched_clock_gtod_offset();
216         local_irq_enable();
217
218         static_branch_inc(&sched_clock_running);
219 }
220 /*
221  * We run this as late_initcall() such that it runs after all built-in drivers,
222  * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
223  */
224 static int __init sched_clock_init_late(void)
225 {
226         static_branch_inc(&sched_clock_running);
227         /*
228          * Ensure that it is impossible to not do a static_key update.
229          *
230          * Either {set,clear}_sched_clock_stable() must see sched_clock_running
231          * and do the update, or we must see their __sched_clock_stable_early
232          * and do the update, or both.
233          */
234         smp_mb(); /* matches {set,clear}_sched_clock_stable() */
235
236         if (__sched_clock_stable_early)
237                 __set_sched_clock_stable();
238
239         return 0;
240 }
241 late_initcall(sched_clock_init_late);
242
243 /*
244  * min, max except they take wrapping into account
245  */
246
247 static __always_inline u64 wrap_min(u64 x, u64 y)
248 {
249         return (s64)(x - y) < 0 ? x : y;
250 }
251
252 static __always_inline u64 wrap_max(u64 x, u64 y)
253 {
254         return (s64)(x - y) > 0 ? x : y;
255 }
256
257 /*
258  * update the percpu scd from the raw @now value
259  *
260  *  - filter out backward motion
261  *  - use the GTOD tick value to create a window to filter crazy TSC values
262  */
263 static __always_inline u64 sched_clock_local(struct sched_clock_data *scd)
264 {
265         u64 now, clock, old_clock, min_clock, max_clock, gtod;
266         s64 delta;
267
268 again:
269         now = sched_clock_noinstr();
270         delta = now - scd->tick_raw;
271         if (unlikely(delta < 0))
272                 delta = 0;
273
274         old_clock = scd->clock;
275
276         /*
277          * scd->clock = clamp(scd->tick_gtod + delta,
278          *                    max(scd->tick_gtod, scd->clock),
279          *                    scd->tick_gtod + TICK_NSEC);
280          */
281
282         gtod = scd->tick_gtod + __gtod_offset;
283         clock = gtod + delta;
284         min_clock = wrap_max(gtod, old_clock);
285         max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
286
287         clock = wrap_max(clock, min_clock);
288         clock = wrap_min(clock, max_clock);
289
290         if (!raw_try_cmpxchg64(&scd->clock, &old_clock, clock))
291                 goto again;
292
293         return clock;
294 }
295
296 noinstr u64 local_clock_noinstr(void)
297 {
298         u64 clock;
299
300         if (static_branch_likely(&__sched_clock_stable))
301                 return sched_clock_noinstr() + __sched_clock_offset;
302
303         if (!static_branch_likely(&sched_clock_running))
304                 return sched_clock_noinstr();
305
306         clock = sched_clock_local(this_scd());
307
308         return clock;
309 }
310
311 u64 local_clock(void)
312 {
313         u64 now;
314         preempt_disable_notrace();
315         now = local_clock_noinstr();
316         preempt_enable_notrace();
317         return now;
318 }
319 EXPORT_SYMBOL_GPL(local_clock);
320
321 static notrace u64 sched_clock_remote(struct sched_clock_data *scd)
322 {
323         struct sched_clock_data *my_scd = this_scd();
324         u64 this_clock, remote_clock;
325         u64 *ptr, old_val, val;
326
327 #if BITS_PER_LONG != 64
328 again:
329         /*
330          * Careful here: The local and the remote clock values need to
331          * be read out atomic as we need to compare the values and
332          * then update either the local or the remote side. So the
333          * cmpxchg64 below only protects one readout.
334          *
335          * We must reread via sched_clock_local() in the retry case on
336          * 32-bit kernels as an NMI could use sched_clock_local() via the
337          * tracer and hit between the readout of
338          * the low 32-bit and the high 32-bit portion.
339          */
340         this_clock = sched_clock_local(my_scd);
341         /*
342          * We must enforce atomic readout on 32-bit, otherwise the
343          * update on the remote CPU can hit inbetween the readout of
344          * the low 32-bit and the high 32-bit portion.
345          */
346         remote_clock = cmpxchg64(&scd->clock, 0, 0);
347 #else
348         /*
349          * On 64-bit kernels the read of [my]scd->clock is atomic versus the
350          * update, so we can avoid the above 32-bit dance.
351          */
352         sched_clock_local(my_scd);
353 again:
354         this_clock = my_scd->clock;
355         remote_clock = scd->clock;
356 #endif
357
358         /*
359          * Use the opportunity that we have both locks
360          * taken to couple the two clocks: we take the
361          * larger time as the latest time for both
362          * runqueues. (this creates monotonic movement)
363          */
364         if (likely((s64)(remote_clock - this_clock) < 0)) {
365                 ptr = &scd->clock;
366                 old_val = remote_clock;
367                 val = this_clock;
368         } else {
369                 /*
370                  * Should be rare, but possible:
371                  */
372                 ptr = &my_scd->clock;
373                 old_val = this_clock;
374                 val = remote_clock;
375         }
376
377         if (!try_cmpxchg64(ptr, &old_val, val))
378                 goto again;
379
380         return val;
381 }
382
383 /*
384  * Similar to cpu_clock(), but requires local IRQs to be disabled.
385  *
386  * See cpu_clock().
387  */
388 notrace u64 sched_clock_cpu(int cpu)
389 {
390         struct sched_clock_data *scd;
391         u64 clock;
392
393         if (sched_clock_stable())
394                 return sched_clock() + __sched_clock_offset;
395
396         if (!static_branch_likely(&sched_clock_running))
397                 return sched_clock();
398
399         preempt_disable_notrace();
400         scd = cpu_sdc(cpu);
401
402         if (cpu != smp_processor_id())
403                 clock = sched_clock_remote(scd);
404         else
405                 clock = sched_clock_local(scd);
406         preempt_enable_notrace();
407
408         return clock;
409 }
410 EXPORT_SYMBOL_GPL(sched_clock_cpu);
411
412 notrace void sched_clock_tick(void)
413 {
414         struct sched_clock_data *scd;
415
416         if (sched_clock_stable())
417                 return;
418
419         if (!static_branch_likely(&sched_clock_running))
420                 return;
421
422         lockdep_assert_irqs_disabled();
423
424         scd = this_scd();
425         __scd_stamp(scd);
426         sched_clock_local(scd);
427 }
428
429 notrace void sched_clock_tick_stable(void)
430 {
431         if (!sched_clock_stable())
432                 return;
433
434         /*
435          * Called under watchdog_lock.
436          *
437          * The watchdog just found this TSC to (still) be stable, so now is a
438          * good moment to update our __gtod_offset. Because once we find the
439          * TSC to be unstable, any computation will be computing crap.
440          */
441         local_irq_disable();
442         __sched_clock_gtod_offset();
443         local_irq_enable();
444 }
445
446 /*
447  * We are going deep-idle (irqs are disabled):
448  */
449 notrace void sched_clock_idle_sleep_event(void)
450 {
451         sched_clock_cpu(smp_processor_id());
452 }
453 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
454
455 /*
456  * We just idled; resync with ktime.
457  */
458 notrace void sched_clock_idle_wakeup_event(void)
459 {
460         unsigned long flags;
461
462         if (sched_clock_stable())
463                 return;
464
465         if (unlikely(timekeeping_suspended))
466                 return;
467
468         local_irq_save(flags);
469         sched_clock_tick();
470         local_irq_restore(flags);
471 }
472 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
473
474 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
475
476 void __init sched_clock_init(void)
477 {
478         static_branch_inc(&sched_clock_running);
479         local_irq_disable();
480         generic_sched_clock_init();
481         local_irq_enable();
482 }
483
484 notrace u64 sched_clock_cpu(int cpu)
485 {
486         if (!static_branch_likely(&sched_clock_running))
487                 return 0;
488
489         return sched_clock();
490 }
491
492 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
493
494 /*
495  * Running clock - returns the time that has elapsed while a guest has been
496  * running.
497  * On a guest this value should be local_clock minus the time the guest was
498  * suspended by the hypervisor (for any reason).
499  * On bare metal this function should return the same as local_clock.
500  * Architectures and sub-architectures can override this.
501  */
502 notrace u64 __weak running_clock(void)
503 {
504         return local_clock();
505 }