Merge tag 'locking_urgent_for_v6.2_rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / kernel / relay.c
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.rst for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  *      (mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31  * fault() vm_op implementation for relay file mapping.
32  */
33 static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
34 {
35         struct page *page;
36         struct rchan_buf *buf = vmf->vma->vm_private_data;
37         pgoff_t pgoff = vmf->pgoff;
38
39         if (!buf)
40                 return VM_FAULT_OOM;
41
42         page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
43         if (!page)
44                 return VM_FAULT_SIGBUS;
45         get_page(page);
46         vmf->page = page;
47
48         return 0;
49 }
50
51 /*
52  * vm_ops for relay file mappings.
53  */
54 static const struct vm_operations_struct relay_file_mmap_ops = {
55         .fault = relay_buf_fault,
56 };
57
58 /*
59  * allocate an array of pointers of struct page
60  */
61 static struct page **relay_alloc_page_array(unsigned int n_pages)
62 {
63         return kvcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
64 }
65
66 /*
67  * free an array of pointers of struct page
68  */
69 static void relay_free_page_array(struct page **array)
70 {
71         kvfree(array);
72 }
73
74 /**
75  *      relay_mmap_buf: - mmap channel buffer to process address space
76  *      @buf: relay channel buffer
77  *      @vma: vm_area_struct describing memory to be mapped
78  *
79  *      Returns 0 if ok, negative on error
80  *
81  *      Caller should already have grabbed mmap_lock.
82  */
83 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
84 {
85         unsigned long length = vma->vm_end - vma->vm_start;
86
87         if (!buf)
88                 return -EBADF;
89
90         if (length != (unsigned long)buf->chan->alloc_size)
91                 return -EINVAL;
92
93         vma->vm_ops = &relay_file_mmap_ops;
94         vma->vm_flags |= VM_DONTEXPAND;
95         vma->vm_private_data = buf;
96
97         return 0;
98 }
99
100 /**
101  *      relay_alloc_buf - allocate a channel buffer
102  *      @buf: the buffer struct
103  *      @size: total size of the buffer
104  *
105  *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
106  *      passed in size will get page aligned, if it isn't already.
107  */
108 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
109 {
110         void *mem;
111         unsigned int i, j, n_pages;
112
113         *size = PAGE_ALIGN(*size);
114         n_pages = *size >> PAGE_SHIFT;
115
116         buf->page_array = relay_alloc_page_array(n_pages);
117         if (!buf->page_array)
118                 return NULL;
119
120         for (i = 0; i < n_pages; i++) {
121                 buf->page_array[i] = alloc_page(GFP_KERNEL);
122                 if (unlikely(!buf->page_array[i]))
123                         goto depopulate;
124                 set_page_private(buf->page_array[i], (unsigned long)buf);
125         }
126         mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
127         if (!mem)
128                 goto depopulate;
129
130         memset(mem, 0, *size);
131         buf->page_count = n_pages;
132         return mem;
133
134 depopulate:
135         for (j = 0; j < i; j++)
136                 __free_page(buf->page_array[j]);
137         relay_free_page_array(buf->page_array);
138         return NULL;
139 }
140
141 /**
142  *      relay_create_buf - allocate and initialize a channel buffer
143  *      @chan: the relay channel
144  *
145  *      Returns channel buffer if successful, %NULL otherwise.
146  */
147 static struct rchan_buf *relay_create_buf(struct rchan *chan)
148 {
149         struct rchan_buf *buf;
150
151         if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t))
152                 return NULL;
153
154         buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
155         if (!buf)
156                 return NULL;
157         buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t),
158                                      GFP_KERNEL);
159         if (!buf->padding)
160                 goto free_buf;
161
162         buf->start = relay_alloc_buf(buf, &chan->alloc_size);
163         if (!buf->start)
164                 goto free_buf;
165
166         buf->chan = chan;
167         kref_get(&buf->chan->kref);
168         return buf;
169
170 free_buf:
171         kfree(buf->padding);
172         kfree(buf);
173         return NULL;
174 }
175
176 /**
177  *      relay_destroy_channel - free the channel struct
178  *      @kref: target kernel reference that contains the relay channel
179  *
180  *      Should only be called from kref_put().
181  */
182 static void relay_destroy_channel(struct kref *kref)
183 {
184         struct rchan *chan = container_of(kref, struct rchan, kref);
185         free_percpu(chan->buf);
186         kfree(chan);
187 }
188
189 /**
190  *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
191  *      @buf: the buffer struct
192  */
193 static void relay_destroy_buf(struct rchan_buf *buf)
194 {
195         struct rchan *chan = buf->chan;
196         unsigned int i;
197
198         if (likely(buf->start)) {
199                 vunmap(buf->start);
200                 for (i = 0; i < buf->page_count; i++)
201                         __free_page(buf->page_array[i]);
202                 relay_free_page_array(buf->page_array);
203         }
204         *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
205         kfree(buf->padding);
206         kfree(buf);
207         kref_put(&chan->kref, relay_destroy_channel);
208 }
209
210 /**
211  *      relay_remove_buf - remove a channel buffer
212  *      @kref: target kernel reference that contains the relay buffer
213  *
214  *      Removes the file from the filesystem, which also frees the
215  *      rchan_buf_struct and the channel buffer.  Should only be called from
216  *      kref_put().
217  */
218 static void relay_remove_buf(struct kref *kref)
219 {
220         struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
221         relay_destroy_buf(buf);
222 }
223
224 /**
225  *      relay_buf_empty - boolean, is the channel buffer empty?
226  *      @buf: channel buffer
227  *
228  *      Returns 1 if the buffer is empty, 0 otherwise.
229  */
230 static int relay_buf_empty(struct rchan_buf *buf)
231 {
232         return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
233 }
234
235 /**
236  *      relay_buf_full - boolean, is the channel buffer full?
237  *      @buf: channel buffer
238  *
239  *      Returns 1 if the buffer is full, 0 otherwise.
240  */
241 int relay_buf_full(struct rchan_buf *buf)
242 {
243         size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
244         return (ready >= buf->chan->n_subbufs) ? 1 : 0;
245 }
246 EXPORT_SYMBOL_GPL(relay_buf_full);
247
248 /*
249  * High-level relay kernel API and associated functions.
250  */
251
252 static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf,
253                               void *prev_subbuf, size_t prev_padding)
254 {
255         if (!buf->chan->cb->subbuf_start)
256                 return !relay_buf_full(buf);
257
258         return buf->chan->cb->subbuf_start(buf, subbuf,
259                                            prev_subbuf, prev_padding);
260 }
261
262 /**
263  *      wakeup_readers - wake up readers waiting on a channel
264  *      @work: contains the channel buffer
265  *
266  *      This is the function used to defer reader waking
267  */
268 static void wakeup_readers(struct irq_work *work)
269 {
270         struct rchan_buf *buf;
271
272         buf = container_of(work, struct rchan_buf, wakeup_work);
273         wake_up_interruptible(&buf->read_wait);
274 }
275
276 /**
277  *      __relay_reset - reset a channel buffer
278  *      @buf: the channel buffer
279  *      @init: 1 if this is a first-time initialization
280  *
281  *      See relay_reset() for description of effect.
282  */
283 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
284 {
285         size_t i;
286
287         if (init) {
288                 init_waitqueue_head(&buf->read_wait);
289                 kref_init(&buf->kref);
290                 init_irq_work(&buf->wakeup_work, wakeup_readers);
291         } else {
292                 irq_work_sync(&buf->wakeup_work);
293         }
294
295         buf->subbufs_produced = 0;
296         buf->subbufs_consumed = 0;
297         buf->bytes_consumed = 0;
298         buf->finalized = 0;
299         buf->data = buf->start;
300         buf->offset = 0;
301
302         for (i = 0; i < buf->chan->n_subbufs; i++)
303                 buf->padding[i] = 0;
304
305         relay_subbuf_start(buf, buf->data, NULL, 0);
306 }
307
308 /**
309  *      relay_reset - reset the channel
310  *      @chan: the channel
311  *
312  *      This has the effect of erasing all data from all channel buffers
313  *      and restarting the channel in its initial state.  The buffers
314  *      are not freed, so any mappings are still in effect.
315  *
316  *      NOTE. Care should be taken that the channel isn't actually
317  *      being used by anything when this call is made.
318  */
319 void relay_reset(struct rchan *chan)
320 {
321         struct rchan_buf *buf;
322         unsigned int i;
323
324         if (!chan)
325                 return;
326
327         if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
328                 __relay_reset(buf, 0);
329                 return;
330         }
331
332         mutex_lock(&relay_channels_mutex);
333         for_each_possible_cpu(i)
334                 if ((buf = *per_cpu_ptr(chan->buf, i)))
335                         __relay_reset(buf, 0);
336         mutex_unlock(&relay_channels_mutex);
337 }
338 EXPORT_SYMBOL_GPL(relay_reset);
339
340 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
341                                         struct dentry *dentry)
342 {
343         buf->dentry = dentry;
344         d_inode(buf->dentry)->i_size = buf->early_bytes;
345 }
346
347 static struct dentry *relay_create_buf_file(struct rchan *chan,
348                                             struct rchan_buf *buf,
349                                             unsigned int cpu)
350 {
351         struct dentry *dentry;
352         char *tmpname;
353
354         tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
355         if (!tmpname)
356                 return NULL;
357         snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
358
359         /* Create file in fs */
360         dentry = chan->cb->create_buf_file(tmpname, chan->parent,
361                                            S_IRUSR, buf,
362                                            &chan->is_global);
363         if (IS_ERR(dentry))
364                 dentry = NULL;
365
366         kfree(tmpname);
367
368         return dentry;
369 }
370
371 /*
372  *      relay_open_buf - create a new relay channel buffer
373  *
374  *      used by relay_open() and CPU hotplug.
375  */
376 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
377 {
378         struct rchan_buf *buf = NULL;
379         struct dentry *dentry;
380
381         if (chan->is_global)
382                 return *per_cpu_ptr(chan->buf, 0);
383
384         buf = relay_create_buf(chan);
385         if (!buf)
386                 return NULL;
387
388         if (chan->has_base_filename) {
389                 dentry = relay_create_buf_file(chan, buf, cpu);
390                 if (!dentry)
391                         goto free_buf;
392                 relay_set_buf_dentry(buf, dentry);
393         } else {
394                 /* Only retrieve global info, nothing more, nothing less */
395                 dentry = chan->cb->create_buf_file(NULL, NULL,
396                                                    S_IRUSR, buf,
397                                                    &chan->is_global);
398                 if (IS_ERR_OR_NULL(dentry))
399                         goto free_buf;
400         }
401
402         buf->cpu = cpu;
403         __relay_reset(buf, 1);
404
405         if(chan->is_global) {
406                 *per_cpu_ptr(chan->buf, 0) = buf;
407                 buf->cpu = 0;
408         }
409
410         return buf;
411
412 free_buf:
413         relay_destroy_buf(buf);
414         return NULL;
415 }
416
417 /**
418  *      relay_close_buf - close a channel buffer
419  *      @buf: channel buffer
420  *
421  *      Marks the buffer finalized and restores the default callbacks.
422  *      The channel buffer and channel buffer data structure are then freed
423  *      automatically when the last reference is given up.
424  */
425 static void relay_close_buf(struct rchan_buf *buf)
426 {
427         buf->finalized = 1;
428         irq_work_sync(&buf->wakeup_work);
429         buf->chan->cb->remove_buf_file(buf->dentry);
430         kref_put(&buf->kref, relay_remove_buf);
431 }
432
433 int relay_prepare_cpu(unsigned int cpu)
434 {
435         struct rchan *chan;
436         struct rchan_buf *buf;
437
438         mutex_lock(&relay_channels_mutex);
439         list_for_each_entry(chan, &relay_channels, list) {
440                 if (*per_cpu_ptr(chan->buf, cpu))
441                         continue;
442                 buf = relay_open_buf(chan, cpu);
443                 if (!buf) {
444                         pr_err("relay: cpu %d buffer creation failed\n", cpu);
445                         mutex_unlock(&relay_channels_mutex);
446                         return -ENOMEM;
447                 }
448                 *per_cpu_ptr(chan->buf, cpu) = buf;
449         }
450         mutex_unlock(&relay_channels_mutex);
451         return 0;
452 }
453
454 /**
455  *      relay_open - create a new relay channel
456  *      @base_filename: base name of files to create, %NULL for buffering only
457  *      @parent: dentry of parent directory, %NULL for root directory or buffer
458  *      @subbuf_size: size of sub-buffers
459  *      @n_subbufs: number of sub-buffers
460  *      @cb: client callback functions
461  *      @private_data: user-defined data
462  *
463  *      Returns channel pointer if successful, %NULL otherwise.
464  *
465  *      Creates a channel buffer for each cpu using the sizes and
466  *      attributes specified.  The created channel buffer files
467  *      will be named base_filename0...base_filenameN-1.  File
468  *      permissions will be %S_IRUSR.
469  *
470  *      If opening a buffer (@parent = NULL) that you later wish to register
471  *      in a filesystem, call relay_late_setup_files() once the @parent dentry
472  *      is available.
473  */
474 struct rchan *relay_open(const char *base_filename,
475                          struct dentry *parent,
476                          size_t subbuf_size,
477                          size_t n_subbufs,
478                          const struct rchan_callbacks *cb,
479                          void *private_data)
480 {
481         unsigned int i;
482         struct rchan *chan;
483         struct rchan_buf *buf;
484
485         if (!(subbuf_size && n_subbufs))
486                 return NULL;
487         if (subbuf_size > UINT_MAX / n_subbufs)
488                 return NULL;
489         if (!cb || !cb->create_buf_file || !cb->remove_buf_file)
490                 return NULL;
491
492         chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
493         if (!chan)
494                 return NULL;
495
496         chan->buf = alloc_percpu(struct rchan_buf *);
497         if (!chan->buf) {
498                 kfree(chan);
499                 return NULL;
500         }
501
502         chan->version = RELAYFS_CHANNEL_VERSION;
503         chan->n_subbufs = n_subbufs;
504         chan->subbuf_size = subbuf_size;
505         chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
506         chan->parent = parent;
507         chan->private_data = private_data;
508         if (base_filename) {
509                 chan->has_base_filename = 1;
510                 strscpy(chan->base_filename, base_filename, NAME_MAX);
511         }
512         chan->cb = cb;
513         kref_init(&chan->kref);
514
515         mutex_lock(&relay_channels_mutex);
516         for_each_online_cpu(i) {
517                 buf = relay_open_buf(chan, i);
518                 if (!buf)
519                         goto free_bufs;
520                 *per_cpu_ptr(chan->buf, i) = buf;
521         }
522         list_add(&chan->list, &relay_channels);
523         mutex_unlock(&relay_channels_mutex);
524
525         return chan;
526
527 free_bufs:
528         for_each_possible_cpu(i) {
529                 if ((buf = *per_cpu_ptr(chan->buf, i)))
530                         relay_close_buf(buf);
531         }
532
533         kref_put(&chan->kref, relay_destroy_channel);
534         mutex_unlock(&relay_channels_mutex);
535         return NULL;
536 }
537 EXPORT_SYMBOL_GPL(relay_open);
538
539 struct rchan_percpu_buf_dispatcher {
540         struct rchan_buf *buf;
541         struct dentry *dentry;
542 };
543
544 /* Called in atomic context. */
545 static void __relay_set_buf_dentry(void *info)
546 {
547         struct rchan_percpu_buf_dispatcher *p = info;
548
549         relay_set_buf_dentry(p->buf, p->dentry);
550 }
551
552 /**
553  *      relay_late_setup_files - triggers file creation
554  *      @chan: channel to operate on
555  *      @base_filename: base name of files to create
556  *      @parent: dentry of parent directory, %NULL for root directory
557  *
558  *      Returns 0 if successful, non-zero otherwise.
559  *
560  *      Use to setup files for a previously buffer-only channel created
561  *      by relay_open() with a NULL parent dentry.
562  *
563  *      For example, this is useful for perfomring early tracing in kernel,
564  *      before VFS is up and then exposing the early results once the dentry
565  *      is available.
566  */
567 int relay_late_setup_files(struct rchan *chan,
568                            const char *base_filename,
569                            struct dentry *parent)
570 {
571         int err = 0;
572         unsigned int i, curr_cpu;
573         unsigned long flags;
574         struct dentry *dentry;
575         struct rchan_buf *buf;
576         struct rchan_percpu_buf_dispatcher disp;
577
578         if (!chan || !base_filename)
579                 return -EINVAL;
580
581         strscpy(chan->base_filename, base_filename, NAME_MAX);
582
583         mutex_lock(&relay_channels_mutex);
584         /* Is chan already set up? */
585         if (unlikely(chan->has_base_filename)) {
586                 mutex_unlock(&relay_channels_mutex);
587                 return -EEXIST;
588         }
589         chan->has_base_filename = 1;
590         chan->parent = parent;
591
592         if (chan->is_global) {
593                 err = -EINVAL;
594                 buf = *per_cpu_ptr(chan->buf, 0);
595                 if (!WARN_ON_ONCE(!buf)) {
596                         dentry = relay_create_buf_file(chan, buf, 0);
597                         if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
598                                 relay_set_buf_dentry(buf, dentry);
599                                 err = 0;
600                         }
601                 }
602                 mutex_unlock(&relay_channels_mutex);
603                 return err;
604         }
605
606         curr_cpu = get_cpu();
607         /*
608          * The CPU hotplug notifier ran before us and created buffers with
609          * no files associated. So it's safe to call relay_setup_buf_file()
610          * on all currently online CPUs.
611          */
612         for_each_online_cpu(i) {
613                 buf = *per_cpu_ptr(chan->buf, i);
614                 if (unlikely(!buf)) {
615                         WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
616                         err = -EINVAL;
617                         break;
618                 }
619
620                 dentry = relay_create_buf_file(chan, buf, i);
621                 if (unlikely(!dentry)) {
622                         err = -EINVAL;
623                         break;
624                 }
625
626                 if (curr_cpu == i) {
627                         local_irq_save(flags);
628                         relay_set_buf_dentry(buf, dentry);
629                         local_irq_restore(flags);
630                 } else {
631                         disp.buf = buf;
632                         disp.dentry = dentry;
633                         smp_mb();
634                         /* relay_channels_mutex must be held, so wait. */
635                         err = smp_call_function_single(i,
636                                                        __relay_set_buf_dentry,
637                                                        &disp, 1);
638                 }
639                 if (unlikely(err))
640                         break;
641         }
642         put_cpu();
643         mutex_unlock(&relay_channels_mutex);
644
645         return err;
646 }
647 EXPORT_SYMBOL_GPL(relay_late_setup_files);
648
649 /**
650  *      relay_switch_subbuf - switch to a new sub-buffer
651  *      @buf: channel buffer
652  *      @length: size of current event
653  *
654  *      Returns either the length passed in or 0 if full.
655  *
656  *      Performs sub-buffer-switch tasks such as invoking callbacks,
657  *      updating padding counts, waking up readers, etc.
658  */
659 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
660 {
661         void *old, *new;
662         size_t old_subbuf, new_subbuf;
663
664         if (unlikely(length > buf->chan->subbuf_size))
665                 goto toobig;
666
667         if (buf->offset != buf->chan->subbuf_size + 1) {
668                 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
669                 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
670                 buf->padding[old_subbuf] = buf->prev_padding;
671                 buf->subbufs_produced++;
672                 if (buf->dentry)
673                         d_inode(buf->dentry)->i_size +=
674                                 buf->chan->subbuf_size -
675                                 buf->padding[old_subbuf];
676                 else
677                         buf->early_bytes += buf->chan->subbuf_size -
678                                             buf->padding[old_subbuf];
679                 smp_mb();
680                 if (waitqueue_active(&buf->read_wait)) {
681                         /*
682                          * Calling wake_up_interruptible() from here
683                          * will deadlock if we happen to be logging
684                          * from the scheduler (trying to re-grab
685                          * rq->lock), so defer it.
686                          */
687                         irq_work_queue(&buf->wakeup_work);
688                 }
689         }
690
691         old = buf->data;
692         new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
693         new = buf->start + new_subbuf * buf->chan->subbuf_size;
694         buf->offset = 0;
695         if (!relay_subbuf_start(buf, new, old, buf->prev_padding)) {
696                 buf->offset = buf->chan->subbuf_size + 1;
697                 return 0;
698         }
699         buf->data = new;
700         buf->padding[new_subbuf] = 0;
701
702         if (unlikely(length + buf->offset > buf->chan->subbuf_size))
703                 goto toobig;
704
705         return length;
706
707 toobig:
708         buf->chan->last_toobig = length;
709         return 0;
710 }
711 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
712
713 /**
714  *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
715  *      @chan: the channel
716  *      @cpu: the cpu associated with the channel buffer to update
717  *      @subbufs_consumed: number of sub-buffers to add to current buf's count
718  *
719  *      Adds to the channel buffer's consumed sub-buffer count.
720  *      subbufs_consumed should be the number of sub-buffers newly consumed,
721  *      not the total consumed.
722  *
723  *      NOTE. Kernel clients don't need to call this function if the channel
724  *      mode is 'overwrite'.
725  */
726 void relay_subbufs_consumed(struct rchan *chan,
727                             unsigned int cpu,
728                             size_t subbufs_consumed)
729 {
730         struct rchan_buf *buf;
731
732         if (!chan || cpu >= NR_CPUS)
733                 return;
734
735         buf = *per_cpu_ptr(chan->buf, cpu);
736         if (!buf || subbufs_consumed > chan->n_subbufs)
737                 return;
738
739         if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
740                 buf->subbufs_consumed = buf->subbufs_produced;
741         else
742                 buf->subbufs_consumed += subbufs_consumed;
743 }
744 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
745
746 /**
747  *      relay_close - close the channel
748  *      @chan: the channel
749  *
750  *      Closes all channel buffers and frees the channel.
751  */
752 void relay_close(struct rchan *chan)
753 {
754         struct rchan_buf *buf;
755         unsigned int i;
756
757         if (!chan)
758                 return;
759
760         mutex_lock(&relay_channels_mutex);
761         if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
762                 relay_close_buf(buf);
763         else
764                 for_each_possible_cpu(i)
765                         if ((buf = *per_cpu_ptr(chan->buf, i)))
766                                 relay_close_buf(buf);
767
768         if (chan->last_toobig)
769                 printk(KERN_WARNING "relay: one or more items not logged "
770                        "[item size (%zd) > sub-buffer size (%zd)]\n",
771                        chan->last_toobig, chan->subbuf_size);
772
773         list_del(&chan->list);
774         kref_put(&chan->kref, relay_destroy_channel);
775         mutex_unlock(&relay_channels_mutex);
776 }
777 EXPORT_SYMBOL_GPL(relay_close);
778
779 /**
780  *      relay_flush - close the channel
781  *      @chan: the channel
782  *
783  *      Flushes all channel buffers, i.e. forces buffer switch.
784  */
785 void relay_flush(struct rchan *chan)
786 {
787         struct rchan_buf *buf;
788         unsigned int i;
789
790         if (!chan)
791                 return;
792
793         if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
794                 relay_switch_subbuf(buf, 0);
795                 return;
796         }
797
798         mutex_lock(&relay_channels_mutex);
799         for_each_possible_cpu(i)
800                 if ((buf = *per_cpu_ptr(chan->buf, i)))
801                         relay_switch_subbuf(buf, 0);
802         mutex_unlock(&relay_channels_mutex);
803 }
804 EXPORT_SYMBOL_GPL(relay_flush);
805
806 /**
807  *      relay_file_open - open file op for relay files
808  *      @inode: the inode
809  *      @filp: the file
810  *
811  *      Increments the channel buffer refcount.
812  */
813 static int relay_file_open(struct inode *inode, struct file *filp)
814 {
815         struct rchan_buf *buf = inode->i_private;
816         kref_get(&buf->kref);
817         filp->private_data = buf;
818
819         return nonseekable_open(inode, filp);
820 }
821
822 /**
823  *      relay_file_mmap - mmap file op for relay files
824  *      @filp: the file
825  *      @vma: the vma describing what to map
826  *
827  *      Calls upon relay_mmap_buf() to map the file into user space.
828  */
829 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
830 {
831         struct rchan_buf *buf = filp->private_data;
832         return relay_mmap_buf(buf, vma);
833 }
834
835 /**
836  *      relay_file_poll - poll file op for relay files
837  *      @filp: the file
838  *      @wait: poll table
839  *
840  *      Poll implemention.
841  */
842 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
843 {
844         __poll_t mask = 0;
845         struct rchan_buf *buf = filp->private_data;
846
847         if (buf->finalized)
848                 return EPOLLERR;
849
850         if (filp->f_mode & FMODE_READ) {
851                 poll_wait(filp, &buf->read_wait, wait);
852                 if (!relay_buf_empty(buf))
853                         mask |= EPOLLIN | EPOLLRDNORM;
854         }
855
856         return mask;
857 }
858
859 /**
860  *      relay_file_release - release file op for relay files
861  *      @inode: the inode
862  *      @filp: the file
863  *
864  *      Decrements the channel refcount, as the filesystem is
865  *      no longer using it.
866  */
867 static int relay_file_release(struct inode *inode, struct file *filp)
868 {
869         struct rchan_buf *buf = filp->private_data;
870         kref_put(&buf->kref, relay_remove_buf);
871
872         return 0;
873 }
874
875 /*
876  *      relay_file_read_consume - update the consumed count for the buffer
877  */
878 static void relay_file_read_consume(struct rchan_buf *buf,
879                                     size_t read_pos,
880                                     size_t bytes_consumed)
881 {
882         size_t subbuf_size = buf->chan->subbuf_size;
883         size_t n_subbufs = buf->chan->n_subbufs;
884         size_t read_subbuf;
885
886         if (buf->subbufs_produced == buf->subbufs_consumed &&
887             buf->offset == buf->bytes_consumed)
888                 return;
889
890         if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
891                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
892                 buf->bytes_consumed = 0;
893         }
894
895         buf->bytes_consumed += bytes_consumed;
896         if (!read_pos)
897                 read_subbuf = buf->subbufs_consumed % n_subbufs;
898         else
899                 read_subbuf = read_pos / buf->chan->subbuf_size;
900         if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
901                 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
902                     (buf->offset == subbuf_size))
903                         return;
904                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
905                 buf->bytes_consumed = 0;
906         }
907 }
908
909 /*
910  *      relay_file_read_avail - boolean, are there unconsumed bytes available?
911  */
912 static int relay_file_read_avail(struct rchan_buf *buf)
913 {
914         size_t subbuf_size = buf->chan->subbuf_size;
915         size_t n_subbufs = buf->chan->n_subbufs;
916         size_t produced = buf->subbufs_produced;
917         size_t consumed;
918
919         relay_file_read_consume(buf, 0, 0);
920
921         consumed = buf->subbufs_consumed;
922
923         if (unlikely(buf->offset > subbuf_size)) {
924                 if (produced == consumed)
925                         return 0;
926                 return 1;
927         }
928
929         if (unlikely(produced - consumed >= n_subbufs)) {
930                 consumed = produced - n_subbufs + 1;
931                 buf->subbufs_consumed = consumed;
932                 buf->bytes_consumed = 0;
933         }
934
935         produced = (produced % n_subbufs) * subbuf_size + buf->offset;
936         consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
937
938         if (consumed > produced)
939                 produced += n_subbufs * subbuf_size;
940
941         if (consumed == produced) {
942                 if (buf->offset == subbuf_size &&
943                     buf->subbufs_produced > buf->subbufs_consumed)
944                         return 1;
945                 return 0;
946         }
947
948         return 1;
949 }
950
951 /**
952  *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
953  *      @read_pos: file read position
954  *      @buf: relay channel buffer
955  */
956 static size_t relay_file_read_subbuf_avail(size_t read_pos,
957                                            struct rchan_buf *buf)
958 {
959         size_t padding, avail = 0;
960         size_t read_subbuf, read_offset, write_subbuf, write_offset;
961         size_t subbuf_size = buf->chan->subbuf_size;
962
963         write_subbuf = (buf->data - buf->start) / subbuf_size;
964         write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
965         read_subbuf = read_pos / subbuf_size;
966         read_offset = read_pos % subbuf_size;
967         padding = buf->padding[read_subbuf];
968
969         if (read_subbuf == write_subbuf) {
970                 if (read_offset + padding < write_offset)
971                         avail = write_offset - (read_offset + padding);
972         } else
973                 avail = (subbuf_size - padding) - read_offset;
974
975         return avail;
976 }
977
978 /**
979  *      relay_file_read_start_pos - find the first available byte to read
980  *      @buf: relay channel buffer
981  *
982  *      If the read_pos is in the middle of padding, return the
983  *      position of the first actually available byte, otherwise
984  *      return the original value.
985  */
986 static size_t relay_file_read_start_pos(struct rchan_buf *buf)
987 {
988         size_t read_subbuf, padding, padding_start, padding_end;
989         size_t subbuf_size = buf->chan->subbuf_size;
990         size_t n_subbufs = buf->chan->n_subbufs;
991         size_t consumed = buf->subbufs_consumed % n_subbufs;
992         size_t read_pos = consumed * subbuf_size + buf->bytes_consumed;
993
994         read_subbuf = read_pos / subbuf_size;
995         padding = buf->padding[read_subbuf];
996         padding_start = (read_subbuf + 1) * subbuf_size - padding;
997         padding_end = (read_subbuf + 1) * subbuf_size;
998         if (read_pos >= padding_start && read_pos < padding_end) {
999                 read_subbuf = (read_subbuf + 1) % n_subbufs;
1000                 read_pos = read_subbuf * subbuf_size;
1001         }
1002
1003         return read_pos;
1004 }
1005
1006 /**
1007  *      relay_file_read_end_pos - return the new read position
1008  *      @read_pos: file read position
1009  *      @buf: relay channel buffer
1010  *      @count: number of bytes to be read
1011  */
1012 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1013                                       size_t read_pos,
1014                                       size_t count)
1015 {
1016         size_t read_subbuf, padding, end_pos;
1017         size_t subbuf_size = buf->chan->subbuf_size;
1018         size_t n_subbufs = buf->chan->n_subbufs;
1019
1020         read_subbuf = read_pos / subbuf_size;
1021         padding = buf->padding[read_subbuf];
1022         if (read_pos % subbuf_size + count + padding == subbuf_size)
1023                 end_pos = (read_subbuf + 1) * subbuf_size;
1024         else
1025                 end_pos = read_pos + count;
1026         if (end_pos >= subbuf_size * n_subbufs)
1027                 end_pos = 0;
1028
1029         return end_pos;
1030 }
1031
1032 static ssize_t relay_file_read(struct file *filp,
1033                                char __user *buffer,
1034                                size_t count,
1035                                loff_t *ppos)
1036 {
1037         struct rchan_buf *buf = filp->private_data;
1038         size_t read_start, avail;
1039         size_t written = 0;
1040         int ret;
1041
1042         if (!count)
1043                 return 0;
1044
1045         inode_lock(file_inode(filp));
1046         do {
1047                 void *from;
1048
1049                 if (!relay_file_read_avail(buf))
1050                         break;
1051
1052                 read_start = relay_file_read_start_pos(buf);
1053                 avail = relay_file_read_subbuf_avail(read_start, buf);
1054                 if (!avail)
1055                         break;
1056
1057                 avail = min(count, avail);
1058                 from = buf->start + read_start;
1059                 ret = avail;
1060                 if (copy_to_user(buffer, from, avail))
1061                         break;
1062
1063                 buffer += ret;
1064                 written += ret;
1065                 count -= ret;
1066
1067                 relay_file_read_consume(buf, read_start, ret);
1068                 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1069         } while (count);
1070         inode_unlock(file_inode(filp));
1071
1072         return written;
1073 }
1074
1075 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1076 {
1077         rbuf->bytes_consumed += bytes_consumed;
1078
1079         if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1080                 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1081                 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1082         }
1083 }
1084
1085 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1086                                    struct pipe_buffer *buf)
1087 {
1088         struct rchan_buf *rbuf;
1089
1090         rbuf = (struct rchan_buf *)page_private(buf->page);
1091         relay_consume_bytes(rbuf, buf->private);
1092 }
1093
1094 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1095         .release        = relay_pipe_buf_release,
1096         .try_steal      = generic_pipe_buf_try_steal,
1097         .get            = generic_pipe_buf_get,
1098 };
1099
1100 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1101 {
1102 }
1103
1104 /*
1105  *      subbuf_splice_actor - splice up to one subbuf's worth of data
1106  */
1107 static ssize_t subbuf_splice_actor(struct file *in,
1108                                loff_t *ppos,
1109                                struct pipe_inode_info *pipe,
1110                                size_t len,
1111                                unsigned int flags,
1112                                int *nonpad_ret)
1113 {
1114         unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1115         struct rchan_buf *rbuf = in->private_data;
1116         unsigned int subbuf_size = rbuf->chan->subbuf_size;
1117         uint64_t pos = (uint64_t) *ppos;
1118         uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1119         size_t read_start = (size_t) do_div(pos, alloc_size);
1120         size_t read_subbuf = read_start / subbuf_size;
1121         size_t padding = rbuf->padding[read_subbuf];
1122         size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1123         struct page *pages[PIPE_DEF_BUFFERS];
1124         struct partial_page partial[PIPE_DEF_BUFFERS];
1125         struct splice_pipe_desc spd = {
1126                 .pages = pages,
1127                 .nr_pages = 0,
1128                 .nr_pages_max = PIPE_DEF_BUFFERS,
1129                 .partial = partial,
1130                 .ops = &relay_pipe_buf_ops,
1131                 .spd_release = relay_page_release,
1132         };
1133         ssize_t ret;
1134
1135         if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1136                 return 0;
1137         if (splice_grow_spd(pipe, &spd))
1138                 return -ENOMEM;
1139
1140         /*
1141          * Adjust read len, if longer than what is available
1142          */
1143         if (len > (subbuf_size - read_start % subbuf_size))
1144                 len = subbuf_size - read_start % subbuf_size;
1145
1146         subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1147         pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1148         poff = read_start & ~PAGE_MASK;
1149         nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1150
1151         for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1152                 unsigned int this_len, this_end, private;
1153                 unsigned int cur_pos = read_start + total_len;
1154
1155                 if (!len)
1156                         break;
1157
1158                 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1159                 private = this_len;
1160
1161                 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1162                 spd.partial[spd.nr_pages].offset = poff;
1163
1164                 this_end = cur_pos + this_len;
1165                 if (this_end >= nonpad_end) {
1166                         this_len = nonpad_end - cur_pos;
1167                         private = this_len + padding;
1168                 }
1169                 spd.partial[spd.nr_pages].len = this_len;
1170                 spd.partial[spd.nr_pages].private = private;
1171
1172                 len -= this_len;
1173                 total_len += this_len;
1174                 poff = 0;
1175                 pidx = (pidx + 1) % subbuf_pages;
1176
1177                 if (this_end >= nonpad_end) {
1178                         spd.nr_pages++;
1179                         break;
1180                 }
1181         }
1182
1183         ret = 0;
1184         if (!spd.nr_pages)
1185                 goto out;
1186
1187         ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1188         if (ret < 0 || ret < total_len)
1189                 goto out;
1190
1191         if (read_start + ret == nonpad_end)
1192                 ret += padding;
1193
1194 out:
1195         splice_shrink_spd(&spd);
1196         return ret;
1197 }
1198
1199 static ssize_t relay_file_splice_read(struct file *in,
1200                                       loff_t *ppos,
1201                                       struct pipe_inode_info *pipe,
1202                                       size_t len,
1203                                       unsigned int flags)
1204 {
1205         ssize_t spliced;
1206         int ret;
1207         int nonpad_ret = 0;
1208
1209         ret = 0;
1210         spliced = 0;
1211
1212         while (len && !spliced) {
1213                 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1214                 if (ret < 0)
1215                         break;
1216                 else if (!ret) {
1217                         if (flags & SPLICE_F_NONBLOCK)
1218                                 ret = -EAGAIN;
1219                         break;
1220                 }
1221
1222                 *ppos += ret;
1223                 if (ret > len)
1224                         len = 0;
1225                 else
1226                         len -= ret;
1227                 spliced += nonpad_ret;
1228                 nonpad_ret = 0;
1229         }
1230
1231         if (spliced)
1232                 return spliced;
1233
1234         return ret;
1235 }
1236
1237 const struct file_operations relay_file_operations = {
1238         .open           = relay_file_open,
1239         .poll           = relay_file_poll,
1240         .mmap           = relay_file_mmap,
1241         .read           = relay_file_read,
1242         .llseek         = no_llseek,
1243         .release        = relay_file_release,
1244         .splice_read    = relay_file_splice_read,
1245 };
1246 EXPORT_SYMBOL_GPL(relay_file_operations);