Merge tag 'arm-fixes-6.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[platform/kernel/linux-rpi.git] / kernel / rseq.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Restartable sequences system call
4  *
5  * Copyright (C) 2015, Google, Inc.,
6  * Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com>
7  * Copyright (C) 2015-2018, EfficiOS Inc.,
8  * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
9  */
10
11 #include <linux/sched.h>
12 #include <linux/uaccess.h>
13 #include <linux/syscalls.h>
14 #include <linux/rseq.h>
15 #include <linux/types.h>
16 #include <asm/ptrace.h>
17
18 #define CREATE_TRACE_POINTS
19 #include <trace/events/rseq.h>
20
21 /* The original rseq structure size (including padding) is 32 bytes. */
22 #define ORIG_RSEQ_SIZE          32
23
24 #define RSEQ_CS_NO_RESTART_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT | \
25                                   RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL | \
26                                   RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE)
27
28 /*
29  *
30  * Restartable sequences are a lightweight interface that allows
31  * user-level code to be executed atomically relative to scheduler
32  * preemption and signal delivery. Typically used for implementing
33  * per-cpu operations.
34  *
35  * It allows user-space to perform update operations on per-cpu data
36  * without requiring heavy-weight atomic operations.
37  *
38  * Detailed algorithm of rseq user-space assembly sequences:
39  *
40  *                     init(rseq_cs)
41  *                     cpu = TLS->rseq::cpu_id_start
42  *   [1]               TLS->rseq::rseq_cs = rseq_cs
43  *   [start_ip]        ----------------------------
44  *   [2]               if (cpu != TLS->rseq::cpu_id)
45  *                             goto abort_ip;
46  *   [3]               <last_instruction_in_cs>
47  *   [post_commit_ip]  ----------------------------
48  *
49  *   The address of jump target abort_ip must be outside the critical
50  *   region, i.e.:
51  *
52  *     [abort_ip] < [start_ip]  || [abort_ip] >= [post_commit_ip]
53  *
54  *   Steps [2]-[3] (inclusive) need to be a sequence of instructions in
55  *   userspace that can handle being interrupted between any of those
56  *   instructions, and then resumed to the abort_ip.
57  *
58  *   1.  Userspace stores the address of the struct rseq_cs assembly
59  *       block descriptor into the rseq_cs field of the registered
60  *       struct rseq TLS area. This update is performed through a single
61  *       store within the inline assembly instruction sequence.
62  *       [start_ip]
63  *
64  *   2.  Userspace tests to check whether the current cpu_id field match
65  *       the cpu number loaded before start_ip, branching to abort_ip
66  *       in case of a mismatch.
67  *
68  *       If the sequence is preempted or interrupted by a signal
69  *       at or after start_ip and before post_commit_ip, then the kernel
70  *       clears TLS->__rseq_abi::rseq_cs, and sets the user-space return
71  *       ip to abort_ip before returning to user-space, so the preempted
72  *       execution resumes at abort_ip.
73  *
74  *   3.  Userspace critical section final instruction before
75  *       post_commit_ip is the commit. The critical section is
76  *       self-terminating.
77  *       [post_commit_ip]
78  *
79  *   4.  <success>
80  *
81  *   On failure at [2], or if interrupted by preempt or signal delivery
82  *   between [1] and [3]:
83  *
84  *       [abort_ip]
85  *   F1. <failure>
86  */
87
88 static int rseq_update_cpu_node_id(struct task_struct *t)
89 {
90         struct rseq __user *rseq = t->rseq;
91         u32 cpu_id = raw_smp_processor_id();
92         u32 node_id = cpu_to_node(cpu_id);
93         u32 mm_cid = task_mm_cid(t);
94
95         WARN_ON_ONCE((int) mm_cid < 0);
96         if (!user_write_access_begin(rseq, t->rseq_len))
97                 goto efault;
98         unsafe_put_user(cpu_id, &rseq->cpu_id_start, efault_end);
99         unsafe_put_user(cpu_id, &rseq->cpu_id, efault_end);
100         unsafe_put_user(node_id, &rseq->node_id, efault_end);
101         unsafe_put_user(mm_cid, &rseq->mm_cid, efault_end);
102         /*
103          * Additional feature fields added after ORIG_RSEQ_SIZE
104          * need to be conditionally updated only if
105          * t->rseq_len != ORIG_RSEQ_SIZE.
106          */
107         user_write_access_end();
108         trace_rseq_update(t);
109         return 0;
110
111 efault_end:
112         user_write_access_end();
113 efault:
114         return -EFAULT;
115 }
116
117 static int rseq_reset_rseq_cpu_node_id(struct task_struct *t)
118 {
119         u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED, node_id = 0,
120             mm_cid = 0;
121
122         /*
123          * Reset cpu_id_start to its initial state (0).
124          */
125         if (put_user(cpu_id_start, &t->rseq->cpu_id_start))
126                 return -EFAULT;
127         /*
128          * Reset cpu_id to RSEQ_CPU_ID_UNINITIALIZED, so any user coming
129          * in after unregistration can figure out that rseq needs to be
130          * registered again.
131          */
132         if (put_user(cpu_id, &t->rseq->cpu_id))
133                 return -EFAULT;
134         /*
135          * Reset node_id to its initial state (0).
136          */
137         if (put_user(node_id, &t->rseq->node_id))
138                 return -EFAULT;
139         /*
140          * Reset mm_cid to its initial state (0).
141          */
142         if (put_user(mm_cid, &t->rseq->mm_cid))
143                 return -EFAULT;
144         /*
145          * Additional feature fields added after ORIG_RSEQ_SIZE
146          * need to be conditionally reset only if
147          * t->rseq_len != ORIG_RSEQ_SIZE.
148          */
149         return 0;
150 }
151
152 static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs)
153 {
154         struct rseq_cs __user *urseq_cs;
155         u64 ptr;
156         u32 __user *usig;
157         u32 sig;
158         int ret;
159
160 #ifdef CONFIG_64BIT
161         if (get_user(ptr, &t->rseq->rseq_cs))
162                 return -EFAULT;
163 #else
164         if (copy_from_user(&ptr, &t->rseq->rseq_cs, sizeof(ptr)))
165                 return -EFAULT;
166 #endif
167         if (!ptr) {
168                 memset(rseq_cs, 0, sizeof(*rseq_cs));
169                 return 0;
170         }
171         if (ptr >= TASK_SIZE)
172                 return -EINVAL;
173         urseq_cs = (struct rseq_cs __user *)(unsigned long)ptr;
174         if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs)))
175                 return -EFAULT;
176
177         if (rseq_cs->start_ip >= TASK_SIZE ||
178             rseq_cs->start_ip + rseq_cs->post_commit_offset >= TASK_SIZE ||
179             rseq_cs->abort_ip >= TASK_SIZE ||
180             rseq_cs->version > 0)
181                 return -EINVAL;
182         /* Check for overflow. */
183         if (rseq_cs->start_ip + rseq_cs->post_commit_offset < rseq_cs->start_ip)
184                 return -EINVAL;
185         /* Ensure that abort_ip is not in the critical section. */
186         if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset)
187                 return -EINVAL;
188
189         usig = (u32 __user *)(unsigned long)(rseq_cs->abort_ip - sizeof(u32));
190         ret = get_user(sig, usig);
191         if (ret)
192                 return ret;
193
194         if (current->rseq_sig != sig) {
195                 printk_ratelimited(KERN_WARNING
196                         "Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n",
197                         sig, current->rseq_sig, current->pid, usig);
198                 return -EINVAL;
199         }
200         return 0;
201 }
202
203 static bool rseq_warn_flags(const char *str, u32 flags)
204 {
205         u32 test_flags;
206
207         if (!flags)
208                 return false;
209         test_flags = flags & RSEQ_CS_NO_RESTART_FLAGS;
210         if (test_flags)
211                 pr_warn_once("Deprecated flags (%u) in %s ABI structure", test_flags, str);
212         test_flags = flags & ~RSEQ_CS_NO_RESTART_FLAGS;
213         if (test_flags)
214                 pr_warn_once("Unknown flags (%u) in %s ABI structure", test_flags, str);
215         return true;
216 }
217
218 static int rseq_need_restart(struct task_struct *t, u32 cs_flags)
219 {
220         u32 flags, event_mask;
221         int ret;
222
223         if (rseq_warn_flags("rseq_cs", cs_flags))
224                 return -EINVAL;
225
226         /* Get thread flags. */
227         ret = get_user(flags, &t->rseq->flags);
228         if (ret)
229                 return ret;
230
231         if (rseq_warn_flags("rseq", flags))
232                 return -EINVAL;
233
234         /*
235          * Load and clear event mask atomically with respect to
236          * scheduler preemption.
237          */
238         preempt_disable();
239         event_mask = t->rseq_event_mask;
240         t->rseq_event_mask = 0;
241         preempt_enable();
242
243         return !!event_mask;
244 }
245
246 static int clear_rseq_cs(struct task_struct *t)
247 {
248         /*
249          * The rseq_cs field is set to NULL on preemption or signal
250          * delivery on top of rseq assembly block, as well as on top
251          * of code outside of the rseq assembly block. This performs
252          * a lazy clear of the rseq_cs field.
253          *
254          * Set rseq_cs to NULL.
255          */
256 #ifdef CONFIG_64BIT
257         return put_user(0UL, &t->rseq->rseq_cs);
258 #else
259         if (clear_user(&t->rseq->rseq_cs, sizeof(t->rseq->rseq_cs)))
260                 return -EFAULT;
261         return 0;
262 #endif
263 }
264
265 /*
266  * Unsigned comparison will be true when ip >= start_ip, and when
267  * ip < start_ip + post_commit_offset.
268  */
269 static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs)
270 {
271         return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset;
272 }
273
274 static int rseq_ip_fixup(struct pt_regs *regs)
275 {
276         unsigned long ip = instruction_pointer(regs);
277         struct task_struct *t = current;
278         struct rseq_cs rseq_cs;
279         int ret;
280
281         ret = rseq_get_rseq_cs(t, &rseq_cs);
282         if (ret)
283                 return ret;
284
285         /*
286          * Handle potentially not being within a critical section.
287          * If not nested over a rseq critical section, restart is useless.
288          * Clear the rseq_cs pointer and return.
289          */
290         if (!in_rseq_cs(ip, &rseq_cs))
291                 return clear_rseq_cs(t);
292         ret = rseq_need_restart(t, rseq_cs.flags);
293         if (ret <= 0)
294                 return ret;
295         ret = clear_rseq_cs(t);
296         if (ret)
297                 return ret;
298         trace_rseq_ip_fixup(ip, rseq_cs.start_ip, rseq_cs.post_commit_offset,
299                             rseq_cs.abort_ip);
300         instruction_pointer_set(regs, (unsigned long)rseq_cs.abort_ip);
301         return 0;
302 }
303
304 /*
305  * This resume handler must always be executed between any of:
306  * - preemption,
307  * - signal delivery,
308  * and return to user-space.
309  *
310  * This is how we can ensure that the entire rseq critical section
311  * will issue the commit instruction only if executed atomically with
312  * respect to other threads scheduled on the same CPU, and with respect
313  * to signal handlers.
314  */
315 void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs)
316 {
317         struct task_struct *t = current;
318         int ret, sig;
319
320         if (unlikely(t->flags & PF_EXITING))
321                 return;
322
323         /*
324          * regs is NULL if and only if the caller is in a syscall path.  Skip
325          * fixup and leave rseq_cs as is so that rseq_sycall() will detect and
326          * kill a misbehaving userspace on debug kernels.
327          */
328         if (regs) {
329                 ret = rseq_ip_fixup(regs);
330                 if (unlikely(ret < 0))
331                         goto error;
332         }
333         if (unlikely(rseq_update_cpu_node_id(t)))
334                 goto error;
335         return;
336
337 error:
338         sig = ksig ? ksig->sig : 0;
339         force_sigsegv(sig);
340 }
341
342 #ifdef CONFIG_DEBUG_RSEQ
343
344 /*
345  * Terminate the process if a syscall is issued within a restartable
346  * sequence.
347  */
348 void rseq_syscall(struct pt_regs *regs)
349 {
350         unsigned long ip = instruction_pointer(regs);
351         struct task_struct *t = current;
352         struct rseq_cs rseq_cs;
353
354         if (!t->rseq)
355                 return;
356         if (rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs))
357                 force_sig(SIGSEGV);
358 }
359
360 #endif
361
362 /*
363  * sys_rseq - setup restartable sequences for caller thread.
364  */
365 SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len,
366                 int, flags, u32, sig)
367 {
368         int ret;
369
370         if (flags & RSEQ_FLAG_UNREGISTER) {
371                 if (flags & ~RSEQ_FLAG_UNREGISTER)
372                         return -EINVAL;
373                 /* Unregister rseq for current thread. */
374                 if (current->rseq != rseq || !current->rseq)
375                         return -EINVAL;
376                 if (rseq_len != current->rseq_len)
377                         return -EINVAL;
378                 if (current->rseq_sig != sig)
379                         return -EPERM;
380                 ret = rseq_reset_rseq_cpu_node_id(current);
381                 if (ret)
382                         return ret;
383                 current->rseq = NULL;
384                 current->rseq_sig = 0;
385                 current->rseq_len = 0;
386                 return 0;
387         }
388
389         if (unlikely(flags))
390                 return -EINVAL;
391
392         if (current->rseq) {
393                 /*
394                  * If rseq is already registered, check whether
395                  * the provided address differs from the prior
396                  * one.
397                  */
398                 if (current->rseq != rseq || rseq_len != current->rseq_len)
399                         return -EINVAL;
400                 if (current->rseq_sig != sig)
401                         return -EPERM;
402                 /* Already registered. */
403                 return -EBUSY;
404         }
405
406         /*
407          * If there was no rseq previously registered, ensure the provided rseq
408          * is properly aligned, as communcated to user-space through the ELF
409          * auxiliary vector AT_RSEQ_ALIGN. If rseq_len is the original rseq
410          * size, the required alignment is the original struct rseq alignment.
411          *
412          * In order to be valid, rseq_len is either the original rseq size, or
413          * large enough to contain all supported fields, as communicated to
414          * user-space through the ELF auxiliary vector AT_RSEQ_FEATURE_SIZE.
415          */
416         if (rseq_len < ORIG_RSEQ_SIZE ||
417             (rseq_len == ORIG_RSEQ_SIZE && !IS_ALIGNED((unsigned long)rseq, ORIG_RSEQ_SIZE)) ||
418             (rseq_len != ORIG_RSEQ_SIZE && (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) ||
419                                             rseq_len < offsetof(struct rseq, end))))
420                 return -EINVAL;
421         if (!access_ok(rseq, rseq_len))
422                 return -EFAULT;
423         current->rseq = rseq;
424         current->rseq_len = rseq_len;
425         current->rseq_sig = sig;
426         /*
427          * If rseq was previously inactive, and has just been
428          * registered, ensure the cpu_id_start and cpu_id fields
429          * are updated before returning to user-space.
430          */
431         rseq_set_notify_resume(current);
432
433         return 0;
434 }