fa08d55f7040c0aa6a9976b328cb8c49195824d6
[platform/kernel/linux-rpi.git] / kernel / rcu / tree_plugin.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *         Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13
14 #include "../locking/rtmutex_common.h"
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27         if (IS_ENABLED(CONFIG_RCU_TRACE))
28                 pr_info("\tRCU event tracing is enabled.\n");
29         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32                         RCU_FANOUT);
33         if (rcu_fanout_exact)
34                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37         if (IS_ENABLED(CONFIG_PROVE_RCU))
38                 pr_info("\tRCU lockdep checking is enabled.\n");
39         if (RCU_NUM_LVLS >= 4)
40                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41         if (RCU_FANOUT_LEAF != 16)
42                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43                         RCU_FANOUT_LEAF);
44         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46                         rcu_fanout_leaf);
47         if (nr_cpu_ids != NR_CPUS)
48                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50         pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51                 kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53         if (blimit != DEFAULT_RCU_BLIMIT)
54                 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55         if (qhimark != DEFAULT_RCU_QHIMARK)
56                 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57         if (qlowmark != DEFAULT_RCU_QLOMARK)
58                 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59         if (jiffies_till_first_fqs != ULONG_MAX)
60                 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
61         if (jiffies_till_next_fqs != ULONG_MAX)
62                 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
63         if (jiffies_till_sched_qs != ULONG_MAX)
64                 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
65         if (rcu_kick_kthreads)
66                 pr_info("\tKick kthreads if too-long grace period.\n");
67         if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
68                 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
69         if (gp_preinit_delay)
70                 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
71         if (gp_init_delay)
72                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
73         if (gp_cleanup_delay)
74                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
75         if (!use_softirq)
76                 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
77         if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
78                 pr_info("\tRCU debug extended QS entry/exit.\n");
79         rcupdate_announce_bootup_oddness();
80 }
81
82 #ifdef CONFIG_PREEMPT_RCU
83
84 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
85 static void rcu_read_unlock_special(struct task_struct *t);
86
87 /*
88  * Tell them what RCU they are running.
89  */
90 static void __init rcu_bootup_announce(void)
91 {
92         pr_info("Preemptible hierarchical RCU implementation.\n");
93         rcu_bootup_announce_oddness();
94 }
95
96 /* Flags for rcu_preempt_ctxt_queue() decision table. */
97 #define RCU_GP_TASKS    0x8
98 #define RCU_EXP_TASKS   0x4
99 #define RCU_GP_BLKD     0x2
100 #define RCU_EXP_BLKD    0x1
101
102 /*
103  * Queues a task preempted within an RCU-preempt read-side critical
104  * section into the appropriate location within the ->blkd_tasks list,
105  * depending on the states of any ongoing normal and expedited grace
106  * periods.  The ->gp_tasks pointer indicates which element the normal
107  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108  * indicates which element the expedited grace period is waiting on (again,
109  * NULL if none).  If a grace period is waiting on a given element in the
110  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
111  * adding a task to the tail of the list blocks any grace period that is
112  * already waiting on one of the elements.  In contrast, adding a task
113  * to the head of the list won't block any grace period that is already
114  * waiting on one of the elements.
115  *
116  * This queuing is imprecise, and can sometimes make an ongoing grace
117  * period wait for a task that is not strictly speaking blocking it.
118  * Given the choice, we needlessly block a normal grace period rather than
119  * blocking an expedited grace period.
120  *
121  * Note that an endless sequence of expedited grace periods still cannot
122  * indefinitely postpone a normal grace period.  Eventually, all of the
123  * fixed number of preempted tasks blocking the normal grace period that are
124  * not also blocking the expedited grace period will resume and complete
125  * their RCU read-side critical sections.  At that point, the ->gp_tasks
126  * pointer will equal the ->exp_tasks pointer, at which point the end of
127  * the corresponding expedited grace period will also be the end of the
128  * normal grace period.
129  */
130 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
131         __releases(rnp->lock) /* But leaves rrupts disabled. */
132 {
133         int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
134                          (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
135                          (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
136                          (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
137         struct task_struct *t = current;
138
139         raw_lockdep_assert_held_rcu_node(rnp);
140         WARN_ON_ONCE(rdp->mynode != rnp);
141         WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
142         /* RCU better not be waiting on newly onlined CPUs! */
143         WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
144                      rdp->grpmask);
145
146         /*
147          * Decide where to queue the newly blocked task.  In theory,
148          * this could be an if-statement.  In practice, when I tried
149          * that, it was quite messy.
150          */
151         switch (blkd_state) {
152         case 0:
153         case                RCU_EXP_TASKS:
154         case                RCU_EXP_TASKS + RCU_GP_BLKD:
155         case RCU_GP_TASKS:
156         case RCU_GP_TASKS + RCU_EXP_TASKS:
157
158                 /*
159                  * Blocking neither GP, or first task blocking the normal
160                  * GP but not blocking the already-waiting expedited GP.
161                  * Queue at the head of the list to avoid unnecessarily
162                  * blocking the already-waiting GPs.
163                  */
164                 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
165                 break;
166
167         case                                              RCU_EXP_BLKD:
168         case                                RCU_GP_BLKD:
169         case                                RCU_GP_BLKD + RCU_EXP_BLKD:
170         case RCU_GP_TASKS +                               RCU_EXP_BLKD:
171         case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
172         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
173
174                 /*
175                  * First task arriving that blocks either GP, or first task
176                  * arriving that blocks the expedited GP (with the normal
177                  * GP already waiting), or a task arriving that blocks
178                  * both GPs with both GPs already waiting.  Queue at the
179                  * tail of the list to avoid any GP waiting on any of the
180                  * already queued tasks that are not blocking it.
181                  */
182                 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
183                 break;
184
185         case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
186         case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
187         case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
188
189                 /*
190                  * Second or subsequent task blocking the expedited GP.
191                  * The task either does not block the normal GP, or is the
192                  * first task blocking the normal GP.  Queue just after
193                  * the first task blocking the expedited GP.
194                  */
195                 list_add(&t->rcu_node_entry, rnp->exp_tasks);
196                 break;
197
198         case RCU_GP_TASKS +                 RCU_GP_BLKD:
199         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
200
201                 /*
202                  * Second or subsequent task blocking the normal GP.
203                  * The task does not block the expedited GP. Queue just
204                  * after the first task blocking the normal GP.
205                  */
206                 list_add(&t->rcu_node_entry, rnp->gp_tasks);
207                 break;
208
209         default:
210
211                 /* Yet another exercise in excessive paranoia. */
212                 WARN_ON_ONCE(1);
213                 break;
214         }
215
216         /*
217          * We have now queued the task.  If it was the first one to
218          * block either grace period, update the ->gp_tasks and/or
219          * ->exp_tasks pointers, respectively, to reference the newly
220          * blocked tasks.
221          */
222         if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
223                 rnp->gp_tasks = &t->rcu_node_entry;
224                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
225         }
226         if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
227                 rnp->exp_tasks = &t->rcu_node_entry;
228         WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
229                      !(rnp->qsmask & rdp->grpmask));
230         WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
231                      !(rnp->expmask & rdp->grpmask));
232         raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
233
234         /*
235          * Report the quiescent state for the expedited GP.  This expedited
236          * GP should not be able to end until we report, so there should be
237          * no need to check for a subsequent expedited GP.  (Though we are
238          * still in a quiescent state in any case.)
239          */
240         if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
241                 rcu_report_exp_rdp(rdp);
242         else
243                 WARN_ON_ONCE(rdp->exp_deferred_qs);
244 }
245
246 /*
247  * Record a preemptible-RCU quiescent state for the specified CPU.
248  * Note that this does not necessarily mean that the task currently running
249  * on the CPU is in a quiescent state:  Instead, it means that the current
250  * grace period need not wait on any RCU read-side critical section that
251  * starts later on this CPU.  It also means that if the current task is
252  * in an RCU read-side critical section, it has already added itself to
253  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
254  * current task, there might be any number of other tasks blocked while
255  * in an RCU read-side critical section.
256  *
257  * Callers to this function must disable preemption.
258  */
259 static void rcu_qs(void)
260 {
261         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
262         if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
263                 trace_rcu_grace_period(TPS("rcu_preempt"),
264                                        __this_cpu_read(rcu_data.gp_seq),
265                                        TPS("cpuqs"));
266                 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
267                 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
268                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
269         }
270 }
271
272 /*
273  * We have entered the scheduler, and the current task might soon be
274  * context-switched away from.  If this task is in an RCU read-side
275  * critical section, we will no longer be able to rely on the CPU to
276  * record that fact, so we enqueue the task on the blkd_tasks list.
277  * The task will dequeue itself when it exits the outermost enclosing
278  * RCU read-side critical section.  Therefore, the current grace period
279  * cannot be permitted to complete until the blkd_tasks list entries
280  * predating the current grace period drain, in other words, until
281  * rnp->gp_tasks becomes NULL.
282  *
283  * Caller must disable interrupts.
284  */
285 void rcu_note_context_switch(bool preempt)
286 {
287         struct task_struct *t = current;
288         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
289         struct rcu_node *rnp;
290
291         trace_rcu_utilization(TPS("Start context switch"));
292         lockdep_assert_irqs_disabled();
293         WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
294         if (t->rcu_read_lock_nesting > 0 &&
295             !t->rcu_read_unlock_special.b.blocked) {
296
297                 /* Possibly blocking in an RCU read-side critical section. */
298                 rnp = rdp->mynode;
299                 raw_spin_lock_rcu_node(rnp);
300                 t->rcu_read_unlock_special.b.blocked = true;
301                 t->rcu_blocked_node = rnp;
302
303                 /*
304                  * Verify the CPU's sanity, trace the preemption, and
305                  * then queue the task as required based on the states
306                  * of any ongoing and expedited grace periods.
307                  */
308                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
309                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
310                 trace_rcu_preempt_task(rcu_state.name,
311                                        t->pid,
312                                        (rnp->qsmask & rdp->grpmask)
313                                        ? rnp->gp_seq
314                                        : rcu_seq_snap(&rnp->gp_seq));
315                 rcu_preempt_ctxt_queue(rnp, rdp);
316         } else {
317                 rcu_preempt_deferred_qs(t);
318         }
319
320         /*
321          * Either we were not in an RCU read-side critical section to
322          * begin with, or we have now recorded that critical section
323          * globally.  Either way, we can now note a quiescent state
324          * for this CPU.  Again, if we were in an RCU read-side critical
325          * section, and if that critical section was blocking the current
326          * grace period, then the fact that the task has been enqueued
327          * means that we continue to block the current grace period.
328          */
329         rcu_qs();
330         if (rdp->exp_deferred_qs)
331                 rcu_report_exp_rdp(rdp);
332         trace_rcu_utilization(TPS("End context switch"));
333 }
334 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
335
336 /*
337  * Check for preempted RCU readers blocking the current grace period
338  * for the specified rcu_node structure.  If the caller needs a reliable
339  * answer, it must hold the rcu_node's ->lock.
340  */
341 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
342 {
343         return rnp->gp_tasks != NULL;
344 }
345
346 /* Bias and limit values for ->rcu_read_lock_nesting. */
347 #define RCU_NEST_BIAS INT_MAX
348 #define RCU_NEST_NMAX (-INT_MAX / 2)
349 #define RCU_NEST_PMAX (INT_MAX / 2)
350
351 /*
352  * Preemptible RCU implementation for rcu_read_lock().
353  * Just increment ->rcu_read_lock_nesting, shared state will be updated
354  * if we block.
355  */
356 void __rcu_read_lock(void)
357 {
358         current->rcu_read_lock_nesting++;
359         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
360                 WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
361         barrier();  /* critical section after entry code. */
362 }
363 EXPORT_SYMBOL_GPL(__rcu_read_lock);
364
365 /*
366  * Preemptible RCU implementation for rcu_read_unlock().
367  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
368  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
369  * invoke rcu_read_unlock_special() to clean up after a context switch
370  * in an RCU read-side critical section and other special cases.
371  */
372 void __rcu_read_unlock(void)
373 {
374         struct task_struct *t = current;
375
376         if (t->rcu_read_lock_nesting != 1) {
377                 --t->rcu_read_lock_nesting;
378         } else {
379                 barrier();  /* critical section before exit code. */
380                 t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
381                 barrier();  /* assign before ->rcu_read_unlock_special load */
382                 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
383                         rcu_read_unlock_special(t);
384                 barrier();  /* ->rcu_read_unlock_special load before assign */
385                 t->rcu_read_lock_nesting = 0;
386         }
387         if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
388                 int rrln = t->rcu_read_lock_nesting;
389
390                 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
391         }
392 }
393 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
394
395 /*
396  * Advance a ->blkd_tasks-list pointer to the next entry, instead
397  * returning NULL if at the end of the list.
398  */
399 static struct list_head *rcu_next_node_entry(struct task_struct *t,
400                                              struct rcu_node *rnp)
401 {
402         struct list_head *np;
403
404         np = t->rcu_node_entry.next;
405         if (np == &rnp->blkd_tasks)
406                 np = NULL;
407         return np;
408 }
409
410 /*
411  * Return true if the specified rcu_node structure has tasks that were
412  * preempted within an RCU read-side critical section.
413  */
414 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
415 {
416         return !list_empty(&rnp->blkd_tasks);
417 }
418
419 /*
420  * Report deferred quiescent states.  The deferral time can
421  * be quite short, for example, in the case of the call from
422  * rcu_read_unlock_special().
423  */
424 static void
425 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
426 {
427         bool empty_exp;
428         bool empty_norm;
429         bool empty_exp_now;
430         struct list_head *np;
431         bool drop_boost_mutex = false;
432         struct rcu_data *rdp;
433         struct rcu_node *rnp;
434         union rcu_special special;
435
436         /*
437          * If RCU core is waiting for this CPU to exit its critical section,
438          * report the fact that it has exited.  Because irqs are disabled,
439          * t->rcu_read_unlock_special cannot change.
440          */
441         special = t->rcu_read_unlock_special;
442         rdp = this_cpu_ptr(&rcu_data);
443         if (!special.s && !rdp->exp_deferred_qs) {
444                 local_irq_restore(flags);
445                 return;
446         }
447         t->rcu_read_unlock_special.b.deferred_qs = false;
448         if (special.b.need_qs) {
449                 rcu_qs();
450                 t->rcu_read_unlock_special.b.need_qs = false;
451                 if (!t->rcu_read_unlock_special.s && !rdp->exp_deferred_qs) {
452                         local_irq_restore(flags);
453                         return;
454                 }
455         }
456
457         /*
458          * Respond to a request by an expedited grace period for a
459          * quiescent state from this CPU.  Note that requests from
460          * tasks are handled when removing the task from the
461          * blocked-tasks list below.
462          */
463         if (rdp->exp_deferred_qs) {
464                 rcu_report_exp_rdp(rdp);
465                 if (!t->rcu_read_unlock_special.s) {
466                         local_irq_restore(flags);
467                         return;
468                 }
469         }
470
471         /* Clean up if blocked during RCU read-side critical section. */
472         if (special.b.blocked) {
473                 t->rcu_read_unlock_special.b.blocked = false;
474
475                 /*
476                  * Remove this task from the list it blocked on.  The task
477                  * now remains queued on the rcu_node corresponding to the
478                  * CPU it first blocked on, so there is no longer any need
479                  * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
480                  */
481                 rnp = t->rcu_blocked_node;
482                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
483                 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
484                 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
485                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
486                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
487                              (!empty_norm || rnp->qsmask));
488                 empty_exp = sync_rcu_preempt_exp_done(rnp);
489                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
490                 np = rcu_next_node_entry(t, rnp);
491                 list_del_init(&t->rcu_node_entry);
492                 t->rcu_blocked_node = NULL;
493                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
494                                                 rnp->gp_seq, t->pid);
495                 if (&t->rcu_node_entry == rnp->gp_tasks)
496                         rnp->gp_tasks = np;
497                 if (&t->rcu_node_entry == rnp->exp_tasks)
498                         rnp->exp_tasks = np;
499                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
500                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
501                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
502                         if (&t->rcu_node_entry == rnp->boost_tasks)
503                                 rnp->boost_tasks = np;
504                 }
505
506                 /*
507                  * If this was the last task on the current list, and if
508                  * we aren't waiting on any CPUs, report the quiescent state.
509                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
510                  * so we must take a snapshot of the expedited state.
511                  */
512                 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
513                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
514                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
515                                                          rnp->gp_seq,
516                                                          0, rnp->qsmask,
517                                                          rnp->level,
518                                                          rnp->grplo,
519                                                          rnp->grphi,
520                                                          !!rnp->gp_tasks);
521                         rcu_report_unblock_qs_rnp(rnp, flags);
522                 } else {
523                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
524                 }
525
526                 /* Unboost if we were boosted. */
527                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
528                         rt_mutex_futex_unlock(&rnp->boost_mtx);
529
530                 /*
531                  * If this was the last task on the expedited lists,
532                  * then we need to report up the rcu_node hierarchy.
533                  */
534                 if (!empty_exp && empty_exp_now)
535                         rcu_report_exp_rnp(rnp, true);
536         } else {
537                 local_irq_restore(flags);
538         }
539 }
540
541 /*
542  * Is a deferred quiescent-state pending, and are we also not in
543  * an RCU read-side critical section?  It is the caller's responsibility
544  * to ensure it is otherwise safe to report any deferred quiescent
545  * states.  The reason for this is that it is safe to report a
546  * quiescent state during context switch even though preemption
547  * is disabled.  This function cannot be expected to understand these
548  * nuances, so the caller must handle them.
549  */
550 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
551 {
552         return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
553                 READ_ONCE(t->rcu_read_unlock_special.s)) &&
554                t->rcu_read_lock_nesting <= 0;
555 }
556
557 /*
558  * Report a deferred quiescent state if needed and safe to do so.
559  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
560  * not being in an RCU read-side critical section.  The caller must
561  * evaluate safety in terms of interrupt, softirq, and preemption
562  * disabling.
563  */
564 static void rcu_preempt_deferred_qs(struct task_struct *t)
565 {
566         unsigned long flags;
567         bool couldrecurse = t->rcu_read_lock_nesting >= 0;
568
569         if (!rcu_preempt_need_deferred_qs(t))
570                 return;
571         if (couldrecurse)
572                 t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
573         local_irq_save(flags);
574         rcu_preempt_deferred_qs_irqrestore(t, flags);
575         if (couldrecurse)
576                 t->rcu_read_lock_nesting += RCU_NEST_BIAS;
577 }
578
579 /*
580  * Minimal handler to give the scheduler a chance to re-evaluate.
581  */
582 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
583 {
584         struct rcu_data *rdp;
585
586         rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
587         rdp->defer_qs_iw_pending = false;
588 }
589
590 /*
591  * Handle special cases during rcu_read_unlock(), such as needing to
592  * notify RCU core processing or task having blocked during the RCU
593  * read-side critical section.
594  */
595 static void rcu_read_unlock_special(struct task_struct *t)
596 {
597         unsigned long flags;
598         bool preempt_bh_were_disabled =
599                         !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
600         bool irqs_were_disabled;
601
602         /* NMI handlers cannot block and cannot safely manipulate state. */
603         if (in_nmi())
604                 return;
605
606         local_irq_save(flags);
607         irqs_were_disabled = irqs_disabled_flags(flags);
608         if (preempt_bh_were_disabled || irqs_were_disabled) {
609                 bool exp;
610                 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
611                 struct rcu_node *rnp = rdp->mynode;
612
613                 t->rcu_read_unlock_special.b.exp_hint = false;
614                 exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
615                       (rdp->grpmask & rnp->expmask) ||
616                       tick_nohz_full_cpu(rdp->cpu);
617                 // Need to defer quiescent state until everything is enabled.
618                 if (irqs_were_disabled && use_softirq &&
619                     (in_interrupt() ||
620                      (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
621                         // Using softirq, safe to awaken, and we get
622                         // no help from enabling irqs, unlike bh/preempt.
623                         raise_softirq_irqoff(RCU_SOFTIRQ);
624                 } else {
625                         // Enabling BH or preempt does reschedule, so...
626                         // Also if no expediting or NO_HZ_FULL, slow is OK.
627                         set_tsk_need_resched(current);
628                         set_preempt_need_resched();
629                         if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
630                             !rdp->defer_qs_iw_pending && exp) {
631                                 // Get scheduler to re-evaluate and call hooks.
632                                 // If !IRQ_WORK, FQS scan will eventually IPI.
633                                 init_irq_work(&rdp->defer_qs_iw,
634                                               rcu_preempt_deferred_qs_handler);
635                                 rdp->defer_qs_iw_pending = true;
636                                 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
637                         }
638                 }
639                 t->rcu_read_unlock_special.b.deferred_qs = true;
640                 local_irq_restore(flags);
641                 return;
642         }
643         WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
644         rcu_preempt_deferred_qs_irqrestore(t, flags);
645 }
646
647 /*
648  * Check that the list of blocked tasks for the newly completed grace
649  * period is in fact empty.  It is a serious bug to complete a grace
650  * period that still has RCU readers blocked!  This function must be
651  * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
652  * must be held by the caller.
653  *
654  * Also, if there are blocked tasks on the list, they automatically
655  * block the newly created grace period, so set up ->gp_tasks accordingly.
656  */
657 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
658 {
659         struct task_struct *t;
660
661         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
662         if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
663                 dump_blkd_tasks(rnp, 10);
664         if (rcu_preempt_has_tasks(rnp) &&
665             (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
666                 rnp->gp_tasks = rnp->blkd_tasks.next;
667                 t = container_of(rnp->gp_tasks, struct task_struct,
668                                  rcu_node_entry);
669                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
670                                                 rnp->gp_seq, t->pid);
671         }
672         WARN_ON_ONCE(rnp->qsmask);
673 }
674
675 /*
676  * Check for a quiescent state from the current CPU, including voluntary
677  * context switches for Tasks RCU.  When a task blocks, the task is
678  * recorded in the corresponding CPU's rcu_node structure, which is checked
679  * elsewhere, hence this function need only check for quiescent states
680  * related to the current CPU, not to those related to tasks.
681  */
682 static void rcu_flavor_sched_clock_irq(int user)
683 {
684         struct task_struct *t = current;
685
686         if (user || rcu_is_cpu_rrupt_from_idle()) {
687                 rcu_note_voluntary_context_switch(current);
688         }
689         if (t->rcu_read_lock_nesting > 0 ||
690             (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
691                 /* No QS, force context switch if deferred. */
692                 if (rcu_preempt_need_deferred_qs(t)) {
693                         set_tsk_need_resched(t);
694                         set_preempt_need_resched();
695                 }
696         } else if (rcu_preempt_need_deferred_qs(t)) {
697                 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
698                 return;
699         } else if (!t->rcu_read_lock_nesting) {
700                 rcu_qs(); /* Report immediate QS. */
701                 return;
702         }
703
704         /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
705         if (t->rcu_read_lock_nesting > 0 &&
706             __this_cpu_read(rcu_data.core_needs_qs) &&
707             __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
708             !t->rcu_read_unlock_special.b.need_qs &&
709             time_after(jiffies, rcu_state.gp_start + HZ))
710                 t->rcu_read_unlock_special.b.need_qs = true;
711 }
712
713 /*
714  * Check for a task exiting while in a preemptible-RCU read-side
715  * critical section, clean up if so.  No need to issue warnings, as
716  * debug_check_no_locks_held() already does this if lockdep is enabled.
717  * Besides, if this function does anything other than just immediately
718  * return, there was a bug of some sort.  Spewing warnings from this
719  * function is like as not to simply obscure important prior warnings.
720  */
721 void exit_rcu(void)
722 {
723         struct task_struct *t = current;
724
725         if (unlikely(!list_empty(&current->rcu_node_entry))) {
726                 t->rcu_read_lock_nesting = 1;
727                 barrier();
728                 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
729         } else if (unlikely(t->rcu_read_lock_nesting)) {
730                 t->rcu_read_lock_nesting = 1;
731         } else {
732                 return;
733         }
734         __rcu_read_unlock();
735         rcu_preempt_deferred_qs(current);
736 }
737
738 /*
739  * Dump the blocked-tasks state, but limit the list dump to the
740  * specified number of elements.
741  */
742 static void
743 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
744 {
745         int cpu;
746         int i;
747         struct list_head *lhp;
748         bool onl;
749         struct rcu_data *rdp;
750         struct rcu_node *rnp1;
751
752         raw_lockdep_assert_held_rcu_node(rnp);
753         pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
754                 __func__, rnp->grplo, rnp->grphi, rnp->level,
755                 (long)rnp->gp_seq, (long)rnp->completedqs);
756         for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
757                 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
758                         __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
759         pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
760                 __func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
761         pr_info("%s: ->blkd_tasks", __func__);
762         i = 0;
763         list_for_each(lhp, &rnp->blkd_tasks) {
764                 pr_cont(" %p", lhp);
765                 if (++i >= ncheck)
766                         break;
767         }
768         pr_cont("\n");
769         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
770                 rdp = per_cpu_ptr(&rcu_data, cpu);
771                 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
772                 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
773                         cpu, ".o"[onl],
774                         (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
775                         (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
776         }
777 }
778
779 #else /* #ifdef CONFIG_PREEMPT_RCU */
780
781 /*
782  * Tell them what RCU they are running.
783  */
784 static void __init rcu_bootup_announce(void)
785 {
786         pr_info("Hierarchical RCU implementation.\n");
787         rcu_bootup_announce_oddness();
788 }
789
790 /*
791  * Note a quiescent state for PREEMPT=n.  Because we do not need to know
792  * how many quiescent states passed, just if there was at least one since
793  * the start of the grace period, this just sets a flag.  The caller must
794  * have disabled preemption.
795  */
796 static void rcu_qs(void)
797 {
798         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
799         if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
800                 return;
801         trace_rcu_grace_period(TPS("rcu_sched"),
802                                __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
803         __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
804         if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
805                 return;
806         __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
807         rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
808 }
809
810 /*
811  * Register an urgently needed quiescent state.  If there is an
812  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
813  * dyntick-idle quiescent state visible to other CPUs, which will in
814  * some cases serve for expedited as well as normal grace periods.
815  * Either way, register a lightweight quiescent state.
816  */
817 void rcu_all_qs(void)
818 {
819         unsigned long flags;
820
821         if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
822                 return;
823         preempt_disable();
824         /* Load rcu_urgent_qs before other flags. */
825         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
826                 preempt_enable();
827                 return;
828         }
829         this_cpu_write(rcu_data.rcu_urgent_qs, false);
830         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
831                 local_irq_save(flags);
832                 rcu_momentary_dyntick_idle();
833                 local_irq_restore(flags);
834         }
835         rcu_qs();
836         preempt_enable();
837 }
838 EXPORT_SYMBOL_GPL(rcu_all_qs);
839
840 /*
841  * Note a PREEMPT=n context switch.  The caller must have disabled interrupts.
842  */
843 void rcu_note_context_switch(bool preempt)
844 {
845         trace_rcu_utilization(TPS("Start context switch"));
846         rcu_qs();
847         /* Load rcu_urgent_qs before other flags. */
848         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
849                 goto out;
850         this_cpu_write(rcu_data.rcu_urgent_qs, false);
851         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
852                 rcu_momentary_dyntick_idle();
853         if (!preempt)
854                 rcu_tasks_qs(current);
855 out:
856         trace_rcu_utilization(TPS("End context switch"));
857 }
858 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
859
860 /*
861  * Because preemptible RCU does not exist, there are never any preempted
862  * RCU readers.
863  */
864 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
865 {
866         return 0;
867 }
868
869 /*
870  * Because there is no preemptible RCU, there can be no readers blocked.
871  */
872 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
873 {
874         return false;
875 }
876
877 /*
878  * Because there is no preemptible RCU, there can be no deferred quiescent
879  * states.
880  */
881 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
882 {
883         return false;
884 }
885 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
886
887 /*
888  * Because there is no preemptible RCU, there can be no readers blocked,
889  * so there is no need to check for blocked tasks.  So check only for
890  * bogus qsmask values.
891  */
892 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
893 {
894         WARN_ON_ONCE(rnp->qsmask);
895 }
896
897 /*
898  * Check to see if this CPU is in a non-context-switch quiescent state,
899  * namely user mode and idle loop.
900  */
901 static void rcu_flavor_sched_clock_irq(int user)
902 {
903         if (user || rcu_is_cpu_rrupt_from_idle()) {
904
905                 /*
906                  * Get here if this CPU took its interrupt from user
907                  * mode or from the idle loop, and if this is not a
908                  * nested interrupt.  In this case, the CPU is in
909                  * a quiescent state, so note it.
910                  *
911                  * No memory barrier is required here because rcu_qs()
912                  * references only CPU-local variables that other CPUs
913                  * neither access nor modify, at least not while the
914                  * corresponding CPU is online.
915                  */
916
917                 rcu_qs();
918         }
919 }
920
921 /*
922  * Because preemptible RCU does not exist, tasks cannot possibly exit
923  * while in preemptible RCU read-side critical sections.
924  */
925 void exit_rcu(void)
926 {
927 }
928
929 /*
930  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
931  */
932 static void
933 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
934 {
935         WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
936 }
937
938 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
939
940 /*
941  * If boosting, set rcuc kthreads to realtime priority.
942  */
943 static void rcu_cpu_kthread_setup(unsigned int cpu)
944 {
945 #ifdef CONFIG_RCU_BOOST
946         struct sched_param sp;
947
948         sp.sched_priority = kthread_prio;
949         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
950 #endif /* #ifdef CONFIG_RCU_BOOST */
951 }
952
953 #ifdef CONFIG_RCU_BOOST
954
955 /*
956  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
957  * or ->boost_tasks, advancing the pointer to the next task in the
958  * ->blkd_tasks list.
959  *
960  * Note that irqs must be enabled: boosting the task can block.
961  * Returns 1 if there are more tasks needing to be boosted.
962  */
963 static int rcu_boost(struct rcu_node *rnp)
964 {
965         unsigned long flags;
966         struct task_struct *t;
967         struct list_head *tb;
968
969         if (READ_ONCE(rnp->exp_tasks) == NULL &&
970             READ_ONCE(rnp->boost_tasks) == NULL)
971                 return 0;  /* Nothing left to boost. */
972
973         raw_spin_lock_irqsave_rcu_node(rnp, flags);
974
975         /*
976          * Recheck under the lock: all tasks in need of boosting
977          * might exit their RCU read-side critical sections on their own.
978          */
979         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
980                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
981                 return 0;
982         }
983
984         /*
985          * Preferentially boost tasks blocking expedited grace periods.
986          * This cannot starve the normal grace periods because a second
987          * expedited grace period must boost all blocked tasks, including
988          * those blocking the pre-existing normal grace period.
989          */
990         if (rnp->exp_tasks != NULL)
991                 tb = rnp->exp_tasks;
992         else
993                 tb = rnp->boost_tasks;
994
995         /*
996          * We boost task t by manufacturing an rt_mutex that appears to
997          * be held by task t.  We leave a pointer to that rt_mutex where
998          * task t can find it, and task t will release the mutex when it
999          * exits its outermost RCU read-side critical section.  Then
1000          * simply acquiring this artificial rt_mutex will boost task
1001          * t's priority.  (Thanks to tglx for suggesting this approach!)
1002          *
1003          * Note that task t must acquire rnp->lock to remove itself from
1004          * the ->blkd_tasks list, which it will do from exit() if from
1005          * nowhere else.  We therefore are guaranteed that task t will
1006          * stay around at least until we drop rnp->lock.  Note that
1007          * rnp->lock also resolves races between our priority boosting
1008          * and task t's exiting its outermost RCU read-side critical
1009          * section.
1010          */
1011         t = container_of(tb, struct task_struct, rcu_node_entry);
1012         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1013         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1014         /* Lock only for side effect: boosts task t's priority. */
1015         rt_mutex_lock(&rnp->boost_mtx);
1016         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1017
1018         return READ_ONCE(rnp->exp_tasks) != NULL ||
1019                READ_ONCE(rnp->boost_tasks) != NULL;
1020 }
1021
1022 /*
1023  * Priority-boosting kthread, one per leaf rcu_node.
1024  */
1025 static int rcu_boost_kthread(void *arg)
1026 {
1027         struct rcu_node *rnp = (struct rcu_node *)arg;
1028         int spincnt = 0;
1029         int more2boost;
1030
1031         trace_rcu_utilization(TPS("Start boost kthread@init"));
1032         for (;;) {
1033                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1034                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1035                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1036                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1037                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1038                 more2boost = rcu_boost(rnp);
1039                 if (more2boost)
1040                         spincnt++;
1041                 else
1042                         spincnt = 0;
1043                 if (spincnt > 10) {
1044                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1045                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1046                         schedule_timeout_interruptible(2);
1047                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1048                         spincnt = 0;
1049                 }
1050         }
1051         /* NOTREACHED */
1052         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1053         return 0;
1054 }
1055
1056 /*
1057  * Check to see if it is time to start boosting RCU readers that are
1058  * blocking the current grace period, and, if so, tell the per-rcu_node
1059  * kthread to start boosting them.  If there is an expedited grace
1060  * period in progress, it is always time to boost.
1061  *
1062  * The caller must hold rnp->lock, which this function releases.
1063  * The ->boost_kthread_task is immortal, so we don't need to worry
1064  * about it going away.
1065  */
1066 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1067         __releases(rnp->lock)
1068 {
1069         raw_lockdep_assert_held_rcu_node(rnp);
1070         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1071                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1072                 return;
1073         }
1074         if (rnp->exp_tasks != NULL ||
1075             (rnp->gp_tasks != NULL &&
1076              rnp->boost_tasks == NULL &&
1077              rnp->qsmask == 0 &&
1078              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1079                 if (rnp->exp_tasks == NULL)
1080                         rnp->boost_tasks = rnp->gp_tasks;
1081                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1082                 rcu_wake_cond(rnp->boost_kthread_task,
1083                               rnp->boost_kthread_status);
1084         } else {
1085                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1086         }
1087 }
1088
1089 /*
1090  * Is the current CPU running the RCU-callbacks kthread?
1091  * Caller must have preemption disabled.
1092  */
1093 static bool rcu_is_callbacks_kthread(void)
1094 {
1095         return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1096 }
1097
1098 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1099
1100 /*
1101  * Do priority-boost accounting for the start of a new grace period.
1102  */
1103 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1104 {
1105         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1106 }
1107
1108 /*
1109  * Create an RCU-boost kthread for the specified node if one does not
1110  * already exist.  We only create this kthread for preemptible RCU.
1111  * Returns zero if all is well, a negated errno otherwise.
1112  */
1113 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1114 {
1115         int rnp_index = rnp - rcu_get_root();
1116         unsigned long flags;
1117         struct sched_param sp;
1118         struct task_struct *t;
1119
1120         if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1121                 return;
1122
1123         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1124                 return;
1125
1126         rcu_state.boost = 1;
1127
1128         if (rnp->boost_kthread_task != NULL)
1129                 return;
1130
1131         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1132                            "rcub/%d", rnp_index);
1133         if (WARN_ON_ONCE(IS_ERR(t)))
1134                 return;
1135
1136         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1137         rnp->boost_kthread_task = t;
1138         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1139         sp.sched_priority = kthread_prio;
1140         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1141         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1142 }
1143
1144 /*
1145  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1146  * served by the rcu_node in question.  The CPU hotplug lock is still
1147  * held, so the value of rnp->qsmaskinit will be stable.
1148  *
1149  * We don't include outgoingcpu in the affinity set, use -1 if there is
1150  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1151  * this function allows the kthread to execute on any CPU.
1152  */
1153 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1154 {
1155         struct task_struct *t = rnp->boost_kthread_task;
1156         unsigned long mask = rcu_rnp_online_cpus(rnp);
1157         cpumask_var_t cm;
1158         int cpu;
1159
1160         if (!t)
1161                 return;
1162         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1163                 return;
1164         for_each_leaf_node_possible_cpu(rnp, cpu)
1165                 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1166                     cpu != outgoingcpu)
1167                         cpumask_set_cpu(cpu, cm);
1168         if (cpumask_weight(cm) == 0)
1169                 cpumask_setall(cm);
1170         set_cpus_allowed_ptr(t, cm);
1171         free_cpumask_var(cm);
1172 }
1173
1174 /*
1175  * Spawn boost kthreads -- called as soon as the scheduler is running.
1176  */
1177 static void __init rcu_spawn_boost_kthreads(void)
1178 {
1179         struct rcu_node *rnp;
1180
1181         rcu_for_each_leaf_node(rnp)
1182                 rcu_spawn_one_boost_kthread(rnp);
1183 }
1184
1185 static void rcu_prepare_kthreads(int cpu)
1186 {
1187         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1188         struct rcu_node *rnp = rdp->mynode;
1189
1190         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1191         if (rcu_scheduler_fully_active)
1192                 rcu_spawn_one_boost_kthread(rnp);
1193 }
1194
1195 #else /* #ifdef CONFIG_RCU_BOOST */
1196
1197 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1198         __releases(rnp->lock)
1199 {
1200         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1201 }
1202
1203 static bool rcu_is_callbacks_kthread(void)
1204 {
1205         return false;
1206 }
1207
1208 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1209 {
1210 }
1211
1212 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1213 {
1214 }
1215
1216 static void __init rcu_spawn_boost_kthreads(void)
1217 {
1218 }
1219
1220 static void rcu_prepare_kthreads(int cpu)
1221 {
1222 }
1223
1224 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1225
1226 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1227
1228 /*
1229  * Check to see if any future non-offloaded RCU-related work will need
1230  * to be done by the current CPU, even if none need be done immediately,
1231  * returning 1 if so.  This function is part of the RCU implementation;
1232  * it is -not- an exported member of the RCU API.
1233  *
1234  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1235  * CPU has RCU callbacks queued.
1236  */
1237 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1238 {
1239         *nextevt = KTIME_MAX;
1240         return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1241                !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1242 }
1243
1244 /*
1245  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1246  * after it.
1247  */
1248 static void rcu_cleanup_after_idle(void)
1249 {
1250 }
1251
1252 /*
1253  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1254  * is nothing.
1255  */
1256 static void rcu_prepare_for_idle(void)
1257 {
1258 }
1259
1260 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1261
1262 /*
1263  * This code is invoked when a CPU goes idle, at which point we want
1264  * to have the CPU do everything required for RCU so that it can enter
1265  * the energy-efficient dyntick-idle mode.  This is handled by a
1266  * state machine implemented by rcu_prepare_for_idle() below.
1267  *
1268  * The following three proprocessor symbols control this state machine:
1269  *
1270  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1271  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1272  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1273  *      benchmarkers who might otherwise be tempted to set this to a large
1274  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1275  *      system.  And if you are -that- concerned about energy efficiency,
1276  *      just power the system down and be done with it!
1277  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1278  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1279  *      callbacks pending.  Setting this too high can OOM your system.
1280  *
1281  * The values below work well in practice.  If future workloads require
1282  * adjustment, they can be converted into kernel config parameters, though
1283  * making the state machine smarter might be a better option.
1284  */
1285 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1286 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1287
1288 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1289 module_param(rcu_idle_gp_delay, int, 0644);
1290 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1291 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1292
1293 /*
1294  * Try to advance callbacks on the current CPU, but only if it has been
1295  * awhile since the last time we did so.  Afterwards, if there are any
1296  * callbacks ready for immediate invocation, return true.
1297  */
1298 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1299 {
1300         bool cbs_ready = false;
1301         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1302         struct rcu_node *rnp;
1303
1304         /* Exit early if we advanced recently. */
1305         if (jiffies == rdp->last_advance_all)
1306                 return false;
1307         rdp->last_advance_all = jiffies;
1308
1309         rnp = rdp->mynode;
1310
1311         /*
1312          * Don't bother checking unless a grace period has
1313          * completed since we last checked and there are
1314          * callbacks not yet ready to invoke.
1315          */
1316         if ((rcu_seq_completed_gp(rdp->gp_seq,
1317                                   rcu_seq_current(&rnp->gp_seq)) ||
1318              unlikely(READ_ONCE(rdp->gpwrap))) &&
1319             rcu_segcblist_pend_cbs(&rdp->cblist))
1320                 note_gp_changes(rdp);
1321
1322         if (rcu_segcblist_ready_cbs(&rdp->cblist))
1323                 cbs_ready = true;
1324         return cbs_ready;
1325 }
1326
1327 /*
1328  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1329  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1330  * caller to set the timeout based on whether or not there are non-lazy
1331  * callbacks.
1332  *
1333  * The caller must have disabled interrupts.
1334  */
1335 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1336 {
1337         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1338         unsigned long dj;
1339
1340         lockdep_assert_irqs_disabled();
1341
1342         /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1343         if (rcu_segcblist_empty(&rdp->cblist) ||
1344             rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1345                 *nextevt = KTIME_MAX;
1346                 return 0;
1347         }
1348
1349         /* Attempt to advance callbacks. */
1350         if (rcu_try_advance_all_cbs()) {
1351                 /* Some ready to invoke, so initiate later invocation. */
1352                 invoke_rcu_core();
1353                 return 1;
1354         }
1355         rdp->last_accelerate = jiffies;
1356
1357         /* Request timer delay depending on laziness, and round. */
1358         rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1359         if (rdp->all_lazy) {
1360                 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1361         } else {
1362                 dj = round_up(rcu_idle_gp_delay + jiffies,
1363                                rcu_idle_gp_delay) - jiffies;
1364         }
1365         *nextevt = basemono + dj * TICK_NSEC;
1366         return 0;
1367 }
1368
1369 /*
1370  * Prepare a CPU for idle from an RCU perspective.  The first major task
1371  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1372  * The second major task is to check to see if a non-lazy callback has
1373  * arrived at a CPU that previously had only lazy callbacks.  The third
1374  * major task is to accelerate (that is, assign grace-period numbers to)
1375  * any recently arrived callbacks.
1376  *
1377  * The caller must have disabled interrupts.
1378  */
1379 static void rcu_prepare_for_idle(void)
1380 {
1381         bool needwake;
1382         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1383         struct rcu_node *rnp;
1384         int tne;
1385
1386         lockdep_assert_irqs_disabled();
1387         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1388                 return;
1389
1390         /* Handle nohz enablement switches conservatively. */
1391         tne = READ_ONCE(tick_nohz_active);
1392         if (tne != rdp->tick_nohz_enabled_snap) {
1393                 if (!rcu_segcblist_empty(&rdp->cblist))
1394                         invoke_rcu_core(); /* force nohz to see update. */
1395                 rdp->tick_nohz_enabled_snap = tne;
1396                 return;
1397         }
1398         if (!tne)
1399                 return;
1400
1401         /*
1402          * If a non-lazy callback arrived at a CPU having only lazy
1403          * callbacks, invoke RCU core for the side-effect of recalculating
1404          * idle duration on re-entry to idle.
1405          */
1406         if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
1407                 rdp->all_lazy = false;
1408                 invoke_rcu_core();
1409                 return;
1410         }
1411
1412         /*
1413          * If we have not yet accelerated this jiffy, accelerate all
1414          * callbacks on this CPU.
1415          */
1416         if (rdp->last_accelerate == jiffies)
1417                 return;
1418         rdp->last_accelerate = jiffies;
1419         if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1420                 rnp = rdp->mynode;
1421                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1422                 needwake = rcu_accelerate_cbs(rnp, rdp);
1423                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1424                 if (needwake)
1425                         rcu_gp_kthread_wake();
1426         }
1427 }
1428
1429 /*
1430  * Clean up for exit from idle.  Attempt to advance callbacks based on
1431  * any grace periods that elapsed while the CPU was idle, and if any
1432  * callbacks are now ready to invoke, initiate invocation.
1433  */
1434 static void rcu_cleanup_after_idle(void)
1435 {
1436         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1437
1438         lockdep_assert_irqs_disabled();
1439         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1440                 return;
1441         if (rcu_try_advance_all_cbs())
1442                 invoke_rcu_core();
1443 }
1444
1445 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1446
1447 #ifdef CONFIG_RCU_NOCB_CPU
1448
1449 /*
1450  * Offload callback processing from the boot-time-specified set of CPUs
1451  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1452  * created that pull the callbacks from the corresponding CPU, wait for
1453  * a grace period to elapse, and invoke the callbacks.  These kthreads
1454  * are organized into GP kthreads, which manage incoming callbacks, wait for
1455  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1456  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1457  * do a wake_up() on their GP kthread when they insert a callback into any
1458  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1459  * in which case each kthread actively polls its CPU.  (Which isn't so great
1460  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1461  *
1462  * This is intended to be used in conjunction with Frederic Weisbecker's
1463  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1464  * running CPU-bound user-mode computations.
1465  *
1466  * Offloading of callbacks can also be used as an energy-efficiency
1467  * measure because CPUs with no RCU callbacks queued are more aggressive
1468  * about entering dyntick-idle mode.
1469  */
1470
1471
1472 /*
1473  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1474  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1475  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1476  * given, a warning is emitted and all CPUs are offloaded.
1477  */
1478 static int __init rcu_nocb_setup(char *str)
1479 {
1480         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1481         if (!strcasecmp(str, "all"))
1482                 cpumask_setall(rcu_nocb_mask);
1483         else
1484                 if (cpulist_parse(str, rcu_nocb_mask)) {
1485                         pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1486                         cpumask_setall(rcu_nocb_mask);
1487                 }
1488         return 1;
1489 }
1490 __setup("rcu_nocbs=", rcu_nocb_setup);
1491
1492 static int __init parse_rcu_nocb_poll(char *arg)
1493 {
1494         rcu_nocb_poll = true;
1495         return 0;
1496 }
1497 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1498
1499 /*
1500  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1501  * After all, the main point of bypassing is to avoid lock contention
1502  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1503  */
1504 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1505 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1506
1507 /*
1508  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1509  * lock isn't immediately available, increment ->nocb_lock_contended to
1510  * flag the contention.
1511  */
1512 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1513 {
1514         lockdep_assert_irqs_disabled();
1515         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1516                 return;
1517         atomic_inc(&rdp->nocb_lock_contended);
1518         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1519         smp_mb__after_atomic(); /* atomic_inc() before lock. */
1520         raw_spin_lock(&rdp->nocb_bypass_lock);
1521         smp_mb__before_atomic(); /* atomic_dec() after lock. */
1522         atomic_dec(&rdp->nocb_lock_contended);
1523 }
1524
1525 /*
1526  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1527  * not contended.  Please note that this is extremely special-purpose,
1528  * relying on the fact that at most two kthreads and one CPU contend for
1529  * this lock, and also that the two kthreads are guaranteed to have frequent
1530  * grace-period-duration time intervals between successive acquisitions
1531  * of the lock.  This allows us to use an extremely simple throttling
1532  * mechanism, and further to apply it only to the CPU doing floods of
1533  * call_rcu() invocations.  Don't try this at home!
1534  */
1535 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1536 {
1537         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1538         while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1539                 cpu_relax();
1540 }
1541
1542 /*
1543  * Conditionally acquire the specified rcu_data structure's
1544  * ->nocb_bypass_lock.
1545  */
1546 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1547 {
1548         lockdep_assert_irqs_disabled();
1549         return raw_spin_trylock(&rdp->nocb_bypass_lock);
1550 }
1551
1552 /*
1553  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1554  */
1555 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1556 {
1557         lockdep_assert_irqs_disabled();
1558         raw_spin_unlock(&rdp->nocb_bypass_lock);
1559 }
1560
1561 /*
1562  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1563  * if it corresponds to a no-CBs CPU.
1564  */
1565 static void rcu_nocb_lock(struct rcu_data *rdp)
1566 {
1567         lockdep_assert_irqs_disabled();
1568         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1569                 return;
1570         raw_spin_lock(&rdp->nocb_lock);
1571 }
1572
1573 /*
1574  * Release the specified rcu_data structure's ->nocb_lock, but only
1575  * if it corresponds to a no-CBs CPU.
1576  */
1577 static void rcu_nocb_unlock(struct rcu_data *rdp)
1578 {
1579         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1580                 lockdep_assert_irqs_disabled();
1581                 raw_spin_unlock(&rdp->nocb_lock);
1582         }
1583 }
1584
1585 /*
1586  * Release the specified rcu_data structure's ->nocb_lock and restore
1587  * interrupts, but only if it corresponds to a no-CBs CPU.
1588  */
1589 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1590                                        unsigned long flags)
1591 {
1592         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1593                 lockdep_assert_irqs_disabled();
1594                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1595         } else {
1596                 local_irq_restore(flags);
1597         }
1598 }
1599
1600 /* Lockdep check that ->cblist may be safely accessed. */
1601 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1602 {
1603         lockdep_assert_irqs_disabled();
1604         if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1605             cpu_online(rdp->cpu))
1606                 lockdep_assert_held(&rdp->nocb_lock);
1607 }
1608
1609 /*
1610  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1611  * grace period.
1612  */
1613 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1614 {
1615         swake_up_all(sq);
1616 }
1617
1618 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1619 {
1620         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1621 }
1622
1623 static void rcu_init_one_nocb(struct rcu_node *rnp)
1624 {
1625         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1626         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1627 }
1628
1629 /* Is the specified CPU a no-CBs CPU? */
1630 bool rcu_is_nocb_cpu(int cpu)
1631 {
1632         if (cpumask_available(rcu_nocb_mask))
1633                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1634         return false;
1635 }
1636
1637 /*
1638  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1639  * and this function releases it.
1640  */
1641 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1642                            unsigned long flags)
1643         __releases(rdp->nocb_lock)
1644 {
1645         bool needwake = false;
1646         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1647
1648         lockdep_assert_held(&rdp->nocb_lock);
1649         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1650                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1651                                     TPS("AlreadyAwake"));
1652                 rcu_nocb_unlock_irqrestore(rdp, flags);
1653                 return;
1654         }
1655         del_timer(&rdp->nocb_timer);
1656         rcu_nocb_unlock_irqrestore(rdp, flags);
1657         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1658         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1659                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1660                 needwake = true;
1661                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1662         }
1663         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1664         if (needwake)
1665                 wake_up_process(rdp_gp->nocb_gp_kthread);
1666 }
1667
1668 /*
1669  * Arrange to wake the GP kthread for this NOCB group at some future
1670  * time when it is safe to do so.
1671  */
1672 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1673                                const char *reason)
1674 {
1675         if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1676                 mod_timer(&rdp->nocb_timer, jiffies + 1);
1677         if (rdp->nocb_defer_wakeup < waketype)
1678                 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1679         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1680 }
1681
1682 /*
1683  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1684  * However, if there is a callback to be enqueued and if ->nocb_bypass
1685  * proves to be initially empty, just return false because the no-CB GP
1686  * kthread may need to be awakened in this case.
1687  *
1688  * Note that this function always returns true if rhp is NULL.
1689  */
1690 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1691                                      unsigned long j)
1692 {
1693         struct rcu_cblist rcl;
1694
1695         WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1696         rcu_lockdep_assert_cblist_protected(rdp);
1697         lockdep_assert_held(&rdp->nocb_bypass_lock);
1698         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1699                 raw_spin_unlock(&rdp->nocb_bypass_lock);
1700                 return false;
1701         }
1702         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1703         if (rhp)
1704                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1705         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1706         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1707         WRITE_ONCE(rdp->nocb_bypass_first, j);
1708         rcu_nocb_bypass_unlock(rdp);
1709         return true;
1710 }
1711
1712 /*
1713  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1714  * However, if there is a callback to be enqueued and if ->nocb_bypass
1715  * proves to be initially empty, just return false because the no-CB GP
1716  * kthread may need to be awakened in this case.
1717  *
1718  * Note that this function always returns true if rhp is NULL.
1719  */
1720 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1721                                   unsigned long j)
1722 {
1723         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1724                 return true;
1725         rcu_lockdep_assert_cblist_protected(rdp);
1726         rcu_nocb_bypass_lock(rdp);
1727         return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1728 }
1729
1730 /*
1731  * If the ->nocb_bypass_lock is immediately available, flush the
1732  * ->nocb_bypass queue into ->cblist.
1733  */
1734 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1735 {
1736         rcu_lockdep_assert_cblist_protected(rdp);
1737         if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1738             !rcu_nocb_bypass_trylock(rdp))
1739                 return;
1740         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1741 }
1742
1743 /*
1744  * See whether it is appropriate to use the ->nocb_bypass list in order
1745  * to control contention on ->nocb_lock.  A limited number of direct
1746  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1747  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1748  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1749  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1750  * used if ->cblist is empty, because otherwise callbacks can be stranded
1751  * on ->nocb_bypass because we cannot count on the current CPU ever again
1752  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1753  * non-empty, the corresponding no-CBs grace-period kthread must not be
1754  * in an indefinite sleep state.
1755  *
1756  * Finally, it is not permitted to use the bypass during early boot,
1757  * as doing so would confuse the auto-initialization code.  Besides
1758  * which, there is no point in worrying about lock contention while
1759  * there is only one CPU in operation.
1760  */
1761 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1762                                 bool *was_alldone, unsigned long flags)
1763 {
1764         unsigned long c;
1765         unsigned long cur_gp_seq;
1766         unsigned long j = jiffies;
1767         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1768
1769         if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1770                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1771                 return false; /* Not offloaded, no bypassing. */
1772         }
1773         lockdep_assert_irqs_disabled();
1774
1775         // Don't use ->nocb_bypass during early boot.
1776         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1777                 rcu_nocb_lock(rdp);
1778                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1779                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1780                 return false;
1781         }
1782
1783         // If we have advanced to a new jiffy, reset counts to allow
1784         // moving back from ->nocb_bypass to ->cblist.
1785         if (j == rdp->nocb_nobypass_last) {
1786                 c = rdp->nocb_nobypass_count + 1;
1787         } else {
1788                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1789                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1790                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1791                                  nocb_nobypass_lim_per_jiffy))
1792                         c = 0;
1793                 else if (c > nocb_nobypass_lim_per_jiffy)
1794                         c = nocb_nobypass_lim_per_jiffy;
1795         }
1796         WRITE_ONCE(rdp->nocb_nobypass_count, c);
1797
1798         // If there hasn't yet been all that many ->cblist enqueues
1799         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1800         // ->nocb_bypass first.
1801         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1802                 rcu_nocb_lock(rdp);
1803                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1804                 if (*was_alldone)
1805                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1806                                             TPS("FirstQ"));
1807                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1808                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1809                 return false; // Caller must enqueue the callback.
1810         }
1811
1812         // If ->nocb_bypass has been used too long or is too full,
1813         // flush ->nocb_bypass to ->cblist.
1814         if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1815             ncbs >= qhimark) {
1816                 rcu_nocb_lock(rdp);
1817                 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1818                         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1819                         if (*was_alldone)
1820                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1821                                                     TPS("FirstQ"));
1822                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1823                         return false; // Caller must enqueue the callback.
1824                 }
1825                 if (j != rdp->nocb_gp_adv_time &&
1826                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1827                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1828                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1829                         rdp->nocb_gp_adv_time = j;
1830                 }
1831                 rcu_nocb_unlock_irqrestore(rdp, flags);
1832                 return true; // Callback already enqueued.
1833         }
1834
1835         // We need to use the bypass.
1836         rcu_nocb_wait_contended(rdp);
1837         rcu_nocb_bypass_lock(rdp);
1838         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1839         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1840         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1841         if (!ncbs) {
1842                 WRITE_ONCE(rdp->nocb_bypass_first, j);
1843                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1844         }
1845         rcu_nocb_bypass_unlock(rdp);
1846         smp_mb(); /* Order enqueue before wake. */
1847         if (ncbs) {
1848                 local_irq_restore(flags);
1849         } else {
1850                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1851                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1852                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1853                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1854                                             TPS("FirstBQwake"));
1855                         __call_rcu_nocb_wake(rdp, true, flags);
1856                 } else {
1857                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1858                                             TPS("FirstBQnoWake"));
1859                         rcu_nocb_unlock_irqrestore(rdp, flags);
1860                 }
1861         }
1862         return true; // Callback already enqueued.
1863 }
1864
1865 /*
1866  * Awaken the no-CBs grace-period kthead if needed, either due to it
1867  * legitimately being asleep or due to overload conditions.
1868  *
1869  * If warranted, also wake up the kthread servicing this CPUs queues.
1870  */
1871 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1872                                  unsigned long flags)
1873                                  __releases(rdp->nocb_lock)
1874 {
1875         unsigned long cur_gp_seq;
1876         unsigned long j;
1877         long len;
1878         struct task_struct *t;
1879
1880         // If we are being polled or there is no kthread, just leave.
1881         t = READ_ONCE(rdp->nocb_gp_kthread);
1882         if (rcu_nocb_poll || !t) {
1883                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1884                                     TPS("WakeNotPoll"));
1885                 rcu_nocb_unlock_irqrestore(rdp, flags);
1886                 return;
1887         }
1888         // Need to actually to a wakeup.
1889         len = rcu_segcblist_n_cbs(&rdp->cblist);
1890         if (was_alldone) {
1891                 rdp->qlen_last_fqs_check = len;
1892                 if (!irqs_disabled_flags(flags)) {
1893                         /* ... if queue was empty ... */
1894                         wake_nocb_gp(rdp, false, flags);
1895                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1896                                             TPS("WakeEmpty"));
1897                 } else {
1898                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1899                                            TPS("WakeEmptyIsDeferred"));
1900                         rcu_nocb_unlock_irqrestore(rdp, flags);
1901                 }
1902         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1903                 /* ... or if many callbacks queued. */
1904                 rdp->qlen_last_fqs_check = len;
1905                 j = jiffies;
1906                 if (j != rdp->nocb_gp_adv_time &&
1907                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1908                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1909                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1910                         rdp->nocb_gp_adv_time = j;
1911                 }
1912                 smp_mb(); /* Enqueue before timer_pending(). */
1913                 if ((rdp->nocb_cb_sleep ||
1914                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1915                     !timer_pending(&rdp->nocb_bypass_timer))
1916                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1917                                            TPS("WakeOvfIsDeferred"));
1918                 rcu_nocb_unlock_irqrestore(rdp, flags);
1919         } else {
1920                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1921                 rcu_nocb_unlock_irqrestore(rdp, flags);
1922         }
1923         return;
1924 }
1925
1926 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1927 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1928 {
1929         unsigned long flags;
1930         struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1931
1932         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1933         rcu_nocb_lock_irqsave(rdp, flags);
1934         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1935         __call_rcu_nocb_wake(rdp, true, flags);
1936 }
1937
1938 /*
1939  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1940  * or for grace periods to end.
1941  */
1942 static void nocb_gp_wait(struct rcu_data *my_rdp)
1943 {
1944         bool bypass = false;
1945         long bypass_ncbs;
1946         int __maybe_unused cpu = my_rdp->cpu;
1947         unsigned long cur_gp_seq;
1948         unsigned long flags;
1949         bool gotcbs = false;
1950         unsigned long j = jiffies;
1951         bool needwait_gp = false; // This prevents actual uninitialized use.
1952         bool needwake;
1953         bool needwake_gp;
1954         struct rcu_data *rdp;
1955         struct rcu_node *rnp;
1956         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1957
1958         /*
1959          * Each pass through the following loop checks for CBs and for the
1960          * nearest grace period (if any) to wait for next.  The CB kthreads
1961          * and the global grace-period kthread are awakened if needed.
1962          */
1963         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1964                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1965                 rcu_nocb_lock_irqsave(rdp, flags);
1966                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1967                 if (bypass_ncbs &&
1968                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1969                      bypass_ncbs > 2 * qhimark)) {
1970                         // Bypass full or old, so flush it.
1971                         (void)rcu_nocb_try_flush_bypass(rdp, j);
1972                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1973                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1974                         rcu_nocb_unlock_irqrestore(rdp, flags);
1975                         continue; /* No callbacks here, try next. */
1976                 }
1977                 if (bypass_ncbs) {
1978                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1979                                             TPS("Bypass"));
1980                         bypass = true;
1981                 }
1982                 rnp = rdp->mynode;
1983                 if (bypass) {  // Avoid race with first bypass CB.
1984                         WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1985                                    RCU_NOCB_WAKE_NOT);
1986                         del_timer(&my_rdp->nocb_timer);
1987                 }
1988                 // Advance callbacks if helpful and low contention.
1989                 needwake_gp = false;
1990                 if (!rcu_segcblist_restempty(&rdp->cblist,
1991                                              RCU_NEXT_READY_TAIL) ||
1992                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1993                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1994                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1995                         needwake_gp = rcu_advance_cbs(rnp, rdp);
1996                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1997                 }
1998                 // Need to wait on some grace period?
1999                 WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
2000                                                       RCU_NEXT_READY_TAIL));
2001                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2002                         if (!needwait_gp ||
2003                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2004                                 wait_gp_seq = cur_gp_seq;
2005                         needwait_gp = true;
2006                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2007                                             TPS("NeedWaitGP"));
2008                 }
2009                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2010                         needwake = rdp->nocb_cb_sleep;
2011                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
2012                         smp_mb(); /* CB invocation -after- GP end. */
2013                 } else {
2014                         needwake = false;
2015                 }
2016                 rcu_nocb_unlock_irqrestore(rdp, flags);
2017                 if (needwake) {
2018                         swake_up_one(&rdp->nocb_cb_wq);
2019                         gotcbs = true;
2020                 }
2021                 if (needwake_gp)
2022                         rcu_gp_kthread_wake();
2023         }
2024
2025         my_rdp->nocb_gp_bypass = bypass;
2026         my_rdp->nocb_gp_gp = needwait_gp;
2027         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2028         if (bypass && !rcu_nocb_poll) {
2029                 // At least one child with non-empty ->nocb_bypass, so set
2030                 // timer in order to avoid stranding its callbacks.
2031                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2032                 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2033                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2034         }
2035         if (rcu_nocb_poll) {
2036                 /* Polling, so trace if first poll in the series. */
2037                 if (gotcbs)
2038                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2039                 schedule_timeout_interruptible(1);
2040         } else if (!needwait_gp) {
2041                 /* Wait for callbacks to appear. */
2042                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2043                 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2044                                 !READ_ONCE(my_rdp->nocb_gp_sleep));
2045                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2046         } else {
2047                 rnp = my_rdp->mynode;
2048                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2049                 swait_event_interruptible_exclusive(
2050                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2051                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2052                         !READ_ONCE(my_rdp->nocb_gp_sleep));
2053                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2054         }
2055         if (!rcu_nocb_poll) {
2056                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2057                 if (bypass)
2058                         del_timer(&my_rdp->nocb_bypass_timer);
2059                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2060                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2061         }
2062         my_rdp->nocb_gp_seq = -1;
2063         WARN_ON(signal_pending(current));
2064 }
2065
2066 /*
2067  * No-CBs grace-period-wait kthread.  There is one of these per group
2068  * of CPUs, but only once at least one CPU in that group has come online
2069  * at least once since boot.  This kthread checks for newly posted
2070  * callbacks from any of the CPUs it is responsible for, waits for a
2071  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2072  * that then have callback-invocation work to do.
2073  */
2074 static int rcu_nocb_gp_kthread(void *arg)
2075 {
2076         struct rcu_data *rdp = arg;
2077
2078         for (;;) {
2079                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2080                 nocb_gp_wait(rdp);
2081                 cond_resched_tasks_rcu_qs();
2082         }
2083         return 0;
2084 }
2085
2086 /*
2087  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2088  * then, if there are no more, wait for more to appear.
2089  */
2090 static void nocb_cb_wait(struct rcu_data *rdp)
2091 {
2092         unsigned long cur_gp_seq;
2093         unsigned long flags;
2094         bool needwake_gp = false;
2095         struct rcu_node *rnp = rdp->mynode;
2096
2097         local_irq_save(flags);
2098         rcu_momentary_dyntick_idle();
2099         local_irq_restore(flags);
2100         local_bh_disable();
2101         rcu_do_batch(rdp);
2102         local_bh_enable();
2103         lockdep_assert_irqs_enabled();
2104         rcu_nocb_lock_irqsave(rdp, flags);
2105         if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2106             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2107             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2108                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2109                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2110         }
2111         if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2112                 rcu_nocb_unlock_irqrestore(rdp, flags);
2113                 if (needwake_gp)
2114                         rcu_gp_kthread_wake();
2115                 return;
2116         }
2117
2118         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2119         WRITE_ONCE(rdp->nocb_cb_sleep, true);
2120         rcu_nocb_unlock_irqrestore(rdp, flags);
2121         if (needwake_gp)
2122                 rcu_gp_kthread_wake();
2123         swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2124                                  !READ_ONCE(rdp->nocb_cb_sleep));
2125         if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2126                 /* ^^^ Ensure CB invocation follows _sleep test. */
2127                 return;
2128         }
2129         WARN_ON(signal_pending(current));
2130         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2131 }
2132
2133 /*
2134  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2135  * nocb_cb_wait() to do the dirty work.
2136  */
2137 static int rcu_nocb_cb_kthread(void *arg)
2138 {
2139         struct rcu_data *rdp = arg;
2140
2141         // Each pass through this loop does one callback batch, and,
2142         // if there are no more ready callbacks, waits for them.
2143         for (;;) {
2144                 nocb_cb_wait(rdp);
2145                 cond_resched_tasks_rcu_qs();
2146         }
2147         return 0;
2148 }
2149
2150 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2151 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2152 {
2153         return READ_ONCE(rdp->nocb_defer_wakeup);
2154 }
2155
2156 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2157 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2158 {
2159         unsigned long flags;
2160         int ndw;
2161
2162         rcu_nocb_lock_irqsave(rdp, flags);
2163         if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2164                 rcu_nocb_unlock_irqrestore(rdp, flags);
2165                 return;
2166         }
2167         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2168         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2169         wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2170         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2171 }
2172
2173 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2174 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2175 {
2176         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2177
2178         do_nocb_deferred_wakeup_common(rdp);
2179 }
2180
2181 /*
2182  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2183  * This means we do an inexact common-case check.  Note that if
2184  * we miss, ->nocb_timer will eventually clean things up.
2185  */
2186 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2187 {
2188         if (rcu_nocb_need_deferred_wakeup(rdp))
2189                 do_nocb_deferred_wakeup_common(rdp);
2190 }
2191
2192 void __init rcu_init_nohz(void)
2193 {
2194         int cpu;
2195         bool need_rcu_nocb_mask = false;
2196         struct rcu_data *rdp;
2197
2198 #if defined(CONFIG_NO_HZ_FULL)
2199         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2200                 need_rcu_nocb_mask = true;
2201 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2202
2203         if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2204                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2205                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2206                         return;
2207                 }
2208         }
2209         if (!cpumask_available(rcu_nocb_mask))
2210                 return;
2211
2212 #if defined(CONFIG_NO_HZ_FULL)
2213         if (tick_nohz_full_running)
2214                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2215 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2216
2217         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2218                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2219                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2220                             rcu_nocb_mask);
2221         }
2222         if (cpumask_empty(rcu_nocb_mask))
2223                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2224         else
2225                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2226                         cpumask_pr_args(rcu_nocb_mask));
2227         if (rcu_nocb_poll)
2228                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2229
2230         for_each_cpu(cpu, rcu_nocb_mask) {
2231                 rdp = per_cpu_ptr(&rcu_data, cpu);
2232                 if (rcu_segcblist_empty(&rdp->cblist))
2233                         rcu_segcblist_init(&rdp->cblist);
2234                 rcu_segcblist_offload(&rdp->cblist);
2235         }
2236         rcu_organize_nocb_kthreads();
2237 }
2238
2239 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2240 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2241 {
2242         init_swait_queue_head(&rdp->nocb_cb_wq);
2243         init_swait_queue_head(&rdp->nocb_gp_wq);
2244         raw_spin_lock_init(&rdp->nocb_lock);
2245         raw_spin_lock_init(&rdp->nocb_bypass_lock);
2246         raw_spin_lock_init(&rdp->nocb_gp_lock);
2247         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2248         timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2249         rcu_cblist_init(&rdp->nocb_bypass);
2250 }
2251
2252 /*
2253  * If the specified CPU is a no-CBs CPU that does not already have its
2254  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2255  * for this CPU's group has not yet been created, spawn it as well.
2256  */
2257 static void rcu_spawn_one_nocb_kthread(int cpu)
2258 {
2259         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2260         struct rcu_data *rdp_gp;
2261         struct task_struct *t;
2262
2263         /*
2264          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2265          * then nothing to do.
2266          */
2267         if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2268                 return;
2269
2270         /* If we didn't spawn the GP kthread first, reorganize! */
2271         rdp_gp = rdp->nocb_gp_rdp;
2272         if (!rdp_gp->nocb_gp_kthread) {
2273                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2274                                 "rcuog/%d", rdp_gp->cpu);
2275                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2276                         return;
2277                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2278         }
2279
2280         /* Spawn the kthread for this CPU. */
2281         t = kthread_run(rcu_nocb_cb_kthread, rdp,
2282                         "rcuo%c/%d", rcu_state.abbr, cpu);
2283         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2284                 return;
2285         WRITE_ONCE(rdp->nocb_cb_kthread, t);
2286         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2287 }
2288
2289 /*
2290  * If the specified CPU is a no-CBs CPU that does not already have its
2291  * rcuo kthread, spawn it.
2292  */
2293 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2294 {
2295         if (rcu_scheduler_fully_active)
2296                 rcu_spawn_one_nocb_kthread(cpu);
2297 }
2298
2299 /*
2300  * Once the scheduler is running, spawn rcuo kthreads for all online
2301  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2302  * non-boot CPUs come online -- if this changes, we will need to add
2303  * some mutual exclusion.
2304  */
2305 static void __init rcu_spawn_nocb_kthreads(void)
2306 {
2307         int cpu;
2308
2309         for_each_online_cpu(cpu)
2310                 rcu_spawn_cpu_nocb_kthread(cpu);
2311 }
2312
2313 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2314 static int rcu_nocb_gp_stride = -1;
2315 module_param(rcu_nocb_gp_stride, int, 0444);
2316
2317 /*
2318  * Initialize GP-CB relationships for all no-CBs CPU.
2319  */
2320 static void __init rcu_organize_nocb_kthreads(void)
2321 {
2322         int cpu;
2323         bool firsttime = true;
2324         int ls = rcu_nocb_gp_stride;
2325         int nl = 0;  /* Next GP kthread. */
2326         struct rcu_data *rdp;
2327         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2328         struct rcu_data *rdp_prev = NULL;
2329
2330         if (!cpumask_available(rcu_nocb_mask))
2331                 return;
2332         if (ls == -1) {
2333                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2334                 rcu_nocb_gp_stride = ls;
2335         }
2336
2337         /*
2338          * Each pass through this loop sets up one rcu_data structure.
2339          * Should the corresponding CPU come online in the future, then
2340          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2341          */
2342         for_each_cpu(cpu, rcu_nocb_mask) {
2343                 rdp = per_cpu_ptr(&rcu_data, cpu);
2344                 if (rdp->cpu >= nl) {
2345                         /* New GP kthread, set up for CBs & next GP. */
2346                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2347                         rdp->nocb_gp_rdp = rdp;
2348                         rdp_gp = rdp;
2349                         if (!firsttime && dump_tree)
2350                                 pr_cont("\n");
2351                         firsttime = false;
2352                         pr_alert("%s: No-CB GP kthread CPU %d:", __func__, cpu);
2353                 } else {
2354                         /* Another CB kthread, link to previous GP kthread. */
2355                         rdp->nocb_gp_rdp = rdp_gp;
2356                         rdp_prev->nocb_next_cb_rdp = rdp;
2357                         pr_alert(" %d", cpu);
2358                 }
2359                 rdp_prev = rdp;
2360         }
2361 }
2362
2363 /*
2364  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2365  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2366  */
2367 void rcu_bind_current_to_nocb(void)
2368 {
2369         if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2370                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2371 }
2372 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2373
2374 /*
2375  * Dump out nocb grace-period kthread state for the specified rcu_data
2376  * structure.
2377  */
2378 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2379 {
2380         struct rcu_node *rnp = rdp->mynode;
2381
2382         pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2383                 rdp->cpu,
2384                 "kK"[!!rdp->nocb_gp_kthread],
2385                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2386                 "dD"[!!rdp->nocb_defer_wakeup],
2387                 "tT"[timer_pending(&rdp->nocb_timer)],
2388                 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2389                 "sS"[!!rdp->nocb_gp_sleep],
2390                 ".W"[swait_active(&rdp->nocb_gp_wq)],
2391                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2392                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2393                 ".B"[!!rdp->nocb_gp_bypass],
2394                 ".G"[!!rdp->nocb_gp_gp],
2395                 (long)rdp->nocb_gp_seq,
2396                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2397 }
2398
2399 /* Dump out nocb kthread state for the specified rcu_data structure. */
2400 static void show_rcu_nocb_state(struct rcu_data *rdp)
2401 {
2402         struct rcu_segcblist *rsclp = &rdp->cblist;
2403         bool waslocked;
2404         bool wastimer;
2405         bool wassleep;
2406
2407         if (rdp->nocb_gp_rdp == rdp)
2408                 show_rcu_nocb_gp_state(rdp);
2409
2410         pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2411                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2412                 "kK"[!!rdp->nocb_cb_kthread],
2413                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2414                 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2415                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2416                 "sS"[!!rdp->nocb_cb_sleep],
2417                 ".W"[swait_active(&rdp->nocb_cb_wq)],
2418                 jiffies - rdp->nocb_bypass_first,
2419                 jiffies - rdp->nocb_nobypass_last,
2420                 rdp->nocb_nobypass_count,
2421                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2422                 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2423                 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2424                 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2425                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2426                 rcu_segcblist_n_cbs(&rdp->cblist));
2427
2428         /* It is OK for GP kthreads to have GP state. */
2429         if (rdp->nocb_gp_rdp == rdp)
2430                 return;
2431
2432         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2433         wastimer = timer_pending(&rdp->nocb_timer);
2434         wassleep = swait_active(&rdp->nocb_gp_wq);
2435         if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2436             !waslocked && !wastimer && !wassleep)
2437                 return;  /* Nothing untowards. */
2438
2439         pr_info("   !!! %c%c%c%c %c\n",
2440                 "lL"[waslocked],
2441                 "dD"[!!rdp->nocb_defer_wakeup],
2442                 "tT"[wastimer],
2443                 "sS"[!!rdp->nocb_gp_sleep],
2444                 ".W"[wassleep]);
2445 }
2446
2447 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2448
2449 /* No ->nocb_lock to acquire.  */
2450 static void rcu_nocb_lock(struct rcu_data *rdp)
2451 {
2452 }
2453
2454 /* No ->nocb_lock to release.  */
2455 static void rcu_nocb_unlock(struct rcu_data *rdp)
2456 {
2457 }
2458
2459 /* No ->nocb_lock to release.  */
2460 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2461                                        unsigned long flags)
2462 {
2463         local_irq_restore(flags);
2464 }
2465
2466 /* Lockdep check that ->cblist may be safely accessed. */
2467 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2468 {
2469         lockdep_assert_irqs_disabled();
2470 }
2471
2472 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2473 {
2474 }
2475
2476 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2477 {
2478         return NULL;
2479 }
2480
2481 static void rcu_init_one_nocb(struct rcu_node *rnp)
2482 {
2483 }
2484
2485 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2486                                   unsigned long j)
2487 {
2488         return true;
2489 }
2490
2491 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2492                                 bool *was_alldone, unsigned long flags)
2493 {
2494         return false;
2495 }
2496
2497 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2498                                  unsigned long flags)
2499 {
2500         WARN_ON_ONCE(1);  /* Should be dead code! */
2501 }
2502
2503 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2504 {
2505 }
2506
2507 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2508 {
2509         return false;
2510 }
2511
2512 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2513 {
2514 }
2515
2516 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2517 {
2518 }
2519
2520 static void __init rcu_spawn_nocb_kthreads(void)
2521 {
2522 }
2523
2524 static void show_rcu_nocb_state(struct rcu_data *rdp)
2525 {
2526 }
2527
2528 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2529
2530 /*
2531  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2532  * grace-period kthread will do force_quiescent_state() processing?
2533  * The idea is to avoid waking up RCU core processing on such a
2534  * CPU unless the grace period has extended for too long.
2535  *
2536  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2537  * CONFIG_RCU_NOCB_CPU CPUs.
2538  */
2539 static bool rcu_nohz_full_cpu(void)
2540 {
2541 #ifdef CONFIG_NO_HZ_FULL
2542         if (tick_nohz_full_cpu(smp_processor_id()) &&
2543             (!rcu_gp_in_progress() ||
2544              ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2545                 return true;
2546 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2547         return false;
2548 }
2549
2550 /*
2551  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2552  */
2553 static void rcu_bind_gp_kthread(void)
2554 {
2555         if (!tick_nohz_full_enabled())
2556                 return;
2557         housekeeping_affine(current, HK_FLAG_RCU);
2558 }
2559
2560 /* Record the current task on dyntick-idle entry. */
2561 static void rcu_dynticks_task_enter(void)
2562 {
2563 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2564         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2565 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2566 }
2567
2568 /* Record no current task on dyntick-idle exit. */
2569 static void rcu_dynticks_task_exit(void)
2570 {
2571 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2572         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2573 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2574 }